This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Linear Continuous Sliding Mode-based Attitude Controller with Modified Rodrigues Parameters Feedback
thanks: Final version. Published in 2020 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET)

Harry Septanto 1Satellite Technology Center
National Institute of Aeronautics and Space (LAPAN)
Bogor, Indonesia
2Ministry of Research and Technology/
National Agency for Research and Innovation (BRIN)
Jakarta, Indonesia
harry.septanto@lapan.go.id
   Djoko Suprijanto Faculty of Mathematics and Natural Sciences
Institute of Technology Bandung
Bandung, Indonesia
djoko@math.itb.ac.id
Abstract

This paper studies an attitude control system design based on modified Rodrigues parameters feedback. It employs a linear continuous sliding mode controller. The sliding mode controller is able to bring the existence of the sliding motion asymptotically. Besides, the attitude control system equilibrium point is proved to have an asymptotic stability guarantee through further analysis. This stability analysis is conducted since the sliding mode existence on the designed sliding surface does not imply the stability guarantee of the system’s equilibrium. This paper ends with some numerical examples that confirm the effectiveness of the designed attitude control system.

Index Terms:
attitude control, modified Rodrigues parameters, linear continuous sliding mode, asymptotic stability guarantee.

I Introduction

Attitude control system design is a challenging problem. It contains nonlinear dynamics and kinematics models. Besides, the complexity increases since there is some kinematics representation with each own constraints. Research efforts have been conducted to design the attitude control systems using various kinematics representations. For instance, Ozgoren [1] reported a comparison of the attitude control systems design based on Euler angles, quaternion, Euler angle-axis pairs, and orientation matrices (or rotation matrices [2]). Another kinematics representation that has been also widely studied is modified Rodrigues parameters (MRP), e.g., [3], [4], [5], to name a few. MRP representation is not unique nor global [2], i.e., a physical orientation is not represented by a single-value in MRP as well as MRP represents not all physical orientations. Nevertheless, MRP can represent orientation between 3600-360^{0} and 3600360^{0} that cannot be conducted by Euler angles. Besides, its feedback control does not exhibit an unwinding phenomenon that may occur with quaternion representation [6]. Hence, this work is focused on the attitude control system design based on MRP kinematics representation.

Many approaches can be conducted in designing an attitude control system, .e.g., variable structure or sliding mode control approach. There are many types of sliding mode controller, e.g., discontinuous or switching [7], terminal sliding mode [8][9], super-twisting [10], saturation function-approximation [11][12], and linear continuous-type of controller [13][14] [15]. The last type of sliding mode is less complex for implementation since it is a continuous system. Besides, it might chattering-free. The chattering occurs because switching of the control of the switching-type will excite the unmodeled dynamics [16]. Boiko and Fridman [17] showed the chattering of the so-called continuous sliding mode control systems. However, the analysis covered only the terminal sliding mode and super-twisting-type. This paper presents the resulting study of the sliding mode controller that is a linear continuous-type employed in the attitude control system using the MRP kinematics state feedback.

The paper is organized as follows. The next section describes the methodology of this research. Section III presents the main result that consist of a theorem, numerical simulations, and discussion. We end the paper by concluding remarks in Section IV.

II Methodology

II-A Mathematical Preliminaries

The time derivative of function ff is denoted by f˙\dot{f}. A square matrix G>0G>0 and G<0G<0 mean a positive definite and a negative matrix, respectively. II is the 3×33\times 3 identity matrix, I=[100010001]I={\begin{bmatrix}1&0&0\\ 0&1&0\\ 0&0&1\end{bmatrix}}.

A vector of an angular velocity (rad/s)\left(rad/s\right) are defined as follows: ωlb=ωlbbTb=ωlblTl=ωlbdTd\vec{\omega}_{lb}={\omega^{b}_{lb}}^{T}\mathcal{F}_{b}={\omega^{l}_{lb}}^{T}\mathcal{F}_{l}={\omega^{d}_{lb}}^{T}\mathcal{F}_{d}, where ωlbb,ωlbl,ωlbd3{\omega^{b}_{lb},\omega^{l}_{lb},\omega^{d}_{lb}\in\mathbb{R}^{3}} and b,l,d3×3{\mathcal{F}_{b},\mathcal{F}_{l},\mathcal{F}_{d}\in\mathbb{R}^{3\times 3}}; ωlbb\omega^{b}_{lb} denotes the angular velocity of the satellite’s body frame (b\mathcal{F}_{b}) with respect to the inertial reference frame (l\mathcal{F}_{l}) that is expressed in the body frame (b\mathcal{F}_{b}); ωlbl\omega^{l}_{lb} denotes the angular velocity of the satellite’s body frame (b\mathcal{F}_{b}) with respect to the inertial reference frame (l\mathcal{F}_{l}) that is expressed in the inertial reference frame (l\mathcal{F}_{l}); and ωlbd\omega^{d}_{lb} denotes the angular velocity of the satellite’s body frame (b\mathcal{F}_{b}) with respect to the inertial reference frame (l\mathcal{F}_{l}) that is expressed in the target or desired frame (d\mathcal{F}_{d}). Note that the frame variables b,l\mathcal{F}_{b},\mathcal{F}_{l} and d\mathcal{F}_{d} are matrices whose rows consist of the vector basis of 3\mathbb{R}^{3}.

II-B Rigid Body Dynamics and Kinematics

The rigid body satellite dynamics with a 3×33\times 3 symmetric matrix of inertia calculated about its center of mass J>0J>0 (Kgm2)\left(Kg\cdot m^{2}\right), J3×3J\in\mathbb{R}^{3\times 3}, and the control torque expressed in the body frame τ\tau (Nm)\left(N\cdot m\right), τ3\tau\in\mathbb{R}^{3}, is defined in (1). The attitude kinematics represented by modified Rodrigues parameters (MRP) is shown in (2)-(3) [5], where [σdb]×\left[\sigma_{db}\right]^{\times} is a skew-symmetric matrix as defined in (4). Note that σdb3\sigma_{db}\in\mathbb{R}^{3} denotes the attitude of the satellite’s body frame (b\mathcal{F}_{b}) with respect to the desired frame (d\mathcal{F}_{d}), where σdb=σlbσld\sigma_{db}=\sigma_{lb}-\sigma_{ld}. It is also called the attitude error.

Jω˙lbb=ωlbb×Jωlbb+τ\displaystyle J\dot{\omega}^{b}_{lb}=-\omega^{b}_{lb}\times J\omega^{b}_{lb}+\tau (1)
σ˙db=G(σdb)ωdbb\dot{\sigma}_{db}=G\left(\sigma_{db}\right)\omega^{b}_{db} (2)

where

G(σdb)=12(1σdbTσdb2I[σdb]×+σdbσdbT)G\left(\sigma_{db}\right)=\frac{1}{2}\left(\frac{1-{\sigma_{db}}^{T}\sigma_{db}}{2}I-\left[\sigma_{db}\right]^{\times}+\sigma_{db}{\sigma_{db}}^{T}\right) (3)

and

[σdb]×=[0σdb3σdb2σdb30σdb1σdb2σdb10],σdb=[σdb1σdb2σdb3]\displaystyle\left[\sigma_{db}\right]^{\times}={\begin{bmatrix}0&-{\sigma_{db}}_{3}&{\sigma_{db}}_{2}\\ {\sigma_{db}}_{3}&0&-{\sigma_{db}}_{1}\\ -{\sigma_{db}}_{2}&{\sigma_{db}}_{1}&0\end{bmatrix}},\sigma_{db}={\begin{bmatrix}{\sigma_{db}}_{1}\\ {\sigma_{db}}_{2}\\ {\sigma_{db}}_{3}\end{bmatrix}} (4)
Definition 1

Consider the rigid body dynamics (1) and kinematics (2)-(4). τ\tau is an MRP-based feedback sliding mode controller if it is able to bring the system’s states to reach the sliding surface asymptotically and to asymptotically stabilize the system’s equilibrium point.

Remarks 1

Some other authors stated that a finite-time stable of the sliding surface is required for a sliding mode existence, as stated in[7] and[18], to name a few. However, this work refers to that the sliding surface’s asymptotically stable condition is necessary for a sliding mode existence. This necessary condition may be found in [19] and [13], to name a few.

II-C Problem Statement

Considering the rigid body dynamics (1) and the MRP rotation kinematics (2)-(4), design an attitude control system using MRP feedback and a linear continuous-type sliding mode controller for every constant desired attitude σld\sigma_{ld} and zero desired angular velocity ωldb\omega^{b}_{ld} from any initial angular velocity ωlbb(0)\omega^{b}_{lb}\left(0\right) and attitude σlb(0)\sigma_{lb}\left(0\right).

III Main Result

The main result of this paper is presented by Theorem 1.

Theorem 1

Consider the rigid body dynamics (1) and the MRP rotation kinematics (2)-(3) with the initial angular velocity ωlbb(t=0)3\omega^{b}_{lb}\left(t=0\right)\in\mathbb{R}^{3}, the initial attitude error σdb(t=0)3\sigma_{db}\left(t=0\right)\in\mathbb{R}^{3}, the constant desired attitude σld3\sigma_{ld}\in\mathbb{R}^{3}, and the zero desired angular velocity ωldb=[000]T\omega^{b}_{ld}={\begin{bmatrix}0&0&0\end{bmatrix}}^{T}.

Then we have τ=ueq+uN\tau=u_{eq}+u_{N} is a sliding mode controller with the sliding surface (5), where uequ_{eq} and uNu_{N} are presented in equation (6) and (7), respectively, for certain k1,k2k_{1},k_{2}\in\mathbb{R}, such that k1k2>0k_{1}k_{2}>0 and L>0,L3×3L>0,L\in\mathbb{R}^{3\times 3}.

S={[ωlbbσdb]:k1ωlbb+k2σdb=ξ,ξ=[000]T}\displaystyle S=\Bigg{\{}{\begin{bmatrix}\omega^{b}_{lb}\\ \sigma_{db}\end{bmatrix}}:k_{1}\omega^{b}_{lb}+k_{2}\sigma_{db}=\xi,\xi={\begin{bmatrix}0&0&0\end{bmatrix}}^{T}\Bigg{\}} (5)
ueq=(ωlbb×Jωlbb)k2k1JG(σdb)ωlbb,\displaystyle u_{eq}=\left(\omega^{b}_{lb}\times J\omega^{b}_{lb}\right)-\frac{k_{2}}{k_{1}}JG\left(\sigma_{db}\right)\omega^{b}_{lb},
[ωlbbσdb]S\displaystyle\forall\begin{bmatrix}{\omega^{b}_{lb}}\\ {\sigma_{db}}\end{bmatrix}\in S (6)
uN=1k1JLξ,ξ[000]T\displaystyle u_{N}=-\frac{1}{k_{1}}JL\xi,\forall\xi\neq{\begin{bmatrix}0&0&0\end{bmatrix}}^{T} (7)
Proof:

The sliding mode controller will be designed to follow the equivalent control method. First, we have to find the uequ_{eq}. At this step, we assume that the sliding mode is exist. Therefore, at the sliding surface, the system satisfies the condition (8)

ξ=k1ωlbb+k2σdb=[000]T\displaystyle\xi=k_{1}\omega^{b}_{lb}+k_{2}\sigma_{db}={\begin{bmatrix}0&0&0\end{bmatrix}}^{T}
ξ˙=k1ω˙lbb+k2σ˙db=[000]T\displaystyle\Rightarrow\dot{\xi}=k_{1}\dot{\omega}^{b}_{lb}+k_{2}\dot{\sigma}_{db}={\begin{bmatrix}0&0&0\end{bmatrix}}^{T} (8)

Substituting ω˙lbb\dot{\omega}^{b}_{lb} and σ˙db\dot{\sigma}_{db} in (8) by equation (1) and (2), respectively, hence equation (9) is satisfied.

[000]T=k1(J1(ωlbb×Jωlbb)+J1τ)+\displaystyle{\begin{bmatrix}0&0&0\end{bmatrix}}^{T}=k_{1}\Big{(}J^{-1}\left(-\omega^{b}_{lb}\times J\omega^{b}_{lb}\right)+J^{-1}\tau\Big{)}+
k2G(σdb)ωdbb\displaystyle k_{2}G\left(\sigma_{db}\right)\omega^{b}_{db}
J1(ωlbb×Jωlbb)+J1τ=\displaystyle\Leftrightarrow J^{-1}\left(-\omega^{b}_{lb}\times J\omega^{b}_{lb}\right)+J^{-1}\tau=
k2k1G(σdb)ωlbb,where ωldb=[000]T\displaystyle-\frac{k_{2}}{k_{1}}G\left(\sigma_{db}\right)\omega^{b}_{lb},\text{where }\omega^{b}_{ld}={\begin{bmatrix}0&0&0\end{bmatrix}}^{T}
τ=(ωlbb×Jωlbb)k2k1JG(σdb)ωlbb,\displaystyle\Leftrightarrow\tau=\left(\omega^{b}_{lb}\times J\omega^{b}_{lb}\right)-\frac{k_{2}}{k_{1}}JG\left(\sigma_{db}\right)\omega^{b}_{lb},
k10 and k20\displaystyle\forall k_{1}\neq 0\text{ and }k_{2}\neq 0 (9)

At this point, we have the control torque that will only work when the states reach the sliding surface, uequ_{eq}, as shown in (10).

τ=ueq=(ωlbb×Jωlbb)k2k1JG(σdb)ωlbb,\displaystyle\tau=u_{eq}=\left(\omega^{b}_{lb}\times J\omega^{b}_{lb}\right)-\frac{k_{2}}{k_{1}}JG\left(\sigma_{db}\right)\omega^{b}_{lb},
[ωlbbσdb]S\displaystyle\forall{\begin{bmatrix}\omega^{b}_{lb}\\ \sigma_{db}\end{bmatrix}}\in S (10)

Next, we have to determine the part of the control torque that works to ensure the existence of the sliding mode, i.e.,uNu_{N}. This control torque is derived through the Lyapunov stability theory using Lyapunov function candidate, a positive definite function V=12ξTξV=\frac{1}{2}\xi^{T}\xi. The complete derivation is shown in (11).

V=12ξTξ>0,ξ[000]T\displaystyle V=\frac{1}{2}\xi^{T}\xi>0,\forall\xi\neq{\begin{bmatrix}0&0&0\end{bmatrix}}^{T}
V˙=ξTξ˙=ξT(k1ω˙lbb+k2σ˙db)\displaystyle\Rightarrow\dot{V}=\xi^{T}\dot{\xi}=\xi^{T}\Big{(}k_{1}\dot{\omega}^{b}_{lb}+k_{2}\dot{\sigma}_{db}\Big{)} (11)

Substituting by ω˙lbb\dot{\omega}^{b}_{lb} in (1) and σ˙db\dot{\sigma}_{db} in (2)-(3), we obtain (12).

V˙=ξT(k1J1(ωlbb×Jωlbb)+k1J1(ueq+uN)+\displaystyle\dot{V}=\xi^{T}\Big{(}k_{1}J^{-1}\left(-\omega^{b}_{lb}\times J\omega^{b}_{lb}\right)+k_{1}J^{-1}\left(u_{eq}+u_{N}\right)+
k2G(σdb)ωlbb)V˙=k1ξTJ1uN\displaystyle k_{2}G\left(\sigma_{db}\right)\omega^{b}_{lb}\Big{)}\Leftrightarrow\dot{V}=k_{1}\xi^{T}J^{-1}u_{N} (12)

If we have uNu_{N} as shown in (13), then (14) is satisfied. Hence, VV is a Lyapunov function.

uN=1k1JLξ,L>0\displaystyle u_{N}=-\frac{1}{k_{1}}JL\xi,\forall L>0 (13)
V˙=ξTLξ<0\displaystyle\dot{V}=-\xi^{T}L\xi<0 (14)

This fact implies that the sliding surface is asymptotically stable. In other words, it proves that the sliding mode exists. Nevertheless, it is not the end of the proof since we also want to make sure that the system’s states will also reach the equilibrium point at tt\rightarrow\infty.

Let V¯=12ξTξ+2k¯loge(1+σdbTσdb),k¯>0\bar{V}=\frac{1}{2}\xi^{T}\xi+2\bar{k}\log_{e}\left(1+{\sigma_{db}}^{T}\sigma_{db}\right),\forall\bar{k}>0 is a candidate Lyapunov function. Recall G(σdb)G\left(\sigma_{db}\right) in (3) and since σdbTσdbTσdb=σdbTσdbσdbT{\sigma_{db}}^{T}{\sigma_{db}}^{T}{\sigma_{db}}={\sigma_{db}}^{T}{\sigma_{db}}{\sigma_{db}}^{T} and σdbT[σdb]×=[000]T{\sigma_{db}}^{T}{\left[\sigma_{db}\right]}^{\times}={\begin{bmatrix}0&0&0\end{bmatrix}}^{T}, hence we have an MRP property shown in (15). Noting this fact, we can have the time derivation of V¯\bar{V} that is shown in (16).

σdbTG(σdb)=σdbT12(1σdbTσdb2I[σdb]×+\displaystyle{\sigma_{db}}^{T}G\left(\sigma_{db}\right)={\sigma_{db}}^{T}\frac{1}{2}\Big{(}\frac{1-{\sigma_{db}}^{T}\sigma_{db}}{2}I-\left[\sigma_{db}\right]^{\times}+
σdbσdbT)=14σdbT(1+σdbTσdb)\displaystyle\sigma_{db}{\sigma_{db}}^{T}\Big{)}=\frac{1}{4}{\sigma_{db}}^{T}\left(1+\sigma_{db}^{T}\sigma_{db}\right) (15)
V¯˙=ξTLξ+k¯ωlbbTσdb\displaystyle\dot{\bar{V}}=-\xi^{T}L\xi+\bar{k}{\omega^{b}_{lb}}^{T}\sigma_{db}
V¯˙=(k12ωlbbTLωlbb+2k1k2ωlbbTLσdb+\displaystyle\Leftrightarrow\dot{\bar{V}}=-\bigl{(}{k_{1}}^{2}{\omega^{b}_{lb}}^{T}L\omega^{b}_{lb}+2{k_{1}}{k_{2}}{\omega^{b}_{lb}}^{T}L\sigma_{db}+
k22σdbTLσdb)+k¯ωblbTσdb\displaystyle{k_{2}}^{2}{\sigma_{db}}^{T}L\sigma_{db}\bigr{)}+\bar{k}{\omega^{b}_{lb}}^{T}\sigma_{db} (16)

Therefore, if 2k1k2L=k¯I2k_{1}k_{2}L=\bar{k}I, then V¯˙<0\dot{\bar{V}}<0. This fact are stated in (17).

V¯˙=k12ωlbbTLωlbbk22σdbTLσdb<0,\displaystyle\dot{\bar{V}}=-{k_{1}}^{2}{\omega^{b}_{lb}}^{T}L\omega^{b}_{lb}-{k_{2}}^{2}{\sigma_{db}}^{T}L\sigma_{db}<0,
 if 2k1k2L=k¯I>0\displaystyle\text{ if }2k_{1}k_{2}L=\bar{k}I>0 (17)

Since, V¯>0{\bar{V}>0} and V¯˙<0{\dot{\bar{V}}<0} for any non-zero value of the state (ωlbb,σdb)\left({\omega^{b}_{lb}},{\sigma_{db}}\right), hence the equilibrium point, (ωlbb,σdb)=[000000]T\left({\omega^{b}_{lb}},{\sigma_{db}}\right)={\begin{bmatrix}0&0&0&0&0&0\end{bmatrix}}^{T}, is asymptotically stable for any initial angular velocity ωlbb(t=0)\omega^{b}_{lb}\left(t=0\right), the initial attitude error σdb(t=0)\sigma_{db}\left(t=0\right), and the desired angular velocity ωldb=[000]T\omega^{b}_{ld}={\begin{bmatrix}0&0&0\end{bmatrix}}^{T}.

In addition, since k¯>0\bar{k}>0 and L>0L>0, it implies more strict condition regarding k1k_{1} and k2k_{2}, i.e., k1k2>0k_{1}k_{2}>0. Note that since k¯\bar{k} is any positive value, hence LL can be any positive definite matrix as well as k1k_{1} and k2k_{2} can be any non-zero scalar such that k1k2>0k_{1}k_{2}>0. It completes the proof. ∎

Remarks 2

The designed sliding mode controller τ\tau is a continuous but not linear feedback. ”Linear continuous” term used to name the type of the sliding mode is based on the control structure of the uNu_{N}.

Refer to caption

Figure 1: Sliding motion; ξ=[ξ1ξ2ξ3]T;ξ1;ξ2;ξ3\xi=\begin{bmatrix}\xi 1&\xi 2&\xi 3\end{bmatrix}^{T};\xi 1-;\xi 2--;\xi 3\cdots.

Refer to caption

Figure 2: Angular velocity of the satellite’s body frame with respect to the inertial reference frame expressed in the satellite body frame; ωlbb=[ωlb1bωlb2bωlb3b]T;ωlb1b;ωlb2b;ωlb3b\omega^{b}_{lb}=\begin{bmatrix}\omega^{b}_{lb1}&\omega^{b}_{lb2}&\omega^{b}_{lb3}\end{bmatrix}^{T};\omega^{b}_{lb1}-;\omega^{b}_{lb2}--;\omega^{b}_{lb3}\cdots.

Refer to caption

Figure 3: Attitude of the satellite’s body frame with respect to the desired frame (attitude error); σdb=[σdb1σdb2σdb3]T;σdb1;σdb2;σdb3\sigma_{db}=\begin{bmatrix}\sigma_{db1}&\sigma_{db2}&\sigma_{db3}\end{bmatrix}^{T};\sigma_{db1}-;\sigma_{db2}{--};\sigma_{db3}\cdots.

Refer to caption

Figure 4: Attitude of the satellite’s body frame with respect to the inertial reference frame; σlb=[σlb1σlb2σlb3]T;σlb1;σlb2;σlb3\sigma_{lb}=\begin{bmatrix}\sigma_{lb1}&\sigma_{lb2}&\sigma_{lb3}\end{bmatrix}^{T};\sigma_{lb1}-;\sigma_{lb2}--;\sigma_{lb3}\cdots.

Refer to caption


Figure 5: Control signal uNu_{N}; uN=[uN1uN2uN3]T;{u_{N}=\begin{bmatrix}u_{N1}&u_{N2}&u_{N3}\end{bmatrix}^{T};} uN1;u_{N1}-; uN2;u_{N2}{--}; uN3u_{N3}\cdots.

Refer to caption

Figure 6: Control signal uequ_{eq}; ueq=[ueq1ueq2ueq3]T;{u_{eq}=\begin{bmatrix}u_{eq1}&u_{eq2}&u_{eq3}\end{bmatrix}^{T};} ueq1;u_{eq1}-; ueq2;u_{eq2}{--}; ueq3u_{eq3}\cdots.

Some numerical examples are presented to figure out how effective the designed sliding mode-based attitude control system is. The simulations are conducted using a variable-step solver. The rigid body satellite’s moment of inertia, the controller parameters, and the initial conditions are presented in (18), (19), and (20), respectively. The value of the moment of inertia JJ is adopted from [20], while the controller parameters are arbitrary chosen. The desired attitude σld\sigma_{ld} value is taken from the simulation setting in [4].

J=[1.490.0540.04420.0541.5100.044201.56]\displaystyle J={\begin{bmatrix}1.49&0.054&0.0442\\ 0.054&1.51&0\\ 0.0442&0&1.56\end{bmatrix}} (18)
k1=k2=0.04,L=0.04I\displaystyle k_{1}=k_{2}=0.04,L=0.04I (19)
ωlbb(0)=[00.10]T,\displaystyle\omega^{b}_{lb}\left(0\right)={\begin{bmatrix}0&-0.1&0\end{bmatrix}}^{T},
σlb(0)=[000]T,\displaystyle\sigma_{lb}\left(0\right)={\begin{bmatrix}0&0&0\end{bmatrix}}^{T},
σld=[0.33330.33330.3333]T\displaystyle\sigma_{ld}={\begin{bmatrix}0.3333&-0.3333&-0.3333\end{bmatrix}}^{T} (20)

Fig. 1-Fig. 6 show some dynamics characteristics relating to the simulation setting. Fig. 1 verifies that the sliding motion exists. Meanwhile, Fig. 5 and Fig. 6 confirm that the control signal uNu_{N} and uequ_{eq}, respectively, are also able to bring the trajectories converge to the equilibrium (Fig. 2 and Fig. 3), i.e., reach the desired states (Fig. 4).

IV Concluding Remarks

The designed attitude control system using a linear continuous-type sliding mode controller with the attitude state feedback in modified Rodrigues parameters (MRP) representation has been presented. It guarantees the sliding mode to exist asymptotically. Furthermore, the equilibrium point of the control system has an asymptotic stability guarantee. This stability analysis is conducted since the sliding mode existence on the designed sliding surface does not imply the stability guarantee of the system’s equilibrium. Numerical examples verify that the sliding motion exists and the trajectories converge to the desired states.

Additional future work would concentrate on investigating the robustness properties of this control system. Besides, the attitude controller’s stability analysis in the discrete-time domain for its digital implementation would also be the future works.

Acknowledgments

This research is supported by the Ministry of Research and Technology/ National Agency for Research and Innovation (BRIN), Jakarta, Republic of Indonesia. The authors also acknowledge the Satellite Technology Center, National Institute of Aeronautics and Space (LAPAN) for providing the research facilities. HS is the main contributor of this paper with detail contributions as follows: HS – idea, proof derivation, simulation, discussion, paper preparation; DS – discussion, reviewing, editing.

References

  • [1] M. K. Ozgoren, “Comparative study of attitude control methods based on Euler angles, quaternions, angle–axis pairs and orientation matrices,” Transactions of the Institute of Measurement and Control, vol. 41, no. 5, pp. 1189–1206, 2019, doi: 10.1177/0142331218773519.
  • [2] N. A. Chaturvedi, Amit K. Sanyal, and N. Harris McClamroch, “Rigid Body Attitude Control: Using Rotation Matricies for Continuous, Singularity-free Control Laws,” IEEE Control Systems Magazine, vol. 31, no. 3, pp. 30–51, 2011, doi: 10.1109/MCS.2011.940459.
  • [3] M. R. Binette, C. J. Damaren, and L. Pavel, “Nonlinear H\infty attitude control using modified rodrigues parameters,” Journal of Guidance, Control, and Dynamics, vol. 37, no. 6, pp. 2017–2020, 2014, doi: 10.2514/1.G000511.
  • [4] R. Özgür Doruk, “Linearization in satellite attitude control with modified Rodriguez parameters,” Aircraft Engineering and Aerospace Technology, vol. 81, no. 3, pp. 199–203, 2009, doi: 10.1108/00022660910954691.
  • [5] P. Tsiotras, “Further passivity results for the attitude control problem,” IEEE Transactions on Automatic Control, vol. 43, no. 11, pp. 1597–1600, 1998, doi: 10.1109/9.728877.
  • [6] H. Septanto, B. R. Trilaksono, A. Syaichu-Rohman, R. E. Poetro, and A. R. Ibrahim, “Nonlinear Continuous Quaternion-Based Attitude Controller Composing Augmented Dynamic,” ICIC Express Letters, vol. 8, no. 11, pp. 3245–3250, 2014.
  • [7] J.-J. E. Slotine and W. Li, Applied Nonlinear Control.   Englewood Cliffs, NJ: Prentice hall., 1991.
  • [8] S. P. Bhat and D. S. Bernstein, “Continuous finite-time stabilization of the translational and rotational double integrators,” IEEE Transactions on Automatic Control, vol. 43, no. 5, pp. 678–682, 1998, doi: 10.1109/9.668834.
  • [9] S. T. Venkataraman and S. Gulati, “Control of nonlinear systems using terminal sliding modes,” Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, vol. 115, no. 3, pp. 554–560, 1993, doi: 10.1115/1.2899138.
  • [10] I. Boiko, L. Fridman, A. Pisano, and E. Usai, Modern Sliding Mode Control Theory.   Springer-Verlag Berlin Heidelberg, 2008, vol. 375, ch. A comprehensive analysis of chattering in second order sliding mode control systems, pp. 23–49, doi: 10.1007/978-3-540-79016-7_2.
  • [11] F. Esfandiari and H. K. Khalil, “Stability Analysis of a Continuous Implementation of Variable Structure Control,” IEEE Transactions on Automatic Control, vol. 36, no. 5, pp. 616–620, 1991, doi: 10.1109/9.76367.
  • [12] M. D. Brown, Y. B. Shtessel, and J. M. Buffington, “Finite reaching time continuous sliding mode control with enhanced robustness,” in AIAA Guidance, Navigation, and Control Conference and Exhibit, 2000, doi: 10.2514/6.2000-3964.
  • [13] F. Zhou and D. G. Fisher, “Continuous sliding mode control,” International Journal of Control, vol. 55, no. 2, pp. 313–327, 1992, doi: 10.1080/00207179208934240.
  • [14] H. Septanto and A. S. Rohman, “Sliding mode control design of linear continuous feedback systems: Two-steps lmi approach,” in International Conference on Instrumentation, Communication, Information Technology, and Biomedical Engineering 2009.   IEEE, 2009, pp. 1–5, doi: 10.1109/ICICI-BME.2009.5417250.
  • [15] M. R. Santabudi, A. S. Rohman, and H. F. Prasetyo, “Speed control implementation of bldc motor using sliding mode two-steps lmi design,” in 2017 3rd International Conference on Science in Information Technology (ICSITech).   IEEE, 2017, pp. 632–636, doi: 10.1109/ICSITech.2017.8257190.
  • [16] V. I. Utkin, “Sliding mode control,” in Variable Structure Systems: from principles to implementation, 2004th ed., A. Sabanovic, L. M. Fridman, and S. Spurgeon, Eds.   The Institution of Engineering and Technology, 2004, ch. Sliding mo, pp. 3–17, doi: 10.1049/PBCE066E.
  • [17] I. Boiko and L. Fridman, “Analysis of Chattering in Continuous Sliding-Mode Controllers,” Ieee Transactions on Automatic Control, vol. 50, no. 9, pp. 1442–1446, 2005, doi: 10.1109/TAC.2005.854655.
  • [18] E. Bernuau, D. Efimov, W. Perruquetti, and A. Polyakov, “On homogeneity and its application in sliding mode control,” Journal of the Franklin Institute, vol. 351, no. 4, pp. 1866–1901, 2014, doi: 10.1016/j.jfranklin.2014.01.007.
  • [19] G. P. M. Raymond A. DeCarlo, Stanislaw H. Zak, “Variable Structure Control of Nonlinear Multivariable Systems: A Tutorial,” Proceedings of IEEE, vol. 76, no. 3, pp. 212–232, 1988, doi: 10.1109/5.4400.
  • [20] H. Septanto and D. Suprijanto, “Asymptotic Stability of Quaternion-based Attitude Control System with Saturation Function,” International Journal of Electrical and Computer Engineering (IJECE), vol. 7, no. 4, pp. 1994–2001, 2017, doi: 10.11591/ijece.v7i4.pp1994-2001.