This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Linear Codes Constructed From Two Weakly Regular Plateaued Functions with Index (p1)/2(p-1)/2 11footnotemark: 1

Shudi Yang yangshudi@qfnu.edu.cn Tonghui Zhang zhangthvvs@126.com Zheng-An Yao mcsyao@mail.sysu.edu.cn School of Mathematical Sciences, Qufu Normal University, Shandong 273165, P.R.China School of Mathematics and Statistics,Fujian Normal University, Fujian 350117, P.R.China School of Mathematics, Sun Yat-Sen University, Guangzhou 510275, P.R.China
Abstract

Linear codes are the most important family of codes in cryptography and coding theory. Some codes have only a few weights and are widely used in many areas, such as authentication codes, secret sharing schemes and strongly regular graphs. By setting p1(mod4)p\equiv 1\pmod{4}, we construct an infinite family of linear codes using two distinct weakly regular unbalanced (and balanced) plateaued functions with index (p1)/2(p-1)/2. Their weight distributions are completely determined by applying exponential sums and Walsh transform. As a result, most of our constructed codes have a few nonzero weights and are minimal.

keywords:
linear code , plateaued function , the weight distribution , Walsh transform.
MSC:
[2010] 94B15 , 11T71
journal: Finite Fields and Their Applications
TheweightdistributionofthiscaseissummarizedinTable

4.∎

Table 1: TheweightdistributionofCDf,ginTheoremLABEL:th:s+toddwhenlf=p-12.
weight frequency
0 11
(p1)p2m2(p-1)p^{2m-2} p2m(p1)pγ11p^{2m}-(p-1)p^{\gamma-1}-1\qquad
(p1)(p2m2pτ3)(p-1){\big{(}{p^{2m-2}-\sqrt{p}^{\tau-3}}\big{)}} p12(pγ1+pγ1)\frac{p-1}{2}{\big{(}{p^{\gamma-1}+\sqrt{p}^{\gamma-1}}\big{)}}
(p1)(p2m2+pτ3)(p-1){\big{(}{p^{2m-2}+\sqrt{p}^{\tau-3}}\big{)}} p12(pγ1pγ1)\frac{p-1}{2}{\big{(}{p^{\gamma-1}-\sqrt{p}^{\gamma-1}}\big{)}}
Table 2: TheweightdistributionofCDf,ginTheoremLABEL:th:s+toddwhenlf=p-1.
weight frequency
0 11
(p1)p2m2(p-1)p^{2m-2} p2m1E1E2BSqBNsqp^{2m}-1-E_{1}-E_{2}-B_{S_{q}}-B_{N_{sq}}
(p1)(p2m212εfεgη(2)pτ3)(p-1){\big{(}{p^{2m-2}-\frac{1}{2}\varepsilon_{f}\varepsilon_{g}\eta(2)\sqrt{p}^{\tau-3}}\big{)}} E1E_{1}
(p1)(p2m2+12εfεgη(2)pτ3)(p-1){\big{(}{p^{2m-2}+\frac{1}{2}\varepsilon_{f}\varepsilon_{g}\eta(2)\sqrt{p}^{\tau-3}}\big{)}} E2E_{2}
(p1)(p2m2εfεgpτ3)(p-1){\big{(}{p^{2m-2}-\varepsilon_{f}\varepsilon_{g}\sqrt{p}^{\tau-3}}\big{)}} BSqB_{S_{q}}
(p1)(p2m2+εfεgpτ3)(p-1){\big{(}{p^{2m-2}+\varepsilon_{f}\varepsilon_{g}\sqrt{p}^{\tau-3}}\big{)}} BNsqB_{N_{sq}}
Table 3: TheweightdistributionofCDf,ginTheoremLABEL:th:s+toddwhenlf=2andp≡1(mod8).
weight frequency
0 11
(p1)p2m2(p-1)p^{2m-2} p2m1E3E4(p1)24(𝒩f(i)𝒩g(i)+𝒩f(j)𝒩g(j))p^{2m}-1-E_{3}-E_{4}-\frac{(p-1)^{2}}{4}{\big{(}{\mathcal{N}_{f}(i)\mathcal{N}_{g}(i)+\mathcal{N}_{f}(j)\mathcal{N}_{g}(j)}\big{)}}
(p1)(p2m2εfεgpτ3)(p-1){\big{(}{p^{2m-2}-\varepsilon_{f}\varepsilon_{g}\sqrt{p}^{\tau-3}}\big{)}} E3E_{3}
(p1)(p2m2+εfεgpτ3)(p-1){\big{(}{p^{2m-2}+\varepsilon_{f}\varepsilon_{g}\sqrt{p}^{\tau-3}}\big{)}} E4E_{4}
(p1)(p2m2+2εfεgpτ3)(p-1){\big{(}{p^{2m-2}+2\varepsilon_{f}\varepsilon_{g}\sqrt{p}^{\tau-3}}\big{)}} (p1)24𝒩f(i)𝒩g(i)\frac{(p-1)^{2}}{4}\mathcal{N}_{f}(i)\mathcal{N}_{g}(i)
(p1)(p2m22εfεgpτ3)(p-1){\big{(}{p^{2m-2}-2\varepsilon_{f}\varepsilon_{g}\sqrt{p}^{\tau-3}}\big{)}} (p1)24𝒩f(j)𝒩g(j)\frac{(p-1)^{2}}{4}\mathcal{N}_{f}(j)\mathcal{N}_{g}(j)
Table 4: TheweightdistributionofCDf,ginTheoremLABEL:th:s+toddwhenlf=2andp≡5(mod8).
weight frequency
0 11
(p1)p2m2(p-1)p^{2m-2} p2m1E3E4u,v𝔽p𝒩f(u)𝒩g(v)p^{2m}-1-E_{3}-E_{4}-\sum_{u,v\in\mathbb{F}_{p}^{*}}\mathcal{N}_{f}(u)\mathcal{N}_{g}(v)
(p1)(p2m2εfεgpτ3)(p-1){\big{(}{p^{2m-2}-\varepsilon_{f}\varepsilon_{g}\sqrt{p}^{\tau-3}}\big{)}} E3E_{3}
(p1)(p2m2+εfεgpτ3)(p-1){\big{(}{p^{2m-2}+\varepsilon_{f}\varepsilon_{g}\sqrt{p}^{\tau-3}}\big{)}} E4E_{4}
(p1)p2m2εfεgpτ3η(u)(I4(vu)η(vu))(p-1)p^{2m-2}-\varepsilon_{f}\varepsilon_{g}\sqrt{p}^{\tau-3}\eta(u){\Big{(}{I_{4}{\big{(}{\frac{v}{u}}\big{)}}-\eta{\big{(}{\frac{v}{u}}\big{)}}}\Big{)}} for all u,v𝔽pu,v\in\mathbb{F}_{p}^{*} 𝒩f(u)𝒩g(v)\mathcal{N}_{f}(u)\mathcal{N}_{g}(v)
Theorem 2.
Supposethatf,g∈WRPwithlg=p-12.Lets+tbeeven.Iflf=p-12,thenCDf,gisathree-weight[n,2m]linearcodewithitsweightdistributionlistedinTable

LABEL:evenc1.Iflf=p-1,thenCDf,gisafour-weight[n,2m]linearcodewithitsweightdistributionlistedinTableLABEL:evenc2.Otherwiseiflf=2,thenCDf,gisafour-weight[n,2m]linearcodewithitsweightdistributionlistedinTableLABEL:evenc3whenp≡1(mod8),andinTableLABEL:evenc4whenp≡5(mod8).Herewesetn=p2m-1-1+(p-1)εfεgpτ-2forbrevity.

Proof.
ThelengthofthecodeCDf,gcomesfromLemma

LABEL:lem:length.For(a,b)∈Fq2\{(0,0)},theweightwt(c(a,b))=n+1-N0canbeobtainedfromLemmaLABEL:lem:N0_even.Tobemoreexplicit,when(a,b)∉Sf×Sg,wehavewt(c(a,b))=(p-1)(p2m-2+(p-1)εfεgpτ-4).ByLemmaLABEL:lem:car,thefrequencyofsuchcodewordsequalsp2m-pγsincef,g∈WRP.When(a,b)∈Sf×Sg\{(0,0)},wewilldiscussthefollowingfourdifferentcases.

(1)Whenlf=p-12,wehavewt(c(a,b))={(p-1)p2m-2,T(0)-1 times,(p-1)(p2m-2+εfεgpτ-2),(p-1)T(c) times,whereT(0)andT(c)aregiveninLemma

LABEL:lem:Tforc≠0.ThisgivestheweightdistributioninTableLABEL:evenc1.

(2)Whenlf=p-1,wehavewt(c(a,b))={(p-1)p2m-2,Nf(0)Ng(0)-1 times,(p-1)(p2m-2+12εfεgpτ-2),F1 times,(p-1)(p2m-2+εfεgpτ-2),F2 times,wherewedefineF1=#{(a,b)∈Sf×Sg:f⋆(a)≠0,g⋆(b)=±f⋆(a)}=2∑c∈Fp∗Nf(c)Ng(c),F2=pγ-Nf(0)Ng(0)-F1.ThusweobtaintheweightdistributioninTable

LABEL:evenc2.

(3)Whenlf=2andp≡1(mod8),wehavewt(c(a,b))={(p-1)p2m-2,Nf(0)Ng(0)-1 times,(p-1)p2m-2+(p-3)εfεgpτ-2,F3 times,(p-1)(p2m-2+εfεgpτ-2),F4 times,whereF3=#{(a,b)∈Sf×Sg:f⋆(a)g⋆(b)∈Sq}=(p-1)24(Nf(i)Ng(i)+Nf(j)Ng(j)),F4=pγ-Nf(0)Ng(0)-F3,fori∈Sqandj∈Nsq.ThisimpliestheweightdistributionlistedinTable

LABEL:evenc3.

(4)Whenlf=2andp≡5(mod8),wegetwt(c(a,b))={(p-1)p2m-2,Nf(0)Ng(0)-1 times,(p-1)p2m-2+(p-5)εfεgpτ-2,F5 times,(p-1)(p2m-2+εfεgpτ-2),F6 times,wherewewriteF5=#{(a,b)∈Sf×Sg:g⋆(b)f⋆(a)∈C2(4,p)}=(p-1)28(Nf(i)Ng(i)+Nf(j)Ng(j))=12F3,F6=pγ-Nf(0)Ng(0)-12F3,fori∈Sqand