This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Limit Theory for Moderate Deviation from Integrated GARCH Processes

Yubo Tao111I would like to thank the co-editor, an associate editor and the referees for helping improve the paper. All possible errors are mine. Yubo Tao, School of Economics, Singapore Management University, 90 Stamford Road, Singapore 178903. Email: yubo.tao.2014@phdecons.smu.edu.sg. 90 Stamford Rd, Singapore Management University
Abstract

This paper develops the limit theory of the GARCH(1,1) process that moderately deviates from IGARCH process towards both stationary and explosive regimes. The GARCH(1,1) process is defined by equations ut=σtεtu_{t}=\sigma_{t}\varepsilon_{t}, σt2=ω+αnut12+βnσt12\sigma_{t}^{2}=\omega+\alpha_{n}u_{t-1}^{2}+\beta_{n}\sigma_{t-1}^{2} and αn+βn\alpha_{n}+\beta_{n} approaches to unity as sample size goes to infinity. The asymptotic theory extends Berkes et al. [2005] by allowing the parameters to have a slower rate of convergence. The results can be applied to unit root test for processes with mildly-integrated GARCH innovations (e.g. Boswijk [2001], Cavaliere & Taylor [2007, 2009]) and deriving limit theory of estimators for models involving mildly-integrated GARCH processes (e.g. Jensen & Rahbek [2004], Francq & Zakoïan [2012, 2013]).

keywords:
Central Limit Theorem , Limiting Process , Localization , Explosive GARCH , Volatility Process
MSC:
[2010] 62M10 , 91B84
journal: Statistics and Probability Letters

1 Introduction

The model considered in this paper is a GARCH(1,1) process:

(Return Process) ut=σtεt,\displaystyle u_{t}=\sigma_{t}\varepsilon_{t},
(Volatility Process) σt2=ω+αnut12+βnσt12,ω>0αn0, and βn0,\displaystyle\sigma_{t}^{2}=\omega+\alpha_{n}u_{t-1}^{2}+\beta_{n}\sigma_{t-1}^{2},\quad\omega>0\text{, }\alpha_{n}\geq 0\text{, and }\beta_{n}\geq 0,

where {εt}t=0n\{\varepsilon_{t}\}_{t=0}^{n} is a sequence of independent identically distributed (i.i.d) variables such that Eε0=0E\varepsilon_{0}=0 and Eε02=1E\varepsilon_{0}^{2}=1.

Unlike conventional GARCH(1,1) process, the innovation process considered in this paper is a mildly-integrated GARCH process whose key parameters, αn\alpha_{n} and βn\beta_{n}, are changing with the sample size, viz.

αn=O(np),βn=1+O(nq), where p,q(0,1),\alpha_{n}=O(n^{-p}),\quad\beta_{n}=1+O(n^{-q}),\text{ where }p,q\in(0,1),

and

γn=αn+βn1=O(nκ),κ=min{p,q}.\gamma_{n}=\alpha_{n}+\beta_{n}-1=O(n^{-\kappa}),\quad\kappa=\min\{p,q\}.

The limiting process of this GARCH process is first derived in Berkes et al. [2005] by imposing the assumption κ(1/2,1)\kappa\in(1/2,1). Extending their results, we obtain the limiting process that applies to parameter values that covers the whole range of (0,1)(0,1). This is a non-trivial extension because when the process deviates further from the integrated GARCH process, the approximation errors in Berkes et al. [2005] diverges and thus a different normalization is needed.

2 Main Results

The main results are summarized in the following one proposition and three theorems. The first proposition modifies the additive representation for σt2\sigma_{t}^{2} in Berkes et al. [2005] to accommodate κ(0,1)\kappa\in(0,1). Based on the proposition, we establish three theorems to describe the asymptotic behaviours of σt2\sigma_{t}^{2} and utu_{t} under the cases γn0\gamma_{n}\lesseqqgtr 0 respectively.

To establish the additive representation of σt2\sigma_{t}^{2}, we make the following assumptions on the distribution of the innovations {εt}t=0n\{\varepsilon_{t}\}_{t=0}^{n} and the convergence rate of the GARCH coefficients, αn\alpha_{n} and βn\beta_{n}.

Assumption 1.

{εt}t=0n\{\varepsilon_{t}\}_{t=0}^{n} is an i.i.d sequence with Eε02=1E\varepsilon_{0}^{2}=1 and E|ε0|4+δ<E|\varepsilon_{0}|^{4+\delta}<\infty, for some δ>0\delta>0.

Assumption 2.

αnloglogn0\alpha_{n}\log\log n\rightarrow 0, nαnn\alpha_{n}\rightarrow\infty and βn1\beta_{n}\rightarrow 1.

Assumption 1 imposes a non-degeneracy condition on the distribution of εt2\varepsilon_{t}^{2} and thus ensures its applicability to the central limit theorem. Assumption 2 bounds the convergence rate of αn\alpha_{n} so that the normalized sequence could converge to a proper limit. Based on these assumptions, we obtain a modified additive representation for σt2\sigma_{t}^{2} in Proposition 1 on the top of Berkes et al. [2005].

Proposition 1 (Additive Representation).

Under Assumption 1 and 2, we have the additive representation for σt2\sigma_{t}^{2} as

σt2\displaystyle\sigma_{t}^{2} =σ02tt/2etγn(1+αntj=1tξtj+Rt(1))+ω[1+j=1ttj/2ejγnt(1+αnti=1jξti+Rt,j(2))(1+Rt,j(3))]\displaystyle=\sigma_{0}^{2}t^{t/2}e^{\sqrt{t}\gamma_{n}}\left(1+\dfrac{\alpha_{n}}{\sqrt{t}}\sum_{j=1}^{t}\xi_{t-j}+R_{t}^{(1)}\right)+\omega\left[1+\sum_{j=1}^{t}t^{j/2}e^{\frac{j\gamma_{n}}{\sqrt{t}}}\left(1+\dfrac{\alpha_{n}}{\sqrt{t}}\sum_{i=1}^{j}\xi_{t-i}+R_{t,j}^{(2)}\right)\left(1+R_{t,j}^{(3)}\right)\right]

where ξt=εt21\xi_{t}=\varepsilon_{t}^{2}-1 and the remainder terms satisfy

|Rt(1)|=Op(αn2+γn2),\displaystyle\left|R_{t}^{(1)}\right|=O_{p}\left(\alpha_{n}^{2}+\gamma_{n}^{2}\right), max1jt|Rt,j(2)|=Op(αn2)\displaystyle\quad\max\limits_{1\leq j\leq t}\left|R_{t,j}^{(2)}\right|=O_{p}\left(\alpha_{n}^{2}\right)
max1jt1jloglogj|Rt,j(2)|=Op(αn2t),\displaystyle\max\limits_{1\leq j\leq t}\dfrac{1}{j\log\log j}\left|R_{t,j}^{(2)}\right|=O_{p}\left(\dfrac{\alpha_{n}^{2}}{t}\right), max1jt1j|Rt,j(3)|=Op(αn2+γn2t)\displaystyle\quad\max\limits_{1\leq j\leq t}\dfrac{1}{j}\left|R_{t,j}^{(3)}\right|=O_{p}\left(\dfrac{\alpha_{n}^{2}+\gamma_{n}^{2}}{t}\right)
Remark 1.

The key difference between our results and Berkes et al. [2005] is the convergence rate of the approximation errors. In Berkes et al. [2005], the approximation error |Rt(p)||R_{t}^{(p)}|, p={1,2,3}\forall p=\{1,2,3\} is of order t(αn2+γn2)t(\alpha_{n}^{2}+\gamma_{n}^{2}) or tαn2t\alpha_{n}^{2} asymptotically. Hence, these errors are negligible only when κ(1/2,1)\kappa\in(1/2,1). We relax this restrictive assumption by normalizing the original terms with t\sqrt{t}. Under this new normalization, all the approximation errors remains negligible when κ(0,1)\kappa\in(0,1).

To formulate the theorems below, I introduce the following notations. For 0<t1<t2<<tN<10<t_{1}<t_{2}<\cdots<t_{N}<1 define k(m)=ntmk(m)=\lfloor nt_{m}\rfloor, 1mN1\leq m\leq N. Further, we need the assumptions for relative convergence rate between αn\alpha_{n} and γn\gamma_{n} to regulate the asymptotic behaviours of returns and volatilities for near-stationary case.

Assumption 3.

|γn|αnn1/4\dfrac{\sqrt{\lvert\gamma_{n}\rvert}}{\alpha_{n}n^{1/4}}\rightarrow\infty, while |γn|3αnn1/40\dfrac{\sqrt{\lvert\gamma_{n}\rvert^{3}}}{\alpha_{n}n^{1/4}}\rightarrow 0, as nn\rightarrow\infty.

Assumption 3 imposes a rate condition on the localized parameters αn\alpha_{n} and γn\gamma_{n}. This condition is less restrictive than that in Berkes et al. [2005] in the sense that instead of requiring |γn|3/2/αn\lvert\gamma_{n}\rvert^{3/2}/\alpha_{n} to converge to 0, we allow it to diverge slowly at a rate of n1/4n^{1/4}. The relaxation of the assumption also attributes to the change of the normalization.

Theorem 1 (Near-stationary Case).

Suppose γn<0\gamma_{n}<0, then under Assumption 1-3, the random variables

2|γn|3αnk(m)1/41Eξ02(σk(m)2ωk(m)k(m)/2j=1k(m)1ejγnk(m))𝑑𝒩(0,1).\dfrac{\sqrt{2\lvert\gamma_{n}\rvert^{3}}}{\alpha_{n}k(m)^{1/4}}\dfrac{1}{\sqrt{E\xi_{0}^{2}}}\left(\dfrac{\sigma_{k(m)}^{2}}{\omega{k(m)}^{k(m)/2}}-\sum_{j=1}^{k(m)-1}e^{\frac{j\gamma_{n}}{\sqrt{k(m)}}}\right)\xrightarrow{d}\mathcal{N}(0,1).

In addition, the random variables

(|γn|ωk(m)(k(m)+1)/2)1/2uk(m)\left(\dfrac{\lvert\gamma_{n}\rvert}{\omega{k(m)}^{(k(m)+1)/2}}\right)^{1/2}u_{k(m)}

are asymptotically independent, each with the asymptotic distribution equals to that of ε0\varepsilon_{0}.

Theorem 2 (Integrate Case).

Suppose γn=0\gamma_{n}=0, then under Assumption 1 and 2, the volatility has the asymptotic distribution

k(m)1/2n3/2αn1Eξ02(σk(m)2ωk(m)k(m)/2k(m))𝑑0tmx𝑑W(x).\dfrac{k(m)^{1/2}}{n^{3/2}\alpha_{n}}\dfrac{1}{\sqrt{E\xi_{0}^{2}}}\left(\dfrac{\sigma_{k(m)}^{2}}{\omega{k(m)}^{k(m)/2}}-k(m)\right)\xrightarrow{d}\int_{0}^{t_{m}}xdW(x).

In addition, the random variables

(ωk(m)k(m)/2+1)1/2uk(m)\left(\omega{k(m)}^{k(m)/2+1}\right)^{-1/2}u_{k(m)}

are asymptotically independent, each with the asymptotic distribution equals to that of ε0\varepsilon_{0}.

Similar to the near-stationary case, we have to impose additional assumption on the relative speed of converging to zero between αn\alpha_{n} and γn\gamma_{n}.

Assumption 4.

γn/αn0\gamma_{n}/\alpha_{n}\rightarrow 0, as nn\rightarrow\infty.

Theorem 3 (Near-explosive Case).

Suppose γn>0\gamma_{n}>0, then under Assumption 1, 2 and 4, the volatility has the asymptotic distribution

γnek(m)γnαnk(m)1Eξ02(σk(m)2ωk(m)k(m)/2j=1k(m)1ejγnk(m))W(tm).\dfrac{\gamma_{n}e^{-\sqrt{k(m)}\gamma_{n}}}{\alpha_{n}\sqrt{k(m)}}\dfrac{1}{\sqrt{E\xi_{0}^{2}}}\left(\dfrac{\sigma_{k(m)}^{2}}{\omega k(m)^{k(m)/2}}-\sum_{j=1}^{k(m)-1}e^{\frac{j\gamma_{n}}{\sqrt{k(m)}}}\right)\Rightarrow W(t_{m}).

In addition, the random variables

(γnek(m)γnωk(m)(k(m)+1)/2)1/2uk(m)\left(\dfrac{\gamma_{n}e^{-\sqrt{k(m)}\gamma_{n}}}{\omega k(m)^{(k(m)+1)/2}}\right)^{1/2}u_{k(m)}

are asymptotically independent, each with the asymptotic distribution equals to that of ε0\varepsilon_{0}.

Remark 2.

As one may notice, the rate of convergence for both volatility process and return process in all three cases decreases to 0 asymptotically. These seemingly awkward results are reasonable in the sense that the convergence rate is a part of the normalization which reflects the order of the process. In other words, when we compute a partial sum of XXs in form of i=1naiXi\sum_{i=1}^{n}a_{i}X_{i}, the normalization just plays the role of aia_{i} which is usually required to decrease to 0 for applying a central limit theorem.

3 Proofs

In this section, I present detailed proofs for all the propositions and the theorems listed in the previous section. For readers’ convenience, I provide a roadmap for understanding the proofs of the theorems. In general, the proofs are done in three steps:

Step 1: We decompose the volatility process into 4 components, σk,s2\sigma_{k,s}^{2}, s=1,,4s=1,\cdots,4, by expanding the multiplicative form provided in Proposition 1.

Step 2: We show the first 3 volatility components are negligible after normalization, and the last term converges to a proper limit by using Cramer-Wold device and Liapounov central limit theorem or Donsker’s theorem.

Step 3: We figure out a normalization to make the normalized volatility converges to 1. Then, applying this normalization to the return process, we complete the proof.

Proof of Proposition 1.

First, note the GARCH(1,1) model can be written into the following multiplicative form:

σt2\displaystyle\sigma_{t}^{2} =σ02i=1t(βn+αnεti2)+ω[1+j=1t1i=1j(βn+αnεti2)]\displaystyle=\sigma_{0}^{2}\prod_{i=1}^{t}\left(\beta_{n}+\alpha_{n}\varepsilon_{t-i}^{2}\right)+\omega\left[1+\sum_{j=1}^{t-1}\prod_{i=1}^{j}\left(\beta_{n}+\alpha_{n}\varepsilon_{t-i}^{2}\right)\right]
=σ02tt/2i=1t(βn+αnεti2)t+ω[1+tt/2j=1t1i=1j(βn+αnεti2)t].\displaystyle=\sigma_{0}^{2}t^{t/2}\prod_{i=1}^{t}\dfrac{\left(\beta_{n}+\alpha_{n}\varepsilon_{t-i}^{2}\right)}{\sqrt{t}}+\omega\left[1+t^{t/2}\sum_{j=1}^{t-1}\prod_{i=1}^{j}\dfrac{\left(\beta_{n}+\alpha_{n}\varepsilon_{t-i}^{2}\right)}{\sqrt{t}}\right].

Note that

max1it|βn+αnεti21|t|γn|t+αnmax1it|εti21|t=|γn|t+αnmax1it1|εi21|t.\max\limits_{1\leq i\leq t}\dfrac{\left|\beta_{n}+\alpha_{n}\varepsilon_{t-i}^{2}-1\right|}{\sqrt{t}}\leq\dfrac{|\gamma_{n}|}{\sqrt{t}}+\alpha_{n}\max\limits_{1\leq i\leq t}\dfrac{|\varepsilon_{t-i}^{2}-1|}{\sqrt{t}}=\dfrac{|\gamma_{n}|}{\sqrt{t}}+\alpha_{n}\max\limits_{1\leq i\leq t-1}\dfrac{|\varepsilon_{i}^{2}-1|}{\sqrt{t}}.

Then by Assumption 1 and Chow & Teicher [2012], we have the almost sure convergence of

max1jt1|εi21|=O(t).\max_{1\leq j\leq t-1}|\varepsilon_{i}^{2}-1|=O(\sqrt{t}).

Therefore, the term above is

max1it|βn+αnεti21|t=op(1).\max\limits_{1\leq i\leq t}\dfrac{\left|\beta_{n}+\alpha_{n}\varepsilon_{t-i}^{2}-1\right|}{\sqrt{t}}=o_{p}(1).

Now consider the sequence of events

An={max1it|βn+αnεti21|t12}.A_{n}=\left\{\max\limits_{1\leq i\leq t}\dfrac{\lvert\beta_{n}+\alpha_{n}\varepsilon_{t-i}^{2}-1\rvert}{\sqrt{t}}\leq\dfrac{1}{2}\right\}.

From the previous result we know limnP(An)=1\lim\limits_{n\rightarrow\infty}P(A_{n})=1. Then by Taylor expansion, |log(1+x)x|2x2\lvert\log(1+x)-x\rvert\leq 2x^{2}, |x|1/2\lvert x\rvert\leq 1/2 on the event AnA_{n}, which implies

|Rt,j(3)|\displaystyle\left|R_{t,j}^{(3)}\right| =|i=1jlog(βn+αnεti2)ti=1j(γn+αnξti)t|\displaystyle=\left|\sum_{i=1}^{j}\log\dfrac{\left(\beta_{n}+\alpha_{n}\varepsilon_{t-i}^{2}\right)}{\sqrt{t}}-\sum_{i=1}^{j}\dfrac{\left(\gamma_{n}+\alpha_{n}\xi_{t-i}\right)}{\sqrt{t}}\right|
=|i=1jlog(γn+αnξti+1)ti=1j(γn+αnξti)t|\displaystyle=\left|\sum_{i=1}^{j}\log\dfrac{\left(\gamma_{n}+\alpha_{n}\xi_{t-i}+1\right)}{\sqrt{t}}-\sum_{i=1}^{j}\dfrac{\left(\gamma_{n}+\alpha_{n}\xi_{t-i}\right)}{\sqrt{t}}\right|
i=1j|log(γn+αnξtit+1)(γn+αnξti)t|\displaystyle\leq\sum_{i=1}^{j}\left|\log\left(\dfrac{\gamma_{n}+\alpha_{n}\xi_{t-i}}{\sqrt{t}}+1\right)-\dfrac{\left(\gamma_{n}+\alpha_{n}\xi_{t-i}\right)}{\sqrt{t}}\right|
2i=1j(γn+αnξti)2t4jγn2t+4αn2i=1jξti2t.\displaystyle\leq 2\sum_{i=1}^{j}\dfrac{\left(\gamma_{n}+\alpha_{n}\xi_{t-i}\right)^{2}}{t}\leq\dfrac{4j\gamma_{n}^{2}}{t}+\dfrac{4\alpha_{n}^{2}\sum_{i=1}^{j}\xi_{t-i}^{2}}{t}.

By Assumption 1 and law of large numbers (LLN), we know

max1jt1j|i=1jξti2|max1jt1j|i=1jξi2|=Op(1).\max\limits_{1\leq j\leq t}\dfrac{1}{j}\left|\sum_{i=1}^{j}\xi_{t-i}^{2}\right|\sim\max\limits_{1\leq j\leq t}\dfrac{1}{j}\left|\sum_{i=1}^{j}\xi_{i}^{2}\right|=O_{p}(1).

Then by the equation above, we have

max1ij1j|Rt,j(3)|=Op(γn2+αn2t).\max\limits_{1\leq i\leq j}\dfrac{1}{j}\lvert R_{t,j}^{(3)}\rvert=O_{p}\left(\dfrac{\gamma_{n}^{2}+\alpha_{n}^{2}}{t}\right).

Now by direct plugging into the key multiplicative term we care about, we have

i=1j(βn+αnεti2)t\displaystyle\prod_{i=1}^{j}\dfrac{\left(\beta_{n}+\alpha_{n}\varepsilon_{t-i}^{2}\right)}{\sqrt{t}} =exp{i=1jlog(βn+αnεti2t)}\displaystyle=\exp\left\{\sum_{i=1}^{j}\log\left(\dfrac{\beta_{n}+\alpha_{n}\varepsilon_{t-i}^{2}}{\sqrt{t}}\right)\right\}
=exp{jγnt}exp{αni=1jξtit}exp{Rt,j(3)}\displaystyle=\exp\left\{\dfrac{j\gamma_{n}}{\sqrt{t}}\right\}\exp\left\{\dfrac{\alpha_{n}\sum_{i=1}^{j}\xi_{t-i}}{\sqrt{t}}\right\}\exp\left\{R_{t,j}^{(3)}\right\}
=ejγntexp{αni=1jξtit}(1+Rt,j(3)).\displaystyle=e^{\frac{j\gamma_{n}}{\sqrt{t}}}\exp\left\{\dfrac{\alpha_{n}\sum_{i=1}^{j}\xi_{t-i}}{\sqrt{t}}\right\}\left(1+R_{t,j}^{(3)}\right).

Further, note {ξt}t=1n\{\xi_{t}\}_{t=1}^{n} is an i.i.d sequence with Eξ02<E\xi_{0}^{2}<\infty, then we know

max1jt|i=1jξti|=Op(t),\max\limits_{1\leq j\leq t}\left|\sum_{i=1}^{j}\xi_{t-i}\right|=O_{p}(\sqrt{t}),

which implies

max1jt|αnti=1jξti|=Op(αn)=op(1).\max\limits_{1\leq j\leq t}\left|\dfrac{\alpha_{n}}{\sqrt{t}}\sum_{i=1}^{j}\xi_{t-i}\right|=O_{p}(\alpha_{n})=o_{p}(1).

Similarly, we define the sequence of events

Bn={max1jt|αnti=1jξti|12},B_{n}=\left\{\max\limits_{1\leq j\leq t}\left|\dfrac{\alpha_{n}}{\sqrt{t}}\sum_{i=1}^{j}\xi_{t-i}\right|\leq\dfrac{1}{2}\right\},

which is known to have the property limnP(Bn)=1\lim\limits_{n\rightarrow\infty}P(B_{n})=1. Then by Taylor expansion, |exp(x)(1+x)|ex2/2\lvert\exp(x)-(1+x)\rvert\leq\sqrt{e}x^{2}/2 when |x|1/2\lvert x\rvert\leq 1/2, on the event BnB_{n}

|Rt,j(2)|=|exp{αnti=1jξti}(1+αnti=1jξti)|e2(αnti=1jξti)2=Op(αn2),\left|R_{t,j}^{(2)}\right|=\left|\exp\left\{\dfrac{\alpha_{n}}{\sqrt{t}}\sum_{i=1}^{j}\xi_{t-i}\right\}-\left(1+\dfrac{\alpha_{n}}{\sqrt{t}}\sum_{i=1}^{j}\xi_{t-i}\right)\right|\leq\dfrac{\sqrt{e}}{2}\left(\dfrac{\alpha_{n}}{\sqrt{t}}\sum_{i=1}^{j}\xi_{t-i}\right)^{2}=O_{p}\left(\alpha_{n}^{2}\right),

and by law of iterated logarithm, we know

max1jt1jloglogj(αnti=1jξti)2=Op(αn2t).\max\limits_{1\leq j\leq t}\dfrac{1}{j\log\log j}\left(\dfrac{\alpha_{n}}{\sqrt{t}}\sum_{i=1}^{j}\xi_{t-i}\right)^{2}=O_{p}\left(\dfrac{\alpha_{n}^{2}}{t}\right).

Combining the results above, we have thus showed that

i=1j(βn+αnεti2t)=ejγnt(1+αnti=1jξti+Rt,j(2))(1+Rt,j(3)).\prod_{i=1}^{j}\left(\dfrac{\beta_{n}+\alpha_{n}\varepsilon_{t-i}^{2}}{\sqrt{t}}\right)=e^{\frac{j\gamma_{n}}{\sqrt{t}}}\left(1+\dfrac{\alpha_{n}}{\sqrt{t}}\sum_{i=1}^{j}\xi_{t-i}+R_{t,j}^{(2)}\right)\left(1+R_{t,j}^{(3)}\right).

Lastly, by the equation above, we know

i=1t(βn+αnεti2t)\displaystyle\prod_{i=1}^{t}\left(\dfrac{\beta_{n}+\alpha_{n}\varepsilon_{t-i}^{2}}{\sqrt{t}}\right) =etγnt(1+αnti=1tξti+Op(αn2))(1+Op(γn2+αn2))\displaystyle=e^{\frac{t\gamma_{n}}{\sqrt{t}}}\left(1+\dfrac{\alpha_{n}}{\sqrt{t}}\sum_{i=1}^{t}\xi_{t-i}+O_{p}(\alpha_{n}^{2})\right)\left(1+O_{p}(\gamma_{n}^{2}+\alpha_{n}^{2})\right)
=etγn(1+αnti=1tξti+Op(γn2+αn2)),\displaystyle=e^{\sqrt{t}\gamma_{n}}\left(1+\dfrac{\alpha_{n}}{\sqrt{t}}\sum_{i=1}^{t}\xi_{t-i}+O_{p}(\gamma_{n}^{2}+\alpha_{n}^{2})\right),

and this establishes Rt(1)R_{t}^{(1)}. ∎

Proof of Theorem 1.

First, we focus on the volatilities. Denote k=ntk=\lfloor nt\rfloor, 0<t10<t\leq 1,

σk2\displaystyle\sigma_{k}^{2} =ω+σ02kk/2ekγn(1+αnkj=1kξkj+Rk(1))+ωkk/2j=1k1ejγnk(1+αnki=1jξki+Rk,j(2))Rk,j(3)\displaystyle=\omega+\sigma_{0}^{2}k^{k/2}e^{\sqrt{k}\gamma_{n}}\left(1+\dfrac{\alpha_{n}}{\sqrt{k}}\sum_{j=1}^{k}\xi_{k-j}+R_{k}^{(1)}\right)+\omega k^{k/2}\sum_{j=1}^{k-1}e^{\frac{j\gamma_{n}}{\sqrt{k}}}\left(1+\dfrac{\alpha_{n}}{\sqrt{k}}\sum_{i=1}^{j}\xi_{k-i}+R_{k,j}^{(2)}\right)R_{k,j}^{(3)}
+ωkk/2j=1k1ejγnkRk,j(2)+ωkk/2j=1k1ejγnk(1+αnki=1jξki)\displaystyle\ \ \ +\omega k^{k/2}\sum_{j=1}^{k-1}e^{\frac{j\gamma_{n}}{\sqrt{k}}}R_{k,j}^{(2)}+\omega k^{k/2}\sum_{j=1}^{k-1}e^{\frac{j\gamma_{n}}{\sqrt{k}}}\left(1+\dfrac{\alpha_{n}}{\sqrt{k}}\sum_{i=1}^{j}\xi_{k-i}\right)
=ω+σk,12+σk,22+σk,32+σk,42.\displaystyle=\omega+\sigma_{k,1}^{2}+\sigma_{k,2}^{2}+\sigma_{k,3}^{2}+\sigma_{k,4}^{2}.

For σk,12\sigma_{k,1}^{2}, note k1/2j=1kξkjk^{-1/2}\sum_{j=1}^{k}\xi_{k-j} is asymptotically normal, then by Proposition 1,

αnkj=1kξkj+Rk(1)=op(1),\dfrac{\alpha_{n}}{\sqrt{k}}\sum_{j=1}^{k}\xi_{k-j}+R_{k}^{(1)}=o_{p}(1),

and this implies

|σk,12|\displaystyle\left\lvert\sigma_{k,1}^{2}\right\rvert =Op(kk/2ekγn).\displaystyle=O_{p}\left(k^{k/2}e^{\sqrt{k}\gamma_{n}}\right).

For σk,22\sigma_{k,2}^{2}, note by Lemma 4.1 in Berkes et al. [2005], we have

j=1kjejγnkk|γn|2Γ(2),\sum_{j=1}^{k}je^{\frac{j\gamma_{n}}{\sqrt{k}}}\sim\dfrac{k}{\lvert\gamma_{n}\rvert^{2}}\Gamma(2), (1)

and note that

max1jk1|αnki=1jξki+Rk,j(2)|=op(1).\max\limits_{1\leq j\leq k-1}\left\lvert\dfrac{\alpha_{n}}{\sqrt{k}}\sum_{i=1}^{j}\xi_{k-i}+R_{k,j}^{(2)}\right\rvert=o_{p}(1). (2)

Then by equation (1), (2) and Proposition 1 we have

|σk,22|\displaystyle\left\lvert\sigma_{k,2}^{2}\right\rvert =|ωkk/2j=1k1jejγnk(1+αnki=1jξki+Rk,j(2))1jRk,j(3)|\displaystyle=\left\lvert\omega k^{k/2}\sum_{j=1}^{k-1}je^{\frac{j\gamma_{n}}{\sqrt{k}}}\left(1+\dfrac{\alpha_{n}}{\sqrt{k}}\sum_{i=1}^{j}\xi_{k-i}+R_{k,j}^{(2)}\right)\dfrac{1}{j}R_{k,j}^{(3)}\right\rvert
=Op(1)ωkk/2αn2+γn2kk|γn|2\displaystyle=O_{p}(1)\omega k^{k/2}\dfrac{\alpha_{n}^{2}+\gamma_{n}^{2}}{k}\dfrac{k}{\lvert\gamma_{n}\rvert^{2}}
=Op(kk/2(αn2+γn2)γn2).\displaystyle=O_{p}\left(\dfrac{k^{k/2}\left(\alpha_{n}^{2}+\gamma_{n}^{2}\right)}{\gamma_{n}^{2}}\right).

For σk,32\sigma_{k,3}^{2}, similarly, by Proposition 1 and Lemma 4.1 in Berkes et al. [2005], we have

|σk,32|\displaystyle\left\lvert\sigma_{k,3}^{2}\right\rvert =|ωkk/2j=1k1ejγnkRk,j(2)|\displaystyle=\left\lvert\omega k^{k/2}\sum_{j=1}^{k-1}e^{\frac{j\gamma_{n}}{\sqrt{k}}}R_{k,j}^{(2)}\right\rvert
=Op(1)ωkk/2αn2kj=1k1jejγkloglogj\displaystyle=O_{p}(1)\omega k^{k/2}\dfrac{\alpha_{n}^{2}}{k}\sum_{j=1}^{k-1}je^{\frac{j\gamma}{\sqrt{k}}}\log\log j
=Op(kk/2(αn2loglogk)γn2).\displaystyle=O_{p}\left(\dfrac{k^{k/2}\left(\alpha_{n}^{2}\log\log k\right)}{\gamma_{n}^{2}}\right).

Lastly, for σk,42\sigma_{k,4}^{2}, by Lemma 4.1 in 1 we have

σk,42\displaystyle\sigma_{k,4}^{2} =ωkk/2j=1k1ejγnk+ωkk/2αnkj=1k1ejγnki=1jξki\displaystyle=\omega k^{k/2}\sum_{j=1}^{k-1}e^{\frac{j\gamma_{n}}{\sqrt{k}}}+\omega k^{k/2}\dfrac{\alpha_{n}}{\sqrt{k}}\sum_{j=1}^{k-1}e^{\frac{j\gamma_{n}}{\sqrt{k}}}\sum_{i=1}^{j}\xi_{k-i}
=Op(kk/2k1/2|γn|)+ωkk/2αnkj=1k1ejγnki=1jξki.\displaystyle=O_{p}\left(\dfrac{k^{k/2}k^{1/2}}{\lvert\gamma_{n}\rvert}\right)+\omega k^{k/2}\dfrac{\alpha_{n}}{\sqrt{k}}\sum_{j=1}^{k-1}e^{\frac{j\gamma_{n}}{\sqrt{k}}}\sum_{i=1}^{j}\xi_{k-i}.

Therefore, we only have to consider the last term in the above equation. Define

τm=k(m)1/4j=1k(m)1ejγnk(m)ξk(m)j,1mN,\tau_{m}=k(m)^{-1/4}\sum_{j=1}^{k(m)-1}e^{\frac{j\gamma_{n}}{\sqrt{k(m)}}}\xi_{k(m)-j},\quad 1\leq m\leq N,

and

τm=k(m)1/2j=1k(m)1ejγnk(m)i=1jξk(m)i,1mN.\tau_{m}^{*}=k(m)^{-1/2}\sum_{j=1}^{k(m)-1}e^{\frac{j\gamma_{n}}{\sqrt{k(m)}}}\sum_{i=1}^{j}\xi_{k(m)-i},\quad 1\leq m\leq N.

Then by Cramer-Wold device (Theorem 29.4 of Billingsley [1995]), we have

m=1Nμmτm\displaystyle\sum_{m=1}^{N}\mu_{m}\tau_{m} =i=1k(1)1m=1Nμmk(m)1/4e(k(m)i)γnk(m)+i=k(1)k(2)1m=2Nμmk(m)1/4e(k(m)i)γnk(m)\displaystyle=\sum_{i=1}^{k(1)-1}\sum_{m=1}^{N}\dfrac{\mu_{m}}{k(m)^{1/4}}e^{\frac{(k(m)-i)\gamma_{n}}{\sqrt{k(m)}}}+\sum_{i=k(1)}^{k(2)-1}\sum_{m=2}^{N}\dfrac{\mu_{m}}{k(m)^{1/4}}e^{\frac{(k(m)-i)\gamma_{n}}{\sqrt{k(m)}}}
++i=k(N1)k(N)1μNk(N)1/4e(k(N)i)γnk(N)\displaystyle+\cdots+\sum_{i=k(N-1)}^{k(N)-1}\dfrac{\mu_{N}}{k(N)^{1/4}}e^{\frac{(k(N)-i)\gamma_{n}}{\sqrt{k(N)}}}
=S1+S2++SN.\displaystyle=S_{1}+S_{2}+\cdots+S_{N}.

Observe that

ES12\displaystyle ES_{1}^{2} =Eξ02(i=1k(1)1m=1Nk(m)1/4μme(k(m)i)γnk(m))2\displaystyle=E\xi_{0}^{2}\left(\sum_{i=1}^{k(1)-1}\sum_{m=1}^{N}k(m)^{-1/4}\mu_{m}e^{\frac{(k(m)-i)\gamma_{n}}{\sqrt{k(m)}}}\right)^{2}
=Eξ02m=1Nμm2k(m)i=1k(1)1e2(k(m)i)γnk(m)+Eξ021mlN(k(m)k(l))1/4μmμli=1k(1)1e(k(m)i)γnk(m)+(k(l)i)γnk(l)\displaystyle=E\xi_{0}^{2}\sum_{m=1}^{N}\dfrac{\mu_{m}^{2}}{\sqrt{k(m)}}\sum_{i=1}^{k(1)-1}e^{\frac{2(k(m)-i)\gamma_{n}}{\sqrt{k(m)}}}+E\xi_{0}^{2}\sum_{1\leq m\neq l\leq N}\left(k(m)k(l)\right)^{-1/4}\mu_{m}\mu_{l}\sum_{i=1}^{k(1)-1}e^{\frac{(k(m)-i)\gamma_{n}}{\sqrt{k(m)}}+\frac{(k(l)-i)\gamma_{n}}{\sqrt{k(l)}}}
=Eξ02μ12k(1)i=1k(1)1e2(k(1)i)γnk(1)+Eξ02m=2Nμm2k(m)i=1k(1)1e2(k(m)i)γnk(m)\displaystyle=E\xi_{0}^{2}\dfrac{\mu_{1}^{2}}{\sqrt{k(1)}}\sum_{i=1}^{k(1)-1}e^{\frac{2(k(1)-i)\gamma_{n}}{\sqrt{k(1)}}}+E\xi_{0}^{2}\sum_{m=2}^{N}\dfrac{\mu_{m}^{2}}{\sqrt{k(m)}}\sum_{i=1}^{k(1)-1}e^{\frac{2(k(m)-i)\gamma_{n}}{\sqrt{k(m)}}}
+Eξ021mlN(k(m)k(l))1/4μmμli=1k(1)1e(k(m)i)γnk(m)+(k(l)i)γnk(l)\displaystyle\ \ \ +E\xi_{0}^{2}\sum_{1\leq m\neq l\leq N}\left(k(m)k(l)\right)^{-1/4}\mu_{m}\mu_{l}\sum_{i=1}^{k(1)-1}e^{\frac{(k(m)-i)\gamma_{n}}{\sqrt{k(m)}}+\frac{(k(l)-i)\gamma_{n}}{\sqrt{k(l)}}}
=Eξ02μ12k(1)i=1k(1)1e2iγnk(1)+Eξ02m=2Nμm2k(m)e2(k(m)k(1))γnk(m)i=1k(1)1e2iγnk(m)\displaystyle=E\xi_{0}^{2}\dfrac{\mu_{1}^{2}}{\sqrt{k(1)}}\sum_{i=1}^{k(1)-1}e^{\frac{2i\gamma_{n}}{\sqrt{k(1)}}}+E\xi_{0}^{2}\sum_{m=2}^{N}\dfrac{\mu_{m}^{2}}{\sqrt{k(m)}}e^{\frac{2(k(m)-k(1))\gamma_{n}}{\sqrt{k(m)}}}\sum_{i=1}^{k(1)-1}e^{\frac{2i\gamma_{n}}{\sqrt{k(m)}}}
+Eξ021mlN(k(m)k(l))1/4μmμle(k(m)k(1))γnk(m)+(k(l)k(1))γnk(l)i=1k(1)1eiγnk(m)+iγnk(l)\displaystyle\ \ \ +E\xi_{0}^{2}\sum_{1\leq m\neq l\leq N}(k(m)k(l))^{-1/4}\mu_{m}\mu_{l}e^{\frac{(k(m)-k(1))\gamma_{n}}{\sqrt{k(m)}}+\frac{(k(l)-k(1))\gamma_{n}}{\sqrt{k(l)}}}\sum_{i=1}^{k(1)-1}e^{\frac{i\gamma_{n}}{\sqrt{k(m)}}+\frac{i\gamma_{n}}{\sqrt{k(l)}}}
Eξ02μ1212|γn|+Eξ02m=2Nμm2e2(k(m)k(1))γnk(m)12|γn|\displaystyle\sim E\xi_{0}^{2}\mu_{1}^{2}\dfrac{1}{2\lvert\gamma_{n}\rvert}+E\xi_{0}^{2}\sum_{m=2}^{N}\mu_{m}^{2}e^{\frac{2(k(m)-k(1))\gamma_{n}}{\sqrt{k(m)}}}\dfrac{1}{2\lvert\gamma_{n}\rvert}
+Eξ021mlNμmμl(k(m)+k(l))|γn|e(k(m)k(1))γnk(m)+(k(l)k(1))γnk(l)\displaystyle\ \ \ +E\xi_{0}^{2}\sum_{1\leq m\neq l\leq N}\dfrac{\mu_{m}\mu_{l}}{(\sqrt{k(m)}+\sqrt{k(l)})\lvert\gamma_{n}\rvert}e^{\frac{(k(m)-k(1))\gamma_{n}}{\sqrt{k(m)}}+\frac{(k(l)-k(1))\gamma_{n}}{\sqrt{k(l)}}}
=Eξ02μ1212|γn|+o(1|γn|),\displaystyle=E\xi_{0}^{2}\mu_{1}^{2}\dfrac{1}{2\lvert\gamma_{n}\rvert}+o\left(\dfrac{1}{\lvert\gamma_{n}\rvert}\right),

we then have

E(m=1Nμmτm)2\displaystyle E\left(\sum_{m=1}^{N}\mu_{m}\tau_{m}\right)^{2} =(m=1Nμm2)Eξ012|γn|+o(1|γn|).\displaystyle=\left(\sum_{m=1}^{N}\mu_{m}^{2}\right)E\xi_{0}\dfrac{1}{2\lvert\gamma_{n}\rvert}+o\left(\dfrac{1}{\lvert\gamma_{n}\rvert}\right).

Observe also that, for some cic_{i}, 1ik(N)11\leq i\leq k(N)-1, we have

m=1Nμmτm=i=1k(N)1ciξi,\sum_{m=1}^{N}\mu_{m}\tau_{m}=\sum_{i=1}^{k(N)-1}c_{i}\xi_{i},

and by Jensen’s inequality, we know for some δ>0\delta>0,

|ci|2+δ\displaystyle\lvert c_{i}\rvert^{2+\delta} =|k(1)1/4μ1e(k(1)i)γnk(1)+k(2)1/4μ1e(k(2)i)γnk(2)++k(N)1/4μ1e(k(N)i)γnk(N)|2+δ\displaystyle=\left|k(1)^{-1/4}\mu_{1}e^{\frac{(k(1)-i)\gamma_{n}}{\sqrt{k(1)}}}+k(2)^{-1/4}\mu_{1}e^{\frac{(k(2)-i)\gamma_{n}}{\sqrt{k(2)}}}+\cdots+k(N)^{-1/4}\mu_{1}e^{\frac{(k(N)-i)\gamma_{n}}{\sqrt{k(N)}}}\right|^{2+\delta}
C1(N)[|μ1|2+δk(1)1/2+δ/4e(k(1)i)(2+δ)γnk(1)++|μN|2+δk(N)1/2+δ/4e(k(N)i)(2+δ)γnk(N)].\displaystyle\leq C_{1}(N)\left[\dfrac{\lvert\mu_{1}\rvert^{2+\delta}}{k(1)^{1/2+\delta/4}}e^{\frac{(k(1)-i)(2+\delta)\gamma_{n}}{\sqrt{k(1)}}}+\cdots+\dfrac{\lvert\mu_{N}\rvert^{2+\delta}}{k(N)^{1/2+\delta/4}}e^{\frac{(k(N)-i)(2+\delta)\gamma_{n}}{\sqrt{k(N)}}}\right].

This implies that

i=1k(N)1|ci|2+δC1(N)|μ1|2+δ1k(1)δ/4(2+δ)|γn|+O(1k(2)δ/4|γn|)=o(1|γn|).\sum_{i=1}^{k(N)-1}\lvert c_{i}\rvert^{2+\delta}\sim C_{1}(N)\lvert\mu_{1}\rvert^{2+\delta}\dfrac{1}{k(1)^{\delta/4}(2+\delta)\lvert\gamma_{n}\rvert}+O\left(\dfrac{1}{k(2)^{\delta/4}\lvert\gamma_{n}\rvert}\right)=o\left(\dfrac{1}{\lvert\gamma_{n}\rvert}\right).

Now we can easily check the Liapounov’s condition, where

(i=1k(N)1|ci|2+δE|ξi|2+δ)1/(2+δ)(i=1k(N)1ci2Eξi2)1/2=o(|γn|1/21/(2+δ))=op(1).\dfrac{\left(\sum_{i=1}^{k(N)-1}\lvert c_{i}\rvert^{2+\delta}E\lvert\xi_{i}\rvert^{2+\delta}\right)^{1/(2+\delta)}}{\left(\sum_{i=1}^{k(N)-1}c_{i}^{2}E\xi_{i}^{2}\right)^{1/2}}=o\left(\lvert\gamma_{n}\rvert^{1/2-1/(2+\delta)}\right)=o_{p}(1).

Then by Liapounov central limit theorem (Theorem 27.3, p.362 of Billingsley [1995]), we have

2|γn|[τ1,τ2,,τN]𝑑Eξ02[η1,η2,,ηN],\sqrt{2\lvert\gamma_{n}\rvert}\left[\tau_{1},\tau_{2},\cdots,\tau_{N}\right]\xrightarrow{d}\sqrt{E\xi_{0}^{2}}\left[\eta_{1},\eta_{2},\cdots,\eta_{N}\right],

where η1,η2,,ηN\eta_{1},\eta_{2},\cdots,\eta_{N} are independent standard normal random variables.

Now we have to check the relationship between τm\tau_{m} and τm\tau_{m}^{*}. Note by k1/2(eγnk1)1=(γn+o(1))1k^{-1/2}\left(e^{\frac{\gamma_{n}}{\sqrt{k}}}-1\right)^{-1}=\left(\gamma_{n}+o(1)\right)^{-1}, we have

1kj=ik1ejγnk|γn|1eiγnk\displaystyle\dfrac{1}{\sqrt{k}}\sum_{j=i}^{k-1}e^{\frac{j\gamma_{n}}{\sqrt{k}}}-\lvert\gamma_{n}\rvert^{-1}e^{\frac{i\gamma_{n}}{\sqrt{k}}} =1kekγnkeiγnkeγnk1|γn|1eiγnk\displaystyle=\dfrac{1}{\sqrt{k}}\dfrac{e^{\frac{k\gamma_{n}}{\sqrt{k}}}-e^{\frac{i\gamma_{n}}{\sqrt{k}}}}{e^{\frac{\gamma_{n}}{\sqrt{k}}}-1}-\lvert\gamma_{n}\rvert^{-1}e^{\frac{i\gamma_{n}}{\sqrt{k}}}
=(γn+o(1))1(ekγnkeiγnk)|γn|1eiγnk\displaystyle=\left(\gamma_{n}+o(1)\right)^{-1}\left(e^{\frac{k\gamma_{n}}{\sqrt{k}}}-e^{\frac{i\gamma_{n}}{\sqrt{k}}}\right)-\lvert\gamma_{n}\rvert^{-1}e^{\frac{i\gamma_{n}}{\sqrt{k}}}
=(γn1+O(1))ekγnkeiγnkO(1).\displaystyle=\left(\gamma_{n}^{-1}+O(1)\right)e^{\frac{k\gamma_{n}}{\sqrt{k}}}-e^{\frac{i\gamma_{n}}{\sqrt{k}}}O(1).

Then, we know

E[2|γn|3τm2|γn|τm]2\displaystyle E\left[\sqrt{2\lvert\gamma_{n}\rvert^{3}}\tau_{m}^{*}-\sqrt{2\lvert\gamma_{n}\rvert}\tau_{m}\right]^{2} =2|γn|3kE[1ki=1k1(j=ik1ejγk)ξki|γn|1i=1k1eiγnkξki]2\displaystyle=\dfrac{2\lvert\gamma_{n}\rvert^{3}}{\sqrt{k}}E\left[\dfrac{1}{\sqrt{k}}\sum_{i=1}^{k-1}\left(\sum_{j=i}^{k-1}e^{\frac{j\gamma}{\sqrt{k}}}\right)\xi_{k-i}-\lvert\gamma_{n}\rvert^{-1}\sum_{i=1}^{k-1}e^{\frac{i\gamma_{n}}{\sqrt{k}}}\xi_{k-i}\right]^{2}
=2|γn|3kEξ02i=1k1(1kj=ik1ejγnk|γn|1eiγnk)2\displaystyle=\dfrac{2\lvert\gamma_{n}\rvert^{3}}{\sqrt{k}}E\xi_{0}^{2}\sum_{i=1}^{k-1}\left(\dfrac{1}{\sqrt{k}}\sum_{j=i}^{k-1}e^{\frac{j\gamma_{n}}{\sqrt{k}}}-\lvert\gamma_{n}\rvert^{-1}e^{\frac{i\gamma_{n}}{\sqrt{k}}}\right)^{2}
2|γn|3kEξ02(kγn2ekγn+k2|γ|2γn1ekγnk|γ|)\displaystyle\sim\dfrac{2\lvert\gamma_{n}\rvert^{3}}{\sqrt{k}}E\xi_{0}^{2}\left(k\gamma_{n}^{-2}e^{\sqrt{k}\gamma_{n}}+\dfrac{\sqrt{k}}{2\lvert\gamma\rvert}-2\gamma_{n}^{-1}e^{\sqrt{k}\gamma_{n}}\dfrac{\sqrt{k}}{\lvert\gamma\rvert}\right)
=2Eξ02O(k|γn|ekγn)+op(1)\displaystyle=2E\xi_{0}^{2}O\left(\sqrt{k}\lvert\gamma_{n}\rvert e^{\sqrt{k}\gamma_{n}}\right)+o_{p}(1)
=op(1),\displaystyle=o_{p}(1),

where the last equality comes from the well known limits of xexxe^{-x},

limxxex=limx1ex=0andlimx0xex=0.\lim\limits_{x\rightarrow\infty}\dfrac{x}{e^{x}}=\lim\limits_{x\rightarrow\infty}\dfrac{1}{e^{x}}=0\quad\text{and}\quad\lim\limits_{x\rightarrow 0}\dfrac{x}{e^{x}}=0.

Therefore, we have

2|γn|3[τ1,τ2,,τN]𝑑Eξ02[η1,η2,,ηN],\sqrt{2\lvert\gamma_{n}\rvert^{3}}\left[\tau_{1}^{*},\tau_{2}^{*},\cdots,\tau_{N}^{*}\right]\xrightarrow{d}\sqrt{E\xi_{0}^{2}}\left[\eta_{1},\eta_{2},\cdots,\eta_{N}\right],

Now combine the results above, we have, for each k=ntmk={\lfloor nt_{m}\rfloor}, m=1,,Nm=1,\cdots,N

2|γn|3αnk1/41Eξ02(σk2ωkk/2j=1k1ejγnk)𝑑𝒩(0,1).\displaystyle\dfrac{\sqrt{2\lvert\gamma_{n}\rvert^{3}}}{\alpha_{n}k^{1/4}}\dfrac{1}{\sqrt{E\xi_{0}^{2}}}\left(\dfrac{\sigma_{k}^{2}}{\omega{k}^{k/2}}-\sum_{j=1}^{k-1}e^{\frac{j\gamma_{n}}{\sqrt{k}}}\right)\xrightarrow{d}\mathcal{N}(0,1).

Now, for returns, we know from the above result that

|γn|σk2ωk(k+1)/21=Op(αnn1/4|γn|)=op(1).\displaystyle\dfrac{\lvert\gamma_{n}\rvert\sigma_{k}^{2}}{\omega{k}^{(k+1)/2}}-1=O_{p}\left(\dfrac{\alpha_{n}n^{1/4}}{\sqrt{\lvert\gamma_{n}\rvert}}\right)=o_{p}(1).

Therefore, by the return equation, we have

(|γn|ωk(k+1)/2)1/2uk=(|γn|σk2ωk(k+1)/2)1/2εkεk.\left(\dfrac{\lvert\gamma_{n}\rvert}{\omega{k}^{(k+1)/2}}\right)^{1/2}u_{k}=\left(\dfrac{\lvert\gamma_{n}\rvert\sigma_{k}^{2}}{\omega{k}^{(k+1)/2}}\right)^{1/2}\varepsilon_{k}\sim\varepsilon_{k}.

Proof of Theorem 2.

Similar to Theorem 1, when γn=0\gamma_{n}=0, the volatility admits the decomposition. Then, for σk,12\sigma_{k,1}^{2}, by central limit theorem, we know

αnkj=1kξkj=Op(αn)=op(1)\dfrac{\alpha_{n}}{\sqrt{k}}\sum_{j=1}^{k}\xi_{k-j}=O_{p}(\alpha_{n})=o_{p}(1)

which, combining with Proposition 1, implies that

|σk,12|=Op(kk/2)\left\lvert\sigma_{k,1}^{2}\right\rvert=O_{p}\left(k^{k/2}\right)

For σk,22\sigma_{k,2}^{2}, note that we have established equation (2), then by Proposition 1, we have

|σk,22|=Op(kk/2αn2).\left\lvert\sigma_{k,2}^{2}\right\rvert=O_{p}\left(k^{k/2}\alpha_{n}^{2}\right).

For σk,32\sigma_{k,3}^{2}, by Proposition 1 we have

|σk,32|=Op(kk/2αn2).\left\lvert\sigma_{k,3}^{2}\right\rvert=O_{p}(k^{k/2}\alpha_{n}^{2}).

Lastly, for σk,42\sigma_{k,4}^{2}, note by Lemma 5.1 in Berkes et al. [2005], for k=ntk=\lfloor nt\rfloor, t(0,1)t\in(0,1) , we have

1n3/2j=1nt1i=1jξki𝑑Eξ020tx𝑑W(x),\dfrac{1}{n^{3/2}}\sum_{j=1}^{\lfloor nt\rfloor-1}\sum_{i=1}^{j}\xi_{k-i}\xrightarrow{d}\sqrt{E\xi_{0}^{2}}\int_{0}^{t}xdW(x),

where W(x)W(x) is a Wiener process.

Therefore, for k(m)=ntmk(m)=\lfloor nt_{m}\rfloor, m=1,,Nm=1,\cdots,N, we have

k(m)1/2n3/2αn(σk(m)2ωk(m)k(m)/2k(m))=1n3/2j=1ntm1i=1jξk(m)i+op(1)𝑑Eξ020tmx𝑑W(x).\displaystyle\dfrac{k(m)^{1/2}}{n^{3/2}\alpha_{n}}\left(\dfrac{\sigma_{k(m)}^{2}}{\omega{k(m)}^{k(m)/2}}-k(m)\right)=\dfrac{1}{n^{3/2}}\sum_{j=1}^{\lfloor nt_{m}\rfloor-1}\sum_{i=1}^{j}\xi_{k(m)-i}+o_{p}(1)\xrightarrow{d}\sqrt{E\xi_{0}^{2}}\int_{0}^{t_{m}}xdW(x).

Further, note the results above implies that

σk(m)2ωk(m)k(m)/2+11=Op((nk)3/2αn)=op(1).\dfrac{\sigma_{k(m)}^{2}}{\omega{k(m)}^{k(m)/2+1}}-1=O_{p}\left(\left(\dfrac{n}{k}\right)^{3/2}\alpha_{n}\right)=o_{p}(1).

Hence, by return equation, we obtain

(1ωk(m)k(m)/2+1)1/2uk(m)=(σk(m)2ωk(m)k(m)/2+1)1/2εk(m)𝑑εk(m).\left(\dfrac{1}{\omega{k(m)}^{k(m)/2+1}}\right)^{1/2}u_{k(m)}=\left(\dfrac{\sigma_{k(m)}^{2}}{\omega{k(m)}^{k(m)/2+1}}\right)^{1/2}\varepsilon_{k(m)}\xrightarrow{d}\varepsilon_{k(m)}.

Proof of Theorem 3.

Similar to proof of Theorem 1, when γn>0\gamma_{n}>0, the volatility admits the additive representation. For σk,12\sigma_{k,1}^{2}, similar to that in Theorem 1,

|σk,12|=Op(kk/2ekγn).\left\lvert\sigma_{k,1}^{2}\right\rvert=O_{p}\left(k^{k/2}e^{\sqrt{k}\gamma_{n}}\right).

For σk,22\sigma_{k,2}^{2}, by Proposition 1 and equation (2), we have the relation

|σk,22|\displaystyle\left\lvert\sigma_{k,2}^{2}\right\rvert =|ωkk/2j=1k1jejγnk(1+op(1))1jRk,j(3)|\displaystyle=\left\lvert\omega k^{k/2}\sum_{j=1}^{k-1}je^{\frac{j\gamma_{n}}{\sqrt{k}}}(1+o_{p}(1))\dfrac{1}{j}R_{k,j}^{(3)}\right\rvert
=Op(1)ωkk/2(αn2+γn2)ekγnkeγnkeγnk1\displaystyle=O_{p}(1)\omega k^{k/2}(\alpha_{n}^{2}+\gamma_{n}^{2})\dfrac{e^{\frac{k\gamma_{n}}{\sqrt{k}}}-e^{\frac{\gamma_{n}}{\sqrt{k}}}}{e^{\frac{\gamma_{n}}{\sqrt{k}}}-1}
<Op(kk/2(αn2+γn2)kekγnγn),\displaystyle<O_{p}\left(k^{k/2}\left(\alpha_{n}^{2}+\gamma_{n}^{2}\right)\dfrac{\sqrt{k}e^{\sqrt{k}\gamma_{n}}}{\gamma_{n}}\right),

where the last inequality comes from the fact that

ekγnkeγnkeγnk1<ekγnγn/k.\dfrac{e^{\frac{k\gamma_{n}}{\sqrt{k}}}-e^{\frac{\gamma_{n}}{\sqrt{k}}}}{e^{\frac{\gamma_{n}}{\sqrt{k}}}-1}<\dfrac{e^{\sqrt{k}\gamma_{n}}}{\gamma_{n}/\sqrt{k}}.

For σk,32\sigma_{k,3}^{2}, by Proposition 1, we have

|σk,32|\displaystyle\left\lvert\sigma_{k,3}^{2}\right\rvert =|ωkk/2j=1k1ejγnk(jloglogj)1jloglogjRk,j(2)|\displaystyle=\left\lvert\omega k^{k/2}\sum_{j=1}^{k-1}e^{\frac{j\gamma_{n}}{\sqrt{k}}}\left(j\log\log j\right)\dfrac{1}{j\log\log j}R_{k,j}^{(2)}\right\rvert
=Op(1)ωkk/2(kloglogk)αn2kekγnkeγnkeγnk1\displaystyle=O_{p}(1)\omega k^{k/2}\left(k\log\log k\right)\dfrac{\alpha_{n}^{2}}{k}\dfrac{e^{\frac{k\gamma_{n}}{\sqrt{k}}}-e^{\frac{\gamma_{n}}{\sqrt{k}}}}{e^{\frac{\gamma_{n}}{\sqrt{k}}}-1}
<Op(kk/2(αn2loglogk)kekγnγn).\displaystyle<O_{p}\left(k^{k/2}\left(\alpha_{n}^{2}\log\log k\right)\dfrac{\sqrt{k}e^{\sqrt{k}\gamma_{n}}}{\gamma_{n}}\right).

Lastly, for σk,42\sigma_{k,4}^{2}, we have

σk,42=ωkk/2j=1k1ejγnk+ωkk/2αnkj=1k1ejγnki=1jξki.\sigma_{k,4}^{2}=\omega k^{k/2}\sum_{j=1}^{k-1}e^{\frac{j\gamma_{n}}{\sqrt{k}}}+\omega k^{k/2}\dfrac{\alpha_{n}}{\sqrt{k}}\sum_{j=1}^{k-1}e^{\frac{j\gamma_{n}}{\sqrt{k}}}\sum_{i=1}^{j}\xi_{k-i}.

Now, we introduce the following lemma to assist the proof.

Lemma 1.

If Assumption 1 and 2 hold, then

γn2ke2kγnE(1kj=1k1ejγnki=1jξkiekγnγni=1k1ξi)20.\dfrac{\gamma_{n}^{2}}{k}e^{-2\sqrt{k}\gamma_{n}}E\left(\dfrac{1}{\sqrt{k}}\sum_{j=1}^{k-1}e^{\frac{j\gamma_{n}}{\sqrt{k}}}\sum_{i=1}^{j}\xi_{k-i}-\dfrac{e^{\sqrt{k}\gamma_{n}}}{\gamma_{n}}\sum_{i=1}^{k-1}\xi_{i}\right)^{2}\rightarrow 0.

Then by Lemma 1, we have

γnekγnkαn(σk,42ωkk/2j=1k1ejγnk)\displaystyle\dfrac{\gamma_{n}e^{-\sqrt{k}\gamma_{n}}}{\sqrt{k}\alpha_{n}}\left(\dfrac{\sigma_{k,4}^{2}}{\omega k^{k/2}}-\sum_{j=1}^{k-1}e^{\frac{j\gamma_{n}}{\sqrt{k}}}\right) =γnekγnk1kj=1k1ejγnki=1jξki+op(1)=1ki=1k1ξi+op(1).\displaystyle=\dfrac{\gamma_{n}e^{-\sqrt{k}\gamma_{n}}}{\sqrt{k}}\dfrac{1}{\sqrt{k}}\sum_{j=1}^{k-1}e^{\frac{j\gamma_{n}}{\sqrt{k}}}\sum_{i=1}^{j}\xi_{k-i}+o_{p}(1)=\dfrac{1}{\sqrt{k}}\sum_{i=1}^{k-1}\xi_{i}+o_{p}(1).

Therefore, by Donsker’s theorem, we obtain that, for k(m)=ntmk(m)=\lfloor nt_{m}\rfloor, tm(0,1)t_{m}\in(0,1) and m=1,2,,Nm=1,2,\cdots,N,

γnek(m)γnk(m)αn1Eξ02(σk(m)2ωk(m)k(m)/2j=1k(m)1ejγnk(m))W(tm),\dfrac{\gamma_{n}e^{-\sqrt{k(m)}\gamma_{n}}}{\sqrt{k(m)}\alpha_{n}}\dfrac{1}{\sqrt{E\xi_{0}^{2}}}\left(\dfrac{\sigma_{k(m)}^{2}}{\omega k(m)^{k(m)/2}}-\sum_{j=1}^{k(m)-1}e^{\frac{j\gamma_{n}}{\sqrt{k(m)}}}\right)\Rightarrow W(t_{m}),

where W(t)W(t) is a finite dimensional Wiener process.

Further, note that

γnkekγn(j=1k1ejγnkkekγnγn)=o(1),\dfrac{\gamma_{n}}{\sqrt{k}}e^{-\sqrt{k}\gamma_{n}}\left(\sum_{j=1}^{k-1}e^{\frac{j\gamma_{n}}{\sqrt{k}}}-\dfrac{\sqrt{k}e^{\sqrt{k}\gamma_{n}}}{\gamma_{n}}\right)=o(1),

then by the result above we know

γnek(m)γnk(m)(σk(m)2ωk(m)k(m)/2j=1k(m)1ejγnk(m))=Op(αn)=op(1).\dfrac{\gamma_{n}e^{-\sqrt{k(m)}\gamma_{n}}}{\sqrt{k(m)}}\left(\dfrac{\sigma_{k(m)}^{2}}{\omega k(m)^{k(m)/2}}-\sum_{j=1}^{k(m)-1}e^{\frac{j\gamma_{n}}{\sqrt{k(m)}}}\right)=O_{p}(\alpha_{n})=o_{p}(1).

Hence, by return equantion, we derive

(γnekγnωk(k+1)/2)1/2uk=(γnekγnωk(k+1)/2σk2)1/2εkεk.\left(\dfrac{\gamma_{n}e^{-\sqrt{k}\gamma_{n}}}{\omega k^{(k+1)/2}}\right)^{1/2}u_{k}=\left(\dfrac{\gamma_{n}e^{-\sqrt{k}\gamma_{n}}}{\omega k^{(k+1)/2}}\sigma_{k}^{2}\right)^{1/2}\varepsilon_{k}\sim\varepsilon_{k}.

Proof of Lemma 1. Note that

1kj=1k1ejγnki=1jξki=1ki=1k1(j=ik1ejγnk)ξkiandi=1k1ξi=i=1k1ξki,\dfrac{1}{\sqrt{k}}\sum_{j=1}^{k-1}e^{\frac{j\gamma_{n}}{\sqrt{k}}}\sum_{i=1}^{j}\xi_{k-i}=\dfrac{1}{\sqrt{k}}\sum_{i=1}^{k-1}\left(\sum_{j=i}^{k-1}e^{\frac{j\gamma_{n}}{\sqrt{k}}}\right)\xi_{k-i}\quad\text{and}\quad\sum_{i=1}^{k-1}\xi_{i}=\sum_{i=1}^{k-1}\xi_{k-i},

Then,

E(1kj=1k1ejγnki=1jξkiekγnγni=1k1ξi)2\displaystyle E\left(\dfrac{1}{\sqrt{k}}\sum_{j=1}^{k-1}e^{\frac{j\gamma_{n}}{\sqrt{k}}}\sum_{i=1}^{j}\xi_{k-i}-\dfrac{e^{\sqrt{k}\gamma_{n}}}{\gamma_{n}}\sum_{i=1}^{k-1}\xi_{i}\right)^{2} =Eξ02i=1k1(1kj=ik1ejγnkkekγnγn)2\displaystyle=E\xi_{0}^{2}\sum_{i=1}^{k-1}\left(\dfrac{1}{\sqrt{k}}\sum_{j=i}^{k-1}e^{\frac{j\gamma_{n}}{\sqrt{k}}}-\dfrac{\sqrt{k}e^{\sqrt{k}\gamma_{n}}}{\gamma_{n}}\right)^{2}
=Eξ02ki=1k1(ekγnkeiγnkeγnk1kekγnγn)2.\displaystyle=\dfrac{E\xi_{0}^{2}}{k}\sum_{i=1}^{k-1}\left(\dfrac{e^{\frac{k\gamma_{n}}{\sqrt{k}}}-e^{\frac{i\gamma_{n}}{\sqrt{k}}}}{e^{\frac{\gamma_{n}}{\sqrt{k}}}-1}-\dfrac{\sqrt{k}e^{\sqrt{k}\gamma_{n}}}{\gamma_{n}}\right)^{2}.

Note by Taylor expansion,

|ekγnkeiγnkeγnk1kekγnγn|C1(keiγnkγn+ekγn),\left\lvert\dfrac{e^{\frac{k\gamma_{n}}{\sqrt{k}}}-e^{\frac{i\gamma_{n}}{\sqrt{k}}}}{e^{\frac{\gamma_{n}}{\sqrt{k}}}-1}-\dfrac{\sqrt{k}e^{\sqrt{k}\gamma_{n}}}{\gamma_{n}}\right\rvert\leq C_{1}\left(\dfrac{\sqrt{k}e^{\frac{i\gamma_{n}}{\sqrt{k}}}}{\gamma_{n}}+e^{\sqrt{k}\gamma_{n}}\right),

which implies that

i=1k1(ekγnkeiγnkeγnk1kekγnγn)2\displaystyle\sum_{i=1}^{k-1}\left(\dfrac{e^{\frac{k\gamma_{n}}{\sqrt{k}}}-e^{\frac{i\gamma_{n}}{\sqrt{k}}}}{e^{\frac{\gamma_{n}}{\sqrt{k}}}-1}-\dfrac{\sqrt{k}e^{\sqrt{k}\gamma_{n}}}{\gamma_{n}}\right)^{2} 2C12(i=1k1ke2iγnkγn2+ke2kγn)\displaystyle\leq 2C_{1}^{2}\left(\sum_{i=1}^{k-1}\dfrac{ke^{\frac{2i\gamma_{n}}{\sqrt{k}}}}{\gamma_{n}^{2}}+ke^{2\sqrt{k}\gamma_{n}}\right)
=O(1)(kγn2e2kγnke2γnke2γnk1+ke2kγn)\displaystyle=O(1)\left(\dfrac{k}{\gamma_{n}^{2}}\dfrac{e^{\frac{2k\gamma_{n}}{\sqrt{k}}}-e^{\frac{2\gamma_{n}}{\sqrt{k}}}}{e^{\frac{2\gamma_{n}}{\sqrt{k}}}-1}+ke^{2\sqrt{k}\gamma_{n}}\right)
=O(1)(kγn3e2kγn+ke2kγn).\displaystyle=O(1)\left(\dfrac{k}{\gamma_{n}^{3}}e^{2\sqrt{k}\gamma_{n}}+ke^{2\sqrt{k}\gamma_{n}}\right).

Now we can see that

γn2ke2kγnE(1kj=1k1ejγnki=1jξkiekγnγni=1k1ξi)2\displaystyle\dfrac{\gamma_{n}^{2}}{k}e^{-2\sqrt{k}\gamma_{n}}E\left(\dfrac{1}{\sqrt{k}}\sum_{j=1}^{k-1}e^{\frac{j\gamma_{n}}{\sqrt{k}}}\sum_{i=1}^{j}\xi_{k-i}-\dfrac{e^{\sqrt{k}\gamma_{n}}}{\gamma_{n}}\sum_{i=1}^{k-1}\xi_{i}\right)^{2} =O(1)γn2ke2kγnEξ02k(kγn3e2kγn+ke2kγn)=op(1).\displaystyle=O(1)\dfrac{\gamma_{n}^{2}}{k}e^{-2\sqrt{k}\gamma_{n}}\dfrac{E\xi_{0}^{2}}{k}\left(\dfrac{k}{\gamma_{n}^{3}}e^{2\sqrt{k}\gamma_{n}}+ke^{2\sqrt{k}\gamma_{n}}\right)=o_{p}(1).

References

  • Berkes et al. [2005] Berkes, I., Horváth, L., & Kokoszka, P. (2005). Near-integrated garch sequences. The Annals of Applied Probability, 15, 890–913.
  • Billingsley [1995] Billingsley, P. (1995). Probability and measure. (3rd ed.). John Wiley & Sons.
  • Bollerslev [1986] Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31, 307–327.
  • Boswijk [2001] Boswijk, H. P. (2001). Testing for a unit root with near-integrated volatility. Tinbergen Institute Discussion Papers; TI 2001-077/4, .
  • Cavaliere & Taylor [2007] Cavaliere, G., & Taylor, A. M. R. (2007). Testing for unit roots in time series models with non-stationary volatility. Journal of Econometrics, 140, 919–947.
  • Cavaliere & Taylor [2009] Cavaliere, G., & Taylor, A. M. R. (2009). Heteroskedastic time series with a unit root. Econometric Theory, 25, 1228–1276.
  • Chow & Teicher [2012] Chow, Y. S., & Teicher, H. (2012). Probability Theory: Independence, Interchangeability, Martingales. Springer Science & Business Media.
  • Corradi [2000] Corradi, V. (2000). Reconsidering the continuous time limit of the garch (1, 1) process. Journal of Econometrics, 96, 145–153.
  • Duan [1997] Duan, J.-C. (1997). Augmented garch (p, q) process and its diffusion limit. Journal of Econometrics, 79, 97–127.
  • Francq & Zakoïan [2012] Francq, C., & Zakoïan, J.-M. (2012). Strict stationarity testing and estimation of explosive and stationary generalized autoregressive conditional heteroscedasticity models. Econometrica, 80, 821–861.
  • Francq & Zakoïan [2013] Francq, C., & Zakoïan, J.-M. (2013). Inference in nonstationary asymmetric garch models. The Annals of Statistics, 41, 1970–1998.
  • Jensen & Rahbek [2004] Jensen, S. T., & Rahbek, A. (2004). Asymptotic inference for nonstationary garch. Econometric Theory, 20, 1203–1226.
  • Lee & Hansen [1994] Lee, S.-W., & Hansen, B. E. (1994). Asymptotic theory for the garch (1, 1) quasi-maximum likelihood estimator. Econometric Theory, 10, 29–52.
  • Nelson [1990a] Nelson, D. B. (1990a). Arch models as diffusion approximations. Journal of Econometrics, 45, 7–38.
  • Nelson [1990b] Nelson, D. B. (1990b). Stationarity and persistence in the garch (1, 1) model. Econometric Theory, 6, 318–334.