This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Lepton flavor violating decays ljliγl_{j}\rightarrow{l_{i}\gamma} in the U(1)XU(1)_{X}SSM model within the Mass Insertion Approximation

Tong-Tong Wang1,2111wtt961018@163.com, Shu-Min Zhao1,2222zhaosm@hbu.edu.cn, Jian-Fei Zhang1,2333zjf09@hbu.edu.cn, Xing-Xing Dong1,2444dongxx@hbu.edu.cn, Tai-Fu Feng1,2,3555fengtf@hbu.edu.cn 1 Department of Physics, Hebei University, Baoding 071002, China 2 Key Laboratory of High-precision Computation and Application of Quantum Field Theory of Hebei Province, Baoding 071002, China 3 Department of Physics, Chongqing University, Chongqing 401331, China
Abstract

Three singlet new Higgs superfields and right-handed neutrinos are added to MSSM to obtain U(1)XU(1)_{X}SSM model. Its local gauge group is SU(3)C×SU(2)L×U(1)Y×U(1)XSU(3)_{C}\times SU(2)_{L}\times U(1)_{Y}\times U(1)_{X}. In the framework of U(1)XU(1)_{X}SSM, we study muon anomalous magnetic moment and lepton flavor violating decays ljliγ(j=2,3;i=1,2)l_{j}\rightarrow{l_{i}\gamma}(j=2,3;i=1,2) within the Mass Insertion Approximation(MIA). Through the MIA method, we can find the parameters that directly affect the analytical result of the lepton flavor violating decays ljliγl_{j}\rightarrow{l_{i}\gamma}, which make our work more convenient. We want to provide a set of simple analytic formulas for the form factors and the associated effective vertices, that may be very useful for future phenomenological studies of the lepton flavor violating decays. According to the accuracy of the numerical results which the influence of different sensitive parameters, we come to the conclusion that the non-diagonal elements which correspond to the generations of the initial lepton and final lepton are main sensitive parameters and lepton flavor violation(LFV) sources. This work can provide a clear signal of new physics(NP).

lepton flavor violation, mass insertion approximation, new physics

I introduction

Lepton has unitary matrix similar to Cabbibo-Kobayashi-Maskawa(CKM) mixed matrix. The breaking theory of electric weak symmetry and neutrino oscillation experiment show that lepton flavor violation (LFV) exists both theoretically and experimentally1 . The standard model(SM) is already a mature theory. However, the lepton number is conserved in the SM, so there is no LFV process in the SM2 . Through research, it is necessary to expand the SM. Any sign of LFV can be regarded as evidence of the existence of new physics(NP)02 .

Physicists have extended SM and obtained a large number of extended models, among which the minimum supersymmetric standard model (MSSM) is the most concerned model. However, it is gradually found that MSSM also has problems: μ\mu problem3 and zero mass neutrinosUU1 . To solve these problems, we pay attention to the U(1) expansions of MSSM. We extend the MSSM with U(1)XU(1)_{X} gauge group, whose symmetry group is SU(3)C×SU(2)L×U(1)Y×U(1)XSU(3)_{C}\times SU(2)_{L}\times U(1)_{Y}\times U(1)_{X}Sarah1 ; Sarah2 ; Sarah3 . It adds three Higgs singlet superfields and right-handed neutrino superfields beyond MSSMMSSM . There are five neutral CP-even Higgs component fields in the model, which come from two Higgs doublets and three Higgs singlets respectively. Therefore, the mass mixing matrix is 5×55\times 5, and the 125.1 GeV Higgs particlesm1 corresponds to the lightest mass eigenstate.

To improve the corrections to LFV processes of ljliγl_{j}\rightarrow{l_{i}\gamma}, people discuss different SM extended models220725 , for example minimal R-symmetric supersymmetric standard model9 , MSSM extension with gauged baryon and lepton numbers 21 , SM extension with a hidden U(1)XU(1)_{X} gauged symmetrynew1 and lepton numbers and supersymmetric low-scale seesaw modelsnew2 . It is worth noting that in our previous work, we have studied lepton flavor violating decays ljliγl_{j}\rightarrow{l_{i}\gamma} in the U(1)XU(1)_{X}SSM model20 . The above works and most of the research on LFV are studied with the mass eigenstate method. Using this method to find sensitive parameters is often not intuitive and clear enough, which depends on the mass eigenstates of the particles and rotation matrixes. It will lead us to pay too much attention to many unimportant parameters. Now we use a novel calculation method called as Mass Insertion Approximation(MIA)04 ; 07 ; 05 ; 06 , which uses the electroweak interaction eigenstate and treats perturbatively the mass insertions changing slepton flavor. By means of mass insertions inside the propagators of the electroweak interaction sleptons eigenstates, at the analytical level, we can find many parameters that have direct impact on LFV. It is worth noting that these parameters are considered between all possible flavor blends among SUSY partner of leptons, in which their particular origin has no assumption and is independent of the model07 . In addition, the MIA method has been applied to other works related to LFV, including the h,H,Aτμh,H,A\rightarrow{\tau\mu} decays induced from SUSY loops07 , effective lepton flavor violating HijH\ell_{i}\ell_{j} vertex from right-handed neutrinos06 , one-loop effective LFV ZlklmZl_{k}l_{m} vertex from heavy neutrinos05 and so on. This method provides very simple and intuitive analytical formula, and is also clear about the changes of the main parameters affecting lepton taste destruction, which provides a new idea for other work of LFV in the future.

In the process of LFV, because the mass of τ\tau lepton is much greater than μ\mu and ee, there are more LFV decay channels08 . The decay processes of ljliγl_{j}\rightarrow{l_{i}\gamma} are the most interesting. This work is to study the LFV of the ljliγl_{j}\rightarrow{l_{i}\gamma} processes under the U(1)XU(1)_{X}SSM model. The effects of different reasonable parameter spaces on the branching ratio Br(ljliγl_{j}\rightarrow{l_{i}\gamma}) are compared. The latest upper limits on the LFV branching ratio of μeγ\mu\rightarrow{e\gamma}τμγ\tau\rightarrow{\mu\gamma} and τeγ\tau\rightarrow{e\gamma} at 90% confidence level (C.L.)10 are

Br(μeγ)<4.2×1013,Br(τμγ)<4.4×108,Br(τeγ)<3.3×108.\displaystyle Br(\mu\rightarrow{e\gamma})<4.2\times 10^{-13},~{}~{}Br(\tau\rightarrow{\mu\gamma})<4.4\times 10^{-8},~{}~{}Br(\tau\rightarrow{e\gamma})<3.3\times 10^{-8}. (1)

The paper is organized as follows. In Sec.II, we mainly introduce the U(1)XU(1)_{X}SSM including its superpotential and the general soft breaking terms. In Sec.III, we give analytic expressions for muon anomalous magnetic moment and the branching ratios of ljliγl_{j}\rightarrow{l_{i}\gamma} decays in the U(1)XU(1)_{X}SSM. In Sec.IV, we give the numerical analysis, and the summary is given in Sec.V.

II the U(1)XU(1)_{X}SSM

U(1)XU(1)_{X}SSM is the U(1) extension of MSSM, whose local gauge group is SU(3)CSU(2)LU(1)YU(1)XSU(3)_{C}\otimes SU(2)_{L}\otimes U(1)_{Y}\otimes U(1)_{X}04 ; UU1 ; UU3 . On the basis of MSSM, U(1)XU(1)_{X}SSM has new superfields such as three Higgs singlets η^,η¯^,S^\hat{\eta},~{}\hat{\bar{\eta}},~{}\hat{S} and right-handed neutrinos ν^i\hat{\nu}_{i}. Through the seesaw mechanism, light neutrinos obtain tiny masses at the tree level. The neutral CP-even parts of Hu,Hd,η,η¯H_{u},~{}H_{d},~{}\eta,~{}\bar{\eta} and SS mix together and form a 5×55\times 5 mass squared matrix, whose lightest mass eigenvalue corresponds to the lightest CP-even Higgs. The particle content and charge assignments for U(1)XU(1)_{X}SSM can be found in our previous workUU1 . To get 125.1 GeV Higgs massLCTHiggs1 ; LCTHiggs2 , the loop corrections should be taken into account. The sneutrinos are disparted into CP-even sneutrinos and CP-odd sneutrinos, and their mass squared matrixes are both extended to 6×66\times 6.

In U(1)XU(1)_{X}SSM, the concrete form of the superpotential is:

W=lWS^+μH^uH^d+MSS^S^Ydd^Q^H^dYee^L^H^d+λHS^H^uH^d\displaystyle W=l_{W}\hat{S}+\mu\hat{H}_{u}\hat{H}_{d}+M_{S}\hat{S}\hat{S}-Y_{d}\hat{d}\hat{Q}\hat{H}_{d}-Y_{e}\hat{e}\hat{L}\hat{H}_{d}+\lambda_{H}\hat{S}\hat{H}_{u}\hat{H}_{d}
+λCS^η^η¯^+κ3S^S^S^+Yuu^Q^H^u+YXν^η¯^ν^+Yνν^L^H^u.\displaystyle~{}~{}~{}~{}~{}~{}+\lambda_{C}\hat{S}\hat{\eta}\hat{\bar{\eta}}+\frac{\kappa}{3}\hat{S}\hat{S}\hat{S}+Y_{u}\hat{u}\hat{Q}\hat{H}_{u}+Y_{X}\hat{\nu}\hat{\bar{\eta}}\hat{\nu}+Y_{\nu}\hat{\nu}\hat{L}\hat{H}_{u}. (2)

We collect the explicit forms of two Higgs doublets and three Higgs singlets here

Hu=(Hu+12(vu+Hu0+iPu0)),Hd=(12(vd+Hd0+iPd0)Hd),\displaystyle H_{u}=\left(\begin{array}[]{c}H_{u}^{+}\\ {1\over\sqrt{2}}\Big{(}v_{u}+H_{u}^{0}+iP_{u}^{0}\Big{)}\end{array}\right),~{}~{}~{}~{}~{}~{}H_{d}=\left(\begin{array}[]{c}{1\over\sqrt{2}}\Big{(}v_{d}+H_{d}^{0}+iP_{d}^{0}\Big{)}\\ H_{d}^{-}\end{array}\right), (7)
η=12(vη+ϕη0+iPη0),η¯=12(vη¯+ϕη¯0+iPη¯0),\displaystyle\eta={1\over\sqrt{2}}\Big{(}v_{\eta}+\phi_{\eta}^{0}+iP_{\eta}^{0}\Big{)},~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}\bar{\eta}={1\over\sqrt{2}}\Big{(}v_{\bar{\eta}}+\phi_{\bar{\eta}}^{0}+iP_{\bar{\eta}}^{0}\Big{)},
S=12(vS+ϕS0+iPS0).\displaystyle\hskip 113.81102ptS={1\over\sqrt{2}}\Big{(}v_{S}+\phi_{S}^{0}+iP_{S}^{0}\Big{)}. (8)

The vacuum expectation values(VEVs) of the Higgs superfields HuH_{u}, HdH_{d}, η\eta, η¯\bar{\eta} and SS are denoted by vu,vd,vηv_{u},~{}v_{d},~{}v_{\eta}vη¯v_{\bar{\eta}} and vSv_{S} respectively. Two angles are defined as tanβ=vu/vd\tan\beta=v_{u}/v_{d} and tanβη=vη¯/vη\tan\beta_{\eta}=v_{\bar{\eta}}/v_{\eta}.

The soft SUSY breaking terms of this model are shown as

soft=softMSSMBSS2LSSTκ3S3TλCSηη¯+ϵijTλHSHdiHuj\displaystyle\mathcal{L}_{soft}=\mathcal{L}_{soft}^{MSSM}-B_{S}S^{2}-L_{S}S-\frac{T_{\kappa}}{3}S^{3}-T_{\lambda_{C}}S\eta\bar{\eta}+\epsilon_{ij}T_{\lambda_{H}}SH_{d}^{i}H_{u}^{j}
TXIJη¯ν~RIν~RJ+ϵijTνIJHuiν~RIL~jJmη2|η|2mη¯2|η¯|2mS2S2\displaystyle\hskip 42.67912pt-T_{X}^{IJ}\bar{\eta}\tilde{\nu}_{R}^{*I}\tilde{\nu}_{R}^{*J}+\epsilon_{ij}T^{IJ}_{\nu}H_{u}^{i}\tilde{\nu}_{R}^{I*}\tilde{L}_{j}^{J}-m_{\eta}^{2}|\eta|^{2}-m_{\bar{\eta}}^{2}|\bar{\eta}|^{2}-m_{S}^{2}S^{2}
(mν~R2)IJν~RIν~RJ12(MXλX~2+2MBBλB~λX~)+h.c.\displaystyle\hskip 42.67912pt-(m_{\tilde{\nu}_{R}}^{2})^{IJ}\tilde{\nu}_{R}^{I*}\tilde{\nu}_{R}^{J}-\frac{1}{2}\Big{(}M_{X}\lambda^{2}_{\tilde{X}}+2M_{BB^{\prime}}\lambda_{\tilde{B}}\lambda_{\tilde{X}}\Big{)}+h.c~{}~{}. (9)

We have proven that U(1)XU(1)_{X}SSM is anomaly free in our previous workUU3 . Two Abelian groups U(1)YU(1)_{Y} and U(1)XU(1)_{X} produce a new effect called as the gauge kinetic mixing in the U(1)XU(1)_{X}SSM, which is MSSM never before.

In general, the covariant derivatives of U(1)XU(1)_{X}SSM can be written as UMSSM5 ; B-L1 ; B-L2 ; gaugemass

Dμ=μi(Y,X)(gY,gYXg,XYgX)(AμYAμX),\displaystyle D_{\mu}=\partial_{\mu}-i\left(\begin{array}[]{cc}Y,&X\end{array}\right)\left(\begin{array}[]{cc}g_{Y},&g{{}^{\prime}}_{{YX}}\\ g{{}^{\prime}}_{{XY}},&g{{}^{\prime}}_{{X}}\end{array}\right)\left(\begin{array}[]{c}A_{\mu}^{\prime Y}\\ A_{\mu}^{\prime X}\end{array}\right)\;, (15)

with AμYA_{\mu}^{\prime Y} and AμXA^{\prime X}_{\mu} representing the gauge fields of U(1)YU(1)_{Y} and U(1)XU(1)_{X} respectively.

Under the condition that the two Abelian gauge groups are unbroken, we use the rotation matrix RR UMSSM5 ; B-L2 ; gaugemass to perform a change of the basis

Dμ=μi(YY,YX)(gY,gYXg,XYgX)RTR(AμYAμX),\displaystyle D_{\mu}=\partial_{\mu}-i\left(\begin{array}[]{cc}Y^{Y},&Y^{X}\end{array}\right)\left(\begin{array}[]{cc}g_{Y},&g{{}^{\prime}}_{{YX}}\\ g{{}^{\prime}}_{{XY}},&g{{}^{\prime}}_{{X}}\end{array}\right)R^{T}R\left(\begin{array}[]{c}A_{\mu}^{\prime Y}\\ A_{\mu}^{\prime X}\end{array}\right)\;, (21)

with the redefinitions

(gY,gYXg,XYgX)RT=(g1,gYX0,gX)andR(AμYAμX)=(AμYAμX).\displaystyle\left(\begin{array}[]{cc}g_{Y},&g{{}^{\prime}}_{{YX}}\\ g{{}^{\prime}}_{{XY}},&g{{}^{\prime}}_{{X}}\end{array}\right)R^{T}=\left(\begin{array}[]{cc}g_{1},&g_{{YX}}\\ 0,&g_{{X}}\end{array}\right)~{}~{}~{}~{}\text{and}~{}~{}~{}~{}~{}R\left(\begin{array}[]{c}A_{\mu}^{\prime Y}\\ A_{\mu}^{\prime X}\end{array}\right)=\left(\begin{array}[]{c}A_{\mu}^{Y}\\ A_{\mu}^{X}\end{array}\right)\;. (30)

Then the covariant derivatives of U(1)XU(1)_{X}SSM are changed as

Dμ=μi(YY,YX)(g1,gYX0,gX)(AμYAμX).\displaystyle D_{\mu}=\partial_{\mu}-i\left(\begin{array}[]{cc}Y^{Y},&Y^{X}\end{array}\right)\left(\begin{array}[]{cc}g_{1},&g_{{YX}}\\ 0,&g_{{X}}\end{array}\right)\left(\begin{array}[]{c}A_{\mu}^{Y}\\ A_{\mu}^{X}\end{array}\right)\;. (36)

At the tree level, three neutral gauge bosons AμX,AμYA^{X}_{\mu},~{}A^{Y}_{\mu} and Vμ3V^{3}_{\mu} mix together, whose mass matrix is shown in the basis (AμY,Vμ3,AμX)(A^{Y}_{\mu},V^{3}_{\mu},A^{X}_{\mu})04

(18g12v218g1g2v218g1(gYX+gX)v218g1g2v218g22v218g2gYXv218g1(gYX+gX)v218g2(gYX+gX)v218(gYX+gX)2v2+18gX2ξ2),\displaystyle\left(\begin{array}[]{*{20}{c}}\frac{1}{8}g_{1}^{2}v^{2}&~{}~{}~{}-\frac{1}{8}g_{1}g_{2}v^{2}&~{}~{}~{}\frac{1}{8}g_{1}(g_{{YX}}+g_{X})v^{2}\\ -\frac{1}{8}g_{1}g_{2}v^{2}&~{}~{}~{}\frac{1}{8}g_{2}^{2}v^{2}&~{}~{}~{}~{}-\frac{1}{8}g_{2}g_{{YX}}v^{2}\\ \frac{1}{8}g_{1}(g_{{YX}}+g_{X})v^{2}&~{}~{}~{}-\frac{1}{8}g_{2}(g_{{YX}}+g_{X})v^{2}&~{}~{}~{}~{}\frac{1}{8}(g_{{YX}}+g_{X})^{2}v^{2}+\frac{1}{8}g_{{X}}^{2}\xi^{2}\end{array}\right), (40)

with v2=vu2+vd2v^{2}=v_{u}^{2}+v_{d}^{2} and ξ2=vη2+vη¯2\xi^{2}=v_{\eta}^{2}+v_{\bar{\eta}}^{2}.

We use two mixing angles θW\theta_{W} and θW\theta_{W}^{\prime} to get mass eigenvalues of the matrix in Eq.(40). θW\theta_{W} is the Weinberg angle and the new mixing angle θW\theta_{W}^{\prime} is defined from the following formula

sin2θW=12[(gYX+gX)2g12g22]v2+4gX2ξ22[(gYX+gX)2+g12+g22]2v4+8gX2[(gYX+gX)2g12g22]v2ξ2+16gX4ξ4.\displaystyle\sin^{2}\theta_{W}^{\prime}=\frac{1}{2}-\frac{[(g_{{YX}}+g_{X})^{2}-g_{1}^{2}-g_{2}^{2}]v^{2}+4g_{X}^{2}\xi^{2}}{2\sqrt{[(g_{{YX}}+g_{X})^{2}+g_{1}^{2}+g_{2}^{2}]^{2}v^{4}+8g_{X}^{2}[(g_{{YX}}+g_{X})^{2}-g_{1}^{2}-g_{2}^{2}]v^{2}\xi^{2}+16g_{X}^{4}\xi^{4}}}. (41)

It appears in the couplings involving ZZ and ZZ^{\prime}. The exact eigenvalues of Eq.(40) are deduced 04

mγ2=0,\displaystyle m_{\gamma}^{2}=0,
mZ,Z2=18([g12+g22+(gYX+gX)2]v2+4gX2ξ2\displaystyle m_{Z,{Z^{{}^{\prime}}}}^{2}=\frac{1}{8}\Big{(}[g_{1}^{2}+g_{2}^{2}+(g_{{YX}}+g_{X})^{2}]v^{2}+4g_{X}^{2}\xi^{2}
[g12+g22+(gYX+gX)2]2v4+8[(gYX+gX)2g12g22]gX2v2ξ2+16gX4ξ4).\displaystyle\hskip 31.2982pt\mp\sqrt{[g_{1}^{2}+g_{2}^{2}+(g_{{YX}}+g_{X})^{2}]^{2}v^{4}+8[(g_{{YX}}+g_{X})^{2}-g_{1}^{2}-g_{2}^{2}]g_{X}^{2}v^{2}\xi^{2}+16g_{X}^{4}\xi^{4}}\Big{)}. (42)

The used mass matrixes can be found in the workUU1 ; 20 . Here, we show some needed couplings in this model. We deduce the vertexes of l¯iχjν~kR(ν~kI)\bar{l}_{i}-\chi_{j}^{-}-\tilde{\nu}^{R}_{k}(\tilde{\nu}^{I}_{k})

l¯χν~R=12l¯i{ν~LRYliPLH~1g2ν~LRPRW~},\displaystyle\mathcal{L}_{\bar{l}\chi^{-}\tilde{\nu}^{R}}=\frac{1}{\sqrt{2}}\bar{l}_{i}\Big{\{}\tilde{\nu}^{R}_{L}Y_{l}^{i}P_{L}\tilde{H}^{-}_{1}-g_{2}\tilde{\nu}^{R}_{L}P_{R}\tilde{W}^{-}\Big{\}},
l¯χν~I=i2l¯i{ν~LIYliPLH~1g2ν~LIPRW~}.\displaystyle\mathcal{L}_{\bar{l}\chi^{-}\tilde{\nu}^{I}}=\frac{i}{\sqrt{2}}\bar{l}_{i}\Big{\{}\tilde{\nu}^{I}_{L}Y_{l}^{i}P_{L}\tilde{H}^{-}_{1}-g_{2}\tilde{\nu}^{I}_{L}P_{R}\tilde{W}^{-}\Big{\}}. (43)

We deduce the vertex couplings of neutralino-lepton-slepton

χ¯0lL~={(12(g1λB~+g2W~0+gYXλX~)L~LH~d0YljL~R)PL\displaystyle\mathcal{L}_{\bar{\chi}^{0}l\tilde{L}}=\Big{\{}\Big{(}\frac{1}{\sqrt{2}}(g_{1}\lambda_{\tilde{B}}+g_{2}\tilde{W}^{0}+g_{YX}\lambda_{\tilde{X}})\tilde{L}^{L}-\tilde{H}^{0}_{d}Y^{j}_{l}\tilde{L}^{R}\Big{)}P_{L}
[12(2g1λB~+(2gYX+gX)λX~)L~R+H~d0YljL~L]PR}lj.\displaystyle\hskip 45.52458pt-\Big{[}\frac{1}{\sqrt{2}}\Big{(}2g_{1}\lambda_{\tilde{B}}+(2g_{YX}+g_{X})\lambda_{\tilde{X}}\Big{)}\tilde{L}^{R}+\tilde{H}^{0}_{d}Y_{l}^{j}\tilde{L}^{L}\Big{]}P_{R}\Big{\}}l_{j}. (44)

III formulation

In this section, we study the LFV of the ljliγ(j=2,3;i=1,2)l_{j}\rightarrow{l_{i}\gamma}~{}(j=2,3;~{}i=1,2) and muon anomalous magnetic moment under the U(1)XU(1)_{X}SSM model21 with the MIA. The simplified form is discussed.

III.1 Using MIA to calculate ljliγl_{j}\rightarrow{l_{i}\gamma} in U(1)XU(1)_{X}SSM model

If the external lepton is on shell, the amplitude of ljliγl_{j}\rightarrow{l_{i}\gamma} is

=eεμu¯i(p+q)[q2γμ(C1LPL+C1RPR)+mljiσμνqν(C2LPL+C2RPR)]uj(p),\displaystyle\mathcal{M}=e\varepsilon^{\mu}\bar{u}_{i}(p+q)[q^{2}\gamma_{\mu}(C^{L}_{1}P_{L}+C^{R}_{1}P_{R})+m_{l_{j}}i\sigma_{\mu\nu}q^{\nu}(C^{L}_{2}P_{L}+C^{R}_{2}P_{R})]u_{j}(p),{} (45)

where pp is the injecting lepton momentum, qq is the photon momentum, and mljm_{l_{j}} is the mass of the jjth generation charged lepton. u¯i(p)\bar{u}_{i}(p) and uj(p)u_{j}(p) are the wave functions for the external leptons. The final Wilson coefficients C1L,C1R,C2L,C2RC^{L}_{1},~{}C^{R}_{1},~{}C^{L}_{2},~{}C^{R}_{2} are obtained from the sum of these diagrams’ amplitudes.

Refer to caption
Figure 1: Feynman diagrams for ljliγl_{j}\rightarrow{l_{i}\gamma} in the MIA.

The Feynman diagrams of ljliγl_{j}\rightarrow{l_{i}\gamma} under the U(1)XU(1)_{X}SSM model are obtained by MIA09 in Fig.1. The sneutrinos are disparted into CP-even sneutrinos ν~R\tilde{\nu}^{R} and CP-odd sneutrinos ν~I\tilde{\nu}^{I}. After our analysis, in Fig.1(f) since right-handed sneutrinos are strongly depressed by YνY_{\nu}, the situation of right-handed sneutrinos here is neglected. In other words, there are only two cases of left-handed CP-even sneutrinos ν~LR\tilde{\nu}^{R}_{L} and left-handed CP-odd sneutrinos ν~LI\tilde{\nu}^{I}_{L} in Fig.1(f). In order to more directly express the influencing factors of LFV of ljliγl_{j}\rightarrow{l_{i}\gamma}, we use C2f=C2Lf=C2Rf(f=16)C^{f}_{2}=C^{Lf}_{2}=C^{Rf}_{2}(f=1\cdots 6) to express the one-loop corrections by MIA.

1. The one-loop contributions from B~(λX~)\tilde{B}(\lambda_{\tilde{X}})-L~jL\tilde{L}^{L}_{j}-L~iR\tilde{L}^{R}_{i}.

C21(L~jL,L~iR,B~)=12mljΛ3ΔijLRg12x1[I1(xL~jL,x1)+I1(xL~iR,x1)\displaystyle C_{2}^{1}(\tilde{L}^{L}_{j},\tilde{L}^{R}_{i},\tilde{B})=\frac{-1}{2m_{l_{j}}\Lambda^{3}}\Delta^{LR}_{ij}g_{1}^{2}\sqrt{x_{1}}[I_{1}(x_{\tilde{L}^{L}_{j}},x_{1})+I_{1}(x_{\tilde{L}^{R}_{i}},x_{1})
2I2(xL~jL,x1)I2(xL~iR,x1)],\displaystyle\hskip 85.35826pt-2I_{2}(x_{\tilde{L}^{L}_{j}},x_{1})-I_{2}(x_{\tilde{L}^{R}_{i}},x_{1})], (46)
C21(L~jL,L~iR,λX~)=12mljΛ3ΔijLR(gYX2+12gYXgX)xλX~[I1(xL~jL,xλX~)+I1(xL~iR,xλX~)\displaystyle C_{2}^{1}(\tilde{L}^{L}_{j},\tilde{L}^{R}_{i},\lambda_{\tilde{X}})=\frac{-1}{2m_{l_{j}}\Lambda^{3}}\Delta^{LR}_{ij}(g_{YX}^{2}+\frac{1}{2}g_{YX}g_{X})\sqrt{x_{\lambda_{\tilde{X}}}}[I_{1}(x_{\tilde{L}^{L}_{j}},x_{\lambda_{\tilde{X}}})+I_{1}(x_{\tilde{L}^{R}_{i}},x_{\lambda_{\tilde{X}}})
2I2(xL~jL,xλX~)I2(xL~iR,xλX~)],\displaystyle\hskip 85.35826pt-2I_{2}(x_{\tilde{L}^{L}_{j}},x_{\lambda_{\tilde{X}}})-I_{2}(x_{\tilde{L}^{R}_{i}},x_{\lambda_{\tilde{X}}})], (47)

here, mm is the particle mass, with x=m2Λ2x=\frac{m^{2}}{\Lambda^{2}}. The functions I1(x,y)I_{1}(x,y) and I2(x,y)I_{2}(x,y) are

I1(x,y)=132π2{1x(xy)2+2logx(xy)2+2xlogx2ylogy(xy)3},\displaystyle I_{1}(x,y)=\frac{1}{32\pi^{2}}\Big{\{}\frac{1}{x(x-y)}-\frac{2+2\log x}{(x-y)^{2}}+\frac{2x\log x-2y\log y}{(x-y)^{3}}\Big{\}}, (48)
I2(x,y)=196π2{2x(xy)9+6logx(xy)2+6x+12xlogx(xy)3\displaystyle I_{2}(x,y)=\frac{1}{96\pi^{2}}\Big{\{}\frac{2}{x(x-y)}-\frac{9+6\log x}{(x-y)^{2}}+\frac{6x+12x\log x}{(x-y)^{3}}
6x2logx6y2logy(xy)4}.\displaystyle\hskip 51.21504pt-\frac{6x^{2}\log x-6y^{2}\log y}{(x-y)^{4}}\Big{\}}. (49)

2. The one-loop contributions from B~(λX~)\tilde{B}(\lambda_{\tilde{X}})-H~0\tilde{H}^{0}-L~jR\tilde{L}^{R}_{j}-L~iR\tilde{L}^{R}_{i}.

C22(L~jR,L~iR,B~,H~0)=12Λ4g12tanβx1xμHΔijRR[2I4(xL~iR,x1,xμH)\displaystyle C_{2}^{2}(\tilde{L}^{R}_{j},\tilde{L}^{R}_{i},\tilde{B},\tilde{H}^{0})=\frac{1}{2\Lambda^{4}}g_{1}^{2}\tan\beta\sqrt{x_{1}x_{\mu^{\prime}_{H}}}\Delta^{RR}_{ij}[2I_{4}(x_{\tilde{L}^{R}_{i}},x_{1},x_{\mu^{\prime}_{H}})
+3I3(xL~jR,x1,xμH)],\displaystyle\hskip 85.35826pt+3I_{3}(x_{\tilde{L}^{R}_{j}},x_{1},x_{\mu^{\prime}_{H}})], (50)
C22(L~jR,L~iR,λX~,H~0)=12Λ412(2gYX+gX)(gYX+gX)tanβxλX~xμHΔijRR\displaystyle C_{2}^{2}(\tilde{L}^{R}_{j},\tilde{L}^{R}_{i},\lambda_{\tilde{X}},\tilde{H}^{0})=\frac{1}{2\Lambda^{4}}\frac{1}{2}(2g_{YX}+g_{X})(g_{YX}+g_{X})\tan\beta\sqrt{x_{\lambda_{\tilde{X}}}x_{\mu^{\prime}_{H}}}\Delta^{RR}_{ij}
[2I4(xL~iR,xλX~,xμH)+3I3(xL~jR,xλX~,xμH)],\displaystyle\hskip 85.35826pt[2I_{4}(x_{\tilde{L}^{R}_{i}},x_{\lambda_{\tilde{X}}},x_{\mu^{\prime}_{H}})+3I_{3}(x_{\tilde{L}^{R}_{j}},x_{\lambda_{\tilde{X}}},x_{\mu^{\prime}_{H}})], (51)

here μH=λHvS2+μ\mu_{H}^{\prime}=\frac{\lambda_{H}v_{S}}{\sqrt{2}}+\mu and xμH=μH2Λ2x_{\mu^{\prime}_{H}}=\frac{\mu_{H}^{\prime 2}}{\Lambda^{2}}. The specific forms of I3(x,y,z)I_{3}(x,y,z) and I4(x,y,z)I_{4}(x,y,z) are

I3(x,y,z)=132π2{6x+12xlogx(xy)(xz)3+6x+12xlogx(xy)2(xz)2+6x+12xlogx(xy)3(xz)\displaystyle I_{3}(x,y,z)=\frac{1}{32\pi^{2}}\Big{\{}\frac{6x+12x\log x}{(x-y)(x-z)^{3}}+\frac{6x+12x\log x}{(x-y)^{2}(x-z)^{2}}+\frac{6x+12x\log x}{(x-y)^{3}(x-z)}
9+6logx(xy)(xz)29+6logx(xy)2(xz)+2x(xy)(xz)\displaystyle\hskip 51.21504pt-\frac{9+6\log x}{(x-y)(x-z)^{2}}-\frac{9+6\log x}{(x-y)^{2}(x-z)}+\frac{2}{x(x-y)(x-z)}
+6x2logx(xy)(xz)4+6x2logx(xy)4(xz)6x2logx(xy)2(xz)3\displaystyle\hskip 51.21504pt+\frac{6x^{2}\log x}{(x-y)(x-z)^{4}}+\frac{6x^{2}\log x}{(x-y)^{4}(x-z)}-\frac{6x^{2}\log x}{(x-y)^{2}(x-z)^{3}}
6x2logx(xy)3(xz)2+6y2logy(xy)4(yz)6z2logz(yz)(xz)4},\displaystyle\hskip 51.21504pt-\frac{6x^{2}\log x}{(x-y)^{3}(x-z)^{2}}+\frac{6y^{2}\log y}{(x-y)^{4}(y-z)}-\frac{6z^{2}\log z}{(y-z)(x-z)^{4}}\Big{\}}, (52)
I4(x,y,z)=132π2{2+2logx(xy)(xz)22+2logx(xy)2(xz)+1x(xy)(xz)\displaystyle I_{4}(x,y,z)=\frac{1}{32\pi^{2}}\Big{\{}-\frac{2+2\log x}{(x-y)(x-z)^{2}}-\frac{2+2\log x}{(x-y)^{2}(x-z)}+\frac{1}{x(x-y)(x-z)}
+2xlogx(xy)(xz)3+2xlogx(xy)2(xz)2+2xlogx(xy)3(xz)\displaystyle\hskip 51.21504pt+\frac{2x\log x}{(x-y)(x-z)^{3}}+\frac{2x\log x}{(x-y)^{2}(x-z)^{2}}+\frac{2x\log x}{(x-y)^{3}(x-z)}
2ylogy(xy)3(yz)+2zlogz(xz)3(yz)}.\displaystyle\hskip 51.21504pt-\frac{2y\log y}{(x-y)^{3}(y-z)}+\frac{2z\log z}{(x-z)^{3}(y-z)}\Big{\}}. (53)

3. The one-loop contributions from B~(λX~)\tilde{B}(\lambda_{\tilde{X}})-H~0\tilde{H}^{0}-L~jL\tilde{L}^{L}_{j}-L~iL\tilde{L}^{L}_{i}.

C23(L~jL,L~iL,H~0,B~)=mli4mljΛ4g12tanβx1xμHΔijLL[2I4(xL~iL,x1,xμH)\displaystyle C_{2}^{3}(\tilde{L}^{L}_{j},\tilde{L}^{L}_{i},\tilde{H}^{0},\tilde{B})=\frac{-m_{l_{i}}}{4m_{l_{j}}\Lambda^{4}}g_{1}^{2}\tan\beta\sqrt{x_{1}x_{\mu^{\prime}_{H}}}\Delta^{LL}_{ij}[2I_{4}(x_{\tilde{L}^{L}_{i}},x_{1},x_{\mu^{\prime}_{H}})
+3I3(xL~jL,x1,xμH)],\displaystyle\hskip 85.35826pt+3I_{3}(x_{\tilde{L}^{L}_{j}},x_{1},x_{\mu^{\prime}_{H}})], (54)
C23(L~jL,L~iL,H~0,λX~)=mli4mljΛ4gYX(gYX+gX)tanβxλX~xμHΔijLL\displaystyle C_{2}^{3}(\tilde{L}^{L}_{j},\tilde{L}^{L}_{i},\tilde{H}^{0},\lambda_{\tilde{X}})=\frac{-m_{l_{i}}}{4m_{l_{j}}\Lambda^{4}}g_{YX}(g_{YX}+g_{X})\tan\beta\sqrt{x_{\lambda_{\tilde{X}}}x_{\mu^{\prime}_{H}}}\Delta^{LL}_{ij}
[2I4(xL~iL,xλX~,xμH)+3I3(xL~jL,xλX~,xμH)].\displaystyle\hskip 85.35826pt[2I_{4}(x_{\tilde{L}^{L}_{i}},x_{\lambda_{\tilde{X}}},x_{\mu^{\prime}_{H}})+3I_{3}(x_{\tilde{L}^{L}_{j}},x_{\lambda_{\tilde{X}}},x_{\mu^{\prime}_{H}})]. (55)

4. The one-loop contributions from W~0\tilde{W}^{0}-H~0\tilde{H}^{0}-L~jL\tilde{L}^{L}_{j}-L~iL\tilde{L}^{L}_{i}.

C24(L~jL,L~iL,H~0,W~0)=mli4mljΛ4g22tanβx2xμHΔijLL\displaystyle C_{2}^{4}(\tilde{L}^{L}_{j},\tilde{L}^{L}_{i},\tilde{H}^{0},\tilde{W}^{0})=\frac{m_{l_{i}}}{4m_{l_{j}}\Lambda^{4}}g_{2}^{2}\tan\beta\sqrt{x_{2}x_{\mu^{\prime}_{H}}}\Delta^{LL}_{ij}
[2I4(xL~iL,x2,xμH)+3I3(xL~jL,x2,xμH)].\displaystyle\hskip 85.35826pt[2I_{4}(x_{\tilde{L}^{L}_{i}},x_{2},x_{\mu^{\prime}_{H}})+3I_{3}(x_{\tilde{L}^{L}_{j}},x_{2},x_{\mu^{\prime}_{H}})]. (56)

5. The one-loop contributions from B~λX~L~jLL~iR\tilde{B}-\lambda_{\tilde{X}}-\tilde{L}^{L}_{j}-\tilde{L}^{R}_{i}.

C25(L~jL,L~iR,B~,λX~)=12mljΛ3ΔijLRg1gYXxBBx1xλX~[I4(xL~jL,x1,xλX~)\displaystyle C_{2}^{5}(\tilde{L}^{L}_{j},\tilde{L}^{R}_{i},\tilde{B},\lambda_{\tilde{X}})=\frac{-1}{2m_{l_{j}}\Lambda^{3}}\Delta^{LR}_{ij}g_{1}g_{YX}\sqrt{x_{BB^{\prime}}x_{1}x_{\lambda_{\tilde{X}}}}[I_{4}(x_{\tilde{L}^{L}_{j}},x_{1},x_{\lambda_{\tilde{X}}})
+I4(xL~iR,x1,xλX~)+I5(xL~jL,x1,xλX~)+2I5(xL~iR,x1,xλX~)]\displaystyle\hskip 85.35826pt+I_{4}(x_{\tilde{L}^{R}_{i}},x_{1},x_{\lambda_{\tilde{X}}})+I_{5}(x_{\tilde{L}^{L}_{j}},x_{1},x_{\lambda_{\tilde{X}}})+2I_{5}(x_{\tilde{L}^{R}_{i}},x_{1},x_{\lambda_{\tilde{X}}})]
+12mljΛ3ΔijLRg1gYXxBB[I6(xL~jL,x1,xλX~)\displaystyle\hskip 85.35826pt+\frac{1}{2m_{l_{j}}\Lambda^{3}}\Delta^{LR}_{ij}g_{1}g_{YX}\sqrt{x_{BB^{\prime}}}[I_{6}(x_{\tilde{L}^{L}_{j}},x_{1},x_{\lambda_{\tilde{X}}})
+I6(xL~iR,x1,xλX~)+I7(xL~jL,x1,xλX~)+2I7(xL~iR,x1,xλX~)].\displaystyle\hskip 85.35826pt+I_{6}(x_{\tilde{L}^{R}_{i}},x_{1},x_{\lambda_{\tilde{X}}})+I_{7}(x_{\tilde{L}^{L}_{j}},x_{1},x_{\lambda_{\tilde{X}}})+2I_{7}(x_{\tilde{L}^{R}_{i}},x_{1},x_{\lambda_{\tilde{X}}})]. (57)

We show the one-loop functions I5(x,y,z)I_{5}(x,y,z) and I6(x,y,z)I_{6}(x,y,z) in the following form

I5(x,y,z)=132π2{3+2logx(xy)(xz)2x+4xlogx(xy)(xz)22x+4xlogx(xy)2(xz)\displaystyle I_{5}(x,y,z)=\frac{-1}{32\pi^{2}}\Big{\{}\frac{3+2\log x}{(x-y)(x-z)}-\frac{2x+4x\log x}{(x-y)(x-z)^{2}}-\frac{2x+4x\log x}{(x-y)^{2}(x-z)}
+2x2logx(xy)(xz)3+2x2logx(xy)2(xz)2+2x2logx(xy)3(xz)\displaystyle\hskip 51.21504pt+\frac{2x^{2}\log x}{(x-y)(x-z)^{3}}+\frac{2x^{2}\log x}{(x-y)^{2}(x-z)^{2}}+\frac{2x^{2}\log x}{(x-y)^{3}(x-z)}
2y2logy(xy)3(yz)+2z2logz(xz)3(yz)},\displaystyle\hskip 51.21504pt-\frac{2y^{2}\log y}{(x-y)^{3}(y-z)}+\frac{2z^{2}\log z}{(x-z)^{3}(y-z)}\Big{\}}, (58)
I6(x,y,z)=196π2{6x2(3x2+y2+z2+yz3xy3xz)(1+3logx)(xy)3(xz)3\displaystyle I_{6}(x,y,z)=\frac{1}{96\pi^{2}}\Big{\{}\frac{6x^{2}(3x^{2}+y^{2}+z^{2}+yz-3xy-3xz)(1+3\log x)}{(x-y)^{3}(x-z)^{3}}
(6x23xy3xz)(5+6logx)(xy)2(xz)2+6y3logy6x3logx(xy)4(yz)\displaystyle\hskip 51.21504pt-\frac{(6x^{2}-3xy-3xz)(5+6\log x)}{(x-y)^{2}(x-z)^{2}}+\frac{6y^{3}\log y-6x^{3}\log x}{(x-y)^{4}(y-z)}
+11+6logx(xy)(xz)+6x3logx6z3logz(xz)4(yz)}.\displaystyle\hskip 51.21504pt+\frac{11+6\log x}{(x-y)(x-z)}+\frac{6x^{3}\log x-6z^{3}\log z}{(x-z)^{4}(y-z)}\Big{\}}. (59)

6. The one-loop contributions from chargino and left-handed CP-even(odd) sneutrino.

C26(ν~LjI,ν~LiI,H~±,W~±)=12Λ4g22ΔijLLtanβ{(x2xμH+xμH)I8(xμH,x2,xν~LiI)\displaystyle C_{2}^{6}(\tilde{\nu}^{I}_{Lj},\tilde{\nu}^{I}_{Li},\tilde{H}^{\pm},\tilde{W}^{\pm})=\frac{1}{2\Lambda^{4}}g_{2}^{2}\Delta^{LL}_{ij}\tan\beta\{(\sqrt{x_{2}x_{\mu^{\prime}_{H}}}+x_{\mu^{\prime}_{H}})I_{8}(x_{\mu^{\prime}_{H}},x_{2},x_{\tilde{\nu}^{I}_{Li}})
+(x2xμH+x2)I8(x2,xμH,xν~LjI)\displaystyle\hskip 85.35826pt+(\sqrt{x_{2}x_{\mu^{\prime}_{H}}}+x_{2})I_{8}(x_{2},x_{\mu^{\prime}_{H}},x_{\tilde{\nu}^{I}_{Lj}})
+x2xμHI9(x2,xμH,xν~LiI)I10(x2,xμH,xν~LjI)},\displaystyle\hskip 85.35826pt+\sqrt{x_{2}x_{\mu^{\prime}_{H}}}I_{9}(x_{2},x_{\mu^{\prime}_{H}},x_{\tilde{\nu}^{I}_{Li}})-I_{10}(x_{2},x_{\mu^{\prime}_{H}},x_{\tilde{\nu}^{I}_{Lj}})\}, (60)
C26(ν~LjR,ν~LiR,H~±,W~±)=12Λ4g22ΔijLLtanβ{(x2xμH+xμH)I8(xμH,x2,xν~LiR)\displaystyle C_{2}^{6}(\tilde{\nu}^{R}_{Lj},\tilde{\nu}^{R}_{Li},\tilde{H}^{\pm},\tilde{W}^{\pm})=\frac{1}{2\Lambda^{4}}g_{2}^{2}\Delta^{LL}_{ij}\tan\beta\{(\sqrt{x_{2}x_{\mu^{\prime}_{H}}}+x_{\mu^{\prime}_{H}})I_{8}(x_{\mu^{\prime}_{H}},x_{2},x_{\tilde{\nu}^{R}_{Li}})
+(x2xμH+x2)I8(x2,xμH,xν~LjR)\displaystyle\hskip 85.35826pt+(\sqrt{x_{2}x_{\mu^{\prime}_{H}}}+x_{2})I_{8}(x_{2},x_{\mu^{\prime}_{H}},x_{\tilde{\nu}^{R}_{Lj}})
+x2xμHI9(x2,xμH,xν~LiR)I10(x2,xμH,xν~LjR)}.\displaystyle\hskip 85.35826pt+\sqrt{x_{2}x_{\mu^{\prime}_{H}}}I_{9}(x_{2},x_{\mu^{\prime}_{H}},x_{\tilde{\nu}^{R}_{Li}})-I_{10}(x_{2},x_{\mu^{\prime}_{H}},x_{\tilde{\nu}^{R}_{Lj}})\}. (61)

The one-loop functions I7(x,y,z)I_{7}(x,y,z),I8(x,y,z)I_{8}(x,y,z) and I9(x,y,z)I_{9}(x,y,z) read as

I7(x,y,z)=132π2[8xlogx4x(xy)(xz)32x+4xlogx(xy)2(xz)2+3+2logx(xy)(xz)2\displaystyle I_{7}(x,y,z)=\frac{-1}{32\pi^{2}}\Big{[}\frac{8x\log x-4x}{(x-y)(x-z)^{3}}-\frac{2x+4x\log x}{(x-y)^{2}(x-z)^{2}}+\frac{3+2\log x}{(x-y)(x-z)^{2}}
+2z+4zlogz(xz)3(yz)+4x2logx(xy)2(xz)32x2logx(xy)3(xz)2\displaystyle\hskip 51.21504pt+\frac{2z+4z\log z}{(x-z)^{3}(y-z)}+\frac{4x^{2}\log x}{(x-y)^{2}(x-z)^{3}}-\frac{2x^{2}\log x}{(x-y)^{3}(x-z)^{2}}
+2z3logz(xz)3(yz)22y2logy(xy)3(yz)2+6x2logx(xy)(xz)4\displaystyle\hskip 51.21504pt+\frac{2z^{3}\log z}{(x-z)^{3}(y-z)^{2}}-\frac{2y^{2}\log y}{(x-y)^{3}(y-z)^{2}}+\frac{6x^{2}\log x}{(x-y)(x-z)^{4}}
+6z2logz(xz)4(yz)],\displaystyle\hskip 51.21504pt+\frac{6z^{2}\log z}{(x-z)^{4}(y-z)}\Big{]}, (62)
I8(x,y,z)=116π2[x+2xlogx(xy)2(xz)2+y+2ylogy(xy)2(yz)2+z+2zlogz(xz)2(yz)2\displaystyle I_{8}(x,y,z)=\frac{-1}{16\pi^{2}}\Big{[}\frac{x+2x\log x}{(x-y)^{2}(x-z)^{2}}+\frac{y+2y\log y}{(x-y)^{2}(y-z)^{2}}+\frac{z+2z\log z}{(x-z)^{2}(y-z)^{2}}
2x2logx(xy)2(xz)32x2logx(xy)3(xz)22y2logy(xy)2(yz)3\displaystyle\hskip 51.21504pt-\frac{2x^{2}\log x}{(x-y)^{2}(x-z)^{3}}-\frac{2x^{2}\log x}{(x-y)^{3}(x-z)^{2}}-\frac{2y^{2}\log y}{(x-y)^{2}(y-z)^{3}}
+2y2logy(xy)3(yz)2+2z2logz(xz)2(yz)3+2z2logz(xz)3(yz)2],\displaystyle\hskip 51.21504pt+\frac{2y^{2}\log y}{(x-y)^{3}(y-z)^{2}}+\frac{2z^{2}\log z}{(x-z)^{2}(y-z)^{3}}+\frac{2z^{2}\log z}{(x-z)^{3}(y-z)^{2}}\Big{]}, (63)
I9(x,y,z)=196π2[x2+3x2logx(xy)(xz)2+3z2logzz2(xz)2(yz)2x3logx(xy)(xz)3\displaystyle I_{9}(x,y,z)=\frac{1}{96\pi^{2}}\Big{[}\frac{x^{2}+3x^{2}\log x}{(x-y)(x-z)^{2}}+\frac{3z^{2}\log z-z^{2}}{(x-z)^{2}(y-z)}-\frac{2x^{3}\log x}{(x-y)(x-z)^{3}}
2z3logz(xz)3(yz)x3logx(xy)2(xz)2+y3logy(xy)2(yz)2\displaystyle\hskip 51.21504pt-\frac{2z^{3}\log z}{(x-z)^{3}(y-z)}-\frac{x^{3}\log x}{(x-y)^{2}(x-z)^{2}}+\frac{y^{3}\log y}{(x-y)^{2}(y-z)^{2}}
z3logz(xz)2(yz)2].\displaystyle\hskip 51.21504pt-\frac{z^{3}\log z}{(x-z)^{2}(y-z)^{2}}\Big{]}. (64)

From the above formulas, we can find that C2f(f=16)C_{2}^{f}(f=1\cdots 6) are mostly affected by tanβ\tan\beta and ΔijAB(A,B=L,R)\Delta^{AB}_{ij}(A,B=L,R) and there is a positive correlation. ΔijAB\Delta^{AB}_{ij} have the lepton flavor violating sources. It provides a reference for our subsequent work. Finally, we get the final Wilson coefficient and decay width of ljliγl_{j}\rightarrow{l_{i}\gamma},

C2=ii=16C2i,\displaystyle C_{2}=\sum^{i=1\cdots 6}_{i}C_{2}^{i},
Γ(ljliγ)=e28πmlj5|C2|2.\displaystyle\Gamma(l_{j}\rightarrow{l_{i}\gamma})=\frac{e^{2}}{8\pi}m^{5}_{l_{j}}|C_{2}|^{2}. (65)

The beanching ratio of ljliγl_{j}\rightarrow{l_{i}\gamma} is

Br(ljliγ)=Γ(ljliγ)/Γlj.\displaystyle Br(l_{j}\rightarrow{l_{i}\gamma})=\Gamma(l_{j}\rightarrow{l_{i}\gamma})/\Gamma_{l_{j}}. (66)

III.2 Degenerate Result

In order to more intuitively analyze the factors affecting lepton flavor violating processes ljliγl_{j}\rightarrow{l_{i}\gamma}, we suppose that all the masses of the superparticles are almost degenerate. In other words, we give the one-loop results (chargino-sneutrino, neutralino-slepton) in the extreme case, where the masses for superparticles (M1,M2,μH,mL~L,mL~R,MλX~,MBBM_{1},~{}M_{2},~{}\mu_{H}^{\prime},~{}m_{\tilde{L}_{L}}~{},m_{\tilde{L}_{R}},~{}M_{\lambda_{\tilde{X}}},~{}M_{BB^{\prime}}) are equal to MSUSYM_{SUSY}04 :

M1=|M2|=μH=mL~L=mL~R=MλX~=|MBB|=MSUSY.M_{1}=|M_{2}|=\mu_{H}^{\prime}=m_{\tilde{L}_{L}}=m_{\tilde{L}_{R}}=M_{\lambda_{\tilde{X}}}=|M_{BB^{\prime}}|=M_{SUSY}.

The functions Ii(i=19)I_{i}(i=1\cdots 9) and ΔijAB(A,B=L,R)\Delta^{AB}_{ij}(A,B=L,R) are much simplified as

I1(1,1)=196π2,I2(1,1)=1192π2,I3(1,1,1)=1480π2,\displaystyle I_{1}(1,1)=\frac{-1}{96\pi^{2}},\hskip 62.59596ptI_{2}(1,1)=\frac{-1}{192\pi^{2}},\hskip 51.21504ptI_{3}(1,1,1)=\frac{-1}{480\pi^{2}},
I4(1,1,1)=1192π2,I5(1,1,1)=1192π2,I6(1,1,1)=1320π2,\displaystyle I_{4}(1,1,1)=\frac{1}{192\pi^{2}},\hskip 42.67912ptI_{5}(1,1,1)=\frac{1}{192\pi^{2}},\hskip 42.67912ptI_{6}(1,1,1)=\frac{-1}{320\pi^{2}},
I7(1,1,1)=1480π2,I8(1,1,1)=1480π2,I9(1,1,1)=1384π2,\displaystyle I_{7}(1,1,1)=\frac{-1}{480\pi^{2}},\hskip 42.67912ptI_{8}(1,1,1)=\frac{-1}{480\pi^{2}},\hskip 42.67912ptI_{9}(1,1,1)=\frac{1}{384\pi^{2}}, (67)
ΔijLR=mljmL~LδijLR,ΔijLL=mL~L2δijLL,ΔijRR=mL~R2δijRR.\displaystyle\Delta^{LR}_{ij}=m_{l_{j}}m_{\tilde{L}_{L}}\delta^{LR}_{ij},\hskip 51.21504pt\Delta^{LL}_{ij}=m^{2}_{\tilde{L}_{L}}\delta^{LL}_{ij},\hskip 62.59596pt\Delta^{RR}_{ij}=m^{2}_{\tilde{L}_{R}}\delta^{RR}_{ij}. (68)

Then, we obtain the much simplified one-loop results of C2C_{2}

C2=(2g12sign[M1μH]+(2gYX2+3gYXgX+gX2)sign[MλX~μH])tanβδijRR960π2MSUSY2\displaystyle C_{2}=\frac{(2g_{1}^{2}\texttt{sign}[M_{1}\mu_{H}^{\prime}]+(2g_{YX}^{2}+3g_{YX}g_{X}+g_{X}^{2})\texttt{sign}[M_{\lambda_{\tilde{X}}}\mu_{H}^{\prime}])\tan\beta\delta^{RR}_{ij}}{960\pi^{2}M^{2}_{SUSY}}
+(g12sign[M1μH](gYX2+gYXgX)sign[MλX~μH]+g22sign[M2μH])mlitanβδijLL960π2MSUSY2mlj\displaystyle+\frac{(-g_{1}^{2}\texttt{sign}[M_{1}\mu_{H}^{\prime}]-(g_{YX}^{2}+g_{YX}g_{X})\texttt{sign}[M_{\lambda_{\tilde{X}}}\mu_{H}^{\prime}]+g_{2}^{2}\texttt{sign}[M_{2}\mu_{H}^{\prime}])m_{l_{i}}\tan\beta\delta^{LL}_{ij}}{960\pi^{2}M^{2}_{SUSY}m_{l_{j}}}
+(4g22sign[M22]4g22sign[μH2]12g22sign[μHM2]+5g22)tanβδijLL3840π2MSUSY2\displaystyle+\frac{(-4g_{2}^{2}\texttt{sign}[M_{2}^{2}]-4g_{2}^{2}\texttt{sign}[\mu_{H}^{\prime 2}]-12g_{2}^{2}\texttt{sign}[\mu_{H}^{\prime}M_{2}]+5g_{2}^{2})\tan\beta\delta^{LL}_{ij}}{3840\pi^{2}M^{2}_{SUSY}}
+11920π2MSUSY2×{(5g12sign[M1]+5(gYX2+12gYXgX)sign[MλX~]\displaystyle+\frac{1}{1920\pi^{2}M^{2}_{SUSY}}\times\{(5g_{1}^{2}\texttt{sign}[M_{1}]+5(g_{YX}^{2}+\frac{1}{2}g_{YX}g_{X})\texttt{sign}[M_{\lambda_{\tilde{X}}}]
4g1gYXsign[MBBM1MλX~]+g1gYXsign[MBB])δijLR}.\displaystyle-4g_{1}g_{YX}\texttt{sign}[M_{BB^{\prime}}M_{1}M_{\lambda_{\tilde{X}}}]+g_{1}g_{YX}\texttt{sign}[M_{BB^{\prime}}])\delta^{LR}_{ij}\}. (69)

In the above formula, after simple approximation, we can find that in the formula of the second line, due to the existence of mlimlj\frac{m_{l_{i}}}{m_{l_{j}}}, the result is 2-3 orders of magnitude smaller than other terms. Therefore, we will not consider the term with mlimlj\frac{m_{l_{i}}}{m_{l_{j}}} here. It can be found that sign[M1],sign[M2],sign[MλX~],sign[μH]\texttt{sign}[M_{1}],\texttt{sign}[M_{2}],\texttt{sign}[M_{\lambda_{\tilde{X}}}],\texttt{sign}[\mu_{H}^{\prime}] and sign[MBB]\texttt{sign}[M_{BB^{\prime}}] have a certain impact on the correction of C2C_{2}. According to 1>gX>gYX>01>g_{X}>g_{YX}>0, we assume sign[M1]=sign[MλX~]=sign[μH]=1\texttt{sign}[M_{1}]=\texttt{sign}[M_{\lambda_{\tilde{X}}}]=\texttt{sign}[\mu_{H}^{\prime}]=1 and sign[M2]=sign[MBB]=1\texttt{sign}[M_{2}]=\texttt{sign}[M_{BB^{\prime}}]=-1, and get the larger value of C2C_{2}

C2=(5g12+5(gYX2+12gYXgX)+3g1gYX)δijLR1920π2MSUSY2+3g22tanβδijLL1280π2MSUSY2\displaystyle C_{2}=\frac{(5g_{1}^{2}+5(g_{YX}^{2}+\frac{1}{2}g_{YX}g_{X})+3g_{1}g_{YX})\delta^{LR}_{ij}}{1920\pi^{2}M^{2}_{SUSY}}+\frac{3g_{2}^{2}\tan\beta\delta^{LL}_{ij}}{1280\pi^{2}M^{2}_{SUSY}}
+(2g12+(2gYX2+3gYXgX+gX2))tanβδijRR960π2MSUSY2.\displaystyle\hskip 22.76228pt+\frac{(2g_{1}^{2}+(2g_{YX}^{2}+3g_{YX}g_{X}+g_{X}^{2}))\tan\beta\delta^{RR}_{ij}}{960\pi^{2}M^{2}_{SUSY}}.

Due to the different orders of magnitude of branching ratios, we set tanβ=9,MSUSY=1000\tan\beta=9,~{}M_{SUSY}=1000 GeV and discuss in two cases:

1.μeγ\mu\rightarrow e\gamma

We take gYX,gX,δijLR,δijLLg_{YX},g_{X},\delta^{LR}_{ij},\delta^{LL}_{ij} and δijRR\delta^{RR}_{ij} as variables to study the effect on Br(μeγ)Br(\mu\rightarrow e\gamma). In Fig.2, it can be found that both δijLR\delta^{LR}_{ij} and δijRR\delta^{RR}_{ij} have great influence on Br(μeγ)Br(\mu\rightarrow e\gamma) and they are all increasing trend. The larger the values of δijLR\delta^{LR}_{ij} and δijRR\delta^{RR}_{ij}, the easier it is to approach the upper limit of the experiment.

Refer to caption
Figure 2: Under the condition that gYX=0.2,gX=0.3g_{YX}=0.2,~{}g_{X}=0.3 and δijLL=1×103\delta^{LL}_{ij}=1\times 10^{-3}, the effect of δijLR\delta^{LR}_{ij} and δijRR\delta^{RR}_{ij} on Br(μeγ)Br(\mu\rightarrow e\gamma). The x-axis representing the range of δijLR\delta^{LR}_{ij} is from 1×1051\times 10^{-5} to 1×1021\times 10^{-2}, and the y-axis represents 1×105<δijRR<1×1031\times 10^{-5}<\delta^{RR}_{ij}<1\times 10^{-3}. The rightmost icon is the color corresponding to the value of Br(μeγ)Br(\mu\rightarrow e\gamma).

Similar to the above, in Fig.3, with the increase of δijLL\delta^{LL}_{ij}, the value of Br(μeγ)Br(\mu\rightarrow e\gamma) gradually increases, and when gXg_{X} increases, Br(μeγ)Br(\mu\rightarrow e\gamma) also increases. When δijLL=9×104\delta^{LL}_{ij}=9\times 10^{-4} and gX=0.65g_{X}=0.65, Br(μeγ)Br(\mu\rightarrow e\gamma) reaches the experimental upper limit. But in numerical terms, the effect of δijLL\delta^{LL}_{ij} is greater than gXg_{X}.

Refer to caption
Figure 3: Under the condition that gYX=0.2,δijRR=1×106g_{YX}=0.2,~{}\delta^{RR}_{ij}=1\times 10^{-6} and δijLR=1×102\delta^{LR}_{ij}=1\times 10^{-2}, δijLL\delta^{LL}_{ij} versus gXg_{X} about Br(μeγ)Br(\mu\rightarrow e\gamma). The abscissa is 1×105<δijLL<1×1031\times 10^{-5}<\delta^{LL}_{ij}<1\times 10^{-3} and the ordinate represents 0.2<gX<0.70.2<g_{X}<0.7. The icon on the right shows the value of Br(μeγ)Br(\mu\rightarrow e\gamma).

2.τμ(e)γ\tau\rightarrow\mu(e)\gamma

Since the numerical results of Br(τμγ)Br(\tau\rightarrow\mu\gamma) and Br(τeγ)Br(\tau\rightarrow e\gamma) are close and have similar characteristic, we take τμγ\tau\rightarrow\mu\gamma as an example. In Fig.4, when the values of δijRR\delta^{RR}_{ij} and gXg_{X} enlarger, the value of Br(τμγ)Br(\tau\rightarrow\mu\gamma) also increases, which can well reach the experimental measured value.

Refer to caption
Figure 4: Under the condition that δijLR=0.1,gYX=0.2\delta^{LR}_{ij}=0.1,~{}g_{YX}=0.2 and δijLL=0.1\delta^{LL}_{ij}=0.1, the effect of δijRR\delta^{RR}_{ij} and gXg_{X} on Br(τμγ)Br(\tau\rightarrow\mu\gamma). The x-axis representing the range of δijRR\delta^{RR}_{ij} is from 10510^{-5} to 1, and the y-axis represents 0.2<gX<0.70.2<g_{X}<0.7. The rightmost icon is the color corresponding to the value of Br(τμγ)Br(\tau\rightarrow\mu\gamma).

In Fig.5, we analyze δijLL\delta^{LL}_{ij} and gYXg_{YX} on the Br(τμγ)Br(\tau\rightarrow\mu\gamma). The value of Br(τμγ)Br(\tau\rightarrow\mu\gamma) also increases with the increasing δijLL\delta^{LL}_{ij} and gYXg_{YX}, but the effect from gYXg_{YX} is greater than δijLL\delta^{LL}_{ij}. So the correction of gYXg_{YX} to Br(τμγ)Br(\tau\rightarrow\mu\gamma) is greater than that of δijLL\delta^{LL}_{ij}.

Refer to caption
Figure 5: Under the condition that δijRR=0.2,gX=0.3\delta^{RR}_{ij}=0.2,~{}g_{X}=0.3 and δijLR=0.5\delta^{LR}_{ij}=0.5, δijLL\delta^{LL}_{ij} versus gYXg_{YX} about Br(τμγ)Br(\tau\rightarrow\mu\gamma). The abscissa is 1×105<δijLL<0.51\times 10^{-5}<\delta^{LL}_{ij}<0.5 and the ordinate represents 0.1<gYX<0.50.1<g_{YX}<0.5. The icon on the right shows the value of Br(τμγ)Br(\tau\rightarrow\mu\gamma).

All in all, we can find that gYX,gX,δijLR,δijLLg_{YX},~{}g_{X},~{}\delta^{LR}_{ij},~{}\delta^{LL}_{ij} and δijRR\delta^{RR}_{ij} all have direct impact on the correction to Br(μeγ),Br(τμγ)Br(\mu\rightarrow e\gamma),~{}Br(\tau\rightarrow\mu\gamma) and Br(τeγ)Br(\tau\rightarrow e\gamma).

III.3 Muon anomalous magnetic moment

The one-loop corrections to muon anomalous magnetic moment are obtained with MIA. Here, we show the one-loop contributions from chargino and CP-even(odd) sneutrino as04

aμ(ν~LR,H~±,W~±)=g222xμx2xμHtanβ[2(xμH,xν~LR,x2)𝒥(x2,xμH,xν~LR)\displaystyle a_{\mu}(\tilde{\nu}^{R}_{L},\tilde{H}^{\pm},\tilde{W}^{\pm})=\frac{g_{2}^{2}}{2}x_{\mu}\sqrt{x_{2}x_{\mu^{\prime}_{H}}}\tan\beta[2\mathcal{I}(x_{\mu^{\prime}_{H}},x_{\tilde{\nu}^{R}_{L}},x_{2})-\mathcal{J}(x_{2},x_{\mu^{\prime}_{H}},x_{\tilde{\nu}^{R}_{L}})
+2(x2,xν~LR,xμH)𝒥(xμH,x2,xν~LR)],\displaystyle\hskip 108.12054pt+2\mathcal{I}(x_{2},x_{\tilde{\nu}^{R}_{L}},x_{\mu^{\prime}_{H}})-\mathcal{J}(x_{\mu^{\prime}_{H}},x_{2},x_{\tilde{\nu}^{R}_{L}})], (71)
aμ(ν~LI,H~±,W~±)=g222xμx2xμHtanβ[2(xμH,xν~LI,x2)𝒥(x2,xμH,xν~LI)\displaystyle a_{\mu}(\tilde{\nu}^{I}_{L},\tilde{H}^{\pm},\tilde{W}^{\pm})=\frac{g_{2}^{2}}{2}x_{\mu}\sqrt{x_{2}x_{\mu^{\prime}_{H}}}\tan\beta[2\mathcal{I}(x_{\mu^{\prime}_{H}},x_{\tilde{\nu}^{I}_{L}},x_{2})-\mathcal{J}(x_{2},x_{\mu^{\prime}_{H}},x_{\tilde{\nu}^{I}_{L}})
+2(x2,xν~LI,xμH)𝒥(xμH,x2,xν~LI)].\displaystyle\hskip 108.12054pt+2\mathcal{I}(x_{2},x_{\tilde{\nu}^{I}_{L}},x_{\mu^{\prime}_{H}})-\mathcal{J}(x_{\mu^{\prime}_{H}},x_{2},x_{\tilde{\nu}^{I}_{L}})]. (72)

The concrete forms of the one-loop functions (x,y,z)\mathcal{I}(x,y,z) and 𝒥(x,y,z)\mathcal{J}(x,y,z) are

𝒥(x,y,z)=116π2[x(x2+xz2yz)logx(xy)2(xz)3y2logy(xy)2(yz)2\displaystyle\mathcal{J}(x,y,z)=\frac{1}{16\pi^{2}}\Big{[}\frac{x(x^{2}+xz-2yz)\log x}{(x-y)^{2}(x-z)^{3}}-\frac{y^{2}\log y}{(x-y)^{2}(y-z)^{2}}
+z[x(z2y)+z2]logz(zx)3(yz)2x(y2z)+yz(xy)(xz)2(yz)].\displaystyle\hskip 51.21504pt+\frac{z[x(z-2y)+z^{2}]\log z}{(z-x)^{3}(y-z)^{2}}-\frac{x(y-2z)+yz}{(x-y)(x-z)^{2}(y-z)}\Big{]}. (73)
(x,y,z)=116π2[1(xz)(zy)+(z2xy)logz(xz)2(yz)2\displaystyle\mathcal{I}(x,y,z)=\frac{1}{16\pi^{2}}\Big{[}\frac{1}{(x-z)(z-y)}+\frac{(z^{2}-xy)\log z}{(x-z)^{2}(y-z)^{2}}
xlogx(xy)(xz)2+ylogy(xy)(yz)2].\displaystyle\hskip 51.21504pt-\frac{x\log x}{(x-y)(x-z)^{2}}+\frac{y\log y}{(x-y)(y-z)^{2}}\Big{]}. (74)

The other one-loop contributions are obtained from B~(λX~)\tilde{B}(\lambda_{\tilde{X}})-L~L\tilde{L}_{L}-L~R\tilde{L}_{R}, B~(λX~)\tilde{B}(\lambda_{\tilde{X}})-H~0\tilde{H}^{0}-L~R\tilde{L}_{R}, B~(W~0,λX~)\tilde{B}(\tilde{W}^{0},\lambda_{\tilde{X}})-H~0\tilde{H}^{0}-L~L\tilde{L}_{L} and B~λX~L~RL~L\tilde{B}-\lambda_{\tilde{X}}-\tilde{L}_{R}-\tilde{L}_{L}. To save space in the text, we do not show their concrete forms here, which can be found in Ref.04 . In our previous work04 , the one-loop contributions of muon anomalous magnetic moment in the degenerate form are get with the supposition M1=M2=μH=mL~L=mL~R=|MλX~|=|MBB|=MSUSYM_{1}=M_{2}=\mu_{H}^{\prime}=m_{\tilde{L}_{L}}=m_{\tilde{L}_{R}}=|M_{\lambda_{\tilde{X}}}|=|M_{BB^{\prime}}|=M_{SUSY}

aμ1L1192π2mμ2MSUSY2tanβ(5g22+g12)\displaystyle a^{1L}_{\mu}\simeq\frac{1}{192\pi^{2}}\frac{m_{\mu}^{2}}{M_{SUSY}^{2}}\tan\beta(5g_{2}^{2}+g_{1}^{2})
+1960π2mμ2MSUSY2tanβ[5(gYX2gYXgXgX2)sign[MλX~]\displaystyle+\frac{1}{960\pi^{2}}\frac{m_{\mu}^{2}}{M_{SUSY}^{2}}\tan\beta\Big{[}5(g_{YX}^{2}-g_{YX}g_{X}-g_{X}^{2})\texttt{sign}[M_{\lambda_{\tilde{X}}}]
+g1(4gYX+gX)sign[MBB](14sign[MλX~])].\displaystyle+g_{1}(4g_{YX}+g_{X})\texttt{sign}[M_{BB^{\prime}}]\Big{(}1-4\texttt{sign}[M_{\lambda_{\tilde{X}}}]\Big{)}\Big{]}. (75)

IV numerical results

In this section, we study the numerical results and consider the constraints from lepton flavor violating processes ljliγl_{j}\rightarrow l_{i}\gamma. In addition, we have considered the following conditions: 1. the lightest CP-even Higgs mass mh0m_{h^{0}}=125.1 GeVsu1 ; su2 . 2. The latest experimental results of the mass of the heavy vector boson ZZ^{\prime} is MZ>5.1M_{Z^{\prime}}>5.1 TeVxin1 . 3. The limits for the masses of other particles beyond SM. 4. The bound on the ratio between MZM_{Z^{\prime}} and its gauge coupling gXg_{X} is MZ/gX6M_{Z^{\prime}}/g_{X}\geq 6 TeV at 99% C.L.ZPG1 ; ZPG2 . 5. The constraint from LHC data, tanβη<1.5\tan\beta_{\eta}<1.5TanBP . 6. The scalar lepton masses larger than 700 GeV and chargino masses larger than 1100 GeVA2021 .

Considering the above constraints in the front paragraph, we use the following parameters

MS=2.7TeV,Tκ=1.6TeV,M1=1.2TeV,M2=MBL=1TeV,gYX=0.2,\displaystyle M_{S}=2.7~{}{\rm TeV},~{}T_{\kappa}=1.6~{}{\rm TeV},~{}M_{1}=1.2~{}{\rm TeV},~{}M_{2}=M_{BL}=1~{}{\rm TeV},~{}g_{YX}=0.2,
ξ=17TeV,YX11=YX22=YX33=1,gX=0.3,κ=1,λC=0.08,vS=4.3TeV,\displaystyle\xi=17~{}{\rm TeV},~{}Y_{X11}=Y_{X22}=Y_{X33}=1,~{}g_{X}=0.3,~{}\kappa=1,~{}\lambda_{C}=-0.08,~{}v_{S}=4.3~{}{\rm TeV},
MBB=0.4TeV,TλH=0.3TeV,ML~112=ML~222=ML~332=ML~2=0.5TeV2,lW=4TeV2,\displaystyle M_{BB^{\prime}}=0.4~{}{\rm TeV},~{}~{}T_{\lambda_{H}}=0.3~{}{\rm TeV},~{}M^{2}_{\tilde{L}11}=M^{2}_{\tilde{L}22}=M^{2}_{\tilde{L}33}=M^{2}_{\tilde{L}}=0.5~{}{\rm TeV^{2}},~{}l_{W}=4~{}{\rm TeV}^{2},
λH=0.1,Te11=Te22=Te33=5TeV,tanβη=0.8,Bμ=BS=1TeV2,μ=0.5TeV,\displaystyle\lambda_{H}=0.1,~{}T_{e11}=T_{e22}=T_{e33}=5~{}{\rm TeV},~{}\tan\beta_{\eta}=0.8,~{}B_{\mu}=B_{S}=1~{}{\rm TeV}^{2},~{}\mu=0.5~{}{\rm TeV},
TλC=0.1TeV,ME~112=ME~222=ME~332=ME~2=3.6TeV2.\displaystyle T_{\lambda_{C}}=-0.1~{}{\rm TeV},~{}M^{2}_{\tilde{E}11}=M^{2}_{\tilde{E}22}=M^{2}_{\tilde{E}33}=M^{2}_{\tilde{E}}=3.6~{}{\rm TeV}^{2}. (76)

To simplify the numerical research, we use the relations for the parameters and they vary in the following numerical analysis

ML~122=ML~212,ML~132=ML~312,ML~322=ML~232,\displaystyle~{}M^{2}_{\tilde{L}12}=M^{2}_{\tilde{L}21},~{}M^{2}_{\tilde{L}13}=M^{2}_{\tilde{L}31},M^{2}_{\tilde{L}32}=M^{2}_{\tilde{L}23},
ME~122=ME~212,ME~132=ME~312,ME~232=ME~322,\displaystyle~{}M^{2}_{\tilde{E}12}=M^{2}_{\tilde{E}21},~{}M^{2}_{\tilde{E}13}=M^{2}_{\tilde{E}31},~{}M^{2}_{\tilde{E}23}=M^{2}_{\tilde{E}32},
Te12=Te21,Te13=Te31,Te23=Te32,tanβ.\displaystyle T_{e12}=T_{e21},~{}T_{e13}=T_{e31},~{}T_{e23}=T_{e32},~{}\tan\beta. (77)

Without special statement, the non-diagonal elements of the parameters are supposed as zero.

IV.1 Muon anomalous magnetic moment

In this subsection, we study the one-loop g2g-2 in U(1)XU(1)_{X}SSM model by MIA and expect to get some inspiration about using MIA to find LFV. The new experiment data of muon g2g-2 is reported by the workers at Fermilab National Accelerator Laboratory (FNAL)ZZZ1 ; ZZZ2 ; ZZZ3 ; ZZZ4 . Combined with the previous Brookhaven National Laboratory (BNL) E821 resultZZZ5 , we get the new averaged experiment value of muon anomaly is aμexp=116592061(41)×1011a^{\exp}_{\mu}=116592061(41)\times 10^{-11}(0.35ppm). The departure from the SM prediction is Δaμ=aμexpaμSM=251(59)×1011\Delta a_{\mu}=a^{\exp}_{\mu}-a^{SM}_{\mu}=251(59)\times 10^{-11}, which is about 4.2σ\sigma. We set the particle masses as: M1=800GeVM_{1}=800~{}\rm GeVμ=350GeV\mu=350~{}{\rm GeV}mν~LR=150GeVm_{\tilde{\nu}^{R}_{L}}=150~{}\rm GeVmν~LI=140GeVm_{\tilde{\nu}^{I}_{L}}=140~{}\rm GeVmL~L=800GeVm_{\tilde{L}_{L}}=800~{}\rm GeVmL~R=850GeVm_{\tilde{L}_{R}}=850~{}\rm GeV and mλX~=450GeVm_{\lambda_{\tilde{X}}}=450~{}\rm GeV to get Fig.6. When gYX=0.2g_{YX}=0.2 in Fig.6(a), we can see that from bottom to top are solid line (tanβ=30\tan\beta=30), dashed line (tanβ=40\tan\beta=40) and dotted line (tanβ=50\tan\beta=50) and the overall trend of the three lines is downward. That is to say, tanβ\tan\beta is a sensitive parameter and larger tanβ\tan\beta leads to larger aμa_{\mu}.

We set tanβ=50\tan\beta=50 in Fig.6(b). It is obvious that three lines with the same tendency to decrease and then increase. The dotted line (gX=0.5g_{X}=0.5) is below the dashed line (gX=0.4g_{X}=0.4), and the dashed line is below the solid line (gX=0.3g_{X}=0.3). When gXg_{X} increases, aμa_{\mu} decreases. The influence of gYXg_{YX} on aμa_{\mu} mainly depends on its own value: when gYXg_{YX} is less than 0.3, gYXg_{YX} increases and aμa_{\mu} decreases, but when gYX>0.3g_{YX}>0.3, the situation is just the opposite. The value of aμa_{\mu} can reach 2×1092\times 10^{-9} at most, it can reach about 80%80\% of the departure(Δaμ\Delta a_{\mu}), which better meets the experimental limitations. The above conclusion is the same as Eq.(75), so we can find other sensitive parameters more intuitively through formula Eq.(75).

Refer to caption
Refer to caption
Figure 6: aμa_{\mu} versus gXg_{X}(a) and gYXg_{YX}(b). The dotted line, dashed line and solid line in Fig.6(a) correspond to tanβ\tan\beta equal to 50, 40 and 30 respectively. In Fig.6(b), the solid (dashed, dotted) line corresponds to the results with gX=0.3(0.4,0.5)g_{X}=0.3~{}(0.4,~{}0.5).

IV.2 The processes of μeγ\mu\rightarrow{e\gamma}

In order to study the parameters affecting LFV, we need to study some sensitive parameters. To show the numerical results clearly, we draw the relation diagrams and scatter diagrams of Br(μeγ)Br(\mu\rightarrow{e\gamma}) with different parameters.

The gray area is current limit on LFV decay μeγ\mu\rightarrow{e\gamma} in Fig.7. With the parameters ML~122=0M_{\tilde{L}12}^{2}=0ME~122=0M_{\tilde{E}12}^{2}=0 and Te12=0T_{e12}=0, we plot Br(μeγ)Br(\mu\rightarrow{e\gamma}) versus mν~Lm_{\tilde{\nu}_{L}} in the Fig.7(a). The dashed curve corresponds to ML~122=500GeV2M^{2}_{\tilde{L}12}=500~{}\rm GeV^{2} and the solid line corresponds to ML~122=200GeV2M^{2}_{\tilde{L}12}=200~{}\rm GeV^{2}. On the whole, both lines show a downward trend. mν~Lm_{\tilde{\nu}_{L}} and Br(μeγ)Br(\mu\rightarrow{e\gamma}) are inversely proportional. The smaller mν~Lm_{\tilde{\nu}_{L}} is, the greater the value of Br(μeγ)Br(\mu\rightarrow{e\gamma}) is. Separately, the dashed line is larger than the solid line, and the ranges consistent with the experimental value are 1400GeV4000GeV1400~{}\rm GeV-4000~{}\rm GeV and 900GeV1400GeV900~{}\rm GeV-1400~{}\rm GeV respectively. mL~122m^{2}_{\tilde{L}12} and Br(μeγ)Br(\mu\rightarrow{e\gamma}) are positively correlated. If the value of ML~122M^{2}_{\tilde{L}12} gets smaller, the value of mν~Lm_{\tilde{\nu}_{L}} can be less than 1000 GeV.

We show Br(μeγ)Br(\mu\rightarrow{e\gamma}) varying with ML~2M^{2}_{\tilde{L}} by the solid curve (Te12=100T_{e12}=100 GeV) and dashed curve (Te12=50T_{e12}=50 GeV) in the Fig.7(b). We can see that the overall values meet the limit, and the trend is a subtractive function, and the solid line is greater than the dotted line. So we can conclude that as Te12T_{e12} increases, Br(μeγ)Br(\mu\rightarrow{e\gamma}) also increases. When ML~2M^{2}_{\tilde{L}} increases, Br(μeγ)Br(\mu\rightarrow{e\gamma}) decreases. The numerical results are tiny and at the order of 101910^{-19}.

Finally, we analyze the effects of the parameter Te12T_{e12} on branching ratio of μeγ\mu\rightarrow{e\gamma}. The numerical results are shown in the Fig.7(c) by the dashed curve (tanβ=9\tan\beta=9) and solid curve (tanβ=20\tan\beta=20). The value of the solid line is greater than that of the dashed line, and both show an upward trend. Therefore, The relationship between tanβ\tan\beta and Br(μeγ)Br(\mu\rightarrow{e\gamma}), Te12T_{e12} and Br(μeγ)Br(\mu\rightarrow{e\gamma}) is the similar, and they are all positively correlated.

Refer to caption
Refer to caption
Refer to caption
Figure 7: Br(μeγ)Br(\mu\rightarrow{e\gamma}) schematic diagrams affected by different parameters. The gray area is reasonable value range, where Br(μeγ)Br(\mu\rightarrow{e\gamma}) is lower than the upper limit. As Te12=0T_{e12}=0, the dashed and solid lines in Fig.7(a) correspond to ML~122=500GeV2M_{\tilde{L}12}^{2}=500~{}\rm GeV^{2} and ML~122=200GeV2M_{\tilde{L}12}^{2}=200~{}\rm GeV^{2}. The dashed line and solid line respectively represent Te12=50T_{e12}=50 GeV and 100 GeV in Fig.7(b). We set ML~2=5×105TeV2M_{\tilde{L}}^{2}=5\times 10^{5}~{}\rm TeV^{2}, the dashed line(tanβ=9\tan\beta=9) and solid line(tanβ=20\tan\beta=20) in Fig.7(c) are generated.

For more multidimensional analysis of sensitive parameters, we scatter points according to Table 1 (Part of μeγ\mu\rightarrow{e\gamma}) to get Fig.8. We set the range of \blacklozenge (0<Br(μeγ)<1.5×1013<Br(\mu\rightarrow e\gamma)<1.5\times 10^{-13}), \blacktriangle (1.5×1013Br(μeγ)<3.5×10131.5\times 10^{-13}\leq Br(\mu\rightarrow e\gamma)<3.5\times 10^{-13}) and \bullet (3.5×10133.5\times 10^{-13} Br(μeγ)<4.2×1013\leq Br(\mu\rightarrow e\gamma)<4.2\times 10^{-13}) to represent the results in different parameter spaces for the process of μeγ\mu\rightarrow{e\gamma}.

The relationship between ML~122M^{2}_{{\tilde{L}12}} and mL~m_{\tilde{L}} is shown in Fig.8(a). \blacklozenge are mainly concentrated in the upper left corner, then the outer layer are \blacktriangle and finally \bullet. When ML~122M^{2}_{{\tilde{L}12}} is near 0 and mL~m_{\tilde{L}} is near 2500GeV2500~{}\rm GeV, Br(μeγ)Br(\mu\rightarrow e\gamma) gets the minimum value. Fig.8(b) is plotted in the plane of mL~m_{\tilde{L}} versus mν~Lm_{\tilde{\nu}_{L}}. We can clearly find that the points are mainly concentrated in the right, and the color gradually deepens from lower left to upper right. The effects of ML~122M_{\tilde{L}12}^{2} and mν~Lm_{\tilde{\nu}_{L}} on Br(μeγ)Br(\mu\rightarrow e\gamma) are shown in the Fig.8(c). All points are mainly concentrated in the upper left corner and on both sides of axis ML~122=0M_{\tilde{L}12}^{2}=0 and axis mν~L=3000GeVm_{\tilde{\nu}_{L}}=3000~{}\rm GeV. From the inside to the outside, they are \blacklozenge,\blacktriangle and \bullet. When ML~122M_{\tilde{L}12}^{2} becomes larger and mν~Lm_{\tilde{\nu}_{L}} becomes smaller, the value of Br(μeγ)Br(\mu\rightarrow e\gamma) increases to reach the experimental measurement. Fig.8(d) shows the effect of tanβ\tan\beta and ML~122M_{\tilde{L}12}^{2} on Br(μeγ)Br(\mu\rightarrow e\gamma). All points are mainly concentrated near the x-axis, and the value increases from bottom to top.

Parameters processes Range μeγ\mu\rightarrow{e\gamma} (j=2,i=1)(j=2,i=1) τμγ\tau\rightarrow{\mu\gamma} (j=3,i=2)(j=3,i=2) τeγ\tau\rightarrow{e\gamma} (j=3,i=1)(j=3,i=1)
tanβ\tan\beta 0.5500.5\sim 50 0.5500.5\sim 50 0.5500.5\sim 50
ML~ij2/GeV2M^{2}_{\tilde{L}ij}/\rm GeV^{2} 050000\sim 5000 050000\sim 5000 050000\sim 5000
ME~ij2/GeV2M^{2}_{\tilde{E}ij}/\rm GeV^{2} 01040\sim 10^{4} 01040\sim 10^{4} 01040\sim 10^{4}
Teij/GeVT_{eij}/\rm GeV 11-1\sim 1 5050-50\sim 50 5050-50\sim 50
mν~L/GeVm_{\tilde{\nu}_{L}}/\rm GeV 1003000100\sim 3000 1003000100\sim 3000 1003000100\sim 3000
mL~/GeVm_{\tilde{L}}/\rm GeV 4002500400\sim 2500 4002500400\sim 2500 4002500400\sim 2500
Table 1: Scanning parameters for Fig.8,10,11. Without special statement, the non-zero values of non-diagonal elements mL~ij2,mE~ij2,Teijm^{2}_{\tilde{L}ij},m^{2}_{\tilde{E}ij},T_{eij} corresponding to ljliγl_{j}\rightarrow{l_{i}\gamma} are shown in the column.
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 8: Under the premise of lower current limit on lepton flavor violating decay μeγ\mu\rightarrow e\gamma, reasonable parameter space is selected to scatter points, where \blacklozenge mean the value of Br(μeγ)Br(\mu\rightarrow e\gamma) less than 1.5×10131.5\times 10^{-13}, \blacktriangle mean Br(μeγ)Br(\mu\rightarrow e\gamma) in the range of 1.5×10131.5\times 10^{-13} to 3.5×10133.5\times 10^{-13}, \bullet show 3.5×10133.5\times 10^{-13} Br(μeγ)<4.2×1013\leq Br(\mu\rightarrow e\gamma)<4.2\times 10^{-13}.

IV.3 The processes of τμγ\tau\rightarrow{\mu\gamma}

To study the influence of parameters ML~232M^{2}_{\tilde{L}23} and ME~232M^{2}_{\tilde{E}23} on Br(τμγ)Br(\tau\rightarrow{\mu\gamma}) in Fig.9, we suppose the parameters ML~122=0M_{\tilde{L}12}^{2}=0ME~122=0M_{\tilde{E}12}^{2}=0 and Te12=0T_{e12}=0 and plot the solid line (tanβ=9\tan\beta=9) and dashed line (tanβ=20\tan\beta=20). In Fig.9(a), we can see that ML~232M^{2}_{\tilde{L}23} corresponds to Br(τμγ)Br(\tau\rightarrow{\mu\gamma}). We plot ME~232M^{2}_{\tilde{E}23} varying with Br(τμγ)Br(\tau\rightarrow{\mu\gamma}) in the Fig.9(b). Both figures show an upward trend within the experimental limit, and the dashed line is larger than the solid line, so we can draw a conclusion: when ML~232M^{2}_{\tilde{L}23} or ME~232M^{2}_{\tilde{E}23} increases, Br(τμγ)Br(\tau\rightarrow{\mu\gamma}) also increases. In the whole, the numerical results in Fig.9 are very tiny.

Refer to caption
Refer to caption
Figure 9: Below the experimental limit, the line diagram of parameters and Br(τμγ)Br(\tau\rightarrow\mu\gamma). In Figs.9(a)(b), solid lines and dotted lines represent tanβ=9\tan\beta=9 and tanβ=20\tan\beta=20.

We scatter points according to the parameters given in Table 1 (part of τμγ\tau\rightarrow{\mu\gamma}) to obtain Fig.10. Where \blacklozenge, \blacktriangle and \bullet represent (0<Br(τμγ)<1.0×1010<Br(\tau\rightarrow{\mu\gamma})<1.0\times 10^{-10}), (1.0×10101.0\times 10^{-10} Br(τμγ)<9.0×1010\leq Br(\tau\rightarrow{\mu\gamma})<9.0\times 10^{-10}) and (9.0×10109.0\times 10^{-10}Br(τμγ)<4.4×108\leq Br(\tau\rightarrow{\mu\gamma})<4.4\times 10^{-8}) respectively.

ML~232M_{\tilde{L}23}^{2} corresponds to mL~m_{\tilde{L}} in Fig.10(a). Horizontally, \blacklozenge are mainly concentrated in 0<ML~232<1500GeV20<M_{\tilde{L}23}^{2}<1500~{}\rm GeV^{2}, \blacktriangle are in 1500GeV21500~{}\rm GeV^{2}<ML~232<3200GeV2<M_{\tilde{L}23}^{2}<3200~{}\rm GeV^{2}, and \bullet are distributed in 3200GeV23200~{}\rm GeV^{2}<ML~232<5000GeV2<M_{\tilde{L}23}^{2}<5000~{}\rm GeV^{2}. Vertically, \blacktriangle and \bullet are concentrated near mL~=500GeVm_{\tilde{L}}=500~{}\rm GeV, and there are obvious stratification, from bottom to top are \bullet, \blacktriangle, \blacklozenge. So we can know that as ML~232M_{\tilde{L}23}^{2} increases, Br(τμγ)Br(\tau\rightarrow{\mu\gamma}) increases, and when mL~m_{\tilde{L}} increases, Br(τμγ)Br(\tau\rightarrow{\mu\gamma}) decreases. We plot mL~m_{\tilde{L}} varying with Te23T_{e23} in the Fig.10(b). The three types of points are almost symmetrical about Te23=0T_{e23}=0. The smaller the mL~m_{\tilde{L}} is, the greater the value of Br(τμγ)Br(\tau\rightarrow{\mu\gamma}). The farther away the value of Te23T_{e23} from the 0 axis, the greater the value of Br(τμγ)Br(\tau\rightarrow{\mu\gamma}). Fig.10(c) is shown in the plane of Te23T_{e23} versus mν~Lm_{\tilde{\nu}_{L}}, where the centralized distributions of the three types of points are distributed in a ”U” shape on both sides of the Te23=0T_{e23}=0 axis. \blacklozenge distribute on the innermost side, followed by \blacktriangle and \bullet on the outermost side. So as mν~Lm_{\tilde{\nu}_{L}} increases, Br(τμγ)Br(\tau\rightarrow{\mu\gamma}) decreases. Finally, we analyze the effects from parameters tanβ\tan\beta and mL~m_{\tilde{L}} in Fig.10(d). All points are \blacklozenge, \blacktriangle and \bullet from top to bottom. The smaller the value of mL~m_{\tilde{L}}, the larger the value of Br(τμγ)Br(\tau\rightarrow{\mu\gamma}).

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 10: Scatter points under the restriction of the upper limit of Br(τμγ)Br(\tau\rightarrow\mu\gamma). \blacklozenge represent 0<Br(τμγ)<1×1010<Br(\tau\rightarrow\mu\gamma)<1\times 10^{-10}, \blacktriangle represent 1×1010Br(τμγ)<9×10101\times 10^{-10}\leq Br(\tau\rightarrow\mu\gamma)<9\times 10^{-10} and 9×1010Br(τμγ)<4.4×1089\times 10^{-10}\leq Br(\tau\rightarrow\mu\gamma)<4.4\times 10^{-8} are represented by \bullet.

IV.4 The processes of τeγ\tau\rightarrow{e\gamma}

Based on the Table 1 (part of τeγ\tau\rightarrow{e\gamma}), we analyze τeγ\tau\rightarrow{e\gamma} to study the possibility of LFV in Fig.11. The branching ratio of τeγ\tau\rightarrow{e\gamma} process is denoted by: \blacklozenge (0<Br(τeγ)<1.0×1010<Br(\tau\rightarrow{e\gamma})<1.0\times 10^{-10}), \blacktriangle (1×10101\times 10^{-10} Br(τeγ)<8.0×1010\leq Br(\tau\rightarrow{e\gamma})<8.0\times 10^{-10}) and \bullet (Br(τeγ)Br(\tau\rightarrow{e\gamma}) from 8.0×10108.0\times 10^{-10} to 3.3×1083.3\times 10^{-8}).

The Fig.11(a) shows the effects from mν~Lm_{\tilde{\nu}_{L}} and ML~132M_{\tilde{L}13}^{2}. Most points are concentrated in lower right quarter. \bullet are on the innermost side of the whole region. \blacktriangle are in the middle and \blacklozenge are on the outermost side. The numerical performance is that the larger the ML~132M_{\tilde{L}13}^{2} and the smaller the mν~Lm_{\tilde{\nu}_{L}}, the larger the Br(τeγ)Br(\tau\rightarrow{e\gamma}). In Fig.11(b), we analyze the effects of mν~Lm_{\tilde{\nu}_{L}} and mL~m_{\tilde{L}} on Br(τeγ)Br(\tau\rightarrow{e\gamma}). In the whole figure, \bullet are mainly close to both sides of the x-axis and y-axis, and then \blacktriangle with the same trend, and the rest is \blacklozenge. Br(τeγ)Br(\tau\rightarrow{e\gamma}) decreases with the increase of  mν~Lm_{\tilde{\nu}_{L}} and mL~m_{\tilde{L}}. Fig.11(c) has two axes mL~132m_{\tilde{L}13}^{2} versus Te13T_{e13}. All three points show ”\supset” shaped distribution, from left to right are \blacklozenge, \blacktriangle, \bullet. So Br(τeγ)Br(\tau\rightarrow{e\gamma}) increases with the increase of Te13T_{e13}.

Refer to caption
Refer to caption
Refer to caption
Figure 11: For the scatter diagrams of the parameters below the experimental limit Br(τeγ)Br(\tau\rightarrow{e\gamma}), different points represent the different ranges of Br(τeγ)Br(\tau\rightarrow{e\gamma}). \blacklozenge represent less than 1.0×10101.0\times 10^{-10}. \blacktriangle represent the range of 1.0×10101.0\times 10^{-10} to 8.0×10108.0\times 10^{-10}, and \bullet represent the range of 8.0×10108.0\times 10^{-10} to 3.3×1083.3\times 10^{-8}.

V discussion and conclusion

The U(1)XU(1)_{X}SSM has new superfields including righ-handed neutrinos and three Higgs superfields η^,η¯^,S^\hat{\eta},~{}\hat{\bar{\eta}},~{}\hat{S}, and its local gauge group is SU(3)C×SU(2)L×U(1)Y×U(1)XSU(3)_{C}\times SU(2)_{L}\times U(1)_{Y}\times U(1)_{X}. We use MIA to study muon anomalous magnetic moment. Combined with the latest experimental data, our numerical results can reach about 2×1092\times 10^{-9}, which can better fit the measurement result, and play a certain role in promoting the study of LFV. We use the method of MIA to study lepton flavor violating decays ljliγl_{j}\rightarrow{l_{i}\gamma} in the U(1)XU(1)_{X}SSM model. From the order of magnitude of branching ratio and data analysis, we can find that the restriction on lepton flavor violation in the process of μeγ\mu\rightarrow{e\gamma} is stronger. This provides a reference for other lepton flavor violation work in the future.

We take into account the constraints from the upper limits on LFV branching ratios of ljliγl_{j}\rightarrow l_{i}\gamma. In the numerical calculation, we take many parameters as variables including tanβ,gX,gYX,ML~2,ML~ij2,ME~2,ME~ij2,δijAB,mL~,mν~L\tan\beta,~{}g_{X},~{}g_{YX},~{}M_{\tilde{L}}^{2},~{}M_{\tilde{L}ij}^{2},~{}M_{\tilde{E}}^{2},~{}M_{\tilde{E}ij}^{2},~{}\delta^{AB}_{ij},~{}m_{\tilde{L}},~{}m_{\tilde{\nu}_{L}} and TeijT_{eij}. Through the analysis of the numerical results, we find that ML~ij2,ME~ij2,gYX,δijAB,mL~,mν~LM_{\tilde{L}ij}^{2},~{}M_{\tilde{E}ij}^{2},~{}g_{YX},~{}\delta^{AB}_{ij},~{}m_{\tilde{L}},~{}m_{\tilde{\nu}_{L}} and TeijT_{eij} are sensitive parameters. Br(ljliγ)Br(l_{j}\rightarrow{l_{i}\gamma}) is an increasing function of ML~ij2,ME~ij2,Teij,gYX,δijABM_{\tilde{L}ij}^{2},~{}M_{\tilde{E}ij}^{2},~{}T_{eij},~{}g_{YX},~{}\delta^{AB}_{ij}, and decreasing function of mL~m_{\tilde{L}} and mν~Lm_{\tilde{\nu}_{L}}. gXg_{X} can also give influence on the numerical results but not very large. That is to say they give mild influences on the numerical results. Finally, we come to the conclusion that the non-diagonal elements which correspond to the generations of the initial lepton and final lepton are main sensitive parameters and LFV sources.

Acknowledgments

This work is supported by National Natural Science Foundation of China (NNSFC) (No. 11535002, No. 11705045), Natural Science Foundation of Hebei Province (A2020201002). Post-graduate’s Innovation Fund Project of Hebei University (HBU2022ss028).

References

  • (1)
  • (2) K. Abe et al. (T2K Collaboration), Phys. Rev. Lett. 107 (2011) 041801; J. Ahn et al. (RENO Collaboration), Phys. Rev. Lett. 108 (2012) 191802; F. An et al. (DAYABAY Collaboration), Phys. Rev. Lett. 108 (2012) 171803.
  • (3) S. T. Petcov, Sov. J. Nucl. Phys. 25 (1977) 340 JINR-E2-10176.
  • (4) K. S. Sun, J. B. Chen and X. Y. Yang, et al., Chin. Phys. C 43 (2019) 043101.
  • (5) U. Ellwanger, C. Hugonie, and A.M. Teixeira, Phys. Rep. 496 (2010) 1-77.
  • (6) B. Yan, S. M. Zhao and T. F. Feng, Nucl. Phys. B 975 (2022) 115671 .
  • (7) F. Staub, [arXiv: 0806.0538].
  • (8) F. Staub, Comput. Phys. Commun. 185 (2014) 1773.
  • (9) F. Staub, Adv. High Energy Phys. 2015 (2015) 840780.
  • (10) J. Rosiek, Phys. Rev. D 41 (1990) 3464.
  • (11) CMS collaboration, Phys. Lett. B 716 (2012) 30; ATLAS collaboration, Phys. Lett. B 716 (2012) 1.
  • (12) V. Cirigliano, K. Fuyuto, C. Lee, et al., JHEP 03 (2021) 256.
  • (13) K. S. Sun , T. Guo and W. Li, et al., Eur. Phys. J. C 80 (2020) 1167.
  • (14) S. M. Zhao, T. F. Feng and H. B. Zhang, et al., Phys. Rev. D 92 (2015) 115016.
  • (15) T. Nomura, H. Okada and Y. Uesaka, Nucl. Phys. B 962 (2021) 115236.
  • (16) A. Ilakovac, A. Pilaftsis and L. Popov, Phys. Rev. D 87 (2013) 053014.
  • (17) T. T. Wang, S. M. Zhao and X. X. Dong, et al., JHEP 04 (2022) 122.
  • (18) S. M. Zhao, L. H. Su, and X. X. Dong, et al., JHEP 03 (2022) 101.
  • (19) E. Arganda, M. J. Herrero, and R. Morales, et al., JHEP 03 (2016) 055.
  • (20) E. Arganda, M. J. Herrero and X. Marcano, et al., Phys. Rev. D 95 (2017) 095029.
  • (21) M. J. Herrero, X. Marcano and R. Morales, et al., Eur. Phys. J. C 78 (2018) 815.
  • (22) G. Haghighat and M. M. Najafabadi, [arXiv:2204.04433 [hep-ph]].
  • (23) Particle Data Group, Prog. Theor. Exp. Phys. 2020 (2020) 083C01.
  • (24) S.M. Zhao, T.F. Feng and M. J. Zhang, et al., JHEP 02 (2020) 130.
  • (25) M. Carena, J.R. Espinosaos and C.E.M. Wagner, et al., Phys. Lett. B 355 (1995) 209.
  • (26) M. Carena, S. Gori and N.R. Shah, et al., JHEP 1203 (2012) 014.
  • (27) G. Belanger, J.D. Silva and H.M. Tran, Phys. Rev. D 95 (2017) 115017.
  • (28) V. Barger, P.F. Perez and S. Spinner, Phys. Rev. Lett. 102 (2009) 181802.
  • (29) P.H. Chankowski, S. Pokorski and J. Wagner, Eur. Phys. J. C 47 (2006) 187.
  • (30) J.L. Yang, T.F. Feng and S.M. Zhao, et al., Eur. Phys. J. C 78 (2018) 714.
  • (31) T. Moroi, Phys. Rev. D 53 (1996) 6565-6575.
  • (32) CMS Collaboration, Phys. Lett. B 716 (2012) 30.
  • (33) A TLAS Collaboration, Phys. Lett. B 716 (2012) 1.
  • (34) G. Aad et al. [ATLAS], Phys. Lett. B 796 (2019) 68-87.
  • (35) G. Cacciapaglia, C. Csaki, G. Marandella, et al., Phys. Rev. D 74 (2006) 033011.
  • (36) M. Carena, A. Daleo and B. A. Dobrescu, et al., Phys. Rev. D 70 (2004) 093009.
  • (37) L. Basso, Adv. High Energy Phys. 2015 (2015) 980687.
  • (38) P. Athron, C. Balázs and D. H. J. Jacob, et al., JHEP 09 (2021) 080.
  • (39) T. Albahri, et al., [Muon g-2], Phys. Rev. D 103 (2021) 072002.
  • (40) M. Endo, K. Hamaguchi and S. Iwamoto, et al., JHEP 07 (2021) 075.
  • (41) M. Chakraborti, L. Roszkowski and S. Trojanowski, JHEP 05 (2021) 252.
  • (42) F. Wang, L. Wu and Y. Xiao, et al., Nucl. Phys. B 970 (2021) 115486.
  • (43) G. W. Bennett, et al., [Muon g-2], Phys. Rev. D 73 (2006) 072003.