This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Lifespan estimates for semilinear wave equations with space dependent damping and potential

Ning-An Lai Institute of Nonlinear Analysis and Department of Mathematics
Lishui University
Lishui 323000, P. R. China
ninganlai@lsu.edu.cn
Mengyun Liu Department of Mathematics
Zhejiang Sci-Tech University
Hangzhou 310018, P. R. China
mengyunliu@zstu.edu.cn
Ziheng Tu School of Data Science, Zhejiang University of Finance and Economics, 310018 Hangzhou, P. R. China tuziheng@zufe.edu.cn  and  Chengbo Wang School of Mathematical Sciences
Zhejiang University
Hangzhou 310027, P. R. China
wangcbo@zju.edu.cn
Abstract.

In this work, we investigate the influence of general damping and potential terms on the blow-up and lifespan estimates for energy solutions to power-type semilinear wave equations. The space-dependent damping and potential functions are assumed to be critical or short range, spherically symmetric perturbation. The blow up results and the upper bound of lifespan estimates are obtained by the so-called test function method. The key ingredient is to construct special positive solutions to the linear dual problem with the desired asymptotic behavior, which is reduced, in turn, to constructing solutions to certain elliptic “eigenvalue” problems.

Key words and phrases:
semilinear wave equations, damping, potential, lifespan estimate, test function
2010 Mathematics Subject Classification:
35L05, 35L71, 35B33, 35B44, 35B40, 35B30
* Corresponding author

1. Introduction

The purpose of this paper is to investigate the influence of general damping and potential terms on the blow-up and lifespan estimates for energy solutions to power-type semilinear wave equations. The space-dependent damping and potential functions are assumed to be critical or short range, spherically symmetric perturbation.

More precisely, let n2n\geq 2, p>1p>1, D,VC(n\{0})D,V\in C(\mathbb{R}^{n}\backslash\{0\}), we consider the following Cauchy problem of semilinear wave equations, with small data

(1.1) {uttΔu+D(x)ut+V(x)u=|u|p,(t,x)(0,T)×n,u(x,0)=εf(x),ut(x,0)=εg(x)\left\{\begin{aligned} &u_{tt}-\Delta u+D(x)u_{t}+V(x)u=|u|^{p},(t,x)\in(0,T)\times\mathbb{R}^{n},\\ &u(x,0)=\varepsilon f(x),\quad u_{t}(x,0)=\varepsilon g(x)\end{aligned}\right.

Here f,gCc(n)f,g\in C^{\infty}_{c}(\mathbb{R}^{n}), and the small parameter ε>0\varepsilon>0 measures the size of the data. As usual, to show blow up, we assume both ff and gg are nontrivial, nonnegative and supported in BR:={xn:rR}B_{R}:=\{x\in\mathbb{R}^{n}:r\leq R\} for some R>0R>0, where |x|=r|x|=r. In view of scaling, we see that DD and VV are critical or short range, if D=𝒪(|x|1)D=\mathcal{O}(|x|^{-1}), V=𝒪(|x|2)V=\mathcal{O}(|x|^{-2}), near spatial infinity.

There have been many evidences that the critical power, pcp_{c}, for pp so that the problem admits global solutions, seems to be related with two kinds of the dimensional shift due to the critical damping and potential coefficients near the spatial infinity. Here we call pcp_{c} to be a critical power, if there exists δ>0\delta>0 such that there are certain class of data (f,g)(f,g) so that we have blow up for any ε>0\varepsilon>0 and p(pcδ,pc)p\in(p_{c}-\delta,p_{c}), while there are for any p(pc,pc+δ)p\in(p_{c},p_{c}+\delta), we have small data global existence for ε(0,ε0)\varepsilon\in(0,\varepsilon_{0}).

Heuristically, in the sample case D=d/rD=d_{\infty}/r and V=0V=0, the perturbed linear wave operator for radial solutions is of the following form

uttΔu+D(x)ut=(t2r2n+d1rr)u+dr(t+r)u.u_{tt}-\Delta u+D(x)u_{t}=(\partial_{t}^{2}-\partial_{r}^{2}-\frac{n+d_{\infty}-1}{r}\partial_{r})u+\frac{d_{\infty}}{r}(\partial_{t}+\partial_{r})u\ .

In view of the dispersive nature of the solutions for wave equations, (t+r)u(\partial_{t}+\partial_{r})u tend to be negligible (good derivative) and thus it behaves like n+dn+d_{\infty} dimensional wave equations, which suggests the role of n+dn+d_{\infty}. On the other hand, when we consider the elliptic operator Δ+V-\Delta+V with V=v(1+r)2V=v_{\infty}(1+r)^{-2}, the asymptotic behavior of the radial solutions seems to be determined by the operator r2+n1rrvr2\partial_{r}^{2}+\frac{n-1}{r}\partial_{r}-v_{\infty}r^{-2}, which is a linear ODE operator of the Euler type and has eigenvalues

(1.2) ρ(v):=(n22)2+vn22,(n2)ρ(v).\rho(v_{\infty}):=\sqrt{\big{(}\frac{n-2}{2}\big{)}^{2}+v_{\infty}}-\frac{n-2}{2},-(n-2)-\rho(v_{\infty}).

This suggests the role of ρ(v)\rho(v_{\infty}). In conclusion, the heuristic analysis strongly suggests that, under some reasonable assumptions on DD and VV, we have a critical power given by

(1.3) pc=max(pS(n+d),pG(n+ρ(v))),p_{c}=\max(p_{S}(n+d_{\infty}),p_{G}(n+\rho(v_{\infty})))\ ,

where, for mm\in\mathbb{R},

(1.4) pG(m)={1+2m1m>1,m1,d=limrrD(r),v=limrr2V(r),\ p_{G}(m)=\left\{\begin{array}[]{ll}1+\frac{2}{m-1}&m>1,\\ \infty&m\leq 1,\end{array}\right.d_{\infty}=\lim_{r\to\infty}rD(r),\ v_{\infty}=\lim_{r\to\infty}r^{2}V(r),\

and pS(m)p_{S}(m) is related to the Strauss exponent [35], which is defined to be

(1.5) pS(m)={m+1+m2+10m72(m1)m>1m1.p_{S}(m)=\left\{\begin{array}[]{ll}\frac{m+1+\sqrt{m^{2}+10m-7}}{2(m-1)}&m>1\\ \infty&m\leq 1\ .\end{array}\right.

Here, pGp_{G} is related to the Glassey exponent pG(n)p_{G}(n) for

uttΔu=|ut|p,xn,u_{tt}-\Delta u=|u_{t}|^{p}\ ,x\in\mathbb{R}^{n}\ ,

or the Fujita exponent pF(n)=pG(n+1)p_{F}(n)=p_{G}(n+1) for heat or damped wave equations

utt+utΔu=|u|p,utΔu=|u|p,u_{tt}+u_{t}-\Delta u=|u|^{p},u_{t}-\Delta u=|u|^{p}\ ,

see, e.g., [24, 20, 3].

Despite of some partial results, particularly on the blow up part, the problem of determining the critical power (as well as giving the sharp lifespan estimates) for the problem (1.1) is still largely open in general.

In this paper, we would like to show that, there exists a large class of the damping and potential functions of critical/long range, this conjecture is true, at least in the blow up part. At the same time, we are able to give upper bounds for the lifespan, which are expected to be sharp for the range p(pcδ,pc)p\in(p_{c}-\delta,p_{c}).

Before proceeding, we give the definition of energy solutions.

Definition 1.1.

We say that uu is an energy solution of (1.1) on [0,T][0,T] if

uC([0,T],H1(n))C1([0,T],L2(n))Lp([0,T]×n)u\in C([0,T],H^{1}(\mathbb{R}^{n}))\cap C^{1}([0,T],L^{2}(\mathbb{R}^{n}))\cap L^{p}([0,T]\times\mathbb{R}^{n})

satisfies suppu(t,)Bt+R\,\mathop{\!\mathrm{supp}}u(t,\cdot)\subset B_{t+R} and

(1.6) 0Tn|u|pΨ(t,x)𝑑x𝑑tn(ut(t,x)+D(x)u(t,x))Ψ(t,x)𝑑x|t=0T\displaystyle\int_{0}^{T}\int_{\mathbb{R}^{n}}|u|^{p}\Psi(t,x)dxdt-\left.\int_{\mathbb{R}^{n}}(u_{t}(t,x)+D(x)u(t,x))\Psi(t,x)dx\right|_{t=0}^{T}
=\displaystyle= 0Tnut(t,x)Ψt(t,x)𝑑x𝑑t+0Tnu(t,x)Ψ(t,x)𝑑x𝑑t\displaystyle-\int_{0}^{T}\int_{\mathbb{R}^{n}}u_{t}(t,x)\Psi_{t}(t,x)dxdt+\int_{0}^{T}\int_{\mathbb{R}^{n}}\nabla u(t,x)\cdot\nabla\Psi(t,x)dxdt
0TnD(x)u(t,x)Ψt(t,x)𝑑x𝑑t+0TnV(x)u(t,x)Ψ(t,x)𝑑x𝑑t\displaystyle-\int_{0}^{T}\int_{\mathbb{R}^{n}}D(x)u(t,x)\Psi_{t}(t,x)dxdt+\int_{0}^{T}\int_{\mathbb{R}^{n}}V(x)u(t,x)\Psi(t,x)dxdt

for any Ψ(t,x)(Ct0Hloc1Ct1Lloc2)([0,T]×n)\Psi(t,x)\in(C^{0}_{t}H_{loc}^{1}\cap C^{1}_{t}L_{loc}^{2})([0,T]\times\mathbb{R}^{n}). When n=2n=2, we additionally suppose Ψ,VΨ,DΨtLloc1/(1δ0)([0,T]×n)\Psi,V\Psi,D\Psi_{t}\in L^{1/(1-\delta_{0})}_{loc}([0,T]\times\mathbb{R}^{n}), and D(x)Ψ(0,x)Lloc1/(1δ0)D(x)\Psi(0,x)\in L^{1/(1-\delta_{0})}_{loc}, for some δ0>0\delta_{0}>0, which ensures the integrals are well-defined. The supremum of all such time of existence, TT, is called to be the lifespan to the problem (1.1), denoted by TεT_{\varepsilon}.

Before presenting our main results, let us first give a brief review of the history, in a broader context.

(I) Scattering damping D=𝒪((1+|x|)β)D=\mathcal{O}((1+|x|)^{-\beta}), V=0V=0

When there are no damping and potential, this problem is related to the so-called Strauss conjecture, for which the critical power is given by pS(n)p_{S}(n), which is the positive root of the quadratic equation

(1.7) γ(p,n):=2+(n+1)p(n1)p2=0,\gamma(p,n):=2+(n+1)p-(n-1)p^{2}=0\ ,

when n>1n>1. See [16, 8, 40, 22, 5, 19] for global results and [16, 7, 33, 34, 39, 41] for blow up results (including the critical case p=pS(n)p=p_{S}(n)).

When there is no potential term, this problem has been widely investigated with the typical damping D=μ(1+|x|)βD=\mu(1+|x|)^{-\beta}

(1.8) {uttΔu+μ(1+|x|)βut=|u|p,(t,x)[0,T)×n,u(x,0)=f(x),ut(x,0)=g(x).\left\{\begin{aligned} &u_{tt}-\Delta u+\mu(1+|x|)^{-\beta}u_{t}=|u|^{p},(t,x)\in[0,T)\times\mathbb{R}^{n},\\ &u(x,0)=f(x),\quad u_{t}(x,0)=g(x).\end{aligned}\right.

The asymptotic behavior of the solution to the corresponding linear damped equations has been comprehensively studied, in view of the works of [12, 14, 27, 30, 31, 32, 36, 37], we have the following results

β(,1)\beta\in(-\infty,1) effective
solution behaves like
that of heat equation
β=1\beta=1
scaling invariant
weak damping
the asymptotic behavior
depends on μ\mu
β(1,)\beta\in(1,\infty) scattering
solution behaves like that
of wave equation without damping

Turning to the nonlinear problem (1.8), the critical power depends on the value of β\beta and μ\mu. For β[0,1)\beta\in[0,1), Ikehata, Todorova and Yordanov [15] showed that the critical power of (1.8) is the shifted Fujita exponent pc(n)=pG(nβ+1)=1+2nβp_{c}(n)=p_{G}(n-\beta+1)=1+\frac{2}{n-\beta}. Nishihara [28] studied the same damping case but with absorbed semilinear term |u|p1u|u|^{p-1}u and proved the diffusion phenomena. For the blow-up solution, Ikeda-Sobajima [10] gave the sharp upper bound of lifespan for the effective case β<1\beta<1 via the test function method, which was developed from Mitidieri-Pokhozhaev [26]. Recently, Nishihara, Sobajima and Wakasugi [29] verified that the critical power is still 1+2nβ1+\frac{2}{n-\beta} when β<0\beta<0. For the critical case β=1\beta=1 with μn\mu\geq n, Li [21] obtained the blow-up result when ppG(n)p\leq p_{G}(n).

Turning to the scattering case β>1\beta>1, as we have discussed, it is natural to expect that the critical power is exactly the same as that of the Strauss conjecture, i.e., pc=pS(n)p_{c}=p_{S}(n), see also the introduction in page 22 in Ikehata-Todorova-Yordanov [13] and conjecture (iii) in page 4 in Nishihara-Sobajima-Wakasugi [29]. This conjecture has been verified at least for the blow-up part when β>2\beta>2 and n3n\geq 3 in Lai-Tu [18], based on a key observation that the test function etϕ1(x)e^{-t}\phi_{1}(x) satisfies the dual of the corresponding linear equation, where ϕ1(x)=𝕊n1exω𝑑ω\phi_{1}(x)=\int_{\mathbb{S}^{n-1}}e^{x\cdot\omega}d\omega is the one from Yordanov-Zhang [38]. On the other hand, when n=3,4n=3,4, Metcalfe-Wang [25] obtained the global existence when p>pS(n)p>p_{S}(n) and β>1\beta>1 with sufficiently small |μ||\mu|.

Our first main result verifies the blow up part of the conjecture for the scattering damping, which, together with [25], shows that the critical power is pS(n)p_{S}(n), at least for small scattering damping function, when n=3,4n=3,4. Moreover, we improve the lifespan estimates in [18] for pn/(n1)p\leq n/(n-1).

Theorem 1.2.

Let n2n\geq 2. Consider the Cauchy problem (1.1) with V(x)=0V(x)=0. Suppose D(x)C(n)Cδ(Bδ)D(x)\in C(\mathbb{R}^{n})\cap C^{\delta}(B_{\delta}) for some δ>0\delta>0 and 0D(x)μ(1+|x|)β0\leq D(x)\leq\mu(1+|x|)^{-\beta} with β>1\beta>1 and μ0\mu\geq 0. Then for any 1<ppS(n)1<p\leq p_{S}(n), any energy solutions for nontrivial, nonnegative, compactly supported data will blow up in finite time. In addition, there exist positive constants C,ε0C,\varepsilon_{0} such that the lifespan TεT_{\varepsilon} satisfies

(1.9) Tε{Cε2p(p1)γ0(p)for 1<pnn1,Cε2p(p1)γ(p,n)fornn1p<pS(n),exp(Cεp(p1))forp=pS(n)T_{\varepsilon}\leq\left\{\begin{array}[]{ll}C\varepsilon^{-\frac{2p(p-1)}{\gamma_{0}(p)}}&\mbox{for}\ 1<p\leq\frac{n}{n-1},\\ C\varepsilon^{-\frac{2p(p-1)}{\gamma(p,n)}}&\mbox{for}\ \frac{n}{n-1}\leq p<p_{S}(n),\\ \exp\left(C\varepsilon^{-p(p-1)}\right)&\mbox{for}\ p=p_{S}(n)\\ \end{array}\right.

for any 0<εε00<\varepsilon\leq\varepsilon_{0}, where

(1.10) γ0(p)=(n1)p(p1)+2n(p1)+2.\gamma_{0}(p)=-(n-1)p(p-1)+2n(p-1)+2.

In addition, the results for p<pS(n)p<p_{S}(n) apply also for general (short range) damping function (D(x)LnL(n)D(x)\in L^{n}\cap L^{\infty}(\mathbb{R}^{n}) without the sign condition). Here and in what follows, CC denotes a positive constant independent of ε\varepsilon and may change from line to line.

(II) Critical damping D=𝒪((1+|x|)1)D=\mathcal{O}((1+|x|)^{-1}) with short range potential

Concerning the potential term VV, when it is of short range and D=0D=0, as we have discussed, it is expected that it will not affect the critical power pSp_{S}. Actually, when D=0D=0 and 0V(x)μ1+|x|β0\leq V(x)\leq\frac{\mu}{1+|x|^{\beta}} with β>2\beta>2 and μ0\mu\geq 0, Yordanov-Zhang [38] proved blow up result for 1<p<pS(n)1<p<p_{S}(n) when n3n\geq 3.

Our second result addresses the problem with possibly critical damping D=𝒪((1+|x|)1)D=\mathcal{O}((1+|x|)^{-1}), together with short range potential VV. Here, the potential VV is said to be of short range, if we have rV(r)L1([1,),dr)rV(r)\in L^{1}([1,\infty),dr).

Theorem 1.3.

Let n2n\geq 2. Suppose that the coefficients V(x),D(x)V(x),~{}D(x) satisfy:
1.   V(x),D(x)C(n)Cδ(Bδ)V(x),\ D(x)\ \in C(\mathbb{R}^{n})\cap C^{\delta}(B_{\delta}) for some δ>0\delta>0;
2.   V(r)0V(r)\geq 0 (VV is nontrivial for n=2n=2), D(r)+V(r)1D(r)+V(r)\geq-1;
3.   rV(r)L1([1,),dr)rV(r)\in L^{1}([1,\infty),dr);
4.   rD(r)=d+rD(r)rD(r)=d_{\infty}+rD_{\infty}(r), D(r)L1([1,),dr)D_{\infty}(r)\in L^{1}([1,\infty),dr), for some dd_{\infty}\in\mathbb{R}, rDLrD\in L^{\infty}.
Then for any 1<p<max(pG(n),pS(n+d))1<p<\max(p_{G}(n),p_{S}(n+d_{\infty})), there are no any global energy solutions uu for (1.1) with f=0f=0, nontrivial, nonnegative and compactly supported gg. Moreover, there exist constants C,ε0>0C,\varepsilon_{0}>0 such that TεT_{\varepsilon} is bounded from above by

(1.11) {Cε(p1)1<p<nn1,d>(n1)(2p1),Cε(p1)(lnε1)(p1)max(4n,1)p=nn1,d>(n1)(2p1),C(ε1(lnε1)max(3n,0))p1(n+1)(n1)pnn1<p<pG(n),d>n12p,Cε2p(p1)γ1(p)(lnε1)2(p1)γ1(p)max(3n,0)1<p<nn1,d(n1)(2p1),Cε2p(p1)γ(p,n+d)(lnε1)2(p1)γ(p,n+d)p=nn1,d(n1)(2p1)Cε2p(p1)γ(p,n+d)nn1<p<pS(n+d),dn12p\left\{\begin{array}[]{ll}C\varepsilon^{-(p-1)}&1<p<\frac{n}{n-1},d_{\infty}>(n-1)(\frac{2}{p}-1),\\ C\varepsilon^{-(p-1)}\left(\ln\varepsilon^{-1}\right)^{(p-1)\max(4-n,1)}&p=\frac{n}{n-1},d_{\infty}>(n-1)(\frac{2}{p}-1),\\ C\left(\varepsilon^{-1}(\ln\varepsilon^{-1})^{\max(3-n,0)}\right)^{\frac{p-1}{(n+1)-(n-1)p}}&\frac{n}{n-1}<p<p_{G}(n),d_{\infty}>n-1-\frac{2}{p},\\ C\varepsilon^{-\frac{2p(p-1)}{\gamma_{1}(p)}}\left(\ln\varepsilon^{-1}\right)^{-\frac{2(p-1)}{\gamma_{1}(p)}\max(3-n,0)}&1<p<\frac{n}{n-1},d_{\infty}\leq(n-1)(\frac{2}{p}-1),\\ C\varepsilon^{-\frac{2p(p-1)}{\gamma(p,n+{d_{\infty}})}}(\ln\varepsilon^{-1})^{\frac{2(p-1)}{\gamma(p,n+{d_{\infty}})}}&p=\frac{n}{n-1},d_{\infty}\leq(n-1)(\frac{2}{p}-1)\\ C\varepsilon^{-\frac{2p(p-1)}{\gamma(p,n+d_{\infty})}}&\frac{n}{n-1}<p<p_{S}(n+d_{\infty}),d_{\infty}\leq n-1-\frac{2}{p}\end{array}\right.

for 0<εε00<\varepsilon\leq\varepsilon_{0}, where

(1.12) γ1(p)=(n+d1)p(p1)+2n(p1)+2.\gamma_{1}(p)=-(n+d_{\infty}-1)p(p-1)+2n(p-1)+2.

See Figure 1 for the region of (d,p)(d_{\infty},p) where we have blow up results. Here LjL_{j} (j=1,2,,6j=1,2,\cdots,6) denote the jj-th lifespan, with LS=L6L_{S}=L_{6} and LG=L3L_{G}=L_{3}.

Refer to caption
Figure 1. Theorem 1.3: critical powers and lifespan estimates

As mentioned above, when D=0D=0, Yordanov-Zhang [38] has shown blow-up result for 1<p<pS(n)1<p<p_{S}(n) and n3n\geq 3. The restriction for n3n\geq 3 comes from the proof of the existence and asymptotic behavior of test functions. By using ODE and elliptic theory, we could include the case n=2n=2, in the case of the radial nontrivial potential.

Moreover, when d1nd_{\infty}\leq 1-n, we have pS(n+d)=p_{S}(n+d_{\infty})=\infty and so there are no global solutions for any p(1,)p\in(1,\infty). A specific example could be D=dd+rD=\frac{d_{\infty}}{d_{\infty}+r} and V=V(1+r)2V=V_{\infty}(1+r)^{-2}.

Remark 1.4.

Through scaling, we see that the technical condition 1+D(r)+V(r)01+D(r)+V(r)\geq 0 could be replaced by the slightly general condition λ02+λ0D(r)+V(r)0\lambda_{0}^{2}+\lambda_{0}D(r)+V(r)\geq 0 for some λ0>0\lambda_{0}>0.

(III) Critical damping and potential D=𝒪(|x|1)D=\mathcal{O}(|x|^{-1}), V=𝒪(|x|2)V=\mathcal{O}(|x|^{-2}) near spatial infinity

Finally, when both the damping and potential terms exhibit certain critical nature, it turns out that we have the blow-up phenomenon under the shifted Strauss exponent and a shifted Glassey exponent, shifted by ρ(v)\rho(v_{\infty}) or dd_{\infty}.

In [4], Georgiev, Kubo and Wakasa showed that the critical power for the radial solutions is the shifted Strauss exponent p=pS(3+2)p=p_{S}(3+2), for a special case in 3\mathbb{R}^{3}, with damping and potential coefficients satisfying the relation

V(r)=D(r)/2+D2(r)/4,V(r)=-D^{\prime}(r)/2+D^{2}(r)/4,

where D(r)D(r) is a positive decreasing function in C([0,))C1(0,)C([0,\infty))\cap C^{1}(0,\infty) satisfying D(r)=2/rD(r)=2/r for rr0>0r\geq r_{0}>0.

In the case of the problem with sample scale-invariant “critical” damping and potential,

D(x)=d|x|,V(x)=v|x|2,D(x)=\frac{d_{\infty}}{|x|},V(x)=\frac{v_{\infty}}{|x|^{2}}\ ,

with 0d<n1+2ρ(v)0\leq d_{\infty}<n-1+2\rho(v_{\infty}), v>(n2)2/4v_{\infty}>-(n-2)^{2}/4, thanks to the specific structure of the damping and potential terms, Dai, Kubo and Sobajima [2] were able to construct explicit test functions by using hypergeometric functions and obtain the upper bound of the lifespan for

n+ρ(v)n+ρ(v)1<ppc.\frac{n+\rho(v_{\infty})}{n+\rho(v_{\infty})-1}<p\leq p_{c}\ .

See also Ikeda-Sobajima [9] for the prior blow-up results for nn1<ppS(n+d)\frac{n}{n-1}<p\leq p_{S}(n+d_{\infty}), when v=0v_{\infty}=0, n3n\geq 3 and 0d<(n1)2/(n+1)0\leq d_{\infty}<(n-1)^{2}/(n+1).

As we can see, the above results heavily depends on the specific structure of the damping and potential terms. Our next theorem addresses on the problem with a general class of damping and potential terms, which exhibit certain critical nature.

Theorem 1.5.

Consider (1.1) with n2n\geq 2. Assume that the coefficients V(x),D(x)V(x),~{}D(x) satisfy:

1.     V(r),D(r)C(+)V(r),D(r)\in C(\mathbb{R}_{+}), V(r)0V(r)\geq 0, D+V1D+V\geq-1;

2. For the part near spatial infinity, r>1r>1,

r2V(r)=v+rV(r)\displaystyle r^{2}V(r)=v_{\infty}+rV_{\infty}(r), V(r)Lr>11V_{\infty}(r)\in L^{1}_{r>1}, v0v_{\infty}\geq 0 (with v>0v_{\infty}>0  for  n=2n=2);

rD(r)=d+rD(r),D(r)Lr>11,rDLr>1\displaystyle rD(r)=d_{\infty}+rD_{\infty}(r),\ D_{\infty}(r)\in L^{1}_{r>1},\ rD_{\infty}\in L^{\infty}_{r>1} with dd_{\infty}\in\mathbb{R};

3.    For r(0,1]r\in(0,1], D=𝒪(rθ2)D=\mathcal{O}(r^{\theta-2}) for some θ[0,2]\theta\in[0,2], and

r2V(r)=v0+rV0(r),V0(r)Lloc1\displaystyle r^{2}V(r)=v_{0}+rV_{0}(r),\ V_{0}(r)\in L^{1}_{loc} for n3n\geq 3 or v0>0v_{0}>0;

r2D(r)=d0+rD0(r),D0(r)Lloc1\displaystyle r^{2}D(r)=d_{0}+rD_{0}(r),\ D_{0}(r)\in L_{loc}^{1} for n3n\geq 3 or v0+d0>0v_{0}+d_{0}>0.
For n=2n=2 and the endpoint case, instead of the assumption
3, we assume the analytic conditions for some δ>0\delta>0:

3’.        r2V(r)=j1bjrj\displaystyle r^{2}V(r)=\sum_{j\geq 1}b_{j}r^{j} for r(0,δ)r\in(0,\delta) if v0=0v_{0}=0;

r2(V+D)=j1cjrj\displaystyle r^{2}(V+D)=\sum_{j\geq 1}c_{j}r^{j} for r(0,δ)r\in(0,\delta) if v0+d0=0v_{0}+d_{0}=0.

Suppose that

p0:=n+ρ(v0)n+ρ(v0+min(0,d0))+θ2<pc=max(pS(n+d),pG(n+ρ(v)),p_{0}:=\frac{n+\rho(v_{0})}{n+\rho(v_{0}+\min(0,d_{0}))+\theta-2}<p_{c}=\max(p_{S}(n+d_{\infty}),p_{G}(n+\rho(v_{\infty})),

then for any p0<p<pcp_{0}<p<p_{c}, any energy solutions uu for (1.1), with f=0f=0, nontrivial, nonnegative and compactly supported gg, will blow up in finite time. Moreover, there exist constants C,ε0>0C,\varepsilon_{0}>0 such that TεT_{\varepsilon} has to satisfy

(1.13) Tε{Cε(p1)ifp(p2,p3)Cε(p1)(lnε1)p1ifp=p3>p2Cεp1n+ρ(v)+1(n+ρ(v)1)pifp(max(p2,p3),pG(n+ρ(v)))Cε2p(p1)γ2(p)ifp(p0,min(p3,p5))Cε2p(p1)γ(p,n+d)(lnε1)2(p1)γ(p,n+d)ifp=p3(p0,pS(n+d))Cε2p(p1)γ(p,n+d)ifp(max(p0,p3),pS(n+d))Cε2(p1)(n+d+1)(n+d1)pifp(p4,p0](p4,pG(n+d))T_{\varepsilon}\leq\left\{\begin{array}[]{ll}C\varepsilon^{-(p-1)}&\mbox{if}\ p\in(p_{2},p_{3})\neq\emptyset\\ C\varepsilon^{-(p-1)}\left(\ln\varepsilon^{-1}\right)^{p-1}&\mbox{if}\ p=p_{3}>p_{2}\\ C\varepsilon^{-\frac{p-1}{n+\rho(v_{\infty})+1-(n+\rho(v_{\infty})-1)p}}&\mbox{if}\ p\in(\max(p_{2},p_{3}),p_{G}(n+\rho(v_{\infty})))\neq\emptyset\\ C\varepsilon^{-\frac{2p(p-1)}{\gamma_{2}(p)}}&\mbox{if}\ p\in(p_{0},\min(p_{3},p_{5}))\neq\emptyset\\ C\varepsilon^{-\frac{2p(p-1)}{\gamma(p,n+{d_{\infty}})}}(\ln\varepsilon^{-1})^{\frac{2(p-1)}{\gamma(p,n+{d_{\infty}})}}&\mbox{if}\ p=p_{3}\in(p_{0},p_{S}(n+{d_{\infty}}))\neq\emptyset\\ C\varepsilon^{-\frac{2p(p-1)}{\gamma(p,n+{d_{\infty}})}}&\mbox{if}\ p\in(\max(p_{0},p_{3}),p_{S}(n+{d_{\infty}}))\neq\emptyset\\ C\varepsilon^{-\frac{2(p-1)}{(n+d_{\infty}+1)-(n+d_{\infty}-1)p}}&\mbox{if}\ p\in(p_{4},p_{0}]\cap(p_{4},p_{G}(n+d_{\infty}))\neq\emptyset\end{array}\right.

for 0<εε00<\varepsilon\leq\varepsilon_{0}. Here pip_{i} are defined as follows:

p0=max(p1,p2),p1:=n+ρ(v0)n+ρ(v0+d0)+θ2,p2:=n+ρ(v0)n+ρ(v0)+θ2p_{0}=\max(p_{1},p_{2}),\ p_{1}:=\frac{n+\rho(v_{0})}{n+\rho(v_{0}+d_{0})+\theta-2},\ p_{2}:=\frac{n+\rho(v_{0})}{n+\rho(v_{0})+\theta-2}
p3:=n+ρ(v)n+ρ(v)1,p4:=n+ρ(v0+d0)n+ρ(v0+d0)+θ2.p_{3}:=\frac{n+\rho(v_{\infty})}{n+\rho(v_{\infty})-1}\ ,\ p_{4}:=\frac{n+\rho(v_{0}+d_{0})}{n+\rho(v_{0}+d_{0})+\theta-2}.
p5={3n+d+2ρ(v)1+(3n+d+2ρ(v)1)28(n+d1)(n+ρ(v)1)2(n+d1)n+d>1n+d1,p_{5}=\left\{\begin{array}[]{ll}\frac{3n+d_{\infty}+2\rho(v_{\infty})-1+\sqrt{(3n+d_{\infty}+2\rho(v_{\infty})-1)^{2}-8(n+d_{\infty}-1)(n+\rho(v_{\infty})-1)}}{2(n+d_{\infty}-1)}&n+d_{\infty}>1\\ \infty&n+d_{\infty}\leq 1\ ,\end{array}\right.

and

(1.14) γ2(p):=2(n+ρ(v)1)(pp3)+γ(p,n+d),\gamma_{2}(p):=2(n+\rho(v_{\infty})-1)(p-p_{3})+\gamma(p,n+d_{\infty})\ ,

where γ\gamma is given in (1.7) and p5p_{5} is the positive root of γ2(p)=0\gamma_{2}(p)=0 when n+d>1n+d_{\infty}>1.

Remark 1.6.

We observe that, in our statement, besides the expected upper bound of the blow up range, we have certain lower bound, which depends on the local behavior of V(x)V(x) and D(x)D(x) near the origin, as well as vv_{\infty} for p3p_{3}. Heuristically, we expect that the lower bounds for the blow-up range are just technical conditions. In other words, we conjecture that we still have blow up results for any p(1,pc)p\in(1,p_{c}).

Remark 1.7.

When n=3n=3, v0=d0=0v_{0}=d_{0}=0, v=d=2v_{\infty}=d_{\infty}=2, and θ=2\theta=2, we have p1=p2=1p_{1}=p_{2}=1, p3=4/3p_{3}=4/3, and thus recover the blow-up result in [4] for 1<p<pS(5)1<p<p_{S}(5). When d0=0d_{0}=0, d=Ad_{\infty}=A, v0=v=Bv_{0}=v_{\infty}=B and θ=1\theta=1, our result recovers and generalizes the subcritical results in [2]. The blow-up and lifespan estimate for the “critical” power are lost in our result, which seems to be much more delicate to obtain, in our general setting for the damping and potential functions. One of the unexpected features is that we could obtain blow up results for highly singular damping term near the origin. For example, for any d0,v0,d,v>0d_{0},v_{0},d_{\infty},v_{\infty}>0 such that p0<pcp_{0}<p_{c}, the problem with

D=d0r2+dr,V=v0r2+2(vv0)arctanrπr2,D=\frac{d_{0}}{r^{2}}+\frac{d_{\infty}}{r},\ V=\frac{v_{0}}{r^{2}}+\frac{2(v_{\infty}-v_{0})\arctan r}{\pi r^{2}}\ ,

could not admit global solutions in general, for p(p0,pc)p\in(p_{0},p_{c}), despite the strong damping effect near the origin.

Concerning the comparison of the exponents pip_{i}, pSp_{S} and pGp_{G}, they depend on the the damping, potential and dimension. For example, we observe from (1.14) and (1.7) for γ2\gamma_{2} and γ(p,n)\gamma(p,n), whose positive roots give p5p_{5} and pSp_{S}, as well as the obvious relation p3<pG(n+ρ(v))p_{3}<p_{G}(n+\rho(v_{\infty})), that we always have

min(p3,p5)<pc.\min(p_{3},p_{5})<p_{c}\ .

As n+ρ(d)1>0n+\rho(d_{\infty})-1>0, we have γ2(p)<γ(p,n+d)\gamma_{2}(p)<\gamma(p,n+d_{\infty}) for p<p3p<p_{3}, which shows that the current lifespan estimate for p0<p<min(p3,p5)p_{0}<p<\min(p_{3},p_{5}) is weaker than the standard one. Also, it is clear that p1<p2p_{1}<p_{2} iff d0>0,θ<2d_{0}>0,\theta<2, which is also equivalent to p4<p2p_{4}<p_{2}.

In relation with Remark 1.6, we would like to show blow up results for any p(1,pc)p\in(1,p_{c}). It is clear that when θ=2\theta=2 (which ensures that d0=0d_{0}=0), we have p0=1p_{0}=1 and so is the blow up results for p(1,pc)p\in(1,p_{c}). Moreover, by examining the proof of Theorem 1.5, in particular the estimates (4.8) and (4.3), we find that the technical condition p3p_{3} for the lifespan estimates could also be avoided if the damping term vanishes D=0D=0 near spatial infinity. That is, when D(r)Cc([0,))D(r)\in C_{c}([0,\infty)) (so that d0=d=0d_{0}=d_{\infty}=0 and θ=2\theta=2), we have

F0=T/2TBt+RT2pϕ0𝑑x𝑑tT2p+ρ(v)+n+1,F_{0}=\int_{T/2}^{T}\int_{B_{t+R}}T^{-2p^{\prime}}\phi_{0}dxdt{\lesssim}T^{-2p^{\prime}+\rho(v_{\infty})+n+1}\ ,

and so is the following

Corollary 1.8.

Under the same assumptions as in Theorem 1.5, with an additional assumption that D(|x|)Cc([0,))D(|x|)\in C_{c}([0,\infty)). Then we have blow up results for any 1<p<pc=max(pG(n+ρ(v)),pS(n))1<p<p_{c}=\max(p_{G}(n+\rho(v_{\infty})),p_{S}(n)). In addition, we have, for some constants C,ε0>0C,\varepsilon_{0}>0,

(1.15) Tε{LS=Cε2p(p1)γ(p,n)ifp(1,pS(n))LG=Cεp1n+ρ(v)+1(n+ρ(v)1)pifp(1,pG(n+ρ(v)))T_{\varepsilon}\leq\left\{\begin{array}[]{ll}L_{S}=C\varepsilon^{-\frac{2p(p-1)}{\gamma(p,n)}}&\mbox{if}\ p\in(1,p_{S}(n))\\ L_{G}=C\varepsilon^{-\frac{p-1}{n+\rho(v_{\infty})+1-(n+\rho(v_{\infty})-1)p}}&\mbox{if}\ p\in(1,p_{G}(n+\rho(v_{\infty})))\end{array}\right.

for any 0<εε00<\varepsilon\leq\varepsilon_{0}.

See Figure 2 for the region of (v,p)(v_{\infty},p) where we have blow up results for n=2n=2. As we assume v0v_{\infty}\geq 0, we always have pS(n)>pG(n+ρ(v))p_{S}(n)>p_{G}(n+\rho(v_{\infty})) and the second upper bound LGL_{G} is effective (i.e., LGLSL_{G}\leq L_{S} for ε1\varepsilon\ll 1 if and only if (2ρ(v)+n1)p2(2\rho(v_{\infty})+n-1)p\leq 2, which is nonempty only if n2n\leq 2.

2/p=2ρ(v)+n12/p=2\rho(v_{\infty})+n-1TεLGT_{\varepsilon}\leq L_{G}ppvv_{\infty}1/41/42n1\frac{2}{n-1}pG(n)p_{G}(n)pS(n)p_{S}(n)pS(n)p_{S}(n)p=pG(n+ρ(v))p=p_{G}(n+\rho(v_{\infty}))TεLST_{\varepsilon}\leq L_{S}TεLST_{\varepsilon}\leq L_{S}(0,1)(0,1)
Figure 2. Corollary 1.8: lifespan estimates for n=2n=2

For the strategy of proof, we basically follow the test function method. The key ingredient is to construct special positive standing wave solutions, of the form w=eλtϕλ(x)w=e^{-\lambda t}\phi_{\lambda}(x), to the linear dual problem,

(t2ΔDt+V)w=0,(\partial_{t}^{2}-\Delta-D\partial_{t}+V)w=0\ ,

with the desired asymptotic behavior. In turn, it is reduced to constructing solutions to certain elliptic “eigenvalue” problems:

(1.16) (λ2Δ+Dλ+V)ϕλ=0.(\lambda^{2}-\Delta+D\lambda+V)\phi_{\lambda}=0\ .

Concerning the subcritical blow up results, p<pcp<p_{c}, it suffices to construct solutions for (1.16) with λ=0\lambda=0 and some λ0>0\lambda_{0}>0. While for the critical case, we will also need to find solutions with uniform estimates with respect to all λ(0,λ0)\lambda\in(0,\lambda_{0}).

Outline

Our paper is organized as follows. In Section 2, we present the existence results of special solutions for the elliptic “eigenvalue” problems (1.16), with certain asymptotic behavior, by applying elliptic and ODE theory. These solutions play a key role in constructing the test functions and the proof of blow up results. The proof of the existence results are given in Section 3. Equipped with the eigenfunctions, the test function method is implemented in Section 4, to give the proof of Theorem 1.5. Then, in Section 5, we give the proof of Theorem 1.3, when n2n\geq 2 and the potential is of short range. In essence, with the help of Lemma 2.2 and 2.4, Theorem 1.3 could be viewed as a corollary of Theorem 1.5 when n3n\geq 3. At last, in Section 6, we present the required test function for the critical case, as well as the upper bound and lower bound estimates. Equipped with the test function, a relatively routine argument (see, e.g., [18] or [17]) will yield Theorem 1.2.

Notations.

We close this section by listing the notation. Let x=1+|x|2\langle x\rangle=\sqrt{1+|x|^{2}} for xnx\in\mathbb{R}^{n}. We will also use ABA{\lesssim}B to stand for ACBA\leq CB where the constant CC may change from line to line.

2. Solutions to elliptic equations

In this section, we present the existence results of special solutions for some elliptic “eigenvalue” problems, with certain asymptotic behavior, which would be used to construct test functions to derive the expected lifespan estimates. We will consider two types of elliptic equations.

2.1. Eigenfunction for VΔV-\Delta

At first, we consider the “zero-eigenfunction” for the positive elliptic operator VΔV-\Delta.

Lemma 2.1.

Suppose 0VC(n\{0})0\leq V\in C(\mathbb{R}^{n}\backslash\{0\}) and

r2V(r)=v+rV(r)=v0+rV0(r),V(r)Lr>11,V0(r)Lr<11,r^{2}V(r)=v_{\infty}+rV_{\infty}(r)=v_{0}+rV_{0}(r)\ ,V_{\infty}(r)\in L^{1}_{r>1}\ ,V_{0}(r)\in L^{1}_{r<1}\ ,

Then if n3n\geq 3 or v0,v>0v_{0},v_{\infty}>0, there exists a solution ϕ0Hloc1(n)Wloc2,1+(n)\phi_{0}\in H_{loc}^{1}(\mathbb{R}^{n})\cap W_{loc}^{2,1+}(\mathbb{R}^{n}) of

(2.1) Δϕ0=Vϕ0,xn,n2,\Delta\phi_{0}=V\phi_{0},\ x\in\mathbb{R}^{n},\ \ n\geq 2,\

satisfying

(2.2) ϕ0{rρ(v0),r1,rρ(v),r1.\begin{split}\phi_{0}\simeq\begin{cases}r^{\rho(v_{0})},\ r\leq 1,\\ r^{\rho(v_{\infty})},\ r\geq 1\ .\end{cases}\end{split}

In addition, for n=2n=2 with v0=0v_{0}=0, if we assume r2Vr^{2}V is analytic in (0,δ)(0,\delta) for some δ>0\delta>0, i.e.,

r2V(r)=j=1bjrj, 0<r<δ,r^{2}V(r)=\sum^{\infty}_{j=1}b_{j}r^{j},\ 0<r<\delta\ ,

then the same result holds.

When VV is Hölder continuous near the origin, the regularity of the solutions could be improved.

Lemma 2.2.

Suppose 0VC(n)0\leq V\in C(\mathbb{R}^{n}), V=V(r)=𝒪(rβ)V=V(r)=\mathcal{O}(\langle r\rangle^{-\beta}) for some β>2\beta>2, and VCδ(Bδ)V\in C^{\delta}(B_{\delta}) for some δ>0\delta>0. In addition, we assume VV is nontrivial when n=2n=2. Then there exists a C2C^{2} solution of (2.1) satisfying

(2.3) ϕ0{ln(r+2),n=2,1,n3.\begin{split}\phi_{0}\simeq\begin{cases}\ln(r+2),\ n=2,\\ 1,\ \ n\geq 3.\ \end{cases}\end{split}

Moreover, when n=2n=2 and V0V\equiv 0, it is clear that ϕ0=1\phi_{0}=1 is a solution (2.1).

When n3n\geq 3, VV is locally Hölder continuous (not necessarily radial) and 0VC1+|x|2+δ0\leq V\leq\frac{C}{1+|x|^{2+\delta}} with C,δ>0C,\delta>0, Lemma 2.2 was known from Yordanov-Zhang [38].

2.2. “Eigenfunction” for V+DΔV+D-\Delta with negative “eigenvalue”

In this subsection, we consider the “eigenfunction” for V+DΔV+D-\Delta with negative “eigenvalue”:

(2.4) Δϕλ0=(λ02+λ0D+V)ϕλ0,λ0>0,xn.\Delta\phi_{\lambda_{0}}=(\lambda_{0}^{2}+\lambda_{0}D+V)\phi_{\lambda_{0}},\ \lambda_{0}>0,\ \ x\in\mathbb{R}^{n}.\
Lemma 2.3.

Let V=V(r),D=D(r)C(0,)V=V(r),D=D(r)\in C(0,\infty). Suppose V0V\geq 0, Dλ0Vλ0D\geq-\lambda_{0}-\frac{V}{\lambda_{0}} for some λ0>0\lambda_{0}>0, and

D(r)=d0r2+1rD0(r),V(r)=v0r2+1rV0(r),r1,D(r)=\frac{d_{0}}{r^{2}}+\frac{1}{r}D_{0}(r),\ V(r)=\frac{v_{0}}{r^{2}}+\frac{1}{r}V_{0}(r),\ r\leq 1,\

with D0(r)Lr<11D_{0}(r)\in L^{1}_{r<1}, V0(r)Lr<11V_{0}(r)\in L^{1}_{r<1}. In addition, we assume for some dd_{\infty}\in\mathbb{R},

V(r)Lr>11,D(r)=dr+D(r),D(r)Lr>11.V(r)\in L^{1}_{r>1},\ D(r)=\frac{d_{\infty}}{r}+D_{\infty}(r),\ D_{\infty}(r)\in L^{1}_{r>1}.\

Then if n3n\geq 3 or v0+λ0d0>0v_{0}+\lambda_{0}d_{0}>0, there exists a Hloc1(n)Wloc2,1+(n)H_{loc}^{1}(\mathbb{R}^{n})\cap W_{loc}^{2,1+}(\mathbb{R}^{n}) solution of (2.4) satisfying

(2.5) ϕλ0{rρ(v0+λ0d0),r1,rn1d2eλ0r,r1.\begin{split}\phi_{\lambda_{0}}\sim\begin{cases}r^{\rho(v_{0}+\lambda_{0}d_{0})},\ r\leq 1,\\ r^{-\frac{n-1-d_{\infty}}{2}}e^{\lambda_{0}r},\ r\geq 1.\end{cases}\end{split}

In addition, we have the same result for n=2n=2 with v0+λ0d0=0v_{0}+\lambda_{0}d_{0}=0, when r2(V+λ0D)r^{2}(V+\lambda_{0}D) is analytic near 0:

r2(V+λ0D)=j=1cjrj,0<r<δ.r^{2}(V+\lambda_{0}D)=\sum^{\infty}_{j=1}c_{j}r^{j}\ ,0<r<\delta\ .
Lemma 2.4.

Let V=V(r),D=D(r)C(n)Cδ(Bδ)V=V(r),D=D(r)\in C(\mathbb{R}^{n})\cap C^{\delta}(B_{\delta}) for some δ>0\delta>0. Suppose V0V\geq 0, Dλ0Vλ0D\geq-\lambda_{0}-\frac{V}{\lambda_{0}}, and also that for some dd_{\infty}\in\mathbb{R}, R>1R>1 and rRr\geq R, we have

V(r)L1([R,)),D(r)=dr+D(r),D(r)L1([R,)).V(r)\in L^{1}([R,\infty))\ ,\ D(r)=\frac{d_{\infty}}{r}+D_{\infty}(r),\ D_{\infty}(r)\in L^{1}([R,\infty))\ .

Then there exists a C2C^{2} solution of (2.4) satisfying

(2.6) ϕλ0rn1d2eλ0r.\phi_{\lambda_{0}}\simeq\langle r\rangle^{-\frac{n-1-d_{\infty}}{2}}e^{\lambda_{0}r}\ .

2.3. Eigenvalue problem with parameters

To handle the critical problem, we will need to construct a class of (unbounded) positive solutions for the eigenvalue problem, with certain uniform estimates for small parameters.

Lemma 2.5.

Let n2n\geq 2, β>1\beta>1, μ0\mu\geq 0. Suppose D(x)C(n)Cδ(Bδ)D(x)\in C(\mathbb{R}^{n})\cap C^{\delta}(B_{\delta}) for some δ>0\delta>0 and 0D(x)μ(1+|x|)β0\leq D(x)\leq\frac{\mu}{(1+|x|)^{\beta}}. Then there exists c1(0,1)c_{1}\in(0,1) such that for any 0<λ10<\lambda\leq 1, there is a C2C^{2} solution of

(2.7) ΔϕλλD(x)ϕλ=λ2ϕλ\Delta\phi_{\lambda}-\lambda D(x)\phi_{\lambda}=\lambda^{2}\phi_{\lambda}

satisfying

(2.8) c1λ|x|n12eλ|x|<ϕλ(x)<c11λ|x|n12eλ|x|.c_{1}\langle\lambda|x|\rangle^{-\frac{n-1}{2}}e^{\lambda|x|}<\phi_{\lambda}(x)<c_{1}^{-1}\langle\lambda|x|\rangle^{-\frac{n-1}{2}}e^{\lambda|x|}\ .

3. Proof of Lemmas 2.1-2.5

In this section, we present the proof of Lemmas 2.1-2.5. by applying elliptic and ODE theory.

3.1. Proof of Lemma 2.1

We will find a radial solution ϕ0(x)=ϕ0(|x|)=ϕ0(r)\phi_{0}(x)=\phi_{0}(|x|)=\phi_{0}(r).

At first, for the region 0<r10<r\leq 1, we observe that the equation in rr is of the Euler type:

Δϕ0=(r2+n1rr)ϕ0=Vϕ0,\Delta\phi_{0}=(\partial^{2}_{r}+\frac{n-1}{r}\partial_{r})\phi_{0}=V\phi_{0}\ ,

for which it is natural to introduce a new variable tt with r=etr=e^{-t}. Then f(t)=ϕ0(et)f(t)=\phi_{0}(e^{-t}) satisfies

t2f(n2)tf=(v0+etV0(et))f,t0.\partial^{2}_{t}f-(n-2)\partial_{t}f=(v_{0}+e^{-t}V_{0}(e^{-t}))f\ ,t\geq 0\ .

Let Y(t)=(Y1(t),Y2(t))TY(t)=(Y_{1}(t),Y_{2}(t))^{T} with Y1=fY_{1}=f, Y2=tfY_{2}=\partial_{t}f, then we have

Y=(A+B(t))Y,A=(01v0n2),B(t)=(00etV0(et)0).Y^{\prime}=(A+B(t))Y,A=\left(\begin{array}[]{cc}0&1\\ v_{0}&n-2\end{array}\right),B(t)=\left(\begin{array}[]{cc}0&0\\ e^{-t}V_{0}(e^{-t})&0\end{array}\right)\ .

As V0(r)Lr<11V_{0}(r)\in L^{1}_{r<1}, that is, BL1[0,)B\in L^{1}[0,\infty), we could apply the Levinson theorem (see, e.g., [1, Chapter 3, Theorem 8.1]) to the system. Then there exists t0[0,)t_{0}\in[0,\infty) so that we have two independent solutions, which have the asymptotic form as tt\to\infty

Y+(t)=(1+o(1)λ1+o(1))eλ1t,Y(t)=(1+o(1)λ2+o(1))eλ2t,Y_{+}(t)=\left(\begin{array}[]{c}1+o(1)\\ \lambda_{1}+o(1)\end{array}\right)e^{\lambda_{1}t}\ ,\ Y_{-}(t)=\left(\begin{array}[]{c}1+o(1)\\ \lambda_{2}+o(1)\end{array}\right)e^{\lambda_{2}t}\ ,

where λ1=(n22)2+v0+n22\lambda_{1}=\sqrt{(\frac{n-2}{2})^{2}+v_{0}}+\frac{n-2}{2}, λ2=(n22)2+v0+n22=ρ(v0)\lambda_{2}=-\sqrt{(\frac{n-2}{2})^{2}+v_{0}}+\frac{n-2}{2}=-\rho(v_{0}).

We choose Y(t)=Y(t)Y(t)=Y_{-}(t) so that

ϕ0(r)=f(lnr)=(1+o(1))rρ(v0)\phi_{0}(r)=f(-\ln r)=(1+o(1))r^{\rho(v_{0})}

as r0r\to 0. It is easy to check that ϕ0H1(Bδ)W2,1+(Bδ)\phi_{0}\in H^{1}(B_{\delta})\cap W^{2,1+}(B_{\delta}), and

rϕ0=r1tf|t=lnr=(ρ(v0)+o(1))rρ(v0)1\partial_{r}\phi_{0}=-r^{-1}\partial_{t}f|_{t=-\ln r}=(\rho(v_{0})+o(1))r^{\rho(v_{0})-1}

for r(0,1]r\in(0,1]. Based on the assumption n3n\geq 3 or v0>0v_{0}>0, we have ρ(v0)>0\rho(v_{0})>0 and so there exists δ0>0\delta_{0}>0 such that

(3.1) rϕ0rρ(v0)1,r(0,δ0).\partial_{r}\phi_{0}\simeq r^{\rho(v_{0})-1}\ ,r\in(0,\delta_{0})\ .

In addition, for the case n=2n=2 and v0=0v_{0}=0 when r2Vr^{2}V is analytic in (0,δ)(0,\delta), by applying the Frobenius method, there is an analytic solution

ϕ0=rλ1j=0+ajrj1,r<δ,\phi_{0}=r^{\lambda_{1}}\sum^{+\infty}_{j=0}a_{j}r^{j}\sim 1,\ r<\delta\ ,

with a0=1a_{0}=1, where λ1=ρ(v0)=0\lambda_{1}=\rho(v_{0})=0 is the root of λ2=0\lambda^{2}=0. If V0V\equiv 0 near 0, then ϕ0=1\phi_{0}=1. Otherwise, there exists k>0k>0 such that bj=0b_{j}=0 for all j<kj<k and bk>0b_{k}>0, in which we have aj=bj/j2a_{j}=b_{j}/j^{2} for any j[1,k]j\in[1,k]. Thus once again we have, for some δ0>0\delta_{0}>0,

rϕ0(bkk+o(1))rk1,r(0,δ0).\partial_{r}\phi_{0}\simeq(\frac{b_{k}}{k}+o(1))r^{k-1}\ ,r\in(0,\delta_{0})\ .

Similarly, for r>1r>1, let r=etr=e^{t}, then F(t)=ϕ0(et)F(t)=\phi_{0}(e^{t}) satisfies

t2F+(n2)tF=(v+etV(et))F,t0.\partial^{2}_{t}F+(n-2)\partial_{t}F=(v_{\infty}+e^{t}V_{\infty}(e^{t}))F\ ,t\geq 0\ .

Applying the Levinson theorem again, we know that there exists c1,c2c_{1},c_{2} such that

ϕ0(et)=c1(1+o(1))eρ(v)t+c2(1+o(1))e(ρ(v)(n2))t,\phi_{0}(e^{t})=c_{1}(1+o(1))e^{\rho(v_{\infty})t}+c_{2}(1+o(1))e^{(-\rho(v_{\infty})-(n-2))t},
tϕ0(et)=c1(ρ(v)+o(1))eρ(v)t+c2(2nρ(v)+o(1))e(ρ(v)(n2))t\partial_{t}\phi_{0}(e^{t})=c_{1}(\rho(v_{\infty})+o(1))e^{\rho(v_{\infty})t}+c_{2}(2-n-\rho(v_{\infty})+o(1))e^{(-\rho(v_{\infty})-(n-2))t}

as tt\to\infty. Notice that ρ(v)>0\rho(v_{\infty})>0, due to the assumption n3n\geq 3 or v>0v_{\infty}>0.

By the fundamental well-posed theory of linear ordinary differential equation, we know that ϕ0(r)C2(0,)\phi_{0}(r)\in C^{2}(0,\infty). We claim that rϕ0(r)0\partial_{r}\phi_{0}(r)\geq 0 for all r>0r>0. Actually, we have seen from (3.1) that ϕ0>0\phi_{0}>0 and rϕ00\partial_{r}\phi_{0}\geq 0 for r(0,δ0)r\in(0,\delta_{0}). Suppose, by contradiction, there exists a r2>δ0r_{2}>\delta_{0} such that ϕ0(r2)<0\phi^{\prime}_{0}(r_{2})<0 with ϕ0(r)0\phi_{0}(r)\geq 0 for any r(0,r2]r\in(0,r_{2}]. Then there is a r1<r2r_{1}<r_{2} such that rϕ0(r1)=0\partial_{r}\phi_{0}(r_{1})=0. Recall that

r(rn1rϕ0)=rn1Vϕ0.\partial_{r}(r^{n-1}\partial_{r}\phi_{0})=r^{n-1}V\phi_{0}\ .

By integrating it form r1r_{1} to r2r_{2}, we get

r2n1ϕ0(r2)=r1r2τn1Vϕ0(τ)𝑑τ0,r^{n-1}_{2}\phi^{\prime}_{0}(r_{2})=\int^{r_{2}}_{r_{1}}\tau^{n-1}V\phi_{0}(\tau)d\tau\geq 0\ ,

which is a contradiction. Hence we get c1>0c_{1}>0 and

ϕ0rρ(v),rϕ0rρ(v)1r1.\phi_{0}\sim r^{\rho(v_{\infty})},\partial_{r}\phi_{0}\sim r^{\rho(v_{\infty})-1}\ r\gg 1\ .

3.2. Proof of Lemma 2.2

Suppose VV is Hölder continuous in Bδ¯\overline{B_{\delta}} for some δ>0\delta>0. Then we consider the Dirichlet problem

(3.2) {Δϕ0=Vϕ0,xBδϕ0|Bδ=1\begin{cases}\Delta\phi_{0}=V\phi_{0},x\in B_{\delta}\\ \phi_{0}|_{\partial B_{\delta}}=1\end{cases}

By Gilbarg-Trudinger [6, Theorem 6.14], there exists a unique C2(Bδ¯)C^{2}(\overline{B_{\delta}}) solution, which must be radial. For r>0r>0, with ϕ0(x)=ϕ0(r)\phi_{0}(x)=\phi_{0}(r), (3.2) becomes an ordinary differential equation

(3.3) {ϕ0′′+n1rϕ0Vϕ0=0ϕ0(δ)=1,ϕ0(δ)=C\begin{cases}\phi^{\prime\prime}_{0}+\frac{n-1}{r}\phi^{\prime}_{0}-V\phi_{0}=0\\ \phi_{0}(\delta)=1,\phi^{\prime}_{0}(\delta)=C\end{cases}

Then by the theory of ordinary differential equation, there is a unique solution ϕ0(r)C2(0,)\phi_{0}(r)\in C^{2}(0,\infty), which agrees with ϕ0\phi_{0} in BδB_{\delta}. Thus we get a solution ϕ0(x)C2(n)\phi_{0}(x)\in C^{2}(\mathbb{R}^{n}) and we could apply strong maximum principle to get rϕ00\partial_{r}\phi_{0}\geq 0 for all r>0r>0 and ϕ0(0)>0\phi_{0}(0)>0.

Recall that

(3.4) r(rn1rϕ0)=rn1Vϕ0.\partial_{r}(r^{n-1}\partial_{r}\phi_{0})=r^{n-1}V\phi_{0}\ .

By integrating it from 0 to rr, we get

(3.5) rn1rϕ0=0rτn1Vϕ0𝑑τϕ00r(1+τ)n1β𝑑τ.r^{n-1}\partial_{r}\phi_{0}=\int^{r}_{0}\tau^{n-1}V\phi_{0}d\tau\ {\lesssim}\ \phi_{0}\int^{r}_{0}(1+\tau)^{n-1-\beta}d\tau\ .

Thus, as β>2\beta>2, if n3n\geq 3 and r1r\geq 1, we have

rϕ0ϕ0r1n0r(1+τ)n1β𝑑τϕ0r1δ,\partial_{r}\phi_{0}\ {\lesssim}\ \phi_{0}r^{1-n}\int^{r}_{0}(1+\tau)^{n-1-\beta}d\tau{\lesssim}\phi_{0}r^{-1-\delta}\ ,

for some δ>0\delta>0. By Gronwall’s inequality, we obtain ϕ0ϕ0(1)\phi_{0}{\lesssim}\phi_{0}(1), for all r1r\geq 1, which yields

ϕ01.\phi_{0}\simeq 1\ .

For n=2n=2, since VV is nontrivial, then there exists some R>0R>0 such that V0V\neq 0 when Rr2RR\leq r\leq 2R. By (3.4), we have

rrϕ0=Rrϕ0(R)+RrτVϕ0𝑑τϕ0(R)RR2RV(τ)𝑑τC,r2R,r\partial_{r}\phi_{0}=R\partial_{r}\phi_{0}(R)+\int^{r}_{R}\tau V\phi_{0}d\tau\ \geq\ \phi_{0}(R)R\int^{2R}_{R}V(\tau)d\tau\geq C\ ,\ r\geq 2R\ ,

hence we get

ϕ0(r)ϕ0(R)+RrCτ𝑑τClnrR+ϕ0(R)ln(2+r),r2R.\phi_{0}(r)\geq\phi_{0}(R)+\int^{r}_{R}\frac{C}{\tau}d\tau\geq C\ln\frac{r}{R}+\phi_{0}(R)\ {\gtrsim}\ \ln(2+r),\ r\geq 2R\ .

On the other hand, by (3.5), we have

rrϕ0=0rτVϕ0𝑑τϕ0(r)0(1+τ)1β𝑑τϕ0(r),r\partial_{r}\phi_{0}=\int^{r}_{0}\tau V\phi_{0}d\tau\ {\lesssim}\ \phi_{0}(r)\int^{\infty}_{0}(1+\tau)^{1-\beta}d\tau\ {\lesssim}\ \phi_{0}(r)\ ,

which gives us

(3.6) ϕ0 1+r,r0.\phi_{0}\ {\lesssim}\ 1+r\ ,\forall\ r\geq 0\ .

By inserting (3.6) into (3.5), we have for any δ1(0,β/21)\delta_{1}\in(0,\beta/2-1) and r1r\geq 1

(3.7) rϕ0{r1,β>3,r2β+δ1,2<β3.\partial_{r}\phi_{0}{\lesssim}\left\{\begin{array}[]{ll}r^{-1},&\beta>3,\\ r^{2-\beta+\delta_{1}},&\ 2<\beta\leq 3\ .\end{array}\right.

Then it easy to obtain the desired upper bound ln(2+r)\ln(2+r) for β>3\beta>3, while for β3\beta\leq 3, we get ϕ0(r)(1+r)3β+δ1\phi_{0}(r){\lesssim}(1+r)^{3-\beta+\delta_{1}} for any r0r\geq 0 which is better than (3.6).

Thus, to obtain the expected upper bound, we do the iteration, by inserting the improved upper bound ϕ0(r)(1+r)3β+δ1=(1+r)k\phi_{0}(r){\lesssim}(1+r)^{3-\beta+\delta_{1}}=(1+r)^{k} into (3.5) to get, for r>1r>1,

rϕ0{r1,k+2<βrk+1β+δ2,k+2β,ϕ0{ln(2+r),k+2<β(1+r)k+2β+δ2,k+2β,\partial_{r}\phi_{0}{\lesssim}\begin{cases}r^{-1},\ k+2<\beta\\ r^{k+1-\beta+\delta_{2}},\ k+2\geq\beta,\end{cases}\phi_{0}{\lesssim}\begin{cases}\ln(2+r),\ k+2<\beta\\ (1+r)^{k+2-\beta+\delta_{2}},\ k+2\geq\beta\ ,\end{cases}

for any δ2(0,β/21)\delta_{2}\in(0,\beta/2-1). For k+2βk+2\geq\beta, we can get the improved upper bound. By repeating (finitely) steps, we can finally obtain

ϕ0(r)ln(2+r),r0.\phi_{0}(r){\lesssim}\ln(2+r)\ ,\forall\ r\geq 0\ .

3.3. Proof of Lemma 2.3

To start with, we record a lemma from Liu-Wang [23] which we will use later.

Lemma 3.1 (Lemma 3.1 in [23]).

Let λ(0,λ0]\lambda\in(0,\lambda_{0}], δ0(0,1)\delta_{0}\in(0,1), ϵ>0\epsilon>0, y0>0y_{0}>0, K(δ0,δ01)K\in(\delta_{0},\delta_{0}^{-1}),

(3.8) KL1([ϵλ01,))δ01,GL1([ϵλ1,))δ01λ,λ(0,λ0].\|K^{\prime}\|_{L^{1}([\epsilon\lambda_{0}^{-1},\infty))}\leq\delta_{0}^{-1},\|G\|_{L^{1}([\epsilon\lambda^{-1},\infty))}\leq\delta_{0}^{-1}\lambda,\forall\lambda\in(0,\lambda_{0}]\ .

Considering

(3.9) {y′′λ2K2(r)y+G(r)y=0,r>ϵλ1y(ϵλ1)=y0,y(ϵλ1)=y1(0,δ01λy0)\begin{cases}y^{\prime\prime}-\lambda^{2}K^{2}(r)y+G(r)y=0,r>\epsilon\lambda^{-1}\\ y(\epsilon\lambda^{-1})=y_{0},y^{\prime}(\epsilon\lambda^{-1})=y_{1}\in(0,\delta_{0}^{-1}\lambda y_{0})\end{cases}

Then for any solution yy with y,y>0y,y^{\prime}>0, we have the following uniform estimates, independent of λ(0,λ0]\lambda\in(0,\lambda_{0}],

(3.10) yy0eλϵ/λrK(τ)𝑑τ,rϵλ1.y\simeq y_{0}e^{\lambda\int^{r}_{\epsilon/\lambda}K(\tau)d\tau}\ ,\ r\geq\epsilon\lambda^{-1}\ .

Assume in addition 1λ2K2G(δ0,δ01)1-\lambda^{-2}K^{-2}G\in(\delta_{0},\delta_{0}^{-1}), then the solution yy to (3.9) satisfies y,y>0y,y^{\prime}>0 and we have

(3.11) yy1+y0λ(eλϵ/λrK(τ)𝑑τ1).y^{\prime}\simeq y_{1}+y_{0}\lambda(e^{\lambda\int^{r}_{\epsilon/\lambda}K(\tau)d\tau}-1)\ .
Proof of Lemma 2.3.

For rδr\leq\delta, by the similar proof of Lemma 2.1, there is a solution ϕλ0\phi_{\lambda_{0}} satisfying

ϕλ0rρ(v0+λ0d0),ϕλ0H1(Bδ)W2,1+(Bδ),rϕλ00.\phi_{\lambda_{0}}\sim r^{\rho(v_{0}+\lambda_{0}d_{0})}\ ,\phi_{\lambda_{0}}\in H^{1}(B_{\delta})\cap W^{2,1+}(B_{\delta}),\partial_{r}\phi_{\lambda_{0}}\geq 0\ .

When rδr\geq\delta, with ϕλ0(x)=ϕλ0(r)\phi_{\lambda_{0}}(x)=\phi_{\lambda_{0}}(r), we need only to consider the following ordinary differential equation

(3.12) ϕλ0′′+n1rϕλ0=(λ02+λ0D+V)ϕλ0,ϕλ0(δ)=C1>0,rϕλ0(δ)=C20.\phi^{\prime\prime}_{\lambda_{0}}+\frac{n-1}{r}\phi^{\prime}_{\lambda_{0}}=(\lambda_{0}^{2}+\lambda_{0}D+V)\phi_{\lambda_{0}}\ ,\phi_{\lambda_{0}}(\delta)=C_{1}>0,\ \partial_{r}\phi_{\lambda_{0}}(\delta)=C_{2}\geq 0\ .

Then, as in the proof of Lemma 2.1, there is a unique solution ϕλ0(r)C2(0,)\phi_{\lambda_{0}}(r)\in C^{2}(0,\infty) and rϕλ0(r)0\partial_{r}\phi_{\lambda_{0}}(r)\geq 0 for all r>0r>0.

For rRr\geq R, we shall consider (3.12) with ϕλ0(R)>0\phi_{\lambda_{0}}(R)>0 and ϕλ0(R)0\phi^{\prime}_{\lambda_{0}}(R)\geq 0. Let y=rn12ϕλ0y=r^{\frac{n-1}{2}}\phi_{\lambda_{0}}, then the new function yy satisfies

(3.13) {y′′(λ02+drλ0)y((n1)(n3)4r2+V+λ0D)y=0y(R)=Rn12ϕλ0(R),y(R)n12Rn32ϕλ0(R)>0\begin{cases}y^{\prime\prime}-(\lambda_{0}^{2}+\frac{d_{\infty}}{r}\lambda_{0})y-(\frac{(n-1)(n-3)}{4r^{2}}+V+\lambda_{0}D_{\infty})y=0\\ y(R)=R^{\frac{n-1}{2}}\phi_{\lambda_{0}}(R),y^{\prime}(R)\geq\frac{n-1}{2}R^{\frac{n-3}{2}}\phi_{\lambda_{0}}(R)>0\end{cases}

Thus by Lemma 3.1, we have

yeRr(λ02+λ0dτ)𝑑τrd2eλ0r,rR,y\simeq e^{\int^{r}_{R}(\sqrt{\lambda_{0}^{2}+\lambda_{0}\frac{d_{\infty}}{\tau}})d\tau}\simeq r^{\frac{d_{\infty}}{2}}e^{\lambda_{0}r},r\geq R\ ,

which yields

ϕλ0rn1d2eλ0r,rR.\phi_{\lambda_{0}}\simeq r^{-\frac{n-1-d_{\infty}}{2}}e^{\lambda_{0}r},r\geq R\ .

3.4. Proof of Lemma 2.4

Suppose λ02+V+λ0D\lambda_{0}^{2}+V+\lambda_{0}D is Hölder continuous in Bδ¯\overline{B_{\delta}} for some δ>0\delta>0. Then we consider the Dirichlet problem

(3.14) {Δϕλ0=(λ02+λ0D+V)ϕλ0,xBδϕλ0|Bδ=1.\begin{cases}\Delta\phi_{\lambda_{0}}=(\lambda_{0}^{2}+\lambda_{0}D+V)\phi_{\lambda_{0}},x\in B_{\delta}\\ \phi_{\lambda_{0}}|_{\partial B_{\delta}}=1.\end{cases}

By Theorem 6.14 in Gilbarg-Trudinger [6], there exists a unique C2(Bδ¯)C^{2}(\overline{B_{\delta}}) solution. Hence we could apply maximum principle to get 0<ϕλ010<\phi_{\lambda_{0}}\leq 1 in BδB_{\delta} and rϕλ00\partial_{r}\phi_{\lambda_{0}}\geq 0 for all 0<rδ0<r\leq\delta. When rδr\geq\delta, with ϕλ0(x)=ϕλ0(r)\phi_{\lambda_{0}}(x)=\phi_{\lambda_{0}}(r), (3.14) becomes an ordinary differential equation

(3.15) {ϕλ0′′+n1rϕλ0(λ02+λ0D+V)ϕλ0=0ϕλ0(δ)=1,ϕλ0(δ)=C20.\begin{cases}\phi^{\prime\prime}_{\lambda_{0}}+\frac{n-1}{r}\phi^{\prime}_{\lambda_{0}}-(\lambda_{0}^{2}+\lambda_{0}D+V)\phi_{\lambda_{0}}=0\\ \phi_{\lambda_{0}}(\delta)=1,\phi^{\prime}_{\lambda_{0}}(\delta)=C_{2}\geq 0.\end{cases}

Then ϕλ0C2(n)\phi_{\lambda_{0}}\in C^{2}(\mathbb{R}^{n}) and we could apply strong maximum principle again to get rϕλ00\partial_{r}\phi_{\lambda_{0}}\geq 0 for all r>0r>0.

Furthermore, for rRr\geq R, we consider (3.15) from r=Rr=R, then we have ϕλ0(R)>0,ϕλ0(R)0\phi_{\lambda_{0}}(R)>0,\phi^{\prime}_{\lambda_{0}}(R)\geq 0. By the same argument as in the proof of Lemma 2.3, we get

ϕλ0rn1d2eλ0r,rR,\phi_{\lambda_{0}}\simeq r^{-\frac{n-1-d_{\infty}}{2}}e^{\lambda_{0}r},r\geq R\ ,

which completes the proof.

3.5. Proof of Lemma 2.5

We first show that (2.7) admits a C2(n)C^{2}(\mathbb{R}^{n}) solution. For rλ1r\leq\lambda^{-1}, we consider the Dirichlet problem within Bλ1B_{\lambda^{-1}}

(3.16) {ΔϕλλD(x)ϕλ=λ2ϕλ,xBλ1ϕλ|Bλ1=1.\begin{cases}\Delta\phi_{\lambda}-\lambda D(x)\phi_{\lambda}=\lambda^{2}\phi_{\lambda},x\in B_{\lambda^{-1}}\\ \phi_{\lambda}|_{\partial B_{\lambda^{-1}}}=1\ .\end{cases}

By Theorem 6.14 in Gilbarg-Trudinger [6], there exists a unique (and hence radial) C2(Bλ1)C^{2}(B_{\lambda^{-1}}) solution. For r>0r>0, the equation is reduced (2.7) to a second order ordinary differential equation

ϕλ′′+n1rϕλλD(r)ϕλ=λ2ϕλ,\phi^{\prime\prime}_{\lambda}+\frac{n-1}{r}\phi^{\prime}_{\lambda}-\lambda D(r)\phi_{\lambda}=\lambda^{2}\phi_{\lambda}\ ,

which ensures that ϕλC2(n)\phi_{\lambda}\in C^{2}(\mathbb{R}^{n}). To obtain (2.8), we need to divide n\mathbb{R}^{n} into two parts: B1/λB_{1/\lambda} and n\B1/λ\mathbb{R}^{n}\backslash B_{1/\lambda}.

(I) Inside the ball B1/λB_{1/\lambda}

Considering the Dirichlet problem (3.16) within B1/λB_{1/\lambda}, it is easy to see that 0<ϕλ10<\phi_{\lambda}\leq 1 in B1/λB_{1/\lambda}. In fact, if there exists x0B1/λx_{0}\in B_{1/\lambda} such that ϕλ(x0)0\phi_{\lambda}(x_{0})\leq 0, then by strong maximum principle, we get ϕλ\phi_{\lambda} is constant within B1/λB_{1/\lambda}, which is a contradiction. By Hopf’s lemma, we have rϕλ>0\partial_{r}\phi_{\lambda}>0 for 0<r1/λ0<r\leq 1/\lambda.

To get the uniform lower bound of ϕλ\phi_{\lambda}, we define rescaled function fλ(x)=ϕλ(x/λ)f_{\lambda}(x)=\phi_{\lambda}(x/\lambda), which satisfies

{Δfλ1λD(rλ)fλ=fλ,xB1fλ|B1=1.\displaystyle\begin{cases}\Delta f_{\lambda}-\frac{1}{\lambda}D(\frac{r}{\lambda})f_{\lambda}=f_{\lambda},x\in B_{1}\\ f_{\lambda}|_{\partial B_{1}}=1\ .\end{cases}

Since fλf_{\lambda} is radial increasing, we know that

lim inf0<λ1infxB1fλ=lim inf0<λ1fλ(0):=C0.\liminf_{0<\lambda\leq 1}\inf_{x\in B_{1}}f_{\lambda}=\liminf_{0<\lambda\leq 1}f_{\lambda}(0):=C\geq 0\ .

To complete the proof, we need only to prove C>0C>0. By definition, there exists a sequence λj0\lambda_{j}\to 0 such that fλj(0)Cf_{\lambda_{j}}(0)\to C as jj\to\infty.

(i) Derivative estimates of fλf_{\lambda}.

As fλf_{\lambda} is radial, we have

Δfλ=r1nr(rn1rfλ),\Delta f_{\lambda}=r^{1-n}\partial_{r}(r^{n-1}\partial_{r}f_{\lambda})\ ,

and so

(3.17) r(rn1rfλ)=(1λD(rλ)+1)rn1fλ.\partial_{r}(r^{n-1}\partial_{r}f_{\lambda})=\Big{(}\frac{1}{\lambda}D(\frac{r}{\lambda})+1\Big{)}r^{n-1}f_{\lambda}.

Recall that fλ(0,1]f_{\lambda}\in(0,1] and D(r)μ(1+|x|)βD(r)\leq\frac{\mu}{(1+|x|)^{\beta}}, by integrating it from 0 to rr, we get

rn1rfλ=\displaystyle r^{n-1}\partial_{r}f_{\lambda}= 0r(1λD(τλ)+1)τn1fλ𝑑τ\displaystyle\int_{0}^{r}\Big{(}\frac{1}{\lambda}D(\frac{\tau}{\lambda})+1\Big{)}\tau^{n-1}f_{\lambda}d\tau
\displaystyle\leq 0r(μλβ1(λ+τ)β+1)τn1fλ𝑑τ\displaystyle\int_{0}^{r}\Big{(}\frac{\mu\lambda^{\beta-1}}{(\lambda+\tau)^{\beta}}+1\Big{)}\tau^{n-1}f_{\lambda}d\tau
\displaystyle\leq 0r(μτ+1)τn1𝑑τ\displaystyle\int_{0}^{r}\Big{(}\frac{\mu}{\tau}+1\Big{)}\tau^{n-1}d\tau
\displaystyle\leq μn1rn1+rnn,\displaystyle\frac{\mu}{n-1}r^{n-1}+\frac{r^{n}}{n}\ ,

that is,

(3.18) rfλμn1+rn.\partial_{r}f_{\lambda}\leq\frac{\mu}{n-1}+\frac{r}{n}\ .

(ii) Convergence of fλf_{\lambda}.

Since fλH1(B1)\|f_{\lambda}\|_{H^{1}(B_{1})} are uniformly bounded, there exists a subsequence of λj\lambda_{j} (for simplicity we still denote the subsequence as λj\lambda_{j}) such that fλjf_{\lambda_{j}} converges weakly to some ff in H1(B1)H^{1}(B_{1}) as jj goes to infinity. Moreover, by the Arzela-Ascoli theorem, fλjf_{\lambda_{j}} converges uniformly to ff in C(B¯1)C(\bar{B}_{1}) as jj goes to infinity, thus f=1f=1 on B1\partial B_{1} and f(0)=Cf(0)=C.

In view of the equations satisfied by fλjf_{\lambda_{j}}, we see that, for any ϕCc(B1)\phi\in C^{\infty}_{c}(B_{1}), we have

(3.19) B1fλjϕ+fλjϕ+1λjD(rλj)fλjϕdx=0.\int_{B_{1}}\nabla f_{\lambda_{j}}\nabla\phi+f_{\lambda_{j}}\phi+\frac{1}{\lambda_{j}}D\big{(}\frac{r}{\lambda_{j}}\big{)}f_{\lambda_{j}}\phi dx=0\ .

Let gλj=1λjD(rλj)fλjϕg_{\lambda_{j}}=\frac{1}{\lambda_{j}}D(\frac{r}{\lambda_{j}})f_{\lambda_{j}}\phi, then it is easy to see

|gλj||ϕ|μλjβ1(λj+|x|)β0,xB1\{0},|g_{\lambda_{j}}|\leq|\phi|\frac{\mu\lambda_{j}^{\beta-1}}{(\lambda_{j}+|x|)^{\beta}}\to 0,\ \forall x\in B_{1}\backslash\{0\}\ ,

as λj0\lambda_{j}\to 0. Notice that

|gλj|μ|ϕ|λj+|x|μϕL|x|L1(B1),|g_{\lambda_{j}}|\leq\ \frac{\mu|\phi|}{\lambda_{j}+|x|}\ \leq\ \frac{\mu\|\phi\|_{L^{\infty}}}{|x|}\in L^{1}(B_{1})\ ,

by dominated convergence theorem, we have

limλj0B1gλj𝑑x=0.\lim_{\lambda_{j}\to 0}\int_{B_{1}}g_{\lambda_{j}}dx=0\ .

Thus let λj0\lambda_{j}\to 0 in (3.19), we get

(3.20) B1(fϕ+fϕ)𝑑x=0,\int_{B_{1}}(\nabla f\cdot\nabla\phi+f\phi)dx=0\ ,

for any ϕCc(B1)\phi\in C^{\infty}_{c}(B_{1}). This tells us that fH1(B1)f\in H^{1}(B_{1}) is a weak solution to the Poisson equation

{Δf=f,xB1,f|B1=1,f(0)=C.\displaystyle\begin{cases}\Delta f=f,x\in B_{1},\\ f|_{\partial B_{1}}=1\ ,f(0)=C\ .\end{cases}

By regularity and strong maximum principle, we know that fC(B1)f\in C^{\infty}(B_{1}) and f(0)=C>0f(0)=C>0, which completes the proof of the claim C>0C>0.

(II) Outside the ball B1/λB_{1/\lambda}

Inspired by Lemma 3.1, we try to reduce (2.7) to a second order ordinary differential equation by finding a radially symmetric solution when r1/λr\geq 1/\lambda. Before proceeding, we need to estimate the derivative of ϕλ\phi_{\lambda}. Recall that fλ(r)=ϕλ(rλ)f_{\lambda}(r)=\phi_{\lambda}(\frac{r}{\lambda}), then by (3.18), we have

(rϕλ)(λ1)=λrfλ(1)(μn1+1n)λ=C1λ.(\partial_{r}\phi_{\lambda})(\lambda^{-1})=\lambda\partial_{r}f_{\lambda}(1)\leq\left(\frac{\mu}{n-1}+\frac{1}{n}\right)\lambda=C_{1}\lambda\ .

We consider the second order ordinary differential equation

(3.21) {ϕλ′′+n1rϕλλD(r)ϕλ=λ2ϕλϕλ(1λ)=1,ϕλ(1λ)(0,C1λ].\begin{cases}\phi^{\prime\prime}_{\lambda}+\frac{n-1}{r}\phi^{\prime}_{\lambda}-\lambda D(r)\phi_{\lambda}=\lambda^{2}\phi_{\lambda}\\ \phi_{\lambda}(\frac{1}{\lambda})=1,\phi^{\prime}_{\lambda}(\frac{1}{\lambda})\in(0,C_{1}\lambda]\ .\end{cases}

Let ϕλ(r)=rn12y(r)\phi_{\lambda}(r)=r^{-\frac{n-1}{2}}y(r), then yy satisfies

(3.22) y′′λ2y((n1)(n3)4r2+λD(r))y=0y^{\prime\prime}-\lambda^{2}y-\Big{(}\frac{(n-1)(n-3)}{4r^{2}}+\lambda D(r)\Big{)}y=0

with initial data

y(λ1)=λn12,y(λ1)=n12λn32+λn12ϕλ(λ1)(0,C2λy(λ1)],y(\lambda^{-1})=\lambda^{-\frac{n-1}{2}},y^{\prime}(\lambda^{-1})=\frac{n-1}{2}\lambda^{-\frac{n-3}{2}}+\lambda^{-\frac{n-1}{2}}\phi_{\lambda}^{\prime}(\lambda^{-1})\in(0,C_{2}\lambda y(\lambda^{-1})]\ ,

where C2=n12+C1C_{2}=\frac{n-1}{2}+C_{1}. Thus by Lemma 3.1 with K=1,ϵ=1,λ0=1K=1,\epsilon=1,\lambda_{0}=1, we have

yλn12eλr,rλ1,y\simeq\lambda^{-\frac{n-1}{2}}e^{\lambda r},r\lambda\geq 1\ ,

which yields

ϕλ(x)(λ|x|)n12eλ|x|,λ|x|1.\phi_{\lambda}(x)\simeq(\lambda|x|)^{-\frac{n-1}{2}}e^{\lambda|x|},\lambda|x|\geq 1\ .

Combining (I), (II), we conclude that there exist uniform c1(0,1)c_{1}\in(0,1) and solutions ϕλ\phi_{\lambda} of (2.7) with λ(0,1]\lambda\in(0,1] satisfying the uniform estimates (2.8).

4. Proof of Theorem 1.5

In this section, we prove Theorem 1.5.

4.1. Test function method

Equipped with the test functions, we could construct two kinds of radial solutions to the linear dual problem

(t2ΔDt+V)Φ=0,(\partial_{t}^{2}-\Delta-D\partial_{t}+V)\Phi=0\ ,

that is,

Φ0(t,x)=ϕ0(x),Φλ(t,x)=eλtϕλ(x).\Phi_{0}(t,x)=\phi_{0}(x),\ \Phi_{\lambda}(t,x)=e^{-\lambda t}\phi_{\lambda}(x)\ .

In addition to these solutions, we will also introduce a smooth cut-off function. Let η(t)C([0,))\eta(t)\in C^{\infty}([0,\infty)) such that

η(t)=1,t12,η(t)=0,t1.\eta(t)=1,t\leq\frac{1}{2}\ ,\ \ \eta(t)=0,t\geq 1\ .

Then for T(2,Tε)T\in(2,T_{\varepsilon}), we set ηT(t)=η(t/T)\eta_{T}(t)=\eta(t/T).

Let Ψλ=ηT2p(t)Φλ(t,x)\Psi_{\lambda}=\eta_{T}^{2p^{\prime}}(t)\Phi_{\lambda}(t,x), where ΦλC2([0,T]×(n\{0}))Ct0Hloc1Ct1Lloc2)([0,T]×n)\Phi_{\lambda}\in C^{2}([0,T]\times(\mathbb{R}^{n}\backslash\{0\}))\cap C^{0}_{t}H_{loc}^{1}\cap C^{1}_{t}L_{loc}^{2})([0,T]\times\mathbb{R}^{n}). Then by the definition of energy solution (1.6), we have

0Tn|u|pΨλ𝑑x𝑑tn(ut(t,x)+D(x)u(t,x))Ψλ(t,x)𝑑x|t=0T\displaystyle\int_{0}^{T}\int_{\mathbb{R}^{n}}|u|^{p}\Psi_{\lambda}dxdt-\left.\int_{\mathbb{R}^{n}}(u_{t}(t,x)+D(x)u(t,x))\Psi_{\lambda}(t,x)dx\right|_{t=0}^{T}
=\displaystyle= 0Tnut(t,x)tΨλ(t,x)dxdt+0Tnu(t,x)Ψλ(t,x)𝑑x𝑑t\displaystyle-\int_{0}^{T}\int_{\mathbb{R}^{n}}u_{t}(t,x)\partial_{t}\Psi_{\lambda}(t,x)dxdt+\int_{0}^{T}\int_{\mathbb{R}^{n}}\nabla u(t,x)\cdot\nabla\Psi_{\lambda}(t,x)dxdt
0TnD(x)u(t,x)tΨλ(t,x)dxdt+0TnV(x)u(t,x)Ψλ(t,x)𝑑x𝑑t\displaystyle-\int_{0}^{T}\int_{\mathbb{R}^{n}}D(x)u(t,x)\partial_{t}\Psi_{\lambda}(t,x)dxdt+\int_{0}^{T}\int_{\mathbb{R}^{n}}V(x)u(t,x)\Psi_{\lambda}(t,x)dxdt
=\displaystyle= nu(t,x)tΨλ(t,x)dx|t=0T+0TBt+Ru(t2ΔDt+V)Ψλ𝑑x𝑑t,\displaystyle-\int_{\mathbb{R}^{n}}u(t,x)\partial_{t}\Psi_{\lambda}(t,x)dx|_{t=0}^{T}+\int_{0}^{T}\int_{B_{t+R}}u(\partial_{t}^{2}-\Delta-D\partial_{t}+V)\Psi_{\lambda}dxdt\ ,

where all of the integration by parts and integrals could be justified by the properties of Φλ\Phi_{\lambda} and the support assumption suppu(t,)Bt+R\,\mathop{\!\mathrm{supp}}u(t,\cdot)\subset B_{t+R}.

Noticing that

Ψλ(T)=tΨλ(T)=0,tΨλ=λΨλ+t(ηT2p)Φλ,\Psi_{\lambda}(T)=\partial_{t}\Psi_{\lambda}(T)=0,\partial_{t}\Psi_{\lambda}=-\lambda\Psi_{\lambda}+\partial_{t}(\eta_{T}^{2p^{\prime}})\Phi_{\lambda}\ ,
tηT2p=2pTηT2p1η(tT)=𝒪(ηT2p1Tχ[T2,T](t)),\displaystyle\partial_{t}\eta_{T}^{2p^{\prime}}=\frac{2p^{\prime}}{T}\eta_{T}^{2p^{\prime}-1}\eta^{\prime}(\frac{t}{T})=\mathcal{O}(\frac{\eta_{T}^{2p^{\prime}-1}}{T}\chi_{[\frac{T}{2},T]}(t)),
t2ηT2p=2p(2p1)T2ηT2p2|η|2+2pT2ηT2p1η′′=𝒪(ηT2(p1)T2χ[T2,T](t)).\displaystyle\partial_{t}^{2}\eta_{T}^{2p^{\prime}}=\frac{2p^{\prime}(2p^{\prime}-1)}{T^{2}}\eta_{T}^{2p^{\prime}-2}|\eta^{\prime}|^{2}+\frac{2p^{\prime}}{T^{2}}\eta_{T}^{2p^{\prime}-1}\eta^{\prime\prime}=\mathcal{O}(\frac{{\eta_{T}^{2(p^{\prime}-1)}}}{T^{2}}\chi_{[\frac{T}{2},T]}(t))\ .

The integral identity could be reorganized into the following form:

(4.1) 0Tn|u|pΨλ𝑑x𝑑t+εn(g(x)+(λ+D(x))f(x))Φλ(x)𝑑x\displaystyle\int_{0}^{T}\int_{\mathbb{R}^{n}}|u|^{p}\Psi_{\lambda}dxdt+\varepsilon\int_{\mathbb{R}^{n}}(g(x)+(\lambda+D(x))f(x))\Phi_{\lambda}(x)dx
=\displaystyle= 0TBt+Ru(t2ΔDt+V)Ψλ𝑑x𝑑t\displaystyle\int_{0}^{T}\int_{B_{t+R}}u(\partial_{t}^{2}-\Delta-D\partial_{t}+V)\Psi_{\lambda}dxdt
=\displaystyle= 0TBt+Ru(t2(ηT2p)+2t(ηT2p)tDt(ηT2p))Φλ𝑑x𝑑t\displaystyle\int_{0}^{T}\int_{B_{t+R}}u(\partial_{t}^{2}(\eta_{T}^{2p^{\prime}})+2\partial_{t}(\eta_{T}^{2p^{\prime}})\partial_{t}-D\partial_{t}(\eta_{T}^{2p^{\prime}}))\Phi_{\lambda}dxdt
=\displaystyle= 0TBt+Ru(t2(ηT2p)2λt(ηT2p)Dt(ηT2p))Φλ𝑑x𝑑t\displaystyle\int_{0}^{T}\int_{B_{t+R}}u(\partial_{t}^{2}(\eta_{T}^{2p^{\prime}})-2\lambda\partial_{t}(\eta_{T}^{2p^{\prime}})-D\partial_{t}(\eta_{T}^{2p^{\prime}}))\Phi_{\lambda}dxdt
\displaystyle\leq CT/2TBt+R|u|ηT2(p1)(T2+(2λ+|D|)T1)Φλ𝑑x𝑑t.\displaystyle C\int_{T/2}^{T}\int_{B_{t+R}}|u|\eta_{T}^{2(p^{\prime}-1)}(T^{-2}+(2\lambda+|D|)T^{-1})\Phi_{\lambda}dxdt\ .

Basically, the test function method is to construct specific test function, so that we could try to use the integral inequality to control the right hand side by the left hand side, which gives the lifespan estimates.

Before proceeding, let us present the following technical Lemma.

Lemma 4.1.

Let β>0\beta>0, α,γ\alpha,\ \gamma\in\mathbb{R} and R>0R>0, there exists a constant CC, independent of t>2t>2, so that

(4.2) 0t+R(1+r)αlnγ(1+r)eβ(tr)𝑑rC(t+R)αlnγ(t+R).\displaystyle\int_{0}^{t+R}(1+r)^{\alpha}\ln^{\gamma}(1+r)e^{-\beta(t-r)}dr\leq C(t+R)^{\alpha}\ln^{\gamma}(t+R).

Proof. We split the proof into two parts. First it is easy to see

t+R2t+R(1+r)αlnγ(1+r)eβ(tr)𝑑r\displaystyle\int_{\frac{t+R}{2}}^{t+R}(1+r)^{\alpha}\ln^{\gamma}(1+r)e^{-\beta(t-r)}dr \displaystyle\leq Ceβt(t+R)αlnγ(t+R)t+R2t+Reβr𝑑r\displaystyle Ce^{-\beta t}(t+R)^{\alpha}\ln^{\gamma}(t+R)\int_{\frac{t+R}{2}}^{t+R}e^{\beta r}dr
\displaystyle\leq C(t+R)αlnγ(t+R).\displaystyle C(t+R)^{\alpha}\ln^{\gamma}(t+R).

For the remaining case, we have

0t+R2(1+r)αlnγ(1+r)eβ(tr)𝑑r\displaystyle\int_{0}^{\frac{t+R}{2}}(1+r)^{\alpha}\ln^{\gamma}(1+r)e^{-\beta(t-r)}dr \displaystyle\leq Ceβt20t+R2(1+r)|α|+1𝑑r\displaystyle Ce^{-\frac{\beta t}{2}}\int_{0}^{\frac{t+R}{2}}(1+r)^{|\alpha|+1}dr
\displaystyle\leq Ceβt2(t+R)|α|+2\displaystyle Ce^{-\frac{\beta t}{2}}(t+R)^{|\alpha|+2}
\displaystyle\leq C(t+R)αlnγ(t+R),\displaystyle C(t+R)^{\alpha}\ln^{\gamma}(t+R)\ ,

which completes the proof.  

4.2. First choice of the test function Φ0(t,x)\Phi_{0}(t,x) with λ=0\lambda=0

Let λ=0\lambda=0, we have ϕ0\phi_{0} ensured by Lemma 2.1. With help of Φ0=ϕ0\Phi_{0}=\phi_{0}, the inequality (4.1) reads as follows

C1(f,g)ε+0Tn|u|pηT2pϕ0𝑑x𝑑t\displaystyle C_{1}(f,g)\varepsilon+\int_{0}^{T}\int_{\mathbb{R}^{n}}|u|^{p}\eta_{T}^{2p^{\prime}}\phi_{0}dxdt
\displaystyle\leq C0Tn|u|ηT2(p1)(T2+|D|T1)ϕ0𝑑x𝑑t\displaystyle C\int_{0}^{T}\int_{\mathbb{R}^{n}}|u|\eta_{T}^{2(p^{\prime}-1)}(T^{-2}+|D|T^{-1})\phi_{0}dxdt
\displaystyle\leq 120Tn|u|pηT2pϕ0𝑑x𝑑t+CT/2TBt+R(T2+|D|T1)pϕ0𝑑x𝑑t,\displaystyle\frac{1}{2}\int_{0}^{T}\int_{\mathbb{R}^{n}}|u|^{p}\eta_{T}^{2p^{\prime}}\phi_{0}dxdt+C\int_{T/2}^{T}\int_{B_{t+R}}(T^{-2}+|D|T^{-1})^{p^{\prime}}\phi_{0}dxdt\ ,

where C1(f,g)=n(g(x)+D(x)f(x))𝑑xC_{1}(f,g)=\int_{\mathbb{R}^{n}}(g(x)+D(x)f(x))dx and we have used the Hölder and Young’s inequality in last inequality. In conclusion,

(4.3) C1(f,g)ε+0Tn|u|pηT2pϕ0𝑑x𝑑tCT/2TBt+R(T2+|D|T1)pϕ0𝑑x𝑑t=F0,C_{1}(f,g)\varepsilon+\int_{0}^{T}\int_{\mathbb{R}^{n}}|u|^{p}\eta_{T}^{2p^{\prime}}\phi_{0}dxdt\leq C\int_{T/2}^{T}\int_{B_{t+R}}(T^{-2}+|D|T^{-1})^{p^{\prime}}\phi_{0}dxdt=F_{0}\ ,

Concerning the right hand side of (4.3), by our assumption D=𝒪(rθ2)D=\mathcal{O}(r^{\theta-2}) locally, D=𝒪(r1)D=\mathcal{O}(r^{-1}) near spatial infinity, and Lemma 2.1, we see that F0F_{0} could be controlled by

TpT/2T01(T1+rθ2)prρ(v0)+n1𝑑r𝑑t\displaystyle T^{-p^{\prime}}\int_{T/2}^{T}\int_{0}^{1}(T^{-1}+r^{\theta-2})^{p^{\prime}}r^{\rho(v_{0})+n-1}drdt
+TpT/2T1t+R(T1+r1)prρ(v)+n1𝑑r𝑑t\displaystyle+T^{-p^{\prime}}\int_{T/2}^{T}\int_{1}^{t+R}(T^{-1}+r^{-1})^{p^{\prime}}r^{\rho(v_{\infty})+n-1}drdt
\displaystyle{\lesssim} T2p(T+Tρ(v)+n+1)+T1p+T1p1T+Rrp+ρ(v)+n1𝑑r\displaystyle T^{-2p^{\prime}}\left(T+T^{\rho(v_{\infty})+n+1}\right)+T^{1-p^{\prime}}+T^{1-p^{\prime}}\int_{1}^{T+R}r^{-p^{\prime}+\rho(v_{\infty})+n-1}dr
\displaystyle{\lesssim} {max{T12p,T2p+ρ(v)+n+1,T1p}pρ(v)+nT1plnTp=ρ(v)+n\displaystyle\left\{\begin{array}[]{ll}\max\{T^{1-2p^{\prime}},T^{-2p^{\prime}+\rho(v_{\infty})+n+1},T^{1-p^{\prime}}\}&p^{\prime}\neq\rho(v_{\infty})+n\\ T^{1-p^{\prime}}\ln T&p^{\prime}=\rho(v_{\infty})+n\end{array}\right.
=\displaystyle= {T2p+ρ(v)+n+1p<ρ(v)+nT1plnTp=ρ(v)+nT1pp>ρ(v)+n,\displaystyle\left\{\begin{array}[]{ll}T^{-2p^{\prime}+\rho(v_{\infty})+n+1}&p^{\prime}<\rho(v_{\infty})+n\\ T^{1-p^{\prime}}\ln T&p^{\prime}=\rho(v_{\infty})+n\\ T^{1-p^{\prime}}&p^{\prime}>\rho(v_{\infty})+n\ ,\end{array}\right.

where, to ensure the integrability of first term of second bracket, we need to assume

(4.6) (θ2)p+ρ(v0)+n>0p>p2:=n+ρ(v0)n+ρ(v0)+θ2.(\theta-2)p^{\prime}+\rho(v_{0})+n>0\Leftrightarrow p>p_{2}:=\frac{n+\rho(v_{0})}{n+\rho(v_{0})+\theta-2}\ .

Also, we observe that

(4.7) p<ρ(v)+np>p3:=n+ρ(v)n+ρ(v)1.p^{\prime}<\rho(v_{\infty})+n\Leftrightarrow p>p_{3}:=\frac{n+\rho(v_{\infty})}{n+\rho(v_{\infty})-1}\ .

In conclusion, provided that p>p2p>p_{2}, we have

(4.8) F0{T2p+ρ(v)+n+1p>max(p2,p3)T1plnTp=p3>p2T1pp2<p<p3,ifp2<p3.F_{0}{\lesssim}\left\{\begin{array}[]{ll}T^{-2p^{\prime}+\rho(v_{\infty})+n+1}&p>\max(p_{2},p_{3})\\ T^{1-p^{\prime}}\ln T&p=p_{3}>p_{2}\\ T^{1-p^{\prime}}&p_{2}<p<p_{3},\mathrm{if}\ p_{2}<p_{3}\ .\end{array}\right.

Recalling (4.3), if we have data such that C1(f,g)>0C_{1}(f,g)>0, which is always true for f=0f=0 and nontrivial, nonnegative and compactly supported gg, we have εF0\varepsilon{\lesssim}F_{0}. Then we obtain the blow up results for p2<p<pGp_{2}<p<p_{G}, whenever (p2,pG(n+ρ(v)))(p_{2},p_{G}(n+\rho(v_{\infty})))\neq\emptyset, and

2p+ρ(v)+n+1<0p<pG(n+ρ(v)).-2p^{\prime}+\rho(v_{\infty})+n+1<0\Leftrightarrow p<p_{G}(n+\rho(v_{\infty}))\ .

At the same time, we could extract the first three lifespan estimates in (1.13).

4.3. Second choice of the test function Φ1(t,x)\Phi_{1}(t,x) with λ=1\lambda=1

Let λ=1\lambda=1, we have ϕ1\phi_{1} ensured by Lemma 2.3 with λ0=1\lambda_{0}=1. With help of Φ1=etϕ1\Phi_{1}=e^{-t}\phi_{1}, Ψ1=ηT2p(t)Φ1\Psi_{1}=\eta_{T}^{2p^{\prime}}(t)\Phi_{1}, as for (4.3), the inequality (4.1) gives us

0Tn|u|pΨ1𝑑x𝑑t+C2(f,g)ε\displaystyle\int_{0}^{T}\int_{\mathbb{R}^{n}}|u|^{p}\Psi_{1}dxdt+C_{2}(f,g)\varepsilon
\displaystyle\leq CT/2TBt+R|u|ηT2(p1)2+|D|TΦ1𝑑x𝑑t\displaystyle C\int_{T/2}^{T}\int_{B_{t+R}}|u|\eta_{T}^{2(p^{\prime}-1)}\frac{2+|D|}{T}\Phi_{1}dxdt
\displaystyle\leq 12T/2Tn|u|pηT2pΦ1𝑑x𝑑t+CT/2TBt+R(2+|D|T)pΦ1𝑑x𝑑t,\displaystyle\frac{1}{2}\int_{T/2}^{T}\int_{\mathbb{R}^{n}}|u|^{p}\eta_{T}^{2p^{\prime}}\Phi_{1}dxdt+C\int_{T/2}^{T}\int_{B_{t+R}}\left(\frac{2+|D|}{T}\right)^{p^{\prime}}\Phi_{1}dxdt\ ,

and so

(4.10) C2(f,g)εT/2TBt+R(2+|D|T)pΦ1𝑑x𝑑t,C_{2}(f,g)\varepsilon\ {\lesssim}\int_{T/2}^{T}\int_{B_{t+R}}\left(\frac{2+|D|}{T}\right)^{p^{\prime}}\Phi_{1}dxdt\ ,

where C2(f,g):=nϕ1(Df+f+g)𝑑xC_{2}(f,g):=\int_{\mathbb{R}^{n}}\phi_{1}(Df+f+g)dx.

As in the previous section 4.2, we could extract certain lifespan estimate from (4.10). Actually, by (4.10), Lemma 4.1 and Lemma 2.3 with λ0=1\lambda_{0}=1, we have

(4.11) ε\displaystyle\varepsilon{\lesssim} TpT2T|x|t+R(2+|D(x)|p)Φ1𝑑x𝑑t\displaystyle T^{-p^{\prime}}\int_{\frac{T}{2}}^{T}\int_{|x|\leq t+R}(2+|D(x)|^{p^{\prime}})\Phi_{1}dxdt
\displaystyle{\lesssim} Tp(T2Tr1(1+r(θ2)p)etrρ(v0+d0)+n1drdt\displaystyle T^{-p^{\prime}}\Bigg{(}\int_{\frac{T}{2}}^{T}\int_{r\leq 1}(1+r^{(\theta-2)p^{\prime}})e^{-t}r^{\rho(v_{0}+d_{0})+n-1}drdt
+T2T1rt+R(1+rp)eterr1n+d2+n1drdt)\displaystyle+\int_{\frac{T}{2}}^{T}\int_{1\leq r\leq t+R}(1+r^{-p^{\prime}})e^{-t}e^{r}r^{\frac{1-n+d_{\infty}}{2}+n-1}drdt\Bigg{)}
\displaystyle{\lesssim} Tp(eT2+Tn+1+d2)Tp+n+1+d2,\displaystyle T^{-p^{\prime}}\left(e^{-\frac{T}{2}}+T^{\frac{n+1+d_{\infty}}{2}}\right){\lesssim}T^{-p^{\prime}+\frac{n+1+d_{\infty}}{2}},

provided that C2(f,g)>0C_{2}(f,g)>0, and

ρ(v0+d0)+n+(θ2)p>0,i.e.,p>p4:=n+ρ(v0+d0)n+ρ(v0+d0)+θ2.\rho(v_{0}+d_{0})+n+(\theta-2)p^{\prime}>0,i.e.,p>p_{4}:=\frac{n+\rho(v_{0}+d_{0})}{n+\rho(v_{0}+d_{0})+\theta-2}\ .

Based on (4.11), when

p+n+1+d2<0p<pG(n+d),-p^{\prime}+\frac{n+1+d_{\infty}}{2}<0\Leftrightarrow p<p_{G}(n+d_{\infty})\ ,

we obtain the last lifespan estimate in (1.13) for any p(p4,pG(n+d))p\in(p_{4},p_{G}(n+d_{\infty}))\neq\emptyset, whenever f=0f=0 and nontrivial g0g\geq 0.

4.4. Combination

It turns out that we have not exploited the full strength of Ψ0\Psi_{0} and Ψ1\Psi_{1}. Actually, a combination of (4.3) and (4.3) could give us more information on the lifespan estimates.

To connect (4.3) with that appeared in (4.3), we try to control the middle term in (4.3) by the left of (4.3), that is,

εT\displaystyle\varepsilon T{\lesssim} T/2TBt+R|u|ηT2(p1)(2+|D|)Φ1𝑑x𝑑t\displaystyle\int_{T/2}^{T}\int_{B_{t+R}}|u|\eta_{T}^{2(p^{\prime}-1)}(2+|D|)\Phi_{1}dxdt
\displaystyle{\lesssim} (0TnηT2pϕ0|u|p𝑑x𝑑t)1p(T2T|x|t+R(2+|D(x)|)pϕ0ppΦ1p𝑑x𝑑t)1p.\displaystyle\left(\int_{0}^{T}\int_{\mathbb{R}^{n}}\eta_{T}^{2p^{\prime}}\phi_{0}|u|^{p}dxdt\right)^{\frac{1}{p}}\left(\int_{\frac{T}{2}}^{T}\int_{|x|\leq t+R}(2+|D(x)|)^{p^{\prime}}\phi_{0}^{-\frac{p^{\prime}}{p}}\Phi_{1}^{p^{\prime}}dxdt\right)^{\frac{1}{p^{\prime}}}.

Thus, combining it with (4.3), we derive that

(4.12) εpTpF0(T2T|x|t+R(2+|D(x)|)pϕ0ppΦ1p𝑑x𝑑t)p1:=F0F1p1.\varepsilon^{p}T^{p}{\lesssim}F_{0}\left(\int_{\frac{T}{2}}^{T}\int_{|x|\leq t+R}(2+|D(x)|)^{p^{\prime}}\phi_{0}^{-\frac{p^{\prime}}{p}}\Phi_{1}^{p^{\prime}}dxdt\right)^{p-1}:=F_{0}F_{1}^{p-1}\ .

Concerning F1F_{1}, by Lemma 2.1 and 2.3, we have

F1\displaystyle F_{1} =\displaystyle= T2T|x|t+R(2+|D|p)ϕ0ppΨ0p𝑑x𝑑t\displaystyle\int_{\frac{T}{2}}^{T}\int_{|x|\leq t+R}(2+|D|^{p^{\prime}})\phi_{0}^{-\frac{p^{\prime}}{p}}\Psi_{0}^{p^{\prime}}dxdt
\displaystyle{\lesssim} T2Tetp01(2+r(θ2)p)rppρ(v0)+pρ(v0+d0)+n1𝑑r𝑑t\displaystyle\int_{\frac{T}{2}}^{T}e^{-tp^{\prime}}\int_{0}^{1}(2+r^{(\theta-2)p^{\prime}})r^{-\frac{p^{\prime}}{p}\rho(v_{0})+p^{\prime}\rho(v_{0}+d_{0})+n-1}drdt
+T2T1t+R(2+|D|)prppρ(v)pn1d2+n1e(rt)p𝑑r𝑑t.\displaystyle+\int_{\frac{T}{2}}^{T}\int_{1}^{t+R}(2+|D|)^{p^{\prime}}r^{-\frac{p^{\prime}}{p}\rho(v_{\infty})-p^{\prime}\frac{n-1-d_{\infty}}{2}+n-1}e^{(r-t)p^{\prime}}drdt.

To ensure the integrability near r=0r=0, we need to require that

(θ2)pppρ(v0)+pρ(v0+d0)+n1>1,(\theta-2)p^{\prime}-\frac{p^{\prime}}{p}\rho(v_{0})+p^{\prime}\rho(v_{0}+d_{0})+n-1>-1,

that is

(4.13) p>p1:=n+ρ(v0)n+ρ(v0+d0)+θ2.p>p_{1}:=\frac{n+\rho(v_{0})}{n+\rho(v_{0}+d_{0})+\theta-2}\ .

While for the second integral, we utilize Lemma 4.1 with β=1\beta=1, as well as |D|r1|D|{\lesssim}r^{-1} for r>1r>1, to conclude

1t+R(2+|D|)prppρ(v)p(n1d)2+n1e(rt)λ0p𝑑r\displaystyle\int_{1}^{t+R}(2+|D|)^{p^{\prime}}r^{-\frac{p^{\prime}}{p}\rho(v_{\infty})-p^{\prime}\frac{(n-1-d_{\infty})}{2}+n-1}e^{(r-t)\lambda_{0}p^{\prime}}dr
\displaystyle{\lesssim} 1t+Rrppρ(v)pn1d2+n1e(rt)λ0p𝑑r\displaystyle\int_{1}^{t+R}r^{-\frac{p^{\prime}}{p}\rho(v_{\infty})-p^{\prime}\frac{n-1-d_{\infty}}{2}+n-1}e^{(r-t)\lambda_{0}p^{\prime}}dr
\displaystyle{\lesssim} (t+R)ppρ(v)pn1d2+n1.\displaystyle(t+R)^{-\frac{p^{\prime}}{p}\rho(v_{\infty})-p^{\prime}\frac{n-1-d_{\infty}}{2}+n-1}.

Thus we have

(4.14) F1eTp/2+Tppρ(v)pn1d2+nTρ(v)p1pn1d2(p1)+n,F_{1}{\lesssim}e^{-Tp^{\prime}/2}+T^{-\frac{p^{\prime}}{p}\rho(v_{\infty})-p^{\prime}\frac{n-1-d_{\infty}}{2}+n}{\lesssim}T^{-\frac{\rho(v_{\infty})}{p-1}-p\frac{n-1-d_{\infty}}{2(p-1)}+n}\ ,

if p>p1p>p_{1}.

In view of (4.8), (4.14) and (4.12), we arrive at, for p>max(p1,p2)p>\max(p_{1},p_{2}),

εpTpF0F1p1{Tn+d12p2p+1p>p3Tn+d12p2p+1lnTp=p3Tρ(v)+pn+d12n+1pp<p3,\varepsilon^{p}{\lesssim}T^{-p}F_{0}F_{1}^{p-1}{\lesssim}\left\{\begin{array}[]{ll}T^{\frac{n+d_{\infty}-1}{2}p-2p^{\prime}+1}&p>p_{3}\\ T^{\frac{n+d_{\infty}-1}{2}p-2p^{\prime}+1}\ln T&p=p_{3}\\ T^{-\rho(v_{\infty})+p\frac{n+d_{\infty}-1}{2}-n+1-p^{\prime}}&p<p_{3}\ ,\end{array}\right.

by which we are able to obtain the final set of lifespan estimates.

When p>max{p1,p2,p3}p>\max\{p_{1},p_{2},p_{3}\}, we could obtain an upper bound of the lifespan, if

n+d12p2p+1<0n+d12p(p1)<p+1,\frac{n+d_{\infty}-1}{2}p-2p^{\prime}+1<0\Leftrightarrow\frac{n+d_{\infty}-1}{2}p(p-1)<p+1,

that is, p<pS(n+d)p<p_{S}(n+d_{\infty}). This gives us the sixth lifespan estimate in (1.13):

Tεε2p(p1)γ(p,n+d).T_{\varepsilon}\ {\lesssim}\varepsilon^{-\frac{2p(p-1)}{\gamma(p,n+d_{\infty})}}.

In the critical case, p=p3(max{p1,p2},pS(n+d))p=p_{3}\in(\max\{p_{1},p_{2}\},p_{S}(n+d_{\infty})), we obtain the estimate with log loss:

Tεε2p(p1)γ(p,n+d)(lnε1)2(p1)γ(p,n+d).T_{\varepsilon}{\lesssim}\varepsilon^{-\frac{2p(p-1)}{\gamma(p,n+{d_{\infty}})}}(\ln\varepsilon^{-1})^{\frac{2(p-1)}{\gamma(p,n+{d_{\infty}})}}\ .

For the remaining case of max{p1,p2}<p<p3\max\{p_{1},p_{2}\}<p<p_{3}, we could obtain an upper bound of the lifespan, provided that ρ(v)+pn+d12n+1p<0{-\rho(v_{\infty})+p\frac{n+d_{\infty}-1}{2}-n+1-p^{\prime}}<0, i.e.,

n+d12p(p1)+(n+ρ(v)1)(p3p)<p+1γ2>0p<p5,\frac{n+d_{\infty}-1}{2}p(p-1)+(n+\rho(v_{\infty})-1)(p_{3}-p)<p+1\Leftrightarrow\gamma_{2}>0\Leftrightarrow p<p_{5}\ ,

where γ2\gamma_{2} is given in (1.14). Thus we have blow up result and lifespan estimate, the fourth lifespan estimate in (1.13), if max{p1,p2}<p<min(p3,p5)\max\{p_{1},p_{2}\}<p<\min(p_{3},p_{5}).

Finally, we remark that the last upper bound of the lifespan in (1.13) was obtained for p(p4,pG(n+d))p\in(p_{4},p_{G}(n+d_{\infty}))\neq\emptyset. However, after comparison with the corresponding estimates in the first and fourth case, we see that it gives better upper bound only for p(p4,p0](p4,pG(n+d))p\in(p_{4},p_{0}]\cap(p_{4},p_{G}(n+d_{\infty})), if we have p4<min(p0,pG(n+d))p_{4}<\min(p_{0},p_{G}(n+d_{\infty})). This is the reason we state it for this restricted range in (1.13).

5. Proof of Theorem 1.3

In this section, we prove Theorem 1.3.

According to Lemma 2.2 and 2.4 we have,

ϕ0{ln(r+2),n=21,n3,andϕ1rn1d2er.\phi_{0}\simeq\begin{cases}\ln(r+2)\ ,n=2\\ 1\ ,\ n\geq 3\ ,\end{cases}\ \mbox{and}\ \ \phi_{1}\simeq\langle r\rangle^{-\frac{n-1-d_{\infty}}{2}}e^{r}\ .

Thus, when n3n\geq 3, the situation considered in Theorem 1.3 could be viewed as a particular case of v0=d0=v=0v_{0}=d_{0}=v_{\infty}=0 and θ=2\theta=2, in Theorem 1.5. Then p1=p2=1p_{1}=p_{2}=1, p3=nn1p_{3}=\frac{n}{n-1}, and so Theorem 1.3 for n3n\geq 3 could be obtained as the Corollary of Theorem 1.5. In the following, it suffices for us to present the proof for n=2n=2, for which we still have (4.3), (4.3), (4.10) and (4.12), with only replacements from ϕ01\phi_{0}\sim 1 to ϕ0ln(r+2)\phi_{0}\sim\ln(r+2).

Concerning the right hand side of (4.3), we have

(5.4) εF0\displaystyle\varepsilon\ {\lesssim}F_{0} \displaystyle{\lesssim} TpT/2T0t+R(T1+r1)prln(r+2)𝑑r𝑑t\displaystyle T^{-p^{\prime}}\int_{T/2}^{T}\int_{0}^{t+R}(T^{-1}+\langle r\rangle^{-1})^{p^{\prime}}r\ln(r+2)drdt
\displaystyle{\lesssim} T2pT3lnT+TpT/2T0t+Rr1pln(r+2)𝑑r𝑑t\displaystyle T^{-2p^{\prime}}T^{3}\ln T+T^{-p^{\prime}}\int_{T/2}^{T}\int_{0}^{t+R}\langle r\rangle^{1-p^{\prime}}\ln(r+2)drdt
\displaystyle{\lesssim} {T1pp<2T1p(lnT)2p=2T32plnTp>2.\displaystyle\left\{\begin{array}[]{ll}T^{1-p^{\prime}}&p<2\\ T^{1-p^{\prime}}(\ln T)^{2}&p=2\\ T^{3-2p^{\prime}}\ln T&p>2\ .\end{array}\right.

Based on this inequality, we could extract the first three lifespan estimates in (1.11) for p(1,3)p\in(1,3) and n=2n=2, which have certain log loss for the case pn/(n1)=2p\geq n/(n-1)=2.

Concerning F1F_{1} in (4.12), by Lemma 4.1, we have

F1\displaystyle F_{1} =\displaystyle= T2T|x|t+R(2+|D|p)ϕ0ppΨ0p𝑑x𝑑t\displaystyle\int_{\frac{T}{2}}^{T}\int_{|x|\leq t+R}(2+|D|^{p^{\prime}})\phi_{0}^{-\frac{p^{\prime}}{p}}\Psi_{0}^{p^{\prime}}dxdt
\displaystyle{\lesssim} T2T0t+R(1+r)p1d2+1(ln(r+2))ppe(rt)p𝑑r𝑑t\displaystyle\int_{\frac{T}{2}}^{T}\int_{0}^{t+R}(1+r)^{-p^{\prime}\frac{1-d_{\infty}}{2}+1}(\ln(r+2))^{-\frac{p^{\prime}}{p}}e^{(r-t)p^{\prime}}drdt
\displaystyle{\lesssim} T2p1d2(lnT)pp.\displaystyle T^{2-p^{\prime}\frac{1-d_{\infty}}{2}}(\ln T)^{-\frac{p^{\prime}}{p}}\ .

Plugging these estimates in (4.12), we derive that

(5.5) εpTpF0F1p1T2(p1)p1d2×{T1p(lnT)1p<2T1plnTp=2T32pp>2..\varepsilon^{p}T^{p}{\lesssim}F_{0}F_{1}^{p-1}{\lesssim}T^{2(p-1)-p\frac{1-d_{\infty}}{2}}\times\left\{\begin{array}[]{ll}T^{1-p^{\prime}}(\ln T)^{-1}&p<2\\ T^{1-p^{\prime}}\ln T&p=2\\ T^{3-2p^{\prime}}&p>2\ .\end{array}\right.\ .

Similarly, based on this inequality, we could extract the second set (fourth to sixth) of lifespan estimates in (1.11) for p(1,pS(n+d))p\in(1,p_{S}(n+d_{\infty})) and n=2n=2, which have certain log adjustment for the case p<n/(n1)=2p<n/(n-1)=2.

6. Proof of Theorem 1.2

6.1. Subcritical case

In this subsection, we present the proof of Theorem 1.2 for p<pS(n)p<p_{S}(n), under the assumption that V=0V=0 and D(x)C(n)Cδ(Bδ)D(x)\in C(\mathbb{R}^{n})\cap C^{\delta}(B_{\delta}), which is of short range, in the sense that DLnL(n)D\in L^{n}\cap L^{\infty}(\mathbb{R}^{n}). The proof follows the same lines as that of Theorem 1.5 or Theorem 1.3.

At first, with ϕ0=1\phi_{0}=1, by (4.3), we have

(6.1) C1(f,g)ε+0Tn|u|pηT2p𝑑x𝑑tCT/2TBt+R(T2+|D|T1)p𝑑x𝑑t=F0.C_{1}(f,g)\varepsilon+\int_{0}^{T}\int_{\mathbb{R}^{n}}|u|^{p}\eta_{T}^{2p^{\prime}}dxdt\leq C\int_{T/2}^{T}\int_{B_{t+R}}(T^{-2}+|D|T^{-1})^{p^{\prime}}dxdt=F_{0}\ .

When pnp^{\prime}\geq n, i.e., pnn1p\leq\frac{n}{n-1}, we know that DLnL(n)LpD\in L^{n}\cap L^{\infty}(\mathbb{R}^{n})\subset L^{p^{\prime}}, and so

F0=CT/2TBt+R(T2+|D|T1)p𝑑x𝑑tTn+12p+T1pT1p.F_{0}=C\int_{T/2}^{T}\int_{B_{t+R}}(T^{-2}+|D|T^{-1})^{p^{\prime}}dxdt{\lesssim}T^{n+1-2p^{\prime}}+T^{1-p^{\prime}}{\lesssim}T^{1-p^{\prime}}.

Otherwise, for p<np^{\prime}<n, i.e., p>nn1p>\frac{n}{n-1}, by using Hölder’s inequality, we obtain

BT+R|D|p𝑑x|D|pLn/p1Ln/(np)(BT+R)Tnp,\int_{B_{T+R}}|D|^{p^{\prime}}dx{\lesssim}\||D|^{p^{\prime}}\|_{L^{n/p^{\prime}}}\|1\|_{L^{n/(n-p^{\prime})}(B_{T+R})}{\lesssim}T^{n-p^{\prime}}\ ,

and thus

F0Tn+12p+T1pBT+R|D|p𝑑xTn+12p.F_{0}{\lesssim}T^{n+1-2p^{\prime}}+T^{1-p^{\prime}}\int_{B_{T+R}}|D|^{p^{\prime}}dx{\lesssim}T^{n+1-2p^{\prime}}\ .

In conclusion, we have

(6.2) 0Tn|u|pηT2p𝑑x𝑑t{T1pif 1<pnn1,Tn+12pifpnn1.\int_{0}^{T}\int_{\mathbb{R}^{n}}|u|^{p}\eta_{T}^{2p^{\prime}}dxdt\lesssim\left\{\begin{array}[]{ll}T^{1-p^{\prime}}&\mbox{if}\ 1<p\leq\frac{n}{n-1},\\ T^{n+1-2p^{\prime}}&\mbox{if}\ p\geq\frac{n}{n-1}.\\ \end{array}\right.

As DL(n)D\in L^{\infty}(\mathbb{R}^{n}), there exists λ0>0\lambda_{0}>0 such that |D|λ0|D|\leq\lambda_{0} and then we choose ϕλ0\phi_{\lambda_{0}} which is ensured by Lemma 2.4. Let Ψ(t,x)=ηT2pΦ(t,x)=ηT2peλ0tϕλ0(x)\Psi(t,x)=\eta_{T}^{2p^{\prime}}\Phi(t,x)=\eta_{T}^{2p^{\prime}}e^{-\lambda_{0}t}\phi_{\lambda_{0}}(x) be the test function, as for (4.3) and (4.12), we get from (4.1) and Lemma 4.1 that

(6.3) 0Tn|u|pΨ𝑑x𝑑t+C2(f,g)ε\displaystyle\int_{0}^{T}\int_{\mathbb{R}^{n}}|u|^{p}\Psi dxdt+C_{2}(f,g)\varepsilon
\displaystyle{\lesssim} T/2TBt+R|u|ηT2(p1)2+|D|TΦ𝑑x𝑑t\displaystyle\int_{T/2}^{T}\int_{B_{t+R}}|u|\eta_{T}^{2(p^{\prime}-1)}\frac{2+|D|}{T}\Phi dxdt
\displaystyle{\lesssim} T1(T/2TnηT2p|u|p𝑑x𝑑t)1p(T/2TBt+RΦp𝑑x𝑑t)1p\displaystyle T^{-1}\left(\int_{T/2}^{T}\int_{\mathbb{R}^{n}}\eta_{T}^{2p^{\prime}}|u|^{p}dxdt\right)^{\frac{1}{p}}\left(\int_{T/2}^{T}\int_{B_{t+R}}\Phi^{p^{\prime}}dxdt\right)^{\frac{1}{p^{\prime}}}
\displaystyle\leq CT1+(nn12p)1p(T/2TnηT2p|u|p𝑑x𝑑t)1p,\displaystyle CT^{-1+(n-\frac{n-1}{2}p^{\prime})\frac{1}{p^{\prime}}}\left(\int_{T/2}^{T}\int_{\mathbb{R}^{n}}\eta_{T}^{2p^{\prime}}|u|^{p}dxdt\right)^{\frac{1}{p}},

which yields

(6.4) εpTnn12p=εpTp(nn12p)(p1)T/2TnηT2p|u|p𝑑x𝑑t.\displaystyle\varepsilon^{p}T^{n-\frac{n-1}{2}p}=\varepsilon^{p}T^{p-(n-\frac{n-1}{2}p^{\prime})(p-1)}\lesssim\int_{T/2}^{T}\int_{\mathbb{R}^{n}}\eta_{T}^{2p^{\prime}}|u|^{p}dxdt\ .

Based on (6.2) and (6.4), we obtain the first and second lifespan estimates in (1.9) in Theorem 1.2.

6.2. Critical case

Turning to the critical case, p=pS(n)p=p_{S}(n), the proof is parallel to that in [18], which heavily relies on Lemma 2.5. For completeness, we present a proof here.

Based on the family of test functions ϕλ\phi_{\lambda}, with λ(0,1]\lambda\in(0,1], satisfying

(6.5) ΔϕλλD(x)ϕλ=λ2ϕλ,xn,\displaystyle\Delta\phi_{\lambda}-\lambda D(x)\phi_{\lambda}=\lambda^{2}\phi_{\lambda},~{}~{}~{}x\in\mathbb{R}^{n}\ ,

we construct a new class of test functions, with parameters q>0q>0,

bq(t,x)=01eλtϕλ(x)λq1𝑑λ.b_{q}(t,x)=\int_{0}^{1}e^{-\lambda t}\phi_{\lambda}(x)\lambda^{q-1}d\lambda\ .

The magic of the test functions bq(t,x)b_{q}(t,x) lie on the facts that they satisfy

(6.6) t2bqΔbqD(x)tbq=0,tbq=bq+1,\partial^{2}_{t}b_{q}-\Delta b_{q}-D(x)\partial_{t}b_{q}=0,~{}~{}~{}\partial_{t}b_{q}=-b_{q+1}\ ,

and enjoy the asymptotic behavior for n2n\geq 2 and rt+Rr\leq t+R

(6.7) bq(t,x)(t+R)q,q>0,b_{q}(t,x)\gtrsim(t+R)^{-q},\ q>0\ ,

and

(6.8) bq(t,x){(t+R)qif 0<q<n12,(t+R)n12(t+R+1|x|)n12qifq>n12.b_{q}(t,x)\lesssim\left\{\begin{array}[]{ll}(t+R)^{-q}&\mbox{if}\ 0<q<\frac{n-1}{2},\\ (t+R)^{-\frac{n-1}{2}}(t+R+1-|x|)^{\frac{n-1}{2}-q}&\mbox{if}\ q>\frac{n-1}{2}.\\ \end{array}\right.

Based on (6.6)-(6.8), the same argument in [18] will yield a proof for the last lifespan of Theorem 1.2.

6.2.1. Estimates of the test functions: (6.7) and (6.8)

In [18], the asymptotic behavior (6.8) was proved by employing the property of the hypergeometric function, when β>2\beta>2 and n3n\geq 3. In the following we will use a relatively simpler way to show it, in the general case β>1\beta>1 and n2n\geq 2, inspired by the method in [17].

We first consider the lower bound (6.7). From the definition of bqb_{q} we know

(6.9) bq(t,x)\displaystyle b_{q}(t,x) 12(t+R)1t+Reλtϕλ(x)λq1𝑑λ\displaystyle\gtrsim\int_{\frac{1}{2(t+R)}}^{\frac{1}{t+R}}e^{-\lambda t}\phi_{\lambda}(x)\lambda^{q-1}d\lambda
12(t+R)1t+Reλ(t+R)λq1𝑑λ\displaystyle\gtrsim\int_{\frac{1}{2(t+R)}}^{\frac{1}{t+R}}e^{-\lambda(t+R)}\lambda^{q-1}d\lambda
(t+R)q121eθθq1𝑑θ\displaystyle\gtrsim(t+R)^{-q}\int_{\frac{1}{2}}^{1}e^{-\theta}\theta^{q-1}d\theta
(t+R)q,\displaystyle\gtrsim(t+R)^{-q},

where we used the fact ϕλ1\phi_{\lambda}\thicksim 1 when rλrt+R1r\lambda\leq\frac{r}{t+R}\leq 1 by (2.8).

For the upper bound (6.8), we divide the proof into two parts: rt+R2r\leq\frac{t+R}{2} and t+12rt+R\frac{t+1}{2}\leq r\leq t+R. For the former case, we have

(6.10) bq(t,x)\displaystyle b_{q}(t,x) 01eλ(t+R)2(1+λr)n12λq1𝑑λ\displaystyle\lesssim\int_{0}^{1}e^{-\frac{\lambda(t+R)}{2}}(1+\lambda r)^{-\frac{n-1}{2}}\lambda^{q-1}d\lambda
01eλ(t+R)2λq1𝑑λ\displaystyle\lesssim\int_{0}^{1}e^{-\frac{\lambda(t+R)}{2}}\lambda^{q-1}d\lambda
(t+R)q0eθθq1𝑑θ\displaystyle\lesssim(t+R)^{-q}\int_{0}^{\infty}e^{-\theta}\theta^{q-1}d\theta
(t+R)q.\displaystyle\lesssim(t+R)^{-q}.

If t+R2rt+R\frac{t+R}{2}\leq r\leq t+R and 0<q<n120<q<\frac{n-1}{2}, it is clear that

(6.11) bq(t,x)\displaystyle b_{q}(t,x) 01(1+λ(t+R))n12λq1𝑑λ\displaystyle\lesssim\int_{0}^{1}(1+\lambda(t+R))^{-\frac{n-1}{2}}\lambda^{q-1}d\lambda
(t+R)q0(1+θ)n12θq1𝑑θ\displaystyle\lesssim(t+R)^{-q}\int_{0}^{\infty}(1+\theta)^{-\frac{n-1}{2}}\theta^{q-1}d\theta
(t+R)q.\displaystyle\lesssim(t+R)^{-q}.

For the remaining case: t+R2rt+R\frac{t+R}{2}\leq r\leq t+R and q>n12q>\frac{n-1}{2}, we see that

(6.12) bq(t,x)\displaystyle b_{q}(t,x) 01eλ(t+R+1r)(λ(t+R))n12λq1𝑑λ\displaystyle\lesssim\int_{0}^{1}e^{-\lambda(t+R+1-r)}(\lambda(t+R))^{-\frac{n-1}{2}}\lambda^{q-1}d\lambda
(t+R)n1201eλ(t+R+1r)λq1n12𝑑λ\displaystyle\lesssim(t+R)^{-\frac{n-1}{2}}\int_{0}^{1}e^{-\lambda(t+R+1-r)}\lambda^{q-1-\frac{n-1}{2}}d\lambda
(t+R)n12(t+R+1r)n12q0eθθq1n12𝑑θ\displaystyle\lesssim(t+R)^{-\frac{n-1}{2}}(t+R+1-r)^{\frac{n-1}{2}-q}\int_{0}^{\infty}e^{-\theta}\theta^{q-1-\frac{n-1}{2}}d\theta
(t+R)n12(t+R+1r)n12q.\displaystyle\lesssim(t+R)^{-\frac{n-1}{2}}(t+R+1-r)^{\frac{n-1}{2}-q}\ .

6.2.2. Proof

With bqb_{q} and its asymptotic behavior in hand, we use ΨT=ηT2pbq\Psi_{T}=\eta_{T}^{2p^{\prime}}b_{q} as the test function, which gives us

0TnηT2pbq|u|p𝑑x𝑑t\displaystyle\int_{0}^{T}\int_{\mathbb{R}^{n}}\eta_{T}^{2p^{\prime}}b_{q}|u|^{p}dxdt
=\displaystyle= 0Tn(t2uΔu+D(x)tu)bqηT2p𝑑x𝑑t\displaystyle\int_{0}^{T}\int_{\mathbb{R}^{n}}\left(\partial_{t}^{2}u-\Delta u+D(x)\partial_{t}u\right)b_{q}\eta_{T}^{2p^{\prime}}dxdt
\displaystyle\lesssim 0Tn|u|(|2tbqtηT2p|+|bqt2ηT2p|+|D(x)bqtηT2p|)𝑑x𝑑t\displaystyle\int_{0}^{T}\int_{\mathbb{R}^{n}}|u|\left(|2\partial_{t}b_{q}\partial_{t}\eta_{T}^{2p^{\prime}}|+|b_{q}\partial_{t}^{2}\eta_{T}^{2p^{\prime}}|+\Big{|}D(x)b_{q}\partial_{t}\eta_{T}^{2p^{\prime}}\Big{|}\right)dxdt
\displaystyle\leq (T2Tn|u|pΨT𝑑x𝑑t)1p(T2TBt+Rbqpp[(T1+D)bq+bq+1]pTp𝑑x𝑑t)1p.\displaystyle(\int_{\frac{T}{2}}^{T}\int_{\mathbb{R}^{n}}|u|^{p}\Psi_{T}dxdt)^{\frac{1}{p}}\left(\int_{\frac{T}{2}}^{T}\int_{B_{t+R}}b_{q}^{-\frac{p^{\prime}}{p}}\left[(T^{-1}+D)b_{q}+b_{q+1}\right]^{p^{\prime}}T^{-p^{\prime}}dxdt\right)^{\frac{1}{p^{\prime}}}\ .

Let q=n121pq=\frac{n-1}{2}-\frac{1}{p}. As p>(n+1)/(n1)p>(n+1)/(n-1), p<(n+1)/2np^{\prime}<(n+1)/2\leq n, Dμ(1+r)βD\leq\mu(1+r)^{-\beta}, we have

T2TBt+R(T1+D)pTpbq𝑑x𝑑t\displaystyle\int_{\frac{T}{2}}^{T}\int_{B_{t+R}}(T^{-1}+D)^{p^{\prime}}T^{-p^{\prime}}b_{q}dxdt \displaystyle{\lesssim} T2TBt+R(t+R)1pn12Tp(1+r)p𝑑x𝑑t\displaystyle\int_{\frac{T}{2}}^{T}\int_{B_{t+R}}(t+R)^{\frac{1}{p}-\frac{n-1}{2}}T^{-p^{\prime}}(1+r)^{-p^{\prime}}dxdt
\displaystyle{\lesssim} T1pn122p+n+1=1\displaystyle T^{\frac{1}{p}-\frac{n-1}{2}-2p^{\prime}+n+1}=1

where we used (6.8) and the fact that

1pn122p+n+1=1p+n122p1=0\frac{1}{p}-\frac{n-1}{2}-2p^{\prime}+n+1=\frac{1}{p}+\frac{n-1}{2}-\frac{2}{p-1}=0

for p=pS(n)p=p_{S}(n). By (6.7)-(6.8), we see that

bq(t+R)q,bq+1(t+R)n12(t+R+1|x|)n12q1(t+R)n12(t+R+1|x|)1p,b_{q}\simeq(t+R)^{-q},b_{q+1}{\lesssim}(t+R)^{-\frac{n-1}{2}}(t+R+1-|x|)^{\frac{n-1}{2}-q-1}\simeq(t+R)^{-\frac{n-1}{2}}(t+R+1-|x|)^{-\frac{1}{p^{\prime}}}\ ,

and so

T2TBt+Rbq+1pbqppTp𝑑x𝑑t\displaystyle\int_{\frac{T}{2}}^{T}\int_{B_{t+R}}b_{q+1}^{p^{\prime}}b_{q}^{-\frac{p^{\prime}}{p}}T^{-p^{\prime}}dxdt
\displaystyle{\lesssim} T2TBt+R(t+R)n121p(p1)(t+R+1|x|)1(t+R)(n12q)1p1Tp𝑑x𝑑t\displaystyle\int_{\frac{T}{2}}^{T}\int_{B_{t+R}}(t+R)^{-\frac{n-1}{2}-\frac{1}{p(p-1)}}(t+R+1-|x|)^{-1}(t+R)^{-(\frac{n-1}{2}-q)\frac{1}{p-1}}T^{-p^{\prime}}dxdt
\displaystyle{\lesssim} T2T0t+RTn121p(p1)p(t+R+1r)1𝑑r𝑑t\displaystyle\int_{\frac{T}{2}}^{T}\int_{0}^{{t+R}}T^{\frac{n-1}{2}-\frac{1}{p(p-1)}-p^{\prime}}(t+R+1-r)^{-1}drdt
\displaystyle{\lesssim} T2T0t+RT1(t+R+1r)1𝑑r𝑑tlnT.\displaystyle\int_{\frac{T}{2}}^{T}\int_{0}^{{t+R}}T^{-1}(t+R+1-r)^{-1}drdt{\lesssim}\ln T\ .

In conclusion, we have

(6.13) 0TnηT2pbq|u|p𝑑x𝑑t(lnT)1/pZ(T)1/p,\int_{0}^{T}\int_{\mathbb{R}^{n}}\eta_{T}^{2p^{\prime}}b_{q}|u|^{p}dxdt{\lesssim}(\ln T)^{1/p^{\prime}}Z(T)^{1/p}\ ,

where

Z(T)T/2Tn|u|pbqηT2p𝑑x𝑑t0Tn|u|pbqηT2p𝑑x𝑑tX(T).Z(T)\triangleq\int_{T/2}^{T}\int_{\mathbb{R}^{n}}|u|^{p}b_{q}\eta_{T}^{2p^{\prime}}dxdt\leq\int_{0}^{T}\int_{\mathbb{R}^{n}}|u|^{p}b_{q}\eta_{T}^{2p^{\prime}}dxdt\triangleq X(T)\ .

To relate ZZ and XX, and recall the critical nature of the situation, let Z=TYZ=TY^{\prime} and Y(2)=0Y(2)=0, then

Y(M)=2MZ(T)T1𝑑T,Y(M)=\int_{2}^{M}Z(T)T^{-1}dT,

and

Y(M)=\displaystyle Y(M)= 2M(T/2Tnbq|u|p(ηT(t))2p𝑑x𝑑t)T1𝑑T\displaystyle\int_{2}^{M}\left(\int_{T/2}^{T}\int_{\mathbb{R}^{n}}b_{q}|u|^{p}(\eta_{T}(t))^{2p^{\prime}}dxdt\right)T^{-1}dT
\displaystyle\leq 1Mnbq|u|ptmin(M,2t)(ηT(t))2pT1𝑑T𝑑x𝑑t\displaystyle\int_{1}^{M}\int_{\mathbb{R}^{n}}b_{q}|u|^{p}\int_{t}^{\min(M,2t)}(\eta_{T}(t))^{2p^{\prime}}T^{-1}dTdxdt
=\displaystyle= 1Mnbq|u|pmax(t/M,1/2)1(η(s))2ps1𝑑s𝑑x𝑑t\displaystyle\int_{1}^{M}\int_{\mathbb{R}^{n}}b_{q}|u|^{p}\int^{1}_{\max(t/M,1/2)}(\eta(s))^{2p^{\prime}}s^{-1}dsdxdt
\displaystyle\leq 1Mnbq|u|p(η(t/M))2p1/21s1𝑑s𝑑x𝑑t\displaystyle\int_{1}^{M}\int_{\mathbb{R}^{n}}b_{q}|u|^{p}(\eta(t/M))^{2p^{\prime}}\int^{1}_{1/2}s^{-1}dsdxdt
\displaystyle\leq ln21Mnbq|u|p(η(t/M))2p𝑑x𝑑tln20Mn|u|pbqηT𝑑x𝑑tX(M),\displaystyle\ln 2\int_{1}^{M}\int_{\mathbb{R}^{n}}b_{q}|u|^{p}(\eta(t/M))^{2p^{\prime}}dxdt\leq\ln 2\int_{0}^{M}\int_{\mathbb{R}^{n}}|u|^{p}b_{q}\eta_{T}dxdt{\lesssim}X(M)\ ,

where we used the assumption that η\eta is decreasing. Thus, recalling (6.13), we have

(6.14) Y(T)(lnT)1/p(TY(T))1/p,TY(T)cYp(lnT)1p,T[2,Tε).Y(T){\lesssim}(\ln T)^{1/p^{\prime}}(TY^{\prime}(T))^{1/p},\ TY^{\prime}(T)\geq cY^{p}(\ln T)^{1-p},\forall T\in[2,T_{\varepsilon})\ .

In addition, by (6.4) and (6.7), we have

(6.15) TY=Z(T)T/2Tn|u|pbqηT2p𝑑x𝑑tεpTnn12pq=εp.TY^{\prime}=Z(T)\triangleq\int_{T/2}^{T}\int_{\mathbb{R}^{n}}|u|^{p}b_{q}\eta_{T}^{2p^{\prime}}dxdt\gtrsim\varepsilon^{p}T^{n-\frac{n-1}{2}p-q}=\varepsilon^{p}.

where we used the fact

nn12p=q=n121pn-\frac{n-1}{2}p=q=\frac{n-1}{2}-\frac{1}{p}

for p=pS(n)p=p_{S}(n).

Equipped with (6.15) and (6.14), we could apply Lemma 3.10 in [11] to conclude the last lifespan in (1.9). Actually, by (6.15), integration from 22 to T>4T>4 yields

(6.16) Y(T)Y(2)+cεp(lnTln2)εplnT,T(4,Tε).Y(T)\geq Y(2)+c\varepsilon^{p}(\ln T-\ln 2)\gtrsim\varepsilon^{p}\ln T,\ \forall T\in(4,T_{\varepsilon})\ .

Similarly, for (6.14), integration from T1T_{1} to T2>T1T_{2}>T_{1} gives us

Y(T2)1pY(T1)1pc(p1)lnT1lnT2τ1p𝑑τ,2<T1<T2<Tε.Y(T_{2})^{1-p}\leq Y(T_{1})^{1-p}-c(p-1)\int_{\ln T_{1}}^{\ln T_{2}}\tau^{1-p}d\tau\ ,\forall 2<T_{1}<T_{2}<T_{\varepsilon}\ .

As Y(T)0Y(T)\geq 0, letting T2TεT_{2}\to T_{\varepsilon}, and using (6.16), we see that

lnT1lnTετ1p𝑑τY(T1)1pεp(p1)(lnT1)1p,4<T1<Tε.\int_{\ln T_{1}}^{\ln T_{\varepsilon}}\tau^{1-p}d\tau{\lesssim}Y(T_{1})^{1-p}{\lesssim}\varepsilon^{-p(p-1)}(\ln T_{1})^{1-p},\forall 4<T_{1}<T_{\varepsilon}\ .

Setting T1=TεT_{1}=\sqrt{T}_{\varepsilon}, it follows that

lnTεεp(p1),\ln T_{\varepsilon}{\lesssim}\varepsilon^{-p(p-1)}\ ,

which gives us the desired lifespan for the critical case, in (1.9).

ACKNOWLEDGMENTS

The first author is supported by NSF of Zhejiang Province(LY18A010008) and NSFC 11771194. The second and fourth author were supported in part by NSFC 11971428.

References

  • [1] E. A. Coddington, N. Levinson. Theory of ordinary differential equations. McGraw-Hill Book Company, Inc., New York-Toronto-London, 1955.
  • [2] W. Dai, H. Kubo, M. Sobajima,Blow-up for Strauss type wave equation with damping and potential, Nonlinear Anal. Real World Appl. 57 (2021), 103195, 15 pp.
  • [3] H. Fujita,On the blowing up of solutions of the Cauchy problem for ut=Δu+u1+αu_{t}=\Delta u+u^{1+\alpha}, J. Fac. Sci. Univ. Tokyo Sec. I, 13 (1966), 109-124.
  • [4] V. Georgiev, H. Kubo, K. Wakasa,Critical exponent for nonlinear damped wave equations with non-negative potential in 3D, J. Differential Equations, 267 (2019), 3271-3288.
  • [5] V. Georgiev, H. Lindblad, C. D. Sogge,Weighted Strichartz estimates and global existence for semi-linear wave equations, Amer. J. Math. 119 (1997), no. 6, 1291-1319.
  • [6] D. Gilbarg, N. S. Trudinger. Elliptic partial differential equations of second order. Reprint of the 1998 edition. Classics in Mathematics. Springer-Verlag, Berlin, 2001. xiv+517 pp.
  • [7] R. T. Glassey, Finite-time blow up for solutions of nonlinear wave equations, Math. Z. 177(3) (1981), 323-340.
  • [8] R. T. Glassey, Existence in the large for u=F(u)u=F(u) in two space dimensions, Math. Z. 178(2) (1981), 233-261.
  • [9] M. Ikeda, M. Sobajima,Life-span of blowup solutions to semilinear wave equation with space-dependent critical damping, to appear in Funkcialaj Ekvacioj, arXiv:1709.04401v1.
  • [10] M. Ikeda, M. Sobajima,Sharp upper bound for lifespan of solutions to some critical semilinear parabolic, dispersive and hyperbolic equations via a test function method, Nonlinear Anal., 182 (2019), 57-74.
  • [11] M.Ikeda, M.Sobajima and K. Wakasa, Blow-up phenomena of semilinear wave equations and their weakly coupled systems, J. Differential Equations, 267 (2019), no. 9, 5165-5201.
  • [12] R. Ikehata, H. Takeda, Uniform energy decay for wave equations with unbounded damping coefficients, Funkcialaj Ekvacioj, 63 (2020), 133-152.
  • [13] R. Ikehata, G. Todorova, B. Yordanov,Critical exponent for semilinear wave equations with space-dependent potential, Funkcial. Ekvac., 52 (2009), no. 3, 411-435.
  • [14] R. Ikehata, G. Todorova, B. Yordanov, Optimal decay rate of the energy for wave equations with critical potential, J. Math. Soc. Jpn., 65 (2013), 183-236.
  • [15] R. Ikehata, G. Todorova, B. Yordanov,Critical exponent for semilinear wave equations with space-dependent potential, Funkcial. Ekvac., 52 (2009), no. 3, 411-435.
  • [16] F. John, Blow-up of solutions of nonlinear wave equations in three space dimension Manuscripta Math., 28 (1979), no. 1-3, 235-268.
  • [17] N. Lai, M. Liu, K. Wakasa, C. Wang, Lifespan estimates for 2-dimensional semilinear wave equations in asymptotically Euclidean exterior domains. arXiv:2006.12192.
  • [18] N. Lai, Z. Tu. Strauss exponent for semilinear wave equations with scattering space dependent damping. J. Math. Anal. Appl. 489 (2020), no. 2, 124189, 24 pp.
  • [19] N. Lai, Y. Zhou,An elementary proof of Strauss conjecture, J. Funct. Anal., 267 (2014), no. 5, 1364-1381.
  • [20] T.T.Li, Y.Zhou,Breakdown of solutions to u+ut=|u|1+α\Box u+u_{t}=|u|^{1+\alpha}, Discrete Contin. Dyn. Syst., 1 (1995), 503-520.
  • [21] X. Li,Critical exponent for semilinear wave equation with critical potential, Nonlinear Differ. Equ. Appl., 20 (2013), 1379-1391.
  • [22] H. Lindblad, C D. Sogge, Long-time existence for small amplitude semilinear wave equations, Amer. J. Math., 118 (1996), no. 5, 1047-1135.
  • [23] M. Liu, C. Wang, The blow up of solutions to semilinear wave equations on asymptotically Euclidean manifolds. ArXiv:1912.02540, 2019.
  • [24] M. Liu, C. Wang, Blow up for small-amplitude semilinear wave equations with mixed nonlinearities on asymptotically Euclidean manifolds. J. Differential Equations 269 (2020), no. 10, 8573–8596.
  • [25] J. Metcalfe, C. Wang, The Strauss conjecture on asymptotically flat spac-time, SIAM J. Math. Anal. 49 (2017), 4579–4594.
  • [26] E. Mitidieri, S.I. Pokhozhaev, A priori estimates and the absence of solutions of nonlinear partial differential equations and inequalities, Tr. Mat. Inst. Steklova 234 (2001) 1-384, (Russian) translation in Proc. Steklov Inst. Math. 234 (2001) 1–362.
  • [27] K. Mochizuki, Scattering theory for wave equations with dissipative terms, Publ. RIMS 12 (1976), 383-390.
  • [28] K. Nishihara, Decay properties for the damped wave equation with space dependent potential and absorbed semilinear term, Comm. Partial Differential Equations, 35 (2010), no. 8, 1402-1418.
  • [29] K. Nishihara, M. Sobajima, Y. Wakasugi, Critical exponent for the semilinear wave equations with a damping increasing in the far field, Nonlinear Differential Equations Appl., 25 (2018), no. 6, Paper No. 55, 32 pp.
  • [30] P. Radu, G. Todorova, B. Yordanov, Higher order energy decay rates for damped wave equations with variable coefficients, Discrete Contin. Dyn. Syst. Ser. S., 2 (2009), 609-629.
  • [31] P. Radu, G. Todorova, B. Yordanov, Decay estimates for wave equations with variable coefficients, Trans. Am. Math. Soc., 362 (2010), 2279-2299.
  • [32] P. Radu, G. Todorova, B. Yordanov, The generalized diffusion phenomenon and applications, SIAM J. Math. Anal., 48 (2016), 174-203.
  • [33] J. Schaeffer The equation uttΔu=|u|pu_{tt}-\Delta u=|u|^{p} for the critical value of pp, Proc. Roy. Soc. Edinburgh Sect. A. 101 (1985), no. 1-2, 31-44.
  • [34] T C. Sideris Nonexistence of global solutions to semilinear wave equations in high dimensions, J. Differential Equations, 52 (1984), no. 3, 378-406.
  • [35] W.A. Strauss Nonlinear scattering theory at low energy, J. Funct. Anal., 41 (1981), no. 1, 110-133.
  • [36] G. Todorova, B. Yordanov, Weighted L2L^{2}-estimates for dissipative wave equations with variable coefficients, J. Differential Equations, 246 (2009), 4497-4518.
  • [37] Y. Wakasugi, On diffusion phenomena for the linear wave equation with space-dependent damping, J. Hyp. Differ. Equ., 11 (2014), 795-819.
  • [38] B. Yordanov, Q.S. Zhang, Finite-time blowup for wave equations with a potential, SIAM J. Math. Anal., 36 (2005), no. 5, 1426-1433.
  • [39] B. Yordanov and Q.S. Zhang, Finite time blow up for critical wave equations in high dimensions, J. Funct. Anal., 231 (2006), 361-374.
  • [40] Y. Zhou, Cauchy problem for semi-linear wave equations in four space dimensions with small initial data, J. Differential Equations, 8 (1995), 135-144.
  • [41] Y. Zhou, Blow up of solutions to semilinear wave equations with critical exponent in high dimensions, Chin. Ann. Math. Ser. B, 28 (2007), 205-212.