This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Light neutralino dark matter in U(1)XU(1)_{X}SSM

Shu-Min Zhao1,2111zhaosm@hbu.edu.cn, Guo-Zhu Ning1,2222ninggz@hbu.edu.cn, Jing-Jing Feng1,2, Hai-Bin Zhang1,2, Tai-Fu Feng1,2,3, Xing-Xing Dong1,2 1 Department of Physics, Hebei University, Baoding 071002, China 2 Key Laboratory of High-precision Computation and Application of Quantum Field Theory of Hebei Province, Baoding 071002, China 3 Department of Physics, Chongqing University, Chongqing 401331, China
Abstract

The U(1)XU(1)_{X} extension of the minimal supersymmetric standard model(MSSM) is called as U(1)XU(1)_{X}SSM with the local gauge group SU(3)C×SU(2)L×U(1)Y×U(1)XSU(3)_{C}\times SU(2)_{L}\times U(1)_{Y}\times U(1)_{X}. U(1)XU(1)_{X}SSM has three singlet Higgs superfields beyond MSSM. In U(1)XU(1)_{X}SSM, the mass matrix of neutralino is 8×88\times 8, whose lightest mass eigenstate possesses cold dark matter characteristic. Supposing the lightest neutralino as dark matter candidate, we study the relic density. For dark matter scattering off nucleus, the cross sections including spin-independent and spin-dependent are both researched. In our numerical results, some parameter space can satisfy the constraints from the relic density and the experiments of dark matter direct detection.

dark matter, neutralino, supersymmetry

I introduction

There are several existences of dark matter in the universe, and dark matter contribution is more important than the visible matter. The earliest and the most compelling evidences for dark matter are the luminous objects that move faster than one expectsrotation1 . The other evidences for the dark matter can be found in Refs.account1 ; account2 . Besides the gravitational interaction, dark matter can take part in weak interactionOE3 . To keep the relic density of dark matter, dark matter should be stable and live long. People have paid much attention to dark matter for many years, but they have not known its mass and interaction property. The non-baryonic matter density is Ωh2=0.1186±0.0020\Omega h^{2}=0.1186\pm 0.0020 pdg , and the standard model(SM) can not explain this problem. It implies that there must be new physics beyond the SM. From the present researches, axions, sterile neutrinos, weakly interacting massive particles (WIMPs)OE3 ; WIMP etc. are dark matter candidates.

Considering the shortcoming of SM, physicists extend it and obtain a lot of extended models. In these new models, the minimal supersymmetric standard model (MSSM)MSSM is the favorite one, where the lightest neutralino can be dark matter candidateNDMMSSM . Furthermore, MSSM is also extended by people, and its U(1) extensions are interestingUMSSM1 ; UMSSM2 . In this work, we extend the MSSM with the U(1)XU(1)_{X} gauge groupU1X . On the base of MSSM, we add three right-handed neutrinos and three singlet Higgs superfields η^,η¯^,S^\hat{\eta},~{}\hat{\bar{\eta}},~{}\hat{S}. The right-handed neutrinos can not only give tiny masses to light neutrinos but also produce the lightest scalar neutrino possessing dark matter character. Our U(1)XU(1)_{X} extension of MSSM is called as U(1)XU(1)_{X}SSMSarah ; ZSMJHEP , which relieves the so called little hierarchy problem that is in the MSSM. The baryon number violating operators are avoided because the U(1)XU(1)_{X} gauge symmetry breaks spontaneously. So, the proton is stable.

In U(1)XU(1)_{X}SSM, there are the terms μH^uH^d\mu\hat{H}_{u}\hat{H}_{d} and λHS^H^uH^d\lambda_{H}\hat{S}\hat{H}_{u}\hat{H}_{d}. S^\hat{S} is the singlet Higgs superfield and possesses a non-zero VEV (vS/2v_{S}/\sqrt{2}). Therefore, U(1)XU(1)_{X}SSM has an effective μeff=μ+λHvS/2\mu_{eff}=\mu+\lambda_{H}v_{S}/\sqrt{2}, which will probably relieve the μ\mu problem. As discussed in Ref.NMSSM , one can particularly put the μ\mu term to zero by a redefinition vS2vS2μλH\frac{v_{S}}{\sqrt{2}}\rightarrow\frac{v_{S}}{\sqrt{2}}-\frac{\mu}{\lambda_{H}}. The singlet SS can improve the lightest CP-even Higgs mass at tree level. Then large loop corrections to the 125 GeV Higgs mass are not necessary. SS can also make the second light neutral CP-even Higgs heavy at TeV order. This can easily satisfy the constraints for heavy Higgs from experiments(such as LHC). If we delete S, the second light neutral CP-even Higgs is light, whose mass varies from 150 GeV to 400 GeV. Considering the limit for the heavy neutral CP-even Higgs, we should make the second light neutral CP-even Higgs heavier. The singlet SS can produce this effect.

In our previous workZSMJHEP , the lightest CP-even scalar neutrino is supposed as dark matter candidate in the framework of U(1)XU(1)_{X}SSM. Its relic density and the cross section scattering from nucleus have been researched in detail. Some works of scalar neutrino dark matter can be found in Refs.Sneudark1 ; Sneudark2 ; CJJSN ; SND . Here, we study the lightest neutralino as dark matter candidateNDMEMSSM . In the base of the neutral bino (B~\tilde{B}), wino (W~0\tilde{W}^{0}) and higgsinos (H~d0,H~u0\tilde{H}^{0}_{d},\tilde{H}^{0}_{u}), the neutralino mass eigenstates in the MSSM has the parameters tanβ,M1,M2\tan\beta,~{}M_{1},~{}M_{2} and μ\mu. The lower limit on the lightest neutralino χ10\chi^{0}_{1} mass is about 46 GeV, which can be derived from the Large Electron Positron (LEP) chargino mass limitDELP . While, this limit increases to well above 100 GeV, in the constrained MSSM (cMSSM)cMSSM . In pMSSM, the authors research the lightest neutralino below 50 GeV satisfying the constraints from LHC and XENON100pMSSM . Many people have studied the phenomenology of lightest neutralino in MSSMNDMMSSM and there are a lot of works of neutralino dark matter in several models. They enrich the dark matter research and give light to the direct research of dark matter.

After this introduction, some content of U(1)XU(1)_{X}SSM is introduced in section II. In section III, we suppose the lightest neutralino as a dark matter candidate and we study its relic density. The direct detection of the lightest neutralino scattering off nuclei is reseached in section IV, which includes both the spin-independent cross section and spin-dependent cross section. The numerical results of the relic density and cross sections of dark matter scattering are all calculated in section V. We give our discussion and conclusion in section VI. Some formulae are collected in the appendix.

II the U(1)XU(1)_{X}SSM

Extending the local gauge group from SU(3)CSU(2)LU(1)YSU(3)_{C}\otimes SU(2)_{L}\otimes U(1)_{Y} to SU(3)CSU(2)LU(1)YU(1)XSU(3)_{C}\otimes SU(2)_{L}\otimes U(1)_{Y}\otimes U(1)_{X} and adding three Higgs singlets η^,η¯^,S^\hat{\eta},~{}\hat{\bar{\eta}},~{}\hat{S}, right-handed neutrinos ν^i\hat{\nu}_{i} to MSSM, one can obtain U(1)XU(1)_{X}SSMZSMJHEP . The introduction of right-handed neutrinos can explain the neutrino experiments. The mass squared matrix of CP-even Higgs is 5×55\times 5, because the CP-even parts of η,η¯,S\eta,~{}\bar{\eta},~{}S mix with the neutral CP-even parts of Hu,HdH_{u},~{}H_{d}. We take into account the one loop corrections for the lightest CP-even Higgs with 125 GeV. The condition is similar for the CP-odd Higgs, whose mass squared matrix is also 5×55\times 5. The sneutrinos are departed into CP-even sneutrinos and CP-odd sneutrinos, whose mass squared matrixes are both 6×66\times 6. Here, we show the U(1)XU(1)_{X} charges of the MSSM superfields: Q^i(0)\hat{Q}_{i}(0), u^ic(12)\hat{u}^{c}_{i}(-\frac{1}{2}), d^ic(12)\hat{d}^{c}_{i}(\frac{1}{2}), L^i(0)\hat{L}_{i}(0), e^ic(12)\hat{e}^{c}_{i}(\frac{1}{2}), H^u(12)\hat{H}_{u}(\frac{1}{2}), H^d(12)\hat{H}_{d}(-\frac{1}{2}). In table I, the superfields beyond MSSM are collected in detail.

Table 1: The U(1)XU(1)_{X}SSM superfields beyond MSSM
Superfields SU(3)CSU(3)_{C} SU(2)LSU(2)_{L} U(1)YU(1)_{Y} U(1)XU(1)_{X}
ν^i\hat{\nu}_{i} 1 1 0 -1/21/2
η^\hat{\eta} 1 1 0 -1
η¯^\hat{\bar{\eta}} 1 1 0 1
S^\hat{S} 1 1 0 0

The concrete forms of the Higgs superfields are

Hu=(Hu+12(vu+Hu0+iPu0)),Hd=(12(vd+Hd0+iPd0)Hd),\displaystyle H_{u}=\left(\begin{array}[]{c}H_{u}^{+}\\ {1\over\sqrt{2}}\Big{(}v_{u}+H_{u}^{0}+iP_{u}^{0}\Big{)}\end{array}\right),~{}~{}~{}~{}~{}~{}H_{d}=\left(\begin{array}[]{c}{1\over\sqrt{2}}\Big{(}v_{d}+H_{d}^{0}+iP_{d}^{0}\Big{)}\\ H_{d}^{-}\end{array}\right), (5)
η=12(vη+ϕη0+iPη0),η¯=12(vη¯+ϕη¯0+iPη¯0),\displaystyle\eta={1\over\sqrt{2}}\Big{(}v_{\eta}+\phi_{\eta}^{0}+iP_{\eta}^{0}\Big{)},~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}\bar{\eta}={1\over\sqrt{2}}\Big{(}v_{\bar{\eta}}+\phi_{\bar{\eta}}^{0}+iP_{\bar{\eta}}^{0}\Big{)},
S=12(vS+ϕS0+iPS0).\displaystyle\hskip 113.81102ptS={1\over\sqrt{2}}\Big{(}v_{S}+\phi_{S}^{0}+iP_{S}^{0}\Big{)}. (6)

vuv_{u} and vdv_{d} are the VEVs of the Higgs doublets HuH_{u} and HdH_{d}. While, vηv_{\eta}vη¯v_{\bar{\eta}} and vSv_{S} are the VEVs of the Higgs singlets η\eta, η¯\bar{\eta} and SS. The angles β\beta and βη\beta_{\eta} are defined as tanβ=vu/vd\tan\beta=v_{u}/v_{d} and tanβη=vη¯/vη\tan\beta_{\eta}=v_{\bar{\eta}}/v_{\eta}.

The sneutrino fields ν~L\tilde{\nu}_{L} and ν~R\tilde{\nu}_{R} read as

ν~L=12ϕl+i2σl,ν~R=12ϕR+i2σR.\displaystyle\tilde{\nu}_{L}=\frac{1}{\sqrt{2}}\phi_{l}+\frac{i}{\sqrt{2}}\sigma_{l},~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}\tilde{\nu}_{R}=\frac{1}{\sqrt{2}}\phi_{R}+\frac{i}{\sqrt{2}}\sigma_{R}. (7)

We show the superpotential and the soft breaking terms in U(1)XU(1)_{X}SSM

W=lWS^+μH^uH^d+MSS^S^Ydd^q^H^dYee^l^H^d+λHS^H^uH^d\displaystyle W=l_{W}\hat{S}+\mu\hat{H}_{u}\hat{H}_{d}+M_{S}\hat{S}\hat{S}-Y_{d}\hat{d}\hat{q}\hat{H}_{d}-Y_{e}\hat{e}\hat{l}\hat{H}_{d}+\lambda_{H}\hat{S}\hat{H}_{u}\hat{H}_{d}
+λCS^η^η¯^+κ3S^S^S^+Yuu^q^H^u+YXν^η¯^ν^+Yνν^l^H^u+μηη^η¯^.\displaystyle\hskip 28.45274pt+\lambda_{C}\hat{S}\hat{\eta}\hat{\bar{\eta}}+\frac{\kappa}{3}\hat{S}\hat{S}\hat{S}+Y_{u}\hat{u}\hat{q}\hat{H}_{u}+Y_{X}\hat{\nu}\hat{\bar{\eta}}\hat{\nu}+Y_{\nu}\hat{\nu}\hat{l}\hat{H}_{u}+\mu_{\eta}\hat{\eta}\hat{\bar{\eta}}.
soft=softMSSMBSS2LSSTκ3S3TλCSηη¯+ϵijTλHSHdiHuj\displaystyle\mathcal{L}_{soft}=\mathcal{L}_{soft}^{MSSM}-B_{S}S^{2}-L_{S}S-\frac{T_{\kappa}}{3}S^{3}-T_{\lambda_{C}}S\eta\bar{\eta}+\epsilon_{ij}T_{\lambda_{H}}SH_{d}^{i}H_{u}^{j}
TXIJη¯ν~RIν~RJ+ϵijTνIJHuiν~RIl~jJmη2|η|2mη¯2|η¯|2mS2S2\displaystyle\hskip 28.45274pt-T_{X}^{IJ}\bar{\eta}\tilde{\nu}_{R}^{*I}\tilde{\nu}_{R}^{*J}+\epsilon_{ij}T^{IJ}_{\nu}H_{u}^{i}\tilde{\nu}_{R}^{I*}\tilde{l}_{j}^{J}-m_{\eta}^{2}|\eta|^{2}-m_{\bar{\eta}}^{2}|\bar{\eta}|^{2}-m_{S}^{2}S^{2}
(mν~R2)IJν~RIν~RJ12(MXλX~2+2MBBλB~λX~)+h.c.\displaystyle\hskip 28.45274pt-(m_{\tilde{\nu}_{R}}^{2})^{IJ}\tilde{\nu}_{R}^{I*}\tilde{\nu}_{R}^{J}-\frac{1}{2}\Big{(}M_{X}\lambda^{2}_{\tilde{X}}+2M_{BB^{\prime}}\lambda_{\tilde{B}}\lambda_{\tilde{X}}\Big{)}+h.c. (8)

Here, softMSSM\mathcal{L}_{soft}^{MSSM} represents the soft breaking terms of MSSM. Obviously, the U(1)XU(1)_{X}SSM is more complicated than the MSSM. In our previous work, YYY^{Y} represents the U(1)YU(1)_{Y} charge and YXY^{X} denotes the U(1)XU(1)_{X} charge. We have proven that U(1)XU(1)_{X}SSM is anomaly free, and the details can be found in Ref.ZSMJHEP . In U(1)XU(1)_{X}SSM, there are two Abelian groups U(1)YU(1)_{Y} and U(1)XU(1)_{X}, which cause the gauge kinetic mixing. This effect is the characteristic beyond MSSM and it can also be induced through RGEs.

We write the covariant derivatives of U(1)XU(1)_{X}SSM in the general form

Dμ=μi(YY,YX)(gY,gYXgXY,gX)(AμYAμX),\displaystyle D_{\mu}=\partial_{\mu}-i\left(\begin{array}[]{cc}Y^{Y},&Y^{X}\end{array}\right)\left(\begin{array}[]{cc}g_{Y},&g_{{YX}}^{{}^{\prime}}\\ g_{{XY}}^{{}^{\prime}},&g_{{X}}^{{}^{\prime}}\end{array}\right)\left(\begin{array}[]{c}A_{\mu}^{\prime Y}\\ A_{\mu}^{\prime X}\end{array}\right)\;, (14)

with AμYA_{\mu}^{\prime Y} (AμXA^{\prime X}_{\mu}) denotes the gauge field of U(1)YU(1)_{Y} (U(1)XU(1)_{X}). Considering the fact that the two Abelian gauge groups are unbroken, we change the basis through a correct matrix RR and redefine the U(1)U(1) gauge fields

(gY,gYXgXY,gX)RT=(g1,gYX0,gX),R(AμYAμX)=(AμYAμX).\displaystyle\left(\begin{array}[]{cc}g_{Y},&g_{{YX}}^{{}^{\prime}}\\ g_{{XY}}^{{}^{\prime}},&g_{{X}}^{{}^{\prime}}\end{array}\right)R^{T}=\left(\begin{array}[]{cc}g_{1},&g_{{YX}}\\ 0,&g_{{X}}\end{array}\right)\;,~{}~{}~{}~{}~{}R\left(\begin{array}[]{c}A_{\mu}^{\prime Y}\\ A_{\mu}^{\prime X}\end{array}\right)=\left(\begin{array}[]{c}A_{\mu}^{Y}\\ A_{\mu}^{X}\end{array}\right)\;. (23)

Different from MSSM, the U(1)XU(1)_{X}SSM gauge bosons AμX,AμYA^{X}_{\mu},~{}A^{Y}_{\mu} and Vμ3V^{3}_{\mu} mix together at the tree level. In the basis (AμY,Vμ3,AμX)(A^{Y}_{\mu},V^{3}_{\mu},A^{X}_{\mu}), the corresponding mass matrix reads as

(18g12v218g1g2v218g1gYXv218g1g2v218g22v218g2gYXv218g1gYXv218g2gYXv218gYX2v2+18gX2ξ2),\displaystyle\left(\begin{array}[]{*{20}{c}}\frac{1}{8}g_{1}^{2}v^{2}&~{}~{}~{}-\frac{1}{8}g_{1}g_{2}v^{2}&~{}~{}~{}\frac{1}{8}g_{1}g_{{YX}}v^{2}\\ -\frac{1}{8}g_{1}g_{2}v^{2}&~{}~{}~{}\frac{1}{8}g_{2}^{2}v^{2}&~{}~{}~{}~{}-\frac{1}{8}g_{2}g_{{YX}}v^{2}\\ \frac{1}{8}g_{1}g_{{YX}}v^{2}&~{}~{}~{}-\frac{1}{8}g_{2}g_{{YX}}v^{2}&~{}~{}~{}~{}\frac{1}{8}g_{{YX}}^{2}v^{2}+\frac{1}{8}g_{{X}}^{2}\xi^{2}\end{array}\right), (27)

with v2=vu2+vd2v^{2}=v_{u}^{2}+v_{d}^{2} and ξ2=vη2+vη¯2\xi^{2}=v_{\eta}^{2}+v_{\bar{\eta}}^{2}. One can diagonalize the above mass matrix by an unitary matrix including two mixing angles θW\theta_{W} and θW\theta_{W}^{\prime}. θW\theta_{W} is Weinberg angle and θW\theta_{W}^{\prime} is defined as

sin2θW=12(gYX2g12g22)v2+4gX2ξ22(gYX2+g12+g22)2v4+8gX2(gYX2g12g22)v2ξ2+16gX4ξ4.\displaystyle\sin^{2}\theta_{W}^{\prime}=\frac{1}{2}-\frac{(g_{{YX}}^{2}-g_{1}^{2}-g_{2}^{2})v^{2}+4g_{X}^{2}\xi^{2}}{2\sqrt{(g_{{YX}}^{2}+g_{1}^{2}+g_{2}^{2})^{2}v^{4}+8g_{X}^{2}(g_{{YX}}^{2}-g_{1}^{2}-g_{2}^{2})v^{2}\xi^{2}+16g_{X}^{4}\xi^{4}}}. (28)

The lightest neutralino is supposed as dark matter candidate, and we obtain the mass matrix of neutralino in the basis (λB~,W~0,H~d0,H~u0,λX~,η~,η¯~,s~)(\lambda_{\tilde{B}},\tilde{W}^{0},\tilde{H}_{d}^{0},\tilde{H}_{u}^{0},\lambda_{\tilde{X}},\tilde{\eta},\tilde{\bar{\eta}},\tilde{s}). This is caused by the super partners of the added three Higgs singlets and new gauge boson, which mix with the MSSM neutralino superfields.

Mχ~0=(𝒜T𝒞).\displaystyle M_{\tilde{\chi}^{0}}=\left(\begin{array}[]{cc}\mathcal{A}&\mathcal{B}\\ \mathcal{B}^{T}&\mathcal{C}\end{array}\right). (31)

The concrete forms of 𝒜\mathcal{A}, \mathcal{B} and 𝒞\mathcal{C} are

𝒜=(M10g12vdg12vu0M212g2vd12g2vug12vd12g2vd0mH~u0H~d0g12vu12g2vumH~d0H~u00),=(MBB0000000mλX~H~d000λHvu2mλX~H~u000λHvd2),\mathcal{A}=\left(\begin{array}[]{cccc}M_{1}&0&-\frac{g_{1}}{2}v_{d}&\frac{g_{1}}{2}v_{u}\\ 0&M_{2}&\frac{1}{2}g_{2}v_{d}&-\frac{1}{2}g_{2}v_{u}\\ -\frac{g_{1}}{2}v_{d}&\frac{1}{2}g_{2}v_{d}&0&m_{\tilde{H}_{u}^{0}\tilde{H}_{d}^{0}}\\ \frac{g_{1}}{2}v_{u}&-\frac{1}{2}g_{2}v_{u}&m_{\tilde{H}_{d}^{0}\tilde{H}_{u}^{0}}&0\end{array}\right),~{}~{}~{}~{}~{}\mathcal{B}=\left(\begin{array}[]{cccc}{M}_{BB^{\prime}}&0&0&0\\ 0&0&0&0\\ m_{\lambda_{\tilde{X}}\tilde{H}_{d}^{0}}&0&0&-\frac{{\lambda}_{H}v_{u}}{\sqrt{2}}\\ m_{\lambda_{\tilde{X}}\tilde{H}_{u}^{0}}&0&0&-\frac{{\lambda}_{H}v_{d}}{\sqrt{2}}\end{array}\right), (32)
𝒞=(MBLgXvηgXvη¯0gXvη012λCvS+μη12λCvη¯gXvη¯12λCvS+μη012λCvη012λCvη¯12λCvηms~s~),\mathcal{C}=\left(\begin{array}[]{cccc}{M}_{BL}&-g_{X}v_{\eta}&g_{X}v_{\bar{\eta}}&0\\ -g_{X}v_{\eta}&0&\frac{1}{\sqrt{2}}{\lambda}_{C}v_{S}+\mu_{\eta}&\frac{1}{\sqrt{2}}{\lambda}_{C}v_{\bar{\eta}}\\ g_{X}v_{\bar{\eta}}&\frac{1}{\sqrt{2}}{\lambda}_{C}v_{S}+\mu_{\eta}&0&\frac{1}{\sqrt{2}}{\lambda}_{C}v_{\eta}\\ 0&\frac{1}{\sqrt{2}}{\lambda}_{C}v_{\bar{\eta}}&\frac{1}{\sqrt{2}}{\lambda}_{C}v_{\eta}&m_{\tilde{s}\tilde{s}}\end{array}\right), (33)
mH~d0H~u0=12λHvSμ,mH~d0λX~=12(gYX+gX)vd,\displaystyle m_{\tilde{H}_{d}^{0}\tilde{H}_{u}^{0}}=-\frac{1}{\sqrt{2}}{\lambda}_{H}v_{S}-\mu,~{}~{}~{}~{}~{}~{}~{}m_{\tilde{H}_{d}^{0}\lambda_{\tilde{X}}}=-\frac{1}{2}\Big{(}g_{YX}+g_{X}\Big{)}v_{d},
mH~u0λX~=12(gYX+gX)vu,ms~s~=2MS+2κvS.\displaystyle m_{\tilde{H}_{u}^{0}\lambda_{\tilde{X}}}=\frac{1}{2}\Big{(}g_{YX}+g_{X}\Big{)}v_{u},~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}m_{\tilde{s}\tilde{s}}=2M_{S}+\sqrt{2}\kappa v_{S}. (34)

This matrix is diagonalized by NN

NMχ~0N=Mχ~0diag.N^{*}M_{\tilde{\chi}^{0}}N^{\dagger}=M^{diag}_{\tilde{\chi}^{0}}. (35)

It is too difficult to obtain exactly the analytic forms of the eigenvalues, eigenvectors and N for Mχ~0M_{\tilde{\chi}^{0}}. With some supposition, we can deduce the lightest neutralino mass and eigenvector approximately. Comparing with 𝒜\mathcal{A} and 𝒞\mathcal{C}, the matrix \mathcal{B} is very small. In this condition, we can use ZNTZ_{N}^{T} to simplify Mχ~0M_{\tilde{\chi}^{0}} with matrix ζ\zeta, whose elements are all small parameters of the order /𝒜\mathcal{B}/\mathcal{A}.

ZNT=(112ζTζζTζ112ζζT),ZNT.Mχ~0.ZN=(𝒦100𝒦2),\displaystyle Z_{N}^{T}=\left(\begin{array}[]{cc}1-\frac{1}{2}\zeta^{T}\zeta&-\zeta^{T}\\ \zeta&1-\frac{1}{2}\zeta\zeta^{T}\end{array}\right),~{}~{}~{}~{}~{}~{}Z_{N}^{T}.M_{\tilde{\chi}^{0}}.Z_{N}={\small\left(\begin{array}[]{cc}\mathcal{K}_{1}&0\\ 0&\mathcal{K}_{2}\end{array}\right)}, (40)
𝒦1=𝒜12(ζTζ𝒜+𝒜ζTζ)ζTTζ+ζT𝒞ζ,\displaystyle\mathcal{K}_{1}=\mathcal{A}-\frac{1}{2}(\zeta^{T}\zeta\mathcal{A}+\mathcal{A}\zeta^{T}\zeta)-\zeta^{T}\mathcal{B}^{T}-\mathcal{B}\zeta+\zeta^{T}\mathcal{C}\zeta,
𝒦2=ζ𝒜ζT+TζT+ζ+𝒞12(ζζT𝒞+𝒞ζζT).\displaystyle\mathcal{K}_{2}=\zeta\mathcal{A}\zeta^{T}+\mathcal{B}^{T}\zeta^{T}+\zeta\mathcal{B}+\mathcal{C}-\frac{1}{2}(\zeta\zeta^{T}\mathcal{C}+\mathcal{C}\zeta\zeta^{T}). (41)

ζT\zeta^{T} can be calculated from the equation 𝒜ζT+ζT𝒞=0\mathcal{A}\zeta^{T}+\mathcal{B}-\zeta^{T}\mathcal{C}=0. If we take the simplest approximation, it is

ZNT.Mχ~0.ZN(𝒜00𝒞).\displaystyle Z_{N}^{T}.M_{\tilde{\chi}^{0}}.Z_{N}\sim\left(\begin{array}[]{cc}\mathcal{A}&0\\ 0&\mathcal{C}\end{array}\right). (44)

In this work, we suppose the lightest neutralino mχ10m_{\chi^{0}_{1}} is different from the MSSM condition, that is to say mχ10m_{\chi^{0}_{1}} dominantly comes from the matrix 𝒞\mathcal{C} and MSSM neutralinos in the matrix 𝒜\mathcal{A} are heavy. Therefore, we calculate the mass eigenstates of 𝒞\mathcal{C}, which is tedious to solve the common quartic equation with one unknown quantity. Considering the constraint that tanβη\tan\beta_{\eta} is near 1, we use sm=vη¯vηs_{m}=v_{\bar{\eta}}-v_{\eta} with the relation vηsmv_{\eta}\gg s_{m}. So, 𝒞\mathcal{C} turns to

𝒞=(MBLgXvηgXvη+gXsm0gXvη0λCvS+μηλCvη+λCsmgXvη+gXsmλCvS+μη0λCvη0λCvη+λCsmλCvηms~s~),\displaystyle\mathcal{C}=\left(\begin{array}[]{cccc}M_{BL}&-g_{X}v_{\eta}&g_{X}v_{\eta}+g_{X}s_{m}&0\\ -g_{X}v_{\eta}&0&\lambda_{C}^{\prime}v_{S}+\mu_{\eta}&\lambda_{C}^{\prime}v_{\eta}+\lambda_{C}^{\prime}s_{m}\\ g_{X}v_{\eta}+g_{X}s_{m}&\lambda_{C}^{\prime}v_{S}+\mu_{\eta}&0&\lambda_{C}^{\prime}v_{\eta}\\ 0&\lambda_{C}^{\prime}v_{\eta}+\lambda_{C}^{\prime}s_{m}&\lambda_{C}^{\prime}v_{\eta}&m_{\tilde{s}\tilde{s}}\end{array}\right), (49)

with λC=λC/2\lambda_{C}^{\prime}=\lambda_{C}/\sqrt{2}.

The eigenvalues of 𝒞\mathcal{C} are deduced to the leading order according to the small parameter sms_{m}.

mχa0(0)=12(MBLλCvSμη+8gX2vη2+(λCvS+μη+MBL)2),\displaystyle m_{\chi^{0}_{a}}^{(0)}=\frac{1}{2}\left(M_{BL}-\lambda_{C}^{\prime}v_{S}-\mu_{\eta}+\sqrt{8g_{X}^{2}v_{\eta}^{2}+(\lambda_{C}^{\prime}v_{S}+\mu_{\eta}+M_{BL})^{2}}\right),
mχb0(0)=12(MBL+λCvS+μη+8gX2vη2+(λCvS+μη+MBL)2),\displaystyle m_{\chi^{0}_{b}}^{(0)}=\frac{1}{2}\left(-M_{BL}+\lambda_{C}^{\prime}v_{S}+\mu_{\eta}+\sqrt{8g_{X}^{2}v_{\eta}^{2}+(\lambda_{C}^{\prime}v_{S}+\mu_{\eta}+M_{BL})^{2}}\right),
mχc0(0)=12(λCvS+μη+ms~s~+8(λC)2vη2+(ms~s~λCvSμη)2),\displaystyle m_{\chi^{0}_{c}}^{(0)}=\frac{1}{2}\left(\lambda_{C}^{\prime}v_{S}+\mu_{\eta}+m_{\tilde{s}\tilde{s}}+\sqrt{8(\lambda_{C}^{\prime})^{2}v_{\eta}^{2}+(m_{\tilde{s}\tilde{s}}-\lambda_{C}^{\prime}v_{S}-\mu_{\eta})^{2}}\right),
mχd0(0)=12(λCvS+μη+ms~s~8(λC)2vη2+(ms~s~λCvSμη)2).\displaystyle m_{\chi^{0}_{d}}^{(0)}=\frac{1}{2}\left(\lambda_{C}^{\prime}v_{S}+\mu_{\eta}+m_{\tilde{s}\tilde{s}}-\sqrt{8(\lambda_{C}^{\prime})^{2}v_{\eta}^{2}+(m_{\tilde{s}\tilde{s}}-\lambda_{C}^{\prime}v_{S}-\mu_{\eta})^{2}}\right). (50)

We take MBLM_{BL} and ms~s~m_{\tilde{s}\tilde{s}} are both positive parameters. To satisfy the constraint from mZm_{Z^{\prime}}, vηv_{\eta} is large and bigger than vSv_{S}. So it is easy to see that mχa0m_{\chi^{0}_{a}} and mχc0m_{\chi^{0}_{c}} are large values. Using ms~s~MBLm_{\tilde{s}\tilde{s}}\gg M_{BL} and μη\mu_{\eta}, mχd0m_{\chi^{0}_{d}} is smaller than mχb0m_{\chi^{0}_{b}}, so mχd0m_{\chi^{0}_{d}} is the lightest neutralino mass mχ10m_{\chi^{0}_{1}}. For the lightest neutralino mass, we consider the correction at the order sms_{m}.

mχd0(1)=2(λC)2smvη8(λC)2vη2+(ms~s~λCvSμη)2.\displaystyle m_{\chi^{0}_{d}}^{(1)}=-\frac{2(\lambda_{C}^{\prime})^{2}s_{m}v_{\eta}}{\sqrt{8(\lambda_{C}^{\prime})^{2}v_{\eta}^{2}+(m_{\tilde{s}\tilde{s}}-\lambda_{C}^{\prime}v_{S}-\mu_{\eta})^{2}}}. (51)

At the leading order, the eigenvector of mχd0m_{\chi^{0}_{d}} is

Vχd0(0)=12+a02(0,1,1,a0)(0,12,12,0),\displaystyle V^{(0)}_{\chi^{0}_{d}}=\frac{1}{\sqrt{2+a_{0}^{2}}}\Big{(}0,1,1,a_{0}\Big{)}\sim\Big{(}0,\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}},0\Big{)},
a0=4(λC)vηλCvS+μηms~s~8(λC)2vη2+(ms~s~λCvSμη)2.\displaystyle a_{0}=\frac{4(\lambda_{C}^{\prime})v_{\eta}}{\lambda_{C}^{\prime}v_{S}+\mu_{\eta}-m_{\tilde{s}\tilde{s}}-\sqrt{8(\lambda_{C}^{\prime})^{2}v_{\eta}^{2}+(m_{\tilde{s}\tilde{s}}-\lambda_{C}^{\prime}v_{S}-\mu_{\eta})^{2}}}. (52)

Here, a0a_{0} is a small parameter. The sms_{m} correction to eigenvector Vχd0(0)V^{(0)}_{\chi^{0}_{d}} is Vχd0(1)V^{(1)}_{\chi^{0}_{d}}

Vχd0(1)=smvη1b12+c12(0,0,b1,c1),\displaystyle V^{(1)}_{\chi^{0}_{d}}=\frac{s_{m}}{v_{\eta}}\frac{1}{\sqrt{b_{1}^{2}+c_{1}^{2}}}\Big{(}0,~{}0,~{}b_{1},~{}c_{1}\Big{)},
b1=8(λC)2vη2+ms~s~2+ms~s~4λCvη,c1=12(ms~s~8(λC)2vη2+ms~s~21).\displaystyle b_{1}=\frac{\sqrt{8(\lambda_{C}^{\prime})^{2}v_{\eta}^{2}+m_{\tilde{s}\tilde{s}}^{2}}+m_{\tilde{s}\tilde{s}}}{4\lambda_{C}^{\prime}v_{\eta}},~{}~{}~{}c_{1}=\frac{1}{2}\Big{(}\frac{m_{\tilde{s}\tilde{s}}}{\sqrt{8(\lambda_{C}^{\prime})^{2}v_{\eta}^{2}+m_{\tilde{s}\tilde{s}}^{2}}}-1\Big{)}. (53)

c1c_{1} is much smaller than b1b_{1}, then Vχd0(1)V^{(1)}_{\chi^{0}_{d}} can be simplified as

Vχd0(1)smvη(0,0,1,0).\displaystyle V^{(1)}_{\chi^{0}_{d}}\sim\frac{s_{m}}{v_{\eta}}\Big{(}0,~{}0,~{}1,~{}0\Big{)}. (54)

In the whole, the eigenvector of the lightest neutralino is dominatly composed by the linear combination of η~\tilde{\eta} and η¯~\tilde{\bar{\eta}}.

In the MSSM, the lightest CP-even Higgs mass at tree level is no more than 90 GeV, and the loop corrections to the lightest CP-even Higgs mass can be large. Including the leading-log radiative corrections from stop and top particles higgsOL , we write the mass of the lightest CP-even Higgs boson in the following form

mh=(mh10)2+Δmh2.\displaystyle m_{h}=\sqrt{(m_{h_{1}}^{0})^{2}+\Delta m_{h}^{2}}. (55)

Here, mh10m_{h_{1}}^{0} represents the lightest Higgs boson mass at tree level and Δmh2\Delta m_{h}^{2} is shown analytically

Δmh2=3mt42πv2[(t~+12+X~t)+116π2(3mt22v232πα3)(t~2+X~tt~)],\displaystyle\Delta m_{h}^{2}=\frac{3m_{t}^{4}}{2\pi v^{2}}\Big{[}\Big{(}\tilde{t}+\frac{1}{2}+\tilde{X}_{t}\Big{)}+\frac{1}{16\pi^{2}}\Big{(}\frac{3m_{t}^{2}}{2v^{2}}-32\pi\alpha_{3}\Big{)}\Big{(}\tilde{t}^{2}+\tilde{X}_{t}\tilde{t}\Big{)}\Big{]},
t~=logMT~2mt2,X~t=2A~t2MT~2(1A~t212MT~2),\displaystyle\tilde{t}=\log\frac{M_{\tilde{T}}^{2}}{m_{t}^{2}},\qquad\;\tilde{X}_{t}=\frac{2\tilde{A}_{t}^{2}}{M_{\tilde{T}}^{2}}\Big{(}1-\frac{\tilde{A}_{t}^{2}}{12M_{\tilde{T}}^{2}}\Big{)}, (56)

with α3\alpha_{3} denoting the strong coupling constant. The parameter A~t\tilde{A}_{t} is A~t=Atμcotβ\tilde{A}_{t}=A_{t}-\mu\cot\beta with AtA_{t} representing the trilinear Higgs stop coupling. MT~=mt~1mt~2M_{\tilde{T}}=\sqrt{m_{\tilde{t}_{1}}m_{\tilde{t}_{2}}} and mt~1,2m_{\tilde{t}_{1,2}} are the stop masses. To save space in the text, other used couplings are collected in the appendix.

III relic density

Supposing the lightest neutralino(χ10\chi^{0}_{1}) as dark matter candidate, we calculate the relic density. The constraint of dark matter relic density is severe, and the concrete value is ΩDh2=0.1186±0.0020\Omega_{D}h^{2}=0.1186\pm 0.0020 pdg . The χ10\chi^{0}_{1} number density nχ10n_{\chi^{0}_{1}} should satisfy the Boltzmann equation boltzmann ; XFBO1

dnχ10dt=3Hnχ10σvSA(nχ102nχ10eq2)σvCA(nχ10nϕnχ10eqnϕeq).\displaystyle\frac{dn_{\chi^{0}_{1}}}{dt}=-3Hn_{\chi^{0}_{1}}-\langle\sigma v\rangle_{SA}(n^{2}_{\chi^{0}_{1}}-n^{2}_{\chi^{0}_{1}eq})-\langle\sigma v\rangle_{CA}(n_{\chi^{0}_{1}}n_{\phi}-n_{\chi^{0}_{1}eq}n_{\phi eq}). (57)

For χ10\chi^{0}_{1}, we take into account self-annihilation and co-annihilation with another particle ϕ\phi. At the temperature TFT_{F}, the annihilation rate of χ10\chi^{0}_{1} is approximately equal to the Hubble expansion rate, and the lightest neutralino freezes out. We suppose χ10\chi^{0}_{1} is the lightest SUSY particle and mϕm_{\phi} is larger than mχ10m_{\chi^{0}_{1}}. The relevant formulae are ExpYD

σvSAnχ10+σvCAnϕH(TF),\displaystyle\langle\sigma v\rangle_{SA}n_{\chi^{0}_{1}}+\langle\sigma v\rangle_{CA}n_{\phi}\sim H(T_{F}),
nϕ=(mϕmχ10)3/2Exp[(mχ10mϕ)/T]nχ10\displaystyle n_{\phi}=\Big{(}\frac{m_{\phi}}{m_{\chi^{0}_{1}}}\Big{)}^{3/2}\texttt{Exp}[(m_{\chi^{0}_{1}}-m_{\phi})/T]n_{\chi^{0}_{1}}
[σvSA+σvCA(mϕmχ10)3/2Exp[(mχ10mϕ)/T]]nχ10H(TF).\displaystyle\Big{[}\langle\sigma v\rangle_{SA}+\langle\sigma v\rangle_{CA}\Big{(}\frac{m_{\phi}}{m_{\chi^{0}_{1}}}\Big{)}^{3/2}\texttt{Exp}[(m_{\chi^{0}_{1}}-m_{\phi})/T]\Big{]}n_{\chi^{0}_{1}}\sim H(T_{F}). (58)

After we study the self-annihilation cross section σ(χ10χ10\sigma(\chi^{0}_{1}\chi^{0}_{1}\rightarrow anything) and co-annihilation cross section σ(χ10ϕ\sigma(\chi^{0}_{1}\phi\rightarrow anything), σvSA\langle\sigma v\rangle_{SA} and σvCA\langle\sigma v\rangle_{CA} are gotten. The annihilation results can be written as σvrel=a+bvrel2\sigma v_{rel}=a+bv_{rel}^{2} in the mass center frame. Here, vrelv_{rel} is the relative velocity of the two particles in the initial states. Using the following formula, we can approximately calculate the freeze-out temperature (TFT_{F})NDMMSSM ; XFCW ; XFBO1

xF=mχ10TFln[0.076MPlmχ10(a+6b/xF)gxF],\displaystyle x_{F}=\frac{m_{\chi_{1}^{0}}}{T_{F}}\simeq\ln[\frac{0.076M_{Pl}m_{\chi_{1}^{0}}(a+6b/x_{F})}{\sqrt{g_{*}x_{F}}}], (59)

with MPlM_{Pl} denoting the Planck mass.

The relativistic degrees of freedom with mass less than TFT_{F} is represented by gg_{*}. The cold non-baryonic dark matter density is simplified in the following formrotation1 ; XFBO1 ; zhaosm .

ΩDh21.07×109xFgMPL(a+3b/xF)GeV.\displaystyle\Omega_{D}h^{2}\simeq\frac{1.07\times 10^{9}x_{F}}{\sqrt{g_{*}}M_{PL}(a+3b/x_{F})~{}\rm{GeV}}\;. (60)

It is well known that, the self-annihilation processes are dominant in general condition. We show the researched concrete self-annihilation processes: χ10+χ10A+B\chi^{0}_{1}+\chi^{0}_{1}\rightarrow A+B, A and B represent final states (Z,h),(W,W),(Z,Z),(h,h),(u¯i,ui),(d¯i,di),(l¯i,li),(ν¯i,νi)(Z,~{}h),~{}(W,~{}W),~{}(Z,~{}Z),~{}(h,~{}h),~{}(\bar{u}_{i},u_{i}),~{}(\bar{d}_{i},~{}d_{i}),~{}(\bar{l}_{i},~{}l_{i}),~{}(\bar{\nu}_{i},~{}\nu_{i}). Here i=1,2,3i=1,~{}2,~{}3 and hh represents the lightest CP-even Higgs. The neutrinos in final state are just three light neutrinos not including heavy neutrinos.

For co-annihilation processes, if the mass of another particle is almost equal to the mass of χ10\chi^{0}_{1}, they give considerable contributions to the annihilation cross section.

a. The lightest neutralino χ10\chi^{0}_{1} annihilates with heavier neutralinos χk0(k=28)\chi^{0}_{k}(k=2\dots 8), whose final states are same as those produced by self-annihilation processes.

b. χ10+χ{(ν,l),(u¯,d),(W,Z),(W,γ),(W,h0)}\chi^{0}_{1}+\chi^{-}\rightarrow\{(\nu,l^{-}),(\bar{u},d),(W^{-},Z),(W^{-},\gamma),(W^{-},h^{0})\}. The corresponding processes are obtained by the charge conjugate transformation.

c. χ10+L~{(γ,l),(Z,l),(h0,l)}\chi^{0}_{1}+\tilde{L}^{-}\rightarrow\{(\gamma,l^{-}),(Z,l^{-}),(h^{0},l^{-})\}. Similar as the condition b, condition c also has charge conjugate processes.

d. χ10+ν~R(ν~I){(ν,Z),(l,W+),(l+,W)\chi^{0}_{1}+\tilde{\nu}^{R}(\tilde{\nu}^{I})\rightarrow\Big{\{}(\nu,Z),(l^{-},W^{+}),(l^{+},W^{-})}.

The co-annihilation between χ10\chi_{1}^{0} and scalar quarks(U~,D~\tilde{U},~{}\tilde{D}) are neglected, because scalar quark masses are very heavy and much larger than mχ10m_{\chi^{0}_{1}}.

IV direct detection

The experiment constraints for the direct detection of dark matter become strict more and more. The lightest neutralino scatters off nucleus, and the process is χ10+qχ10+q\chi^{0}_{1}+q\rightarrow\chi^{0}_{1}+q. The exchanged particles can be CP-even Higgs Hj0H^{0}_{j}, CP-odd Higgs Aj0A^{0}_{j}, gauge bosons Z,ZZ,~{}Z^{\prime}. For the CP-odd Higgs Aj0A^{0}_{j} contribution, there are two suppression factors: 1. The Yukawa coupling YqY_{q} of light quark; 2. The operators χ¯10χ10q¯γ5q\bar{\chi}^{0}_{1}\chi^{0}_{1}\bar{q}\gamma_{5}q and χ¯10γ5χ10q¯γ5q\bar{\chi}^{0}_{1}\gamma_{5}\chi^{0}_{1}\bar{q}\gamma_{5}q are suppressed by the factors q2q^{2} and q4q^{4} respectivelyLJandHe . Therefore, we neglect the CP-odd Higgs contribution. Because neutralino is Majorana particle, the operator χ¯10γμχ10q¯γμq\bar{\chi}^{0}_{1}\gamma_{\mu}\chi^{0}_{1}\bar{q}\gamma^{\mu}q disappears. The dominant operators at quark level are χ¯10χ10q¯q\bar{\chi}^{0}_{1}\chi^{0}_{1}\bar{q}q and χ¯10γμγ5χ10q¯γμγ5q\bar{\chi}^{0}_{1}\gamma_{\mu}\gamma_{5}\chi^{0}_{1}\bar{q}\gamma^{\mu}\gamma_{5}q obtained from CP-even Higgs and vector bosons Z,ZZ,~{}Z^{\prime} contributionsLJandHe .

The quark level operators should be converted to the effective nucleus operators. To convert the operator χ¯10χ10q¯q\bar{\chi}^{0}_{1}\chi^{0}_{1}\bar{q}q, we use the following formulaeLJandHe

aqmqq¯qfNmNN¯N,N|mqq¯q|N=mNfTq(N),\displaystyle a_{q}m_{q}\bar{q}q\rightarrow f_{N}m_{N}\bar{N}N,~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}\langle N|m_{q}\bar{q}q|N\rangle=m_{N}f_{Tq}^{(N)},
fN=q=u,d,sfTq(N)aq+227fTG(N)q=c,b,taq,fTG(N)=1q=u,d,sfTq(N).\displaystyle f_{N}=\sum_{q=u,d,s}f_{Tq}^{(N)}a_{q}+\frac{2}{27}f_{TG}^{(N)}\sum_{q=c,b,t}a_{q},~{}~{}~{}~{}~{}~{}f_{TG}^{(N)}=1-\sum_{q=u,d,s}f_{Tq}^{(N)}. (61)

Integrating out heavy quark loops, the coupling to gluons is induced, which is included in fNf_{N}. We show the concrete values of the parameters fTq(N)f_{Tq}^{(N)} DarkSUSY1 ,

fTu(p)=0.0153,fTd(p)=0.0191,fTs(p)=0.0447,\displaystyle f^{(p)}_{Tu}=0.0153,~{}~{}~{}f^{(p)}_{Td}=0.0191,~{}~{}~{}f^{(p)}_{Ts}=0.0447,
fTu(n)=0.0110,fTd(n)=0.0273,fTs(n)=0.0447.\displaystyle f^{(n)}_{Tu}=0.0110,~{}~{}~{}f^{(n)}_{Td}=0.0273,~{}~{}~{}f^{(n)}_{Ts}=0.0447. (62)

χ¯10γμγ5χ10q¯γμγ5q\bar{\chi}^{0}_{1}\gamma_{\mu}\gamma_{5}\chi^{0}_{1}\bar{q}\gamma^{\mu}\gamma_{5}q is a spin-dependent operator, which is converted to the effective nucleus operator with the following formulae.

dqq¯γμγ5qaNN¯sμ(N)N,N|q¯γμγ5q|N=sμ(N)Δq(N),aN=u,d,sdqΔq(N),\displaystyle d_{q}\bar{q}\gamma^{\mu}\gamma_{5}q\rightarrow a_{N}\bar{N}s^{(N)}_{\mu}N,~{}~{}~{}\langle N|\bar{q}\gamma_{\mu}\gamma_{5}q|N\rangle=s^{(N)}_{\mu}\Delta q^{(N)},~{}~{}~{}a_{N}=\sum_{u,d,s}d_{q}\Delta q^{(N)}, (63)

with sμ(N)s^{(N)}_{\mu} denoting the spin of nucleus. In the numerical calculation, we use the parameters of DarkSUSY

Δu(p)=Δd(n)=0.77,Δd(p)=Δu(n)=0.47,Δs(p)=Δs(p)=0.15.\displaystyle\Delta u^{(p)}=\Delta d^{(n)}=0.77,~{}~{}~{}\Delta d^{(p)}=\Delta u^{(n)}=-0.47,~{}~{}~{}\Delta s^{(p)}=\Delta s^{(p)}=-0.15. (64)

For the spin-independent operator χ¯10χ10q¯q\bar{\chi}^{0}_{1}\chi^{0}_{1}\bar{q}q, the scattering cross section reads asLJandHe

σ=1πμ^2[Zpfp+(AZp)fn]2,\displaystyle\sigma=\frac{1}{\pi}\hat{\mu}^{2}[Z_{p}f_{p}+(A-Z_{p})f_{n}]^{2}, (65)

with ZpZ_{p} denoting the number of proton, and AA representing the number of atom.

The scattering cross section for the spin-dependent operator χ¯10γμγ5χ10q¯γμγ5q\bar{\chi}^{0}_{1}\gamma_{\mu}\gamma_{5}\chi^{0}_{1}\bar{q}\gamma^{\mu}\gamma_{5}q is shown as LJandHe

σ=16πμ^2aN2JN(JN+1),\displaystyle\sigma=\frac{16}{\pi}\hat{\mu}^{2}a_{N}^{2}J_{N}(J_{N}+1), (66)

with JNJ_{N} is the number of angular momentum for the nucleus. The corresponding formula for one nucleon is

σ=12πμ^2aN2.\displaystyle\sigma=\frac{12}{\pi}\hat{\mu}^{2}a_{N}^{2}. (67)

V numerical results

To study the numerical results, we should take into account the experimental constraints. One strict constraint from experiment is the mass(125 GeV)mh01 of the lightest CP-even Higgs. ZZ^{\prime} boson mass constraint is also important. The mass bounds for MZM_{Z^{\prime}} from LHC are more severe than the limits from the low energy data. In the Sequential Standard Model, the lower mass limit of ZSSMZ^{\prime}_{SSM} is 4.5 TeV at 95%95\% confidence level(CL). The Lower mass limits of the ZZ^{\prime} boson in the left-right symmetric model and the (B-L) model ATLAS2016 are respectively 4.1 TeV and 4.2 TeV. The upper bound on the ratio between MZM_{Z^{\prime}} and its gauge coupling is MZ/gX6M_{Z^{\prime}}/g_{X}\geq 6 TeV at 99% CLZPG1 ; ZPG2 . Considering the LHC experimental data, tanβη\tan\beta_{\eta} should be smaller than 1.5 TanBP . We take into account the above constraints and choose the parameters to satisfy the relation MZ>4.5M_{Z^{\prime}}>4.5 TeVZSMJHEP .

Here, we also add other experiment limits. The considered mass limits for the particles beyond SM arepdg : 1 the mass limits for heavy neutral Higgs (H0,A0)(H^{0},A^{0}) and charged Higgs (H±H^{\pm}); 2 the mass limits for neutralino, chargino, sneutrino, scalar charged lepton, squark. The decays of the lightest CP even Higgs (mh0=125m_{h^{0}}=125 GeV) such as h0γ+γh^{0}\rightarrow\gamma+\gamma, h0Z+Zh^{0}\rightarrow Z+Z and h0W+Wh^{0}\rightarrow W+W are considered. The constraint from BXs+γB\rightarrow X_{s}+\gamma is also taken into account. With new experiment data of muon g-2 from the Fermion National Accelerator Laboratory(FNAL)muong2 , the deviation between experiment and SM prediction is Δaμ=aμexpaμSM=251(59)×1011\Delta a_{\mu}=a^{exp}_{\mu}-a^{SM}_{\mu}=251(59)\times 10^{-11} and increases to 4.2σ\sigma. We study muon g-2 in U(1)XSSMU(1)_{X}SSM in the previous workSULH , and consider this limit here.

Therefore, we use the following parameters

MS=2.7TeV,Tκ=1.6TeV,gYX=0.2,gX=0.3,λC=0.08,λH=0.1,\displaystyle M_{S}=2.7~{}{\rm TeV},~{}T_{\kappa}=1.6~{}{\rm TeV},~{}g_{YX}=0.2,~{}g_{X}=0.3,~{}\lambda_{C}=-0.08,~{}\lambda_{H}=0.1,
υη=15.5×cosβηTeV,υη¯=15.5×sinβηTeV,YX11=YX22=0.5,YX33=0.4,\displaystyle\upsilon_{\eta}=15.5\times\cos\beta_{\eta}~{}{\rm TeV},~{}\upsilon_{\bar{\eta}}=15.5\times\sin\beta_{\eta}~{}{\rm TeV},~{}Y_{X11}=Y_{X22}=0.5,~{}Y_{X33}=0.4,
TλH=0.3TeV,TX11=TX22=TX33=1TeV,Te11=Te22=Te33=3TeV,\displaystyle~{}T_{\lambda_{H}}=0.3~{}{\rm TeV},~{}T_{X11}=T_{X22}=T_{X33}=-1~{}{\rm TeV},~{}T_{e11}=T_{e22}=T_{e33}=-3~{}{\rm TeV},
TλC=0.1TeV,μη=10GeV,MU112=MU222=10TeV2,MQ332=MU332=3.5TeV2,\displaystyle T_{\lambda_{C}}=-0.1~{}{\rm TeV},\mu_{\eta}=10~{}{\rm GeV},~{}M^{2}_{U11}=M^{2}_{U22}=10~{}{\rm TeV}^{2},~{}M^{2}_{Q33}=M^{2}_{U33}=3.5~{}{\rm TeV}^{2},
lW=4TeV2,Mν112=Mν222=Mν332=0.5TeV2,Tu11=Tu22=Tu33=2TeV,κ=1,\displaystyle l_{W}=4~{}{\rm TeV}^{2},~{}M^{2}_{\nu 11}=M^{2}_{\nu 22}=M^{2}_{\nu 33}=0.5~{}{\rm TeV}^{2},~{}T_{u11}=T_{u22}=T_{u33}=-2~{}{\rm TeV},~{}\kappa=1,
Td12=Td21=0.2TeV,ML112=ML222=ML332=1.9TeV2,Bμ=BS=mS2=1TeV2,\displaystyle T_{d12}=T_{d21}=0.2~{}{\rm TeV},~{}M^{2}_{L11}=M^{2}_{L22}=M^{2}_{L33}=1.9~{}{\rm TeV}^{2},~{}B_{\mu}=B_{S}=m_{S}^{2}=1~{}{\rm TeV}^{2},
ME112=ME222=ME332=3.54TeV2,tanβη=0.8,Tν11=Tν22=Tν33=0.5TeV.\displaystyle M^{2}_{E11}=M^{2}_{E22}=M^{2}_{E33}=3.54~{}{\rm TeV}^{2},~{}\tan\beta_{\eta}=0.8,~{}T_{\nu 11}=T_{\nu 22}=T_{\nu 33}=0.5~{}{\rm TeV}. (68)

To simplify the numerical discussion, most of the parameters Tν,TX,TuT_{\nu},~{}T_{X},~{}T_{u} etc. are supposed as diagonal matrices and we use the supposition

MD112=MD222=MD332=MD2,Td11=Td22=Td33=Td.\displaystyle M^{2}_{D11}=M^{2}_{D22}=M^{2}_{D33}=M_{D}^{2},~{}~{}~{}~{}~{}~{}T_{d11}=T_{d22}=T_{d33}=T_{d}. (69)

V.1 The relic density of neutralino dark matter

With the supposition that the lightest neutralino χ10\chi^{0}_{1} is the lightest SUSY particle(LSP), we research the relic density of χ10\chi^{0}_{1}. In this subsection, we adopt the parameters as MQ112=MQ222=MD2=10TeV2M^{2}_{Q11}=M^{2}_{Q22}=M^{2}_{D}=10{\rm TeV}^{2} and Td=1TeVT_{d}=1{\rm TeV}.

M1M_{1} is the mass of U(1)YU(1)_{Y} gaugino and appears in the neutralino mass matrix. Therefore, M1M_{1} can affect neutralino masses and mixing to some extent. In the Fig.1, we plot the relic density in the banded gray area with ±3σ\pm 3\sigma sensitivity. The relic density versus M1M_{1} is represented by solid line(M2=1TeVM_{2}=1{\rm TeV}) and dotted line(M2=2TeVM_{2}=2{\rm TeV}) with the parameters MBL=1TeV,tanβ=9,μ=0.5TeVM_{BL}=1{\rm TeV},~{}\tan\beta=9,~{}\mu=0.5{\rm TeV} and MBB=0.4TeVM_{BB^{\prime}}=0.4{\rm TeV}. It is obvious that both the solid line and the dotted line versus M1M_{1} vary weakly in the region [400,1800][400,~{}1800] GeV. The both lines are in the ±3σ\pm 3\sigma band. At the point M1=1200M_{1}=1200 GeV, the relic density is very near its central value, which can well satisfy the experiment constraint. Generally speaking, the two lines are very near. With the used parameters, the mass of the lightest neutralino χ10\chi^{0}_{1} is around 302 GeV, and the other SUSY particles are all much heavier than χ10\chi^{0}_{1}. So, the self-annihilation processes are dominant. That is to say, the contributions from the co-annihilation processes are tiny. Because the masses of exchanged virtual particles are not near 2mχ102*m_{\chi^{0}_{1}}, the resonance annihilation affecting the relic density strongly can not take place.

In this parameter space, the masses of some SUSY particles that can co-annihilate with the lightest neutralino are collected here: the second light neutralino mass mχ20800GeVm_{\chi_{2}^{0}}\sim 800{\rm GeV}, the lightest scalar neutrino mass (CP-even and CP-odd) mν~1600GeVm_{\tilde{\nu}}\sim 1600{\rm GeV}, the lightest scalar lepton mass mL~1880GeVm_{\tilde{L}_{1}}\sim 880{\rm GeV}, the lightest chargino mass mχ1±780GeVm_{\chi^{\pm}_{1}}\sim 780{\rm GeV}, the lightest scalar quark mass mq~11800GeVm_{\tilde{q}_{1}}\sim 1800{\rm GeV}.

Refer to caption
Figure 1: The relic density ΩDh2\Omega_{D}h^{2} versus M1M_{1} is plotted by the solid line (dotted line) with M2=1(2)M_{2}=1(2)TeV.

MBBM_{BB^{\prime}} is the mass of the U(1)YU(1)_{Y} and U(1)XU(1)_{X} gaugino mixing and presents in the mass matrix of neutralino, which can affect the relic density through the mixing matrix. Here, we use the parameters as M1=1.2TeV,M2=1TeV,MBL=1TeV,tanβ=9M_{1}=1.2{\rm TeV},~{}M_{2}=1{\rm TeV},~{}M_{BL}=1{\rm TeV},~{}\tan\beta=9. In the Fig.2, the numerical results of the relic density versus MBBM_{BB^{\prime}} are shown by the solid line(μ=0.5\mu=0.5 TeV) and dotted line(μ=0.4\mu=0.4 TeV) respectively. The solid line is above the dotted line. When MBBM_{BB^{\prime}} is near zero, ΩDh2\Omega_{D}h^{2} can not satisfy the experimental constraint. The numerical results of ΩDh2\Omega_{D}h^{2} corresponding to MBBM_{BB^{\prime}} regions [-500, -300]GeV and [300, 500] GeV are better.

Refer to caption

;

Figure 2: The relic density ΩDh2\Omega_{D}h^{2} versus MBBM_{BB^{\prime}} is plotted by the solid line (dotted line) μ\mu=0.5(0.4)TeV.

MBLM_{BL} is the mass of the new gaugino, and it has influence on the mass matrix of neutralino. Therefore, MBLM_{BL} can have considerable effect on the relic density. With the parameters M1=1.2TeV,M2=1TeV,μ=0.5TeV,MBB=0.4TeVM_{1}=1.2{\rm TeV},~{}M_{2}=1{\rm TeV},~{}\mu=0.5{\rm TeV},~{}M_{BB^{\prime}}=0.4{\rm TeV}, we plot the relic density versus MBLM_{BL} in the Fig.3. The solid line corresponds to tanβ=9\tan\beta=9, and the dotted line corresponds to tanβ=5\tan\beta=5. Both the solid line and the dotted line become small with the increasing MBLM_{BL}, and they possess similar behavior. For the both lines, the best point is around MBL=1000M_{BL}=1000 GeV. As MBL<800M_{BL}<800 GeV or MBL>1150M_{BL}>1150 GeV, the obtained numerical results of ΩDh2\Omega_{D}h^{2} exceed the experimental data.

Refer to caption

;

Figure 3: The relic density ΩDh2\Omega_{D}h^{2} versus MBLM_{BL} is plotted by the solid line (dotted line) tanβ\tan\beta=9(5).

In order to scan the parameters more efficiently, we plot the parameters in 3σ3\sigma sensitivity of the relic density with two variables. With the parameters M1=1.2TeV,M2=1TeV,MBL=1TeV,MBB=0.4TeVM_{1}=1.2{\rm TeV},~{}M_{2}=1{\rm TeV},~{}M_{BL}=1{\rm TeV},~{}M_{BB^{\prime}}=0.4{\rm TeV}, we plot the allowed results in the plane of tanβ\tan\beta and μ\mu, which is shown in the Fig.4. tanβ\tan\beta appears in almost all the mass matrixes of Fermions, scalars and Majoranas, and it must be a sensitive parameter. From the Fig. 4, one can find that tanβ\tan\beta should be in the region from 2.5 to 23. The corresponding values of μ\mu are approximately in the scope (1100600)(-1100\sim-600) GeV and (01100)(0\sim 1100) GeV. The allowed region of μ>0\mu>0 is larger than that of μ<0\mu<0.

Refer to caption
Figure 4: The allowed parameters in the plane of tanβ\tan\beta and μ\mu.

MBBM_{BB^{\prime}}, M2M_{2}, MBLM_{BL} and M1M_{1} are all in the mass matrix of neutralino. So we study their effects and allowed regions. In the Fig.5, we plot the results versus MBBM_{BB^{\prime}} and M2M_{2} with tanβ=9,μ=0.5TeV,M1=1.2TeV,MBL=1TeV\tan\beta=9,\mu=0.5{\rm TeV},M_{1}=1.2{\rm TeV},M_{BL}=1{\rm TeV}. M2M_{2} smaller than 3500 GeV is acceptable. MBBM_{BB^{\prime}}’s region is almost symmetric relative to MBB=0M_{BB^{\prime}}=0, whose value should be in the region (700200)(-700\sim-200) GeV and (100600)(100\sim 600) GeV. The region near the point (0, 0) is excluded. In the plane of MBLM_{BL} and M1M_{1}, the numerical results of the relic density are researched as tanβ=9,μ=0.5TeV,M2=1TeV,MBB=0.4TeV\tan\beta=9,\mu=0.5{\rm TeV},M_{2}=1{\rm TeV},M_{BB^{\prime}}=0.4{\rm TeV}. It is obvious that the allowed region in the Fig.6 is smaller than that in the Fig.4 and Fig.5. The points gather around the narrow band near MBL=1000M_{BL}=1000 GeV.

Refer to caption
Figure 5: The allowed parameters in the plane of MBBM_{BB^{\prime}} and M2M_{2}.
Refer to caption
Figure 6: The allowed parameters in the plane of MBLM_{BL} and M1M_{1}.

To find large parameter space satisfying the relic density, we plot the relic density versus the lightest neutralino mass Mχ10M_{\chi^{0}_{1}} with the parameters: 2tanβ502\leq\tan\beta\leq 50, and 2TeVμ2TeV-2{\rm TeV}\leq\mu\leq 2{\rm TeV}, 2TeVMBL2TeV-2{\rm TeV}\leq M_{BL}\leq 2{\rm TeV}, 2TeVMBB2TeV-2{\rm TeV}\leq M_{BB^{\prime}}\leq 2{\rm TeV}, 2TeVM12TeV-2{\rm TeV}\leq M_{1}\leq 2{\rm TeV} 2TeVM22TeV-2{\rm TeV}\leq M_{2}\leq 2{\rm TeV}. The results are shown in the Fig.7, where the gray band represents the relic density in three σ\sigma sensitivity. One can easily see that large reasonable parameter space in near Mχ10300GeVM_{\chi^{0}_{1}}\sim 300{\rm GeV}. In the Mχ10M_{\chi^{0}_{1}} region (120 GeV to 280 GeV), there are also reasonable parameter space for ΩDh2\Omega_{D}h^{2}, but these parameter space are much smaller than the reasonable parameter space for Mχ10300GeVM_{\chi^{0}_{1}}\sim 300{\rm GeV}.

Refer to caption
Figure 7: The relic density ΩDh2\Omega_{D}h^{2} versus the lightest neutralino mass Mχ10M_{\chi^{0}_{1}}

V.2 The cross section of neutralino scattering off nucleus

In this subsection, the cross section of the lightest neutralino scattering off nucleus is numerically researched with the parameters M1=1.2TeV,M2=1TeV,MBL=1TeV,tanβ=9,μ=0.5TeV,MBB=0.4TeVM_{1}=1.2{\rm TeV},~{}M_{2}=1{\rm TeV},~{}M_{BL}=1{\rm TeV},~{}\tan\beta=9,~{}\mu=0.5{\rm TeV},~{}M_{BB^{\prime}}=0.4{\rm TeV}. Both the spin-independent cross section and spin-dependent cross section are studied here. The constraint from the relic density is taken into account. In our used parameter space, the mass of the lightest neutralino is about 300 GeV. For dark matter mass \sim 300 GeV, the corresponding experimental limit on spin-independent direct detection is about 2.3×1046cm22.3\times 10^{-46}~{}{\rm cm}^{2} for Xenon in 1σ1\sigma sensitivity. While, it is about twice as large for PandaX PanXen1 ; PanXen2 . The experimental constraint on spin-independent cross section is much more severe than that on spin-dependent cross section. The direct detection experimental limit on spin-dependent cross section is about 4.0×1041cm24.0\times 10^{-41}~{}{\rm cm}^{2} for Xenon1T experiment. The corresponding constraint is around 1.4×1040cm21.4\times 10^{-40}~{}{\rm cm}^{2} for PandaX-IIDarkSUSY1 ; PanXen1 .

To simplify the discussion, we suppose MQ112=MQ222=MQ2M^{2}_{Q11}=M^{2}_{Q22}=M_{Q}^{2}. At first, the spin-independent cross section is researched with the parameters MQ2=M_{Q}^{2}= 10 TeV2{\rm TeV}^{2}. TdT_{d} is in the non-diagonal element of the mass squared matrix for scalar down type quarks. Therefore, TdT_{d} should influence the scattering cross section. In the Fig.8, the numerical results of the spin-independent cross section versus TdT_{d} are plotted by the solid line(MD2=6TeV2M_{D}^{2}=6{\rm TeV}^{2}) and dotted line (MD2=5TeV2M_{D}^{2}=5{\rm TeV}^{2}). Generally speaking, the both lines are at the order of 1047cm210^{-47}~{}{\rm cm}^{2}, which are about one order smaller than the experimental bound.

Refer to caption

;

Figure 8: The spin-independent cross section versus TdT_{d}, the solid line corresponds to MD2M_{D}^{2}=6TeV2{\rm TeV}^{2} and the dotted line corresponds to MD2M_{D}^{2}=5 TeV2{\rm TeV}^{2}.

Secondly, we calculate the spin-dependent cross section as Td=1TeVT_{d}=1{\rm TeV}. MQ2M_{Q}^{2} are the important diagonal elements in the mass squared matrixes of scalar quarks, and they can strongly affect the masses of scalar quarks. In the Fig.9, the numerical results of spin-dependent cross section versus MQ2M_{Q}^{2} are represented by the solid line (dotted line) with MD2=10TeV2(5TeV2)M_{D}^{2}=10{\rm TeV}^{2}~{}(5{\rm TeV}^{2}). The dotted line is above the solid line. With the same MQ2M_{Q}^{2} in the region(3.0×106GeV23.0×107GeV23.0\times 10^{6}{\rm GeV}^{2}\sim 3.0\times 10^{7}{\rm GeV}^{2}), the values of the dotted line are about 2×1044cm22\times 10^{-44}{\rm cm}^{2} larger than the values of the solid line. Generally speaking, they are about three orders smaller than the experimental bounds.

Refer to caption

;

Figure 9: The spin-dependent cross section versus MQ2M_{Q}^{2} is plotted by the solid line (dotted line) with MD2=10(5)M_{D}^{2}=10(5)TeV2{\rm TeV}^{2}.

VI discussion and conclusion

We extend MSSM with the U(1)XU(1)_{X} local gauge group and obtain the so called U(1)XU(1)_{X}SSM. In the U(1)XU(1)_{X}SSM, there are several superfields beyond MSSM, such as right-handed neutrinos, three singlet Higgs superfields η^,η¯^,S^\hat{\eta},~{}\hat{\bar{\eta}},~{}\hat{S}. As discussed in MSSM, the lightest neutralino is studied in detail as dark matter candidate. While, both the lightest sneutrino and the lightest neutralino can be dark matter candidates in U(1)XU(1)_{X}SSM. Supposing the lightest CP-even sneutrino as LSP and dark matter candidate, we research its relic density and the scattering cross section off nucleus in our previous workZSMJHEP . U(1)XU(1)_{X}SSM has richer phenomenology than MSSM. To compare the scalar neutrino condition, we research the lightest neutralino as dark matter candidate in this work.

To calculate the relic density of χ10\chi^{0}_{1}, we consider the self-annihilation and co-annihilation processes. In our used parameter space, the masses of the SUSY particles except χ10\chi^{0}_{1} are all heavier enough than the mass of χ10\chi_{1}^{0}. Therefore, self-annihilation processes are dominant and co-annihilation processes are suppressed by the exponential function. In the whole, this is the general condition. The resonance annihilation does not take place, because the masses of the exchanged virtual particles are not near 2mχ102*m_{\chi^{0}_{1}}. From our numerical results, we find that MBBM_{BB^{\prime}} and MBLM_{BL} in the neutralino mass matrix are sensitive parameters for the relic density. The reason is that both MBBM_{BB^{\prime}} and MBLM_{BL} affect neutralino mixing. Large reasonable parameter space supports mχ10300GeVm_{\chi_{1}^{0}}\sim 300{\rm GeV}, though mχ10m_{\chi_{1}^{0}} can be smaller with reasonable parameter space. The obtained numerical results can well satisfy the experimental constraints from the relic density of dark matter. The cross section of χ10\chi_{1}^{0} scattering off nucleus are also calculated in this work. The spin-independent and spin-dependent cross sections are at least one order smaller than their experimental constraints. This work makes up for the dark matter researchZSMJHEP , where just the lightest CP-even scalar neutrino is supposed as dark matter.

Acknowledgments

This work is supported by National Natural Science Foundation of China (NNSFC) (No. 11535002, No. 11705045, No. 11605037), Natural Science Foundation of Hebei Province (A2020201002), Post-graduate’s Innovation Fund Project of Hebei Province (No. CXZZBS2019027), and the youth top-notch talent support program of the Hebei Province.

Appendix A The coupling

The couplings of neutralino and gauge bosons are χ0χ0Z\chi^{0}-\chi^{0}-Z, χ0χ0Z\chi^{0}-\chi^{0}-Z^{\prime} and χ0χ±W±\chi^{0}-\chi^{\pm}-W^{\pm}. Their concrete forms are shown as

χ0χ0Z=χ¯i0{i2[(g1cosθWsinθW+g2cosθWcosθW(gYX+gX)sinθW)\displaystyle\mathcal{L}_{\chi^{0}\chi^{0}Z}=\bar{\chi}^{0}_{i}\Big{\{}-\frac{i}{2}\Big{[}\Big{(}g_{1}\cos{\theta^{\prime}}_{W}\sin\theta_{W}+g_{2}\cos\theta_{W}\cos{\theta^{\prime}}_{W}-(g_{YX}+g_{X})\sin{\theta^{\prime}}_{W}\Big{)}
×(Nj3Ni3Nj4Ni4)2gXsinθW(Nj6Ni6Nj7Ni7)]γμPL\displaystyle\hskip 48.36958pt\times(N^{*}_{j3}N_{{i3}}-N^{*}_{j4}N_{{i4}})-2g_{X}\sin{\theta^{\prime}}_{W}\Big{(}N^{*}_{j6}N_{{i6}}-N^{*}_{j7}N_{{i7}}\Big{)}\Big{]}\gamma_{\mu}P_{L}
+i2[(g1cosθWsinθW+g2cosθWcosθW(gYX+gX)sinθW)\displaystyle\hskip 48.36958pt+\frac{i}{2}\Big{[}\Big{(}g_{1}\cos{\theta^{\prime}}_{W}\sin\theta_{W}+g_{2}\cos\theta_{W}\cos{\theta^{\prime}}_{W}-(g_{YX}+g_{X})\sin{\theta^{\prime}}_{W}\Big{)}
×(Ni3Nj3Ni4Nj4)2gXsinθW(Ni6Nj6Ni7Nj7)]γμPR}χ0jZμ,\displaystyle\hskip 48.36958pt\times(N^{*}_{i3}N_{{j3}}-N^{*}_{i4}N_{{j4}})-2g_{X}\sin{\theta^{\prime}}_{W}(N^{*}_{i6}N_{{j6}}-N^{*}_{i7}N_{{j7}})\Big{]}\gamma_{\mu}P_{R}\Big{\}}\chi^{0}_{j}Z^{\mu}, (70)
χ0χ0Z=χ¯i0{i2([(g1sinθW+g2cosθW)sinθW+(gYX+gX)cosθW]\displaystyle\mathcal{L}_{\chi^{0}\chi^{0}Z^{\prime}}=\bar{\chi}^{0}_{i}\Big{\{}\frac{i}{2}\Big{(}[(g_{1}\sin\theta_{W}+g_{2}\cos\theta_{W})\sin{\theta^{\prime}}_{W}+(g_{YX}+g_{X})\cos{\theta^{\prime}}_{W}]
×(Nj3Ni3Nj4Ni4)+2gXcosθW(Nj6Ni6Nj7Ni7))γμPL\displaystyle\hskip 48.36958pt\times(N^{*}_{j3}N_{{i3}}-N^{*}_{j4}N_{{i4}})+2g_{X}\cos{\theta^{\prime}}_{W}(N^{*}_{j6}N_{{i6}}-N^{*}_{j7}N_{{i7}})\Big{)}\gamma_{\mu}P_{L}
i2([(g1sinθW+g2cosθW)sinθW+(gYX+gX)cosθW]\displaystyle\hskip 48.36958pt-\frac{i}{2}\Big{(}[(g_{1}\sin\theta_{W}+g_{2}\cos\theta_{W})\sin{\theta^{\prime}}_{W}+(g_{YX}+g_{X})\cos{\theta^{\prime}}_{W}]
×(Ni3Nj3Ni4Nj4)+2gXcosθW(Ni6Nj6Ni7Nj7))γμPR}χ0jZμ,\displaystyle\hskip 48.36958pt\times(N^{*}_{i3}N_{{j3}}-N^{*}_{i4}N_{{j4}})+2g_{X}\cos{\theta^{\prime}}_{W}(N^{*}_{i6}N_{{j6}}-N^{*}_{i7}N_{{j7}})\Big{)}\gamma_{\mu}P_{R}\Big{\}}\chi^{0}_{j}Z^{\prime\mu}, (71)
χ0χ±W=i2χ¯i+{g2(2Nj2Ui1+2Nj3Ui2)γμPL\displaystyle\mathcal{L}_{\chi^{0}\chi^{\pm}W}=-\frac{i}{2}\bar{\chi}^{+}_{i}\Big{\{}g_{2}(2N^{*}_{j2}U_{{i1}}+\sqrt{2}N^{*}_{j3}U_{{i2}})\gamma_{\mu}P_{L}
+g2(2Vi1Nj22Vi2Nj4)γμPR}χ0jW+μ.\displaystyle\hskip 54.06006pt+g_{2}(2V^{*}_{i1}N_{{j2}}-\sqrt{2}V^{*}_{i2}N_{{j4}})\gamma_{\mu}P_{R}\Big{\}}\chi^{0}_{j}W^{+\mu}. (72)

UU and VV are the rotation matrixes to diagonalize chargino mass matrix. The couplings χ0χ0Z\chi^{0}-\chi^{0}-Z and χ0χ0Z\chi^{0}-\chi^{0}-Z^{\prime} contribute to the self-annihilation, and the coupling χ0χ±W±\chi^{0}-\chi^{\pm}-W^{\pm} gives correction to co-annihilation. We deduce the coupling of neutralino-lepton-slepton(χ0lL~\chi^{0}-l-\tilde{L}).

χ0lL~=χ¯i0{i(12(g1Ni1+g2Ni2+gYXNi5)ZkjENi3Ye,jZk3+jE)PL\displaystyle\mathcal{L}_{\chi^{0}l\tilde{L}}=\bar{\chi}^{0}_{i}\Big{\{}i\Big{(}\frac{1}{\sqrt{2}}(g_{1}N^{*}_{i1}+g_{2}N^{*}_{i2}+g_{YX}N^{*}_{i5})Z_{{kj}}^{E}-N^{*}_{i3}Y_{e,j}Z_{{k3+j}}^{E}\Big{)}P_{L}
i(12Zk3+jE[2g1Ni1+(2gYX+gX)Ni5]+Ye,jZkjENi3)PR}ejL~k.\displaystyle\hskip 42.67912pt-i\Big{(}\frac{1}{\sqrt{2}}Z_{{k3+j}}^{E}[2g_{1}N_{{i1}}+(2g_{YX}+g_{X})N_{{i5}}]+Y^{*}_{e,j}Z_{{kj}}^{E}N_{{i3}}\Big{)}P_{R}\Big{\}}e_{j}\tilde{L}_{k}. (73)

ZEZ^{E} is used to diagonalize the mass squared matrix of slepton.

The coupling of neutralino-neutralino-CP-even Higgs(χ0χ0H\chi^{0}-\chi^{0}-H) is

χ0χ0H=χ¯i0{i2[(2gX(Ni6Nj5+Ni5Nj6)2λC(Ni8Nj7+Ni7Nj8))Zk3H\displaystyle\mathcal{L}_{\chi^{0}\chi^{0}H}=\bar{\chi}^{0}_{i}\Big{\{}\frac{i}{2}\Big{[}\Big{(}2g_{X}(N^{*}_{i6}N^{*}_{j5}+N^{*}_{i5}N^{*}_{j6})-\sqrt{2}{\lambda}_{C}(N^{*}_{i8}N^{*}_{j7}+N^{*}_{i7}N^{*}_{j8})\Big{)}Z_{{k3}}^{H}
+(Ni3[g1Nj1g2Nj2+(gYX+gX)Nj5]+Nj3[g1Ni1g2Ni2+(gYX+gX)Ni5]\displaystyle+\Big{(}N^{*}_{i3}[g_{1}N^{*}_{j1}-g_{2}N^{*}_{j2}+(g_{YX}+g_{X})N^{*}_{j5}]+N^{*}_{j3}[g_{1}N^{*}_{i1}-g_{2}N^{*}_{i2}+(g_{YX}+g_{X})N^{*}_{i5}]
+2λH(Ni8Nj4+Ni4Nj8))Zk1H+(Ni4(g2Nj2gYXNj5gXNj5g1Nj1)\displaystyle+\sqrt{2}{\lambda}_{H}(N^{*}_{i8}N^{*}_{j4}+N^{*}_{i4}N^{*}_{j8})\Big{)}Z_{{k1}}^{H}+\Big{(}N^{*}_{i4}(g_{2}N^{*}_{j2}-g_{YX}N^{*}_{j5}-g_{X}N^{*}_{j5}-g_{1}N^{*}_{j1})
+Nj4(g2Ni2gYXNi5gXNi5g1Ni1)+2λH(Ni8Nj3+Ni3Nj8))Zk2H\displaystyle+N^{*}_{j4}(g_{2}N^{*}_{i2}-g_{YX}N^{*}_{i5}-g_{X}N^{*}_{i5}-g_{1}N^{*}_{i1})+\sqrt{2}{\lambda}_{H}(N^{*}_{i8}N^{*}_{j3}+N^{*}_{i3}N^{*}_{j8})\Big{)}Z_{{k2}}^{H}
+(2λH(Ni4Nj3+Ni3Nj4)22κNi8Nj82λC(Ni7Nj6+Ni6Nj7))Zk5H\displaystyle+\Big{(}\sqrt{2}{\lambda}_{H}(N^{*}_{i4}N^{*}_{j3}+N^{*}_{i3}N^{*}_{j4})-2\sqrt{2}\kappa N^{*}_{i8}N^{*}_{j8}-\sqrt{2}{\lambda}_{C}(N^{*}_{i7}N^{*}_{j6}+N^{*}_{i6}N^{*}_{j7})\Big{)}Z_{{k5}}^{H}
(2gX(Ni7Nj5+Ni5Nj7)+2λC(Ni8Nj6+Ni6Nj8))Zk4H]PL\displaystyle-\Big{(}2g_{X}(N^{*}_{i7}N^{*}_{j5}+N^{*}_{i5}N^{*}_{j7})+\sqrt{2}{\lambda}_{C}(N^{*}_{i8}N^{*}_{j6}+N^{*}_{i6}N^{*}_{j8})\Big{)}Z_{{k4}}^{H}\Big{]}P_{L}
+i2[Zk5H(2λH(Ni4Nj3+Ni3Nj4)2λC(Ni7Nj6+Ni6Nj7)22κNi8Nj8)\displaystyle+\,\frac{i}{2}\Big{[}Z_{{k5}}^{H}\Big{(}\sqrt{2}{\lambda}_{H}^{*}(N_{{i4}}N_{{j3}}+N_{{i3}}N_{{j4}})-\sqrt{2}{\lambda}_{C}^{*}(N_{{i7}}N_{{j6}}+N_{{i6}}N_{{j7}})-2\sqrt{2}\kappa^{*}N_{{i8}}N_{{j8}}\Big{)}
+(Nj3[g1Ni1g2Ni2+(gYX+gX)Ni5]+Ni3[g1Nj1g2Nj2+(gYX+gX)Nj5]\displaystyle+\Big{(}N_{{j3}}[g_{1}N_{{i1}}-g_{2}N_{{i2}}+(g_{YX}+g_{X})N_{{i5}}]+N_{{i3}}[g_{1}N_{{j1}}-g_{2}N_{{j2}}+(g_{YX}+g_{X})N_{{j5}}]
+2λH(Ni8Nj4+Ni4Nj8))Zk1HZk2H([g1Ni1g2Ni2+(gYX+gX)Ni5]Nj4\displaystyle+\sqrt{2}{\lambda}_{H}^{*}(N_{{i8}}N_{{j4}}+N_{{i4}}N_{{j8}})\Big{)}Z_{{k1}}^{H}-Z_{{k2}}^{H}\Big{(}[g_{1}N_{{i1}}-g_{2}N_{{i2}}+(g_{YX}+g_{X})N_{{i5}}]N_{{j4}}
+Ni4[g1Nj1g2Nj2+(gYX+gX)Nj5]2λH(Ni3Nj8+Ni8Nj3))\displaystyle+N_{{i4}}[g_{1}N_{{j1}}-g_{2}N_{{j2}}+(g_{YX}+g_{X})N_{{j5}}]-\sqrt{2}{\lambda}_{H}^{*}(N_{{i3}}N_{{j8}}+N_{{i8}}N_{{j3}})\Big{)}
Zk4H(2λC(Ni8Nj6+Ni6Nj8)+2gX(Ni7Nj5+Ni5Nj7))\displaystyle-Z_{{k4}}^{H}\Big{(}\sqrt{2}{\lambda}_{C}^{*}(N_{{i8}}N_{{j6}}+N_{{i6}}N_{{j8}})+2g_{X}(N_{{i7}}N_{{j5}}+N_{{i5}}N_{{j7}})\Big{)}
+Zk3H(2gX(Ni5Nj6+Ni6Nj5)2λC(Ni8Nj7+Ni7Nj8))]PR}χ0jHk\displaystyle+Z_{{k3}}^{H}\Big{(}2g_{X}(N_{{i5}}N_{{j6}}+N_{{i6}}N_{{j5}})-\sqrt{2}{\lambda}_{C}^{*}(N_{{i8}}N_{{j7}}+N_{{i7}}N_{{j8}})\Big{)}\Big{]}P_{R}\Big{\}}\chi^{0}_{j}H_{k} (74)

The concrete form of neutalino-chargino-charged Higgs coupling (χ0χ±H±\chi^{0}-\chi^{\pm}-H^{\pm}) is

χ0χ±H±=χ¯i+{i2[Vi2(2λHNj8Zk1++2[g1+g2Nj2+(gYX+gX)Nj5]Zk2+)\displaystyle\mathcal{L}_{\chi^{0}\chi^{\pm}H^{\pm}}=\bar{\chi}^{+}_{i}\Big{\{}\frac{i}{2}\Big{[}-V^{*}_{i2}\Big{(}2{\lambda}_{H}N^{*}_{j8}Z_{{k1}}^{+}+\sqrt{2}[g_{1}+g_{2}N^{*}_{j2}+(g_{YX}+g_{X})N^{*}_{j5}]Z_{{k2}}^{+}\Big{)}
2g2Vi1Nj4Zk2+]PL+i2[2g2Ui1Nj3Zk1++Ui2(2λHNj8Zk2+\displaystyle\hskip 51.21504pt-2g_{2}V^{*}_{i1}N^{*}_{j4}Z_{{k2}}^{+}\Big{]}P_{L}+\frac{i}{2}\Big{[}-2g_{2}U_{{i1}}N_{{j3}}Z_{{k1}}^{+}+U_{{i2}}\Big{(}-2{\lambda}_{H}^{*}N_{{j8}}Z_{{k2}}^{+}
+2[g1Nj1+g2Nj2+(gX+gYX)Nj5]Zk1+)]PR}χ0jH+k.\displaystyle\hskip 51.21504pt+\sqrt{2}[g_{1}N_{{j1}}+g_{2}N_{{j2}}+(g_{X}+g_{YX})N_{{j5}}]Z_{{k1}}^{+}\Big{)}\Big{]}P_{R}\Big{\}}\chi^{0}_{j}H^{+}_{k}. (75)

Neutralinos interact with neutrinos and sneutrinos in the following form

χ0ννI~=χ¯i0{12a=13(2Ni7b=13Yx,ab(Zk3+bI,Uj3+aV,+Uj3+bV,Zk3+aI,)\displaystyle\mathcal{L}_{\chi^{0}\nu\tilde{\nu^{I}}}=\bar{\chi}^{0}_{i}\Big{\{}\frac{1}{2}\sum_{a=1}^{3}\Big{(}-\sqrt{2}N^{*}_{i7}\sum_{b=1}^{3}Y_{x,{ab}}(Z^{I,*}_{k3+b}U^{V,*}_{j3+a}+U^{V,*}_{j3+b}Z^{I,*}_{k3+a})
+(gYXNi5g2Ni2+Ni1g1)UjaV,ZkaI,gXNi5Uj3+aV,Zk3+aI,)PL\displaystyle\hskip 42.67912pt+(g_{YX}N^{*}_{i5}-g_{2}N^{*}_{i2}+N^{*}_{i1}g_{1})U^{V,*}_{ja}Z^{I,*}_{ka}-g_{X}N^{*}_{i5}U^{V,*}_{j3+a}Z^{I,*}_{k3+a}\Big{)}P_{L}
+12a=13(2b=13(Zk3+bI,Uj3+aV+Zk3+aI,Uj3+bV)Yx,abNi7\displaystyle\hskip 42.67912pt+\frac{1}{2}\sum_{a=1}^{3}\Big{(}\sqrt{2}\sum_{b=1}^{3}\Big{(}Z^{I,*}_{k3+b}U_{{j3+a}}^{V}+Z^{I,*}_{k3+a}U_{{j3+b}}^{V}\Big{)}Y^{*}_{x,{ab}}N_{{i7}}
+Zk3+aI,Uj3+aVgXNi5ZkaI,UjaV(g1Ni1g2Ni2+gYXNi5))PR}νjν~Ik,\displaystyle\hskip 42.67912pt+Z^{I,*}_{k3+a}U_{{j3+a}}^{V}g_{X}N_{{i5}}-Z^{I,*}_{ka}U_{{ja}}^{V}\Big{(}g_{1}N_{{i1}}-g_{2}N_{{i2}}+g_{YX}N_{{i5}}\Big{)}\Big{)}P_{R}\Big{\}}\nu_{j}\tilde{\nu}^{I}_{k}, (76)

There are also neutralino-quark-squark couplings

χ0dD~=i6χ¯i0{(2(g1Ni13g2Ni2+gYXNi5)ZkjD+6Ni3Yd,jZk3+jD)PL\displaystyle\mathcal{L}_{\chi^{0}d\tilde{D}}=-\frac{i}{6}\bar{\chi}^{0}_{i}\Big{\{}\Big{(}\sqrt{2}(g_{1}N^{*}_{i1}-3g_{2}N^{*}_{i2}+g_{YX}N^{*}_{i5})Z_{{kj}}^{D}+6N^{*}_{i3}Y_{d,j}Z_{{k3+j}}^{D}\Big{)}P_{L}
+(6Yd,jZkjDNi3+2Zk3+jD[2g1Ni1+(2gYX+3gX)Ni5])PR}djD~k,\displaystyle\hskip 45.52458pt+\Big{(}6Y^{*}_{d,j}Z_{{kj}}^{D}N_{{i3}}+\sqrt{2}Z_{{k3+j}}^{D}[2g_{1}N_{{i1}}+(2g_{YX}+3g_{X})N_{{i5}}]\Big{)}P_{R}\Big{\}}d_{j}\tilde{D}^{*}_{k}, (77)
χ0uU~=i6χ¯i0{(2(g1Ni1+3g2Ni2+gYXNi5)ZkjU+6Ni4Yu,jZk3+jU)PL\displaystyle\mathcal{L}_{\chi^{0}u\tilde{U}}=-\frac{i}{6}\bar{\chi}^{0}_{i}\Big{\{}\Big{(}\sqrt{2}(g_{1}N^{*}_{i1}+3g_{2}N^{*}_{i2}+g_{YX}N^{*}_{i5})Z_{{kj}}^{U}+6N^{*}_{i4}Y_{u,j}Z_{{k3+j}}^{U}\Big{)}P_{L}
(2Zk3+jU((3gX+4gYX)Ni5+4g1Ni16Yu,jZkjUNi4))PR}ujU~k.\displaystyle\hskip 42.67912pt-\Big{(}\sqrt{2}Z_{{k3+j}}^{U}\Big{(}(3g_{X}+4g_{YX})N_{{i5}}+4g_{1}N_{{i1}}-6Y^{*}_{u,j}Z_{{kj}}^{U}N_{{i4}}\Big{)}\Big{)}P_{R}\Big{\}}u_{j}\tilde{U}^{*}_{k}. (78)

References

  • (1)
  • (2) G. Bertone, D. Hooper, J. Silk, Phys. Rept. 405 (2005) 279 [hep-ph/0404175].
  • (3) J.F. Navarro, C.S. Frenk, S.D.M. White, Astrophys. J. 462 (1996) 563-575 [astro-ph/9508025].
  • (4) G. Jungman, M. Kamionkowski, K. Griest, Phys. Rept. 267 (1996) 195-373 [hep-ph/9506380].
  • (5) J.L. Feng, Ann. Rev. Astron. Astrophys. 48 (2010) 495 [arXiv: 1003. 0904].
  • (6) Particle Data Group collaboration, Phys. Rev. D 98 (2018) 030001; Prog. Theor. Exp. Phys. 2020 (2020) 083C01.
  • (7) J.J. Cao, Z.X. Heng, J.M. Yang, et al., JHEP 1206 (2012) 145 [arXiv: 1203. 0694]; S. Ando, A.G. Sameth, N. Hiroshima, et al., Phys. Rev. D 102 (2020) 061302 [astro-ph/2002.11956].
  • (8) J. Rosiek, Phys. Rev. D 41 (1990) 3464 [Erratum: hep-ph/9511250]. H.P. Nilles, Phys. Rept. 110 (1984) 1-162; H.E. Haber, G.L. Kane, Phys. Rept. 117 (1985) 75-263.
  • (9) G.H. Duan, W.Y. Wang, L. Wu, et al., Phys. Lett. B 778 (2018) 296-302 [hep-ph/1711.03893]; L. Calibbi, T. Ota, Y. Takanishi, JHEP 07 (2011) 013 [hep-ph/1104.1134]; G. Belanger, S. Biswas, C. Boehm, et al., JHEP 12 (2012) 076 [hep-ph/1206.5404]. M. Drees, M.M. Nojiri, Phys. Rev. D 47 (1993) 376 [hep-ph/9207234].
  • (10) P. Bandyopadhyay, E.J. Chun, J.C. Park, JHEP 1106 (2011) 129 [arXiv: 1105. 1652]; G. Belanger, J.D. Silva, A. Pukhov, JCAP 1112 (2011) 014 [arXiv: 1110. 2414].
  • (11) G. Belanger, J.D. Silva, U. Laa, et al., JHEP 1509 (2015) 151 [arXiv: 1505. 06243]; G. Belanger, J.D. Silva, H.M. Tran, Phys. Rev. D 95 (2017) 115017 [arXiv: 1703. 03275].
  • (12) J.S. Alvarado, Carlos E. Diaz, R. Martinez, Phys. Rev. D 100 (2019) 055037 [hep-ph/1902.08566]; J.S. Alvarado, Carlos E. Diaz, R. Martinez, [hep-ph/1909.02891].
  • (13) F. Staub, Comput. Phys. Commun. 185 (2014) 1773 [arXiv: 1309. 7223]; F. Staub, Adv. High Energy Phys. 2015 (2015) 840780 [arXiv: 1503. 04200].
  • (14) S.M. Zhao, T.F. Feng, M.J. Zhang, et al., JHEP 2002 (2020) 130 [hep-ph/1905.11007].
  • (15) U. Ellwanger, C. Hugonie, A.M. Teixeira, Phys. Rept. 496 (2010) 1-77 [hep-ph/ 0910.1785].
  • (16) A. Ghosh, T. Mondal, B. Mukhopadhyaya, Phys. Rev. D 99 (2019) 035018 [arXiv: 1807. 04964]; C. Arina, N. Fornengo, JHEP 0711 (2007) 029 [arXiv: 0709. 4477].
  • (17) C. Arina, F. Bazzocchi, N. Fornengo, et al, Phys. Rev. Lett. 101 (2008) 161802 [arXiv: 0806. 3225]; H.N. Long, Adv. Stud. Theor. Phys. 4 (2010) 173 [arXiv: 0710. 5833].
  • (18) J.J. Cao, X.F. Guo, Y.L. He, et al., JHEP 1710 (2017) 044 [arXiv: 1707. 09626]; J.J. Cao, X.F. Guo, Y.S. Pan, et al., Phys. Rev. D 99 (2019) 115033 [arXiv: 1807. 03762].
  • (19) Z.F. Kang, J.M. Li, T.J. Li, et al., Eur. Phys. J. C 76 (2016) 270 [arXiv: 1102. 5644]; J. Chang, K.M. Cheung, H. Ishida, et al., JHEP 1809 (2018) 071 [arXiv: 1806. 04468]; D.K. Ghosh, K. Huitu, S. Mondal, Phys. Rev. D 99 (2019) 075014 [arXiv: 1807. 07385].
  • (20) K.S. Babu, I. Gogoladze, Q. Shafi, et al., Phys. Rev. D 90 (2014) 116002 [hep-ph/1406.6965]; P. Huang, C.E.M. Wagner, Phys. Rev. D 90 (2014) 015018 [hep-ph/1404.0392]; S. Scopel, N. Fornengo, A. Bottino, Phys. Rev. D 88 (2013) 023506 [hep-ph/1304.5353].
  • (21) J. Abdallah et al. [DELPHI Collaboration], Eur. Phys. J. C 31 (2003) 421 [hep-ex/0311019].
  • (22) P. Nath, R. Arnowitt, and A. H. Chamseddine, Applied N=1 Supergravity, World Scientific, Singapore (1984).
  • (23) C. Boehm, P.S.B. Dev, A. Mazumdar, et al., JHEP 1306 (2013) 113 [arXiv: 1303. 5386].
  • (24) M. Carena, J.R. Espinosa, M. Quiros and C.E.M. Wagner, Phys. Lett. B 355 (1995) 209 [hep-ph/9504316]; M. Carena, S. Gori, N.R. Shah and C.E.M. Wagner, JHEP 1203 (2012) 014 [arXiv:1112.3336].
  • (25) G. Belanger, F. Boudjema, Comput. Phys. Commun. 192 (2015) 322 [arXiv: 1407. 6129].
  • (26) G. Jungman, M. Kamionkowski, K. Griest, Phys. Rep. 267 (1996) 195 [hep-ph/9506380]; J. McDonald, Phys. Rev. D 50 (1994) 3637 [hep-ph/0702143].
  • (27) S. Gopalakrishna, A. de Gouvea and W. Porod, JCAP 05 (2006) 005 [hep-ph/0602027].
  • (28) W. Chao, JHEP 1704 (2017) 034 [arXiv: 1604. 01771].
  • (29) S.M. Zhao, T.F. Feng, et al., Eur. Phys. J. C 78 (2018) 324 [arXiv: 1711. 10731].
  • (30) M. Freytsis, Z. Ligeti, Phys. Rev. D 83 (2011) 115009 [arXiv: 1012. 5317].
  • (31) T. Bringmann, J. Edsjo, P. Gondolo, et al., JCAP 1807 (2018) 033 [arXiv: 1802. 03399]; G. Belanger, F. Boudjema, A. Goudelis, et al., Comput. Phys. Commun. 231 (2018) 173 [arXiv: 1801. 03509]; W. Chao, JHEP 1911 (2019) 013 [arXiv: 1904. 09785].
  • (32) CMS Collaboration, Phys. Lett. B 716 (2012) 30 [arXiv: 1207. 7235]; ATLAS Collaboration, Phys. Lett. B 716 (2012) 1 [arXiv: 1207. 7214].
  • (33) ATLAS Collaboration, JHEP 1710 (2017) 182 [arXiv:1707.02424].
  • (34) G. Cacciapaglia, C. Csaki, G. Marandella, et al., Phys. Rev. D 74 (2006) 033011 [hep-ph/0604111].
  • (35) M. Carena, A. Daleo, B.A. Dobrescu, et al., Phys. Rev. D 70 (2004) 093009 [hep-ph/0408098].
  • (36) L. Basso, Adv. High Energy Phys. 2015 (2015) 980687 [arXiv: 1504. 05328].
  • (37) B. Abi, et al., Phys. Rev. Lett. 126 (2021) 141801.
  • (38) L.H. Su, S.M. Zhao, X.X. Dong, et al., Aceepted by Eur. Phys. J. C. [hep-ph/2012.04824].
  • (39) PandaX-II Collaboration, Phys. Rev. Lett. 119 (2017) 181302 [arXiv: 1708. 06917].
  • (40) XENON Collaboration, Phys. Rev. Lett. 119 (2017) 181301 [arXiv: 1705. 06655].