This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Limiting distribution of maximal crossing and nesting of Poissonized random matchings

Jinho Baiklabel=e1]baik@umich.edu [    Robert Jenkinslabel=e2]rmjenkin@umich.edu [ University of Michigan Department of Mathematics
University of Michigan
Ann Arbor, Michigan 48109
USA

E-mail: e2
(2013; 11 2011)
Abstract

The notion of rr-crossing and rr-nesting of a complete matching was introduced and a symmetry property was proved by Chen et al. [Trans. Amer. Math. Soc. 359 (2007) 1555–1575]. We consider random matchings of large size and study their maximal crossing and their maximal nesting. It is known that the marginal distribution of each of them converges to the GOE Tracy–Widom distribution. We show that the maximal crossing and the maximal nesting becomes independent asymptotically, and we evaluate the joint distribution for the Poissonized random matchings explicitly to the first correction term. This leads to an evaluation of the asymptotic of the covariance. Furthermore, we compute the explicit second correction term in the distribution function of two objects: (a) the length of the longest increasing subsequence of Poissonized random permutation and (b) the maximal crossing, and hence also the maximal nesting, of Poissonized random matching.

60B10,
60F99,
33D45,
35Q15,
Random matchings,
crossing,
nesting,
orthogonal polynomials,
Riemann–Hilbert problems,
random matrices,
doi:
10.1214/12-AOP781
keywords:
[class=AMS]
keywords:
volume: 41issue: 6

and t2Supported by NSF Grants DMS-075709 and DMS-10-68646.

1 Introduction

Let n\mathcal{M}_{n} be the set of complete matchings of [2n][2n]. The size of n\mathcal{M}_{n} is (2n1)!!(2n-1)!!. It is well known that the number of complete matchings of [2n][2n] with no crossings equals the nnth Catalan number CnC_{n}, as is the number of complete matchings with no nestings. In 5 , a notation of rr-crossing and rr-nesting was introduced: given a complete matching M={(i1,j1),,(in,jn)}nM=\{(i_{1},j_{1}),\ldots,(i_{n},j_{n})\}\in\mathcal{M}_{n}, {(is1,js1),,(isr,jsr)}\{(i_{s_{1}},j_{s_{1}}),\ldots,(i_{s_{r}},j_{s_{r}})\} is called an rr-crossing if is1<is2<<isr<js1<<jsri_{s_{1}}<i_{s_{2}}<\cdots<i_{s_{r}}<j_{s_{1}}<\cdots<j_{s_{r}} and an rr-nesting if is1<is2<<isr<jsr<<js2<js1i_{s_{1}}<i_{s_{2}}<\cdots<i_{s_{r}}<j_{s_{r}}<\cdots<j_{s_{2}}<j_{s_{1}}. Let crn(M)\mathrm{cr}_{n}(M) be the largest number kk such that MM has a kk-crossing (maximal crossing) and nen(M)\mathrm{ne}_{n}(M) denote the largest number jj such that MM has a jj-nesting (maximal nesting). See Figure 1 for an example. Various combinatorial properties of crn\mathrm{cr}_{n} and nen\mathrm{ne}_{n} were studied by Chen et al. in 5 . This paper subsequently generated a flurry of research concerning crossings and nestings of many combinatorial objects; see, for example, 13 and also the survey article 15 .

Refer to caption
Figure 1: A complete matching MM of [12]. In this sample cr6(M)=4\mathrm{cr}_{6}(M)=4, achieved by {(1,6),(2,7),(4,9),(5,10)}\{(1,6),(2,7),(4,9),(5,10)\}, and ne6(M)=2\mathrm{ne}_{6}(M)=2, achieved by {(3,11),(4,9)}\{(3,11),(4,9)\}.

We may equip n\mathcal{M}_{n} with the uniform probability and regard crn\mathrm{cr}_{n} and nen\mathrm{ne}_{n} as random variables. Let 𝒩\mathcal{N} be a Poisson random variable with parameter t2/2t^{2}/2 and consider matchings of random size distributed as 2𝒩2\mathcal{N}. Let CRt\mathrm{CR}_{t} and NEt\mathrm{NE}_{t} denote cr𝒩\mathrm{cr}_{\mathcal{N}} and ne𝒩\mathrm{ne}_{\mathcal{N}}, respectively. The object of this paper is to study the asymptotics of CRt\mathrm{CR}_{t} and NEt\mathrm{NE}_{t} as tt\to\infty.

One of the main results of 5 is that the joint distribution of crn\mathrm{cr}_{n} and nen\mathrm{ne}_{n} are symmetric. Hence CRt\mathrm{CR}_{t} and NEt\mathrm{NE}_{t} are symmetrically distributed. The limit of the marginal distribution of NEt\mathrm{NE}_{t} can be obtained by noting a bijection between matchings and fixed-point-free involutions. Let \operatornameInvn\operatorname{Inv}_{n} be the set of permutations of size 2n2n consisting of only 2-cycles. To σ\operatornameInvn\sigma\in\operatorname{Inv}_{n} whose cycles are (i1,j1),,(in,jn)(i_{1},j_{1}),\ldots,(i_{n},j_{n}), associate the complete matching {(i1,j1),,(in,jn)}\{(i_{1},j_{1}),\ldots,(i_{n},j_{n})\}. This gives a natural bijection φ\varphi from \operatornameInvn\operatorname{Inv}_{n} onto n\mathcal{M}_{n}. Moreover, if we define ~n(σ)\tilde{\ell}_{n}(\sigma) as the length of the longest decreasing subsequence of σ\operatornameInvn\sigma\in\operatorname{Inv}_{n}, it is easy to check that ~n(σ)/2=nen(φ(σ))\tilde{\ell}_{n}(\sigma)/2=\mathrm{ne}_{n}(\varphi(\sigma)). The limiting distribution of ~n\tilde{\ell}_{n}, and also of ~𝒩\tilde{\ell}_{\mathcal{N}} were obtained obtained earlier in 2 , 3 . From this and the symmetry of crn\mathrm{cr}_{n} and nen\mathrm{ne}_{n}, Chen et al. 5 concluded that for each xx\in\mathbb{R},

limn{crn2n21(2n)1/6x}=limn{nen2n21(2n)1/6x}=F(x),\lim_{n\to\infty}\mathbb{P}\biggl{\{}\frac{\mathrm{cr}_{n}-\sqrt{2n}}{2^{-1}(2n)^{1/6}}\leq x\biggr{\}}=\lim_{n\to\infty}\mathbb{P}\biggl{\{}\frac{\mathrm{ne}_{n}-\sqrt{2n}}{2^{-1}(2n)^{1/6}}\leq x\biggr{\}}=F(x), (1)

where F(x)F(x) is the GOE Tracy–Widom distribution function from random matrix theory 16 defined in (3) below. We also find a similar result for the Poissonized version,

limt{CRtt21t1/3x}=limt{NEtt21t1/3x}=F(x).\lim_{t\to\infty}\mathbb{P}\biggl{\{}\frac{\mathrm{CR}_{t}-t}{2^{-1}t^{1/3}}\leq x\biggr{\}}=\lim_{t\to\infty}\mathbb{P}\biggl{\{}\frac{\mathrm{NE}_{t}-t}{2^{-1}t^{1/3}}\leq x\biggr{\}}=F(x). (2)

We note that the length n(σ)\ell_{n}(\sigma) of the longest increasing subsequence of σ\operatornameInvn\sigma\in\operatorname{Inv}_{n} has a different distribution from ~n\tilde{\ell}_{n}. For example, while ~n(σ)\tilde{\ell}_{n}(\sigma) is always an even integer, n(σ)\ell_{n}(\sigma) can be both even or odd integers. Moreover, it was shown in 3 that n/22n21(2n)1/6\frac{\ell_{n}/2-\sqrt{2n}}{2^{-1}(2n)^{1/6}} converges to a random variable whose distribution function is different from FF; it is given by the so-called GSE Tracy–Widom distribution. Hence the joint distribution of crn\mathrm{cr}_{n} and nen\mathrm{ne}_{n} cannot be the joint distribution of n/2\ell_{n}/2 and ~n/2\tilde{\ell}_{n}/2.

Refer to caption
Figure 2: The permutation matrix of the permutation σ\sigma corresponding to the matching in Figure 1. Since the matrix is symmetric, only the lower triangular part is shown and the entries with element 11 are marked by ×\times. On the left: The maximal up/right path (of length 22) corresponding to nen(φ(σ))\mathrm{ne}_{n}(\varphi(\sigma)). On the right: The maximizing down/right path (of length 44) corresponding to crn(φ(σ))\mathrm{cr}_{n}(\varphi(\sigma)) is realized by 66\ell_{6}^{6}. Note that the longer down/right path indicated by the dashed line is not allowed as it does not fit inside the rectangles bounding the paths 6k\ell^{k}_{6} for any k=1,,12k=1,\ldots,12.

A geometric meaning of crn(φ(σ))\mathrm{cr}_{n}(\varphi(\sigma)) and nen(φ(σ))\mathrm{ne}_{n}(\varphi(\sigma)) is the following. Represent σ\sigma as a permutation matrix. Geometrically we imagine the square of size 2n2n with (1,1)(1,1) entry at the top left corner. The condition that σ\sigma consists of only 2-cycles implies that the matrix is symmetric and the diagonal entries are zeros. Then it is easy to see that nen(φ(σ))=~n(σ)/2\mathrm{ne}_{n}(\varphi(\sigma))=\tilde{\ell}_{n}(\sigma)/2 equals the length of the longest up/right chain consisting of 11’s in the lower-triangle {(i,j)\dvtx1j<i2n}\{(i,j)\dvtx 1\leq j<i\leq 2n\}. On the other hand, for each k=1,,2nk=1,\ldots,2n, let nk(σ)\ell_{n}^{k}(\sigma) denotes the length of the longest down/right chain consisting of 11’s in the rectangle with two opposite corners (2n,1)(2n,1), (k,k)(k,k). Then crn(φ(σ))\mathrm{cr}_{n}(\varphi(\sigma)) equals the maximum of nk(σ)\ell_{n}^{k}(\sigma) over k=1,,2nk=1,\ldots,2n 13 ; see Figure 2.

1.1 Joint distribution

The first main result of this paper is the following result for the joint distribution of CRt\mathrm{CR}_{t} and NEt\mathrm{NE}_{t}. Let F(x)F(x) denote the GOE Tracy–Widom distribution defined by

F(x):=exp[12x(u(s)q(s))𝑑s],u(x):=xq(s)2𝑑s,F(x):=\exp\biggl{[}\frac{1}{2}\int_{x}^{\infty}\bigl{(}u(s)-q(s)\bigr{)}\,ds\biggr{]},\qquad u(x):=\int_{\infty}^{x}q(s)^{2}\,ds, (3)

where q(s)q(s) is the unique solution of Painlevé II, q′′(s)=sq(s)+q(s)3q^{\prime\prime}(s)=sq(s)+q(s)^{3}, such that q(s)\operatornameAi(s)q(s)\sim\operatorname{Ai}(s) as ss\to\infty (where \operatornameAi\operatorname{Ai} denotes the Airy function). The solution q(s)q(s) is called the Hastings–McLeod solution HM ; see also FIK .

Theorem 1.1.

Set

CR~t:=CRtt21t1/3,NE~t=NEtt21t1/3.\tilde{\mathrm{CR}}_{t}:=\frac{\mathrm{CR}_{t}-t}{2^{-1}t^{1/3}},\qquad\tilde{\mathrm{NE}}_{t}=\frac{\mathrm{NE}_{t}-t}{2^{-1}t^{1/3}}. (4)

We have

{CR~tx,NE~tx}\displaystyle\mathbb{P}\bigl{\{}\tilde{\mathrm{CR}}_{t}\leq x,\tilde{\mathrm{NE}}_{t}\leq x^{\prime}\bigr{\}}
(5)
={CR~t<x}{NE~t<x}+F(x)F(x)t2/3+𝒪(t1).\displaystyle\qquad=\mathbb{P}\{\tilde{\mathrm{CR}}_{t}<x\}\mathbb{P}\bigl{\{}\tilde{\mathrm{NE}}_{t}<x^{\prime}\bigr{\}}+\frac{F^{\prime}(x)F^{\prime}(x^{\prime})}{t^{2/3}}+\mathcal{O}\bigl{(}t^{-1}\bigr{)}.

This, together with a tail estimate, implies the asymptotics of the covariance.

Corollary 1.1.

The covariance of CRt\mathrm{CR}_{t} and NEt\mathrm{NE}_{t} satisfies

\operatornameCov(CRt,NEt)=\tfrac14+𝒪(t1/3).\operatorname{Cov}(\mathrm{CR}_{t},\mathrm{NE}_{t})=\tfrac{1}{4}+\mathcal{O}\bigl{(}t^{-1/3}\bigr{)}. (6)

Hence, the correlation is asymptotically

ρ(CRt,NEt)=1σ2t2/3+𝒪(t1),\rho(\mathrm{CR}_{t},\mathrm{NE}_{t})=\frac{1}{\sigma^{2}t^{2/3}}+\mathcal{O}\bigl{(}t^{-1}\bigr{)}, (7)

where σ2=1.6077810345\sigma^{2}=1.6077810345\ldots is the variance of F(x)F(x); cf. page 862 of Bornemann .

We can also interpret CRt\mathrm{CR}_{t} and NEt\mathrm{NE}_{t} as “height” and “depth” of certain nonintersecting random walks. See Section 2 below.

Table 1: The exact correlation and covariance of crn\mathrm{cr}_{n} and nen\mathrm{ne}_{n} for complete matchings of [2n][2n] for the first few nontrivial nn’s. Note that both statistics are strictly negative
\bolds[2n]\bolds{[2n]} \bolds#n\bolds{\#\mathcal{M}_{n}} \bolds\operatornameCov(crn,nen)\bolds{\operatorname{Cov}(\mathrm{cr}_{n},\mathrm{ne}_{n})} \bolds\operatornameCor(crn,nen)\bolds{\operatorname{Cor}(\mathrm{cr}_{n},\mathrm{ne}_{n})}
4 000003 1/9-1/9 1/-1/2
6 000015 0.137777777-0.137777777 0.418918919-0.418918919
8 000105 0.129614512-0.129614512 0.362983698-0.362983698
10 000945 0.132998516-0.132998516 0.331342276-0.331342276
12 010395 0.143259767-0.143259767 0.309871555-0.309871555
14 135135 0.151180948-0.151180948 0.29369603-0.293696032

We may apply the de-Poissonization argument 10 to (1.1) to find a result for the joint distribution of crn\mathrm{cr}_{n} and nen\mathrm{ne}_{n}. However, intuitively, for fixed nn and MnM\in\mathcal{M}_{n}, any (i,j)M(i,j)\in M that is used to form the maximal crossing of MM cannot be used for the maximal nesting of MM. This indicates a negative correlation of crn\mathrm{cr}_{n} and nen\mathrm{ne}_{n} for a fixed nn, contrary to the positive correlation of CRt\mathrm{CR}_{t} and NEt\mathrm{NE}_{t} found in the above corollary. This is verified for small nn by direct computation: Table 1 shows exact calculation of the covariance and correlation of crn\mathrm{cr}_{n} and nen\mathrm{ne}_{n} for small values of nn. For large nn, a sampling of 5000 pseudo-random matchings of [5000][5000] yielded the sample covariance of cr~2500\tilde{\mathrm{cr}}_{2500} and ne~2500\tilde{\mathrm{ne}}_{2500} equal to 0.0420258.-0.0420258\ldots. Therefore, a naive substitution of tt by 2n\sqrt{2n} in (1.1) only yields the following weaker result. A further analysis is needed to obtain the correction terms in the asymptotic behavior of crn\mathrm{cr}_{n} and nen\mathrm{ne}_{n}. A heuristic explanation for the positive correlation of the Poissonized random matchings is that when CRt\mathrm{CR}_{t} is large, it most likely due to fact that the size of the matching is large, and hence the maximal nesting of the matching is also likely to be large.

Corollary 1.2.

Set

cr~n:=crn2n21(2n)1/6,ne~n=nen2n21(2n)1/6.\tilde{\mathrm{cr}}_{n}:=\frac{\mathrm{cr}_{n}-\sqrt{2n}}{2^{-1}(2n)^{1/6}},\qquad\tilde{\mathrm{ne}}_{n}=\frac{\mathrm{ne}_{n}-\sqrt{2n}}{2^{-1}(2n)^{1/6}}. (8)

For each x,xx,x^{\prime}\in\mathbb{R},

{cr~nx,ne~nx}={cr~n<x}{ne~n<x}+𝒪(lognn1/6).\mathbb{P}\bigl{\{}\tilde{\mathrm{cr}}_{n}\leq x,\tilde{\mathrm{ne}}_{n}\leq x^{\prime}\bigr{\}}=\mathbb{P}\{\tilde{\mathrm{cr}}_{n}<x\}\mathbb{P}\bigl{\{}\tilde{\mathrm{ne}}_{n}<x^{\prime}\bigr{\}}+\mathcal{O}\biggl{(}\frac{\sqrt{\log n}}{n^{1/6}}\biggr{)}. (9)

We compare Theorem 1.1 with the result of Bornemann10 on the joint distribution of the extreme eigenvalues of Gaussian unitary ensemble (GUE). Let λmax(n)\lambda_{\max}^{(n)} and λmin(n)\lambda_{\min}^{(n)} denote the largest and the smallest eigenvalues of n×nn\times n GUE. Setting

λ~max(n):=21/2n1/6(λmax(n)2n),λ~min(n):=21/2n1/6(λmin(n)+2n),\quad\tilde{\lambda}_{\max}^{(n)}:=2^{1/2}n^{1/6}\bigl{(}\lambda_{\max}^{(n)}-\sqrt{2n}\bigr{)},\qquad\tilde{\lambda}_{\min}^{(n)}:=2^{1/2}n^{1/6}\bigl{(}\lambda_{\min}^{(n)}+\sqrt{2n}\bigr{)}, (10)

it was shown in Bornemann10 that

{λ~max(n)x,λ~min(n)x}\displaystyle\mathbb{P}\bigl{\{}\tilde{\lambda}_{\max}^{(n)}\leq x,\tilde{\lambda}_{\min}^{(n)}\leq x^{\prime}\bigr{\}}
(11)
={λ~max(n)<x}{λ~min(n)<x}+FGUE(x)FGUE(x)4n2/3+𝒪(n4/3),\displaystyle\qquad=\mathbb{P}\bigl{\{}\tilde{\lambda}_{\max}^{(n)}<x\bigr{\}}\mathbb{P}\bigl{\{}\tilde{\lambda}_{\min}^{(n)}<x^{\prime}\bigr{\}}+\frac{F_{\mathrm{GUE}}^{\prime}(x)F_{\mathrm{GUE}}^{\prime}(x^{\prime})}{4n^{2/3}}+\mathcal{O}\bigl{(}n^{-4/3}\bigr{)},

where FGUEF_{\mathrm{GUE}} is the GUE Tracy–Widom distribution function defined by

FGUE(x):=exp[xu(s)𝑑s].F_{\mathrm{GUE}}(x):=\exp\biggl{[}\int_{x}^{\infty}u(s)\,ds\biggr{]}. (12)

It is interesting to study the joint distribution of the extreme eigenvalues of Gaussian orthogonal ensemble (GOE) and compare the result with (1.1). This will be done in a separate paper. It might also be interesting to see if the error term of (1.1) can be improved to 𝒪(t4/3)\mathcal{O}(t^{-4/3}) as in (1.1), but we do not pursue this in this paper.

1.2 Marginal distribution

We also evaluate the second order term in the asymptotics expansion of the marginal distributions of CRt\mathrm{CR}_{t} and NEt\mathrm{NE}_{t} explicitly. Let [a][a] denote the largest integer less than or equal to aa.

Theorem 1.2.

For xx\in\mathbb{R} and t>0t>0, define xtx_{t} by

xt:=[t+21xt1/3]t21t1/3+1t1/3.x_{t}:=\frac{[t+2^{-1}xt^{1/3}]-t}{2^{-1}t^{1/3}}+\frac{1}{t^{1/3}}. (13)

For each xx\in\mathbb{R},

{CR~tx}\displaystyle\mathbb{P}\{\tilde{\mathrm{CR}}_{t}\leq x\} =\displaystyle= {NE~tx}\displaystyle\mathbb{P}\{\tilde{\mathrm{NE}}_{t}\leq x\}
=\displaystyle= F(xt)120t2/3[4F′′(x)+13x2F(x)]+𝒪(t1).\displaystyle F(x_{t})-\frac{1}{20t^{2/3}}\biggl{[}4F^{\prime\prime}(x)+\frac{1}{3}x^{2}F^{\prime}(x)\biggr{]}+\mathcal{O}\bigl{(}t^{-1}\bigr{)}.

Note that since {CRtx}\mathbb{P}\{\mathrm{CR}_{t}\leq x\} has the same value for x[,+1)x\in[\ell,\ell+1) for a given integer \ell, it is natural that the leading term F(xt)F(x_{t}) of (194) is expressed in terms of xtx_{t}, which contains [t+21xt1/3][t+2^{-1}xt^{1/3}].

In addition to this integral part correction, there is an additional shift by t1/3t^{-1/3} from xx in the definition of xtx_{t}. This is responsible for the absence of the term of order t1/3t^{-1/3} in the expansion (194). For classical ensembles in random matrix theory, there are several papers that showed that a fine scaling can remove such a term (which looks like a natural term to be present.) See ElKaroui for the Laguerre unitary ensemble, Johnstone for Jacobi unitary and orthogonal ensembles, Ma for the Laguerre orthogonal ensemble and JohnstoneMa for Gaussian unitary and orthogonal ensembles. A similar result was obtained recently for random growth models and intersecting particle systems in FerrariFrings , including the height of the so-called PNG model with flat initial condition. It is well known that this is precisely the length of the longest decreasing subsequence of random fixed-point-free involution and hence NEt\mathrm{NE}_{t}. The result of FerrariFrings in the context of this paper is that {NE~tx}=F(xt)+O(t2/3)\mathbb{P}\{\tilde{\mathrm{NE}}_{t}\leq x\}=F(x_{t})+O(t^{-2/3}). The above result finds the term of order O(t2/3)O(t^{-2/3}) explicitly.

As in the joint distribution, the evaluation of the second order term of {cr~nx}\mathbb{P}\{\tilde{\mathrm{cr}}_{n}\leq x\} does not immediately follow from the de-Poissonization argument in 10 . It remains an open problem to evaluate the the error terms of {cr~nx}\mathbb{P}\{\tilde{\mathrm{cr}}_{n}\leq x\} asymptotically.

1.3 Toeplitz minus Hankel with a discrete symbol

Set

Gk,j(t):=n=0gk,j(n)t2n(2n)!,G_{k,j}(t):=\sum_{n=0}^{\infty}g_{k,j}(n)\frac{t^{2n}}{(2n)!}, (15)

where gk,j(n):=#{Mn\dvtxcrn(M)k,nen(M)j}g_{k,j}(n):=\#\{M\in\mathcal{M}_{n}\dvtx\mathrm{cr}_{n}(M)\leq k,\mathrm{ne}_{n}(M)\leq j\} so that

{CRtk,NEtj}\displaystyle\mathbb{P}\{\mathrm{CR}_{t}\leq k,\mathrm{NE}_{t}\leq j\} =\displaystyle= n=0{cr𝒩k,ne𝒩j|𝒩=n}{𝒩=n}\displaystyle\sum_{n=0}^{\infty}\mathbb{P}\{\mathrm{cr}_{\mathcal{N}}\leq k,\mathrm{ne}_{\mathcal{N}}\leq j|\mathcal{N}=n\}\mathbb{P}\{\mathcal{N}=n\}
=\displaystyle= et2/2Gk,j(t).\displaystyle e^{-t^{2}/2}G_{k,j}(t).

An explicit determinantal formula of Gk,j(t)G_{k,j}(t) was obtained in 5 which we describe now.

Stanley had shown earlier that matchings are in bijection with oscillating tableaux of empty shape and of length 2n2n; see Section 5 of 5 . This was further generalized to a bijection between partitions of a set and so-called vacillating tableaux in 5 . In the same paper, it was shown that the maximal crossing (resp., nesting) of a partition equals the maximal number of rows (resp., columns) in any partitions appearing in the corresponding vascillating tableau.

Since an oscillating tableau can be thought of as a walk in the chamber of the affine Weyl group C~n\tilde{C}_{n}, gk,j(n)g_{k,j}(n) equals the number of walks with nn steps from (j,j1,,2,1)(j,j-1,\ldots,2,1) to itself in the chamber 0<xj<<x2<x1<j+k+10<x_{j}<\cdots<x_{2}<x_{1}<j+k+1 where each step is a unit coordinate vector or its negative in j\mathbb{Z}^{j}. The number of such walks was evaluated by Grabnier in 9 using the Gessel–Viennot method of evaluation of nonintersecting paths. This result implies (see the displayed equation before (5.3) in 5 ) that

Gk,j(t)=det[1mr=02m1sin(πram)sin(πrbm)e2tcos(πr/m)]a,b=1j,G_{k,j}(t)=\det\Biggl{[}\frac{1}{m}\sum_{r=0}^{2m-1}\sin\biggl{(}\frac{\pi ra}{m}\biggr{)}\sin\biggl{(}\frac{\pi rb}{m}\biggr{)}e^{2t\cos(\pi r/m)}\Biggr{]}_{a,b=1}^{j}, (17)

where

m:=j+k+1.m:=j+k+1. (18)

We prove Theorem 1.1 by analyzing the determinant (17) asymptotically. For this purpose, we first re-formulate the determinant slightly. By writing the product of the sine functions in terms of a sum of two cosine functions and noting the realness of the entries, we find that

Gk,j(t)=det[habha+b]a,b=1j,G_{k,j}(t)=\det[h_{a-b}-h_{a+b}]_{a,b=1}^{j}, (19)

where

h:=12mr=02m1eiπr/me2tcos(πr/m).h_{\ell}:=\frac{1}{2m}\sum_{r=0}^{2m-1}e^{-i\pi r\ell/m}e^{2t\cos(\pi r/m)}. (20)

This is the determinant of a Toeplitz matrix minus a Hankel matrix. This structure is important in the asymptotic analysis. An interesting feature of the above determinant is that the measure for the Toeplitz determinant is not an absolutely continuous measure but a discrete measure.

Let ω:=eπi/m\omega:=e^{\pi i/m} be the primitive 2m2mth root of unity. Define the discrete measure

dμm(z):=12mr=02m1et(z+z1)δωr(z)d\mu_{m}(z):=\frac{1}{2m}\sum_{r=0}^{2m-1}e^{t(z+z^{-1})}\delta_{\omega^{r}}(z) (21)

on the circle. Let πn,m(z)\pi_{n,m}(z) be the monic orthogonal polynomial of degree nn with respect to dμmd\mu_{m}, defined by the conditions

|z|=1zπn,m(z)𝑑μm(z)=0,0<n.\oint_{|z|=1}z^{-\ell}\pi_{n,m}(z)\,d\mu_{m}(z)=0,\qquad 0\leq\ell<n. (22)

We emphasize the dependence on mm since later we will use the notation πn,\pi_{n,\infty} to denote the case when “m=m=\infty;” the orthogonal polynomials with respect to the absolutely continuous measure et(z+z1)dz2πize^{t(z+z^{-1})}\frac{dz}{2\pi iz}. Note that dμmd\mu_{m} depends on the parameter tt and hence πn,m(z)\pi_{n,m}(z) also depends on tt. When we wish to emphasize this dependence on tt, we write πn,m(z;t)\pi_{n,m}(z;t).

The fact that the tt-dependence of the measure is from the factor et(z+z1)e^{t(z+z^{-1})} implies the following basic formula, which is proved in Section 3 below. Recall from (18) that m:=j+k+1m:=j+k+1.

Proposition 1.1.

We have

log{CRtk,NEtj}\displaystyle\log\mathbb{P}\{\mathrm{CR}_{t}\leq k,\mathrm{NE}_{t}\leq j\}
(23)
=0tπ2j+1,m(0;τ)𝑑τ+0t0s𝒬jm(τ)𝑑τ𝑑s,\displaystyle\qquad=\int_{0}^{t}\pi_{2j+1,m}(0;\tau)\,d\tau+\int_{0}^{t}\int_{0}^{s}\mathcal{Q}_{j}^{m}(\tau)\,d\tau\,ds,

where

𝒬jm(τ)\displaystyle\mathcal{Q}_{j}^{m}(\tau) :=\displaystyle:= (π2j,m(0;τ)π2j+2,m(0;τ)+|π2j+1,m(0;τ)|2)\displaystyle-\bigl{(}\pi_{2j,m}(0;\tau)\pi_{2j+2,m}(0;\tau)+\bigl{|}\pi_{2j+1,m}(0;\tau)\bigr{|}^{2}\bigr{)}
+π2j,m(0;τ)π2j+2,m(0;τ)|π2j+1,m(0;τ)|2.\displaystyle{}+\pi_{2j,m}(0;\tau)\pi_{2j+2,m}(0;\tau)\bigl{|}\pi_{2j+1,m}(0;\tau)\bigr{|}^{2}.

We obtain the asymptotics π2j+,m(0,τ)\pi_{2j+\ell,m}(0,\tau) for =0,1,2\ell=0,1,2 by using the associated discrete version of the Riemann–Hilbert problem; see, for example, BKMM . See Sections 45 and 6 below.

We compare the analysis of this paper based on the formula (1.1) with the analysis of the determinant of a similar Toeplitz minus Hankel matrix in 3 . Even though the determinant in 3 was for continuous measure (which is precisely the one for the marginal distribution of NEt\mathrm{NE}_{t}; see Section 3 below), the basic structure of the matrix is the same; a Toeplitz minus a Hankel matrix. Denoting the matrix by DjD_{j}, the approach of 3 was to write Dj=Dn=jDnDn+1D_{j}=D_{\infty}\prod_{n=j}^{\infty}\frac{D_{n}}{D_{n+1}} where DD_{\infty} is the strong Szegö limit, which exists in that particular case, and analyze Dn/Dn+1D_{n}/D_{n+1}, which can be evaluated from the Riemann–Hilbert problem for the nnth orthogonal polynomial. For our case, since the measure is discrete, the strong Szegö limit does not apply. Indeed Dn=0D_{n}=0 for all large enough nn. Then alternatively one can still analyze DjD_{j} by expressing Dj=D0n=1jDnDn1D_{j}=D_{0}\prod_{n=1}^{j}\frac{D_{n}}{D_{n-1}} as was done in BBD . However, this expression is more subtle to analyze since log(Dn/Dn+1)\log(D_{n}/D_{n+1}) is not small when nn is small (indeed it grows as nn decreases when tt is proportional to jj) and this requires careful cancellations of the terms in the product. Though this was done for the leading term in BBD , the evaluation of the lower terms in the asymptotic expansion in this method becomes more complicated. A particularly useful point in using formula (1.1) is that we only need to consider the so-called full band case (and the transitional case when a gap and a saturated region are about to open up) in the Riemann–Hilbert analysis. This makes the analysis much simpler, and it becomes easier to evaluate the lower order terms. On the contrary, if we use the expression Dj=D0n=1jDnDn1D_{j}=D_{0}\prod_{n=1}^{j}\frac{D_{n}}{D_{n-1}}, then we need to consider both the so-called void-band case and the saturation-band case, including the transitional cases, in the Riemann–Hilbert analysis (and this is the reason for the need of cancellations mentioned above.)

The continuous Riemann–Hilbert problem for πn,(z;t)\pi_{n,\infty}(z;t) was analyzed asymptotically to the leading term in BDJ , 2 , BBD . We expand this work to the discrete counterpart and moreover, we improve the analysis so that we compute explicit formulae for the first three terms in the expansion of the solution in both the discrete and continuous cases. As a technical note, we remark that we use a different local map for the so-called Painlevé parametrix related to the local problem for the Riemann–Hilbert problem from the previous cases BDJ , CK . We adapt the map used in the recent paper BMiller for a different parametrix, which seems to be useful for further analysis in other Riemann–Hilbert problems. For the purpose of this paper, we only analyze the full band case (and the transitional case) of the discrete Riemann–Hilbert problem. The analysis for the full parameter set of the discrete Riemann–Hilbert problem will be discussed somewhere else in the context of Ablowitz–Ladik equations and Schur flows in integrable systems.

A determinantal formula of the marginal distribution {NEtj}\mathbb{P}\{\mathrm{NE}_{t}\leq j\} can be obtained from the joint distribution by taking kk\to\infty while keeping jj fixed. Then we find a Toeplitz minus a Hankel determinant with symbol et(z+z1)e^{t(z+z^{-1})}. Here too, the factor of et(z+z1)e^{t(z+z^{-1})} in the limiting measure implies a formula for the marginal distribution analogous to (1.1). See Section 3 below.

The Toeplitz determinant with symbol et(z+z1)e^{t(z+z^{-1})} is known to be describe the distribution of the length of the longest increasing subsequence of a random permutation Gessel . By using a formula similar to (1.1), the analysis of this paper implies the following result.

1.4 Longest increasing subsequence of random permutation

Consider the symmetric group SnS_{n} of permutations of size nn and equip it with the uniform probability. Let ln(π)l_{n}(\pi) denote the length of the longest increasing subsequence of πSn\pi\in S_{n}. Let 𝒩1\mathcal{N}_{1} be a Poisson random variable with parameter t2t^{2} and let LtL_{t} denotes l𝒩1l_{\mathcal{N}_{1}}. It was shown in BDJ that Lt2tt1/3\frac{L_{t}-2t}{t^{1/3}} converges to the GUE Tracy–Widom distribution (12). We evaluate the next term of the asymptotic expansion explicitly.

Theorem 1.3.

For each xx\in\mathbb{R},

{Lt2tt1/3x}\displaystyle\mathbb{P}\biggl{\{}\frac{L_{t}-2t}{t^{1/3}}\leq x\biggr{\}}
(25)
=FGUE(x(t))110t2/3[FGUE′′(x)+16x2FGUE(x)]+𝒪(t1),\displaystyle\qquad=F_{\mathrm{GUE}}\bigl{(}x^{(t)}\bigr{)}-\frac{1}{10t^{2/3}}\biggl{[}F_{\mathrm{GUE}}^{\prime\prime}(x)+\frac{1}{6}x^{2}F_{\mathrm{GUE}}^{\prime}(x)\biggr{]}+\mathcal{O}\bigl{(}t^{-1}\bigr{)},

where

x(t):=[2t+xt1/3]2tt1/3.x^{(t)}:=\frac{[2t+xt^{1/3}]-2t}{t^{1/3}}. (26)

The study in FerrariFrings also considered the height of the so-called PNG model with the droplet initial condition, which is distributed precisely as LtL_{t}, and showed that the above distribution function is FGUE(x(t))+O(t2/3)F_{\mathrm{GUE}}(x^{(t)})+O(t^{-2/3}). The above theorem evaluates the error term explicitly.

For the Gaussian unitary ensemble, Choup Choup2006 , Choup2008 evaluated the distribution of the largest eigenvalue explicitly up to the term of order O(n2/3)O(n^{-2/3}) which corresponds to the term of order t2/3t^{-2/3} in the above expansion. It would be interesting to compare the term in the above theorem with the formula of Choup2006 , Choup2008 .

1.5 Organization of paper

In Section 2, we consider a nonintersecting random process that gives rise to CRt\mathrm{CR}_{t} and NEt\mathrm{NE}_{t}. Proof of Proposition 3 is given in Section 3. The Riemann–Hilbert problem is introduced in Section 4, and is analyzed asymptotically in Sections 5 and 6. Theorem 1.1 and Corollary 1.1 are proved in Secton 7, and Theorems 1.2 and 1.3 are proved in Section 8. We prove Corollary 1.2 in Section 9 using a de-Poissonization argument. Finally, the Riemann–Hilbert problem for the Painlevé II equations that are needed to model the local parametrix of the Riemann–Hilbert problem for orthogonal polynomials are discussed in Section 10.

2 Height and depth of nonintersecting continuous-time simple random walks

In Section 1.3 we discussed a relation between crn\mathrm{cr}_{n} and nen\mathrm{ne}_{n} and a walk in the chamber {0<xj<<x2<x1<j+k+1}\{0<x_{j}<\cdots<x_{2}<x_{1}<j+k+1\} of the affine Weyl group C~n\tilde{C}_{n}. In this section, we give an interpretation of CRt\mathrm{CR}_{t} and NEt\mathrm{NE}_{t} in terms of the “height” and “depth” of continuous-time simple random walks.

Let N+(τ)N^{+}(\tau) and N(τ)N^{-}(\tau) be two independent Poisson processes of rate 1 and let Z(τ):=N+(τ)N(τ)Z(\tau):=N^{+}(\tau)-N^{-}(\tau) be a continuous-time simple random walk. Then Z(τ)Z(\tau) is an \mathbb{Z}-valued Markov process with the transition probability ps(a,b)=ps(ab)p_{s}(a,b)=p_{s}(a-b) where pt(a)=e2tnt2n+an!(n+a)!=pt(a)p_{t}(a)=e^{-2t}\sum_{n\in\mathbb{Z}}\frac{t^{2n+a}}{n!(n+a)!}=p_{t}(-a) for aa\in\mathbb{Z}. Here we used the convention that 1/n!01/n!\equiv 0 if n<0n<0. Set

ϕ(z):=a(e2tpt(a))za=et(z+z1).\phi(z):=\sum_{a\in\mathbb{Z}}\bigl{(}e^{-2t}p_{t}(a)\bigr{)}z^{-a}=e^{t(z+z^{-1})}. (27)

Then we have

pt(a)=e2tϕa=e2tϕa,ϕa:=|z|=1zaϕ(z)dz2πiz.p_{t}(a)=e^{-2t}\phi_{-a}=e^{-2t}\phi_{a},\qquad\phi_{a}:=\oint_{|z|=1}z^{-a}\phi(z)\frac{dz}{2\pi iz}. (28)

Let Zi(τ),i=0,1,2,,Z_{i}(\tau),i=0,1,2,\ldots, be independent copies of Z(τ)Z(\tau), and consider the infinite system of processes Xi(τ)=Zi(τ)i,i=0,1,2,.X_{i}(\tau)=Z_{i}(\tau)-i,i=0,1,2,\ldots. Fix a number t>0t>0. We will consider the process conditioned on the event that (a) Xi(t)=Xi(0)X_{i}(t)=X_{i}(0) for all ii and (b) Xi(τ)X_{i}(\tau) do not intersect in time [0,t][0,t], that is, X0(τ)>X1(τ)>X_{0}(\tau)>X_{1}(\tau)>\cdots for all τ[0,t]\tau\in[0,t]. A precise interpretation will be given below. Such nonintersecting continuous-time simple random walks have been studied, for example, in OConnell02 , 1 , AdlerFvM .

Define the “height” K:=maxτ[0,t]X0(τ)K:=\max_{\tau\in[0,t]}X_{0}(\tau) and define the “depth” JJ as the smallest index such that Xi(τ)=iX_{i}(\tau)=i for all τ[0,t]\tau\in[0,t] and for all i=J,J+1,,i=J,J+1,\ldots, in other words, only the top JJ processes moved in the interval [0,t][0,t]. We are interested in the joint distribution of JJ and KK conditional of the above event satisfying (a) and (b).

Precisely, fix NN\in\mathbb{N} and let 𝔄N\mathfrak{A}_{N} and 𝔅N\mathfrak{B}_{N} be the events defined as

𝔄N\displaystyle\mathfrak{A}_{N} :=\displaystyle:= {Xi(t)=Xi(0)=i,i=0,1,,N1},\displaystyle\bigl{\{}X_{i}(t)=X_{i}(0)=-i,i=0,1,\ldots,N-1\bigr{\}}, (29)
𝔅N\displaystyle\mathfrak{B}_{N} :=\displaystyle:= {X0(τ)>X1(τ)>>XN1(τ)N+1,τ[0,t]}.\displaystyle\bigl{\{}X_{0}(\tau)>X_{1}(\tau)>\cdots>X_{N-1}(\tau)\geq-N+1,\tau\in[0,t]\bigr{\}}. (30)

The condition that XN1(τ)N+1X_{N-1}(\tau)\geq-N+1 for all τ[0,t]\tau\in[0,t] is natural because JJ is likely to be a finite number and by definition of JJ, XJ1(τ)XJ1(0)X_{J-1}(\tau)\geq X_{J-1}(0) for all τ[0,t]\tau\in[0,t]. The joint distribution of KK and JJ is interpreted as

P(k,j):=limN(Kk,Jj|𝔄N𝔅N).P(k,j):=\lim_{N\to\infty}\mathbb{P}(K\leq k,J\leq j|\mathfrak{A}_{N}\cap\mathfrak{B}_{N}). (31)
Lemma 2.1.

Let KK and JJ be the “height” and “depth,” respectively, defined above. Then

P(k,j)=et2/2Gk,j(t),P(k,j)=e^{-t^{2}/2}G_{k,j}(t), (32)

where Gk,j(t)G_{k,j}(t) is given in (19).

{pf}

We first evaluate (𝔄N𝔅N)\mathbb{P}(\mathfrak{A}_{N}\cap\mathfrak{B}_{N}). The condition that Xi(τ)>NX_{i}(\tau)>-N, i=0,,N1i=0,\ldots,N-1, implies that Xi(τ)X_{i}(\tau) has an absorbing boundary at N-N. Since the transition probability of XiX_{i} with an absorbing boundary at N-N is pt(a,b)pt(2Na,b)p_{t}(a,b)-p_{t}(-2N-a,b), the Karlin–McGregor formula 11 of nonintersecting probability applied to continuous-time simple random walks (see, e.g., AdlerFvM , 1 ) implies then that

(𝔄N𝔅N)\displaystyle\mathbb{P}(\mathfrak{A}_{N}\cap\mathfrak{B}_{N}) =\displaystyle= det[pt(a,b)pt(2N+a,b)]a,b=0N1\displaystyle\det\bigl{[}p_{t}(-a,-b)-p_{t}(-2N+a,-b)\bigr{]}_{a,b=0}^{N-1}
=\displaystyle= e2tNdet[ϕabϕa+b]a,b=1N.\displaystyle e^{-2tN}\det[\phi_{a-b}-\phi_{a+b}]_{a,b=1}^{N}.

Second, we evaluate ({Kk,Jj}𝔄N𝔅N)\mathbb{P}(\{K\leq k,J\leq j\}\cap\mathfrak{A}_{N}\cap\mathfrak{B}_{N}). We assume that NN is large so that NjN\geq j. By the definition of KK and JJ, the desired probability equals (𝔇)\mathbb{P}(\mathfrak{C}\cap\mathfrak{D}) where \mathfrak{C} and 𝔇\mathfrak{D} are independent events defined as follows. \mathfrak{C} is the event that the top jj processes, X0(τ),,Xj1(τ)X_{0}(\tau),\ldots,X_{j-1}(\tau), satisfy the two conditions (a) Xi(t)=Xi(0)X_{i}(t)=X_{i}(0) for all i=0,,j1i=0,\ldots,j-1 and (b) j+1Xj1(τ)<<X0(τ)k-j+1\leq X_{j-1}(\tau)<\cdots<X_{0}(\tau)\leq k for all τ[0,t]\tau\in[0,t], that is, the jj nonintersecting paths are not absorbed at the boundaries j-j and k+1k+1. 𝔇\mathfrak{D} is the event that Xi(τ)=iX_{i}(\tau)=-i for all i=j,j+1,,N1i=j,j+1,\ldots,N-1 and for all τ[0,t]\tau\in[0,t], that is, the bottom NjN-j processes stay put during the interval [0,t][0,t]. Clearly, (𝔇)=(e2t)Nj\mathbb{P}(\mathfrak{D})=(e^{-2t})^{N-j}. On the other hand, from the Karlin–McGregor formula again, ()=det[p^t(a,b)]a,b=0j1\mathbb{P}(\mathfrak{C})=\det[\hat{p}_{t}(-a,-b)]_{a,b=0}^{j-1} where p^t(a,b)\hat{p}_{t}(a,b) is the transition probability of Z(τ)Z(\tau) in the presence of the absorbing walls at j-j and k+1k+1 in time tt. It is easy to see that

p^t(a,b)=n[pt(a+2nm,b)pt(2ja+2nm,b)],\hat{p}_{t}(a,b)=\sum_{n\in\mathbb{Z}}\bigl{[}p_{t}(a+2nm,b)-p_{t}(-2j-a+2nm,b)\bigr{]}, (34)

where m:=j+k+1m:=j+k+1. Now consider the identity zaϕ(z)=nϕa+nznz^{-a}\phi(z)=\sum_{n\in\mathbb{Z}}\phi_{a+n}z^{n}. Set ω:=eπi/m\omega:=e^{\pi i/m}. By inserting z=ωrz=\omega^{r}, r=0,1,,2m1r=0,1,\ldots,2m-1 and summing over rr, we find that

r=02m1(ωr)aϕ(ωr)=2mnϕa+2mn,ω:=eπi/m.\sum_{r=0}^{2m-1}\bigl{(}\omega^{r}\bigr{)}^{-a}\phi\bigl{(}\omega^{r}\bigr{)}=2m\sum_{n\in\mathbb{Z}}\phi_{a+2mn},\qquad\omega:=e^{\pi i/m}. (35)

Hence from (28), (34) becomes

p^t(a,b)=e2t(habhab+2j),\hat{p}_{t}(a,b)=e^{-2t}(h_{a-b}-h_{-a-b+2j}), (36)

where

ha:=|z|=1za𝑑μm(z),dμm(z):=12mr=02m1ϕ(z)δωr(z).h_{a}:=\oint_{|z|=1}z^{-a}\,d\mu_{m}(z),\qquad d\mu_{m}(z):=\frac{1}{2m}\sum_{r=0}^{2m-1}\phi(z)\delta_{\omega^{r}}(z). (37)

Hence, for NjN\geq j,

({Kk,Jj}𝔄N𝔅N)=e2tNdet[habha+b]a,b=1j.\mathbb{P}\bigl{(}\{K\leq k,J\leq j\}\cap\mathfrak{A}_{N}\cap\mathfrak{B}_{N}\bigr{)}=e^{-2tN}\det[h_{a-b}-h_{a+b}]_{a,b=1}^{j}. (38)

The strong Szegö limit theorem for Toeplitz minus Hankel determinants (see, e.g., 4 ) implies that for the function ϕ(z)\phi(z) in (27), det[ϕabϕa+b]a,b=1Net2/2\det[\phi_{a-b}-\break\phi_{a+b}]_{a,b=1}^{N}\to e^{t^{2}/2} as NN\to\infty. Therefore, from (2) and (38) we find that

P(j,k)=limNdet[habha+b]a,b=1jdet[ϕabϕa+b]a,b=1N=et2/2det[habha+b]a,b=1j.\qquad P(j,k)=\lim_{N\to\infty}\frac{\det[h_{a-b}-h_{a+b}]_{a,b=1}^{j}}{\det[\phi_{a-b}-\phi_{a+b}]_{a,b=1}^{N}}=e^{-t^{2}/2}\det[h_{a-b}-h_{a+b}]_{a,b=1}^{j}. (39)

This is (32).

Hence KK and JJ have the same joint distribution as CRt\mathrm{CR}_{t} and NEt\mathrm{NE}_{t}. This nonintersecting process interpretation of CRt\mathrm{CR}_{t} and NEt\mathrm{NE}_{t} provides some useful information. As an example, note that the process considered above has a natural dual process; see Figure 3. In the dual process the roles of KK and JJ are reversed: the depth is KK and height is JJ in the dual process. It follows that KK and JJ, and hence CRt\mathrm{CR}_{t} and NEt\mathrm{NE}_{t}, are symmetrically distributed.

Refer to caption
Figure 3: A nonintersecting continuous-time simple random walks (left) and its dual walk (right).

In various nonintersecting processes, including the above model, the top curve is shown to converge, after appropriate scaling, to the Airy process in the long-time, many-walker limit; see, for example, Johansson02 , Johansson05 . Then it is natural to think that the leading fluctuation term of KK is given by the maximum of the Airy process. It is a well-known fact that the maximum of the Airy process is distributed as the GOE Tracy–Widom distribution. This was first proved indirectly in Johansson03 . A direct proof was only recently obtained in CorwinQR . (See also MFQuastelR for the distribution of the location of the maxima.) Hence the leading term F(x)F(x) in (194) is as expected. Moreover, when tt becomes large, it is plausible to expect that the fluctuation of the top curve of the original process (whose max is KK) and the fluctuation of the bottom curve of the dual process (whose min is J-J) become independent at least to the leading order. The leading term of Theorem 1.1 is natural from this. Theorem 1.1 evaluates the second term of the asymptotic expansion of their joint distribution.

For a family of finitely many nonintersecting walks, it is interesting to consider the maximum of the top curve and the minimum of the bottom curve. It is curious to check if the joint distribution of them would have the same expansion as in Theorem 1.1. This will be considered elsewhere. Finally, we mention that the asymptotics of the distribution of the width of nonintersecting processes was studied recently in BaikLiu .

3 Proof of Proposition 1.1

In this section, we give a proof of Proposition 1.1. We also obtain similar formulas for the marginal distributions of CRt\mathrm{CR}_{t} and NEt\mathrm{NE}_{t}, and for the distribution of LtL_{t}. They are stated at the end of this section.

Let dρd\rho be a (either continuous or discrete) measure on the unit circle and define a new measure dρ(z;t)d\rho(z;t) which depends on a parameter tt as

dρ(z;t):=et(z+z1)dρ(z).d\rho(z;t):=e^{t(z+z^{-1})}\,d\rho(z). (40)

Measure (21), associated to the joint distribution of CRt,NEt\mathrm{CR}_{t},\mathrm{NE}_{t}, is certainly of this form, but the following algebraic steps apply to general dρd\rho.

Let

h(t):=|z|=1z𝑑ρ(z;t).h_{\ell}(t):=\oint_{|z|=1}z^{-\ell}\,d\rho(z;t). (41)

We are interested in finding a simple formula for the second derivative of the Toeplitz determinant Tn(t)T_{n}(t) and the Toeplitz–Hankel determinant Hn(t)H_{n}(t) [see (19)] associated to the measure dρ(z;t)d\rho(z;t),

Tn(t):=det[hab(t)]a,b=1n,Hn(t)=det[hab(t)ha+b(t)]a,b=1n.\qquad T_{n}(t):=\det\bigl{[}h_{a-b}(t)\bigr{]}_{a,b=1}^{n},\qquad H_{n}(t)=\det\bigl{[}h_{a-b}(t)-h_{a+b}(t)\bigr{]}_{a,b=1}^{n}. (42)

We assume that when dρd\rho is a discrete measure, nn is smaller than the number of points in the support of dρd\rho.

Let πn(z;t)=zn+,\pi_{n}(z;t)=z^{n}+\cdots, n=0,1,2,,n=0,1,2,\ldots, be the monic orthogonal polynomials defined by the conditions

πn,z:=|z|=1πn(z;t)z¯𝑑ρ(z;t)=0,0<n.\bigl{\langle}\pi_{n},z^{\ell}\bigr{\rangle}:=\oint_{|z|=1}\pi_{n}(z;t)\overline{z^{\ell}}\,d\rho(z;t)=0,\qquad 0\leq\ell<n. (43)

Set

Nn(t):=πn,πn=πn,zn.N_{n}(t):=\langle\pi_{n},\pi_{n}\rangle=\bigl{\langle}\pi_{n},z^{n}\bigr{\rangle}. (44)

Then it is well known that (see, e.g., Sections 2 and 3 of 2 for the second identity)

Tj(t)=n=0j1Nn(t),Hj(t)=n=1jN2n(t)(1π2n(0;t))1.T_{j}(t)=\prod_{n=0}^{j-1}N_{n}(t),\qquad H_{j}(t)=\prod_{n=1}^{j}N_{2n}(t)\bigl{(}1-\pi_{2n}(0;t)\bigr{)}^{-1}. (45)

Define (see Szego )

πn(z;t):=znπn(z1;t)¯=1+an1¯z++a1¯zn1+πn(0;t)¯zn.\pi^{*}_{n}(z;t):=z^{n}\overline{\pi_{n}\bigl{(}z^{-1};t\bigr{)}}=1+\overline{a_{n-1}}z+\cdots+\overline{a_{1}}z^{n-1}+\overline{\pi_{n}(0;t)}z^{n}. (46)

This polynomial satisfies the orthogonality properties

πn,zk=Nnδk,0,k=0,1,,n.\bigl{\langle}{\pi_{n}^{*}},{z^{k}}\bigr{\rangle}=N_{n}\delta_{k,0},\qquad k=0,1,\ldots,n. (47)

Recall the Szegö recurrence relations Szego ,

πn+1(z)\displaystyle\pi_{n+1}(z) =\displaystyle= zπn(z)+πn+1(0)πn(z),\displaystyle z\pi_{n}(z)+\pi_{n+1}(0)\pi^{*}_{n}(z),
zπn(z)\displaystyle z\pi_{n}(z) =\displaystyle= NnNn+1(πn+1(z)πn+1(0)πn+1(z)).\displaystyle\frac{N_{n}}{N_{n+1}}\bigl{(}\pi_{n+1}(z)-\pi_{n+1}(0)\pi_{n+1}^{*}(z)\bigr{)}.

The second relation, when we compare the coefficients of zn+1z^{n+1}, gives rise to the relation

Nn+1Nn=1|πn+1(0)|2.\displaystyle\frac{N_{n+1}}{N_{n}}=1-\bigl{|}\pi_{n+1}(0)\bigr{|}^{2}. (49)

We now derive differential equations for πn(0;t)\pi_{n}(0;t) and Nn(t)N_{n}(t). All the differentiations are with respect to tt, and we use the notation ff^{\prime} for ddtf\frac{d}{dt}f. By differentiating the formula πn,zk=0,k=0,,n1\langle{\pi_{n}},{z^{k}}\rangle=0,k=0,\ldots,n-1, we obtain, by noting ddtet(z+z1)=(z+z1)et(z+z1)\frac{{d}}{{d}t}e^{t(z+z^{-1})}=(z+z^{-1})e^{t(z+z^{-1})}, that πn,zk+πn,zk+1+zk1=0\langle{\pi_{n}^{\prime}},{z^{k}}\rangle+\langle{\pi_{n}},{z^{k+1}+z^{k-1}}\rangle=0. Then by using the orthogonality conditions, we find that

πn,zk\displaystyle\bigl{\langle}{\pi_{n}^{\prime}},{z^{k}}\bigr{\rangle} =\displaystyle= 0,k=1,,n2,\displaystyle 0,\qquad k=1,\ldots,n-2,
πn,1\displaystyle\bigl{\langle}{\pi_{n}^{\prime}},{1}\bigr{\rangle} =\displaystyle= πn,z1=zπn,1=πn+1(0)Nn,\displaystyle-\bigl{\langle}{\pi_{n}},{z^{-1}}\bigr{\rangle}=-\langle{z\pi_{n}},{1}\rangle=\pi_{n+1}(0)N_{n}, (50)
πn,zn1\displaystyle\bigl{\langle}{\pi_{n}^{\prime}},{z^{n-1}}\bigr{\rangle} =\displaystyle= πn,zn=Nn,\displaystyle-\bigl{\langle}{\pi_{n}},{z^{n}}\bigr{\rangle}=-N_{n},

where the last equality in the second condition above follows from the first recurrence in (3). From these relations, we conclude that, for n1n\geq 1,

πn(z;t)=Nn(t)Nn1(t)(πn+1(0;t)πn1(z;t)πn1(z;t)).\pi_{n}^{\prime}(z;t)=\frac{N_{n}(t)}{N_{n-1}(t)}\bigl{(}\pi_{n+1}(0;t)\pi_{n-1}^{*}(z;t)-\pi_{n-1}(z;t)\bigr{)}. (51)

This can be checked by taking the difference and noting that the difference is a polynomial of degree at most n1n-1 and is orthogonal to zkz^{k}, k=0,1,,n1k=0,1,\ldots,n-1. Evaluating (51) at z=0z=0, we obtain, using (49), for n1n\geq 1,

πn(0;t)=(πn+1(0;t)πn1(0;t))(1|πn(0;t)|2).\pi_{n}^{\prime}(0;t)=\bigl{(}\pi_{n+1}(0;t)-\pi_{n-1}(0;t)\bigr{)}\bigl{(}1-\bigl{|}\pi_{n}(0;t)\bigr{|}^{2}\bigr{)}. (52)

This equation is related to the Ablowitz–Ladik equations and the Schur flows; see, for example, Nenciu , Golinskii .

We also differentiate Nn(t)=πn,πnN_{n}(t)=\langle{\pi_{n}},{\pi_{n}}\rangle and obtain

Nn\displaystyle N_{n}^{\prime} =2πn,πn+2zπn,πn=2zπn,πn.\displaystyle=2\bigl{\langle}{\pi_{n}^{\prime}},{\pi_{n}}\bigr{\rangle}+2\langle{z\pi_{n}},{\pi_{n}}\rangle=\langle 2z\pi_{n},\pi_{n}\rangle. (53)

Using the first recurrence of (3),

zπn,πn=πn+1,πnπn+1(0)πn,πn=πn+1(0)πn(0)πn,zn.\displaystyle\langle{z\pi_{n}},{\pi_{n}}\rangle=\langle{\pi_{n+1}},{\pi_{n}}\rangle-\pi_{n+1}(0)\bigl{\langle}{\pi_{n}},{\pi_{n}^{*}}\bigr{\rangle}=-\pi_{n+1}(0)\pi_{n}(0)\bigl{\langle}{\pi_{n}},{z^{n}}\bigr{\rangle}. (54)

Hence, we obtain, for n0n\geq 0,

Nn(t)=2πn+1(0;t)πn(0;t)Nn(t).N_{n}^{\prime}(t)=-2\pi_{n+1}(0;t)\pi_{n}(0;t)N_{n}(t). (55)

We now evaluate the logarithmic derivatives of TjT_{j} and HjH_{j}. From (45) and (55), we find that

(logTj(t))=n=0j1Nn(t)Nn(t)=2n=0j1πn(0;t)πn+1(0;t).\bigl{(}\log T_{j}(t)\bigr{)}^{\prime}=\sum_{n=0}^{j-1}\frac{N_{n}(t)}{N_{n}(t)}=-2\sum_{n=0}^{j-1}\pi_{n}(0;t)\pi_{n+1}(0;t). (56)

We take one more derivative. By using (52), for n1n\geq 1,

(πn(0)πn+1(0))=Pn+1Pn,\bigl{(}\pi_{n}(0)\pi_{n+1}(0)\bigr{)}^{\prime}=P_{n+1}-P_{n}, (57)

where Pn:=|πn(0)|2+πn1(0)πn+1(0)(1|πn(0)|2)P_{n}:=|\pi_{n}(0)|^{2}+\pi_{n-1}(0)\pi_{n+1}(0)(1-|\pi_{n}(0)|^{2}). For n=0n=0, (π0(0)π1(0))=π1(0)=(π2(0)1)(1|π1(0)|2)=P11(\pi_{0}(0)\pi_{1}(0))^{\prime}=\pi_{1}^{\prime}(0)=(\pi_{2}(0)-1)(1-|\pi_{1}(0)|^{2})=P_{1}-1. Hence from a telescoping sum, we obtain

\tfrac12(log(et2Tj(t)))′′\displaystyle\tfrac 12\bigl{(}\log\bigl{(}e^{-t^{2}}T_{j}(t)\bigr{)}\bigr{)}^{\prime\prime}
(58)
=(πj1(0)πj+1(0)+|πj(0)|2)+πj1(0)πj+1(0)|πj(0)|2.\displaystyle\qquad=-\bigl{(}\pi_{j-1}(0)\pi_{j+1}(0)+\bigl{|}\pi_{j}(0)\bigl{|}^{2}\bigr{)}+\pi_{j-1}(0)\pi_{j+1}(0)\bigl{|}\pi_{j}(0)\bigr{|}^{2}.

We now consider Hj(t)H_{j}(t) in (45). By taking the log derivative and using (52), (55) and π0(z)=1\pi_{0}(z)=1,

(logHj(t))=n=1j[N2nN2n+π2n(0)1π2n(0)]=π2j+1(0)n=02jπn(0)πn+1(0).\qquad\bigl{(}\log H_{j}(t)\bigr{)}^{\prime}=\sum_{n=1}^{j}\biggl{[}\frac{N_{2n}^{\prime}}{N_{2n}}+\frac{\pi_{2n}^{\prime}(0)}{1-\pi_{2n}(0)}\biggr{]}=\pi_{2j+1}(0)-\sum_{n=0}^{2j}\pi_{n}(0)\pi_{n+1}(0). (59)

From (56), we find that

(logHj(t))=π2j+1(0)+\tfrac12(logT2j+1(t)).\bigl{(}\log H_{j}(t)\bigr{)}^{\prime}=\pi_{2j+1}(0)+\tfrac{1}{2}\bigl{(}\log T_{2j+1}(t)\bigr{)}^{\prime}. (60)

Proposition 1.1 is proven from (1.3), (19), (3) and (60) by noting that πn(0;0)=0\pi_{n}(0;0)=0 for all n1n\geq 1, and Tj(0)=1T_{j}(0)=1 and Hj(0)=1H_{j}(0)=1 for all j1j\geq 1.

The marginal distribution of NEt\mathrm{NE}_{t} is obtained from (1.3) by taking the limit kk\to\infty. Then by taking mm\to\infty in (19), we find that {NEtj}=et2/2G,j\mathbb{P}\{\mathrm{NE}_{t}\leq j\}=e^{-t^{2}/2}G_{\infty,j} where G,j(t)G_{\infty,j}(t) is same as (19) where the measure μm\mu_{m} in (21) is replaced by

dμ(z):=et(z+z1)dz2πiz.d\mu_{\infty}(z):=e^{t(z+z^{-1})}\frac{dz}{2\pi iz}. (61)

Then the above computation applies that

log{NEtj}=0tπ2j+1,(0;τ)𝑑τ+0t0s𝒬j(τ)𝑑τ𝑑s,\log\mathbb{P}\{\mathrm{NE}_{t}\leq j\}=\int_{0}^{t}\pi_{2j+1,\infty}(0;\tau)\,d\tau+\int_{0}^{t}\int_{0}^{s}\mathcal{Q}_{j}^{\infty}(\tau)\,d\tau\,ds, (62)

where πn,(z;t))\pi_{n,\infty}(z;t)) is the monic orthogonal polynomial of degree nn with respect to the measure (61), and 𝒬j(τ)\mathcal{Q}_{j}^{\infty}(\tau) is same as (43) with πn,m(z;τ)\pi_{n,m}(z;\tau) replaced by πn,(z;τ)\pi_{n,\infty}(z;\tau). Due to the symmetry, {CRtj}={NEtj}\mathbb{P}\{\mathrm{CR}_{t}\leq j\}=\mathbb{P}\{\mathrm{NE}_{t}\leq j\}.

Finally, it is well known Gessel , Rains that for the length LtL_{t} of the Poissonized random permutation defined in Section 1.4, {Lt}=et2T(t)\mathbb{P}\{L_{t}\leq\ell\}=e^{-t^{2}}T_{\ell}(t), where Tj(t)T_{j}(t) is the determinant of the ×\ell\times\ell Toeplitz matrix (42) with respect to measure (61). Hence we have

log{Lt}=20t0s𝒬(1)/2(τ)𝑑τ𝑑s.\log\mathbb{P}\{L_{t}\leq\ell\}=2\int_{0}^{t}\int_{0}^{s}\mathcal{Q}_{{(\ell-1)}/{2}}^{\infty}(\tau)\,d\tau\,ds. (63)

4 Orthogonal polynomial Riemann–Hilbert problems

We prove Theorems 1.1 and 1.2 by deriving asymptotic expansions of πn,m(0;τ)\pi_{n,m}(0;\tau) and πn,(0;τ)\pi_{n,\infty}(0;\tau), n=2j,2j+1,2j+2n=2j,2j+1,2j+2, τ(0,t)\tau\in(0,t), in the joint limit t,j,mt,j,m\to\infty such that given any fixed x,xx,x^{\prime}\in\mathbb{R},

j=t+x2t1/3,k=t+x2t1/3,m=j+k+1.\displaystyle j=t+\frac{x}{2}t^{1/3},\qquad k=t+\frac{x^{\prime}}{2}t^{1/3},\qquad m=j+k+1. (64)

The jumping off point for our analysis is the fact that πn,m(z;t)\pi_{n,m}(z;t) and πn,(z;t)\pi_{n,\infty}(z;t) can be recovered from the solution of the following discrete and continuous measure Riemann–Hilbert problems, respectively.

Riemann–Hilbert Problem 4.1 (for discrete OPs).

Find a 2×22\times 2 matrix 𝐘(z;t,n,m)\mathbf{Y}(z;t,n,m) with the following properties: {longlist}[(1)]

𝐘(z;t,n,m)\mathbf{Y}(z;t,n,m) is an analytic function of zz for z{ωr}r=02m1z\in\mathbb{C}\setminus\{\omega_{r}\}_{r=0}^{2m-1} where ωr:=ωr\omega_{r}:=\omega^{r} and ω:=eiπ/m\omega:=e^{i\pi/m}.

𝐘(z;t,n,m)=[I+𝒪(1/z)]znσ3\mathbf{Y}(z;t,n,m)=[I+\mathcal{O}(1/z)]z^{n\sigma_{3}} as zz\to\infty.

At each ωr\omega_{r}, 𝐘(z;t,n,m)\mathbf{Y}(z;t,n,m) has a simple pole satisfying the residue relation

\operatornameResz=ωr𝐘(z;t,n,m)=limzωr𝐘(z;t,n)(0z2mznet(z+z1)00).\displaystyle\operatorname{Res}_{z=\omega_{r}}\mathbf{Y}(z;t,n,m)=\lim_{z\to\omega_{r}}\mathbf{Y}(z;t,n)\pmatrix{0&\displaystyle-\frac{z}{2m}z^{-n}e^{t(z+z^{-1})}\vskip 2.0pt\cr 0&0}. (65)

As is well known (see, e.g., FIK , BKMM ), and may be verified directly, the solution 𝐘(z;t;n,m)\mathbf{Y}(z;t;n,m) is given by

𝐘(z;t;n,m)=(πn,m(z;t)πn1,m(z;t)/Nn1,m),\displaystyle\mathbf{Y}(z;t;n,m)=\pmatrix{\pi_{n,m}(z;t)&*\vskip 2.0pt\cr-\pi^{*}_{n-1,m}(z;t)/N_{n-1,m}&*}, (66)

where we recall that πn,m\pi^{*}_{n,m} is the reverse polynomial defined by (46) and

𝐘12(z;t,n,m)\displaystyle\mathbf{Y}_{12}(z;t,n,m) =\displaystyle= 12mr=02m1πn,m(ωr;t)ωrn+1et(ωr+ωr)zωr,\displaystyle-\frac{1}{2m}\sum_{r=0}^{2m-1}\frac{\pi_{n,m}(\omega_{r};t)\omega_{r}^{-n+1}e^{t(\omega^{r}+\omega^{-r})}}{z-\omega_{r}},
𝐘22(z;t,n,m)\displaystyle\mathbf{Y}_{22}(z;t,n,m) =\displaystyle= 12mr=02m1Nn1,m1πn1,m(ωr;t)ωrn+1et(ωr+ωr)zωr.\displaystyle\frac{1}{2m}\sum_{r=0}^{2m-1}\frac{N_{n-1,m}^{-1}\pi_{n-1,m}^{*}(\omega_{r};t)\omega_{r}^{-n+1}e^{t(\omega^{r}+\omega^{-r})}}{z-\omega_{r}}.

Hence, using the OP properties listed in (43)–(3) we can easily check that

𝐘(0;t,n,m)=(πn,m(0)Nn,m1/Nn1,mπn,m(0)).\mathbf{Y}(0;t,n,m)=\pmatrix{\pi_{n,m}(0)&N_{n,m}\vskip 2.0pt\cr-1/N_{n-1,m}&\pi_{n,m}(0)}. (67)

Note that the generic (2,2)(2,2)-entry would be πn,m(0)¯\overline{\pi_{n,m}(0)} but as our weight et(z+z1)e^{t(z+z^{-1})} is real πn,m(0)¯=πn,m(0)\overline{\pi_{n,m}(0)}=\pi_{n,m}(0).

The continuous RHP can be thought of as a limit of the discrete case when mm, the number of points in the support of the measure, goes to infinity.

Riemann–Hilbert Problem 4.2 (for continuous OPs).

Find a 2×22\times 2 matrix 𝐘(z;t,n)\mathbf{Y}^{\infty}(z;t,n) with the following properties: {longlist}[(1)]

𝐘(z;t,n)\mathbf{Y}^{\infty}(z;t,n) is an analytic function of zz for zΣz\in\mathbb{C}\setminus\Sigma, Σ:={z\dvtx|z|=1}\Sigma:=\{z\dvtx|z|=1\} oriented counterclockwise.

𝐘(z;t,n)=[I+𝒪(1/z)]znσ3\mathbf{Y}^{\infty}(z;t,n)=[I+\mathcal{O}(1/z)]z^{n{\sigma_{3}}} as zz\to\infty.

𝐘\mathbf{Y}^{\infty} takes continuous boundary values 𝐘+\mathbf{Y}_{+}^{\infty} and 𝐘\mathbf{Y}_{-}^{\infty} as zΣz\to\Sigma from the left/right, respectively, satisfying the relation

𝐘+(z;t,n)=𝐘(z;t,n)(1znet(z+z1)01),zΣ.\mathbf{Y}^{\infty}_{+}(z;t,n)=\mathbf{Y}^{\infty}_{-}(z;t,n)\pmatrix{1&z^{-n}e^{t(z+z^{-1})}\vskip 2.0pt\cr 0&1},\qquad z\in\Sigma. (68)

The solution 𝐘\mathbf{Y}^{\infty} is related to the orthogonal polynomials πn,\pi_{n,\infty} with respect to the measure μ\mu_{\infty} (61), and we have

𝐘(0;t,n,m)=(πn,(0)Nn,1/Nn1,πn,(0)).\mathbf{Y}^{\infty}(0;t,n,m)=\pmatrix{\pi_{n,\infty}(0)&N_{n,\infty}\vskip 2.0pt\cr-1/N_{n-1,\infty}&\pi_{n,\infty}(0)}. (69)

Precisely, this continuous Riemann–Hilbert problem was analyzed asymptotically in BDJ , 2 , BKMM . The steepest-descent analysis for discrete Riemann–Hilbert problem was studied for general discrete measure on the real line in BKMM . Both works expand upon the continuous weight case studied in DKMVZa , DKMVZb . In the course of proving Theorems 1.1 and 1.2 we improve these results as follows: we expand the analysis of BKMM to the case when a gap and saturated region of the equilibrium measure (see the discussion below) are about to open up, and we compute explicit formulas for the first three terms in the expansion of the solution in both the discrete and continuous cases extending the results of BDJ , 2 , BKMM where only leading terms were calculated.

One of the key steps in the steepest-descent analysis of Riemann–Hilbert problems is the introduction of the so-called gg-function. For the Riemann–Hilbert problem 4.1 for discrete orthogonal polynomials, the gg-function is given by g(z)=|s|=1log(zs)𝑑μ(s)g(z)=\int_{|s|=1}\log(z-s)\,d\mu(s) where dμ(s)d\mu(s) is the so-called equilibrium measure satisfying 0dμ(s)2mnds2πis0\leq d\mu(s)\leq\frac{2m}{n}\frac{ds}{2\pi is}; see, for example, BKMM . The upper-constraint dμ(s)2mnds2πisd\mu(s)\leq\frac{2m}{n}\frac{ds}{2\pi is} is due to the fact that the weight is discrete. The support of dμd\mu consists of three types of intervals, voids (where dμ=0d\mu=0), bands [where 0<dμ(s)<2mnds2πis0<d\mu(s)<\frac{2m}{n}\frac{ds}{2\pi is}] and saturations [where dμ(s)=2mnds2πisd\mu(s)=\frac{2m}{n}\frac{ds}{2\pi is}].

For the continuous Riemann–Hilbert problem, the upper-constraint for the equilibrium is not present, and there are no saturations. For the Riemann–Hilbert Problem 4.2, it was shown in BDJ that with γ=n2t\gamma=\frac{n}{2t},111This is actually the inverse of the parameter appearing in BDJ which we find more convenient to work with presently. the support of the equilibrium measure consists of the entire unit circle when γ>1\gamma>1, and consists of single void and band intervals, with the void set centered about z=1z=-1, when γ<1\gamma<1.

In the discrete Problem 4.1 the solution 𝐘\mathbf{Y} now depends on the three parameters (t,n,m)(t,n,m) and as we shall see in Section 5, the equilibrium measure’s support depends critically on the two parameters

γ=n2tandγ~=2mn2t.\gamma=\frac{n}{2t}\quad\mbox{and}\quad\tilde{\gamma}=\frac{2m-n}{2t}. (70)

As each of these parameters passes through the critical value γcrit=1\gamma_{\mathrm{crit}}=1 a transition occurs in the support of the equilibrium measure.

It turns out that to prove Theorems 1.11.3, we only need to evaluate 𝐘(0;t,n,m)\mathbf{Y}(0;t,n,m) in two regimes: the “exponentially small regime”

n2t(1+δ),2mn2t(1+δ)n\geq 2t(1+\delta),\qquad 2m-n\geq 2t(1+\delta) (71)

for a fixed δ>0\delta>0, and the “Painlevé regime”

2tLt1/3n2t(1+δ),2tLt1/32mn2t(1+δ)2t-Lt^{1/3}\leq n\leq 2t(1+\delta),\qquad 2t-Lt^{1/3}\leq 2m-n\leq 2t(1+\delta) (72)

for fixed L>0L>0 and δ>0\delta>0. In the “exponential” case γ,γ~1+δ\gamma,\tilde{\gamma}\geq 1+\delta and the equilibrium measure is supported on the whole of Σ\Sigma, while in the “Painlevé” case γ,γ~[1L2t2/3,1+δ]\gamma,\tilde{\gamma}\in[1-\frac{L}{2}t^{-2/3},1+\delta] and the equilibrium measure is in the transitional region where a void and saturation region are beginning to open at z=1z=-1 and z=1z=1, respectively. As such we never need to consider cases in which either a void or saturation have fully opened, and we restrict our attention to the full band (and the transitional) case only, focusing on obtaining the three lower-order terms of the asymptotic expansion explicitly. In this case the gg-function is explicit, and the transformations of the Riemann–Hilbert problem will be all stated explicitly without mentioning the gg-function in the subsequent sections.

There are many interesting related problems in which one needs an asymptotic description of the πn,m\pi_{n,m} for a whole range of degrees nn; one such example which we plan to study in the future is the Ablowtiz–Ladik equations. There we will fully describe the structure of the equilibrium measure in the full range of parameter space.

The analyses of the discrete and continuous Riemann–Hilbert problems have strong similarities, and we analyze them simultaneously. The important fact, which we clarify in Sections 6.26.3, is that in the discrete Riemann–Hilbert problem we can partition the solution into terms that come from (two) continuous Riemann–Hilbert problems which correspond to the marginal distributions and the remaining “joint” terms which contribute only to the joint distribution.

5 The exponentially small regime

The first steps of the steepest-descent analysis are the same for both the exponentially small regime and the Painlevé regime. We begin by first considering parameters (n,m,t)(n,m,t) in the “exponentially small regime” (71),

n2t(1+δ),2mn2t(1+δ)n\geq 2t(1+\delta),\qquad 2m-n\geq 2t(1+\delta)

for fixed δ>0\delta>0. We assume that δ<1/2\delta<1/2; see the discussion before (90).

We begin our analysis of RHP 4.1 by first introducing a transformation 𝐘𝐐\mathbf{Y}\mapsto\mathbf{Q} such that the new unknown 𝐐\mathbf{Q} has no poles. Let Σ\Sigma denote the unit circle and let Σin\Sigma_{\mathrm{in}} and Σout\Sigma_{\mathrm{out}} denote positively oriented simple closed contours enclosing the origin such that Σin{z\dvtx|z|<1}\Sigma_{\mathrm{in}}\subset\{z\dvtx|z|<1\} and Σout{z\dvtx|z|>1}\Sigma_{\mathrm{out}}\subset\{z\dvtx|z|>1\}; let Ω+\Omega_{+} and Ω\Omega_{-} denote the nonempty open sets enclosed between Σ\Sigma and Σin\Sigma_{\mathrm{in}} and Σ\Sigma and Σout\Sigma_{\mathrm{out}}, respectively; see Figure 4. Define

𝐐(z):={𝐘(z)(1z2mz2m1znet(z+z1)01), zΩ+,𝐘(z)(11z2m1znet(z+z1)01), zΩ.\displaystyle\mathbf{Q}(z):=\cases{\mathbf{Y}(z)\pmatrix{1&\displaystyle\frac{z^{2m}}{z^{2m}-1}z^{-n}e^{t(z+z^{-1})}\vskip 2.0pt\cr 0&1},&\quad$z\in\Omega_{+}$,\cr\mathbf{Y}(z)\pmatrix{1&\displaystyle\frac{1}{z^{2m}-1}z^{-n}e^{t(z+z^{-1})}\vskip 2.0pt\cr 0&1},&\quad$z\in\Omega_{-}.$} (73)
Refer to caption
Figure 4: The contours and regions used to define the map 𝐘𝐐\mathbf{Y}\mapsto\mathbf{Q}. The contours Σin\Sigma_{\mathrm{in}} and Σout\Sigma_{\mathrm{out}} can be deformed as necessary provided they do not intersect Σ\Sigma.

The triangular factors introduced in the above definition have poles at each ωr\omega_{r}, and the residues are such that the new unknown 𝐐(z)\mathbf{Q}(z) has no poles, but is now piecewise holomorphic. Note that the residue of each triangular factor at each z=ωrz=\omega_{r} is the same since z2m=1z^{2m}=1 at z=ωrz=\omega_{r}. Two different extensions of 𝐐\mathbf{Q} as above were introduced in KMM ; see also BKMM . By explicit computation 𝐐(z)\mathbf{Q}(z) satisfies

Riemann–Hilbert Problem 5.1 (for Q(z)).

Find a 2×22\times 2 matrix 𝐐(z)\mathbf{Q}(z) such that: {longlist}[(1)]

𝐐(z)\mathbf{Q}(z) is analytic in (ΣΣinΣout)\mathbb{C}\setminus(\Sigma\cup\Sigma_{\mathrm{in}}\cup\Sigma_{\mathrm{out}}).

𝐐(z)=[I+𝒪(1/z)]znσ3\mathbf{Q}(z)=[I+\mathcal{O}(1/z)]z^{n\sigma_{3}} as zz\to\infty.

Along each jump contour 𝐐+(z)=𝐐(z)VQ(z)\mathbf{Q}_{+}(z)=\mathbf{Q}_{-}(z)V_{Q}(z) where

VQ(z)={(1znet(z+z1)01), zΣ,(1z2mz2m1znet(z+z1)01), zΣin,(11z2m1znet(z+z1)01), zΣout.\displaystyle V_{Q}(z)=\cases{\pmatrix{1&\displaystyle z^{-n}e^{t(z+z^{-1})}\vskip 2.0pt\cr 0&1},&\quad$z\in\Sigma$,\vskip 3.0pt\cr\pmatrix{1&\displaystyle\frac{-z^{2m}}{z^{2m}-1}z^{-n}e^{t(z+z^{-1})}\vskip 2.0pt\cr 0&1},&\quad$z\in\Sigma_{\mathrm{in}}$,\vskip 3.0pt\cr\pmatrix{1&\displaystyle\frac{1}{z^{2m}-1}z^{-n}e^{t(z+z^{-1})}\vskip 2.0pt\cr 0&1},&\quad$z\in\Sigma_{\mathrm{out}}.$} (74)

Once we transforms a RHP with poles to a “continuous” RHP as 𝐐\mathbf{Q}, the next step is to introduce a “gg-function.” However, for the above RHP, when the parameters are in the regimes (71) and (72), it turns out that the gg-function is simple and explicit. We proceed by explicitly defining

𝐒(z):={𝐐(z)(etz00etz)(0110), |z|<1,𝐐(z)(znetz100znetz1), |z|>1.\displaystyle\mathbf{S}(z):=\cases{\mathbf{Q}(z)\pmatrix{e^{tz}&0\vskip 2.0pt\cr 0&e^{-tz}}\pmatrix{0&-1\vskip 2.0pt\cr 1&0},&\quad$|z|<1$,\vskip 3.0pt\cr\mathbf{Q}(z)\pmatrix{z^{-n}e^{tz^{-1}}&0\vskip 2.0pt\cr 0&z^{n}e^{-tz^{-1}}},&\quad$|z|>1$.} (75)

Clearly 𝐘(0)=𝐒(0)(0110)\mathbf{Y}(0)=\mathbf{S}(0)({0\enskip 1\atop-1\enskip 0}) and 𝐒(z)=I+𝒪(z1)\mathbf{S}(z)=I+\mathcal{O}(z^{-1}) for large zz. Calculating the new jump matrices, we arrive at the following problem for 𝐒(z)\mathbf{S}(z).

Riemann–Hilbert Problem 5.2 (for S(z)S(z)).

Find a 2×22\times 2 matrix-valued function 𝐒(z)\mathbf{S}(z) such that: {longlist}[(1)]

𝐒(z)\mathbf{S}(z) is analytic for z(ΣΣinΣout)z\in\mathbb{C}\setminus(\Sigma\cup\Sigma_{\mathrm{in}}\cup\Sigma_{\mathrm{out}}).

𝐒(z)=I+𝒪(1/z)\mathbf{S}(z)=I+\mathcal{O}(1/z) as zz\to\infty.

The boundary values of 𝐒(z)\mathbf{S}(z) satisfy the jump relation 𝐒+(z)=𝐒(z)VS(z)\mathbf{S}_{+}(z)=\break\mathbf{S}_{-}(z)V_{S}(z) where

VS(z)={(10(1)ne2tθ1)(1(1)ne2tθ01), zΣ,(1011z2me2tϕ1), zΣin,(111z2me2tϕ01), zΣout,\displaystyle V_{S}(z)=\cases{\displaystyle\pmatrix{1&0\vskip 2.0pt\cr(-1)^{n}e^{-2t\theta}&1}\pmatrix{1&\displaystyle-(-1)^{n}e^{2t\theta}\vskip 2.0pt\cr 0&1},&\quad$z\in\Sigma$,\vskip 3.0pt\cr\pmatrix{1&0\vskip 2.0pt\cr\displaystyle\frac{-1}{1-z^{2m}}e^{-2t\phi}&1},&\quad$z\in\Sigma_{\mathrm{in}}$,\vskip 3.0pt\cr\pmatrix{1&\displaystyle\frac{1}{1-z^{-2m}}e^{2t\phi}\vskip 2.0pt\cr 0&1},&\quad$z\in\Sigma_{\mathrm{out}}$,} (76)

where

θ(z;γ)\displaystyle\theta(z;\gamma) :=\displaystyle:= 12(zz1)+γlog(z),γ:=n2t,\displaystyle\frac{1}{2}\bigl{(}z-z^{-1}\bigr{)}+\gamma\log(-z),\qquad\gamma:=\frac{n}{2t},
ϕ(z;γ~)\displaystyle\phi(z;\tilde{\gamma}) :=\displaystyle:= 12(zz1)γ~logz,γ~:=2mn2t.\displaystyle\frac{1}{2}\bigl{(}z-z^{-1}\bigr{)}-\tilde{\gamma}\log z,\qquad\tilde{\gamma}:=\frac{2m-n}{2t}.

Here the log is defined on the principal branch.

Now we assume that the parameters are in regime (71). Note that for any eiαΣe^{i\alpha}\in\Sigma, θ(eiα)i\theta(e^{i\alpha})\in i\mathbb{R}. Also note that writing z=reiαz=re^{i\alpha}, we have ddr[\operatornameReθ(reiα;γ)]r=1=cosα+γ1+γδ>0\frac{{d}}{{d}r}[\operatorname{Re}\theta(re^{i\alpha};\break\gamma)]_{r=1}=\cos\alpha+\gamma\geq-1+\gamma\geq\delta>0 and d2dr2[\operatornameReθ(reiα;γ)]r=1=r3cosαγr2r3γr2<0\frac{d^{2}}{dr^{2}}[\operatorname{Re}\theta(re^{i\alpha};\gamma)]_{r=1}=-r^{3}\cos\alpha-\gamma r^{-2}\leq r^{-3}-\gamma r^{-2}<0 if r>γ1r>\gamma^{-1}. Hence \operatornameReθ(reiα;γ)(1+γ)(r1)\operatorname{Re}\theta(re^{i\alpha};\gamma)\leq(-1+\gamma)(r-1) for r(γ1,1)r\in(\gamma^{-1},1) and for all α(π,π]\alpha\in(-\pi,\pi]. Therefore, for a given δ>0\delta>0, there exist 0<r1<r2<10<r_{1}<r_{2}<1 and c>0c>0 such that \operatornameRe[1γθ(reiα;γ)]c\operatorname{Re}[\frac{1}{\gamma}\theta(re^{i\alpha};\gamma)]\leq-c for all r[r1,r2]r\in[r_{1},r_{2}], α(π,π]\alpha\in(-\pi,\pi] and for the parameters (n,m,t)(n,m,t) in the regime (71). Note that this implies that

|e2tθ(z;γ)|=en\operatornameRe[(1/γ)θ(reiα;γ)]ecn,r1|z|r2\bigl{|}e^{2t\theta(z;\gamma)}\bigr{|}=e^{n\operatorname{Re}[(1/{\gamma)}\theta(re^{i\alpha};\gamma)]}\leq e^{-cn},\qquad r_{1}\leq|z|\leq r_{2} (78)

for parameters (n,m,t)(n,m,t) in the regime (71).

Similarly, \operatornameRe[1γ~ϕ(1reiα;γ~)]c\operatorname{Re}[\frac{1}{\tilde{\gamma}}\phi(\frac{1}{r}e^{i\alpha};\tilde{\gamma})]\leq-c for all r[r1,r2]r\in[r_{1},r_{2}], α(π,π]\alpha\in(-\pi,\pi] and for the parameters (n,m,t)(n,m,t) in the regime (71). This can be easily seen by noting that ϕ(z;γ)=θ(z1;γ)\phi(z;\gamma)=\theta(-z^{-1};\gamma). Hence

|e2tϕ(z;γ~)|=e(2mn)\operatornameRe[(1/γ)θ(reiα;γ)]ec(2mn),1r1|z|1r2\displaystyle\bigl{|}e^{2t\phi(z;\tilde{\gamma})}\bigr{|}=e^{(2m-n)\operatorname{Re}[(1/{\gamma})\theta(re^{i\alpha};\gamma)]}\leq e^{-c(2m-n)},\qquad\frac{1}{r_{1}}\leq|z|\leq\frac{1}{r_{2}} (79)

for parameters (n,m,t)(n,m,t) in the regime (71).

Refer to caption
Figure 5: Lens contours and regions in the definition of 𝐓(z)\mathbf{T}(z).

Let Cin,1,Cin,1,Cout,1C_{\mathrm{in},-1},C_{\mathrm{in},1},C_{\mathrm{out},1} and Cout,1C_{\mathrm{out},-1} be the contours as depicted in Figure 5 such that Cin,1C_{\mathrm{in},-1} and Cin,1C_{\mathrm{in},1} lie in the annulus r1<|z|<r2r_{1}<|z|<r_{2} and Cout,1C_{\mathrm{out},1} and Cout,1C_{\mathrm{out},-1} lie in the annulus 1r1<|z|<1r2\frac{1}{r_{1}}<|z|<\frac{1}{r_{2}}. Make now the following change of variables which moves the oscillations on Σ\Sigma into regions of exponential decay.

𝐓(z)={𝐒(z)(1(1)ne2tθ01), zΩ+,0,𝐒(z)(1(1)ne2tθ01)(10e2tϕ1), zΩ+,1,𝐒(z)(10(1)ne2tθ1), zΩ,0,𝐒(z)(10(1)ne2tθ1)(1e2tϕ01), zΩ,1,𝐒(z), elsewhere.\displaystyle\mathbf{T}(z)=\cases{\displaystyle\mathbf{S}(z)\pmatrix{1&(-1)^{n}e^{2t\theta}\vskip 2.0pt\cr 0&1},&\quad$z\in\Omega_{+,0}$,\vskip 3.0pt\cr\mathbf{S}(z)\pmatrix{1&(-1)^{n}e^{2t\theta}\vskip 2.0pt\cr 0&1}\pmatrix{1&0\vskip 2.0pt\cr-e^{-2t\phi}&1},&\quad$z\in\Omega_{+,1}$,\vskip 3.0pt\cr\mathbf{S}(z)\pmatrix{1&0\vskip 2.0pt\cr(-1)^{n}e^{-2t\theta}&1},&\quad$z\in\Omega_{-,0}$,\vskip 3.0pt\cr\mathbf{S}(z)\pmatrix{1&0\vskip 2.0pt\cr(-1)^{n}e^{-2t\theta}&1}\pmatrix{1&-e^{2t\phi}\vskip 2.0pt\cr 0&1},&\quad$z\in\Omega_{-,1}$,\cr\mathbf{S}(z),&\quad$\mbox{elsewhere.}$} (80)

Note that 𝐘(0)=𝐓(0)(0110)\mathbf{Y}(0)=\mathbf{T}(0)({0\enskip 1\atop-1\enskip 0}). Explicitly calculating the new jumps, the new unknown 𝐓(z)\mathbf{T}(z) satisfies the following problem:

Riemann–Hilbert Problem 5.3 (for T(z)).

Find a 2×22\times 2 matrix-valued function 𝐓(z)\mathbf{T}(z) satisfying the following properties:

  1. [(1)]

  2. (1)

    𝐓(z)\mathbf{T}(z) is analytic in (ΣinΣoutCin,±1Cout,±1)\mathbb{C}\setminus(\Sigma_{\mathrm{in}}\cup\Sigma_{\mathrm{out}}\cup C_{\mathrm{in},\pm 1}\cup C_{\mathrm{out},\pm 1}).

  3. (2)

    𝐓(z)=I+𝒪(1/z)\mathbf{T}(z)=I+\mathcal{O}(1/z) as zz\to\infty.

  4. (3)

    The boundary values of 𝐓(z)\mathbf{T}(z) satisfy the jump relation 𝐓+(z)=𝐓(z)VT(z)\mathbf{T}_{+}(z)=\break\mathbf{T}_{-}(z)V_{T}(z) where

    VT(z)\displaystyle V_{T}(z) =\displaystyle= {(1(1)ne2tθ01), zCin,1,(10(1)ne2tθ1), zCout,1,(10e2tϕ1), zCin,1,(1e2tϕ01), zCout,1,(10e2tϕ1z2m1), zΣin,1,(1(1)ne2tθ1z2m01)(1z2m)σ3, zΣin,1,(1z2m)σ3(10(1)ne2tθ1z2m1), zΣout,1,(111z2me2tϕ01), zΣout,1.\displaystyle\cases{\displaystyle\pmatrix{1&-(-1)^{n}e^{2t\theta}\vskip 2.0pt\cr 0&1},&\quad$z\in C_{\mathrm{in},-1}$,\vskip 3.0pt\cr\displaystyle\pmatrix{1&0\vskip 2.0pt\cr(-1)^{n}e^{-2t\theta}&1},&\quad$z\in C_{\mathrm{out},-1}$,\vskip 3.0pt\cr\pmatrix{1&0\vskip 2.0pt\cr\displaystyle-e^{-2t\phi}&1},&\quad$z\in C_{\mathrm{in},1}$,\vskip 3.0pt\cr\pmatrix{1&\displaystyle e^{2t\phi}\vskip 2.0pt\cr 0&1},&\quad$z\in C_{\mathrm{out},1}$,\vskip 3.0pt\cr\pmatrix{1&0\vskip 2.0pt\cr\displaystyle\frac{-e^{-2t\phi}}{1-z^{2m}}&1},&\quad$z\in\Sigma_{\mathrm{in},-1}$,\vskip 3.0pt\cr\pmatrix{1&\displaystyle\frac{-(-1)^{n}e^{-2t\theta}}{1-z^{2m}}\vskip 2.0pt\cr 0&1}\bigl{(}1-z^{2m}\bigr{)}^{-\sigma_{3}},&\quad$z\in\Sigma_{\mathrm{in},1}$,\vskip 3.0pt\cr\displaystyle\bigl{(}1-z^{-2m}\bigr{)}^{-\sigma_{3}}\pmatrix{1&0\vskip 2.0pt\cr\displaystyle\frac{(-1)^{n}e^{-2t\theta}}{1-z^{-2m}}&1},&\quad$z\in\Sigma_{\mathrm{out},1}$,\vskip 3.0pt\cr\pmatrix{1&\displaystyle\frac{1}{1-z^{-2m}}e^{2t\phi}\vskip 2.0pt\cr 0&1},&\quad$z\in\Sigma_{\mathrm{out},-1}.$} (81)

Then from (78) and (79), we find that VT(z)=I+𝒪(ecmax{n,2mn})V_{T}(z)=I+\mathcal{O}(e^{-c\max\{n,2m-n\}}) uniformly for zz on the contour. Hence we obtain the following result.

Proposition 5.1.

Let 𝐘(z;t,n,m)\mathbf{Y}(z;t,n,m) be the solution to the RHP (4.1). For any δ>0\delta>0, there exists a constant c>0c>0 such that, if

n2t(1+δ),2mn2t(1+δ),n\geq 2t(1+\delta),\qquad 2m-n\geq 2t(1+\delta), (82)

then

𝐘(0;t,n,m)(0110)=I+𝒪(ecmax{n,2mn}).\mathbf{Y}(0;t,n,m)\pmatrix{0&-1\cr 1&0}=I+\mathcal{O}\bigl{(}e^{-c\max\{n,2m-n\}}\bigr{)}. (83)

In particular,

πn,m(0;t)=𝒪(ecmax{n,2mn}).\pi_{n,m}(0;t)=\mathcal{O}\bigl{(}e^{-c\max\{n,2m-n\}}\bigr{)}. (84)

6 Painlevé regime

We now consider the parameters (n,m,t)(n,m,t) in regime (72),

2tLt1/3n2t(1+δ),2tLt1/32mn2t(1+δ)2t-Lt^{1/3}\leq n\leq 2t(1+\delta),\qquad 2t-Lt^{1/3}\leq 2m-n\leq 2t(1+\delta) (85)

for fixed L>0L>0 and δ>0\delta>0. We assume that δ<1/2\delta<1/2; see the discussion before (90).

Refer to caption
Figure 6: The sign of \operatornameReθ(z;γ)\operatorname{Re}\theta(z;\gamma) for values of γ\gamma near γcrit=1\gamma_{\mathrm{crit}}=1. Note the sign change near z=1z=-1 on either side of the transition.

Let 𝐒(z)\mathbf{S}(z) be same as in the previous section. When γ[1δ,1+δ]\gamma\in[1-\delta,1+\delta], estimate (78) does not hold any more. However, it is easy to check using a similar calculation as before that the exponential decay still holds in an annular sector away from the point z=1z=-1. [Note that the (double) critical point of θ(z;1)\theta(z;1) is z=1z=-1.] More precisely, one can check that given δ(0,1)\delta\in(0,1), there exist positive constants α1O(δ1/2)>0\alpha_{1}\geq O(\delta^{1/2})>0 and ρ1O(δ1/2)\rho_{1}\geq O(\delta^{1/2}) such that if γ[1δ,1+δ]\gamma\in[1-\delta,1+\delta], then |e2θ(z;γ)|<1|e^{2\theta(z;\gamma)}|<1 for zz in the annular sector 𝒮in,1:={z=reiα\dvtxρ1<r<1,|α|<πα1}\mathcal{S}_{\mathrm{in},-1}:=\{z=re^{i\alpha}\dvtx\rho_{1}<r<1,|\alpha|<\pi-\alpha_{1}\}. Moreover, if zz is in a compact subset of 𝒮in,1\mathcal{S}_{\mathrm{in},-1}, then there exists c>0c>0 such that |e2θ(z;γ)|ec|e^{2\theta(z;\gamma)}|\leq e^{-c} uniformly in γ[1δ,1+δ]\gamma\in[1-\delta,1+\delta]; see Figure 6.

Similarly, from the symmetry ϕ(z;γ)=θ(z1;γ)\phi(z;\gamma)=\theta(-z^{-1};\gamma), under the same assumptions, |e2ϕ(z;γ~)|<1|e^{2\phi(z;\tilde{\gamma})}|<1 for zz in the annular sector 𝒮out,1:={z=1reiα\dvtxρ1<r<1,α1|α|π}\mathcal{S}_{\mathrm{out},1}:=\{z=\frac{1}{r}e^{i\alpha}\dvtx\rho_{1}<r<1,\alpha_{1}\leq|\alpha|\leq\pi\}. Note the change of the condition on the angle from 𝒮in,1\mathcal{S}_{\mathrm{in},-1}; the (double) critical point of ϕ(z;1)\phi(z;1) is z=1z=1. As before, if zz is in a compact subset of 𝒮out,1\mathcal{S}_{\mathrm{out},1}, then there exists c>0c>0 such that |e2ϕ(z;γ)|ec|e^{2\phi(z;\gamma)}|\leq e^{-c} uniformly in γ[1δ,1+δ]\gamma\in[1-\delta,1+\delta].

Now define 𝐓\mathbf{T} by (80) as before. In doing so, we take Cin,1C_{\mathrm{in},1} and Cin,1C_{\mathrm{in},-1} to lie in the annulus ρ1<|z|<1\rho_{1}<|z|<1, and take Cout,1C_{\mathrm{out},1} and Cout,1C_{\mathrm{out},-1} to lie in the annulus 1<|z|<1/ρ11<|z|<1/\rho_{1}. Then the jump matrix in (81) satisfies

VT(z)=I+𝒪(ect)V_{T}(z)=I+\mathcal{O}\bigl{(}e^{-ct}\bigr{)} (86)

uniformly for γ,γ~[1δ,1+δ]\gamma,\tilde{\gamma}\in[1-\delta,1+\delta] and for zz in all the contours except for (Cin,1Cout,1){|\operatornamearg(z)|>πα1}(C_{\mathrm{in},-1}\cup C_{\mathrm{out},-1})\cap\{|\operatorname{arg}(z)|>\pi-\alpha_{1}\} and (Cin,1Cout,1){|\operatornamearg(z)|<α1}(C_{\mathrm{in},1}\cup C_{\mathrm{out},1})\cap\{|\operatorname{arg}(z)|<\alpha_{1}\}. The parts of the contour where (86) is not valid are handled by introducing local parametrix that can be solved by the RHP for the Painlevé II equation; see Section 10. Such a “Painlevé parametrix” was introduced in the analysis of BDJ on a similar orthogonal polynomials but with a continuous weight. A drawback of the analysis of BDJ was that the parametrix was solved asymptotically rather than exactly as in other cases such as DKMVZa , DKMVZb . The exactly matching Painlevé parametrix was constructed later in CK . The construction of CK requires, in the context of this paper, that γ[1Lt2/3,1+Lt2/3]\gamma\in[1-Lt^{-2/3},1+Lt^{-2/3}]. In a recent paper BMiller , a different approach to the exact construction of the Painlevé parametrix was introduced. This construction has the advantage that it works for all γ\gamma (and γ~\tilde{\gamma}) in regime (72).

We seek a global parametrix in the form

𝐀(z)={𝐀1(z), z𝒰1,𝐀1(z), z𝒰1,I, elsewhere,\mathbf{A}(z)=\cases{\mathbf{A}_{1}(z),&\quad$z\in\mathcal{U}_{1}$,\cr\mathbf{A}_{-1}(z),&\quad$z\in\mathcal{U}_{-1}$,\cr I,&\quad$\mbox{elsewhere},$} (87)

where 𝒰±1\mathcal{U}_{\pm 1} are sufficiently small, fixed size, neighborhoods of ±1\pm 1. Later we will fix the size of 𝒰±1\mathcal{U}_{\pm 1} first and then choose δ\delta small enough so that 𝒰1\mathcal{U}_{-1} contains (Cin,1Cout,1){|\operatornamearg(z)|>πα1}(C_{\mathrm{in},-1}\cup C_{\mathrm{out},-1})\cap\{|\operatorname{arg}(z)|>\pi-\alpha_{1}\} and 𝒰1\mathcal{U}_{1} contains (Cin,1Cout,1){|\operatornamearg(z)|<α1}(C_{\mathrm{in},1}\cup C_{\mathrm{out},1})\cap\{|\operatorname{arg}(z)|<\alpha_{1}\} so that (86) is valid for all zz in the contour of 𝐓\mathbf{T} except for in 𝒰±1\mathcal{U}_{\pm 1}.

6.1 Local models near 11 and 1-1

In order to construct exactly matching parametrices 𝐀±1\mathbf{A}_{\pm 1}, we need to introduce Langer transformations which map the local phase functions θ\theta and ϕ\phi to the Painlevé phase (213) in 𝒰1\mathcal{U}_{-1} and 𝒰1\mathcal{U}_{1}, respectively.

The phase θ(z;γ)\theta(z;\gamma) is analytic in zz in the neighborhood |z+1|<1|z+1|<1 (and entire in γ\gamma) and admits the expansion

θ(z;γ)\displaystyle\theta(z;\gamma) =\displaystyle= (1γ)(z+1)+1γ2(z+1)2+32γ6(z+1)3\displaystyle(1-\gamma)(z+1)+\frac{1-\gamma}{2}(z+1)^{2}+\frac{3-2\gamma}{6}(z+1)^{3}
+𝒪((z+1)4).\displaystyle{}+\mathcal{O}\bigl{(}(z+1)^{4}\bigr{)}.

At the critical value γ=1\gamma=1 the expansion degenerates to a cubic at leading order; for values of γ\gamma near 11 the cubic unfolds either into three real or one real and two complex roots near z=1z=-1. The double critical point–double root of θ(z;1)\theta^{\prime}(z;1)–unfolds into a pair of simple critical points near z=1z=-1,

dθdz=0z±=γ±γ21.\displaystyle\frac{{d}\theta}{{d}z}=0\quad\Rightarrow\quad z_{\pm}=-\gamma\pm\sqrt{\gamma^{2}-1}. (89)

Note that the relation ϕ(z;γ~)=θ(z;γ~)\phi(z;\tilde{\gamma})=-\theta(-z;\tilde{\gamma}) implies that ϕ\phi admits a similar expansion about z=1z=1 with the same structure.

As the cubic coefficient in (6.1) is bounded away from zero (note that γ1+δ<3/2\gamma\leq 1+\delta<3/2) we make use of a classical result of CFU to introduce new parameters a(γ)a(\gamma) and b(γ)b(\gamma) such that the relation

\tfrac43f(z;γ)3+a(γ)f(z;γ)+b(γ)=iθ(z;γ),z𝒰1\tfrac{4}{3}f(z;\gamma)^{3}+a(\gamma)f(z;\gamma)+b(\gamma)=-i\theta(z;\gamma),\qquad z\in\mathcal{U}_{-1} (90)

defines an invertible conformal mapping f=f(z)f=f(z) from a sufficiently small, γ\gamma-independent, neighborhood 𝒰1\mathcal{U}_{-1} onto f(𝒰1)f(\mathcal{U}_{1}) such that the parameters aa and bb depend continuously on γ\gamma near 11. It was shown in CFU (see also Friedman ) that there exist δ1>0\delta_{1}>0 and a γ\gamma-independent neighborhood 𝒰1\mathcal{U}_{-1} such that the above map is conformal in 𝒰1\mathcal{U}_{-1} for all γ[1δ1,1+δ1]\gamma\in[1-\delta_{1},1+\delta_{1}] if the critical points f±=±a/2f_{\pm}=\pm\sqrt{-a}/2 of the left-hand side, seen as a function of ff, correspond to the critical points z±z_{\pm} of θ(z;γ)\theta(z;\gamma). This means that the left-hand side of (90) evaluated at f=f±f=f_{\pm} should equal to the right-hand side of (90) evaluated at z=z±z=z_{\pm}. These two conditions determine parameters aa and bb as

b(γ)\displaystyle b(\gamma) =\displaystyle= i2[θ(z+;γ)+θ(z;γ)],\displaystyle\frac{-i}{2}\bigl{[}\theta(z_{+};\gamma)+\theta(z_{-};\gamma)\bigr{]},
(a(γ))3/2\displaystyle\bigl{(}-a(\gamma)\bigr{)}^{3/2} =\displaystyle= 3i2(θ(z+;γ)θ(z;γ)).\displaystyle\frac{3i}{2}\bigl{(}\theta(z_{+};\gamma)-\theta(z_{-};\gamma)\bigr{)}.

Since θ(z+;γ)=θ(z;γ)=γ21γlog(γ+γ21)\theta(z_{+};\gamma)=-\theta(z_{-};\gamma)=\sqrt{\gamma^{2}-1}-\gamma\log(\gamma+\sqrt{\gamma^{2}-1}), we have

b(γ)=0.b(\gamma)=0. (92)

There are three choices of branch of a(γ)a(\gamma). We choose the branch so that

a(γ)=[3i(γ21γlog(γ+γ21))]2/3a(\gamma)=-\bigl{[}3i\bigl{(}\sqrt{\gamma^{2}-1}-\gamma\log\bigl{(}\gamma+\sqrt{\gamma^{2}-1}\bigr{)}\bigr{)}\bigr{]}^{2/3} (93)

satisfies the power series expansion

a(γ)=2(γ1)\tfrac115(γ1)2+𝒪((γ1)3).a(\gamma)=2(\gamma-1)-\tfrac 1{15}(\gamma-1)^{2}+\mathcal{O}\bigl{(}(\gamma-1)^{3}\bigr{)}. (94)

To verify this, it is useful to note that d2dγ2[γ21γlog(γ+γ21)]=(γ21)1/2\frac{d^{2}}{d\gamma^{2}}[\sqrt{\gamma^{2}-1}-\gamma\log(\gamma+\sqrt{\gamma^{2}-1})]=-(\gamma^{2}-1)^{-1/2}. With this choice of aa, we have

f(z;γ)\displaystyle f(z;\gamma) =\displaystyle= i(γ1)a(z+1)+i(γ1)2a(z+1)2\displaystyle\frac{i(\gamma-1)}{a}(z+1)+\frac{i(\gamma-1)}{2a}(z+1)^{2}
+16i(32γa8(γ1)3a4)(z+1)3+𝒪((z+1)4).\displaystyle{}+\frac{1}{6i}\biggl{(}\frac{3-2\gamma}{a}-8\frac{(\gamma-1)^{3}}{a^{4}}\biggr{)}(z+1)^{3}+\mathcal{O}\bigl{(}(z+1)^{4}\bigr{)}.

Inserting (94), we obtain

f(z;γ)\displaystyle f(z;\gamma) =\displaystyle= i2(z+1)[1+12(z+1)+720(z+1)2+𝒪((z+1)3)]\displaystyle\frac{i}{2}(z+1)\biggl{[}1+\frac{1}{2}(z+1)+\frac{7}{20}(z+1)^{2}+\mathcal{O}\bigl{(}(z+1)^{3}\bigr{)}\biggr{]}
+i60(γ1)(z+1)[1+12(z+1)+𝒪((z+1)2)]\displaystyle{}+\frac{i}{60}(\gamma-1)(z+1)\biggl{[}1+\frac{1}{2}(z+1)+\mathcal{O}\bigl{(}(z+1)^{2}\bigr{)}\biggr{]}
+𝒪((γ1)2(z+1)).\displaystyle{}+\mathcal{O}\bigl{(}(\gamma-1)^{2}(z+1)\bigr{)}.

Define the rescaled coordinates (Langer coordinates) ζ=ζ(z;γ)=t1/3f(z;γ)\zeta=\zeta(z;\gamma)=\break t^{1/3}f(z;\gamma) for z𝒰1z\in\mathcal{U}_{-1}, and set

s=s(γ)=t2/3a(γ).s=s(\gamma)=t^{2/3}a(\gamma). (97)

Then [see (213)]

tθ(z;γ)=i(\tfrac43ζ3+sζ)=iθ𝑃𝐼𝐼(ζ,s),z𝒰1.\displaystyle t\theta(z;\gamma)=i\bigl{(}\tfrac{4}{3}\zeta^{3}+s\zeta\bigr{)}=i\theta_{\mathit{PII}}(\zeta,s),\qquad z\in\mathcal{U}_{-1}. (98)

We note from (94) that for the parameters (n,m,t)(n,m,t) in regime (72),

s(γ)2Ls(\gamma)\geq-2L (99)

for all large enough tt. We also have

s(γ)=2t2/3(γ1)(2t2/3(γ1))260t2/3+𝒪(t2/3(γ1)3).s(\gamma)=2t^{2/3}(\gamma-1)-\frac{(2t^{2/3}(\gamma-1))^{2}}{60}t^{-2/3}+\mathcal{O}\bigl{(}t^{2/3}(\gamma-1)^{3}\bigr{)}. (100)

We introduce similar coordinates in 𝒰1\mathcal{U}_{1}. This can be easily achieved by noting the symmetry ϕ(z,γ~)=θ(z,γ~)\phi(z,\tilde{\gamma})=-\theta(-z,\tilde{\gamma}). We set 𝒰1=𝒰1\mathcal{U}_{1}=-\mathcal{U}_{-1} and define f(z;γ~):=f(z;γ~)f(z;\tilde{\gamma}):=-f(-z;\tilde{\gamma}) for z𝒰1z\in\mathcal{U}_{1}. Then we find, with the same choice of aa and bb,

\tfrac43f(z;γ~)3+a(γ~)f(z;γ~)=iϕ(z;γ~),z𝒰1.\tfrac{4}{3}f(z;\tilde{\gamma})^{3}+a(\tilde{\gamma})f(z;\tilde{\gamma})=-i\phi(z;\tilde{\gamma}),\qquad z\in\mathcal{U}_{1}. (101)

Defining ζ=ζ(z;γ)=t1/3f(z;γ)\zeta=\zeta(z;\gamma)=t^{1/3}f(z;\gamma), z𝒰1z\in\mathcal{U}_{-1} and s=s(γ)=t2/3a(γ)s=s(\gamma)=t^{2/3}a(\gamma) as before, we obtain

tϕ(z;γ~)=i(\tfrac43ζ(z;γ~)3+s(γ~)ζ(z;γ~))=iθ𝑃𝐼𝐼(ζ,s),z𝒰1.t\phi(z;\tilde{\gamma})=i\bigl{(}\tfrac{4}{3}\zeta(z;\tilde{\gamma})^{3}+s(\tilde{\gamma})\zeta(z;\tilde{\gamma})\bigr{)}=i\theta_{\mathit{PII}}(\zeta,s),\qquad z\in\mathcal{U}_{-1}. (102)

Note the symmetry

ζ(z;γ~)=ζ(z;γ~),z𝒰1.\zeta(z;\tilde{\gamma})=-\zeta(-z;\tilde{\gamma}),\qquad z\in\mathcal{U}_{1}. (103)

We take δ\delta such that δ<min{1/2,δ1}\delta<\min\{1/2,\delta_{1}\} where δ1\delta_{1} we introduced in defining ff in (90). Then consider the parameters (n,m,t)(n,m,t) satisfying (72).

Consider the image of 𝒰1\mathcal{U}_{-1} under the map zζ(z;γ)z\mapsto\zeta(z;\gamma). From (6.1), we find that there exists δ2>0\delta_{2}>0 such that for γ[1δ2,1+δ2]\gamma\in[1-\delta_{2},1+\delta_{2}], ζ(𝒰1;γ)\zeta(\mathcal{U}_{-1};\gamma) contains a disk centered at 0 and of radius 𝒪(t1/3)\geq\mathcal{O}(t^{1/3}) in the ζ\zeta-plane. The same holds for ζ(𝒰1;γ~)\zeta(\mathcal{U}_{1};\tilde{\gamma}). Note that from (6.1), the image contours ζ(C1,in/out)\zeta(C_{-1,\mathrm{in}/\mathrm{out}}) are oriented left-to-right and the image contours ζ(C1,in/out)\zeta(C_{1,\mathrm{in}/\mathrm{out}}) are oriented right-to-left as depicted in Figure 7.

Refer to caption
Figure 7: Images of the contours near z=±1z=\pm 1 under ζ\zeta.

We now use ζ\zeta to map the local contours and jump matrices inside 𝒰±1\mathcal{U}_{\pm 1} onto the jumps of the Painlevé parametrix, RHP 10.1. We locally deform, if necessary, the contours C±1,in/outC_{\pm 1,\mathrm{in}/\mathrm{out}} so that the image contours ζ(C±1,in/out𝒰±1)\zeta(C_{\pm 1,\mathrm{in}/\mathrm{out}}\cap\mathcal{U}_{\pm 1}) become the rays Γi\Gamma_{i}, i=1,3,4,6i=1,3,4,6 described in (206), and we extend C±1,in/out(𝒰1𝒰1)C_{\pm 1,\mathrm{in}/\mathrm{out}}\cap(\mathcal{U}_{-1}\cup\mathcal{U}_{1}) to the rest of C±1,in/outC_{\pm 1,\mathrm{in}/\mathrm{out}} so that estimate (86) holds for zz on the contour outside of 𝒰±1\mathcal{U}_{\pm 1}. The exact shape of the contours are not important. Reorienting the image contours, if necessary, to go from left-to-right and using (98) and (102) the image contours and jumps are, up to a conjugation by a constant matrix, exactly those of the Painlevé parametrix, RHP 10.1.

Let \boldsΨ(ζ,s)\bolds{\Psi}(\zeta,s) be the solution of the Painlevé II model problem, RHP 10.1. Set σ2=(0ii0)\sigma_{2}=\bigl{(}{0\enskip-i\atop i\enskip 0}\bigr{)} and recall that σ3=(1001)\sigma_{3}=\bigl{(}{1\enskip 0\atop 0\enskip 1}\bigr{)}. Taking into account the orientation of ζ(C±1,in/out𝒰±1)\zeta(C_{\pm 1,\mathrm{in}/\mathrm{out}}\cap\mathcal{U}_{\pm 1}), we define the local models

𝐀1(z)\displaystyle\mathbf{A}_{-1}(z) =\displaystyle= 𝐀1(z;γ):=σ2σ3n\boldsΨ(ζ(z;γ);s(γ))σ3nσ2,z𝒰1,\displaystyle\mathbf{A}_{-1}(z;\gamma):=\sigma_{2}\sigma_{3}^{n}\bolds{\Psi}\bigl{(}\zeta(z;\gamma);s(\gamma)\bigr{)}\sigma_{3}^{n}\sigma_{2},\qquad z\in\mathcal{U}_{-1},
𝐀1(z)\displaystyle\mathbf{A}_{1}(z) =\displaystyle= 𝐀1(z;γ~):=σ2\boldsΨ(ζ(z;γ~);s(γ~))σ2,z𝒰1.\displaystyle\mathbf{A}_{1}(z;\tilde{\gamma}):=\sigma_{2}\bolds{\Psi}\bigl{(}\zeta(z;\tilde{\gamma});s(\tilde{\gamma})\bigr{)}\sigma_{2},\qquad z\in\mathcal{U}_{1}.

Note from symmetries (214) and (103) that these two models are related as

𝐀1(z,γ~)=σ1σ3n𝐀1(z,γ~)σ3nσ1,z𝒰1.\mathbf{A}_{1}(z,\tilde{\gamma})=\sigma_{1}\sigma_{3}^{n}\mathbf{A}_{-1}(-z,\tilde{\gamma})\sigma_{3}^{n}\sigma_{1},\qquad z\in\mathcal{U}_{1}. (105)

From (98) and (102), 𝐀±1(z)\mathbf{A}_{\pm 1}(z) satisfies the same jump condition as 𝐓(z)\mathbf{T}(z) in 𝒰±1\mathcal{U}_{\pm 1}, respectively.

Define the ratio of the global parametrix to the exact problem 𝐓(z)\mathbf{T}(z),

𝐑(z)=𝐓(z)𝐀1(z).\mathbf{R}(z)=\mathbf{T}(z)\mathbf{A}^{-1}(z). (106)

Then 𝐑(z)\mathbf{R}(z) has no jumps inside 𝒰±1\mathcal{U}_{\pm 1}, but gains jumps on the positively oriented boundaries 𝒰±1\partial\mathcal{U}_{\pm 1}. Let ΣR0=ΣinΣoutCin,±1Cout,±1(𝒰1𝒰1)\Sigma_{R}^{0}=\Sigma_{\mathrm{in}}\cup\Sigma_{\mathrm{out}}\cup C_{\mathrm{in},\pm 1}\cup C_{\mathrm{out},\pm 1}\setminus(\mathcal{U}_{1}\cup\mathcal{U}_{-1}); see Figure 8. Then 𝐑\mathbf{R} satisfies the following problem:

Refer to caption
Figure 8: The jump contours for the residual 𝐑(z)\mathbf{R}(z). The dashed lines represent contours on which the jumps are exponentially near identity.
Riemann–Hilbert Problem 6.1 (for 𝐑(z)\mathbf{R}(z)).

Find a 2×22\times 2 matrix 𝐑(z)\mathbf{R}(z) such that: {longlist}[(1)]

𝐑(z)\mathbf{R}(z) is analytic in ΣR\mathbb{C}\setminus\Sigma_{R} where ΣR=ΣR0𝒰1𝒰1\Sigma_{R}=\Sigma_{R}^{0}\cup\partial\mathcal{U}_{1}\cup\partial\mathcal{U}_{-1}.

𝐑(z)I\mathbf{R}(z)\to I as zz\to\infty.

The boundary values of 𝐑\mathbf{R} satisfy the jump relation 𝐑+=𝐑VR\mathbf{R}_{+}=\mathbf{R}_{-}V_{R} where

VR(z)={𝐀1(z)1, z𝒰1,𝐀1(z)1, z𝒰1,VT(z), zΣR0.\displaystyle V_{R}(z)=\cases{\mathbf{A}_{1}(z)^{-1},&\quad$z\in\partial\mathcal{U}_{1}$,\cr\mathbf{A}_{-1}(z)^{-1},&\quad$z\in\partial\mathcal{U}_{-1}$,\cr V_{T}(z),&\quad$z\in\Sigma_{R}^{0}$.} (107)

The jumps of 𝐑(z)\mathbf{R}(z) are now everywhere uniformly near identity. In fact, for the parameters (n,m,t)(n,m,t) in regime (72), it follows from (86),

VRIL(ΣR0)=𝒪(ect),\|V_{R}-I\|_{L^{\infty}(\Sigma_{R}^{0})}=\mathcal{O}\bigl{(}e^{-ct}\bigr{)}, (108)

and from (6.1) and (216) that (recall that ζ(𝒰±1;γ)\zeta(\mathcal{U}_{\pm 1};\gamma) contains a disk of radius 𝒪(t1/3)\geq\mathcal{O}(t^{1/3}) for all γ[1δ,1+δ]\gamma\in[1-\delta,1+\delta])

VRIL(𝒰±1)=𝒪(t1/3).\|V_{R}-I\|_{L^{\infty}(\mathcal{U}_{\pm 1})}=\mathcal{O}\bigl{(}t^{-1/3}\bigr{)}. (109)

(We will use a better estimate for the latter below.) The above estimates establish that 𝐑\mathbf{R} falls into the class of small norm RHPs for any sufficiently large tt. Let C\dvtxL2(ΣR)L2(ΣR)C_{-}\dvtx L^{2}(\Sigma_{R})\to L^{2}(\Sigma_{R}) denote the usual Cauchy projection operator and define

CVR[f](z):=C[f(w)(VRI)]=12πiΣRf(w)(VR(w)I)(wz)𝑑w\displaystyle\qquad C_{V_{R}}[f](z):=C_{-}\bigl{[}f(w)(V_{R}-I)\bigr{]}=\frac{1}{2\pi i}\int_{\Sigma_{R}}\frac{f(w)(V_{R}(w)-I)}{(w-z)_{-}}\,dw (110)

and

𝒦R[f](z):=12πiΣRf(w)(VR(w)I)(wz)𝑑w,\mathcal{K}_{R}[f](z):=\frac{1}{2\pi i}\int_{\Sigma_{R}}\frac{f(w)(V_{R}(w)-I)}{(w-z)}\,dw, (111)

which maps fL2(ΣR)f\in L^{2}(\Sigma_{R}) to an analytic function in ΣR\mathbb{C}\setminus\Sigma_{R}. Then as CC_{-} is a bounded L2L^{2} operator whose operator norm is uniformly bounded (see, e.g., BK ) and the contours ΣR\Sigma_{R} are finite length, it follows that CVRL2L2=𝒪(t1/3)\|C_{V_{R}}\|_{L^{2}\to L^{2}}=\mathcal{O}(t^{-1/3}) for large tt which guarantees the existence of a unique solution to (1CVR)μ=I(1-C_{V_{R}})\mu=I. Once the existence of μ(z)\mu(z) is established, it follows immediately from the general theory of RHPs that

𝐑(z):=I+𝒦R[μ](z)=I+12πiΣRμ(w)(VR(w)I)wz𝑑w\displaystyle\mathbf{R}(z):=I+\mathcal{K}_{R}[\mu](z)=I+\frac{1}{2\pi i}\int_{\Sigma_{R}}\frac{\mu(w)(V_{R}(w)-I)}{w-z}\,dw (112)

is the solution of RHP 6.1.

Unfolding the series of transformations 𝐘𝐐𝐒𝐓𝐑\mathbf{Y}\mapsto\mathbf{Q}\mapsto\mathbf{S}\mapsto\mathbf{T}\mapsto\mathbf{R} we have 𝐘(0)=𝐑(0)(0110)\mathbf{Y}(0)=\mathbf{R}(0)\bigl{(}{0\atop-1}\enskip{1\atop 0}\bigr{)}, and from (67) it follows that

πn,m(0;t)=𝐑12(0;t,n,m)=𝐑21(0;t,n,m).\pi_{n,m}(0;t)=-\mathbf{R}_{12}(0;t,n,m)=\mathbf{R}_{21}(0;t,n,m). (113)

We now evaluate 𝐑(0;t,n,m)\mathbf{R}(0;t,n,m) explicitly for the first three terms in the asymptotic expansion. But we first consider the corresponding RHP for the continuous weight in the next subsection. We will compare the discrete weight problem to the continuous weight problem.

6.2 Analysis of the continuous weight problem

A streamlined version of the above procedure reducing the discrete problem, RHP 4.1, to small-norm form can be used to study the continuous weight problem, RHP 4.2. Using the same gg-function used in the discrete case, we define 𝐘𝐒\mathbf{Y}^{\infty}\mapsto\mathbf{S}^{\infty} as in (75), replacing 𝐐\mathbf{Q} with 𝐘\mathbf{Y}^{\infty}. The new RHP for 𝐒\mathbf{S}^{\infty} features the single phase θ(z;γ)\theta(z;\gamma) defined by (5.2) which we recall has a critical value at z=1z=-1. In the “exponentially small regime” (71) estimate (78) holds and just as in Proposition 5.1, we have in the end

πn,(0;t)=𝒪(ecn)for (n,t) satisfying (71).\pi_{n,\infty}(0;t)=\mathcal{O}\bigl{(}e^{-cn}\bigr{)}\qquad\mbox{for $(n,t)$ satisfying (\ref{eqregime1}).} (114)

In the Painlevé regime (72), by introducing a simplified version of transformation (80), using only the factors appearing in Ω±,0\Omega_{\pm,0} to open lenses, one defines a transformation 𝐒𝐓\mathbf{S}^{\infty}\mapsto\mathbf{T}^{\infty}. The problem for 𝐓\mathbf{T}^{\infty} is then approximated by a parametrix which is identity outside a neighborhood 𝒰1\mathcal{U}_{-1} of z=1z=-1 and inside 𝒰1\mathcal{U}_{-1} is approximated by the same model as the discrete case, 𝐀1(z)\mathbf{A}_{-1}(z) defined by (6.1). The result is a small norm problem 𝐑\mathbf{R}^{\infty} for the continuous case where

𝐑(z)=I+12πiΣRμ(w)(VR(w)I)wz𝑑w,\mathbf{R}^{\infty}(z)=I+\frac{1}{2\pi i}\int_{\Sigma_{R^{\infty}}}\frac{\mu^{\infty}(w)(V_{R^{\infty}}(w)-I)}{w-z}\,dw, (115)

where

VR(z)={𝐀1(z)1, z𝒰1,I+𝒪(ect), zΣR𝒰1.V_{R^{\infty}}(z)=\cases{\mathbf{A}_{-1}(z)^{-1},&\quad$z\in\partial\mathcal{U}_{-1}$,\cr I+\mathcal{O}\bigl{(}e^{-ct}\bigr{)},&\quad$z\in\Sigma_{R}^{\infty}\setminus\partial\mathcal{U}_{-1}$.} (116)

Moreover, the continuous weight orthogonal polynomial πn(0)\pi_{n}^{\infty}(0) is given by

πn,(0;t)=𝐑12(0;t,n)=𝐑21(0;t,n)for (n,t) satisfying (72).\qquad\pi_{n,\infty}(0;t)=-\mathbf{R}^{\infty}_{12}(0;t,n)=\mathbf{R}^{\infty}_{21}(0;t,n)\qquad\mbox{for $(n,t)$ satisfying (\ref{eqregime2}).} (117)

6.3 Expansion of 𝐑(0)\mathbf{R}(0)

In this section we calculate the asymptotic expansion of

𝐑(0)=I+𝒦R[μ](0)=I+12πiΣRμ(w)(VR(w)I)w𝑑w\displaystyle\mathbf{R}(0)=I+\mathcal{K}_{R}[\mu](0)=I+\frac{1}{2\pi i}\int_{\Sigma_{R}}\frac{\mu(w)(V_{R}(w)-I)}{w}\,dw (118)

up to order 𝒪(t1)\mathcal{O}(t^{-1}). We begin by representing μ\mu using its Nuemann series expansion,

μ(z)=I+k=1(CR)k[I],\mu(z)=I+\sum_{k=1}^{\infty}(C_{R})^{k}[I], (119)

which, due to (108) and (109), convergences uniformly and absolutely. In both (118) and (119), the dominant contribution to the integral comes from the boundaries 𝒰±1\partial\mathcal{U}_{\pm 1}. In fact, denoting by P0P_{0} the projection operator onto ΣR(𝒰1U1)\Sigma_{R}\setminus(\partial\mathcal{U}_{-1}\cup\partial U_{1}), we find from (108) that CRP0L2(ΣR)L2(ΣR)=𝒪(ect)\|C_{R}P_{0}\|_{L^{2}(\Sigma_{R})\to L^{2}(\Sigma_{R})}=\mathcal{O}(e^{-ct}) and 𝒦RP0L2(ΣR)L2(ΣR)=𝒪(ect)\|\mathcal{K}_{R}P_{0}\|_{L^{2}(\Sigma_{R})\to L^{2}(\Sigma_{R})}=\mathcal{O}(e^{-ct}).

Denoting by P±1P_{\pm 1} the projection operator onto 𝒰±\partial\mathcal{U}_{\pm}, respectively, define C±1:=CRP±1C_{\pm 1}:=C_{R}P_{\pm 1} and 𝒦±1:=𝒦RP±1\mathcal{K}_{\pm 1}:=\mathcal{K}_{R}P_{\pm 1}: for any fL2(ΣR)f\in L^{2}(\Sigma_{R}),

C±1[f](z)\displaystyle C_{\pm 1}[f](z) =\displaystyle= 12πi𝒰±1f(w)(VR(w)I)(wz)𝑑w,zΣR,\displaystyle\frac{1}{2\pi i}\oint_{\partial\mathcal{U}_{\pm 1}}\frac{f(w)(V_{R}(w)-I)}{(w-z)_{-}}\,dw,\qquad z\in\Sigma_{R},
𝒦±1[f](z)\displaystyle\mathcal{K}_{\pm 1}[f](z) =\displaystyle= 12πi𝒰±1f(w)(VR(w)I)(wz)𝑑w,zΣR.\displaystyle\frac{1}{2\pi i}\oint_{\partial\mathcal{U}_{\pm 1}}\frac{f(w)(V_{R}(w)-I)}{(w-z)}\,dw,\qquad z\notin\Sigma_{R}.

Then we find

𝐑(0)=I+(𝒦1+𝒦1)[μ](0)+𝒪(ect),\mathbf{R}(0)=I+(\mathcal{K}_{-1}+\mathcal{K}_{1})[\mu](0)+\mathcal{O}\bigl{(}e^{-ct}\bigr{)}, (121)

where

μ(z)=I+k=1(C1+C1)k[I](z)+𝒪(ect).\mu(z)=I+\sum_{k=1}^{\infty}(C_{-1}+C_{1})^{k}[I](z)+\mathcal{O}\bigl{(}e^{-ct}\bigr{)}. (122)

Recall s(γ)s(\gamma) defined in (97). Introduce the shorthand s=s(γ)s=s(\gamma) and s~=s(γ~)\tilde{s}=s(\tilde{\gamma}). Using (216), (217) and (6.1) we have

VR(z)I\displaystyle V_{R}(z)-I
={φ1(s)t1/3f(z;γ)+φ2(s)t2/3f(z;γ)2+φ3(s)t1f(z;γ)3+𝒪(ec0|s|3/2t4/3),z𝒰1,ϕ1(s~)t1/3f(z;γ~)+ϕ2(s~)t2/3f(z;γ~)2+ϕ3(s~)t1f(z;γ~)3+𝒪(ec0|s|3/2t4/3),z𝒰1,\displaystyle\qquad=\cases{\displaystyle\frac{\varphi_{1}(s)}{t^{1/3}f(z;\gamma)}+\frac{\varphi_{2}(s)}{t^{2/3}f(z;\gamma)^{2}}+\frac{\varphi_{3}(s)}{t^{-1}f(z;\gamma)^{3}}+\mathcal{O}\biggl{(}\frac{e^{-c_{0}|s|^{3/2}}}{t^{4/3}}\biggr{)},\vskip 3.0pt\cr\quad z\in\partial\mathcal{U}_{-1},\vskip 3.0pt\cr\displaystyle\frac{\phi_{1}(\tilde{s})}{t^{1/3}f(z;\tilde{\gamma})}+\frac{\phi_{2}(\tilde{s})}{t^{2/3}f(z;\tilde{\gamma})^{2}}+\frac{\phi_{3}(\tilde{s})}{t^{-1}f(z;\tilde{\gamma})^{3}}+\mathcal{O}\biggl{(}\frac{e^{-c_{0}|s|^{3/2}}}{t^{4/3}}\biggr{)},\vskip 3.0pt\cr\quad z\in\partial\mathcal{U}_{1},}
with
φ1(s)\displaystyle\varphi_{1}(s) =\displaystyle= 12i[u(s)(1)nq(s)(1)nq(s)u(s)],\displaystyle\frac{1}{2i}\left[\matrix{-u(s)&-(-1)^{n}q(s)\cr(-1)^{n}q(s)&u(s)}\right],
φ2(s)\displaystyle\qquad\quad\varphi_{2}(s) =\displaystyle= 1(2i)2[12u(s)212q(s)2(1)n(q(s)u(s)q(s))(1)n(q(s)u(s)q(s))12u(s)212q(s)2],\displaystyle\frac{1}{(2i)^{2}}\left[\matrix{\displaystyle\frac{1}{2}u(s)^{2}-\frac{1}{2}q(s)^{2}&(-1)^{n}\bigl{(}q(s)u(s)-q^{\prime}(s)\bigr{)}\cr(-1)^{n}\bigl{(}q(s)u(s)-q^{\prime}(s)\bigr{)}&\displaystyle\frac{1}{2}u(s)^{2}-\frac{1}{2}q(s)^{2}}\right], (123b)
φ3(s)\displaystyle\varphi_{3}(s) =\displaystyle= 1(2i)3[α(s)(1)nβ(s)(1)nβ(s)α(s)]\displaystyle\frac{1}{(2i)^{3}}\left[\matrix{\alpha(s)&(-1)^{n}\beta(s)\cr-(-1)^{n}\beta(s)&-\alpha(s)}\right]
and
ϕk(s~)=σ3nφk(s~)σ3n,k=1,2,3,\phi_{k}(\tilde{s})=\sigma_{3}^{n}\varphi_{k}(\tilde{s})\sigma_{3}^{n},\qquad k=1,2,3, (123c)

where qq is defined by (10) and uu, α\alpha and β\beta are defined in (216c)–(216e).

It follows from inserting the above expansions into (121) and (122) that each iteration of C1C_{1} or C1C_{-1} introduces a factor of t1/3t^{-1/3}; thus we are led to an expansion of the form.

𝐑(0)=I+k=1NR(k)tk/3+𝒪(ec0|s|3/2t(N+1)/3),\mathbf{R}(0)=I+\sum_{k=1}^{N}R^{(k)}t^{-k/3}+\mathcal{O}\biggl{(}\frac{e^{-c_{0}|s|^{3/2}}}{t^{(N+1)/3}}\biggr{)}, (124)

where R(1):=t1/3(𝒦1[I](0)+𝒦1[I](0))R^{(1)}:=t^{1/3}(\mathcal{K}_{1}[I](0)+\mathcal{K}_{-1}[I](0)),

R(k):=tk/3τ{1,1}k1(𝒦1+𝒦1)Cτ[I](0),k2.R^{(k)}:=t^{k/3}\sum_{\vec{\tau}\in\{-1,1\}^{k-1}}(\mathcal{K}_{1}+\mathcal{K}_{-1})C_{\vec{\tau}}[I](0),\qquad k\geq 2. (125)

Here CτC_{\vec{\tau}} is a multi-index understood as follows: given τ=(τ1,τ2,,τk){1,1}k\vec{\tau}=(\tau_{1},\tau_{2},\ldots,\tau_{k})\in\{-1,1\}^{k} we define Cτ:=Cτ1Cτ2CτkC_{\vec{\tau}}:=C_{\tau_{1}}C_{\tau_{2}}\cdots C_{\tau_{k}}. Though we have suppressed the dependence, each R(k)R^{(k)} is a function of tt. Moreover, since both ss and the coefficients in the expansion (6.1) depend on γ\gamma, each R(k)=𝒪(1)R^{(k)}=\mathcal{O}(1) with an expansion in powers of t1/3t^{-1/3}.

At each order we can split the composition of Cauchy integrals into three parts. Define

R1(k)\displaystyle R_{1}^{(k)} =\displaystyle= tk/3𝒦1C1k1[I](0),\displaystyle t^{k/3}\mathcal{K}_{1}C_{1}^{k-1}[I](0),
R1(k)\displaystyle R_{-1}^{(k)} =\displaystyle= tk/3𝒦1C1k1[I](0),\displaystyle t^{k/3}\mathcal{K}_{-1}C_{-1}^{k-1}[I](0), (126)
RX(k)\displaystyle R_{X}^{(k)} =\displaystyle= R(k)R1(k)R1(k).\displaystyle R^{(k)}-R^{(k)}_{1}-R^{(k)}_{-1}.

Note that from definition, RX(1)=0R_{X}^{(1)}=0. Intuitively, the first two “pure” terms contain the expansions of the continuous weight polynomials related to the marginal distributions while the last term contains the “cross” terms. This can be made concrete as follows. Let 𝐑±1(0)\mathbf{R}_{\pm 1}(0) and 𝐑X(0)\mathbf{R}_{X}(0) denote the sum of each type of contribution to 𝐑(0)\mathbf{R}(0),

𝐑p(0):=I+k=1Rp(k)tk/3,p=1,1,X.\mathbf{R}_{p}(0):=I+\sum_{k=1}^{\infty}\frac{R^{(k)}_{p}}{t^{k/3}},\qquad p=1,-1,X. (127)

Clearly, 𝐑1(0)\mathbf{R}_{1}(0) and 𝐑1(0)\mathbf{R}_{-1}(0) are the values at origin of normalized Riemann–Hilbert problems whose jump conditions are

(𝐑1)+(z)\displaystyle(\mathbf{R}_{-1})_{+}(z) =\displaystyle= (𝐑1)(z)𝐀1(z,γ)1,z𝒰1,\displaystyle(\mathbf{R}_{-1})_{-}(z)\mathbf{A}_{-1}(z,\gamma)^{-1},\qquad z\in\partial\mathcal{U}_{-1},
(𝐑1)+(z)\displaystyle(\mathbf{R}_{1})_{+}(z) =\displaystyle= (𝐑1)(z)𝐀1(z,γ~)1,z𝒰1.\displaystyle(\mathbf{R}_{1})_{-}(z)\mathbf{A}_{1}(z,\tilde{\gamma})^{-1},\qquad z\in\partial\mathcal{U}_{1}.

Recalling (115) and (116) we see that 𝐑1(z)\mathbf{R}_{-1}(z) and 𝐑(z;t,n)\mathbf{R}^{\infty}(z;t,n) have the same jump condition up to the exponentially small contributions from ΣR𝒰1\Sigma_{R^{\infty}}\setminus\partial\mathcal{U}_{-1}. Hence

𝐑(0;t,n)=[I+𝒪(ect)]𝐑1(0).\mathbf{R}^{\infty}(0;t,n)=\bigl{[}I+\mathcal{O}\bigl{(}e^{-ct}\bigr{)}\bigr{]}\mathbf{R}_{-1}(0). (129)

Also from (105), the jump of 𝐑1(z)\mathbf{R}_{1}(z) is same as that of σ1σ3n𝐑(0,t,2mn)σ3nσ1\sigma_{1}\sigma_{3}^{n}\mathbf{R}^{\infty}(0,t,2m-n)\sigma_{3}^{n}\sigma_{1}, and hence we find that

σ1σ3n𝐑(0,t,2mn)σ3nσ1=[I+𝒪(ect)]𝐑1(0).\sigma_{1}\sigma_{3}^{n}\mathbf{R}^{\infty}(0,t,2m-n)\sigma_{3}^{n}\sigma_{1}=\bigl{[}I+\mathcal{O}\bigl{(}e^{-ct}\bigr{)}\bigr{]}\mathbf{R}_{1}(0). (130)

Therefore, from (117) it follows that

πn,(0;t)\displaystyle\pi_{n,\infty}(0;t) =\displaystyle= (𝐑1)12(0)+𝒪(ect),\displaystyle-(\mathbf{R}_{-1})_{12}(0)+\mathcal{O}\bigl{(}e^{-ct}\bigr{)},
π2mn,(0;t)\displaystyle\pi_{2m-n,\infty}(0;t) =\displaystyle= (1)n(𝐑1)12(0)+𝒪(ect),\displaystyle(-1)^{n}(\mathbf{R}_{1})_{12}(0)+\mathcal{O}\bigl{(}e^{-ct}\bigr{)},

and hence from (113), (124) and (127), we find that

πn,m(0;t)\displaystyle\quad\pi_{n,m}(0;t) =πn,(0)(1)nπ2mn,(0)(𝐑X)12(0)+𝒪(ect).\displaystyle=\pi_{n,\infty}(0)-(-1)^{n}\pi_{2m-n,\infty}(0)-(\mathbf{R}_{X})_{12}(0)+\mathcal{O}\bigl{(}e^{-ct}\bigr{)}. (132)

From (127), we now need to evaluate Rp(k),p=1,1,XR_{p}^{(k)},p=-1,1,X, k=1,2,3k=1,2,3. This calculation is a straightforward but lengthy application of residue calculus. We summarize the result of the calculations which follow directly from the definitions (6.3), (6.3), (123), making use of the expansions (6.1) and (100). It is helpful to note that the symmetry (105) between 𝐀1\mathbf{A}_{1} and 𝐀1\mathbf{A}_{-1} implies that

𝒦1=T𝒦1(γγ~)T,C1=TC1(γγ~)T,\mathcal{K}_{1}=T\mathcal{K}_{-1}^{(\gamma\mapsto\tilde{\gamma})}T,\qquad C_{1}=TC_{-1}^{(\gamma\mapsto\tilde{\gamma})}T, (133)

where 𝒦1(γγ~)\mathcal{K}_{-1}^{(\gamma\mapsto\tilde{\gamma})} and C1(γγ~)C_{-1}^{(\gamma\mapsto\tilde{\gamma})} denote 𝒦1\mathcal{K}_{-1} and C1C_{-1} with γ\gamma replaced by γ~\tilde{\gamma}, respectively, and TT is the operator defined by

Tf(z):=σ1σ3nf(z)σ3nσ1.Tf(z):=\sigma_{1}\sigma_{3}^{n}f(-z)\sigma_{3}^{n}\sigma_{1}. (134)

In particular, note that TI=ITI=I, R1(k)=TR1(k)|γγ~R^{(k)}_{1}=TR_{-1}^{(k)}|_{\gamma\to\tilde{\gamma}}.

Let Err\mathrm{Err} and Err~\tilde{\mathrm{Err}} denote any terms satisfying

Err=𝒪(ec0|s(γ(τ))|3/2),Err~=𝒪(ec0|s(γ~(τ))|3/2).\mathrm{Err}=\mathcal{O}\bigl{(}e^{-c_{0}|s(\gamma(\tau))|^{3/2}}\bigr{)},\qquad\tilde{\mathrm{Err}}=\mathcal{O}\bigl{(}e^{-c_{0}|s(\tilde{\gamma}(\tau))|^{3/2}}\bigr{)}. (135)

Denoting by [A,B][A,B] and {A,B}\{A,B\} the commutator and anti-commutator of matrices AA and BB, respectively, we find from an explicit evaluation that [making use of (217)]

R1(1)\displaystyle R^{(1)}_{-1} =\displaystyle= 2i(1130(γ1))φ1(s)(2i)320t2/3φ3(s)\displaystyle 2i\biggl{(}1-\frac{1}{30}(\gamma-1)\biggr{)}\varphi_{1}(s)-\frac{(2i)^{3}}{20t^{2/3}}\varphi_{3}(s)
+(|γ1|2+t2/3|γ1|+t1)Err,\displaystyle{}+\bigl{(}|\gamma-1|^{2}+t^{-2/3}|\gamma-1|+t^{-1}\bigr{)}\mathrm{Err},
R1(1)\displaystyle R^{(1)}_{1} =\displaystyle= 2i(1130(γ~1))ϕ1(s~)+(2i)320t2/3ϕ3(s~)\displaystyle-2i\biggl{(}1-\frac{1}{30}(\tilde{\gamma}-1)\biggr{)}\phi_{1}(\tilde{s})+\frac{(2i)^{3}}{20t^{2/3}}\phi_{3}(\tilde{s})
+(|γ~1|2+t2/3|γ~1|+t1)Err~,\displaystyle{}+\bigl{(}|\tilde{\gamma}-1|^{2}+t^{-2/3}|\tilde{\gamma}-1|+t^{-1}\bigr{)}\tilde{\mathrm{Err}},
R1(2)\displaystyle R^{(2)}_{-1} =\displaystyle= (2i)22φ1(s)2(2i)3φ1(s)φ2(s)20t1/3+(2i)3φ2(s)φ1(s)10t1/3\displaystyle\frac{(2i)^{2}}{2}\varphi_{1}(s)^{2}-\frac{(2i)^{3}\varphi_{1}(s)\varphi_{2}(s)}{20t^{1/3}}+\frac{(2i)^{3}\varphi_{2}(s)\varphi_{1}(s)}{10t^{1/3}}
+(|γ1|+t2/3)Err,\displaystyle{}+\bigl{(}|\gamma-1|+t^{-2/3}\bigr{)}\mathrm{Err},
R1(2)\displaystyle R^{(2)}_{1} =\displaystyle= (2i)22ϕ1(s~)2+(2i)3σ1(s~)ϕ2(s~)20t1/3(2i)3ϕ2(s~)φ1(s~)10t1/3\displaystyle\frac{(2i)^{2}}{2}\phi_{1}(\tilde{s})^{2}+\frac{(2i)^{3}\sigma_{1}(\tilde{s})\phi_{2}(\tilde{s})}{20t^{1/3}}-\frac{(2i)^{3}\phi_{2}(\tilde{s})\varphi_{1}(\tilde{s})}{10t^{1/3}}
+(|γ~1|+t2/3)Err~,\displaystyle{}+\bigl{(}|\tilde{\gamma}-1|+t^{-2/3}\bigr{)}\tilde{\mathrm{Err}},
R1(3)\displaystyle R^{(3)}_{-1} =\displaystyle= 3(2i)320φ1(s)3+(|γ1|+t1/3)Err,\displaystyle\frac{3(2i)^{3}}{20}\varphi_{1}(s)^{3}+\bigl{(}|\gamma-1|+t^{-1/3}\bigr{)}\mathrm{Err},
R1(3)\displaystyle R^{(3)}_{1} =\displaystyle= 3(2i)320ϕ1(s~)3+(|γ~1|+t1/3)Err~,\displaystyle-\frac{3(2i)^{3}}{20}\phi_{1}(\tilde{s})^{3}+\bigl{(}|\tilde{\gamma}-1|+t^{-1/3}\bigr{)}\tilde{\mathrm{Err}},
RX(2)\displaystyle R^{(2)}_{X} =\displaystyle= (2i)22{φ1(s),ϕ1(s~)}\displaystyle-\frac{(2i)^{2}}{2}\bigl{\{}\varphi_{1}(s),\phi_{1}(\tilde{s})\bigr{\}}
(2i)34([φ2(s),ϕ1(s~)]+[φ1(s),ϕ2(s~)])t1/3\displaystyle{}-\frac{(2i)^{3}}{4}\bigl{(}\bigl{[}\varphi_{2}(s),\phi_{1}(\tilde{s})\bigr{]}+\bigl{[}\varphi_{1}(s),\phi_{2}(\tilde{s})\bigr{]}\bigr{)}t^{-1/3}
+(|γ1|+t2/3)Err+(|γ~1|+t2/3)Err~,\displaystyle{}+\bigl{(}|\gamma-1|+t^{-2/3}\bigr{)}\mathrm{Err}+\bigl{(}|\tilde{\gamma}-1|+t^{-2/3}\bigr{)}\tilde{\mathrm{Err}},
RX(3)\displaystyle R^{(3)}_{X} =\displaystyle= (2i)34{φ1(s)ϕ1(s~)}(ϕ1(s~)φ1(s))\displaystyle\frac{(2i)^{3}}{4}\bigl{\{}\varphi_{1}(s)\phi_{1}(\tilde{s})\bigr{\}}\bigl{(}\phi_{1}(\tilde{s})-\varphi_{1}(s)\bigr{)}
+(|γ1|+t1/3)Err+(|γ~1|+t1/3)Err~.\displaystyle{}+\bigl{(}|\gamma-1|+t^{-1/3}\bigr{)}\mathrm{Err}+\bigl{(}|\tilde{\gamma}-1|+t^{-1/3}\bigr{)}\tilde{\mathrm{Err}}.

Recall that RX(1)=0R_{X}^{(1)}=0. Note that

{φ1(s),ϕ1(s~)}=2(u(s)u(s~)(1)nq(s)q(s~))I.\bigl{\{}\varphi_{1}(s),\phi_{1}(\tilde{s})\bigr{\}}=2\bigl{(}u(s)u(\tilde{s})-(-1)^{n}q(s)q(\tilde{s})\bigr{)}I. (138)

From (6.3) and (132) using (123) and (136)–(137), we obtain the following:

Proposition 6.1.

Set

g1(y,y~)\displaystyle g_{1}(y,\tilde{y}) :=\displaystyle:= \tfrac12(u(y)q(y~)+u(y)q(y~)),\displaystyle\tfrac{1}{2}\bigl{(}u^{\prime}(y)q(\tilde{y})+u(y)q^{\prime}(\tilde{y})\bigr{)},
g2(y,y~)\displaystyle g_{2}(y,\tilde{y}) :=\displaystyle:= \tfrac12(q(y)u(y~)+q(y)u(y~)).\displaystyle\tfrac{1}{2}\bigl{(}q(y)u^{\prime}(\tilde{y})+q^{\prime}(y)u(\tilde{y})\bigr{)}.

Let πn,m(z)\pi_{n,m}(z) be the orthogonal polynomial given in (67). Let πn,(z)\pi_{n,\infty}(z) be the orthogonal polynomial given in (69). There exists δ>0\delta>0 such that for any fixed L>0L>0, if

2tLt1/3n2t(1+δ),2tLt1/32mn2t(1+δ),\qquad 2t-Lt^{1/3}\leq n\leq 2t(1+\delta),\qquad 2t-Lt^{1/3}\leq 2m-n\leq 2t(1+\delta), (140)

then there exists constants c0>0c_{0}>0 and t0>0t_{0}>0 such that

πn,m(0;t)\displaystyle\pi_{n,m}(0;t)
=πn,(0;t)(1)nπ2mn,(0;t)\displaystyle\qquad=\pi_{n,\infty}(0;t)-(-1)^{n}\pi_{2m-n,\infty}(0;t)
(141)
+g1(s(γ),s(γ~))(1)ng2(s(γ),s(γ~))t\displaystyle\qquad\quad{}+\frac{g_{1}(s(\gamma),s(\tilde{\gamma}))-(-1)^{n}g_{2}(s(\gamma),s(\tilde{\gamma}))}{t}
+𝒪((t4/3+t2/3|γ1|+t2/3|γ~1|)ec0(|s(γ)|3/2+|s(γ~)|3/2))\displaystyle\qquad\quad{}+\mathcal{O}\bigl{(}\bigl{(}t^{-4/3}+t^{-2/3}|\gamma-1|+t^{-2/3}|\tilde{\gamma}-1|\bigr{)}e^{-c_{0}(|s(\gamma)|^{3/2}+|s(\tilde{\gamma})|^{3/2})}\bigr{)}

for all tt0t\geq t_{0}, where

γ:=n2t,γ~:=2mn2t\gamma:=\frac{n}{2t},\qquad\tilde{\gamma}:=\frac{2m-n}{2t} (142)

and s(u)s(u) is defined in (97) which satisfies [see (100)]

s(u)=2t2/3(u1)(2t2/3(u1))260t2/3+𝒪(t2/3(u1)3).\displaystyle s(u)=2t^{2/3}(u-1)-\frac{(2t^{2/3}(u-1))^{2}}{60}t^{-2/3}+\mathcal{O}\bigl{(}t^{2/3}(u-1)^{3}\bigr{)}. (143)

We also have the following:

Proposition 6.2.

For tt0t\geq t_{0},

(1)nπn,(0;t)\displaystyle(-1)^{n}\pi_{n,\infty}(0;t) =\displaystyle= 1t1/3q(s(γ))(1γ130)+1th(s(γ))\displaystyle\frac{1}{t^{1/3}}q\bigl{(}s(\gamma)\bigr{)}\biggl{(}1-\frac{\gamma-1}{30}\biggr{)}+\frac{1}{t}h\bigl{(}s(\gamma)\bigr{)}
+𝒪((t4/3+t2/3|γ1|)ec0|s(γ)|3/2),\displaystyle{}+\mathcal{O}\bigl{(}\bigl{(}t^{-4/3}+t^{-2/3}|\gamma-1|\bigr{)}e^{-c_{0}|s(\gamma)|^{3/2}}\bigr{)},

where

h(y):=\tfrac15u(y)q(y)\tfrac15q3\tfrac120yq(y).h(y):=\tfrac{1}{5}u(y)q^{\prime}(y)-\tfrac{1}{5}q^{3}-\tfrac{1}{20}yq(y). (145)

7 Proof of Theorem 1.1 and Corollary 1.1

We now evaluate the asymptotics of {CRtk,NEtj}\mathbb{P}\{\mathrm{CR}_{t}\leq k,\mathrm{NE}_{t}\leq j\} when

j=[t+21xt1/3],k=[t+21xt1/3],j=\bigl{[}t+2^{-1}xt^{1/3}\bigr{]},\qquad k=\bigl{[}t+2^{-1}x^{\prime}t^{-1/3}\bigr{]}, (146)

where x,xx,x^{\prime}\in\mathbb{R} are fixed, and [a][a] denotes the largest integer no larger than aa. We define xtx_{t} and xtx^{\prime}_{t} by

xt:=(2j+1)2tt1/3,xt:=(2k+1)2tt1/3x_{t}:=\frac{(2j+1)-2t}{t^{1/3}},\qquad x_{t}^{\prime}:=\frac{(2k+1)-2t}{t^{1/3}} (147)

so that

2j+1=2t+xtt1/3,2k+1=2t+xtt1/3.2j+1=2t+x_{t}t^{1/3},\qquad 2k+1=2t+x_{t}^{\prime}t^{1/3}. (148)

Then xt=x+O(t1/3)x_{t}=x+O(t^{-1/3}) and xt=x+O(t1/3)x_{t}^{\prime}=x^{\prime}+O(t^{-1/3}).

From Proposition 1.1, we have

log{CRtk,NEtj}\displaystyle\log\mathbb{P}\{\mathrm{CR}_{t}\leq k,\mathrm{NE}_{t}\leq j\}
(149)
=0tπ2j+1,m(0;τ)𝑑τ+0t0s𝒬jm(τ)𝑑τ𝑑s,\displaystyle\qquad=\int_{0}^{t}\pi_{2j+1,m}(0;\tau)\,d\tau+\int_{0}^{t}\int_{0}^{s}\mathcal{Q}_{j}^{m}(\tau)\,d\tau\,ds,

where

𝒬jm(τ)=jm(τ)𝒮jm(τ)+jm(τ)𝒮jm(τ)\mathcal{Q}_{j}^{m}(\tau)=-\mathcal{R}_{j}^{m}(\tau)-\mathcal{S}_{j}^{m}(\tau)+\mathcal{R}_{j}^{m}(\tau)\mathcal{S}_{j}^{m}(\tau) (150)

and

jm(τ):=π2j,m(0;τ)π2j+2,m(0;τ),𝒮jm(τ):=|π2j+1,m(0;τ)|2.\qquad\mathcal{R}_{j}^{m}(\tau):=\pi_{2j,m}(0;\tau)\pi_{2j+2,m}(0;\tau),\qquad\mathcal{S}_{j}^{m}(\tau):=\bigl{|}\pi_{2j+1,m}(0;\tau)\bigr{|}^{2}. (151)

From Proposition 5.1 [substituting τ\tau for tt in (84)], we find that the above integrals away from the interval [(1ε)t,t][(1-\varepsilon)t,t], for any fixed ε>0\varepsilon>0, are exponentially small in tt,

log{CRtk,NEtj}\displaystyle\log\mathbb{P}\{\mathrm{CR}_{t}\leq k,\mathrm{NE}_{t}\leq j\}
=t(1ε)tπ2j+1,m(0;τ)𝑑τ+t(1ε)tt(1ε)s𝒬jm(τ)𝑑τ𝑑s+O(ect).\displaystyle\qquad=\int_{t(1-\varepsilon)}^{t}\pi_{2j+1,m}(0;\tau)\,d\tau+\int_{t(1-\varepsilon)}^{t}\int_{t(1-\varepsilon)}^{s}\mathcal{Q}_{j}^{m}(\tau)\,d\tau\,ds+O\bigl{(}e^{-ct}\bigr{)}.

We can take ε>0\varepsilon>0 small enough so that Proposition 6.1 is applicable to π2j+,m(0;τ)\pi_{2j+\ell,m}(0;\tau) for =0,1,2\ell=0,1,2 and τ[(1ε)t,t]\tau\in[(1-\varepsilon)t,t].

Now by the same argument, we have

log{NEtj}\displaystyle\log\mathbb{P}\{\mathrm{NE}_{t}\leq j\}
=t(1ε)tπ2j+1,(0;τ)𝑑τ+t(1ε)tt(1ε)s𝒬j(τ)𝑑τ𝑑s+O(ect)\displaystyle\qquad=\int_{t(1-\varepsilon)}^{t}\pi_{2j+1,\infty}(0;\tau)\,d\tau+\int_{t(1-\varepsilon)}^{t}\int_{t(1-\varepsilon)}^{s}\mathcal{Q}_{j}^{\infty}(\tau)\,d\tau\,ds+O\bigl{(}e^{-ct}\bigr{)}

and

log{CRtk}\displaystyle\log\mathbb{P}\{\mathrm{CR}_{t}\leq k\}
=t(1ε)tπ2k+1,(0;τ)𝑑τ+t(1ε)tt(1ε)s𝒬k(τ)𝑑τ𝑑s+O(ect).\displaystyle\qquad=\int_{t(1-\varepsilon)}^{t}\pi_{2k+1,\infty}(0;\tau)\,d\tau+\int_{t(1-\varepsilon)}^{t}\int_{t(1-\varepsilon)}^{s}\mathcal{Q}_{k}^{\infty}(\tau)\,d\tau\,ds+O\bigl{(}e^{-ct}\bigr{)}.

Consider

log{CRtk,NEtj}log{NEtj}log{CRk}.\displaystyle\log\mathbb{P}\{\mathrm{CR}_{t}\leq k,\mathrm{NE}_{t}\leq j\}-\log\mathbb{P}\{\mathrm{NE}_{t}\leq j\}-\log\mathbb{P}\{\mathrm{CR}\leq k\}. (155)

We first consider the three single integrals. From (6.1) applied to n=2j+1n=2j+1 and tt replaced by τ\tau, we have

t(1ε)t[π2j+1,m(0;τ)π2j+1,(0;τ)π2k+1,(0;τ)]𝑑τ\displaystyle\int_{t(1-\varepsilon)}^{t}\bigl{[}\pi_{2j+1,m}(0;\tau)-\pi_{2j+1,\infty}(0;\tau)-\pi_{2k+1,\infty}(0;\tau)\bigr{]}\,d\tau
=t(1ε)t1τ[g1(s(γ(τ)),s(γ~(τ)))+g2(s(γ(τ)),s(γ~(τ)))]𝑑τ\displaystyle\qquad=\int_{t(1-\varepsilon)}^{t}\frac{1}{\tau}\bigl{[}g_{1}\bigl{(}s\bigl{(}\gamma(\tau)\bigr{)},s\bigl{(}\tilde{\gamma}(\tau)\bigr{)}\bigr{)}+g_{2}\bigl{(}s\bigl{(}\gamma(\tau)\bigr{)},s\bigl{(}\tilde{\gamma}(\tau)\bigr{)}\bigr{)}\bigr{]}\,d\tau (156)
+𝒪(t(1ε)t(τ4/3+τ2/3|γ(τ)1|)ec0|s(γ(τ))|3/2𝑑τ),\displaystyle\qquad\quad{}+\mathcal{O}\biggl{(}\int_{t(1-\varepsilon)}^{t}\bigl{(}\tau^{-4/3}+\tau^{-2/3}\bigl{|}\gamma(\tau)-1\bigr{|}\bigr{)}e^{-c_{0}|s(\gamma(\tau))|^{3/2}}\,d\tau\biggr{)},

where

γ(τ):=2j+12τ,γ~(τ):=2k+12τ.\gamma(\tau):=\frac{2j+1}{2\tau},\qquad\tilde{\gamma}(\tau):=\frac{2k+1}{2\tau}. (157)

Changing the integration variable τη\tau\mapsto\eta as

τ=t21ηt1/3,\tau=t-2^{-1}\eta t^{1/3}, (158)

the integral involving g1g_{1} in (7) becomes

12t2/302εt2/3g1(s(γ(τ)),s(γ~(τ)))dη121ηt2/3.\displaystyle\frac{1}{2t^{2/3}}\int_{0}^{2\varepsilon t^{2/3}}g_{1}\bigl{(}s\bigl{(}\gamma(\tau)\bigr{)},s\bigl{(}\tilde{\gamma}(\tau)\bigr{)}\bigr{)}\frac{d\eta}{1-2^{-1}\eta t^{-2/3}}. (159)

Note that from (100),

s(γ(τ))\displaystyle s\bigl{(}\gamma(\tau)\bigr{)} =\displaystyle= (xt+η)+𝒪(η2t2/3),\displaystyle(x_{t}+\eta)+\mathcal{O}\bigl{(}\eta^{2}t^{-2/3}\bigr{)},
s(γ~(τ))\displaystyle s\bigl{(}\tilde{\gamma}(\tau)\bigr{)} =\displaystyle= (xt+η)+𝒪(η2t2/3).\displaystyle\bigl{(}x^{\prime}_{t}+\eta\bigr{)}+\mathcal{O}\bigl{(}\eta^{2}t^{-2/3}\bigr{)}.

Also note that from its definition, g1(x0+η,x0+η)g_{1}(x_{0}+\eta,x_{0}^{\prime}+\eta) is integrable for η[0,)\eta\in[0,\infty) for any fixed x0,x0x_{0},x_{0}^{\prime}\in\mathbb{R}. Thus, we obtain that integral (159) equals

12t2/30g1(xt+η,xt+η)𝑑η+𝒪(t4/3).\frac{1}{2t^{2/3}}\int_{0}^{\infty}g_{1}\bigl{(}x_{t}+\eta,x_{t}^{\prime}+\eta\bigr{)}\,d\eta+\mathcal{O}\bigl{(}t^{-4/3}\bigr{)}. (161)

The integral involving g2g_{2} in (7) equals the same integral with g1g_{1} replaced by g2g_{2}. On the other hand, it is easy to see that the error term in (7) is

𝒪(t1/30t4/3(1+|xt+η|)ec0|xt+η|3/2𝑑η)=𝒪(t1).\displaystyle\mathcal{O}\biggl{(}t^{1/3}\int_{0}^{\infty}t^{-4/3}\bigl{(}1+|x_{t}+\eta|\bigr{)}e^{-c_{0}|x_{t}+\eta|^{3/2}}\,d\eta\biggr{)}=\mathcal{O}\bigl{(}t^{-1}\bigr{)}. (162)

Thus, replacing xtx_{t} and xtx_{t}^{\prime} by xx and xx^{\prime}, which incurs an error of order 𝒪(t1/3)\mathcal{O}(t^{-1/3}), (7) equals

12t2/30[g1(x+η,x+η)+g2(x+η,x+η)]𝑑η+𝒪(t1).\displaystyle\frac{1}{2t^{2/3}}\int_{0}^{\infty}\bigl{[}g_{1}\bigl{(}x+\eta,x^{\prime}+\eta\bigr{)}+g_{2}\bigl{(}x+\eta,x^{\prime}+\eta\bigr{)}\bigr{]}\,d\eta+\mathcal{O}\bigl{(}t^{-1}\bigr{)}. (163)

Now inserting definition (6.1), we can perform the integration, and we find that (7) equals

14t2/3[u(x)q(x)+q(x)u(x)]+𝒪(t1).\frac{-1}{4t^{2/3}}\bigl{[}u(x)q\bigl{(}x^{\prime}\bigr{)}+q(x)u\bigl{(}x^{\prime}\bigr{)}\bigr{]}+\mathcal{O}\bigl{(}t^{-1}\bigr{)}. (164)

We now consider the part of (155) that comes from the three double integrals. We need to evaluate 𝒬jm(τ)𝒬j(τ)𝒬k(τ)\mathcal{Q}_{j}^{m}(\tau)-\mathcal{Q}_{j}^{\infty}(\tau)-\mathcal{Q}_{k}^{\infty}(\tau). Setting

γ±(τ):=2j+1±12τ=γ(τ)±12τ,\gamma^{\pm}(\tau):=\frac{2j+1\pm 1}{2\tau}=\gamma(\tau)\pm\frac{1}{2\tau}, (165)

we see from (100) that

s(γ±(τ))=s(γ(τ))±1τ1/3+O(t1/3(γ(τ)1)).s\bigl{(}\gamma^{\pm}(\tau)\bigr{)}=s\bigl{(}\gamma(\tau)\bigr{)}\pm\frac{1}{\tau^{1/3}}+O\bigl{(}t^{-1/3}\bigl{(}\gamma(\tau)-1\bigr{)}\bigr{)}. (166)

Let us set

ξ:=s(γ(τ)),ξ~:=s(γ~(τ))\xi:=s\bigl{(}\gamma(\tau)\bigr{)},\qquad\tilde{\xi}:=s\bigl{(}\tilde{\gamma}(\tau)\bigr{)} (167)

to ease the notational burden. Then, (6.2) implies, using (217), that

π2j+1±1,(0;τ)\displaystyle\pi_{2j+1\pm 1,\infty}(0;\tau) =\displaystyle= π2j+1,(0;τ)±q(ξ)1τ2/3+12q′′(ξ)1τ\displaystyle-\pi_{2j+1,\infty}(0;\tau)\pm q^{\prime}(\xi)\frac{1}{\tau^{2/3}}+\frac{1}{2}q^{\prime\prime}(\xi)\frac{1}{\tau}
+τ4/3Error,\displaystyle{}+\tau^{-4/3}\mathrm{Error},

where throughout the rest of this section we use the notation Error\mathrm{Error} to denote any term satisfying

Error\displaystyle\mathrm{Error} =\displaystyle= 𝒪((1+τ2/3|γ(τ)1|)ec0|s(γ(τ))|3/2)\displaystyle\mathcal{O}\bigl{(}\bigl{(}1+\tau^{2/3}\bigl{|}\gamma(\tau)-1\bigr{|}\bigr{)}e^{-c_{0}|s(\gamma(\tau))|^{3/2}}\bigr{)}
+𝒪((1+τ2/3|γ~(τ)1|)ec0|s(γ~(τ))|3/2).\displaystyle{}+\mathcal{O}\bigl{(}\bigl{(}1+\tau^{2/3}\bigl{|}\tilde{\gamma}(\tau)-1\bigr{|}\bigr{)}e^{-c_{0}|s(\tilde{\gamma}(\tau))|^{3/2}}\bigr{)}.

Note that

t(1ε)tt(1ε)tError𝑑τ𝑑s=O(t2/3).\int_{t(1-\varepsilon)}^{t}\int_{t(1-\varepsilon)}^{t}\mathrm{Error}\,d\tau\,ds=O\bigl{(}t^{2/3}\bigr{)}. (170)

Also, note that from (6.2), (7) implies, in particular, that

π2j+1±1,(0;τ)=q(ξ)+τ2/3Error,\pi_{2j+1\pm 1,\infty}(0;\tau)=q(\xi)+\tau^{-2/3}\mathrm{Error}, (171)

and clearly asymptotics (7) and (171) also hold when jj is replaced by kk and ξ\xi is replaced by ξ~\tilde{\xi}.

From (6.1),

|π2j+1,m(0;τ)|2|π2j+1,(0;τ)|2|π2k+1,(0;τ)|2\displaystyle\bigl{|}\pi_{2j+1,m}(0;\tau)\bigr{|}^{2}-\bigl{|}\pi_{2j+1,\infty}(0;\tau)\bigr{|}^{2}-\bigl{|}\pi_{2k+1,\infty}(0;\tau)\bigr{|}^{2}
=2π2j+1,(0;τ)π2k+1,(0;τ)\displaystyle\qquad=2\pi_{2j+1,\infty}(0;\tau)\pi_{2k+1,\infty}(0;\tau)
+2τ[g1(ξ,ξ~)+g2(ξ,ξ~)][π2j+1,(0;τ)+π2k+1,(0;τ)]\displaystyle\qquad\quad{}+\frac{2}{\tau}\bigl{[}g_{1}(\xi,\tilde{\xi})+g_{2}(\xi,\tilde{\xi})\bigr{]}\bigl{[}\pi_{2j+1,\infty}(0;\tau)+\pi_{2k+1,\infty}(0;\tau)\bigr{]}
+τ5/3Error.\displaystyle\qquad\quad{}+\tau^{-5/3}\mathrm{Error}.

Thus, from (6.2),

𝒮jm(τ)𝒮j(τ)𝒮k(τ)\displaystyle\mathcal{S}_{j}^{m}(\tau)-\mathcal{S}_{j}^{\infty}(\tau)-\mathcal{S}_{k}^{\infty}(\tau)
=2π2j+1,(0;τ)π2k+1,(0;τ)\displaystyle\qquad=2\pi_{2j+1,\infty}(0;\tau)\pi_{2k+1,\infty}(0;\tau) (173)
2τ4/3[g1(ξ,ξ~)+g2(ξ,ξ~)][q(ξ)+q(ξ~)]+τ5/3Error.\displaystyle\qquad\quad{}-\frac{2}{\tau^{4/3}}\bigl{[}g_{1}(\xi,\tilde{\xi})+g_{2}(\xi,\tilde{\xi})\bigr{]}\bigl{[}q(\xi)+q(\tilde{\xi})\bigr{]}+\tau^{-5/3}\mathrm{Error}.

Similarly, using (6.1) and (171), we obtain

jm(τ)j(τ)k(τ)\displaystyle\mathcal{R}_{j}^{m}(\tau)-\mathcal{R}_{j}^{\infty}(\tau)-\mathcal{R}_{k}^{\infty}(\tau)
=π2j,(0;τ)π2k,(0;τ)π2j+2,(0;τ)π2k+2,(0;τ)\displaystyle\qquad=-\pi_{2j,\infty}(0;\tau)\pi_{2k,\infty}(0;\tau)-\pi_{2j+2,\infty}(0;\tau)\pi_{2k+2,\infty}(0;\tau)
+2τ4/3[g1(ξ,ξ~)g2(ξ,ξ~)][q(ξ)q(ξ~)]+τ5/3Error\displaystyle\qquad\quad+\frac{2}{\tau^{4/3}}\bigl{[}g_{1}(\xi,\tilde{\xi})-g_{2}(\xi,\tilde{\xi})\bigr{]}\bigl{[}q(\xi)-q(\tilde{\xi})\bigr{]}+\tau^{-5/3}\mathrm{Error}

and

jm(τ)𝒮jm(τ)j(τ)𝒮j(τ)k(τ)𝒮k(τ)\displaystyle\mathcal{R}_{j}^{m}(\tau)\mathcal{S}_{j}^{m}(\tau)-\mathcal{R}_{j}^{\infty}(\tau)\mathcal{S}_{j}^{\infty}(\tau)-\mathcal{R}_{k}^{\infty}(\tau)\mathcal{S}_{k}^{\infty}(\tau)
(175)
=2τ4/3q(ξ)q(ξ~)+τ5/3Error.\displaystyle\qquad=\frac{-2}{\tau^{4/3}}q(\xi)q(\tilde{\xi})+\tau^{-5/3}\mathrm{Error}.

Therefore, since

π2j,(0;τ)π2k,(0;τ)+π2j+2,(0;τ)π2k+2,(0;τ)\displaystyle\pi_{2j,\infty}(0;\tau)\pi_{2k,\infty}(0;\tau)+\pi_{2j+2,\infty}(0;\tau)\pi_{2k+2,\infty}(0;\tau)
2π2j+1,(0;τ)π2k+1,(0;τ)\displaystyle\quad{}-2\pi_{2j+1,\infty}(0;\tau)\pi_{2k+1,\infty}(0;\tau) (176)
=1τ4/3[q(ξ)q′′(ξ~)+q′′(ξ)q(ξ~)+2q(ξ)q(ξ~)]+τ5/3Error,\displaystyle\qquad=\frac{1}{\tau^{4/3}}\bigl{[}q(\xi)q^{\prime\prime}(\tilde{\xi})+q^{\prime\prime}(\xi)q(\tilde{\xi})+2q^{\prime}(\xi)q^{\prime}(\tilde{\xi})\bigr{]}+\tau^{-5/3}\mathrm{Error},

we obtain, by using the definition of g1,g2g_{1},g_{2} and by using the fact that q2=uq^{2}=u^{\prime} and 2qq=u′′2qq^{\prime}=u^{\prime\prime}, that

𝒬jm(τ)𝒬j(τ)𝒬k(τ)=1τ4/3𝒰(ξ,ξ~)+τ5/3Error,\mathcal{Q}_{j}^{m}(\tau)-\mathcal{Q}_{j}^{\infty}(\tau)-\mathcal{Q}_{k}^{\infty}(\tau)=\frac{1}{\tau^{4/3}}\mathcal{U}(\xi,\tilde{\xi})+\tau^{-5/3}\mathrm{Error}, (177)

where ξ:=s(γ(τ))\xi:=s(\gamma(\tau)), ξ~:=s(γ~(τ))\tilde{\xi}:=s(\tilde{\gamma}(\tau)) are defined in (167), and we have set

𝒰(ξ,ξ~)\displaystyle\mathcal{U}(\xi,\tilde{\xi}) :=\displaystyle:= u′′(ξ)u(ξ~)+2u(ξ)u(ξ~)+u(ξ)u′′(ξ~)\displaystyle u^{\prime\prime}(\xi)u(\tilde{\xi})+2u^{\prime}(\xi)u^{\prime}(\tilde{\xi})+u(\xi)u^{\prime\prime}(\tilde{\xi})
+q′′(ξ)q(ξ~)+2q(ξ)q(ξ~)+q(ξ)q′′(ξ~).\displaystyle{}+q^{\prime\prime}(\xi)q(\tilde{\xi})+2q^{\prime}(\xi)q^{\prime}(\tilde{\xi})+q(\xi)q^{\prime\prime}(\tilde{\xi}).

We insert (177) into the integral

t(1ε)tt(1ε)t[𝒬jm(τ)𝒬j(τ)𝒬k(τ)]𝑑τ𝑑s,\int_{t(1-\varepsilon)}^{t}\int_{t(1-\varepsilon)}^{t}\bigl{[}\mathcal{Q}_{j}^{m}(\tau)-\mathcal{Q}_{j}^{\infty}(\tau)-\mathcal{Q}_{k}^{\infty}(\tau)\bigr{]}\,d\tau\,ds, (179)

and evaluate it by changing variables τη\tau\mapsto\eta, τ=t21ηt1/3\tau=t-2^{-1}\eta t^{1/3} and sζs\mapsto\zeta, s=t21ζt1/3s=t-2^{-1}\zeta t^{1/3}, as was done for the single ingtegrals. Noting that

𝒰(ξ+η,ξ~+η):=d2dη2[u(ξ+η)u(ξ~+η)+q(ξ+η)q(ξ~+η)],\displaystyle\mathcal{U}(\xi+\eta,\tilde{\xi}+\eta):=\frac{d^{2}}{d\eta^{2}}\bigl{[}u(\xi+\eta)u(\tilde{\xi}+\eta)+q(\xi+\eta)q(\tilde{\xi}+\eta)\bigr{]}, (180)

the integral can be evaluated, and we find that (179) equals

14t2/3[u(x)u(x)+q(x)q(x)]+𝒪(t1).\frac{1}{4t^{2/3}}\bigl{[}u(x)u\bigl{(}x^{\prime}\bigr{)}+q(x)q\bigl{(}x^{\prime}\bigr{)}\bigr{]}+\mathcal{O}\bigl{(}t^{-1}\bigr{)}. (181)

The error term 𝒪(t1)\mathcal{O}(t^{-1}) follows from (170).

Combining (164) and (181), we obtain

log[{CR~tx,NE~tx}{CR~tx}{NE~tx}]\displaystyle\log\biggl{[}\frac{\mathbb{P}\{\tilde{\mathrm{CR}}_{t}\leq x,\tilde{\mathrm{NE}}_{t}\leq x^{\prime}\}}{\mathbb{P}\{\tilde{\mathrm{CR}}_{t}\leq x\}\mathbb{P}\{\tilde{\mathrm{NE}}_{t}\leq x^{\prime}\}}\biggr{]}
(182)
=[q(x)u(x)][q(x)u(x)]4t2/3+𝒪(t1).\displaystyle\qquad=\frac{[q(x)-u(x)][q(x^{\prime})-u(x^{\prime})]}{4t^{2/3}}+\mathcal{O}\bigl{(}t^{-1}\bigr{)}.

This completes the proof of Theorem 1.1. We note that here the error term is uniform for x,xx,x^{\prime} in a compact subset of \mathbb{R} (actually in any semi-infinite interval [x0,)[x_{0},\infty).)

Corollary 1.1 follows if we show that \operatornameCov(CR~t,NE~t)=t2/3+𝒪(t1)\operatorname{Cov}(\tilde{\mathrm{CR}}_{t},\tilde{\mathrm{NE}}_{t})=t^{-2/3}+\mathcal{O}(t^{-1}). This is obtained from Theorem 1.1 by using the dominated convergence theorem if we have tail estimates of {CR~tx,NE~tx}{CR~t<x}{NE~t<x}\mathbb{P}\{\tilde{\mathrm{CR}}_{t}\leq x,\tilde{\mathrm{NE}}_{t}\leq x^{\prime}\}-\mathbb{P}\{\tilde{\mathrm{CR}}_{t}<x\}\mathbb{P}\{\tilde{\mathrm{NE}}_{t}<x^{\prime}\} as |x|,|x||x|,|x^{\prime}|\to\infty since x𝑑F(x)=1\int_{-\infty}^{\infty}x\,dF^{\prime}(x)=-1. The tail as x,x+x,x^{\prime}\to+\infty can be obtained from the analysis of this paper. For the other limits, we need an extension of the analysis of this paper, but we skip the details in this paper. See BDJ , BDR for a similar question about the convergence of moments using Toeplitz determinant.

8 Proof of Theorems 1.2 and 1.3

Here we evaluate the asymptotics of the marginal distributions {CRtj}\mathbb{P}\{\mathrm{CR}_{t}\leq j\} for jj as given by (146). We reuse as much as possible the calculations in the previous section. Note that by symmetry we have {NEtj}={CRtj}\mathbb{P}\{\mathrm{NE}_{t}\leq j\}=\mathbb{P}\{\mathrm{CR}_{t}\leq j\}. In the process of computing the marginal we will compute as a by-product asymptotics for {Lt}\mathbb{P}\{L_{t}\leq\ell\} along the way.

Our starting point is to introduce the change of variables

τ=t21(ηxt)t1/3,s=t21(ζxt)t1/3\tau=t-2^{-1}(\eta-x_{t})t^{1/3},\qquad s=t-2^{-1}(\zeta-x_{t})t^{1/3} (183)

into (7) where, as in the previous section, xtx_{t} is given by (148). Note that this change of variables differs from (158) by a shift. Making the substitution we have, with jj and kk defined by (146) [recall (148)],

log{NEtj}\displaystyle\log\mathbb{P}\{\mathrm{NE}_{t}\leq j\} =\displaystyle= 1+2+𝒪(ect),\displaystyle\mathcal{I}_{1}+\mathcal{I}_{2}+\mathcal{O}\bigl{(}e^{-ct}\bigr{)},
log{Lt2j+1}\displaystyle\log\mathbb{P}\{L_{t}\leq 2j+1\} =\displaystyle= 21+𝒪(ect),\displaystyle 2\mathcal{I}_{1}+\mathcal{O}\bigl{(}e^{-ct}\bigr{)},

where

1\displaystyle\mathcal{I}_{1} =\displaystyle= t2/34xtxt+2εt2/3ζxt+2εt2/3𝒬j(τ)𝑑η𝑑ζ,\displaystyle\frac{t^{2/3}}{4}\int_{x_{t}}^{x_{t}+2\varepsilon t^{2/3}}\int_{\zeta}^{x_{t}+2\varepsilon t^{2/3}}\mathcal{Q}_{j}^{\infty}(\tau)\,d\eta\,d\zeta,
2\displaystyle\mathcal{I}_{2} =\displaystyle= t1/32xtxt+2εt2/3π2j+1,(0;τ)𝑑η.\displaystyle\frac{t^{1/3}}{2}\int_{x_{t}}^{x_{t}+2\varepsilon t^{2/3}}\pi_{2j+1,\infty}(0;\tau)\,d\eta.

From (63), there is an analogous formula for log{Lt2j}\log\mathbb{P}\{L_{t}\leq 2j\}, and the analysis below applies to this case too without many changes. We skip the details for this case.

In order to compute expansions of the above integrals, we need more detailed calculations than the previous section. Inserting (183) into (157), we have

γ(τ)=1+\tfrac12ηt2/3+\tfrac14(η2ηxt)t4/3+𝒪(η3t2).\gamma(\tau)=1+\tfrac{1}{2}\eta t^{-2/3}+\tfrac{1}{4}\bigl{(}\eta^{2}-\eta x_{t}\bigr{)}t^{-4/3}+\mathcal{O}\bigl{(}\eta^{3}t^{-2}\bigr{)}. (186)

Then (143), with tt replaced by τ\tau, becomes

s(γ(τ))=η+(\tfrac320η2\tfrac16ηxt)t2/3+𝒪(η3t4/3).s\bigl{(}\gamma(\tau)\bigr{)}=\eta+\bigl{(}\tfrac{3}{20}\eta^{2}-\tfrac{1}{6}\eta x_{t}\bigr{)}t^{-2/3}+\mathcal{O}\bigl{(}\eta^{3}t^{-4/3}\bigr{)}. (187)

Inserting these into (6.2) we have

π2j+1,(0;τ)\displaystyle-\pi_{2j+1,\infty}(0;\tau)
=1t1/3q(η)+1t[h(η)+(320η16xt)(q(η)+ηq(η))]\displaystyle\qquad=\frac{1}{t^{1/3}}q(\eta)+\frac{1}{t}\biggl{[}h(\eta)+\biggl{(}\frac{3}{20}\eta-\frac{1}{6}x_{t}\biggr{)}\bigl{(}q(\eta)+\eta q^{\prime}(\eta)\bigr{)}\biggr{]} (188)
+𝒪(t4/3Error),\displaystyle\qquad\quad{}+\mathcal{O}\bigl{(}t^{-4/3}\mathrm{Error}\bigr{)},

and it follows from (150), (151) (when m=m=\infty), and (a slight improvement of) (7) that

𝒬j(τ)\displaystyle\mathcal{Q}_{j}^{\infty}(\tau)
=2t2/3q(η)2\displaystyle\qquad=-2t^{-2/3}q(\eta)^{2}
t4/3[4q(η)h(η)+(\tfrac35η\tfrac23xt)(ηq(η)q(η)+q(η)2)+q(η)q′′(η)\displaystyle\quad\qquad{}-t^{-4/3}\bigl{[}4q(\eta)h(\eta)+\bigl{(}\tfrac{3}{5}\eta-\tfrac{2}{3}x_{t}\bigr{)}\bigl{(}\eta q^{\prime}(\eta)q(\eta)+q(\eta)^{2}\bigr{)}+q(\eta)q^{\prime\prime}(\eta) (189)
q(η)2q(η)4]\displaystyle\hskip 256.0pt{}-q^{\prime}(\eta)^{2}-q(\eta)^{4}\bigr{]}
+𝒪(t5/3Error).\displaystyle\qquad\quad{}+\mathcal{O}\bigl{(}t^{-5/3}\mathrm{Error}\bigr{)}.

Here hh is as given in (145). In both the above formulas the Error\mathrm{Error} term is as defined in (7), and we recall that its integral introduces terms of order 𝒪(t2/3)\mathcal{O}(t^{2/3}). Now using the identity q4=u+(q)2ηq2q^{4}=u+(q^{\prime})^{2}-\eta q^{2} and using the fact that q2=uq^{2}=u^{\prime}, 2qq=u′′2qq^{\prime}=u^{\prime\prime} and q′′=ηq+2q3q^{\prime\prime}=\eta q+2q^{3}, it is direct to check that the terms in square brackets in (8) and (8) can be expressed as perfect derivatives. We find that

π2j+1,(0;τ)\displaystyle-\pi_{2j+1,\infty}(0;\tau) =\displaystyle= 1t1/3q(η)+1t𝒰1(η)+𝒪(t4/3Error),\displaystyle\frac{1}{t^{1/3}}q(\eta)+\frac{1}{t}\mathcal{U}_{1}(\eta)+\mathcal{O}\bigl{(}t^{-4/3}\mathrm{Error}\bigr{)},
𝒬j(τ)\displaystyle\mathcal{Q}_{j}^{\infty}(\tau) =\displaystyle= 2t2/3u(η)1t4/3𝒰2(η)+𝒪(t5/3Error),\displaystyle-\frac{2}{t^{2/3}}u^{\prime}(\eta)-\frac{1}{t^{4/3}}\mathcal{U}_{2}(\eta)+\mathcal{O}\bigl{(}t^{-5/3}\mathrm{Error}\bigr{)},

where

𝒰1(η)\displaystyle\mathcal{U}_{1}(\eta) :=\displaystyle:= 15ddη[u(η)q(η)q(η)+112(9η10xt)ηq(η)],\displaystyle\frac{1}{5}\frac{{d}}{{d}\eta}\biggl{[}u(\eta)q(\eta)-q^{\prime}(\eta)+\frac{1}{12}(9\eta-10x_{t})\eta q(\eta)\biggr{]},
𝒰2(η)\displaystyle\mathcal{U}_{2}(\eta) :=\displaystyle:= 15d2dη2[u(η)2q(η)2+16(9η10xt)ηu(η)].\displaystyle\frac{1}{5}\frac{{d}^{2}}{{d}\eta^{2}}\biggl{[}u(\eta)^{2}-q(\eta)^{2}+\frac{1}{6}(9\eta-10x_{t})\eta u(\eta)\biggr{]}.

Inserting this formula into (8) and (8), we obtain with x(t)x^{(t)} and xtx_{t} defined by (26) and (13), respectively,

log{Lt2t+t1/3x}\displaystyle\log\mathbb{P}\bigl{\{}L_{t}\leq 2t+t^{1/3}x\bigr{\}}
=logFGUE(x(t))\displaystyle\qquad=\log F_{\mathrm{GUE}}\bigl{(}x^{(t)}\bigr{)} (192)
110t2/3[u(x)2q(x)216x2u(x)]+𝒪(t1)\displaystyle\qquad\quad{}-\frac{1}{10t^{2/3}}\biggl{[}u(x)^{2}-q(x)^{2}-\frac{1}{6}x^{2}u(x)\biggr{]}+\mathcal{O}\bigl{(}t^{-1}\bigr{)}

and

log{NEtt+21t1/3x}=logF(xt)+E(x)t2/3+𝒪(t1),\log\mathbb{P}\bigl{\{}\mathrm{NE}_{t}\leq t+2^{-1}t^{1/3}x\bigr{\}}=\log F(x_{t})+\frac{E(x)}{t^{2/3}}+\mathcal{O}\bigl{(}t^{-1}\bigr{)}, (193)

where E=E(x)E=E(x) equals

E:=\tfrac120[(u(x)q(x))2+2(u(x)q(x))+\tfrac16x2(u(x)q(x))].\displaystyle\qquad E:=\tfrac{1}{20}\bigl{[}-\bigl{(}u(x)-q(x)\bigr{)}^{2}+2\bigl{(}u^{\prime}(x)-q^{\prime}(x)\bigr{)}+\tfrac{1}{6}x^{2}\bigl{(}u(x)-q(x)\bigr{)}\bigr{]}. (194)

It is easy to check that 20E(x)F(x)=4F′′(x)13x2F(x)20E(x)F(x)=-4F^{\prime\prime}(x)-\frac{1}{3}x^{2}F^{\prime}(x) and (u(x)2q(x)216x2u(x))FGUE(x)=FGUE′′(x)+16x2FGUE(x)(u(x)^{2}-q(x)^{2}-\frac{1}{6}x^{2}u(x))F_{\mathrm{GUE}}(x)=F_{\mathrm{GUE}}^{\prime\prime}(x)+\frac{1}{6}x^{2}F_{\mathrm{GUE}}^{\prime}(x).222We would like to thank Craig Tracy for pointing out these relations. Relations like these and many others can be found in STracy . Theorems 1.2 and 1.3 follow immediately.

9 Proof of Corollary 1.2

For a sequence {an}n=0\{a_{n}\}_{n=0}^{\infty}, consider its Poissonization

ϕ(t):=et2n=0(t2)nn!an.\phi(t):=e^{-t^{2}}\sum_{n=0}^{\infty}\frac{(t^{2})^{n}}{n!}a_{n}. (195)

A de-Poissonization lemma is that if (a) 0an10\leq a_{n}\leq 1 and (b) an+1ana_{n+1}\leq a_{n} for all nn, then we have for s1s\geq 1 and n2n\geq 2,

ϕ(μn)1nsanϕ(νn)+1ns,\phi(\sqrt{\mu_{n}})-\frac{1}{n^{s}}\leq a_{n}\leq\phi(\sqrt{\nu_{n}})+\frac{1}{n^{s}}, (196)

where

μn:=n+2snlogn,νn=n2snlogn.\mu_{n}:=n+2\sqrt{sn\log n},\qquad\nu_{n}=n-2\sqrt{sn\log n}. (197)

Lemma 2.5 of 10 is stated for the case when s=2s=2, but the proof can be modified in a straightforward way to obtain the above estimates.

The de-Poissonization lemma can be applied to an:={crnk,nenj}a_{n}:=\mathbb{P}\{\mathrm{cr}_{n}\leq k,\mathrm{ne}_{n}\leq j\} due to the following lemma.

Lemma 9.1.

For each n0n\geq 0, and k,j0k,j\geq 0,

{crn+1k,nen+1j}{crnk,nenj}.\mathbb{P}\{\mathrm{cr}_{n+1}\leq k,\mathrm{ne}_{n+1}\leq j\}\leq\mathbb{P}\{\mathrm{cr}_{n}\leq k,\mathrm{ne}_{n}\leq j\}. (198)
{pf}

Since {crnk,nenj}=gk,j(n)(2n1)!!\mathbb{P}\{\mathrm{cr}_{n}\leq k,\mathrm{ne}_{n}\leq j\}=\frac{g_{k,j}(n)}{(2n-1)!!}, where

gk,j(n):=#{Mn\dvtxcrn(M)k,nen(M)j},\displaystyle g_{k,j}(n):=\#\bigl{\{}M\in\mathcal{M}_{n}\dvtx\mathrm{cr}_{n}(M)\leq k,\mathrm{ne}_{n}(M)\leq j\bigr{\}}, (199)

we need to show that gk,j(n+1)(2n+1)gk,j(n)g_{k,j}(n+1)\leq(2n+1)g_{k,j}(n). The set n+1\mathcal{M}_{n+1} of complete matchings of [2(n+1)][2(n+1)] is the union of (2n+1)(2n+1) disjoint subsets n+1,=1,,2n+1\mathcal{M}_{n+1}^{\ell},\ell=1,\ldots,2n+1, where Mn+1M_{n+1}^{\ell} is the set of complete matchings of [2(n+1)][2(n+1)] such that 11 is paired with \ell [i.e., (1,)(1,\ell) is an element of the matching]. By removing the two vertices 11 and \ell, and then relabeling the vertices, there is a trivial bijection f:n+1nf_{\ell}:\mathcal{M}_{n+1}^{\ell}\mapsto\mathcal{M}_{n}. Clearly, crn+1(M)crn(f(M))\mathrm{cr}_{n+1}(M)\geq\mathrm{cr}_{n}(f_{\ell}(M)) and nen+1(M)nen(f(M))\mathrm{ne}_{n+1}(M)\geq\mathrm{ne}_{n}(f_{\ell}(M)) for Mn+1M\in\mathcal{M}_{n+1}^{\ell}. This implies that gk,j(n+1)(2n+1)gk,j(n)g_{k,j}(n+1)\leq(2n+1)g_{k,j}(n).

Hence, since [see (1.3)]

{CRtk,NEtj}\displaystyle\mathbb{P}\{\mathrm{CR}_{t}\leq k,\mathrm{NE}_{t}\leq j\} =\displaystyle= et2/2n=0(t2/2)nn!{crnk,nenj},\displaystyle e^{-t^{2}/2}\sum_{n=0}^{\infty}\frac{(t^{2}/2)^{n}}{n!}\mathbb{P}\{\mathrm{cr}_{n}\leq k,\mathrm{ne}_{n}\leq j\},
{CRtk}\displaystyle\mathbb{P}\{\mathrm{CR}_{t}\leq k\} =\displaystyle= et2/2n=0(t2/2)nn!{crnk},\displaystyle e^{-t^{2}/2}\sum_{n=0}^{\infty}\frac{(t^{2}/2)^{n}}{n!}\mathbb{P}\{\mathrm{cr}_{n}\leq k\},

we find that for each s1s\geq 1, n2n\geq 2 and j,k0j,k\geq 0,

{crnk,nenj}{crnk}{nenj}\displaystyle\mathbb{P}\{\mathrm{cr}_{n}\leq k,\mathrm{ne}_{n}\leq j\}-\mathbb{P}\{\mathrm{cr}_{n}\leq k\}\mathbb{P}\{\mathrm{ne}_{n}\leq j\}
{CR2νnk,NE2νnj}\displaystyle\qquad\leq\mathbb{P}\{\mathrm{CR}_{\sqrt{2\nu_{n}}}\leq k,\mathrm{NE}_{\sqrt{2\nu_{n}}}\leq j\} (201)
{CR2μnk}{NE2μnj}+4ns.\displaystyle\qquad\quad{}-\mathbb{P}\{\mathrm{CR}_{\sqrt{2\mu_{n}}}\leq k\}\mathbb{P}\{\mathrm{NE}_{\sqrt{2\mu_{n}}}\leq j\}+4n^{-s}.

When k=2n+21x(2n)1/6k=\sqrt{2n}+2^{-1}x(2n)^{1/6} and j=2n+21x(2n)1/6j=\sqrt{2n}+2^{-1}x^{\prime}(2n)^{1/6}, from Theorem 1.1, the right-hand side of (9) is less than or equal to

{CR2νnk}{NE2νnj}{CR2μnk}{NE2μnj}\displaystyle\mathbb{P}\{\mathrm{CR}_{\sqrt{2\nu_{n}}}\leq k\}\mathbb{P}\{\mathrm{NE}_{\sqrt{2\nu_{n}}}\leq j\}-\mathbb{P}\{\mathrm{CR}_{\sqrt{2\mu_{n}}}\leq k\}\mathbb{P}\{\mathrm{NE}_{\sqrt{2\mu_{n}}}\leq j\}
+4ns+𝒪(n1/3).\displaystyle\qquad{}+4n^{-s}+\mathcal{O}\bigl{(}n^{-1/3}\bigr{)}.

Now we use Theorem 1.2 to estimate each of the above probabilities. Note that

2n+21x(2n)1/62νn21(2νn)1/6=x+4snlogn(2n)1/6+𝒪(lognn1/2).\displaystyle\frac{\sqrt{2n}+2^{-1}x(2n)^{1/6}-\sqrt{2\nu_{n}}}{2^{-1}(2\nu_{n})^{1/6}}=x+\frac{4\sqrt{sn\log n}}{(2n)^{1/6}}+\mathcal{O}\biggl{(}\frac{\sqrt{\log n}}{n^{1/2}}\biggr{)}. (203)

When νn\nu_{n} is replaced by μn\mu_{n}, then the first plus sign on the right-hand side is changed to the minus sign. From this, it follows that (9) is bounded above by 𝒪(lognn1/6)+4ns\mathcal{O}(\frac{\sqrt{\log n}}{n^{1/6}})+4n^{-s}. The lower bound is similar. Thus we obtain Corollary 1.2.

10 A model RHP: Painlevé II

Consider the coupled pair of differential equations for 2×22\times 2 matrix Ψ(ζ,s)\Psi(\zeta,s),

idΨdζ\displaystyle i\frac{{d}\Psi}{{d}\zeta} =\displaystyle= (4ζ2+s)[σ3,Ψ]+(2q24iζq2r4iζq+2r2q2)Ψ,\displaystyle\bigl{(}4\zeta^{2}+s\bigr{)}[\sigma_{3},\Psi]+\pmatrix{2q^{2}&4i\zeta q-2r\cr 4i\zeta q+2r&-2q^{2}}\Psi, (204a)
idΨds\displaystyle i\frac{{d}\Psi}{{d}s} =\displaystyle= ζ[σ3,Ψ]+(0iqiq0)Ψ,\displaystyle-\zeta[\sigma_{3},\Psi]+\pmatrix{0&iq\vskip 2.0pt\cr iq&0}\Psi, (204b)

where σ3\sigma_{3} denotes the Pauli matrix (1001)\bigl{(}{1\atop 0}\enskip{0\atop-1}\bigr{)} and [,][*,*] is the commutator [A,B]=ABBA[A,B]=AB-BA. The compatibility condition for this overdetermined system is that q=q(s)q=q(s) satisfy Painlevé II q′′=sq+2q3q^{\prime\prime}=sq+2q^{3} and r=q(s)r=q^{\prime}(s). This is a representation of the Lax-pair for Painlevé II equation introduced by Flaschka and Newell FN76 .

Refer to caption
Figure 9: The contours Γj\Gamma_{j} and regions SjS_{j} defining Ψ(ζ,s)\Psi(\zeta,s).

Any solution of (204a) is an entire function of ζ\zeta. Let Sj,j=1,,6S_{j},j=1,\ldots,6 denote the sectors

Sj={ζ\dvtx2j36π<arg(ζ)<2j16π},S_{j}=\biggl{\{}\zeta\in\mathbb{C}\dvtx\frac{2j-3}{6}\pi<\arg(\zeta)<\frac{2j-1}{6}\pi\biggr{\}}, (205)

and let Γj\Gamma_{j} denote the outwardly oriented boundary rays (see Figure 9)

Γj={ζ\dvtxarg(ζ)=2j16π}.\Gamma_{j}=\biggl{\{}\zeta\in\mathbb{C}\dvtx\arg(\zeta)=\frac{2j-1}{6}\pi\biggr{\}}. (206)

There exists a unique solution Ψj\Psi_{j} of (204a) such that

Ψj=I+𝒪(ζ1)as ζ in Sj,\Psi_{j}=I+\mathcal{O}\bigl{(}\zeta^{-1}\bigr{)}\qquad\mbox{as }\zeta\to\infty\mbox{ in }S_{j}, (207)

and constants aj,j=1,,6a_{j},j=1,\ldots,6 such that for ζΓj\zeta\in\Gamma_{j}

Ψj+1(ζ)\displaystyle\Psi_{j+1}(\zeta) =\displaystyle= Ψj(ζ)(10aje2i((4/3)ζ3+sζ)1),j odd,\displaystyle\Psi_{j}(\zeta)\pmatrix{1&0\vskip 2.0pt\cr a_{j}e^{-2i(({4}/{3})\zeta^{3}+s\zeta)}&1},\qquad j\mbox{ odd, }
Ψj+1(ζ)\displaystyle\Psi_{j+1}(\zeta) =\displaystyle= Ψj(ζ)(1aje2i((4/3)ζ3+sζ)01),j even.\displaystyle\Psi_{j}(\zeta)\pmatrix{1&a_{j}e^{2i(({4}/{3})\zeta^{3}+s\zeta)}\vskip 2.0pt\cr 0&1},\qquad j\mbox{ even.}

Additionally, the constants aja_{j} satisfy

aj+3=aj,a1a2a3+a1+a2+a3=0.a_{j+3}=a_{j},\qquad a_{1}a_{2}a_{3}+a_{1}+a_{2}+a_{3}=0. (209)

The parameters aja_{j} depend parametrically on s,qs,q and rr; in FN76 Flaschka and Newell showed that the isomonodromic deformations, that is, the variations of these parameters that keep the Stokes multipliers aja_{j} constant, are given by solutions of the Painlevé II equation q′′(s)=sq+2q(s)3q^{\prime\prime}(s)=sq+2q(s)^{3} and r(s)=q(s)r(s)=q^{\prime}(s).

Our particular interest is in the Hastings–McLeod solution of Painlevé II HM , which is the unique solution such that

q(s)\displaystyle q(s) =\displaystyle= \operatornameAi(s)(1+o(1))as s,\displaystyle\operatorname{Ai}(s)\bigl{(}1+{o}(1)\bigr{)}\qquad\mbox{as }s\to\infty,
q(s)\displaystyle q(s) \displaystyle\sim s2as s.\displaystyle\sqrt{-\frac{s}{2}}\qquad\mbox{as }s\to-\infty.

Let Ψ(ζ;s)\Psi(\zeta;s) be the solution of (204a) with parameters s,q=q(s)s,q=q(s) and r=q(s)r=q^{\prime}(s), where q(s)q(s) is the Hastings–McLeod solution, and let 𝒫\mathcal{P} denote the set of poles of qq (of which there are infinitely many). Then \boldsΨ(ζ,s)\bolds{\Psi}(\zeta,s) is defined and analytic for ζ(C1C2)\zeta\in\mathbb{C}\setminus(C_{1}\cup C_{2}) and s𝒫s\in\mathbb{C}\setminus\mathcal{P}. It is known that there are no poles of qq on the real line HM . The Stokes multiplier for the Hastings–McLeod solution are

a1=1,a2=0,a3=1.a_{1}=1,\qquad a_{2}=0,\qquad a_{3}=-1. (211)

If we reverse the orientation of Γ3\Gamma_{3} and Γ4\Gamma_{4} and define C1=Γ1Γ3C_{1}=\Gamma_{1}\cup\Gamma_{3} and C2=Γ4Γ6C_{2}=\Gamma_{4}\cup\Gamma_{6} (see Figure 10), then Ψ(ζ;s)\Psi(\zeta;s) solves the following RHP:

Refer to caption
Figure 10: The contours defining RHP 10.1 related to the Hastings–McLeod solution of Painlevé II. The contours can be deformed to the dashed lines without changing the problem statement.
Riemann–Hilbert Problem 10.1 ((PII model RHP)).

Find a 2×22\times 2 matrix Ψ(ζ;s)\Psi(\zeta;s) with the following properties: {longlist}[(1)]

Ψ(ζ;s)\Psi(\zeta;s) is an analytic function of ζ\zeta for ζ(C1C2)\zeta\in\mathbb{C}\setminus(C_{1}\cup C_{2}).

Ψ(ζ;s)=I+𝒪(ζ1)\Psi(\zeta;s)=I+\mathcal{O}(\zeta^{-1}) as ζ\zeta\to\infty and bounded as ζ0\zeta\to 0.

The boundary values Ψ±(ζ;s)\Psi_{\pm}(\zeta;s) satisfy the jump conditions

{Ψ+(ζ;s)=Ψ(ζ;s)(10e2iθ𝑃𝐼𝐼1), ζC1,Ψ+(ζ;s)=Ψ(ζ;s)(1e2iθ𝑃𝐼𝐼01), ζC2,\displaystyle\cases{\displaystyle\Psi_{+}(\zeta;s)=\Psi_{-}(\zeta;s)\pmatrix{1&0\vskip 2.0pt\cr e^{2i\theta_{\mathit{PII}}}&1},&\quad$\zeta\in C_{1},$\vskip 3.0pt\cr\displaystyle\Psi_{+}(\zeta;s)=\Psi_{-}(\zeta;s)\pmatrix{1&-e^{-2i\theta_{\mathit{PII}}}\vskip 2.0pt\cr 0&1},&\quad$\zeta\in C_{2},$} (212)

where

θ𝑃𝐼𝐼=θ𝑃𝐼𝐼(ζ,s)=\tfrac43ζ3+sζ.\theta_{\mathit{PII}}=\theta_{\mathit{PII}}(\zeta,s)=\tfrac{4}{3}\zeta^{3}+s\zeta. (213)

We make two observations which we will need later. First, the symmetries C1=C2-C_{1}=C_{2} and θ𝑃𝐼𝐼(ζ,s)=θ𝑃𝐼𝐼(ζ,s)\theta_{\mathit{PII}}(-\zeta,s)=-\theta_{\mathit{PII}}(\zeta,s) imply that the solution Ψ(ζ,s)\Psi(\zeta,s) of RHP 10.1 satisfies the symmetry

Ψ(ζ,s)=σ1Ψ(ζ,s)σ1,σ1:=(0110).\displaystyle\Psi(-\zeta,s)=\sigma_{1}\Psi(\zeta,s)\sigma_{1},\qquad\sigma_{1}:=\left(\matrix{0&1\cr 1&0}\right). (214)

The second fact is that Ψ\Psi admits a uniformly expansion in the limit as ζ\zeta\to\infty as described in DZ95 . Specifically, we have

Ψ(ζ;s)=I+ψ1(s)ζ+ψ2(s)ζ2+ψ3(s)ζ3+𝒪(ζ4).\Psi(\zeta;s)=I+\frac{\psi_{1}(s)}{\zeta}+\frac{\psi_{2}(s)}{\zeta^{2}}+\frac{\psi_{3}(s)}{\zeta^{3}}+\mathcal{O}\bigl{(}\zeta^{-4}\bigr{)}. (215)

The error term 𝒪(ζ4)\mathcal{O}(\zeta^{-4}) here depends on ss. For our purpose, we need the dependence on ss for ss bounded below. An analysis similar to Section 6 of DZ95 shows that given s0>0s_{0}>0, there exists a constant c0>0c_{0}>0 such that

Ψ(ζ;s)=I+ψ1(s)ζ+ψ2(s)ζ2+ψ3(s)ζ3+𝒪(ec0|s|3/2ζ4).\Psi(\zeta;s)=I+\frac{\psi_{1}(s)}{\zeta}+\frac{\psi_{2}(s)}{\zeta^{2}}+\frac{\psi_{3}(s)}{\zeta^{3}}+\mathcal{O}\biggl{(}\frac{e^{-c_{0}|s|^{3/2}}}{\zeta^{4}}\biggr{)}. (216a)
The moments ψj(s)\psi_{j}(s) can be calculated recursively from inserting the expansion into (204b). The first three moments are
ψ1(s)\displaystyle\psi_{1}(s) =\displaystyle= 12i[u(s)q(s)q(s)u(s)],\displaystyle\frac{1}{2i}\left[\matrix{-u(s)&q(s)\cr-q(s)&u(s)}\right],
ψ2(s)\displaystyle\psi_{2}(s) =\displaystyle= 1(2i)2[12u(s)212q(s)2q(s)u(s)q(s)q(s)u(s)q(s)12u(s)212q(s)2],\displaystyle\frac{1}{(2i)^{2}}\left[\matrix{\frac{1}{2}u(s)^{2}-\frac{1}{2}q(s)^{2}&q(s)u(s)-q^{\prime}(s)\cr q(s)u(s)-q^{\prime}(s)&\frac{1}{2}u(s)^{2}-\frac{1}{2}q(s)^{2}}\right], (216b)
ψ3(s)\displaystyle\psi_{3}(s) =\displaystyle= 1(2i)3[α(s)β(s)β(s)α(s)],\displaystyle\frac{1}{(2i)^{3}}\left[\matrix{\alpha(s)&-\beta(s)\cr\beta(s)&-\alpha(s)}\right],
where
u(s)\displaystyle u(s) =\displaystyle= sq(ξ)2𝑑ξ,\displaystyle\int_{\infty}^{s}q(\xi)^{2}\,d\xi, (216c)
α(s)\displaystyle\alpha(s) =\displaystyle= q(s)2u(s)2u(s)36+logF(s)2sq(ξ)2𝑑ξ,\displaystyle\frac{q(s)^{2}u(s)}{2}-\frac{u(s)^{3}}{6}+\log F(s)^{2}-\int_{\infty}^{s}q^{\prime}(\xi)^{2}\,d\xi, (216d)
β(s)\displaystyle\beta(s) =\displaystyle= q(s)u(s)q(s)(s+q(s)22+u(s)22).\displaystyle q^{\prime}(s)u(s)-q(s)\biggl{(}s+\frac{q(s)^{2}}{2}+\frac{u(s)^{2}}{2}\biggr{)}. (216e)

We note that the asymptotic analysis of the RHP for the Painlevé equation implies that for a given s0>0s_{0}>0,

ψj(s)=𝒪(ec0|s|3/2),j=1,2,3,\displaystyle\psi_{j}(s)=\mathcal{O}\bigl{(}e^{-c_{0}|s|^{3/2}}\bigr{)},\qquad j=1,2,3, (217)

where c0c_{0} can be taken as the same constant in the error term of (216a).

Acknowledgments

J. B. would like to thank Mishko Mitkovshi for bringing his attention to the paper of Chen, Deng, Du, Stanley and Yan during the summer graduate workshop at MSRI. This initiated this paper. We would also like the thank Christian Krattenthaler, Peter Miller, Richard Stanley, Craig Tracy and Catherine Yan for helpful communications.

References

  • (1) {bmisc}[auto:STB—2012/12/19—13:34:42] \bauthor\bsnmAdler, \bfnmM.\binitsM., \bauthor\bsnmFerrari, \bfnmP. L.\binitsP. L. and \bauthor\bparticlevan \bsnmMoerbeke, \bfnmP.\binitsP. (\byear2010). \bhowpublishedNon-intersecting random walks in the neighborhood of a symmetric tacnode. Available at arXiv:\arxivurl1007.1163. \bptokimsref \endbibitem
  • (2) {barticle}[mr] \bauthor\bsnmBaik, \bfnmJinho\binitsJ., \bauthor\bsnmBorodin, \bfnmAlexei\binitsA., \bauthor\bsnmDeift, \bfnmPercy\binitsP. and \bauthor\bsnmSuidan, \bfnmToufic\binitsT. (\byear2006). \btitleA model for the bus system in Cuernavaca (Mexico). \bjournalJ. Phys. A \bvolume39 \bpages8965–8975. \biddoi=10.1088/0305-4470/39/28/S11, issn=0305-4470, mr=2240467 \bptokimsref \endbibitem
  • (3) {barticle}[mr] \bauthor\bsnmBaik, \bfnmJinho\binitsJ., \bauthor\bsnmBuckingham, \bfnmRobert\binitsR. and \bauthor\bsnmDiFranco, \bfnmJeffery\binitsJ. (\byear2008). \btitleAsymptotics of Tracy–Widom distributions and the total integral of a Painlevé II function. \bjournalComm. Math. Phys. \bvolume280 \bpages463–497. \biddoi=10.1007/s00220-008-0433-5, issn=0010-3616, mr=2395479 \bptokimsref \endbibitem
  • (4) {barticle}[mr] \bauthor\bsnmBaik, \bfnmJinho\binitsJ., \bauthor\bsnmDeift, \bfnmPercy\binitsP. and \bauthor\bsnmJohansson, \bfnmKurt\binitsK. (\byear1999). \btitleOn the distribution of the length of the longest increasing subsequence of random permutations. \bjournalJ. Amer. Math. Soc. \bvolume12 \bpages1119–1178. \biddoi=10.1090/S0894-0347-99-00307-0, issn=0894-0347, mr=1682248 \bptokimsref \endbibitem
  • (5) {barticle}[mr] \bauthor\bsnmBaik, \bfnmJinho\binitsJ., \bauthor\bsnmDeift, \bfnmPercy\binitsP. and \bauthor\bsnmRains, \bfnmEric\binitsE. (\byear2001). \btitleA Fredholm determinant identity and the convergence of moments for random Young tableaux. \bjournalComm. Math. Phys. \bvolume223 \bpages627–672. \biddoi=10.1007/s002200100555, issn=0010-3616, mr=1866169 \bptokimsref \endbibitem
  • (6) {bbook}[mr] \bauthor\bsnmBaik, \bfnmJ.\binitsJ., \bauthor\bsnmKriecherbauer, \bfnmT.\binitsT., \bauthor\bsnmMcLaughlin, \bfnmK. T. R.\binitsK. T. R. and \bauthor\bsnmMiller, \bfnmP. D.\binitsP. D. (\byear2007). \btitleDiscrete Orthogonal Polynomials: Asymptotics and Applications. \bseriesAnnals of Mathematics Studies \bvolume164. \bpublisherPrinceton Univ. Press, \blocationPrinceton, NJ. \bidmr=2283089 \bptokimsref \endbibitem
  • (7) {bmisc}[auto:STB—2012/12/19—13:34:42] \bauthor\bsnmBaik, \bfnmJ.\binitsJ. and \bauthor\bsnmLiu, \bfnmZ.\binitsZ. (\byear2013). \bhowpublishedDiscrete Topelitz/Hankel determinants and the width of non-intersecting processes. Available at \arxivurlarXiv:1212.4467. \bptokimsref \endbibitem
  • (8) {barticle}[mr] \bauthor\bsnmBaik, \bfnmJinho\binitsJ. and \bauthor\bsnmRains, \bfnmEric M.\binitsE. M. (\byear2001). \btitleAlgebraic aspects of increasing subsequences. \bjournalDuke Math. J. \bvolume109 \bpages1–65. \biddoi=10.1215/S0012-7094-01-10911-3, issn=0012-7094, mr=1844203 \bptokimsref \endbibitem
  • (9) {barticle}[mr] \bauthor\bsnmBaik, \bfnmJinho\binitsJ. and \bauthor\bsnmRains, \bfnmEric M.\binitsE. M. (\byear2001). \btitleThe asymptotics of monotone subsequences of involutions. \bjournalDuke Math. J. \bvolume109 \bpages205–281. \biddoi=10.1215/S0012-7094-01-10921-6, issn=0012-7094, mr=1845180 \bptokimsref \endbibitem
  • (10) {barticle}[mr] \bauthor\bsnmBasor, \bfnmEstelle L.\binitsE. L. and \bauthor\bsnmEhrhardt, \bfnmTorsten\binitsT. (\byear2009). \btitleDeterminant computations for some classes of Toeplitz–Hankel matrices. \bjournalOper. Matrices \bvolume3 \bpages167–186. \biddoi=10.7153/oam-03-09, issn=1846-3886, mr=2522773 \bptokimsref \endbibitem
  • (11) {barticle}[mr] \bauthor\bsnmBornemann, \bfnmFolkmar\binitsF. (\byear2010). \btitleAsymptotic independence of the extreme eigenvalues of Gaussian unitary ensemble. \bjournalJ. Math. Phys. \bvolume51 \bpages023514, 8. \biddoi=10.1063/1.3290968, issn=0022-2488, mr=2605065 \bptokimsref \endbibitem
  • (12) {barticle}[mr] \bauthor\bsnmBornemann, \bfnmF.\binitsF. (\byear2010). \btitleOn the numerical evaluation of distributions in random matrix theory: A review. \bjournalMarkov Process. Related Fields \bvolume16 \bpages803–866. \bidissn=1024-2953, mr=2895091 \bptokimsref \endbibitem
  • (13) {bbook}[mr] \bauthor\bsnmBöttcher, \bfnmAlbrecht\binitsA. and \bauthor\bsnmKarlovich, \bfnmYuri I.\binitsY. I. (\byear1997). \btitleCarleson Curves, Muckenhoupt Weights, and Toeplitz Operators. \bseriesProgress in Mathematics \bvolume154. \bpublisherBirkhäuser, \blocationBasel. \biddoi=10.1007/978-3-0348-8922-3, mr=1484165 \bptokimsref \endbibitem
  • (14) {barticle}[mr] \bauthor\bsnmBuckingham, \bfnmRobert J.\binitsR. J. and \bauthor\bsnmMiller, \bfnmPeter D.\binitsP. D. (\byear2012). \btitleThe sine-Gordon equation in the semiclassical limit: Critical behavior near a separatrix. \bjournalJ. Anal. Math. \bvolume118 \bpages397–492. \biddoi=10.1007/s11854-012-0041-3, issn=0021-7670, mr=3000688 \bptnotecheck year\bptokimsref \endbibitem
  • (15) {barticle}[mr] \bauthor\bsnmChen, \bfnmWilliam Y. C.\binitsW. Y. C., \bauthor\bsnmDeng, \bfnmEva Y. P.\binitsE. Y. P., \bauthor\bsnmDu, \bfnmRosena R. X.\binitsR. R. X., \bauthor\bsnmStanley, \bfnmRichard P.\binitsR. P. and \bauthor\bsnmYan, \bfnmCatherine H.\binitsC. H. (\byear2007). \btitleCrossings and nestings of matchings and partitions. \bjournalTrans. Amer. Math. Soc. \bvolume359 \bpages1555–1575. \biddoi=10.1090/S0002-9947-06-04210-3, issn=0002-9947, mr=2272140 \bptokimsref \endbibitem
  • (16) {barticle}[mr] \bauthor\bsnmChester, \bfnmC.\binitsC., \bauthor\bsnmFriedman, \bfnmB.\binitsB. and \bauthor\bsnmUrsell, \bfnmF.\binitsF. (\byear1957). \btitleAn extension of the method of steepest descents. \bjournalMath. Proc. Cambridge Philos. Soc. \bvolume53 \bpages599–611. \bidmr=0090690 \bptokimsref \endbibitem
  • (17) {barticle}[mr] \bauthor\bsnmChoup, \bfnmLeonard N.\binitsL. N. (\byear2006). \btitleEdgeworth expansion of the largest eigenvalue distribution function of GUE and LUE. \bjournalInt. Math. Res. Not. IMRN \bpagesArt. ID 61049, 32. \biddoi=10.1155/IMRN/2006/61049, issn=1073-7928, mr=2233711 \bptokimsref \endbibitem
  • (18) {barticle}[mr] \bauthor\bsnmChoup, \bfnmLeonard N.\binitsL. N. (\byear2008). \btitleEdgeworth expansion of the largest eigenvalue distribution function of Gaussian unitary ensemble revisited. \bjournalJ. Math. Phys. \bvolume49 \bpages033508, 16. \biddoi=10.1063/1.2873345, issn=0022-2488, mr=2406805 \bptokimsref \endbibitem
  • (19) {barticle}[mr] \bauthor\bsnmClaeys, \bfnmTom\binitsT. and \bauthor\bsnmKuijlaars, \bfnmArno B. J.\binitsA. B. J. (\byear2006). \btitleUniversality of the double scaling limit in random matrix models. \bjournalComm. Pure Appl. Math. \bvolume59 \bpages1573–1603. \biddoi=10.1002/cpa.20113, issn=0010-3640, mr=2254445 \bptokimsref \endbibitem
  • (20) {barticle}[auto:STB—2012/12/19—13:34:42] \bauthor\bsnmCorwin, \bfnmI.\binitsI., \bauthor\bsnmQuastel, \bfnmJ.\binitsJ. and \bauthor\bsnmRemenik, \bfnmD.\binitsD. (\byear2013). \btitleContinuum statistics of the Airy2 process. \bjournalComm. Math. Phys. \bvolume317 \bpages347–362. \bptokimsref \endbibitem
  • (21) {barticle}[mr] \bauthor\bsnmDeift, \bfnmP.\binitsP., \bauthor\bsnmKriecherbauer, \bfnmT.\binitsT., \bauthor\bsnmMcLaughlin, \bfnmK. T. R.\binitsK. T. R., \bauthor\bsnmVenakides, \bfnmS.\binitsS. and \bauthor\bsnmZhou, \bfnmX.\binitsX. (\byear1999). \btitleStrong asymptotics of orthogonal polynomials with respect to exponential weights. \bjournalComm. Pure Appl. Math. \bvolume52 \bpages1491–1552. \biddoi=10.1002/(SICI)1097-0312(199912)52:12&lt;1491::AID-CPA2&gt;3.3.CO;2-R , issn=0010-3640, mr=1711036 \bptokimsref \endbibitem
  • (22) {barticle}[mr] \bauthor\bsnmDeift, \bfnmP.\binitsP., \bauthor\bsnmKriecherbauer, \bfnmT.\binitsT., \bauthor\bsnmMcLaughlin, \bfnmK. T. R.\binitsK. T. R., \bauthor\bsnmVenakides, \bfnmS.\binitsS. and \bauthor\bsnmZhou, \bfnmX.\binitsX. (\byear1999). \btitleUniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory. \bjournalComm. Pure Appl. Math. \bvolume52 \bpages1335–1425. \biddoi=10.1002/(SICI)1097-0312(199911)52:11&lt;1335::AID-CPA1&gt;3.0.CO;2-1 , issn=0010-3640, mr=1702716 \bptokimsref \endbibitem
  • (23) {barticle}[mr] \bauthor\bsnmDeift, \bfnmP. A.\binitsP. A. and \bauthor\bsnmZhou, \bfnmX.\binitsX. (\byear1995). \btitleAsymptotics for the Painlevé II equation. \bjournalComm. Pure Appl. Math. \bvolume48 \bpages277–337. \biddoi=10.1002/cpa.3160480304, issn=0010-3640, mr=1322812 \bptokimsref \endbibitem
  • (24) {barticle}[mr] \bauthor\bsnmEl Karoui, \bfnmNoureddine\binitsN. (\byear2006). \btitleA rate of convergence result for the largest eigenvalue of complex white Wishart matrices. \bjournalAnn. Probab. \bvolume34 \bpages2077–2117. \biddoi=10.1214/009117906000000502, issn=0091-1798, mr=2294977 \bptokimsref \endbibitem
  • (25) {barticle}[mr] \bauthor\bsnmFerrari, \bfnmPatrik L.\binitsP. L. and \bauthor\bsnmFrings, \bfnmRené\binitsR. (\byear2011). \btitleFinite time corrections in KPZ growth models. \bjournalJ. Stat. Phys. \bvolume144 \bpages1123–1150. \biddoi=10.1007/s10955-011-0318-4, issn=0022-4715, mr=2841918 \bptokimsref \endbibitem
  • (26) {barticle}[mr] \bauthor\bsnmFlaschka, \bfnmHermann\binitsH. and \bauthor\bsnmNewell, \bfnmAlan C.\binitsA. C. (\byear1980). \btitleMonodromy- and spectrum-preserving deformations. I. \bjournalComm. Math. Phys. \bvolume76 \bpages65–116. \bidissn=0010-3616, mr=0588248 \bptokimsref \endbibitem
  • (27) {barticle}[mr] \bauthor\bsnmFokas, \bfnmA. S.\binitsA. S., \bauthor\bsnmIts, \bfnmA. R.\binitsA. R. and \bauthor\bsnmKitaev, \bfnmA. V.\binitsA. V. (\byear1992). \btitleThe isomonodromy approach to matrix models in 22D quantum gravity. \bjournalComm. Math. Phys. \bvolume147 \bpages395–430. \bidissn=0010-3616, mr=1174420 \bptokimsref \endbibitem
  • (28) {barticle}[mr] \bauthor\bsnmFriedman, \bfnmB.\binitsB. (\byear1959). \btitleStationary phase with neighboring critical points. \bjournalJ. Soc. Indust. Appl. Math. \bvolume7 \bpages280–289. \bidmr=0109272 \bptokimsref \endbibitem
  • (29) {barticle}[mr] \bauthor\bsnmGessel, \bfnmIra M.\binitsI. M. (\byear1990). \btitleSymmetric functions and P-recursiveness. \bjournalJ. Combin. Theory Ser. A \bvolume53 \bpages257–285. \biddoi=10.1016/0097-3165(90)90060-A, issn=0097-3165, mr=1041448 \bptokimsref \endbibitem
  • (30) {barticle}[mr] \bauthor\bsnmGolinskiĭ, \bfnmL. B.\binitsL. B. (\byear2006). \btitleSchur flows and orthogonal polynomials on the unit circle. \bjournalMat. Sb. \bvolume197 \bpages41–62. \biddoi=10.1070/SM2006v197n08ABEH003792, issn=0368-8666, mr=2272777 \bptokimsref \endbibitem
  • (31) {barticle}[mr] \bauthor\bsnmGrabiner, \bfnmDavid J.\binitsD. J. (\byear1999). \btitleBrownian motion in a Weyl chamber, non-colliding particles, and random matrices. \bjournalAnn. Inst. Henri Poincaré Probab. Stat. \bvolume35 \bpages177–204. \biddoi=10.1016/S0246-0203(99)80010-7, issn=0246-0203, mr=1678525 \bptokimsref \endbibitem
  • (32) {barticle}[mr] \bauthor\bsnmHastings, \bfnmS. P.\binitsS. P. and \bauthor\bsnmMcLeod, \bfnmJ. B.\binitsJ. B. (\byear1980). \btitleA boundary value problem associated with the second Painlevé transcendent and the Korteweg–de Vries equation. \bjournalArch. Ration. Mech. Anal. \bvolume73 \bpages31–51. \biddoi=10.1007/BF00283254, issn=0003-9527, mr=0555581 \bptokimsref \endbibitem
  • (33) {barticle}[mr] \bauthor\bsnmJohansson, \bfnmKurt\binitsK. (\byear1998). \btitleThe longest increasing subsequence in a random permutation and a unitary random matrix model. \bjournalMath. Res. Lett. \bvolume5 \bpages63–82. \bidissn=1073-2780, mr=1618351 \bptokimsref \endbibitem
  • (34) {barticle}[mr] \bauthor\bsnmJohansson, \bfnmKurt\binitsK. (\byear2002). \btitleNon-intersecting paths, random tilings and random matrices. \bjournalProbab. Theory Related Fields \bvolume123 \bpages225–280. \biddoi=10.1007/s004400100187, issn=0178-8051, mr=1900323 \bptokimsref \endbibitem
  • (35) {barticle}[mr] \bauthor\bsnmJohansson, \bfnmKurt\binitsK. (\byear2003). \btitleDiscrete polynuclear growth and determinantal processes. \bjournalComm. Math. Phys. \bvolume242 \bpages277–329. \bidissn=0010-3616, mr=2018275 \bptokimsref \endbibitem
  • (36) {barticle}[mr] \bauthor\bsnmJohansson, \bfnmKurt\binitsK. (\byear2005). \btitleThe arctic circle boundary and the Airy process. \bjournalAnn. Probab. \bvolume33 \bpages1–30. \biddoi=10.1214/009117904000000937, issn=0091-1798, mr=2118857 \bptokimsref \endbibitem
  • (37) {barticle}[mr] \bauthor\bsnmJohnstone, \bfnmIain M.\binitsI. M. (\byear2008). \btitleMultivariate analysis and Jacobi ensembles: Largest eigenvalue, Tracy–Widom limits and rates of convergence. \bjournalAnn. Statist. \bvolume36 \bpages2638–2716. \biddoi=10.1214/08-AOS605, issn=0090-5364, mr=2485010 \bptokimsref \endbibitem
  • (38) {bmisc}[auto:STB—2012/12/19—13:34:42] \bauthor\bsnmJohnstone, \bfnmI. M.\binitsI. M. and \bauthor\bsnmMa, \bfnmZ.\binitsZ. (\byear2011). \bhowpublishedFast approach to the Tracy–Widom law at the edge of GOE and GUE. Available at arXiv:\arxivurl1110.0108. \bptokimsref \endbibitem
  • (39) {bbook}[mr] \bauthor\bsnmKamvissis, \bfnmSpyridon\binitsS., \bauthor\bsnmMcLaughlin, \bfnmKenneth D. T. R.\binitsK. D. T. R. and \bauthor\bsnmMiller, \bfnmPeter D.\binitsP. D. (\byear2003). \btitleSemiclassical Soliton Ensembles for the Focusing Nonlinear Schrödinger Equation. \bseriesAnnals of Mathematics Studies \bvolume154. \bpublisherPrinceton Univ. Press, \blocationPrinceton, NJ. \bidmr=1999840 \bptokimsref \endbibitem
  • (40) {barticle}[mr] \bauthor\bsnmKarlin, \bfnmSamuel\binitsS. and \bauthor\bsnmMcGregor, \bfnmJames\binitsJ. (\byear1959). \btitleCoincidence probabilities. \bjournalPacific J. Math. \bvolume9 \bpages1141–1164. \bidissn=0030-8730, mr=0114248 \bptokimsref \endbibitem
  • (41) {barticle}[mr] \bauthor\bsnmKönig, \bfnmWolfgang\binitsW., \bauthor\bsnmO’Connell, \bfnmNeil\binitsN. and \bauthor\bsnmRoch, \bfnmSébastien\binitsS. (\byear2002). \btitleNon-colliding random walks, tandem queues, and discrete orthogonal polynomial ensembles. \bjournalElectron. J. Probab. \bvolume7 \bpages24 pp. (electronic). \bidissn=1083-6489, mr=1887625 \bptokimsref \endbibitem
  • (42) {barticle}[mr] \bauthor\bsnmKrattenthaler, \bfnmC.\binitsC. (\byear2006). \btitleGrowth diagrams, and increasing and decreasing chains in fillings of Ferrers shapes. \bjournalAdv. in Appl. Math. \bvolume37 \bpages404–431. \biddoi=10.1016/j.aam.2005.12.006, issn=0196-8858, mr=2261181 \bptokimsref \endbibitem
  • (43) {barticle}[mr] \bauthor\bsnmMa, \bfnmZongming\binitsZ. (\byear2012). \btitleAccuracy of the Tracy–Widom limits for the extreme eigenvalues in white Wishart matrices. \bjournalBernoulli \bvolume18 \bpages322–359. \biddoi=10.3150/10-BEJ334, issn=1350-7265, mr=2888709 \bptokimsref \endbibitem
  • (44) {barticle}[mr] \bauthor\bsnmMoreno Flores, \bfnmG.\binitsG., \bauthor\bsnmQuastel, \bfnmJ.\binitsJ. and \bauthor\bsnmRemenik, \bfnmD.\binitsD. (\byear2013). \btitleEndpoint distribution of directed polymers in 1+11+1 dimensions. \bjournalComm. Math. Phys. \bvolume317 \bpages363–380. \bptokimsref \endbibitem
  • (45) {barticle}[mr] \bauthor\bsnmNenciu, \bfnmIrina\binitsI. (\byear2005). \btitleLax pairs for the Ablowitz–Ladik system via orthogonal polynomials on the unit circle. \bjournalInt. Math. Res. Not. IMRN \bvolume11 \bpages647–686. \biddoi=10.1155/IMRN.2005.647, issn=1073-7928, mr=2146324 \bptokimsref \endbibitem
  • (46) {barticle}[mr] \bauthor\bsnmRains, \bfnmE. M.\binitsE. M. (\byear1998). \btitleIncreasing subsequences and the classical groups. \bjournalElectron. J. Combin. \bvolume5 \bpagesResearch Paper 12, 9 pp. (electronic). \bidissn=1077-8926, mr=1600095 \bptokimsref \endbibitem
  • (47) {barticle}[mr] \bauthor\bsnmShinault, \bfnmGregory\binitsG. and \bauthor\bsnmTracy, \bfnmCraig A.\binitsC. A. (\byear2011). \btitleAsymptotics for the covariance of the Airy2\mathrm{Airy}_{2} process. \bjournalJ. Stat. Phys. \bvolume143 \bpages60–71. \biddoi=10.1007/s10955-011-0155-5, issn=0022-4715, mr=2787973 \bptokimsref \endbibitem
  • (48) {bincollection}[mr] \bauthor\bsnmStanley, \bfnmRichard P.\binitsR. P. (\byear2007). \btitleIncreasing and decreasing subsequences and their variants. In \bbooktitleInternational Congress of Mathematicians. Vol. I \bpages545–579. \bpublisherEur. Math. Soc., \blocationZürich. \biddoi=10.4171/022-1/21, mr=2334203 \bptokimsref \endbibitem
  • (49) {bbook}[mr] \bauthor\bsnmSzegő, \bfnmGábor\binitsG. (\byear1975). \btitleOrthogonal Polynomials, \bedition4th ed. \bpublisherAmer. Math. Soc., \blocationProvidence, RI. \bidmr=0372517 \bptokimsref \endbibitem
  • (50) {barticle}[mr] \bauthor\bsnmTracy, \bfnmCraig A.\binitsC. A. and \bauthor\bsnmWidom, \bfnmHarold\binitsH. (\byear1996). \btitleOn orthogonal and symplectic matrix ensembles. \bjournalComm. Math. Phys. \bvolume177 \bpages727–754. \bidissn=0010-3616, mr=1385083 \bptokimsref \endbibitem