This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Local random quantum circuits form approximate
designs on arbitrary architectures

Shivan Mittala and Nicholas Hunter-Jonesa,b,c
Abstract

We consider random quantum circuits (RQC) on arbitrary connected graphs whose edges determine the allowed 22-qudit interactions. Prior work has established that such nn-qudit circuits with local dimension qq on 1D\mathrm{1D}, complete, and DD-dimensional graphs form approximate unitary designs, that is, they generate unitaries from distributions close to the Haar measure on the unitary group U(qn)U(q^{n}) after polynomially many gates. Here, we extend those results by proving that RQCs comprised of O(poly(n,k))O(\mathrm{poly}(n,k)) gates on a wide class of graphs form approximate unitary kk-designs. We prove that RQCs on graphs with spanning trees of bounded degree and height form kk-designs after O(|E|npoly(k))O(|E|n\,\mathrm{poly}(k)) gates, where |E||E| is the number of edges in the graph. Furthermore, we identify larger classes of graphs for which RQCs generate approximate designs in polynomial circuit size. For k4k\leq 4, we show that RQCs on graphs of certain maximum degrees form designs after O(|E|n)O(|E|n) gates, providing explicit constants. We determine our circuit size bounds from the spectral gaps of local Hamiltonians. To that end, we extend the finite-size (or Knabe) method for bounding gaps of frustration-free Hamiltonians on regular graphs to arbitrary connected graphs. We further introduce a new method based on the Detectability Lemma for determining the spectral gaps of Hamiltonians on arbitrary graphs. Our methods have wider applicability as the first method provides a succinct alternative proof of Commun. Math. Phys. 291, 257 (2009) and the second method proves that RQCs on any connected architecture form approximate designs in quasi-polynomial circuit size.


aDepartment of Physics, University of Texas at Austin, Austin, TX 78712
bDepartment of Computer Science, University of Texas at Austin, Austin, TX 78712
cStanford Institute for Theoretical Physics, Stanford, CA 94305

shivan@utexas.edu nickrhj@utexas.edu

1 Introduction

Random quantum circuits (RQCs) serve as both a potential candidate for demonstrating exponential quantum advantage and a solvable model of local quantum chaotic dynamics. For example, they are used in demonstrating advantage of quantum over classical computing [Boi+18, Aru+19, Bou+19, Wu+21, Zhu+22, Mor+23], as analytically tractable models to study out-of-equilibrium physics and entanglement generation in many-body quantum systems [ODP07, DOP07, Žni08, Nah+17, NVH18, Key+18, BŽ21], as encoding circuits for quantum error correcting codes [BF13], as models for scrambling and decoupling quantum information [BF12, BF15], and (thus) as models for information dynamics inside black holes [HP07, Bra+21]. In most applications, one is interested in the ensemble averages of kk-degree polynomials in the entries of a randomly selected unitary matrix and its complex conjugate. Some examples of such polynomials include kthk^{\text{th}} statistical moment of observables and (k/2)(k/2)-point out-of-time-ordered correlation functions. However, approximating typical unitary operators on nn-qudit Hilbert spaces is computationally and physically intractable because it requires O(22n)O(2^{2n}) gates in a quantum circuit [Kni95]. This exponential complexity can be avoided by using RQCs because they can implement unitary time evolutions that are sampled from a distribution close to the Haar distribution on the unitary group with only polynomial in nn gates [Dan+09, GAE07]. In particular, RQCs on nn qudits with local dimension qq after O(poly(n,k)log(1/ε))O(\mathrm{poly}(n,k)\log(1/\varepsilon)) gates generate distributions over the unitary group U(qn)U(q^{n}) such that ensemble averages of degree kk polynomials in the entries of the unitary matrices are ε\varepsilon-close to the same averages computed using the Haar measure on U(qn)U(q^{n}) [BHH16, Hun19, HH21, Haf22, HM23]. Due to this property, the RQC-generated distributions over U(qn)U(q^{n}) are termed ε\varepsilon-approximate unitary kk-designs, or it is simply said that RQCs form ε\varepsilon-approximate unitary kk-designs.

Suppose vertices and edges of a graph denote qudits and pairs of qudits on which gates can act in the circuit, respectively. We call that graph is the architecture of the random quantum circuit. Then the mentioned references show that O(poly(n,k))O(\mathrm{poly}(n,k)) (omitting log(1/ε)\log(1/\varepsilon) dependence which is fundamental) gates suffice to form approximate kk-designs for RQCs with the following architectures: 1D line with open and closed boundary conditions, complete graph, and DD-dimensional lattice in arbitrary dimension. Here, we extend that literature by proving that RQCs on a large class of graphs form approximate designs in O(poly(n,k))O(\mathrm{poly}(n,k)) circuit size. The class of graphs for which we show this result directly includes all previous architectures and, more generally, bounded degree graphs with O(log(n))O(\log{(n)}) height spanning trees as well as other graphs that can be “compressed” to such graphs (as we define later). Furthermore, we show that O(nO(log(n))poly(k))O(n^{O(\log(n))}\mathrm{poly}(k)) gates suffice for RQCs with arbitrary architectures to form approximate unitary kk-designs. The polynomial dependence on kk in our bounds is inherited from existing results in 1D.

For several applications of RQCs, approximating low kk moments is sufficient. For example, purity of subsystems and the first two moments of observables inform us about entanglement generation and out-of-equilibrium behavior of random dynamics modeled by RQCs. Anti-concentration of RQC output distributions can be determined from the variance of the measurement probabilities and is thus a second moment quantity, potentially independent of the circuit architecture [DHB22]. Anti-concentration, in turn, provides evidence for hardness [Bou+19] and, concurrently, the classical tractability of Random Circuit Sampling [Aha+23], a task proposed to demonstrate quantum supremacy and implemented by Google and USTC. In these applications of approximating averages of low-degree polynomials of unitaries, the scaling of the number of gates in nn for fixed kk is important. Our results indicate that studying out-of-equilibrium behavior, entanglement generation, post-thermalization dynamics [CHR22] and the output distributions [Nie+23] of random quantum circuits is possible on a wide class of architectures with only O(poly(n))O(\mathrm{poly}(n)) gates. On the other hand, the scaling in kk of the required number of gates is important for proving the strong version of Brown-Susskind conjecture [Bra+21, Haf22, OHH22], which states that circuit complexity (minimum circuit size required to construct a unitary operator using a universal gate set) of most unitary operators generated by RQCs increases linearly with the circuit size. Since our bound on the circuit size inherits its kk-dependence directly from the 1D\mathrm{1D} case, if the strong version of the Brown-Susskind conjecture were proven for the 1D\mathrm{1D} case, our results would imply a proof for RQCs on arbitrary connected architectures.

For the first few moments, we provide a combination of analytical and numerical results. We use the finite-size criteria due to Knabe alongside our improved numerical scheme to find rigorous circuit size bounds for forming designs on arbitrary bounded degree connected architectures. Using the same approach, we provide a short proof of Ref. [HL09] showing the convergence of RQCs on complete graph architecture to unitary 22-designs in O(n2)O(n^{2}) size. For general moments, we provide analytical size bounds for forming approximate kk-designs on arbitrary connected graphs. Here, our main technical contribution is a lower bound on the spectral gap of a local Hamiltonian defined on an arbitrary connected graph of qudits with pairwise interaction. Determining the spectral gap of a local Hamiltonian is a hard problem and, hence, there does not exist a single procedure to find it other than to diagonalize the Hamiltonian, which is computationally expensive. We describe a novel technique to lower bound the spectral gap of frustration-free Hamiltonians on arbitrary connected graphs when the local terms of the Hamiltonian are invariant under left/right multiplication by the two-site permutation operator and the projector on to the ground states commutes with the nn-site cyclic permutation operator. Our approach relies on recursive application of the Detectability Lemma and the Quantum Union Bound in a novel way that is independent of the techniques in [AAV16, Ans20], along with the properties of spanning trees of connected graphs. We begin with stating the definitions and notations that we use in Section 2 followed by the motivation and informal summary of our results Section 3. In later sections (Section 4Section 7), we provide formal statements and proofs of our results. We conclude with an outlook in Section 8. In the appendices, we collect numerical calculations of spectral gaps, semi-classical approximations of spectral gaps, and some proofs for results in Section 5.

2 Notation and Definitions

In this section, we give basic definitions and notations that we will use throughout the text. Let nn denote the number of qudits and let qq be their local dimension. Consider a graph G(V,E)G(V,E), where VV denotes the set of vertices and EE denotes the set of unordered pairs of vertices that share an edge in the graph. Vertices in VV are identified with qudits in a quantum circuit (or rather their corresponding Hilbert spaces). We will simplify notation and denote a graph by GG, unless the need to specify VV and EE arises. Moving forward, we will only consider connected graphs. We will denote the complex conjugate and Hermitian adjoint of a matrix AA by A¯\overline{A} and AA^{\dagger}, respectively.

There are various notions of random quantum circuits that primarily differ in the choice of gate set and the pairs of qudits acted upon by unitary gates at each time step. We consider “local” random quantum circuits that are defined as follows.

Definition 1.

A local random quantum circuit on a graph G(V,E)G(V,E) is defined to be a quantum circuit in which at each time step an edge (i,j)(i,j) is chosen uniformly at random from EE, a 22-site unitary gate UU is chosen randomly with respect to the Haar measure on 𝒰(q2)\mathcal{U}(q^{2}), and UU is applied to the circuit on qudits ii and jj. We refer to G(V,E)G(V,E) as the architecture of the local random quantum circuit. Random quantum circuits of size tt correspond to tt steps of this random process.

We find it more convenient to talk about the size of a random circuit, i.e. the number of constituent gates, instead of the depth as circuit depth becomes somewhat ambiguous when dealing with more general circuit architectures.

The approximate unitary design property of a distribution on the group of nn-qudit unitaries is a statement about its convergence to the Haar measure on that group. Its definition in terms of the diamond norm is as follows.

Definition 2.

An RQC with architecture defined by a graph GG is said to form an ε\varepsilon-approximate unitary kk-design if for any ε>0\varepsilon>0, there exists a minimum size τ\tau of the RQC such that for all tτt\geq\tau the quantum channel Φ(G,n,k,t)():=(dνRQC(G))tUk()Uk\Phi(G,n,k,t)(\ \cdot\ ):=\int(d\nu_{\mathrm{RQC}}(G))^{*t}\,U^{\otimes k}(\ \cdot\ )U^{\dagger\otimes k} computed using the tt-fold convolution of the probability measure over the unitary group induced by one step of the RQC, (dνRQC(G))t(d\nu_{\mathrm{RQC}}(G))^{*t}, and the quantum channel Φ(n,k)():=𝑑μHaarUk()Uk\Phi(n,k)(\ \cdot\ ):=\int d\mu_{\mathrm{Haar}}\,U^{\otimes k}(\ \cdot\ )U^{\dagger\otimes k} computed using the Haar measure over the unitary group, dμHaard\mu_{\mathrm{Haar}}, are ε\varepsilon close in diamond norm, that is,

Φ(G,n,k,t)Φ(n,k)εqnk.\big{\|}\Phi(G,n,k,t)-\Phi(n,k)\big{\|}_{\diamond}\leq\frac{\varepsilon}{q^{nk}}\,. (1)

An alternative version to Definition 2, expressed in terms of a more easily computable norm, the operator norm, is presented next. We will compute/estimate the operator norm to upper bound the circuit size after which local RQCs form approximate unitary designs.

Definition 3.

An RQC with architecture defined by graph GG is said to form an ε\varepsilon-approximate unitary kk-design if for any ε>0\varepsilon>0, there exists a minimum size τ\tau of the RQC such that for all tτt\geq\tau the moment operator Φ(G,n,k,t):=(dνRQC(G))tUkU¯k\Phi(G,n,k,t):=\int(d\nu_{\mathrm{RQC}}(G))^{*t}\,U^{\otimes k}\otimes\overline{U}^{\otimes k} computed using the tt-fold convolution of the probability measure over the unitary group induced by one step of the RQC, (dνRQC(G))t(d\nu_{\mathrm{RQC}}(G))^{*t}, and the moment operator Φ(n,k):=𝑑μHaarUkU¯k\Phi(n,k):=\int d\mu_{\mathrm{Haar}}\,U^{\otimes k}\otimes\overline{U}^{\otimes k} computed using the Haar measure over the unitary group, dμHaard\mu_{\mathrm{Haar}}, are ε\varepsilon close in operator norm, that is,

Φ(G,n,k,t)Φ(n,k)εq2nk.\big{\|}\Phi(G,n,k,t)-\Phi(n,k)\big{\|}_{\infty}\leq\frac{\varepsilon}{q^{2nk}}\,. (2)

As the operator norm of the moment operators bounds the diamond norm of the corresponding channels at the expense of a factor of qnkq^{nk}, proving that an RQC architecture satisfies Definition 3 implies the approximate design condition in Definition 2.

To compute/estimate the operator norm in Definition 3, we will benefit from defining a rescaled version of the moment operator and a Hamiltonian.

Definition 4.

Consider an RQC with architecture defined by a graph G(V,E)G(V,E) and the corresponding moment operators, Φ(G,n,k,t)\Phi(G,n,k,t) and Φ(n,k)\Phi(n,k). We define a rescaled moment operator as follows,

M(G,n,k,t)=|E|Φ(G,n,k,t),\displaystyle M(G,n,k,t)=|E|\Phi(G,n,k,t), (3)

and, in particular,

M(G,n,k,1)=(i,j)E𝒰(q2)𝑑μHaarU(i,j)k,k𝕀[n]\{i,j}k,k\displaystyle M(G,n,k,1)=\sum_{(i,j)\in E}\int_{\mathcal{U}(q^{2})}d\mu_{\mathrm{Haar}}U_{(i,j)}^{\otimes k,k}\otimes\mathbb{I}_{[n]\backslash\{i,j\}}^{\otimes k,k}\, (4)

where ()k,k:=()k()¯k(\ \cdot\ )^{\otimes k,k}:=(\ \cdot\ )^{\otimes k}\otimes\overline{(\ \cdot\ )}^{\otimes k}, subscripts denote the Hilbert spaces on which the operators act, 𝕀X\mathbb{I}_{X} denotes the identity operator on all sites with indices in the set XX and |E||E| denotes the number of edges in the graph G(V,E)G(V,E). Each term in the sum in Eq. (4) is referred to as a local term of the moment operator M(G,n,k,1)M(G,n,k,1). We simplify notation by defining M(G,n,k):=M(G,n,k,1)M(G,n,k):=M(G,n,k,1).

The Hamiltonian is the rescaled moment operator of Definition 4 with its spectrum inverted about its maximum eigenvalue. Defining such a Hamiltonian is useful because then we may use existing techniques to bound spectral gaps of Hamiltonians in order to upper bound the operator norm in Definition 3.

Definition 5.

We define a frustration-free local Hamiltonian denoted by H(G,n,k)H(G,n,k) as follows,

H(G,n,k):=|E|𝕀[n]k,kM(G,n,k)=(i,j)E(𝕀[n]k,k𝒰(q2)𝑑μHaarU(i,j)k,k𝕀[n]\{i,j}k,k),H(G,n,k):=|E|\ \mathbb{I}_{[n]}^{\otimes k,k}-M(G,n,k)=\sum_{(i,j)\in E}\left(\mathbb{I}_{[n]}^{\otimes k,k}-\int_{\mathcal{U}(q^{2})}d\mu_{\mathrm{Haar}}\,U_{(i,j)}^{\otimes k,k}\otimes\mathbb{I}_{[n]\backslash\{i,j\}}^{\otimes k,k}\right)\,, (5)

where the notation is borrowed from the previous definitions. Each term (enclosed in parenthesis) in the sum in Eq. (5) is referred to as a local term of the Hamiltonian H(G,n,k)H(G,n,k). We denote the spectral gap of H(G,n,k)H(G,n,k) by Δ(G,n,k)\Delta(G,n,k). We refer the reader to Ref. [BHH16] for the proof of frustration-freeness of H(G,n,k)H(G,n,k).

The primary existing technique of lower bounding the spectral gap of local Hamiltonians that we use is due to Knabe [Kna88]. It relates the spectral gap of the Hamiltonian restricted to a finite subset of total sites to that of the Hamiltonian on all sites. Thus, the following definitions of “neighborhood” of a vertex in a graph and restriction of the Hamiltonian to that neighborhood will prove useful.

Definition 6.

Consider a graph G(V,E)G(V,E). The neighborhood N(v)N(v) of any vertex vVv\in V is defined as follows,

N(G,v):={u:(v,u)E or u=v}.N(G,v):=\{u:(v,u)\in E\text{ or }u=v\}\,. (6)

We define the restriction of H(G,n,k)H(G,n,k) to the neighborhood of a vertex vv in the natural way by H(N(G,v),|N(G,v)|,k)H(N(G,v),|N(G,v)|,k), and denote its spectral gap by Δ(N(G,v),|N(G,v)|,k)\Delta(N(G,v),|N(G,v)|,k), where |N(G,v)||N(G,v)| denotes the number of vertices in N(G,v)N(G,v), or, equivalently, one plus the degree of vv.

In Section 5, we will introduce another method to determine spectral gaps of Hamiltonians of the form given in Definition 5 that relies on the Detectability Lemma and, its converse, the Quantum Union Bound as defined below.

Lemma 1 (Detectability Lemma [Aha+08, AAV16]).

Consider a set of projectors {Qi}i=1m\{Q_{i}\}_{i=1}^{m} and a Hamiltonian H=i=1mQiH=\sum_{i=1}^{m}Q_{i}, with spectral gap Δ\Delta. Assume that each QiQ_{i} does not commute with at most gg other projectors in {Qi}i=1m\{Q_{i}\}_{i=1}^{m}. For any πSm\pi\in S_{m}, define |ϕ:=i=1m(1Qπ(i))|ψ\ket{\phi}:=\prod_{i=1}^{m}(1-Q_{\pi(i)})\ket{\psi}, then

i=1m(1Qπ(i))|ψ211+ϕ|H|ϕg2ϕ|ϕ11+Δg2.\displaystyle\left\lVert\prod_{i=1}^{m}(1-Q_{\pi(i)})\ket{\psi}\right\rVert^{2}\leq\cfrac{1}{1+\cfrac{\bra{\phi}H\ket{\phi}}{g^{2}\langle\phi|\phi\rangle}}\leq\cfrac{1}{1+\cfrac{\Delta}{g^{2}}}\,. (7)
Lemma 2 (Quantum Union Bound [Gao15, AAV16]).

Consider a set of projectors {Qi}i=1m\{Q_{i}\}_{i=1}^{m} and a Hamiltonian H=i=1mQiH=\sum_{i=1}^{m}Q_{i} with spectral gap Δ\Delta. For any πSm\pi\in S_{m}

i=1m(1Qπ(i))|ψ214ψ|H|ψ14Δ.\displaystyle\left\lVert\prod_{i=1}^{m}(1-Q_{\pi(i)})\ket{\psi}\right\rVert^{2}\geq 1-4\bra{\psi}H\ket{\psi}\geq 1-4\Delta\,. (8)

We will refer to the left hand sides of Eqs. (7) and (8) as the Detectability Lemma norm. We will refer to the operator inside those norms as the Detectability Lemma operator.

Now we describe the landscape of results in the current literature, motivate an open question and report our partial progress.

3 Motivation and Results

In the seminal work of Ref. [BHH16], it was proved that local and parallel/brickwork RQCs on 1D graphs form ε\varepsilon-approximate unitary kk-designs in O(n2k11)O(n^{2}k^{11}) circuit size (or, equivalently O(nk11)O(nk^{11}) circuit depth). Subsequently, the size bound for brickwork RQCs on 1D graphs was improved in Ref. [Haf22] to O(n2k5+o(1))O(n^{2}k^{5+o(1)}). For large local dimension, an upper bound of O(n2k)O(n^{2}k) on the design size of brickwork RQCs on 1D graphs was proved in Ref. [Hun19] and improved in Ref. [HH21] for the local dimensions larger than Ω(k2)\Omega(k^{2}). The upper bounds in the last two references are almost optimal in both nn and kk by comparison with the lower bound of Ω(nk/log(nk))\Omega(nk/\log(nk)) proved in Ref. [BHH16]. Beyond results for RQCs on 1D graphs, Ref. [HH21] proved that O(n2log(n)poly(k))O(n^{2}\log(n){\rm poly}(k)) size local RQCs on complete graphs form approximate designs. Furthermore, an upper bound of O(n1+1/Dpoly(k))O(n^{1+1/D}\mathrm{poly}(k)) on the size of parallel RQCs on hypercubic lattices in DD dimensions was proved in Ref. [HM23]. Therefore, the existing literature considers RQCs on three broad classes of graphs—1D, complete and DD-dimensional graphs—and concludes that those RQCs form ε\varepsilon-approximate unitary kk-designs for sizes that scale in nn and kk as given above. Thus, we are naturally led to ask,

At what circuit size do random quantum circuits on arbitrary connected graphs form ε\varepsilon-approximate unitary kk-designs?

We will follow the approach of Refs. [Žni08, BV10, BH13, BHH16] and derive circuit size upper bounds from the spectral gap Δ(G,n,k)\Delta(G,n,k) of the local Hamiltonian H(G,n,k)H(G,n,k). We recall an observation used explicitly in Ref. [OHH22] that one can use the spectral gap for 1D\mathrm{1D} RQC to lower bound the spectral gap for graphs that contain a Hamiltonian path. Since the respective Hamiltonians share the same ground space, the spectral gap can only increase by adding local terms to the Hamiltonian for 1D graph consisting of nn sites (similar observations were also made in Refs. [BH13, BF12, Ono+17]). Nevertheless, this observation naively offers little insight into the nature of spectral gaps for arbitrary graphs and cannot control the gaps for graphs without a Hamiltonian path.

Intuitively, one expects that RQCs which allow for mixing across any pair of qudits and across only nearest-neighbor qudits on a line (that is, RQCs on complete and 1D graphs) to exhibit maximal and minimal mixing properties, respectively. Therefore, one might think that RQCs on all other connected graphs would exhibit mixing properties that interpolate between those of RQCs on 1D and complete graphs. This empirical reasoning leads us to refine our original question to the following,

Do local RQCs on arbitrary nn-vertex connected graphs form ε\varepsilon-approximate unitary kk-designs at least as fast as RQCs on 1D\mathrm{1D} graphs, that is, after O(n2)O(n^{2}) gates?

We provide partial progress towards answering the above question. Consider an arbitrary nn-vertex connected graph G(V,E)G(V,E). We seek to find if local RQCs with architecture given by GG form ε\varepsilon-approximate unitary kk-designs in O(n2)O(n^{2}) size. It suffices to show that the ratio of the spectral gap Δ(G,n,k)\Delta(G,n,k) of the Hamiltonian H(G,n,k)H(G,n,k) and the number of edges is Δ(G,n,k)/|E|=Ω(1/n)\Delta(G,n,k)/|E|=\Omega(1/n).

As defined, our random circuits involve the application of 2-site unitaries drawn from the Haar measure on the 2-site unitary group 𝒰(q2)\mathcal{U}(q^{2}). All of our results immediately extend to random quantum circuits constructed from gates drawn randomly from any universal gate set 𝖦\mathsf{G}, consisting of single and two-qubit gates. This follows from the independence of the local gap for universal gate sets closed under inverses and consisting of algebraic entries [BG11], which guarantees that if RQCs with Haar-random gates form kk-designs in O(poly(n,k))O({\rm poly}(n,k)) size, then so do RQCs with gates drawn from 𝖦\mathsf{G}, only at the expense of a gate-set dependent constant. Moreover, following the results of Refs. [Var13, OSH22] we can drop the restrictions on the universal gate set at the further expense of an nlog2(k)n\log^{2}(k) factor.

Result 1: We prove a Knabe bound for the spectral gap of a frustration-free Hamiltonian on any connected graph. Specifically, in Theorem 1 we relate Δ(G,n,k)\Delta(G,n,k) to the spectral gap of the Hamiltonian restricted to the neighborhood of any vertex in GG. For any vertex vv in GG, we denote its neighborhood by N(G,v)N(G,v), the restriction of the Hamiltonian to that neighborhood by H(N(G,v),|N(G,v)|,k)H(N(G,v),|N(G,v)|,k), and its spectral gap by Δ(N(G,v),|N(G,v)|,k)\Delta(N(G,v),|N(G,v)|,k). Theorem 1 requires

minvVΔ(N(G,v),|N(G,v)|,k)1/2|E|=Ω(1n),\frac{\min_{v\in V}\Delta\big{(}N(G,v),|N(G,v)|,k\big{)}-1/2}{|E|}=\Omega\left(\frac{1}{n}\right)\,, (9)

for Δ(G,n,k)/|E|=Ω(1/n)\Delta(G,n,k)/|E|=\Omega(1/n). Since the neighborhood N(G,v)N(G,v) of any vertex vv in a connected graph GG is a star graph, Theorem 1 reduces the original problem of finding a lower bound on Δ(G,n,k)\Delta(G,n,k) to that of finding a greater than 1/21/2 lower bound on the spectral gap of the Hamiltonian on a star graph.

Result 2: By computing star graph gaps, we prove that random quantum circuits on any graph of certain bounded degrees form approximate kk-designs for k4k\leq 4 after c|E|(2nk+log(1/ε))c|E|(2nk+\log(1/\varepsilon)) gates, giving explicit (good) constants cc. The point of this approach is to show that realistic circuit sizes suffice for low degree designs, as our approach for general moments involves reducing to the 1D spectral gap, along with the large constants involved.

For an nn_{\star}-vertex star graph GG_{\star}, we denote the Hamiltonian by H(G,n,k)H(G_{\star},n_{\star},k) and its spectral gap by Δ(G,n,k)\Delta(G_{\star},n_{\star},k). In Proposition 1 and Proposition 2, we compute the first few spectral gaps of the star graph Hamiltonian for k=2k=2. This result in turn implies that local RQCs on arbitrary connected graphs with |E||E| edges and maximum degree 33 form approximate 22-designs in O(|E|n)O(|E|n) size. We then numerically compute the spectral gaps for star graphs with various values of k,qk,q and nn_{\star}, and our findings are reported in Table 4 (in Appendix C). From that table, for each particular triplet of k,qk,q and nn_{\star}, we can infer that local RQCs on arbitrary connected graphs with |E||E| edges, maximum degree equal to n1n_{\star}-1 and local dimension qq form ε\varepsilon-approximate unitary kk-designs in O(|E|n)O(|E|n) size. This result rigorously extends the previous result with the help of numerics to indicate that RQCs on arbitrary graphs of maximum degree 3838 form approximate unitary 22-designs (Corollary 1).

In Figure 1, we plot the numerically computed star graph gaps. The observation that for k<4k<4, spectral gaps are strictly greater than 1/21/2, leads us to state the following conjecture,

Conjecture 1.

The second and third moment (k=2k=2 and k=3k=3) star graph gaps Δ(G,n,k)\Delta(G_{\star},n_{\star},k) are strictly greater than 1/21/2.

We also formulate a somewhat looser conjecture, applicable to higher moments:

Conjecture 2.

Below a certain threshold for the ratio, k2/qnk^{2}/q^{n_{\star}}, the star graph spectral gaps Δ(G,n,k)\Delta(G_{\star},n_{\star},k) are strictly greater than 1/21/2.

Refer to caption\pgfmathresultptΔ(G,n,k)\Delta(G_{\star},n_{\star},k)nn_{\star}
Figure 1: The vertical axis represents the spectral gaps of the Hamiltonian defined in Definition 5 on star graphs with nn_{\star} vertices for k=2k=2. The horizontal axis tracks the number of vertices in the star graph. The thick red line denotes Conjecture 1. The black diamonds, dark gray squares and light gray circles are the numerically computed values of the said spectral gaps for local dimension q=2q=2, q=3q=3 and q=4q=4, respectively. The data points are provided in Table 4 along with a remark on the method for computing the same.

If true, the conjecture along with Theorem 1 immediately proves that RQCs with O(|E|nk)O(|E|nk) size form ε\varepsilon-approximate unitary kk-designs on arbitrary graphs G(V,E)G(V,E). A full proof of Conjecture 1 or Conjecture 2 is currently not at hand. Instead, we directly prove bounds for the spectral gap Δ(G,n,k)\Delta(G,n,k) for the Hamiltonian H(G,n,k)H(G,n,k) on arbitrary connected graphs GG, as is summarized in the following results.

Result 3: In Corollary 2, Corollary 3 and Corollary 4, we identify a large class of graphs and prove lower bounds on their spectral gaps, Δ(G,n,k)\Delta(G,n,k), such that local RQCs on such graphs form ε\varepsilon-approximate unitary kk-designs in O(poly(n,k))O(\mathrm{poly}(n,k)) circuit size (Theorem 5 and Theorem 6). In particular, we show an O(|E|nk5+o(1))O(|E|nk^{5+o(1)}) bound on the circuit size for local RQCs on connected graphs with |E||E| edges and with spanning trees of constant maximum degree and height. For a weaker constraint of O(log(n))O(\log{(n)}) instead of constant height, we show O(poly(n,k))O(\mathrm{poly}(n,k)) bound on the circuit size albeit with higher polynomial scaling in nn. We extend the same bound for graphs whose spanning trees can be “compressed” (in a way that we define later Section 5 and Appendix A.3) to constant maximum degree and O(log(n))O(\log{(n)}) height. Note that previously, O(poly(n))O(\mathrm{poly}(n)) circuit size upper bounds to form approximate unitary designs with RQCs were only available for 1D\mathrm{1D}, complete or DD-dimensional architectures. Our result rigorously establishes that O(poly(n))O(\mathrm{poly}(n)) circuit size suffices to form approximate unitary designs on a large class of graphs, which directly includes all the graphs for which results were previously known in the literature.

We consider local RQCs (Definition 1) whereas Ref. [HM23] considers parallel RQCs with a specific arrangement of gates. This parallelized architecture seems crucial to the proof technique and it is not clear how their analysis would change if one were to pick any edge of, say, a 2D grid uniformly at random at each time step (that is, if one were to construct a local RQC like the ones we consider).

An important feature of the circuit size bounds of our result is that the kk dependence is directly inherited from the similar bound for RQCs with 1D\mathrm{1D} architecture. Thus, any improvement in the latter implies corresponding improvement in the former.

Result 4: In Theorem 3, we show that for local RQCs on arbitrary connected graphs, Δ(G,n,k)=Ω(1/nO(log(n)))\Delta(G,n,k)=\Omega(1/n^{O(\log(n))}). This implies that local RQCs on arbitrary connected graphs form ε\varepsilon-approximate unitary kk-designs in O(nO(log(n))poly(k))O(n^{O(\log(n))}\mathrm{poly}(k)) circuit size (Theorem 4 and Theorem 6). This is an extremely weak bound on circuit size, as it is quasi-polynomial in nn and does not prove our expectation that O(n2)O(n^{2}) circuit size suffices to form unitary designs with RQCs on arbitrary architectures. Nonetheless, it is the first result that provides a non-trivial and rigorous upper bound on the circuit size of RQCs on completely arbitrary connected architectures to form approximate unitary designs. As in the previous result, the circuit size bound of this result inherits its kk-dependence directly from the corresponding bound for RQCs on 1D\mathrm{1D} graphs. Therefore, a consequence of this result is that if the strong version of Brown-Susskind conjecture about the linear complexity growth of unitaries sampled by RQCs is true for RQCs on 1D\mathrm{1D} graphs, then, so is it true for RQCs on arbitrary connected graphs.

Result 5: In Corollary 6, we prove that when measuring the approximate convergence to unitary kk-designs using spectral norms (Definition 3), the least upper bound we could have proven is O(n2).O(n^{2}). This indicates two things; first, that one would need to measure convergence in a stronger norm, such as the diamond norm, to prove sub-quadratic size upper bounds; and, second, that when restricted to spectral norm definition of approximate unitary designs, in Result 3, we identify the optimal size upper bound of O(n2)O(n^{2}) for a strictly larger class of graphs than for which such results were known before.

Result 6: Lastly, we provide a short proof that complete-graph RQCs form approximate 2-designs in O(n2)O(n^{2}) size. To show this we derive a finite-size criteria for complete graphs (Theorem 9). Computing the exact n=3n=3 complete graph second moment gap, by diagonalizing the moment operator, and inserting into the Knabe bound gives a complete-graph gap lower bound for all nn (Theorem 8). This approach provides an alternative proof to that first presented in Ref. [HL09].

Our motivating question remains open, but we prove rigorous non-trivial size upper bounds for RQCs on arbitrary connected graphs to generate approximate unitary designs. Thus, our results rigorously justify the use of non-local circuit architectures for any application that requires approximate unitary design property of RQCs. In particular, our results provide support to quantum advantage experiments on wide variety of circuit architectures, beyond those implemented by Google and USTC. Furthermore, our results reduce the proof of the strong version of the Brown-Susskind conjecture for any connected architecture RQC to that for 1D\mathrm{1D} RQCs. In the following sections, we provide the formal statements of theorems and the summaries of our approaches to derive the same. In Section 4, we present Theorem 1, Proposition 1 and Proposition 2 with their short proofs. In Section 5, we provide Theorem 3, Corollary 2, Corollary 3, Corollary 4, Theorem 4, Theorem 5 and Theorem 6. We defer the proofs of this section to the appendices. In Section 6, we state and prove Corollary 6.

4 Gaps for arbitrary connected graphs from stars

In this section, we extend the method of finite-size criteria of proving spectral gaps of frustration-free local Hamiltonians on 1D\mathrm{1D} lattices due to Knabe [Kna88] to those on arbitrary graphs. Previously, Knabe’s method had been generalized beyond 1D spin chains with periodic boundary conditions to other boundary condition and higher-dimensional lattices [GM16, LM19, Lem19, Ans20, LX22]. We derive a finite-size criteria, which is applicable to all graphs, that uses the spectral gaps on star graphs (neighborhood of a vertex in a graph) to lower bound the gap on the graph of interest. We emphasize that for a general frustration-free Hamiltonian, the criteria might be too strong to say anything interesting as one needs to control all gaps on substars up to the maximal degree of the graph and show they are strictly greater than 1/21/2. Nevertheless, this criteria is enough for us to prove lower bounds on the spectral gaps of Hamiltonians as defined in Definition 5 on arbitrary graphs GG and derive size bounds for RQCs on bounded degree graphs to generate approximate unitary designs.

Previously, Knabe’s method has been used to prove spectral gaps of frustration-free local Hamiltonians on regular lattices, where there exists a clear notion of repeating unit cells. That notion is absent for generic connected graphs and requires keeping track of several possible distinct building blocks of the graphs. The main ideas behind our extension of the method is to first realize that star graph neighborhoods of every vertex in an arbitrary graph is a useful decomposition of the arbitrary graph, and then keep track of combinatorial factors that appear in adding up the Hamiltonians on those neighborhoods.

4.1 Bound for any connected graph

Let G(V,E)G(V,E) be an nn-vertex undirected connected graph. We can formulate a Knabe-type finite-size criteria for frustration-free Hamiltonians on any connected graph.

Theorem 1.

Let H(G,n,k)=(i,j)Ehi,jH(G,n,k)=\sum_{(i,j)\in E}h_{i,j} be a frustration-free Hamiltonian on a connected graph GG with nn sites, where the local terms are specified by a fixed 2-site projector PP as hi,j=(P)i,j𝕀[n]{i,j}h_{i,j}=(P)_{i,j}\otimes\mathbb{I}_{[n]\setminus\{i,j\}}. Let Δ(G,n,k)=Δ(H(G,n,k))\Delta(G,n,k)=\Delta(H(G,n,k)) denote its spectral gap, then

Δ(G,n,k)2(minvVΔ(G,deg(v)+1,k)12),\Delta(G,n,k)\geq 2\bigg{(}\min_{v\in V}\,\Delta\big{(}G_{\star},\deg(v)+1,k\big{)}-\frac{1}{2}\bigg{)}\,, (10)

where Δ(G,m,k)\Delta(G_{\star},m,k) is the spectral gap on the star graph with mm sites, i.e. one internal node and m1m-1 leaves, and deg(v)\deg(v) is the degree of the vertex vGv\in G.

In the following, the value of the moment kk will not play a role and, thus, suppressing it, we write H(G,n)=H(G,n,k)H(G,n)=H(G,n,k).

Proof of Theorem 1.

Following the approach in [Kna88], we proceed by lower bounding the square of the Hamiltonian H(G,n)H(G,n), observing that finding a lower bound in terms of the Hamiltonian H(G,n)2γH(G,n)H(G,n)^{2}\geq\gamma H(G,n) implies a lower bound on the spectral gap as Δ(G,n)γ\Delta(G,n)\geq\gamma. We start by squaring the Hamiltonian

(H(G,n))2=(i,j)Ghi,j+(i,j),(k,l)E|{i,j}{k,l}|=1{hi,j,hk,l}+(i,j),(k,l)E{i,j}{k,l}=0{hi,j,hk,l}=H(G,n)+Q+R,\big{(}H(G,n)\big{)}^{2}=\sum_{(i,j)\in G}h_{i,j}+\sum_{\begin{subarray}{c}(i,j),(k,l)\in E\\ |\{i,j\}\cap\{k,l\}|=1\end{subarray}}\{h_{i,j},h_{k,l}\}+\sum_{\begin{subarray}{c}(i,j),(k,l)\in E\\ \{i,j\}\cap\{k,l\}=0\end{subarray}}\{h_{i,j},h_{k,l}\}=H(G,n)+Q+R\,, (11)

where QQ contains all the anti-commutators of the overlapping Hamiltonian terms (that is those hi,jh_{i,j} and hk,lh_{k,l} such that either ii or jj equals kk or ll) and RR contains all the anti-commutators of the non-overlapping terms (that is those hi,jh_{i,j} and hk,lh_{k,l} such that none of ii or jj equals kk or ll). We define the subsystem operator by squaring all the edges at a vertex and then summing over all vertices as

A(G,n)=iV(j:(i,j)Ehi,j)2=2H(G,n)+Q,A(G,n)=\sum_{i\in V}\bigg{(}\sum_{j:\,(i,j)\in E}h_{i,j}\bigg{)}^{2}=2H(G,n)+Q\,, (12)

as every edge contains exactly two vertices and every non-commuting term arises from the overlap at exactly one vertex. We now expand the operator A(G,n)A(G,n) as a sum over all vertices of a fixed degree

A(G,n)\displaystyle A(G,n) =g{deg(v):vV}iVdeg(i)=g(j:(i,j)Ehi,j)2\displaystyle=\sum_{g\in\{\deg(v)\,:\,v\in V\}}\sum_{\begin{subarray}{c}i\in V\\ \deg(i)=g\end{subarray}}\bigg{(}\sum_{j:(i,j)\in E}h_{i,j}\bigg{)}^{2} (13)
g{deg(v):vV}Δ(H(G,g+1))(iVdeg(i)=gj:(i,j)Ehi,j),\displaystyle\geq\sum_{g\in\{\deg(v)\,:\,v\in V\}}\Delta\big{(}H(G_{\star},g+1)\big{)}\Bigg{(}\sum_{\begin{subarray}{c}i\in V\\ \deg(i)=g\end{subarray}}\sum_{j:(i,j)\in E}h_{i,j}\Bigg{)}\,, (14)

where (j:(i,j)Ehi,j)2Δ(H(G,g+1))(j:(i,j)Ehi,j)\big{(}\sum_{j:(i,j)\in E}h_{i,j}\big{)}^{2}\geq\Delta(H(G_{\star},g+1))\big{(}\sum_{j:(i,j)\in E}h_{i,j}\big{)} for vertices of deg(i)=g\deg(i)=g and where Δ(H(G,m))\Delta(H(G_{\star},m)) is the spectral gap of the star graph Hamiltonian on mm sites. Lower bounding Δ(H(G,g+1))\Delta(H(G_{\star},g+1)) by taking the minimum over all star gaps, we then find that

A(G,n)2H(G,n)minvVΔ(H(G,deg(v)+1)),A(G,n)\geq 2H(G,n)\min_{v\in V}\Delta\big{(}H(G_{\star},\deg(v)+1)\big{)}\,, (15)

from which the theorem follows. ∎

The result is that the spectral gap of a Hamiltonian H(G,n)H(G,n) on any connected graph GG may be lower bounded in terms of the spectral gaps of substars. If one can control all gaps Δ(G,n)\Delta(G_{*},n) up to the maximal degree of the graph GG and show that they are strictly greater than 1/21/2, then the above theorem implies a spectral gap lower bound H(G,n)H(G,n). Similarly, computing all gaps for star graphs up to κ+1\kappa+1 vertices and showing that min1gκΔ(H(G,g+1))>1/2\min_{1\leq g\leq\kappa}\Delta(H(G_{*},g+1))>1/2 proves that the Hamiltonian is gapped on all graphs of maximal degree κ\kappa.

Turning back to random quantum circuits, we formulate a conjecture for the second and third moment star graph gaps which would allow us to prove that RQCs form approximate designs on all graphs. The low moment star graph conjecture, stated in Conjecture 1, is that the second and third moment (k=2k=2 and k=3k=3) star graph gaps Δ(G,n,k)\Delta(G_{\star},n,k) are strictly greater than 1/21/2 for all nn.

In the following we give evidence for this conjecture, both from numerics of these low moment spectral gaps in conjunction with a Knabe bound for star graphs and asymptotics from the semiclassical limit of a spin model, as well as analytic results for low moment gaps.

We also show why the conjecture cannot be true for arbitrary moments, as at k=4k=4 for local qubits the star graph gaps already start decreasing. Still, we further conjecture that the star gaps remain greater than 1/2 so longer as the local dimension qq is taken to be large with respect to the moment.

4.2 Evidence for the low-moment star graph conjecture

Numerically (refer to Table 4), we have computed the star graph gaps of H(G,n)H(G_{\star},n_{\star}) up to n=22n_{\star}=22 for k=2k=2, up to n=9n_{\star}=9 for k=3k=3, up to n=5n_{\star}=5 for k=4k=4 and for n=3n_{\star}=3 for k=5k=5. Thus, we have a lower bound on Δ(H(G,n))\Delta(H(G,n)) so long that the maximal degree of GG is less than 2222 for k=2k=2, 99 for k=3k=3 and 55 for k=4k=4. Note that n=3n=3 gap for k=5k=5 is not useful because its value is 1/21/2 to numerical precision and thus does not provide a non-trivial lower bound by inserting in Theorem 1. The values of spectral gaps Δ(H(G,n,k))\Delta(H(G,n,k)) for arbitrary graphs GG with bounded degree are provided in Table 1.

kk nn_{\star} Δ(G,n,k)\Delta(G_{\star},n_{\star},k) Δ(G,n,k)\Delta(G,n,k)
2 22 0.7328 0.4656
3 9 0.6556 0.3112
4 5 0.5583 0.1166
Table 1: The first column represents the choice of kk, the second column specifies the maximum system size nn_{\star} that we were able to compute spectral gaps for, the third column contains the corresponding spectral gaps of nn_{\star}-vertex star graphs Hamiltonians and the final column lists the lower bound on the spectral gap for Hamiltonians on arbitrary graphs GG with maximum degree equal to n1n_{\star}-1. Note that there is no restriction on the number of vertices in GG.
kk mm_{\star} Δ(G,m,k)\Delta(G_{\star},m_{\star},k) Boosted nn_{\star} Boosted Δ(G,n,k)\Delta(G_{\star},n_{\star},k) Δ(G,n,k)\Delta(G,n,k)
2 22 0.7328 39 0.5057 0.0114
3 9 0.6556 12 0.5080 0.0160
Table 2: The first column represent the choice of kk and the second column specifies the maximum system size mm_{\star} that we were able to compute spectral gaps for (these are same as in Table 1). The third column contains the maximum nn_{\star}, referred to as “boosted” nn_{\star} such that the corresponding boosted spectral gap in the fourth column, denoted by “boosted Δ(H(G,n,k))\Delta(H(G_{\star},n_{\star},k)),” computed using Eq. (16) is greater than the finite-size-criteria of Theorem 1. The final column lists the lower bound on the spectral gap of Hamiltonians on arbitrary graphs GG with maximum degree equal to “boosted” n1n_{\star}-1. Note that there is no restriction on the number of vertices in GG. For k=4k=4 and m=3m_{\star}=3, the numerically computed spectral gap is 1/21/2 and for all values of n>mn_{\star}>m_{\star} the boosted gap is below 1/21/2 and, hence, do not satisfy the finite-size-criteria of Theorem 1.

In the above, we directly input the numerically computed gaps in Theorem 1. We can instead input the numerically computed gaps in for mm-vertex star graphs in Theorem 2,

Δ(H(G,n))n2m2(Δ(H(G,m))nmn2),\displaystyle\Delta(H(G_{\star},n))\geq\frac{n-2}{m-2}\left(\Delta(H(G_{\star},m))-\frac{n-m}{n-2}\right), (16)

to find lower bounds on spectral gaps for larger nn_{\star}-vertex star graphs and then input those gaps in Theorem 1. This way we can extend the applicability of our numerical calculations and conclude about spectral gaps of higher bounded-degree graphs. The values of spectral gaps Δ(H(G,n,k))\Delta(H(G,n,k)) for arbitrary graphs GG with higher bounded degree by this method are provided in Table 2.

The spectral gaps presented in Table 1 and Table 2 lead us to state the following corollary about size bounds for RQCs on arbitrary architectures,

Corollary 1.

RQCs on arbitrary architectures with maximum degree κ\kappa and total edges |E||E| form ε\varepsilon-approximate unitary kk-designs in circuit size τ\tau, according to the following table

kk κ\kappa τ\tau
22 3838 90|E|(4n+log(1/ε))90|E|(4n+\log(1/\varepsilon))
33 1212 64|E|(6n+log(1/ε))64|E|(6n+\log(1/\varepsilon))
44 55^{*} 9|E|(8n+log(1/ε))9|E|(8n+\log(1/\varepsilon))

The above table gives size bounds for arbitrary nn-vertex bounded degree graphs of maximum degree κ\kappa total edges |E||E| to form ε\varepsilon-approximate unitary kk-designs. For k=4k=4, size bound is valid only for arbitrary architecture with no degree 2 vertex, as explained in the proof.

Proof of Corollary 1.

In general, the upper bound τ\tau on the circuit size of RQCs to form ε\varepsilon-approximate unitary kk-designs on nn-vertex arbitrary graphs GG with |E||E| edges is given by,

τ=|E|Δ(H(G,n,k))(2nk+log(1/ε)),\displaystyle\tau=\frac{|E|}{\Delta(H(G,n,k))}(2nk+\log(1/\varepsilon)), (17)

where Δ(H(G,n,k))\Delta(H(G,n,k)) is the spectral gap of the corresponding Hamiltonian as defined in Definition 5 (See, for instance, [BHH16], or in the proof of Theorem 4). We substitute the values of gaps from Table 2 for k=2k=2 and 33 and from Table 1 for k=4k=4. For k=4k=4 and n=3n=3, spectral gap was found to be 1/21/2 to numerical precision, which does not cross the finite-size-criterion set in Theorem 1. Therefore, the size bound for k=4k=4 applies to arbitrary architectures so long as they do not contain any degree 2 vertex. ∎

Analytically, one can compute the spectral gaps by constructing an operator basis to diagonalize the moment operator [BH13, HH21]. Here we give the first two star graph gaps. Note that the n=3n=3 star graph Hamiltonian is equivalent to the 1D n=3n=3 Hamiltonian with open boundary conditions.

Proposition 1 (Theorem 4 and Eq. 35 of [HH21]).

For k=2k=2, the n=3n=3 star-graph Hamiltonian H(G,3,2)=h1,2+h2,3H(G_{\star},3,2)=h_{1,2}+h_{2,3}, where hi,j=(𝕀(PH)i,j𝕀[3]\{i,j})h_{i,j}=(\mathbb{I}-(P_{H})_{i,j}\otimes\mathbb{I}_{[3]\backslash\{i,j\}}) and (PH)i,j=𝑑μHaarUi,j2,2(P_{H})_{i,j}=\int d\mu_{\rm Haar}\,U^{\otimes 2,2}_{i,j} has a spectral gap

Δ(H(G,3,2))=1qq2+1.\Delta(H(G_{\star},3,2))=1-\frac{q}{q^{2}+1}\,. (18)

For local qubits, the gap is Δ(H(G,3,2))=3/5\Delta(H(G_{\star},3,2))=3/5.

Proposition 2.

For k=2k=2 and n=4n=4, the star-graph Hamiltonian H(G,4,2)=h1,4+h2,4+h3,4H(G_{\star},4,2)=h_{1,4}+h_{2,4}+h_{3,4}, where hi,j=𝕀(PH)i,j𝕀[4]\{i,j}h_{i,j}=\mathbb{I}-(P_{H})_{i,j}\otimes\mathbb{I}_{[4]\backslash\{i,j\}} and (PH)i,j=𝑑μHUi,j2,2(P_{H})_{i,j}=\int d\mu_{H}\,U^{\otimes 2,2}_{i,j} has a spectral gap

Δ(H(G,4,2))=32q4+18q2+12(q2+1),\Delta(H(G_{\star},4,2))=\frac{3}{2}-\frac{\sqrt{q^{4}+18q^{2}+1}}{2(q^{2}+1)}\,, (19)

which for q=2q=2 is Δ(H(G,4,2))=3289100.556602\Delta(H(G_{\star},4,2))=\frac{3}{2}-\frac{\sqrt{89}}{10}\approx 0.556602 and for large qq approaches 1.

We opt not to give a full proof of this proposition, as it follows similarly to Theorem 4 of [HH21], as well as the proof of Proposition 3, where we analytically construct a set of orthonormal basis operators for the moment operator using projectors onto the symmetric and antisymmetric subspaces. In the n=3n=3 case, each term is rank 2, and thus the moment operator is rank 4. Exactly diagonalizing the operator then gives its eigenvalues, and specifically the gap, from which the Hamiltonian gap follows. For the n=4n=4 star graph Hamiltonian, we again construct an operator basis for the moment operator, but its rank is now 18. We can write out the basis operators and symbolically diagonalize the moment operator in Mathematica, finding analytic expressions for its eigenvalues. The expression for the n=4n=4 star graph gap is thus given above.

While the n=3n=3 and n=4n=4 star graph gaps turn out to be readily expressible as nice functions of qq, there is no reason to expect that this persists for larger nn. While the 1D second moment gaps can be exactly derived via a mapping to an integrable spin model, the resulting spin model for the star graph Hamiltonian contains an integrability breaking term, as discussed in Appendix B. However, we perform a semiclassical approximation to determine the asymptotic expression for the star graph gaps for k=2k=2. We find an asymptotic gap of 11/q21-1/q^{2}, which seems to be in agreement with numerics in so far as our finite size numerical calculations of spectral gaps are indicative of the asymptotic gaps.

From the analytic gaps in Proposition 1 and Proposition 2, we have a non-numerical result that nn-qubit random quantum circuits on any graph of maximum degree 3 forms an ε\varepsilon-approximate unitary 2-design in depth τ=9|E|(4n+log(1/ε))\tau=9|E|(4n+\log(1/\varepsilon)).

4.3 Knabe bounds for star graphs

In this subsection, we derive the Knabe bound for frustration-free Hamiltonians on star graphs used above. Unfortunately, the bound cannot establish an asymptotic lower bound on star graph gaps as the threshold tends to one, and any frustration-free Hamiltonian on a star graph will likely have Δ(G,n)1\Delta(G_{\star},n)\leq 1. This is proved in Theorem 7 for any translation-invariant frustration-free Hamiltonian on a star graph with some conditions on the 2-site projector. Nevertheless, a Knabe bound on star graphs still allows us to ‘boost’ our numerically computed gaps to get gap lower bounds on larger systems, as in the previous subsection.

As before, the proof of the Knabe bound on star graphs does not depend on the moment kk, we suppress the dependence for convenience as H(G,n)=H(G,n,k)H(G_{\star},n)=H(G_{\star},n,k).

Theorem 2.

Let H(G,n)=i=1n1hi,nH(G_{\star},n)=\sum_{i=1}^{n-1}h_{i,n} be a frustration-free Hamiltonian defined on a star graph, where the Hamiltonian terms are local projectors hi,j2=hi,jh^{2}_{i,j}=h_{i,j}, and let Δ(G,n)=Δ(H(G,n))\Delta(G_{\star},n)=\Delta(H(G_{\star},n)) denote the spectral gap of the Hamiltonian. For nm3n\geq m\geq 3, the star-graph Hamiltonian gaps obey

Δ(G,n)n2m2(Δ(G,m)nmn2)\Delta(G_{\star},n)\geq\frac{n-2}{m-2}\left(\Delta(G_{\star},m)-\frac{n-m}{n-2}\right) (20)
Proof.

We again proceed by lower bounding the square of the Hamiltonian, as H(G,n)2γH(G,n)H(G,n)^{2}\geq\gamma H(G,n) implies a spectral gap lower bound Δ(G,n)γ\Delta(G,n)\geq\gamma. Consider

H(G,n)2=i=1n1hi,n+ij{hi,n,hj,n}=H(G,n)+Q,H(G,n)^{2}=\sum_{i=1}^{n-1}h_{i,n}+\sum_{i\neq j}\{h_{i,n},h_{j,n}\}=H(G,n)+Q\,, (21)

and define Q:=ij{hi,n,hj,n}Q:=\sum_{i\neq j}\{h_{i,n},h_{j,n}\}. Let s({1,,n1}):=({1,,n1}m1)s(\{1,\ldots,n-1\}):=\binom{\{1,\ldots,n-1\}}{m-1} be the set of all size (m1)(m-1) subsets of {1,,n1}\{1,\ldots,n-1\}. We then consider the following subsystem operator, squaring the Hamiltonian on a subsystem of size m1m-1, a star graph on m1m-1 sites, and summing over all possible subsystems

ss({1,,n1})(i=1m1hs(i),n)2=(n2m2)H(G,n)+(n3m3)Q.\sum_{s\in s(\{1,\ldots,n-1\})}\bigg{(}\sum_{i=1}^{m-1}h_{s(i),n}\bigg{)}^{2}=\binom{n-2}{m-2}H(G_{\star},n)+\binom{n-3}{m-3}Q\,. (22)

Now note that the same quantity can be lower bounded using the spectral gap of the subsystem H(G,m)2Δ(G,m)H(G,m)H(G_{\star},m)^{2}\geq\Delta(G_{\star},m)H(G_{\star},m) as

ss({1,,n1})(i=1m1hs(i),n)2(n2m2)Δ(G,m)H(G,n),\sum_{s\in s(\{1,\ldots,n-1\})}\bigg{(}\sum_{i=1}^{m-1}h_{s(i),n}\bigg{)}^{2}\geq\binom{n-2}{m-2}\Delta(G_{\star},m)H(G_{\star},n)\,, (23)

which implies the desired result. ∎

5 Detectability lemma approach for lower bounds on spectral gaps of arbitrary connected graphs

Our goal is to derive circuit size bounds for RQCs with arbitrary architectures to form unitary designs. And, the approach we are interested in uses spectral gaps of Hamiltonians as defined in Definition 5. To that effort, in Section 4, we lower bounded spectral gaps Δ(G,n,k)\Delta(G,n,k) for arbitrary graphs GG by spectral gaps for star graphs using the Knabe method (Results 1 and 2 from Section 3). In this section, we provide a new method to find spectral gap lower bounds for arbitrary graphs by relating those to spectral gap for 1D\mathrm{1D} graphs (Results 3 and 4 from Section 3) using the Detectability Lemma and Quantum Union Bound (Lemma 1 and Lemma 2). We begin with stating and discussing the formal results about the gap bounds and the consequent size bounds for local RQCs. The following theorem provides a lower bound on the spectral gap of Hamiltonians as defined in Definition 5 on arbitrary connected graphs with prime power local dimension qq,

Theorem 3.

For all connected graphs GG, the spectral gap Δ(G,n,k)\Delta(G,n,k) is lower bounded byΩ(1/(n4log2(n+1)+2k4+o(1)))\Omega(1/(n^{4\log_{2}(n+1)+2}k^{4+o(1)})).

Using the lower bound on the spectral gap given by Theorem 3 to derive an upper bound on the size of local RQCs in the same manner as is done in Refs. [Žni08, BV10, BH13, BHH16], we arrive at the following theorem,

Theorem 4.

Local random quantum circuits on all nn-vertex connected graphs GG with |E||E| edges form ε\varepsilon-approximate kk-designs in circuit size O(|E|n3+4log2(n)k5+o(1))O(|E|n^{3+4\log_{2}(n)}k^{5+o(1)}).

By replacing the upper bound on the maximum degree of nn-vertex graphs that appear in the proof of Theorem 3 from the trivial bound of n1n-1 to a constant bound for certain graphs, we can improve the lower bound of Theorem 3 from 1 over quasi-polynomial in nn to 1 over polynomial in nn. This is the content of Corollary 2 and Corollary 3 that are given next,

Corollary 2.

For all connected graphs GG with corresponding “compressed” spanning tree CSTCST of constant maximum degree κ\kappa, the spectral gap Δ(G,n,k)\Delta(G,n,k) is lower bounded by Ω(1/(n4(1+log2(κ+1))k4+o(1)))\Omega(1/(n^{4(1+\log_{2}(\kappa+1))}k^{4+o(1)})).

“Compressed” spanning tree is defined informally in Step 3 in Section 5.1, and formally in Appendix A.3.

Corollary 3.

For all nn-vertex connected graphs GG with spanning trees of bounded degree κ\kappa and log(n)\log(n) height, the spectral gap Δ(G,n,k)\Delta(G,n,k) is lower bounded by Ω(1/(n2log(2)(1+log2(κ+1))k4+o(1)))\Omega(1/(n^{2\log{(2)}(1+\log_{2}(\kappa+1))}k^{4+o(1)})).

Furthermore, if we consider graphs with bounded degree and constant height, then we can improve the lower bound of Theorem 3 by removing the nn dependence altogether.

Corollary 4.

For all nn-vertex connected graphs GG with spanning trees of bounded degree κ\kappa and height, the spectral gap Δ(G,n,k)\Delta(G,n,k) is lower bounded by Ω(1/k4+o(1)))\Omega(1/k^{4+o(1)})).

Using the same methods as earlier, we can derive upper bounds on circuit sizes of local RQCs on graphs identified in Corollary 2, Corollary 3 and Corollary 4,

Theorem 5.

Local random quantum circuits on all nn-vertex connected graphs GG with |E||E| edges and with

  1. 1.

    constant maximum degree κ\kappa of their “compressed” spanning tree,

  2. 2.

    spanning tree with constant maximum degree κ\kappa and log(n)\log(n) height,

  3. 3.

    spanning tree with constant maximum degree κ\kappa and constant height,

form ε\varepsilon-approximate kk-designs in circuit size, denoted by τ\tau, such that

  1. 1.

    τ=O(|E|n5+4log2(κ+1)k5+o(1))\tau=O(|E|n^{5+4\log_{2}(\kappa+1)}k^{5+o(1)}),

  2. 2.

    τ=O(|E|n2log(2)+1+2log(2)log2(κ+1)k5+o(1))\tau=O(|E|n^{2\log{(2)}+1+2\log{(2)}\log_{2}(\kappa+1)}k^{5+o(1)}),

  3. 3.

    τ=O(|E|nk5+o(1))\tau=O(|E|nk^{5+o(1)}),

respectively.

The kk dependence of size bounds in Theorem 4 and Theorem 5 is inherited from the kk dependence of the corresponding results for local random quantum circuits on 1D\mathrm{1D} graphs, where we have used the improved kk dependence of k5+o(1)\approx k^{5+o(1)} for prime power local dimension following Ref. [Haf22]. For general (non prime power) local dimensions, we can instead use the 1D gaps in Ref. [BHH16], which simply alters the kk dependence to k7.5\approx k^{7.5}. We provide analogous theorems to those above which hold for any local dimension qq, where the proof is identical and is thus omitted.

Theorem 6.

Local random quantum circuits on all nn-vertex connected graphs GG with |E||E| edges form ε\varepsilon-approximate kk-designs in circuit size O(|E|n3+4log2(n)k7.5)O(|E|n^{3+4\log_{2}(n)}k^{7.5}) for any local dimension qq. Similarly, the following hold for all local dimensions qq. If the graph GG has maximum degree κ\kappa of its “compressed” spanning tree then the circuit size at which they form approximate kk-designs is O(|E|n5+4log2(κ+1)k7.5)O(|E|n^{5+4\log_{2}(\kappa+1)}k^{7.5}). If the graph GG has spanning tree with maximum degree κ\kappa and log(n)\log(n) height, then the circuit size at which they form designs is O(|E|n2log(2)+1+2log(2)log2(κ+1)k7.5)O(|E|n^{2\log{(2)}+1+2\log{(2)}\log_{2}(\kappa+1)}k^{7.5}). If the graph GG has spanning tree with maximum degree κ\kappa and height hh, then the circuit size at which they form designs is O(|E|nk7.5)O(|E|nk^{7.5}).

The main ingredient of spectral gap results Theorem 3, Corollary 2 and Corollary 3 and, thus, of the size bounds of Theorem 4 and Theorem 5, is the following lemma, which relates the spectral gap of Hamiltonians defined in Definition 5 on arbitrary graphs to spectral gap of the 1D\mathrm{1D} Hamiltonian well studied in Refs. [Žni08, BH13, BV10, BHH16, Hun19, HH21, BŽ21, Haf22]

Lemma 3.

Consider the spectral gaps Δ(G,n,k)\Delta(G,n,k) and Δ(1D,n,k)\Delta(\mathrm{1D},n,k) of the Hamiltonians H(G,n,k)H(G,n,k) and H(1D,n,k)H(\mathrm{1D},n,k) defined as in Definition 5 on an arbitrary nn-vertex connected graph G(V,E)G(V,E) and 1D\mathrm{1D} graph with open boundary conditions, respectively. The following lower bound holds,

Δ(G,n,k)35768Δ(1D,n,k)(4(g+1)2)d,\Delta(G,n,k)\geq\cfrac{35}{768}\cfrac{\Delta(\mathrm{1D},n,k)}{(4(g+1)^{2})^{d}}\,, (24)

where gg is the maximum degree of the “compressed,” spanning tree, denoted by CST(0)CST^{(0)}, that is derived from the spanning tree STST of GG (refer to Step 3 below) and dd denotes the “depth” of STST (refer to Step 2 below).

Remark 1.
  • The words “depth” and “compressed” are quoted because they are not standard terms and their informal definitions are provided in Step 2 and 3 in Section 5.1, while their formal definitions are presented in Appendix A.2 and Appendix A.3, respectively.

  • The maximum degree gg of the compressed spanning tree, CST(0)CST^{(0)}, may in general be greater than the maximum degree of the corresponding spanning tree STST.

  • The constants in the general gap lower bound come from the Quantum Union Bound.

Other than comprising of Lemma 3, the proof of Theorem 3, Corollary 2 and Corollary 3 require bounds on the graph properties gg and dd in Lemma 3 in terms of the number of vertices nn of the graph GG. Those graph properties are stated and proved in Appendix A.7. Meanwhile, the proofs of Theorems and Corollaries stated in this section are provided in Section 5.2.

5.1 Sketch of the proof of Lemma 3

We sketch out the proof of Lemma 3 in six broad steps given below;

Step 1: We recall an observation from Refs. [BH13, BF12, Ono+17, OHH22] in Lemma 4. It not only provides us the starting point for our proof of lower bounds on spectral gaps for large class of graphs, but also points out how that class of graphs is more general than those considered in literature.

Lemma 4.

The spectral gap Δ(G,n,k)\Delta(G,n,k) of the Hamiltonian H(G,n,k)H(G,n,k) defined as in Definition 5 on a connected graph G(V,E)G(V,E) is lower bounded by the spectral gap Δ(ST,n,k)\Delta(ST,n,k) of the restriction of H(G,n,k)H(G,n,k) to the spanning tree STST of GG.

Proof.

This is a direct consequence of the proof for the explicit expression for the ground state vectors given in Lemma 17 in Ref. [BHH16], which relies on Schur-Weyl duality (see Ref. [RY17]) and the fact that two qudit unitaries on connected graphs generate the set of all unitaries on nn qudits [Bar+95]. The argument is three fold,

  1. 1.

    The ground state space (and thus the excited state space) for the considered nn-qudit Hamiltonian is the same regardless of the architecture as long as its connected.

  2. 2.

    The Hamiltonian that we consider is composed of positive semi-definite local terms, therefore, Hamiltoinan on a graph GG, H(G,n,k)H(G,n,k), has more local terms than the Hamiltonian on its spanning tree, H(ST,n,k)H(ST,n,k).

  3. 3.

    Since the spectral gaps of the Hamiltonians are their minimization in their excited state space, which are identical due to point 1, the minimization of the H(G,n,k)H(G,n,k) is greater than H(ST,n,k)H(ST,n,k) due to point 2, from which the claim follows.

Circuit size bounds on RQCs forming approximate unitary designs (local RQCs or otherwise with specific procedure of applying gates) are known for 1D\mathrm{1D}, complete and DD-dimensional graphs. Complete and hypercubic lattices have Hamiltonian paths, that is, they admit a 1D\mathrm{1D} graph as their spanning tree. Therefore, by Step 1, the spectral gap of the Hamiltonian on a complete graph or DD-dimensional lattice is trivially lower bounded by the spectral gap of the Hamiltonian on 1D\mathrm{1D} graphs with identical number of vertices. Consequently the size bounds are easily determined to be O(poly(n))O(\mathrm{poly}(n)). We will not be restricting ourselves to graphs with 1D\mathrm{1D} spanning trees (Hamiltonian paths), instead our approach to find spectral gaps and, thus, size bounds will work for graphs with arbitrary spanning trees. This argument illustrates the generality of the graphs that we consider compared to those studied in literature. In the following, remainder of the steps for the proof of Lemma 3 are described succinctly with details in Appendix A.

Step 2: We provide an algorithmic definition of the “depth” of a tree graph and differentiate the “depth” from the usual notion of “height” of a tree graph. Given a root vertex of a tree graph, the height of the graph is the maximum number of edges one needs to traverse to get to a leaf vertex in the graph. In contrast, the “depth” of a tree graph can be intuitively understood as the number of depth first searches (not all starting from the root vertex) to find every leaf in the tree graph. More precisely, “depth” is the defined as the minimum over all outcomes of the maximum provisional “depth” assigned to each vertex by Algorithm 1 (note that, Algorithm 1 as given is only heuristic and the detailed algorithm in presented in Appendix A.2). The first input to the algorithm is the set 𝒮\mathcal{S} containing the description of the tree graph (or, said simply, containing the tree graph) and a counter variable d=0d=0.

Algorithm 1 A recursive algorithm to define “depth” of a tree graph
1:Receive a set of graphs 𝒮\mathcal{S} and a counter variable dd.
2:for each graph in the input set of graphs do
3:  Assign root vertex depth dd (d=0d=0 when this line is executed for the first time).
4:  Assign all vertices connected to it depth d+1d+1.
5:  Depth first search a path from the root to a leaf.
6:  Mark all the vertices along the path by depth d+1d+1.
7:  Increment d=d+2d=d+2.
8:  Do Algorithm 1 on the set of graphs that is obtained from the current graph by subtracting the vertices (and all edges connected to those vertices) marked in the current recursion.
9:end for

Since the algorithm depends on depth first searches, for different searches the algorithm might find different final (provisional) depths. Thus, to have a well defined notion of “depth” we take it to be the minimum over all possible maximum depth assignments made by the algorithm for a given graph and root vertex. In Appendix A.2, we further motivate the definition of “depth” by recounting the example of a “Y” shaped graph (refer to Figure 2) where the more familiar notion of “height” of a tree graph is insufficient for our purposes. We demonstrate Algorithm 1 on that graph in Figure 3. Note that the height of the “Y” shaped graph given in Figure 2 is 55 but its “depth” with respect to the central vertex is only 33 (refer to Figure 3(e)).

Refer to caption
Figure 2: A “Y” shaped connected graph which is its own spanning tree. The red vertex denotes our choice of the root vertex for the visual demonstration of Algorithm 1 in Figure 3. Since, we define “depth” of a spanning tree with respect to a root vertex, it could change for different choices of root vertex. However, all of our spectral gap and size bound result remain unaffected because they functionally depend on the “depth.”
Refer to caption
Figure 3: Step by step example of Algorithm 1, for a “Y” shaped graph (refer to Figure 2), whose central vertex is identified as the root vertex. Part (a)(a) and (b)(b) depict the action of the lines 22 and 33 and lines 44 and 55 of Algorithm 1 in red. In Parts (c),(d)(c),(d) and (e)(e), the blue and black sub-graphs in a set of graphs that is passed to the next recursion in line 77 of Algorithm 1. Part (d)(d) and (e)(e) depict the action of the lines 22 and 33 and lines 44 and 55 of Algorithm 1 on each sub-graph in red. Note that for a different choice of the root vertex the Algorithm 1 could evaluate to a different depth. However, we will only consider the case where a root vertex is fixed and depth is calculated with respect to that root vertex.

Step 3: We define a new nn-vertex tree graph that we derive from the spanning tree STST of GG. Roughly speaking, the new graph is obtained from the STST by taking all line segments with the same depth assignments from Step 2 and compressing them to star graphs about the first vertices in the line segments. In Figure 4, we draw such a graph for the example of the “Y” shaped graph given in Figure 2. Compare the structure of Figure 4 with “depth” assignments in Figure 3(e) to see the above construction in play. We define the Detectability Lemma norms for the new graph and STST in terms of the complements of the local terms of the Hamiltonian defined on those graphs (refer to Lemma 1 and the text below it). We conclude this step by equating the two Detectability Lemma norms. We refer to this step as “compression,” correspondingly, we refer to the new tree graph defined in this step as the “compressed” spanning tree and denote it by CST(0)CST^{(0)}. The superscript is clarified in the next step.

Refer to caption
Figure 4: The new nn-vertex graph for the original “Y” shaped graph of Figure 2. This graph is referred to as the “compressed” spanning tree of the original graph, corresponding to the “depth” assignments in Figure 3, which in turn, rely on the choice of the root vertex.

Step 4: We show that the Detectability Lemma norm for CST(0)CST^{(0)} is equal to the Detectability Lemma norm for a graph that results from CST(0)CST^{(0)} by “flattening out” a part of that graph. The “flattened out” graph is referred to as CST(1)CST^{(1)}. In Figure 5, we depict CST(1)CST^{(1)} for our running example of the “Y” shaped graph.

Refer to caption
Figure 5: In part (a)(a), we draw the same graph as in Figure 4 albeit slightly differently to visually identify a 1D\mathrm{1D} piece in that graph (which is drawn as a straight line on the stop of the graph). In part (b)(b), we depict how we “flatten” out the graph. We denote the edges that are broken by the dotted lines and the new edges that are added in their place by the red lines. Part (c)(c) of the figure illustrates the final result of one step of “flattening” out procedure. The graph in part (c)(c) is referred to as CST(1)CST^{(1)} for the “Y” shaped graph.

Step 5: We repeat the “flattening out” procedure for d1d-1 times, where dd is the depth (w.r.t. definition from Step 2) of STST. On the dthd^{\text{th}} iteration, we show that the Detectability Lemma norm for CST(d1)CST^{(d-1)} is equal to the Detectability Lemma norm for the most “flattened out” tree graph, that is, the nn-vertex 1D\mathrm{1D} line graph with open boundary conditions. In Figure 6, we illustrate the repetitions of Step 4 for our example of CST(1)CST^{(1)} (refer to Figure 5) of the “Y” shaped graph.

Refer to caption
Figure 6: After repeating the “flattening” out procedure two more times on the “compressed” spanning tree CST(1)CST^{(1)} of the our running example of the “Y” shaped graph, we arrive at the 1D\mathrm{1D} graph. In part (a)(a) and (b)(b), we depict the second and the third repetition of the “flattening” out procedures, respectively, using the same notation as in Figure 5. On the third iteration the “flattened” graph is the 1D\mathrm{1D} graph.

Step 6: We put the results of the previous steps together with the help of Quantum Union Bound and, thus, upper bound the Detectability Lemma norm for STST in terms of Detectability Lemma norm for 1D\mathrm{1D} line graph. Afterwards, we again use the Quantum Union Bound to infer a lower bound on Δ(H(ST,n,k))\Delta(H(ST,n,k)) in terms of Δ(H(1D,n,k))\Delta(H(\mathrm{1D},n,k)). Combining the result of this step with that of Step 1 we conclude with a lower bound on Δ(H(G,n,k))\Delta(H(G,n,k)) in terms of Δ(H(1D,n,k))\Delta(H(\mathrm{1D},n,k)).

Our main insight to prove Lemma 3 is a relationship between two Detectability Lemma operators; one composed of projectors corresponding to a 1D\mathrm{1D} graph, and the other composed of projectors corresponding to a star graph. The above relationship comes at the cost of left/right multiplying one of the two Detectability Lemma operators by a unitary transformation that preserves the orthogonality between the ground state and excited state spaces of the Hamiltonian that is the sum of the complements of the projectors used in the Detectability Lemma operator. We dub transforming a Detectability Lemma on 1D\mathrm{1D} graph to star graph as “compression” and the other way around as “flattening out.” This insight is put together into two lemmas, Lemma 7 and Lemma 8. Using the “compression” and “flattening out” procedures recursively, we equate Detectability Lemma norms between a graph at a present step to that on the successive step till the graph at the successive step is the 1D\mathrm{1D} line graph. Finally, we put together the equalities from each iteration using the Quantum Union Bound and the Dectectability Lemma. In this step, we incur an exponentially small in the “depth,” dd, lower bound, which eventually causes the size bound in Theorem 4 to be super-polynomial in nn. However, we believe that such a worsening of the gap and size bounds are artifacts of the proof technique. It might be possible to improve the lower bound in Lemma 3 by improving the Detectability Lemma upper bound. As given in Lemma 1, the choice of projectors is arbitrary and the upper bound holds for all excited states of the Hamiltonian constructed from those projectors. Perhaps the Detectability Lemma upper bound can be improved for our choice of projectors and for first excited state. This hope for improvement does not contradict the insight in Ref. [AAV16] that there exists an example of local ground state projectors such that the usual Detectability Lemma upper bound is tight. The existence of such an example does not preclude the existence of a better Detectability Lemma upper bound for our particular choice of projectors. We leave this direction of thought for future work. In Appendix A, we provide the details of the proof of Lemma 3 in the six steps mentioned above.

5.2 Proofs of Theorem 3, Corollary 2, Corollary 3 and Theorem 5

Proof of Theorem 3.

In the result of Lemma 3, substitute,

  1. 1.

    the upper bound for the maximum degree of an nn-vertex spanning tree, gn1g\leq n-1, and

  2. 2.

    the upper bound on the depth dd of an nn vertex spanning tree from Corollary 9, d(2/log(2))log(n+1)1d\leq(2/\log(2))\log(n+1)-1,

  3. 3.

    the spectral gap Δ(1D,n,k)\Delta(\mathrm{1D},n,k) from [BHH16] for n2.5logq(4k)n\geq\lceil 2.5\log_{q}(4k)\rceil,

    Δ(1D,n,k)142.5logq(4k)Δ(1D,2.5logq(4k),k),\Delta(\mathrm{1D},n,k)\geq\frac{1}{4\lceil 2.5\log_{q}(4k)\rceil}\Delta(\mathrm{1D},\lceil 2.5\log_{q}(4k)\rceil,k)\,, (25)

    where

    Δ(1D,2.5logq(4k),k)12.5logq(4k)((q2+1)e)2.5logq(4k).\Delta(\mathrm{1D},\lceil 2.5\log_{q}(4k)\rceil,k)\geq\frac{1}{\lceil 2.5\log_{q}(4k)\rceil((q^{2}+1)e)^{\lceil 2.5\log_{q}(4k)\rceil}}\,. (26)

    Note that the lower bound for Δ(1D,n,k)\Delta(\mathrm{1D},n,k) is independent of nn and greater than a constant times 1/k2.5logq((q2+1)e)1/k^{2.5\log_{q}((q^{2}+1)e)}, thus, Δ(1D,n,k)=Ω(1/k9.5)\Delta(\mathrm{1D},n,k)=\Omega(1/k^{9.5}) for qubits.

  4. 4.

    For local qubits q=2q=2, the result from Ref. [Haf22] can be used instead of the one given in the previous point, where the unconditional gap lower bound is improved to

    Δ(1D,2.5log2(4k),k)11200001(2.5log2(4k))4222.5log2(4k).\Delta(\mathrm{1D},\lceil 2.5\log_{2}(4k)\rceil,k)\geq\frac{1}{120000}\frac{1}{(\lceil 2.5\log_{2}(4k)\rceil)^{4}2^{2\lceil 2.5\log_{2}(4k)\rceil}}\,. (27)

    Combined with an improved Nachtergaele bound, the 1D gap lower bound is then Δ(1D,n,k)(Clog5(k)k4+3/log2(t))1=Ω(1/k4+o(1))\Delta(\mathrm{1D},n,k)\geq\big{(}C\log^{5}(k)k^{4+3/\sqrt{\log_{2}(t)}}\big{)}^{-1}=\Omega(1/k^{4+o(1)}). The proof technique in Ref. [Haf22] works for any prime power local dimension qq, up to a potentially different constant in Eq. (27).

Using the gap lower bound from Ref. [Haf22], we find

Δ(H(G,n,k))\displaystyle\Delta(H(G,n,k)) 35768Ω(1/k4+o(1))(2n)(4/log(2))log(n+1)2\displaystyle\geq\cfrac{35}{768}\cfrac{\Omega(1/k^{4+o(1)})}{(2n)^{(4/\log(2))\log(n+1)-2}} (28)
=35192Ω(1/k4+o(1))(n+1)4n2n4log2(n+1)\displaystyle=\cfrac{35}{192}\cfrac{\Omega(1/k^{4+o(1)})}{\cfrac{(n+1)^{4}}{n^{2}}n^{4\log_{2}(n+1)}} (29)
35384Ω(1/k4+o(1))n4log2(n+1)+2\displaystyle\geq\cfrac{35}{384}\cfrac{\Omega(1/k^{4+o(1)})}{n^{4\log_{2}(n+1)+2}} (30)
=Ω(1/(n4log2(n+1)+2k4+o(1))),\displaystyle=\Omega(1/(n^{4\log_{2}(n+1)+2}k^{4+o(1)}))\,, (31)

where in the second inequality we used the fact that (n+1)22n2(n+1)^{2}\leq 2n^{2} for n3n\geq 3. ∎

Proof of Theorem 4.

Consider an nn-vertex connected graph G(V,E)G(V,E) with VV as the set of vertices and EE as the set of unordered pair of vertices that share an edge in GG. Let |E||E| denote the number of edges in GG. Let tt denote the size of the local random quantum circuit after which the difference between kthk^{\text{th}} moment of the unitary group on nn-qudits computed using the random quantum circuit ensemble and the Haar measure are ε\varepsilon-close in diamond norm. Then, following Ref. [BHH16], we find

(1Δ(G,n,k)|E|)tεq2nk\displaystyle\left(1-\frac{\Delta(G,n,k)}{|E|}\right)^{t}\leq\frac{\varepsilon}{q^{2nk}} (32)
\displaystyle\implies t|E|Δ(G,n,k)(2nklog(q)+log(1/ε)),\displaystyle t\geq\frac{|E|}{\Delta(G,n,k)}\left(2nk\log(q)+\log(1/\varepsilon)\right)\,, (33)

where we substitute the lower bound on Δ(G,n,k)\Delta(G,n,k) from Eq. (30) to find the upper bound on the minimal circuit size τ\tau at which we form an ε\varepsilon-approximate kk-design

τ38435|E|n4log2(n+1)+2O(k4+o(1))(2nklog(q)+log(1/ε))\displaystyle\tau\leq\frac{384}{35}|E|n^{4\log_{2}{(n+1)}+2}O(k^{4+o(1)})\left(2nk\log(q)+\log(1/\varepsilon)\right) (34)
τ=O(|E|n3+4log2(n+1)k5+o(1)).\displaystyle\tau=O\left(|E|n^{3+4\log_{2}(n+1)}k^{5+o(1)}\right)\,. (35)

Proof of Corollary 2.

The proof is identical to that for Theorem 3 except that instead of the upper bound in the first point of the proof, we use gκg\leq\kappa,

Δ(H(G,n,k))\displaystyle\Delta(H(G,n,k)) 35768Ω(1/k4+o(1))(2(κ+1))(4/log(2))log(n+1)2\displaystyle\geq\cfrac{35}{768}\cfrac{\Omega(1/k^{4+o(1)})}{(2(\kappa+1))^{(4/\log(2))\log(n+1)-2}} (36)
=35192(κ+1)2Ω(1/k4+o(1))(n+1)4(κ+1)4log2(n+1)\displaystyle=\cfrac{35}{192}\cfrac{(\kappa+1)^{2}\Omega(1/k^{4+o(1)})}{(n+1)^{4}(\kappa+1)^{4\log_{2}(n+1)}} (37)
=35192(κ+1)2Ω(1/k4+o(1))(n+1)4(1+log2(κ+1))\displaystyle=\cfrac{35}{192}\cfrac{(\kappa+1)^{2}\Omega(1/k^{4+o(1)})}{(n+1)^{4(1+\log_{2}(\kappa+1))}} (38)
=Ω(1/(n4(1+log2(κ+1))k4+o(1))),\displaystyle=\Omega(1/(n^{4(1+\log_{2}(\kappa+1))}k^{4+o(1)}))\,, (39)

where in the last line we use the fact that for n3n\geq 3, there exists a constant cc such that cna(n+1)acn^{a}\geq(n+1)^{a} for any a>0a>0. ∎

Proof of Corollary 3.

We introduced the concept of “compressed” spanning tree in order to relate the spectral gap for any spanning tree to that for a tree of log(n)\log(n) height (where “height” carries its usual meaning from graph theory). Therefore, if the spanning tree of a graph is already of log(n)\log(n) height, then Step 3 in the derivation of Lemma 3 can be skipped, and the rest of the proof can be worked out beginning with the original spanning tree in place of the “compressed” spanning tree, CST(0)CST^{(0)}. The bound stated in this corollary looks slightly different from the one in Corollary 2, because we specify an upper bound on the depth (in this case equal to the height) dlog(n)d\leq\log(n). And, we do not need the extra step of recursion mentioned in Step 6, below Eq. (168). The extra step relates the spectral gap of the spanning tree to that of the “compressed” spanning tree CST(0)CST^{(0)}, which are one and the same graph in the present consideration. Thus, that step is redundant and can be omitted. Following the proof for Theorem 3, and substituting gκg\leq\kappa and dd1log(n)1d\mapsto d-1\leq\log(n)-1, we find,

Δ(H(G,n,k))\displaystyle\Delta(H(G,n,k)) 35768Ω(1/k4+o(1))(2(κ+1))2log(n)2\displaystyle\geq\cfrac{35}{768}\cfrac{\Omega(1/k^{4+o(1)})}{(2(\kappa+1))^{2\log{(n)}-2}} (40)
=35192(κ+1)2Ω(1/k4+o(1))n2log(2(κ+1))\displaystyle=\cfrac{35}{192}\cfrac{(\kappa+1)^{2}\Omega(1/k^{4+o(1)})}{n^{2\log{(2(\kappa+1))}}} (41)
=35192(κ+1)2Ω(1/k4+o(1))n2log(2)(1+log2(κ+1))\displaystyle=\cfrac{35}{192}\cfrac{(\kappa+1)^{2}\Omega(1/k^{4+o(1)})}{n^{2\log{(2)}(1+\log_{2}{(\kappa+1))}}} (42)
=Ω(1/(n2log(2)(1+log2(κ+1))k4+o(1))).\displaystyle=\Omega(1/(n^{2\log{(2)}(1+\log_{2}(\kappa+1))}k^{4+o(1)}))\,. (43)

Proof of Corollary 4.

The proof is identical to the proof of Corollary 3, but with the upper bound on dd given by, d1h1d-1\leq h-1, where hh denotes the constant height, which effectively implies replacing hh in place of log(n)\log{(n)} in the proof of Corollary 3,

Δ(H(G,n,k))\displaystyle\Delta(H(G,n,k)) 35768Ω(1/k4+o(1))(2(κ+1))2h2\displaystyle\geq\cfrac{35}{768}\cfrac{\Omega(1/k^{4+o(1)})}{(2(\kappa+1))^{2h-2}} (44)
=Ω(1/k4+o(1))).\displaystyle=\Omega(1/k^{4+o(1)}))\,. (45)

Proof of Theorem 5.

We prove the statement for case (i), and identify what changes in the proof for (ii) and (iii). Consider an nn-vertex connected graph G(V,E)G(V,E) with κ\kappa as the constant maximum degree of its “compressed” spanning tree, VV as the set of vertices and EE as the set of unordered pair of vertices that share an edge in GG. Let tt denote the depth of the local random quantum circuit after which the difference between kthk^{\text{th}} moment of the unitary group on nn-qudits computed using the random quantum circuit ensemble and the Haar measure are ε\varepsilon-close in diamond norm. Proceeding, we find

(1Δ(H(G,n,k))|E|)tεq2nk\displaystyle\left(1-\frac{\Delta(H(G,n,k))}{|E|}\right)^{t}\leq\frac{\varepsilon}{q^{2nk}} (46)
\displaystyle\implies t|E|Δ(H(G,n,k))(2nklog(q)+log(1/ε)),\displaystyle t\geq\frac{|E|}{\Delta(H(G,n,k))}\left(2nk\log(q)+\log(1/\varepsilon)\right)\,, (47)

where we substitute the lower bound on Δ(H(G,n,k))\Delta(H(G,n,k)) from Eq. (38) to arrive at the upper bound on the minimal design size τ,\tau,

τ19235|E|(κ+1)2(n+1)4(1+log2(κ+1))O(k4+o(1))(2nklog(q)+log(1/ε))\displaystyle\tau\leq\frac{192}{35}\frac{|E|}{(\kappa+1)^{2}}(n+1)^{4(1+\log_{2}(\kappa+1))}O(k^{4+o(1)})\left(2nk\log(q)+\log(1/\varepsilon)\right) (48)
τ=O(|E|n5+4log2(κ+1))k5+o(1)).\displaystyle\tau=O\left(|E|n^{5+4\log_{2}(\kappa+1))}k^{5+o(1)}\right)\,. (49)

Next, consider case (ii) where GG is such that its spanning tree is constant maximum degree κ\kappa and log(n)\log(n) height. Then, instead of substituting Eq. (38), we substitute Eq. (42) (which only differ in the exponent of nn) to find

τ19235|E|(κ+1)2(n+1)2log(2)(1+log2(κ+1))O(k4+o(1))(2nklog(q)+log(1/ε))\displaystyle\tau\leq\frac{192}{35}\frac{|E|}{(\kappa+1)^{2}}(n+1)^{2\log{(2)}(1+\log_{2}(\kappa+1))}O(k^{4+o(1)})\left(2nk\log(q)+\log(1/\varepsilon)\right) (50)
τ=O(|E|n2log(2)+1+2log(2)log2(κ+1))k5+o(1)).\displaystyle\tau=O\left(|E|n^{2\log{(2)}+1+2\log{(2)}\log_{2}(\kappa+1))}k^{5+o(1)}\right)\,. (51)

Finally, consider case (iii) where GG is such that its spanning tree is of constant maximum degree κ\kappa and height hh. Then, instead of substituting Eq. (38), we substitute Eq. (44) and find

τ76835(2(κ+1))2h2|E|O(k4+o(1))(2nklog(q)+log(1/ε))\displaystyle\tau\leq\frac{768}{35}(2(\kappa+1))^{2h-2}|E|O(k^{4+o(1)})\left(2nk\log(q)+\log(1/\varepsilon)\right) (52)
τ=O(|E|nk5+o(1)).\displaystyle\tau=O\left(|E|nk^{5+o(1)}\right)\,. (53)

The kk dependence of all the results presented here are inherited from the kk dependence of the corresponding results for local random quantum circuits on 1D\mathrm{1D} line graphs, which is k5+o(1)k^{5+o(1)} following Ref. [Haf22] for prime power local dimensions. For general (non prime power) local dimensions qq, the kk dependence can be taken to be k10.5\approx k^{10.5}. But, noting that the exponent in Eq. (26) improves if we increase qq, the first non prime power local dimension is q=6q=6. Thus, we may take the kk-dependence to be k7.5\approx k^{7.5} for general local dimensions, as presented in Theorem 6.

6 Upper bound on arbitrary graphs gaps

In this section, we prove the least upper bound on the minimal circuit size to form designs that one could derive using the spectral gap method. This is the last result in Section 3 and the content of Corollary 6. To reach this result, we prove spectral gap upper bounds for frustration-free Hamiltonian H(G)H(G) on arbitrary nn-vertex graphs G(V,E)G(V,E) when local terms in H(G)H(G) satisfy a certain property. Since that property holds for H(G,n,k)H(G,n,k) as defined in Definition 5, for arbitrary nn and kk, it follows that the spectral gap upper bound provided here applies for all values of kk (unconditional on qq or nn). Using that upper bound on the spectral gap of H(G,n,k)H(G,n,k), we prove Corollary 6. In the following, we will use |V||V| to denote the number of vertices in the graph G(V,E)G(V,E). When the graph is an nn-vertex graph, we will use nn instead.

Define a two site projector P(v,w)(2)d2×d2P^{(2)}_{(v,w)}\in\mathbb{C}^{d^{2}\times d^{2}} acting non-trivially on the sites corresponding to the vertices that share an edge in the graph, that is, (v,w)E(v,w)\in E. Similarly, let P(v,w)(2),d2×d2P^{(2),\perp}_{(v,w)}\in\mathbb{C}^{d^{2}\times d^{2}} denote the projectors on the orthogonal complement of ranP(v,w)(2)\mathrm{ran}\,P^{(2)}_{(v,w)}. Consider a frustration-free 22-local Hamiltonian H(G)H(G) defined on the graph G(V,E)G(V,E) with local terms given by P(v,w)(2),P^{(2),\perp}_{(v,w)}, where (v,w)E(v,w)\in E,

H(G):=(v,w)EP(v,w)(2),𝕀V\{v,w},\displaystyle H(G):=\sum_{(v,w)\in E}P^{(2),\perp}_{(v,w)}\otimes\mathbb{I}_{V\backslash\{v,w\}}\,, (54)

where 𝕀X\mathbb{I}_{X} denotes the identity operator on Hilbert spaces corresponding to the vertices in the set XX. Without loss of generality, we can consider the ground state energy of H(G)H(G) to be 0 because if it were not, then it could be made such by adding a term proportional to the identity to Eq. (54). Having defined H(G)H(G), {P(v,w)(2)}(v,w)E\{P^{(2)}_{(v,w)}\}_{(v,w)\in E} can be identified as the set of ground state projectors and {P(v,w)(2),}(v,w)E\{P^{(2),\perp}_{(v,w)}\}_{(v,w)\in E} as the set of local terms in H(G)H(G). Consider a corresponding operator M(G)M(G) defined as follows

M(G):=(v,w)EP(v,w)(2)𝕀V\{v,w}.\displaystyle M(G):=\sum_{(v,w)\in E}P^{(2)}_{(v,w)}\otimes\mathbb{I}_{V\backslash\{v,w\}}\,. (55)

By their definitions, H(G):=|E|𝕀M(G)H(G):=|E|\cdot\mathbb{I}-M(G), where |E||E| denotes the number of edges in the graph G(V,E)G(V,E). Make two observations: first, by frustration-freeness of H(G)H(G), there exists a state |ψ(d)n\ket{\psi}\in(\mathbb{C}^{d})^{\otimes n} that minimizes the energy contribution to the value 0 from each local term in H(G);H(G); and second, such a state simultaneously maximizes the expectation value of M(G)M(G) by maximizing the contribution from each local term in M(G)M(G) to 11 because each of those terms is the complement of the corresponding local term in H(G)H(G). Therefore, the highest eigenvalue of M(G)M(G) is |E||E| and the associated eigenspace is the ground state space of H(G)H(G). It follows that the second highest eigenvalue of M(G)M(G) corresponds to the spectral gap of H(G)H(G), denoted by Δ(H(G))\Delta(H(G)), and is given by

Δ(H(G))=|E|M(G)|E|GSP,\displaystyle\Delta(H(G))=|E|-\lVert M(G)-|E|\cdot GSP\rVert_{\infty}\,, (56)

where the operator norm M(G)|E|GSP\lVert M(G)-|E|\cdot GSP\rVert_{\infty} is the second largest eigenvalue of M(G)M(G) and where GSPGSP is the projector onto the ground state space of H(G)H(G).

Theorem 7.

Consider an arbitrary nn-vertex graph G(V,E)G(V,E) with minimum degree of the graph equal to ϑ\vartheta. The spectral gap Δ(H(G))\Delta(H(G)) of a frustration-free 22-local Hamiltonian H(G)H(G) on G(V,E)G(V,E), is bounded above by ϑ\vartheta, that is,

Δ(H(G))ϑ,\Delta(H(G))\leq\vartheta\,, (57)

if there exists Pu(1)d×dP^{(1)}_{u}\in\mathbb{C}^{d\times d} acting on the site corresponding to the vertex uVu\in V, such that ran(P(v,w)(2))ran(Pv(1)Pw(1))\mathrm{ran}(P^{(2)}_{(v,w)})\subset\mathrm{ran}(P^{(1)}_{v}\otimes P^{(1)}_{w}) and 0<rank(Pu(1))<d0<\mathrm{rank}(P^{(1)}_{u})<d.

Remark 2.

The method for upper bounding the spectral gaps given in this section is quite general and can be used to find non-trivial upper bounds on the H(G)H(G) as given in Eq. (54) even when local terms are weighted by coefficients.

Corollary 5.

The upper bound on the spectral gap Δ(CG,n,k)\Delta(\mathrm{CG},n,k) as defined in Definition 5, where CG\mathrm{CG} is the nn-vertex complete graph is n1n-1 for all values of local dimension qq and arbitrary kk, that is,

Δ(CG,n,k)n1,\Delta(\mathrm{CG},n,k)\leq n-1\,, (58)

for all values of local dimension qq and arbitrary kk.

Proof of Corollary 5.

In the case of H(CG,n,k)H(\mathrm{CG},n,k) as defined in Definition 5, we know that P(v,w)(2)P^{(2)}_{(v,w)} can be written as a sum of permutation operators on kk copies of 22-site Hilbert space (refer to [BH13]). Since the range of permutation operators of this kind is a subset of the range of tensor product of two permutation operators each defined on kk copies of single site Hilbert space, the condition on P(2)P^{(2)} required for Theorem 7 is satisfied. Furthermore, H(CG,n,k)H(\mathrm{CG},n,k) is 22-local and frustration free [BHH16]. Therefore, the result of Theorem 7 can be applied to H(CG,n,k)H(\mathrm{CG},n,k). Regardless of qq or kk, the minimum degree of CG\mathrm{CG} is n1n-1, hence,

Δ(CG,n,k)n1.\Delta(\mathrm{CG},n,k)\leq n-1\,. (59)

Corollary 6 (Optimality of spectral gap approach).

The smallest upper bound on circuit size using the approach of lower bounding the spectral gaps of Hamiltonians as defined in Definition 5 is,

n2k+n2log(1/ε).\displaystyle n^{2}k+\frac{n}{2}\log(1/\varepsilon). (60)
Proof of Corollary 6.

Consider an arbitrary connected graph G(V,E)G(V,E) and the Hamiltonian H(G,n,k)H(G,n,k) as defined in Definition 5. We suppress the kk dependence in the notation, H(G,n)=H(G,n,k)H(G,n)=H(G,n,k), for it will not be required in this proof. Also, consider the Hamiltonian on the nn-vertex complete graph, H(CG,n)H(\mathrm{CG},n). Note that [H(CG,n),SWAP(i,j)]=0[H(\mathrm{CG},n),\mathrm{SWAP}_{(i,j)}]=0, for all (i,j)E(i,j)\in E, where SWAP(i,j)\mathrm{SWAP}_{(i,j)} represents the usual swap operator across the ithi^{\text{th}} and jthj^{\text{th}} sites. Therefore, the first excited state of H(CG,n)H(\mathrm{CG},n), denote it by |ψCG\ket{\psi_{\mathrm{CG}}} is also an eigenvector of {SWAP(i,j)}(i,j)E\{\mathrm{SWAP}_{(i,j)}\}_{(i,j)\in E} with usual eigenvalues +1+1 or 1-1. Denote the local terms in the Hamiltonians by h(i,j)h_{(i,j)} for (i,j)E(i,j)\in E. Begin with taking the expectation value of H(G,n)H(G,n) with respect to |ψCG\ket{\psi_{\mathrm{CG}}}.

ψCG|H(G,n)|ψCG\displaystyle\bra{\psi_{\mathrm{CG}}}H(G,n)\ket{\psi_{\mathrm{CG}}} =ψCG|((i,j)Eh(i,j))|ψCG\displaystyle=\bra{\psi_{\mathrm{CG}}}\left(\sum_{(i,j)\in E}h_{(i,j)}\right)\ket{\psi_{\mathrm{CG}}} (61)
=(i,j)EψCG|h(i,j)|ψCG\displaystyle=\sum_{(i,j)\in E}\bra{\psi_{\mathrm{CG}}}h_{(i,j)}\ket{\psi_{\mathrm{CG}}} (62)
=(i,j)EψCG|SWAP(1,i)SWAP(2,j)h(1,2)SWAP(1,i)SWAP(2,j)|ψCG\displaystyle=\sum_{(i,j)\in E}\bra{\psi_{\mathrm{CG}}}\mathrm{SWAP}_{(1,i)}\mathrm{SWAP}_{(2,j)}h_{(1,2)}\mathrm{SWAP}_{(1,i)}\mathrm{SWAP}_{(2,j)}\ket{\psi_{\mathrm{CG}}} (63)
=(i,j)EψCG|h(1,2)|ψCG\displaystyle=\sum_{(i,j)\in E}\bra{\psi_{\mathrm{CG}}}h_{(1,2)}\ket{\psi_{\mathrm{CG}}} (64)
=|E|ψCG|h(1,2)|ψCG,\displaystyle=|E|\bra{\psi_{\mathrm{CG}}}h_{(1,2)}\ket{\psi_{\mathrm{CG}}}, (65)

where in the second last equation we used the fact that |ψCG\ket{\psi_{\mathrm{CG}}} is an eigenvector of
{SWAP(i,j)}(i,j)E\{\mathrm{SWAP}_{(i,j)}\}_{(i,j)\in E} with eigenvalues +1+1 or 1-1. Using the same logic as above but for Δ(CG,n)=ψCG|H(CG,n)|ψCG\Delta(\mathrm{CG},n)=\bra{\psi_{\mathrm{CG}}}H(\mathrm{CG},n)\ket{\psi_{\mathrm{CG}}}, we find that,

Δ(CG,n)\displaystyle\Delta(\mathrm{CG},n) =ψCG|H(CG,n)|ψCG\displaystyle=\bra{\psi_{\mathrm{CG}}}H(\mathrm{CG},n)\ket{\psi_{\mathrm{CG}}} (66)
=n(n1)2ψCG|h(1,2)|ψCG\displaystyle=\frac{n(n-1)}{2}\bra{\psi_{\mathrm{CG}}}h_{(1,2)}\ket{\psi_{\mathrm{CG}}} (67)
ψCG|h(1,2)|ψCG\displaystyle\implies\bra{\psi_{\mathrm{CG}}}h_{(1,2)}\ket{\psi_{\mathrm{CG}}} =2Δ(CG,n)n(n1).\displaystyle=\frac{2\Delta(\mathrm{CG},n)}{n(n-1)}. (68)

Substituting Eq. (68) in Eq. (65), we find that

ψCG|H(G,n)|ψCG=2|E|n(n1)Δ(CG,n).\displaystyle\bra{\psi_{\mathrm{CG}}}H(G,n)\ket{\psi_{\mathrm{CG}}}=\frac{2|E|}{n(n-1)}\Delta(\mathrm{CG},n). (69)

Substitute the upper bound from Corollary 5 in Eq. (69),

ψCG|H(G,n)|ψCG2|E|n.\displaystyle\bra{\psi_{\mathrm{CG}}}H(G,n)\ket{\psi_{\mathrm{CG}}}\leq\frac{2|E|}{n}. (70)

Note that both H(G,n)H(G,n) and H(CG,n)H(\mathrm{CG},n) share the same excited state space (refer to Lemma 4), therefore, the expectation of H(G,n)H(G,n) with the vector |ψCG\ket{\psi_{\mathrm{CG}}} is an upper bound on its spectral gap Δ(G,n)\Delta(G,n),

Δ(G,n)ψCG|H(G,n)|ψCG2|E|n.\displaystyle\Delta(G,n)\leq\bra{\psi_{\mathrm{CG}}}H(G,n)\ket{\psi_{\mathrm{CG}}}\leq\frac{2|E|}{n}. (71)

Since the basic minimal circuit size upper bound found using the spectral gap method (refer to Eq. (33)) is

|E|Δ(G,n,k)(2nklog(q)+log(1/ε)),\displaystyle\frac{|E|}{\Delta(G,n,k)}\left(2nk\log(q)+\log(1/\varepsilon)\right), (72)

its minimum value is obtained when the inequality in Eq. (70) is saturated. ∎

Proof of Theorem 7.

Define one site projectors Pu(1)d×dP^{(1)}_{u}\in\mathbb{C}^{d\times d} acting on the site corresponding to the vertex uVu\in V, such that ran(P(v,w)(2))ran(Pv(1)Pw(1))\mathrm{ran}(P^{(2)}_{(v,w)})\subset\mathrm{ran}(P^{(1)}_{v}\otimes P^{(1)}_{w}) and 0<rank(Pu(1))<d0<\mathrm{rank}(P^{(1)}_{u})<d. This condition will be useful later in proving Lemma 5, which is in turn required to prove Lemma 5. Define the projectors onto the orthogonal complement of ran(Pu(1))\mathrm{ran}(P^{(1)}_{u}) by Pu(1),d×dP^{(1),\perp}_{u}\in\mathbb{C}^{d\times d}. Recall the operator M(G)M(G), defined as

M(G)\displaystyle M(G) :=(v,w)EP(v,w)(2)𝕀V\{v,w}.\displaystyle:=\sum_{(v,w)\in E}P^{(2)}_{(v,w)}\otimes\mathbb{I}_{V\backslash\{v,w\}}\,. (55)

For each vertex vVv\in V, decompose 𝕀{v}=Pv(1)+Pv(1),\mathbb{I}_{\{v\}}=P^{(1)}_{v}+P^{(1),\perp}_{v}. We substitute this decomposition of the identity operator in Eq. (55),

M(G)\displaystyle M(G) =[(v,w)EP(v,w)(2)(uV\{v,w}Pu(1))]R(G),\displaystyle=\left[\sum_{(v,w)\in E}P^{(2)}_{(v,w)}\left(\bigotimes_{u\in V\backslash\{v,w\}}P^{(1)}_{u}\right)\right]\oplus R(G), (73)
=:Q(G)R(G),\displaystyle=:Q(G)\oplus R(G)\,, (74)

where Q(G)Q(G) is as defined above and R(G)R(G) is an operator that is sum of terms each of which is a tensor product with at least one multiplicand as Pv(1),P^{(1),\perp}_{v} for some vVv\in V. We note a crucial observation (that we shall invoke again later in the proof for Lemma 5. The decomposition in Eq. (74) is useful because ran(R(G))ran(GSP)\mathrm{ran}(R(G))\perp\mathrm{ran}(GSP), or, equivalently, ran(GSP)ran(Q(G))\mathrm{ran}(GSP)\subseteq\mathrm{ran}(Q(G)). Using this observation, we see that subtracting GSPGSP from Eq. (74) only changes the eigenvalues of the first term in the direct sum and leaves R(G)R(G) as is

M(G)|E|GSP\displaystyle M(G)-|E|\cdot GSP =(Q(G)|E|GSP)R(G).\displaystyle=\left(Q(G)-|E|\cdot GSP\right)\oplus R(G)\,. (75)

Taking the operator norm and using the definition of Δ(H(G))\Delta(H(G)) from Eq. (56), we find

M(G)|E|GSP\displaystyle\lVert M(G)-|E|\cdot GSP\rVert_{\infty} =max{Q(G)|E|GSP,R(G)}\displaystyle=\max\left\{\left\lVert Q(G)-|E|\cdot GSP\right\rVert_{\infty},\lVert R(G)\rVert_{\infty}\right\} (76)
|E|M(G)|E|GSP\displaystyle|E|-\lVert M(G)-|E|\cdot GSP\rVert_{\infty} =min{|E|Q(G)|E|GSP,|E|R(G)}\displaystyle=\min\left\{|E|-\left\lVert Q(G)-|E|\cdot GSP\right\rVert_{\infty},|E|-\lVert R(G)\rVert_{\infty}\right\} (77)
Δ(H(G))\displaystyle\Delta(H(G)) |E|R(G).\displaystyle\leq|E|-\lVert R(G)\rVert_{\infty}\,. (78)

Now, we note a lemma about R(G)R(G) that we prove next.

Lemma 5.

The operator norm of R(G)R(G) is equal to |E|ϑ|E|-\vartheta, where ϑ\vartheta is the minimum degree of the graph G(V,E)G(V,E), that is,

R(G)=|E|ϑ.\lVert R(G)\rVert_{\infty}=|E|-\vartheta\,. (79)

Applying Lemma 5 to Eq. (78), completes the proof that

Δ(H(G))ϑ.\Delta(H(G))\leq\vartheta\,. (80)

Proof of Lemma 5.

Recall that EE is the set of unordered pair of vertices that share an edge in the graph G(V,E)G(V,E). For a subset of vertices UU, define a subset of EE by

Enot U:={(v,w)E:vU and wU}.E_{\text{not }U}:=\{(v,w)\in E:v\notin U\text{ and }w\notin U\}\,. (81)

Since the full expression for R(G)R(G) is complicated, we break it down into |V|2|V|-2 parts and refer to each part by SiS_{i}. Consider the expression for SiS_{i},

Si\displaystyle S_{i} =UV:|U|=i(uUPu(1),)[(v,w)Enot UP(v,w)(2)(xV({v,w}U)Px(1))]\displaystyle=\bigoplus_{U\subset V:|U|=i}\left(\bigotimes_{u\in U}P^{(1),\perp}_{u}\right)\otimes\left[\sum_{(v,w)\in E_{\text{not }U}}P^{(2)}_{(v,w)}\otimes\left(\bigotimes_{x\in V-(\{v,w\}\cup U)}P^{(1)}_{x}\right)\right] (82)
=UV:|U|=i(uUPu(1),)Q(G(VU,Enot U)),\displaystyle=\bigoplus_{U\subset V:|U|=i}\left(\bigotimes_{u\in U}P^{(1),\perp}_{u}\right)\otimes Q(G(V-U,E_{\text{not }U}))\,, (83)

where we have expressed SiS_{i} as the direct sum over all subsets UU of VV of order ii, for each i{1,2,,|V|2}i\in\{1,2,\dots,|V|-2\}. Furthermore, the terms of that direct sum are proportional to the operator QQ (refer to Eq. (74)) but on the sub-graph G(VU,Enot U)G(V-U,E_{\text{not }U}) of the original graph G(V,E)G(V,E) that neither contains the vertices in UU nor edges that connect to vertices in UU. The expression for R(G)R(G) in terms of SiS_{i} reads,

R(G):=i=1|V|2Si.R(G):=\bigoplus_{i=1}^{|V|-2}S_{i}\,. (84)

Now, we evaluate the operator norm of R(G)R(G),

R(G)\displaystyle\lVert R(G)\rVert_{\infty} =i=1|V|2Si\displaystyle=\left\lVert\bigoplus_{i=1}^{|V|-2}S_{i}\right\rVert_{\infty} (85)
=maxi{1,2,,|V|2}Si,\displaystyle=\max_{i\in\{1,2,\dots,|V|-2\}}\lVert S_{i}\rVert_{\infty}\,, (86)

where we used the fact that the operator norm of a direct sum of terms is the max of of the operator norms of the terms. Continuing with the derivation, we substitute Eq. (83) in place of SiS_{i} and again make use of the last fact above,

R(G)\displaystyle\lVert R(G)\rVert_{\infty} =maxi{1,2,,|V|2}UV:|U|=i(uUPu(1),)Q(G(VU,Enot U))\displaystyle=\max_{i\in\{1,2,\dots,|V|-2\}}\left\lVert\bigoplus_{U\subset V:|U|=i}\left(\bigotimes_{u\in U}P^{(1),\perp}_{u}\right)\otimes Q(G(V-U,E_{\text{not }U}))\right\rVert_{\infty} (87)
=maxi{1,2,,|V|2}maxUV:|U|=i(uUPu(1),)Q(G(VU,Enot U)).\displaystyle=\max_{i\in\{1,2,\dots,|V|-2\}}\max_{U\subset V:|U|=i}\left\lVert\left(\bigotimes_{u\in U}P^{(1),\perp}_{u}\right)\otimes Q(G(V-U,E_{\text{not }U}))\right\rVert_{\infty}\,. (88)

Since the operator norm of a tensor product of terms is equal to the product of the operator norms of the terms

R(G)\displaystyle\lVert R(G)\rVert_{\infty} =maxi{1,2,,|V|2}maxU:|U|=iQ(G(VU,Enot U)),\displaystyle=\max_{i\in\{1,2,\dots,|V|-2\}}\max_{U:|U|=i}\left\lVert Q(G(V-U,E_{\text{not }U}))\right\rVert_{\infty}\,, (89)

where some of the terms in the tensor product were projectors and, thus, did not contribute to its operator norm. Consider the following Lemma proved in the following subsection,

Lemma 6.

If H(G(V,E))H(G(V,E)) is frustration-free with 0 ground state energy, then H(G(VU,Enot U))H(G(V-U,E_{\text{not }U})) is also frustration free with 0 ground state energy.

Observe that Q(G(VU,Enot U))Q(G(V-U,E_{\text{not }U})) is a sum of tensor products of one and two site ground state projectors of the Hamiltonian H(G(VU,Enot U))H(G(V-U,E_{\text{not }U})), that is, projectors from {Pu(1)}uVU\{P^{(1)}_{u}\}_{u\in V-U} and {P(v,w)(2)}(v,w)Enot U\{P^{(2)}_{(v,w)}\}_{(v,w)\in E_{\text{not }U}}. By Lemma 6, there exists a state |ϕ(d)|VU|\ket{\phi}\in(\mathbb{C}^{d})^{\otimes|V-U|} which lies in the kernel of each local term of H(G(VU,Enot U))H(G(V-U,E_{\text{not }U})). Because of the conditions demanded in Theorem 7, there exists a state |ϕ(d)|VU|\ket{\phi}\in(\mathbb{C}^{d})^{\otimes|V-U|} that lies in the range of each term in the sum that is Q(G(VU,Enot U))Q(G(V-U,E_{\text{not }U})). Together with the fact that there are |Enot U||E_{\text{not }U}| terms in Q(G(VU,Enot U))Q(G(V-U,E_{\text{not }U})), we have Q(G(VU,Enot U))=|Enot U|\lVert Q(G(V-U,E_{\text{not }U}))\rVert_{\infty}=|E_{\text{not }U}|. Substituting this observation in Eq. (89), we find

R(G)\displaystyle\lVert R(G)\rVert_{\infty} =maxi{1,2,,|V|2}maxU:|U|=i|Enot U|.\displaystyle=\max_{i\in\{1,2,\dots,|V|-2\}}\max_{U:|U|=i}|E_{\text{not }U}|\,. (90)

Removing vertices can only reduce the number of edges in the graph, therefore, the maximum of Eq. (90) must be attained for i=1i=1

R(G)\displaystyle\lVert R(G)\rVert_{\infty} =maxU:|U|=1|Enot U|.\displaystyle=\max_{U:|U|=1}|E_{\text{not }U}|\,. (91)

Finally, the r.h.s.\mathrm{r.h.s.} of Eq. (91) asks, “What is the maximum number of edges that remain in the graph after removing a single vertex?” The answer to this question is equal to the number of edges of the graph |E||E| minus the fewest number of edges that must be deleted to disconnect a vertex of the graph. Later is, by definition, the minimum degree ϑ\vartheta of the graph. Therefore,

R(G(V,E))=|E|ϑ.\lVert R(G(V,E))\rVert_{\infty}=|E|-\vartheta\,. (92)

Proof of Lemma 6.

Since H(G(V,E))H(G(V,E)) is frustration free, there exists a state |ψ(d)n\ket{\psi}\in(\mathbb{C}^{d})^{\otimes n} such that ψ|P(v,w)(2),|ψ=0\bra{\psi}P^{(2),\perp}_{(v,w)}\ket{\psi}=0, for all (v,w)E(v,w)\in E. In particular, there exists a state |ψ(d)n\ket{\psi}\in(\mathbb{C}^{d})^{\otimes n} such that ψ|P(v,w)(2),|ψ=0\bra{\psi}P^{(2),\perp}_{(v,w)}\ket{\psi}=0, for all (v,w)Enot U(v,w)\in E_{\text{not }U}. Observe that, for all (v,w)Enot U(v,w)\in E_{\text{not }U},

ψ|P(v,w)(2),|ψ=tr(|ψψ|P(v,w)(2),)=trVU(trU(|ψψ|P(v,w)(2),))=trVU(trU(|ψψ|)P(v,w)(2),).\bra{\psi}P^{(2),\perp}_{(v,w)}\ket{\psi}=\mathrm{tr}\big{(}\ket{\psi}\bra{\psi}P^{(2),\perp}_{(v,w)}\big{)}=\mathrm{tr}_{V-U}(\mathrm{tr}_{U}(\ket{\psi}\bra{\psi}P^{(2),\perp}_{(v,w)}))=\mathrm{tr}_{V-U}(\mathrm{tr}_{U}(\ket{\psi}\bra{\psi})P^{(2),\perp}_{(v,w)})\,. (93)

Define the density matrix ρVU:=trU(|ψψ|)(d)|VU|×(d)|VU|\rho_{V-U}:=\mathrm{tr}_{U}(\ket{\psi}\bra{\psi})\in(\mathbb{C}^{d})^{\otimes|V-U|}\times(\mathbb{C}^{d})^{\otimes|V-U|}, with eigendecomposition, ρVU:=i=1rλi|λiλi|\rho_{V-U}:=\sum_{i=1}^{r}\lambda_{i}\ket{\lambda_{i}}\bra{\lambda_{i}}, where λi>0\lambda_{i}>0, rr is the Schmidt rank of ρVU\rho_{V-U} and |λi(d)|VU|\ket{\lambda_{i}}\in(\mathbb{C}^{d})^{\otimes|V-U|} are pure states. Since, for all (v,w)Enot U(v,w)\in E_{\text{not }U}, ψ|P(v,w)(2),|ψ=0\bra{\psi}P^{(2),\perp}_{(v,w)}\ket{\psi}=0,

trVU(i=1rλi|λiλi|P(v,w)(2),)=0\displaystyle\mathrm{tr}_{V-U}(\sum_{i=1}^{r}\lambda_{i}\ket{\lambda_{i}}\bra{\lambda_{i}}P^{(2),\perp}_{(v,w)})=0 (94)
\displaystyle\implies i=1rλiλi|P(v,w)(2),|λi=0\displaystyle\sum_{i=1}^{r}\lambda_{i}\bra{\lambda_{i}}P^{(2),\perp}_{(v,w)}\ket{\lambda_{i}}=0 (95)
\displaystyle\implies λi|P(v,w)(2),|λi=0\displaystyle\bra{\lambda_{i}}P^{(2),\perp}_{(v,w)}\ket{\lambda_{i}}=0 (96)
\displaystyle\implies λi|P(v,w)(2),P(v,w)(2),|λi=0\displaystyle\bra{\lambda_{i}}P^{(2),\perp}_{(v,w)}P^{(2),\perp}_{(v,w)}\ket{\lambda_{i}}=0 (97)
\displaystyle\implies P(v,w)(2),|λi22=0,\displaystyle\lVert P^{(2),\perp}_{(v,w)}\ket{\lambda_{i}}\rVert_{2}^{2}=0, (98)

for each i{1,2,,r}i\in\{1,2,\dots,r\} and for all (v,w)Enot U(v,w)\in E_{\text{not }U}. Note that in general from an equation of the form of Eq. (96), we can not conclude that |λi\ket{\lambda_{i}} are eigenvectors of P(v,w)(2)P^{(2)}_{(v,w)} with eigenvalue 0. However, in this case, since P(v,w)(2)P^{(2)}_{(v,w)} are projectors, we can write Eq. (97) and transform the l.h.s.\mathrm{l.h.s.} into a vector norm. Since vector norm is 0 iff all elements of the vector are 0, |λi\ket{\lambda_{i}} are in fact eigenvectors of P(v,w)(2)P^{(2)}_{(v,w)} with eigenvalue 0. Since H(G(VU,Enot U))0H(G(V-U,E_{\text{not }U}))\geq 0 and {|λi}i=1r\{\ket{\lambda_{i}}\}_{i=1}^{r} is the set of eigenstates with eigenvalue 0, {|λi}i=1r\{\ket{\lambda_{i}}\}_{i=1}^{r} is the set of ground states of the Hamiltonian H(G(VU,Enot U))H(G(V-U,E_{\text{not }U})). Since for each i{1,2,,r}i\in\{1,2,\dots,r\}, |λi\ket{\lambda_{i}} is an eigenvector of P(v,w)(2)P^{(2)}_{(v,w)} with eigenvalue 0 for all (v,w)Enot U(v,w)\in E_{\text{not }U} by Eq. (98), H(G(VU,Enot U))H(G(V-U,E_{\text{not }U})) is frustration free with 0 ground state energy. ∎

7 Knabe for complete graph RQCs: A short proof of Harrow-Low

In this section we prove another result for complete-graph random quantum circuits using Knabe bounds, which constitutes a short proof of the result by Harrow and Low [HL09] that complete-graph RQCs form approximate 2-designs. Their proof, with an error fixed in [DJ11], focused on bounding the mixing time of the Markov chain to prove convergence to approximate 2-designs. Here we point out that one can derive a Knabe bound for frustration-free Hamiltonians on complete graphs and then, by explicitly computing the n=3n=3 Hamiltonian gap, use the finite-size criteria to establish the same convergence to approximate 2-designs in t=O(n2)t=O(n^{2}) depth. We emphasize that it is believed that complete-graph RQCs are believed to mix even faster, and that this, potentially weak, behavior is a consequence of bounding diamond norms with operator norms. If the true behavior is t=O(nlog(n))t=O(n\log(n)), as is often conjectured [HP07, SS08, BF12, HM23, HH21], then such a scaling is not present in the operator norm or, equivalently, the spectral gaps.

Theorem 8 (complete-graph gaps).

The complete-graph Hamiltonian gaps for the second moment are Δ(CG,n,k=2)=Θ(n)\Delta(\mathrm{CG},n,k=2)=\Theta(n). Specifically, the k=2k=2 spectral gaps are lower bounded as

Δ(CG,n,2)(n2)(12qq2+1).\Delta(\mathrm{CG},n,2)\geq(n-2)\left(1-\frac{2q}{q^{2}+1}\right)\,. (99)
Proof.

The upper bound of Δ(CG,n,k)(n1)\Delta(\mathrm{CG},n,k)\leq(n-1) holds for all moments, as was proved in Corollary 5. To prove the lower bound on the complete-graph spectral gap, we combine a newly derived Knabe bound with the exact calculation of a finite-size gap. Specifically, in Theorem 9 we prove a Knabe-type bound which allows us to related the complete-graph Hamiltonian spectral gap on nn sites to the gap on a subsystem of mm sites for any moment. For subsystem size m=3m=3, the bound is

Δ(CG,n,k)(n2)(Δ(CG,3,k)1).\Delta(\mathrm{CG},n,k)\geq(n-2)\big{(}\Delta(\mathrm{CG},3,k)-1\big{)}\,. (100)

For the second moment, we can analytically diagonalize the moment operator and in Proposition 3 find the exact k=2k=2 3-site gap

Δ(CG,3,2)=2(1qq2+1).\Delta(\mathrm{CG},3,2)=2\left(1-\frac{q}{q^{2}+1}\right)\,. (101)

Combining these two the theorem then follows. ∎

Recalling how the spectral gap controls the design depth, we then conclude:

Corollary 7.

Random quantum circuits on nn qudits with local dimension qq on a complete graph form ε\varepsilon-approximate unitary 22-designs when the circuit depth tt is

tn(12qq2+1)1(nlogq+log1/ε).t\geq n\left(1-\frac{2q}{q^{2}+1}\right)^{-1}(n\log q+\log 1/\varepsilon)\,. (102)

This is the same result proved in [HL09], albeit using an entirely different approach. Again, we emphasize that the true design depth for complete-graph circuits might be sub-quadratic, but that any such improvement cannot be seen from spectral gaps, and thus in an approach using the operator norm.

7.1 Finite-size criteria for non-local systems

Theorem 9.

Let H(CG,n)=i>jhi,jH(\mathrm{CG},n)=\sum_{i>j}h_{i,j} be a frustration-free Hamiltonian defined on a complete graph, where the Hamiltonian terms are local projectors hi,j2=hi,jh^{2}_{i,j}=h_{i,j}, and let Δ(CG,n)\Delta(\mathrm{CG},n) denote the spectral gap of H(CG,n)H(\mathrm{CG},n). For nm3n\geq m\geq 3, the complete-graph Hamiltonian gaps obey

Δ(CG,n)n2m2(Δ(CG,m)nmn2).\Delta(\mathrm{CG},n)\geq\frac{n-2}{m-2}\left(\Delta(\mathrm{CG},m)-\frac{n-m}{n-2}\right)\,. (103)
Proof of Theorem 9.

Again, as in [Kna88], we proceed by lower bounding the square of H(CG,n)H(\mathrm{CG},n), noting that H(CG,n)2γH(CG,n)H(\mathrm{CG},n)^{2}\geq\gamma H(\mathrm{CG},n) implies a spectral gap lower bound Δ(CG,n)γ\Delta(\mathrm{CG},n)\geq\gamma. For the complete-graph Hamiltonian, we have

(H(CG,n))2=i<jhi,j+i<j,k<l|{i,j}{k,l}|=1{hi,j,hk,l}+i<j,k<l{i,j}{k,l}=0{hi,j,hk,l}=H(CG,n)+Q+R,(H(\mathrm{CG},n))^{2}=\sum_{i<j}h_{i,j}+\sum_{\begin{subarray}{c}i<j,k<l\\ |\{i,j\}\cap\{k,l\}|=1\end{subarray}}\{h_{i,j},h_{k,l}\}+\sum_{\begin{subarray}{c}i<j,k<l\\ \{i,j\}\cap\{k,l\}=0\end{subarray}}\{h_{i,j},h_{k,l}\}=H(\mathrm{CG},n)+Q+R\,, (104)

where {hi,j,hk,l}\{h_{i,j},h_{k,l}\} denotes the anticommutator of Hamiltonian terms and Q=|{i,j}{k,l}|=1{hi,j,hk,l}Q=\sum_{|\{i,j\}\cap\{k,l\}|=1}\{h_{i,j},h_{k,l}\} are the anticommutators of terms which overlap on a single site and R={i,j}{k,l}=0{hi,j,hk,l}R=\sum_{\{i,j\}\cap\{k,l\}=0}\{h_{i,j},h_{k,l}\} and the anticommutators of non-overlapping Hamiltonian terms.

Let s2({j1,j2,jm}):=({j1,j2,jm}2)s_{2}(\{j_{1},j_{2},\ldots j_{m}\}):=\binom{\{j_{1},j_{2},\ldots j_{m}\}}{2} denote the set of all length-2 subsets of {j1,j2,jm}\{j_{1},j_{2},\ldots j_{m}\}. Now consider the following operator, defined as the sqaure of the complete graph Hamiltonian on a subset of mm of the sites, summed over all possible choices of mm sites. We find

j1<j2<<jm(ss2({j1,j2,jm})hs(1),s(2))2=(n2m2)H(CG,n)+(n3m3)Q+(n4m4)R.\sum_{j_{1}<j_{2}<\ldots<j_{m}}\bigg{(}\sum_{s\in s_{2}(\{j_{1},j_{2},\ldots j_{m}\})}h_{s(1),s(2)}\bigg{)}^{2}=\binom{n-2}{m-2}H(\mathrm{CG},n)+\binom{n-3}{m-3}Q+\binom{n-4}{m-4}R\,. (105)

We further note that this sum of all possible mm-site complete-graph Hamiltonians can be lower bounded as

j1<j2<<jm(ss2({j1,j2,jm})hs(1),s(2))2\displaystyle\sum_{j_{1}<j_{2}<\ldots<j_{m}}\bigg{(}\sum_{s\in s_{2}(\{j_{1},j_{2},\ldots j_{m}\})}h_{s(1),s(2)}\bigg{)}^{2} Δ(CG,m)j1<j2<<jm(ss2({j1,j2,jm})hs(1),s(2))\displaystyle\geq\Delta(\mathrm{CG},m)\sum_{j_{1}<j_{2}<\ldots<j_{m}}\bigg{(}\sum_{s\in s_{2}(\{j_{1},j_{2},\ldots j_{m}\})}h_{s(1),s(2)}\bigg{)} (106)
=Δ(CG,m)(n2m2)H(CG,n),\displaystyle=\Delta(\mathrm{CG},m)\binom{n-2}{m-2}H(\mathrm{CG},n)\,, (107)

where Δ(CG,m)\Delta(\mathrm{CG},m) is the mm-site complete-graph spectral gap. We are simply using that (H(CG,m))2Δ(CG,m)H(CG,m)(H(\mathrm{CG},m))^{2}\geq\Delta(\mathrm{CG},m)H(\mathrm{CG},m) for the subsystem Hamiltonians in terms of the subsystem gaps. The two above equations subsequently imply that

Q+m3n3Rn2m2(Δ(CG,m)1)H(CG,n),Q+\frac{m-3}{n-3}R\geq\frac{n-2}{m-2}(\Delta(\mathrm{CG},m)-1)H(\mathrm{CG},n)\,, (108)

which in turn gives a lower bound on (H(CG,n))2(H(\mathrm{CG},n))^{2}. The desired Knabe bound for the complete-graph Hamiltonian then follows. ∎

For subsystem size m=3m=3, the above complete-graph Knabe bound is simply

Δ(CG,n)(n2)(Δ(CG,3)n3n2)(n2)(Δ(CG,3)1).\Delta(\mathrm{CG},n)\geq(n-2)\left(\Delta(\mathrm{CG},3)-\frac{n-3}{n-2}\right)\geq(n-2)\left(\Delta(\mathrm{CG},3)-1\right)\,. (109)

Therefore, if we compute a subsystem gap and the gap is strictly greater than the threshold value of one, then we prove a gap lower bound for all n>3n>3.

7.2 Exact computation of finite-size gaps for the complete graph

Turning back to our frustration-free Hamiltonian from random quantum circuits on a complete graph, we can exactly compute the n=3n=3 Hamiltonain gap for the second moment.

Proposition 3.

For k=2k=2, the n=3n=3 complete-graph Hamiltonian H(CG,3,2)=h1,2+h2,3+h3,1H(\mathrm{CG},3,2)=h_{1,2}+h_{2,3}+h_{3,1}, where hi,j=(𝕀(PH)i,j𝕀[3]\{i,j})h_{i,j}=(\mathbb{I}-(P_{H})_{i,j}\otimes\mathbb{I}_{[3]\backslash\{i,j\}}) and (PH)i,j=𝑑μHaarUi,j2,2(P_{H})_{i,j}=\int d\mu_{\rm Haar}\,U^{\otimes 2,2}_{i,j} has a spectral gap

Δ(CG,3,2)=2(1qq2+1).\Delta(\mathrm{CG},3,2)=2\left(1-\frac{q}{q^{2}+1}\right)\,. (110)

For local qubits, the gap is Δ(CG,3,2)=6/5\Delta(\mathrm{CG},3,2)=6/5.

Proof of Proposition 3.

Consider the difference of the n=3n=3 complete-graph second moment operator and the Haar moment operator

M(CG,3,2)(PH)1,2,3=13((PH)1,2𝕀3+(PH)2,3𝕀1+(PH)1,3𝕀2)(PH)1,2,3,M(\mathrm{CG},3,2)-(P_{H})_{1,2,3}=\frac{1}{3}\big{(}(P_{H})_{1,2}\otimes\mathbb{I}_{3}+(P_{H})_{2,3}\otimes\mathbb{I}_{1}+(P_{H})_{1,3}\otimes\mathbb{I}_{2}\big{)}-(P_{H})_{1,2,3}\,, (111)

where PHP_{H} is the Haar projector on the specified sites. For simplicity in the following proof, we compress the notation as P12=(PH)1,2P_{12}=(P_{H})_{1,2}. As proven in [BH13], it is sufficient to diagonalize the operator

X=P12P3P123+P23P1P123+P13P2P123,X=P_{12}\otimes P_{3}-P_{123}+P_{23}\otimes P_{1}-P_{123}+P_{13}\otimes P_{2}-P_{123}\,, (112)

which has the same nonzero and nonunital eigenvalues as 3(M(CG,3,2)(PH)1,2,3)3(M(\mathrm{CG},3,2)-(P_{H})_{1,2,3}). Now we want to write down an explicit operator basis for the operator.

Let 𝒱([n])=span{𝕀n,Sn}\mathcal{V}^{([n])}=\mathrm{span}\{\mathbb{I}^{\otimes n},S^{\otimes n}\}. First note that a basis for this space of operators is given by the projectors on to the symmetry and anti-symmetric subspaces, P±(n)=12(𝕀n±Sn)P_{\pm}^{(n)}=\frac{1}{2}(\mathbb{I}^{\otimes n}\pm S^{\otimes n}). For 𝒱(1)\mathcal{V}^{(1)}, we have P±=12(𝕀±S)P_{\pm}=\frac{1}{2}(\mathbb{I}\pm S), for which

tr(P+P)=tr(PP+)=0andtr(P+)=q(q+1)2,tr(P)=q(q1)2.{\rm tr}(P_{+}P_{-})={\rm tr}(P_{-}P_{+})=0\quad{\rm and}\quad{\rm tr}(P_{+})=\frac{q(q+1)}{2}\,,\quad{\rm tr}(P_{-})=\frac{q(q-1)}{2}\,. (113)

To diagonalize the operator P12P3P123P_{12}\otimes P_{3}-P_{123}, it suffices to construct a basis for 𝒱(12)𝒱(3)\mathcal{V}^{(12)}\otimes\mathcal{V}^{(3)} which is orthogonal to 𝒱(123)\mathcal{V}^{(123)}, which is rank 2. Denote these two basis operators as Va(12,3)V^{(12,3)}_{a} and Vb(12,3)V^{(12,3)}_{b}. Similarly for P23P1P123P_{23}\otimes P_{1}-P_{123} and P13P2P123P_{13}\otimes P_{2}-P_{123} we have Va,b(23,1)V^{(23,1)}_{a,b} and Va,b(13,2)V^{(13,2)}_{a,b}. These operators can be written explicitly in terms of the tensored projectors on to the symmetric and antisymmetric subspaces as

Va(12,3)\displaystyle V_{a}^{(12,3)} =(2(q2+1)q3(q3+1))1/2(q1q2+1(P++++P+)q+1q21(P++P+))\displaystyle=\left(\frac{2(q^{2}+1)}{q^{3}(q^{3}+1)}\right)^{1/2}\left(\frac{q-1}{q^{2}+1}(P_{+++}+P_{--+})-\frac{q+1}{q^{2}-1}(P_{+--}+P_{-+-})\right)
Vb(12,3)\displaystyle V_{b}^{(12,3)} =(2(q2+1)q3(q31))1/2(q+1q2+1(P+++P)q1q21(P+++P++))\displaystyle=\left(\frac{2(q^{2}+1)}{q^{3}(q^{3}-1)}\right)^{1/2}\left(\frac{q+1}{q^{2}+1}(P_{++-}+P_{---})-\frac{q-1}{q^{2}-1}(P_{+-+}+P_{-++})\right)
Va(23,1)\displaystyle V_{a}^{(23,1)} =(2(q2+1)q3(q3+1))1/2(q1q2+1(P++++P+)q+1q21(P++P+))\displaystyle=\left(\frac{2(q^{2}+1)}{q^{3}(q^{3}+1)}\right)^{1/2}\left(\frac{q-1}{q^{2}+1}(P_{+++}+P_{+--})-\frac{q+1}{q^{2}-1}(P_{-+-}+P_{--+})\right)
Vb(23,1)\displaystyle V_{b}^{(23,1)} =(2(q2+1)q3(q31))1/2(q+1q2+1(P+++P)q1q21(P+++P++))\displaystyle=\left(\frac{2(q^{2}+1)}{q^{3}(q^{3}-1)}\right)^{1/2}\left(\frac{q+1}{q^{2}+1}(P_{-++}+P_{---})-\frac{q-1}{q^{2}-1}(P_{++-}+P_{+-+})\right)
Va(13,2)\displaystyle V_{a}^{(13,2)} =(2(q2+1)q3(q3+1))1/2(q1q2+1(P++++P+)q+1q21(P++P+))\displaystyle=\left(\frac{2(q^{2}+1)}{q^{3}(q^{3}+1)}\right)^{1/2}\left(\frac{q-1}{q^{2}+1}(P_{+++}+P_{-+-})-\frac{q+1}{q^{2}-1}(P_{+--}+P_{--+})\right)
Vb(13,2)\displaystyle V_{b}^{(13,2)} =(2(q2+1)q3(q31))1/2(q+1q2+1(P+++P)q1q21(P+++P++)),\displaystyle=\left(\frac{2(q^{2}+1)}{q^{3}(q^{3}-1)}\right)^{1/2}\left(\frac{q+1}{q^{2}+1}(P_{+-+}+P_{---})-\frac{q-1}{q^{2}-1}(P_{++-}+P_{-++})\right)\,,

where for convenience we have denoted P±±±=P±P±P±P_{\pm\pm\pm}=P_{\pm}\otimes P_{\pm}\otimes P_{\pm}.

Computing the matrix of inner products of all the basis operators, ordered as
{Va(12,3),Vb(12,3),Va(23,1),Vb(23,1),Va(13,2),Vb(13,2)}\{V_{a}^{(12,3)},V_{b}^{(12,3)},V_{a}^{(23,1)},V_{b}^{(23,1)},V_{a}^{(13,2)},V_{b}^{(13,2)}\}, we find

(10qq2+10qq2+10010qq2+10qq2+1qq2+1010qq2+100qq2+1010qq2+1qq2+10qq2+10100qq2+10qq2+101).\begin{pmatrix}1&0&\frac{q}{q^{2}+1}&0&\frac{q}{q^{2}+1}&0\\ 0&1&0&-\frac{q}{q^{2}+1}&0&-\frac{q}{q^{2}+1}\\ \frac{q}{q^{2}+1}&0&1&0&\frac{q}{q^{2}+1}&0\\ 0&-\frac{q}{q^{2}+1}&0&1&0&-\frac{q}{q^{2}+1}\\ \frac{q}{q^{2}+1}&0&\frac{q}{q^{2}+1}&0&1&0\\ 0&-\frac{q}{q^{2}+1}&0&-\frac{q}{q^{2}+1}&0&1\\ \end{pmatrix}\,. (114)

Writing the matrix as X=i=a,b|Vi(12,3)Vi(12,3)|+|Vi(23,1)Vi(23,1)|+|Vi(13,2)Vi(13,2)|X=\sum_{i=a,b}|{V_{i}^{(12,3)}}\rangle\!\langle{V_{i}^{(12,3)}}|+|{V_{i}^{(23,1)}}\rangle\!\langle{V_{i}^{(23,1)}}|+|{V_{i}^{(13,2)}}\rangle\!\langle{V_{i}^{(13,2)}}| we can express a state as |λ=iαi|Vi\ket{\lambda}=\sum_{i}\alpha_{i}\ket{V_{i}} and compute the eigenvalues of XX to find

λ={(q+1)2q2+1,q2+q+1q2+1,q2+q+1q2+1,q2q+1q2+1,q2q+1q2+1,(q1)2q2+1},\lambda=\left\{\frac{(q+1)^{2}}{q^{2}+1},\frac{q^{2}+q+1}{q^{2}+1},\frac{q^{2}+q+1}{q^{2}+1},\frac{q^{2}-q+1}{q^{2}+1},\frac{q^{2}-q+1}{q^{2}+1},\frac{(q-1)^{2}}{q^{2}+1}\right\}\,, (115)

the first of which is the largest eigenvalue of XX. The largest eigenvalue of X/3X/3 equals the second largest eigenvalue of M(CG,3,2)M(\mathrm{CG},3,2), as we subtract off the projector onto the highest eigenvalue eigenspace, we compute the spectral gap of H(CG,3,2)H(\mathrm{CG},3,2) simply by noting that H(CG,3,2)=3(𝕀M(CG,3,2))H(\mathrm{CG},3,2)=3(\mathbb{I}-M(\mathrm{CG},3,2)). ∎

We note that this exact complete-graph gap for the second moment agrees with the gap for the 1D Hamiltonian with periodic boundary conditions (which is the same Hamiltonian) computed for local qubits, q=2q=2, in Ref. [Žni08]. There the 1D Hamiltonian is rewritten in terms of an integrable spin system. While the integrability is lost for the complete-graph Hamiltonian, a semiclassical limit allows one to estimate the large nn asymptotic value of the gap. We comment on this and the rigorous lower bound from Knabe at the end of the section.

Refer to caption\pgfmathresultptΔ(CG,n,k=2)\Delta(\mathrm{CG},n,k=2)nn
Figure 7: The numerical q=2q=2 complete-graph gaps for the second moment are plotted (black diamonds) along with the upper bound from Corollary 5 (black line) and lower bound from Theorem 8 (blue line) and semiclassical asymptotic behavior (red line).

7.3 Asymptotic complete-graph gaps

For the second moment, we find Δ(CG,n,2)=Θ(n)\Delta(\mathrm{CG},n,2)=\Theta(n), with an upper bound proved in Corollary 5 and lower bound proved in Theorem 8. For local qubits q=2q=2, the bounds imply n/5Δ(CG,n,2)nn/5\leq\Delta(\mathrm{CG},n,2)\leq n. In Ref. [Žni08], it was argued using a semiclassical approximation that the asymptotic q=2q=2 complete-graph gaps for the second moment should be, in our notation,

Δ(CG,n,2)3/5.\Delta(\mathrm{CG},n,2)\sim 3/5\,. (116)

(Note that there the moment operator is normalized differently, contributing a factor of 2.) By numerically computing the second moment complete graph gaps, we find that the behavior is consistent with the (nonrigorous) semiclassical asymptotic. The numerical gaps are plotted in Figure 7 along with upper and lower bounds, as well as the asymptotic behavior. Furthermore, we can insert the numerical gaps into the finite-size criteria for increasing subsystem size and find Ω(n)\Omega(n) lower bounds on the gaps with increasing slopes, all consistent with the large nn behavior.

8 Outlook

We considered quantum circuits with randomly drawn gates on arbitrary architectures. Our motivation was to understand the effect of the architecture on the design size, and, in particular, if certain architectures enable faster convergence to unitary designs compared to other architectures. To that end, we proved that random quantum circuits on a very general set of graphs form approximate unitary kk-designs in polynomial in nn and kk number of gates. We further identified a large set of graphs for which the design size is O(n2poly(k))O(n^{2}{\rm poly}(k)), which typically corresponds to linear depth depending on the architecture. Since the kk dependence of our design size bounds found via our Detectability Lemma method is inherited from the corresponding bound for 1D, any improvement in the kk-dependence for the 1D case would directly imply a corresponding improvement for all architectures. Using the same approach, we show for the first time a design size upper bound for random quantum circuits on all connected architectures, albeit with quasi-polynomial dependence on nn. We believe that this suboptimal scaling without any assumptions about the connected graph is an artifact of our proof technique. We emphasize that our results also hold for random quantum circuits with local gates drawn from any universal gate set.

In establishing the desired spectral gap bounds, we developed new techniques that we expect to be broadly applicable in proving spectral gap lower bounds for local, frustration free Hamiltonians defined on arbitrary graphs. These methods include lower bounding the Hamiltonian gap using the Detectability Lemma and a Knabe bound which holds on all connected graphs.

Our approach involves bounding the spectral norm to show convergence to approximate unitary designs. We established that the nn dependence cannot be improved past O(n2)O(n^{2}) gates using this approach. Therefore, proving that random quantum circuits form unitary designs in sub-linear depth for generic local architectures necessitates moving away from spectral gaps and to stronger norms, for which far fewer techniques are known.


Note added: After the completion of this work we learned of Ref. [Bel+23], which independently studies the design properties of RQCs on general architectures and will appear in the same arXiv posting. Their models consist of deterministic arrangements of gates, as opposed to our randomly placed gate per time step.

Acknowledgments

The authors would like to acknowledge helpful discussions with Anurag Anshu, Jonas Haferkamp, Brian Kennedy, Marius Lemm, and David Wendt. NHJ thanks the Kavli Institute for Theoretical Physics (supported by NSF Grant PHY-1748958) and the Aspen Center for Physics (supported by NSF grant PHY-2210452) for hospitality during the completion of part of this work. NHJ acknowledges prior support from the Stanford Q-FARM Bloch Fellowship in Quantum Science and Engineering. SM is supported in part by an OGS Fellowship at UT Austin.

Appendix A Proof of Lemma 3 in six steps

A.1 Step 1: Spectral gaps for spanning trees are sufficient

One of the main features of the Hamiltonians that are the focus of our work is that regardless of the graph (as long as it is connected) on which they are defined, they have identical ground and excited state spaces. The proof is essentially the same as the proof for the explicit expression for the ground state vectors given in Lemma 17 in Ref. [BHH16], and relies on Schur-Weyl duality (see Ref. [RY17]) and the fact that two qudit unitaries on connected graphs generates the set of all unitaries on nn qudits (the result of Ref. [Bar+95] implies this). Since the excited state space is the complement of the ground state space in the nn-qudit Hilbert space, if the latter are identical across all connected graphs, then so will be the former.

Remark 3.

Results for convergence of random quantum circuits (local or otherwise with specific procedure of applying gates) to approximate designs are known for 1D\mathrm{1D}, complete and higher-dimensional lattice graphs. Since, complete and hypercubic lattice graphs admit a 1D\mathrm{1D} graph as their spanning tree, by Step 1, the spectral gap of the Hamiltonian on those graphs is lower bounded by the spectral gap of the Hamiltonian on 1D\mathrm{1D} graphs with identical number of vertices. However, such gap lower bounds for complete and hypercubic lattice graphs give weaker bounds than those presented in Refs. [HH21, HM23]. This is because the circuit size is proportional to the number of edges in a graph, |E||E|, divided by the spectral gap. Since, |E||E| then contributes additional factors of nn in the circuit size.

A.2 Step 2: A definition of “depth” of a spanning tree

Consider an nn-vertex tree graph with height hh and identify a path between two leaves. Remainder of the tree graph is a sub-tree graph with its root vertex on the chosen path and captures the deviation of the tree from an nn-vertex 1D\mathrm{1D} line graph. Our strategy to prove the lower bound of Lemma 3 is to recursively relate Detectability Lemma norm on a tree with that on another tree with a longer path and a shorter sub-tree. The lower bound becomes smaller exponentially in the number of recursions required, which is equal to the height of the sub-tree. For example, consider an nn-vertex GG in the shape of the letter ‘y’, where a single degree three vertex is connected to a 1D\mathrm{1D} graph at each of its neighboring vertices. The height of the sub-tree in this graph is order nn and, according to our method of showing a lower bound, implies an exponentially small in nn lower bound on Δ(G,n,k)\Delta(G,n,k). Therefore, we questioned if ours was a viable method to prove a lower bound in Lemma 3 that was better than exponentially small in nn. We answer that question in the affirmative by equating the Detectability Lemma on any nn-vertex tree graph TT of height h=O(n)h=O(n) to that on another tree, denote it by the “compressed” tree, of height O(log(n))O(\log(n)). This equality between Detectability Lemma norms allows for the possibility of a polynomially small instead of exponentially small in nn lower bound on Δ(T,n,k)\Delta(T,n,k). We introduce a new quantity that we refer to as the “depth” of a tree and define it to be the height of the corresponding “compressed” tree. We give the definition of the “depth” of a tree in this section, and explicate the structure of the corresponding “compressed” tree in the following section. Later in Appendix A.7, we prove that the height of the “compressed” tree is at most O(log(n))O(\log{(n)}).

Consider an arbitrary nn-vertex connected graph GG with a spanning tree denoted by STST. We provide an algorithmic function ff to define “depth” of STST. Select any vertex rSTr\in ST as the root of the tree. Then, we denote the depth of STST with respect to rr by Depth(ST,r)\mathrm{Depth}(ST,r) and define it to be,

Depth(ST,r):=minchoicesmaxf({ST},A,0),\displaystyle\mathrm{Depth}(ST,r):=\min_{\mathrm{choices}}\max f(\{ST\},A,0), (117)

where,

choices:=\displaystyle\mathrm{choices}:=\ The set of all of the following; choices of paths made at step 2.(d).i.A. of f({ST},A,d)f(\{ST\},A,d)
including those in every recursion of ff.

AA is an array each of whose elements is uniquely mapped to a vertex of the original ST, and dd is a counter variable that begins at 0. By definition, the label for rr in AA is 0.

Define a function f(𝒮,A,d)f(\mathcal{S},A,d)
% ff takes as input a set 𝒮\mathcal{S} of graphs, a variable array AA and a counter variable dd. ff returns a modified version of AA. 1. If 𝒮=\mathcal{S}=\emptyset, (a) Return AA. 2. Else, (a) For all s𝒮s\in\mathcal{S}, change labels in AA for the root vertices rsr_{s} to dd. (b) Increment value of dd by one. (c) If for all s𝒮,Vs\{rs}=s\in\mathcal{S},V_{s}\backslash\{r_{s}\}=\emptyset i. Return AA. (d) Else, i. For all s𝒮:Vs\{rs}s\in\mathcal{S}:V_{s}\backslash\{r_{s}\}\neq\emptyset, A. Select a path VsV_{s} (a set of connected vertices) from rsr_{s} to a leaf in ss. B. Change labels in AA for vertices in Vs\{rs}V_{s}\backslash\{r_{s}\} to value dd. C. Change labels in AA for vertices connected to rsr_{s} to value dd. D. Increment value of dd by one. E. Define sets CVsCV_{s} of vertices connected to rsr_{s}. ii. Define a new set of connected graphs
𝒮:=s𝒮:Vs\{rs}{s(VsCVs)}\mathcal{S}^{\prime}:=\bigcup_{s\in\mathcal{S}:V_{s}\backslash\{r_{s}\}\neq\emptyset}\{s-(V_{s}\bigcup CV_{s})\}.
iii. execute f(𝒮,A,d)f(\mathcal{S}^{\prime},A,d).
Table 3: An algorithmic, recursive function ff for the definition of the depth of a tree.

A.3 Step 3: A new “compressed” tree graph from the spanning tree

  1. 1.

    According to the definition of ff, we select paths to leaves at step 2.(d).i.A. Let us consider those choices of paths such that when those choices are made, maxf({ST},𝒜,0)=Depth(ST,r)\max f(\{ST\},\mathcal{A},0)=\mathrm{Depth}(ST,r).

  2. 2.

    For each path VsV_{s} that is selected at the end of step 2.(d).i.A., rearrange the vertices in Vs\{rs}V_{s}\backslash\{r_{s}\} in a star graph arrangement around rsr_{s}. We arrive at a graph that we refer to as the compressed spanning tree or, CST(0)CST^{(0)}, where the superscript denotes the number of iterations of Step 4 presented in the next section and, hence, is 0 at this step.

  3. 3.

    For a single execution of the algorithm ff, across all recursions of ff and for all ss at each recursion, the paths VsV_{s} are not intersecting. This is because within each recursion, ss labels disconnected graphs and paths from disconnected graphs can not intersect. And, at step 2.(d).iii., each successive recursion of ff receives a set of graphs that do not intersect with the paths (given by VsV_{s} for any s𝒮s\in\mathcal{S}) from the current recursion.

  4. 4.

    Suppose that the local term of the moment operator as defined in Definition 4, also known as the local ground state space projector, is given by m(μ,ν)m_{(\mu,\nu)}, where mm acts non-trivially on the qudit Hilbert spaces corresponding to vertices μ\mu and ν\nu.

  5. 5.

    Then, as a consequence of the previous point, two local ground state projectors commute if they act on Hilbert spaces corresponding to edges in two different non-intersecting paths.

  6. 6.

    Consider the set of non-intersecting paths {Pi}i=1N\{P_{i}\}_{i=1}^{N}, where NN is the number of non-intersecting paths, and for each i{1,2,,N}i\in\{1,2,\dots,N\}, PiP_{i} is a 1D\mathrm{1D} line graph with open boundary conditions with |Pi||P_{i}| number of vertices.

  7. 7.

    We consider the product of operators in the Detectability Lemma norm in two parts. First, let Πothers\Pi_{\text{others}} be the product of local ground state projectors corresponding to the edges in the graph STi=1NPiST-\bigcup_{i=1}^{N}P_{i}, that is those edges that are not taken into account in any of the non-intersecting paths. Second, consider the product Πpaths\Pi_{\text{paths}} given as follows

    Πpaths:=i=1Nm(v1(i),v2(i))m(v2(i),v3(i))m(v|Pi|1(i),v|Pi|(i)),\displaystyle\Pi_{\text{paths}}:=\prod_{i=1}^{N}m_{(v_{1}^{(i)},v_{2}^{(i)})}m_{(v_{2}^{(i)},v_{3}^{(i)})}\dots m_{(v_{|P_{i}|-1}^{(i)},v_{|P_{i}|}^{(i)})}\,, (118)

    where the vertices in PiP_{i}, connected sequentially with each other, are given by v1(i),v2(i),,v|Pi|(i)v_{1}^{(i)},v_{2}^{(i)},\dots,v_{|P_{i}|}^{(i)}. Then, the Detectability Lemma norm for STST, is given by,

    DLST|ψ=ΠothersΠpaths|ψ,\displaystyle\lVert\mathrm{DL}^{ST}\ket{\psi}\rVert=\lVert\Pi_{\text{others}}\Pi_{\text{paths}}\ket{\psi}\rVert\,, (119)

    where the Detectability Lemma operator is defined as, DLST:=ΠothersΠpaths\mathrm{DL}^{ST}:=\Pi_{\text{others}}\Pi_{\text{paths}}, and |ψ𝒢\ket{\psi}\in\mathcal{G}_{\perp}, the excited state space of H(ST,n,k)H(ST,n,k).

  8. 8.

    Consider the following Lemma:

    Lemma 7.

    Suppose PP is a path graph with vertices that are sequentially connected given by {v1,v2,,v|P|}\{v_{1},v_{2},\dots,v_{|P|}\}, where |P||P| is the total number of vertices in PP, then,

    m(v1,v2)m(v2,v3)m(v|P|1,v|P|)\displaystyle m_{(v_{1},v_{2})}m_{(v_{2},v_{3})}\cdots m_{(v_{|P|-1},v_{|P|})} =m(v1,v2)m(v1,v3)m(v1,v|P|)WP,\displaystyle=m_{(v_{1},v_{2})}m_{(v_{1},v_{3})}\cdots m_{(v_{1},v_{|P|})}W_{P}\,, (120)

    where WPW_{P} is a cyclic permutation over the Hilbert spaces corresponding to the vertices in PP such that it takes v1v|P|,v2v1,v3v2v_{1}\rightarrow v_{|P|},v_{2}\rightarrow v_{1},v_{3}\rightarrow v_{2} and so forth.

    Remark 4.

    Note that the proof of Eq. (120) requires that m=mSWAP=SWAPmm=m\mathrm{SWAP}=\mathrm{SWAP}m, where we omit the subscripts and take it understood that mm and SWAP\mathrm{SWAP} act on the same 2 qudit Hilbert spaces. This property is made available to us by left/right invariance of the Haar measure that is invoked in the definition of m=𝒰(q2)𝑑UUkU,km=\int_{\mathcal{U}(q^{2})}dU\ U^{\otimes k}\otimes U^{\dagger,\otimes k}, a local term of the moment operator as defined in Definition 4.

  9. 9.

    Using Lemma 7, we can re-write the sequential products in the multiplicand for each i{1,2,,N}i\in\{1,2,\dots,N\} of Eq. (120) as a product of local ground state projectors on a star graph centered at v1(i)v_{1}^{(i)}. For each ii, this rewriting comes at a cost of cyclic permutation unitary, denoted by WPiW_{P_{i}}, that is right-multiplied to the multiplicand corresponding to ii and that acts on all the Hilbert spaces corresponding to all vertices in PiP_{i}

    Πpaths:=i=1Nm(v1(i),v2(i))m(v1(i),v3(i))m(v1(i),v|Pi|(i))WPi.\displaystyle\Pi_{\text{paths}}:=\prod_{i=1}^{N}m_{(v_{1}^{(i)},v_{2}^{(i)})}m_{(v_{1}^{(i)},v_{3}^{(i)})}\dots m_{(v_{1}^{(i)},v_{|P_{i}|}^{(i)})}W_{P_{i}}\,. (121)
  10. 10.

    Note that for each i{1,2,,N1}i\in\{1,2,\dots,N-1\}, WPiW_{P_{i}} commutes with all terms to its right in Eq. (121). This is because WPiW_{P_{i}} acts on the Hilbert spaces corresponding to vertices in PiP_{i} and all terms to the right of WPiW_{P_{i}} act on Hilbert spaces corresponding to vertices from non-intersecting paths different from PiP_{i}. Since non-intersecting paths do not have common vertices by definition, WPiW_{P_{i}} and all terms to its right act on different Hilbert spaces and, hence, commute. Consequently, we can pull all WPiW_{P_{i}} to the right of the product

    Πpaths\displaystyle\Pi_{\text{paths}} :=i=1Nm(v1(i),v2(i))m(v1(i),v3(i))m(v1(i),v|Pi|(i))i=1NWPi\displaystyle:=\prod_{i=1}^{N}m_{(v_{1}^{(i)},v_{2}^{(i)})}m_{(v_{1}^{(i)},v_{3}^{(i)})}\dots m_{(v_{1}^{(i)},v_{|P_{i}|}^{(i)})}\prod_{i=1}^{N}W_{P_{i}} (122)
    =:Πstarsi=1NWPi.\displaystyle=:\Pi_{\text{stars}}\prod_{i=1}^{N}W_{P_{i}}\,. (123)
  11. 11.

    Substituting Eq. (123) in Eq. (119), we find

    DLST|ψ=ΠothersΠstars|ψ~,\displaystyle\lVert\mathrm{DL}^{ST}\ket{\psi}\rVert=\lVert\Pi_{\text{others}}\Pi_{\text{stars}}\ket{\widetilde{\psi}}\rVert\,, (124)

    where |ψ~:=i=1NWPi|ψ\ket{\widetilde{\psi}}:=\prod_{i=1}^{N}W_{P_{i}}\ket{\psi} and both |ψ\ket{\psi} and |ψ~\ket{\widetilde{\psi}} belong to 𝒢\mathcal{G}_{\perp}. We see this from the invariance of the orthogonality between ground and excited states under permutations. We know that for |ϕ𝒢\ket{\phi}\in\mathcal{G}, (i=1NWPi)|ϕ=|ϕ\left(\prod_{i=1}^{N}W_{P_{i}}\right)^{\dagger}\ket{\phi}=\ket{\phi}, because (i=1NWPi)\left(\prod_{i=1}^{N}W_{P_{i}}\right)^{\dagger} is a permutation over nn Hilbert spaces and the ground states are span of states that are identical across all nn Hilbert spaces. Suppose |ϕ𝒢\ket{\phi}\in\mathcal{G}, |ψ𝒢\ket{\psi}\in\mathcal{G}_{\perp} and |ψ~=i=1NWPi|ψ\ket{\widetilde{\psi}}=\prod_{i=1}^{N}W_{P_{i}}\ket{\psi}, then ϕ|ψ~=ϕ|(i=1NWPi)|ψ=ϕ|ψ=0\langle\phi|\widetilde{\psi}\rangle=\bra{\phi}\left(\prod_{i=1}^{N}W_{P_{i}}\right)\ket{\psi}=\langle\phi|\psi\rangle=0.

  12. 12.

    Finally, we realize that the product of operators in the r.h.s.\mathrm{r.h.s.} of Eq. (124) is a product of local ground state projectors corresponding to a graph with all non-intersecting paths replaced by stars, which was precisely the definition of the compressed spanning tree CST(0)CST^{(0)}. Therefore, we can rewrite the r.h.s.\mathrm{r.h.s.} in terms of the Detectability Lemma norm for CST(0)CST^{(0)} as follows,

    DLST|ψ=DLCST(0)|ψ~,\displaystyle\lVert\mathrm{DL}^{ST}\ket{\psi}\rVert=\lVert\mathrm{DL}^{CST^{(0)}}\ket{\widetilde{\psi}}\rVert\,, (125)

    where the Detectability Lemma operator for CST(0)CST^{(0)} is defined by, DLCST(0):=ΠothersΠstars\mathrm{DL}^{CST^{(0)}}:=\Pi_{\text{others}}\Pi_{\text{stars}}, and both |ψ\ket{\psi} and |ψ~\ket{\widetilde{\psi}} belong to 𝒢\mathcal{G}_{\perp}.

Proof of Lemma 7.

We give a graphical proof for the case of |P|=5|P|=5 vertices. The generalization to arbitrary number of vertices is straight forward.
We begin with the expression for the sequential product of operators arranged according to the path graph,

v1v2v3v4v5.\displaystyle\leavevmode\hbox to152.11pt{\vbox to69.38pt{\pgfpicture\makeatletter\hbox{\>\lower 7.9906pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{14.22638pt}{14.22638pt}\pgfsys@lineto{149.37698pt}{14.22638pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope{}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{14.22638pt}{28.45276pt}\pgfsys@lineto{149.37698pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope{}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{14.22638pt}{42.67914pt}\pgfsys@lineto{149.37698pt}{42.67914pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope{}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{14.22638pt}{56.90552pt}\pgfsys@lineto{149.37698pt}{56.90552pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope{}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{14.22638pt}{71.1319pt}\pgfsys@lineto{149.37698pt}{71.1319pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope \par{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{.5,.5,.5}\pgfsys@color@gray@fill{.5}\pgfsys@invoke{ }{{}{}{{}}{} {{}{{}}}{{}{}}{}{{}{}}{}{}{}{}{} {\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{.5,.5,.5}\pgfsys@color@gray@fill{.5}\pgfsys@invoke{ }{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}\pgfsys@moveto{38.87914pt}{32.20935pt}\pgfsys@lineto{32.65276pt}{32.20935pt}\pgfsys@curveto{30.44359pt}{32.20935pt}{28.65276pt}{30.41852pt}{28.65276pt}{28.20935pt}\pgfsys@lineto{28.65276pt}{14.86978pt}\pgfsys@curveto{28.65276pt}{12.66061pt}{30.44359pt}{10.86978pt}{32.65276pt}{10.86978pt}\pgfsys@lineto{38.87914pt}{10.86978pt}\pgfsys@curveto{41.0883pt}{10.86978pt}{42.87914pt}{12.66061pt}{42.87914pt}{14.86978pt}\pgfsys@lineto{42.87914pt}{28.20935pt}\pgfsys@curveto{42.87914pt}{30.41852pt}{41.0883pt}{32.20935pt}{38.87914pt}{32.20935pt}\pgfsys@closepath\pgfsys@moveto{28.65276pt}{10.86978pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{35.76595pt}{21.53957pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{.5,.5,.5}\pgfsys@color@gray@fill{.5}\pgfsys@invoke{ }{{}{}{{}}{} {{}{{}}}{{}{}}{}{{}{}}{}{}{}{}{} {\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{.5,.5,.5}\pgfsys@color@gray@fill{.5}\pgfsys@invoke{ }{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}\pgfsys@moveto{67.3319pt}{46.43573pt}\pgfsys@lineto{61.10551pt}{46.43573pt}\pgfsys@curveto{58.89635pt}{46.43573pt}{57.10551pt}{44.6449pt}{57.10551pt}{42.43573pt}\pgfsys@lineto{57.10551pt}{29.09616pt}\pgfsys@curveto{57.10551pt}{26.887pt}{58.89635pt}{25.09616pt}{61.10551pt}{25.09616pt}\pgfsys@lineto{67.3319pt}{25.09616pt}\pgfsys@curveto{69.54106pt}{25.09616pt}{71.3319pt}{26.887pt}{71.3319pt}{29.09616pt}\pgfsys@lineto{71.3319pt}{42.43573pt}\pgfsys@curveto{71.3319pt}{44.6449pt}{69.54106pt}{46.43573pt}{67.3319pt}{46.43573pt}\pgfsys@closepath\pgfsys@moveto{57.10551pt}{25.09616pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{64.2187pt}{35.76595pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{.5,.5,.5}\pgfsys@color@gray@fill{.5}\pgfsys@invoke{ }{{}{}{{}}{} {{}{{}}}{{}{}}{}{{}{}}{}{}{}{}{} {\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{.5,.5,.5}\pgfsys@color@gray@fill{.5}\pgfsys@invoke{ }{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}\pgfsys@moveto{95.78465pt}{60.66211pt}\pgfsys@lineto{89.55827pt}{60.66211pt}\pgfsys@curveto{87.3491pt}{60.66211pt}{85.55827pt}{58.87128pt}{85.55827pt}{56.66211pt}\pgfsys@lineto{85.55827pt}{43.32254pt}\pgfsys@curveto{85.55827pt}{41.11337pt}{87.3491pt}{39.32254pt}{89.55827pt}{39.32254pt}\pgfsys@lineto{95.78465pt}{39.32254pt}\pgfsys@curveto{97.99382pt}{39.32254pt}{99.78465pt}{41.11337pt}{99.78465pt}{43.32254pt}\pgfsys@lineto{99.78465pt}{56.66211pt}\pgfsys@curveto{99.78465pt}{58.87128pt}{97.99382pt}{60.66211pt}{95.78465pt}{60.66211pt}\pgfsys@closepath\pgfsys@moveto{85.55827pt}{39.32254pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{92.67146pt}{49.99232pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{.5,.5,.5}\pgfsys@color@gray@fill{.5}\pgfsys@invoke{ }{{}{}{{}}{} {{}{{}}}{{}{}}{}{{}{}}{}{}{}{}{} {\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{.5,.5,.5}\pgfsys@color@gray@fill{.5}\pgfsys@invoke{ }{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}\pgfsys@moveto{124.23741pt}{74.88849pt}\pgfsys@lineto{118.01103pt}{74.88849pt}\pgfsys@curveto{115.80186pt}{74.88849pt}{114.01103pt}{73.09766pt}{114.01103pt}{70.88849pt}\pgfsys@lineto{114.01103pt}{57.54892pt}\pgfsys@curveto{114.01103pt}{55.33975pt}{115.80186pt}{53.54892pt}{118.01103pt}{53.54892pt}\pgfsys@lineto{124.23741pt}{53.54892pt}\pgfsys@curveto{126.44658pt}{53.54892pt}{128.23741pt}{55.33975pt}{128.23741pt}{57.54892pt}\pgfsys@lineto{128.23741pt}{70.88849pt}\pgfsys@curveto{128.23741pt}{73.09766pt}{126.44658pt}{74.88849pt}{124.23741pt}{74.88849pt}\pgfsys@closepath\pgfsys@moveto{114.01103pt}{53.54892pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{121.12422pt}{64.2187pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \par{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{1.00124pt}{12.82361pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$v_{1}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{1.00124pt}{27.04999pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$v_{2}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{1.00124pt}{41.27637pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$v_{3}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{1.00124pt}{55.50275pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$v_{4}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{1.00124pt}{69.72913pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$v_{5}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \par \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}\ . (126)

Then, we re-write the above sequential product with the help of the permutation operator WPW_{P},

v1v2v3v4v5,\displaystyle\leavevmode\hbox to230.35pt{\vbox to69.38pt{\pgfpicture\makeatletter\hbox{\>\lower 7.9906pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{14.22638pt}{14.22638pt}\pgfsys@lineto{42.67914pt}{14.22638pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{14.22638pt}{28.45276pt}\pgfsys@lineto{42.67914pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{14.22638pt}{42.67914pt}\pgfsys@lineto{42.67914pt}{42.67914pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{14.22638pt}{56.90552pt}\pgfsys@lineto{42.67914pt}{56.90552pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{14.22638pt}{71.1319pt}\pgfsys@lineto{42.67914pt}{71.1319pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope \par{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{.5,.5,.5}\pgfsys@color@gray@fill{.5}\pgfsys@invoke{ }{{}{}{{}}{} {{}{{}}}{{}{}}{}{{}{}}{}{}{}{}{} {\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{.5,.5,.5}\pgfsys@color@gray@fill{.5}\pgfsys@invoke{ }{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}\pgfsys@moveto{38.87914pt}{32.20935pt}\pgfsys@lineto{32.65276pt}{32.20935pt}\pgfsys@curveto{30.44359pt}{32.20935pt}{28.65276pt}{30.41852pt}{28.65276pt}{28.20935pt}\pgfsys@lineto{28.65276pt}{14.86978pt}\pgfsys@curveto{28.65276pt}{12.66061pt}{30.44359pt}{10.86978pt}{32.65276pt}{10.86978pt}\pgfsys@lineto{38.87914pt}{10.86978pt}\pgfsys@curveto{41.0883pt}{10.86978pt}{42.87914pt}{12.66061pt}{42.87914pt}{14.86978pt}\pgfsys@lineto{42.87914pt}{28.20935pt}\pgfsys@curveto{42.87914pt}{30.41852pt}{41.0883pt}{32.20935pt}{38.87914pt}{32.20935pt}\pgfsys@closepath\pgfsys@moveto{28.65276pt}{10.86978pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{35.76595pt}{21.53957pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{.5,.5,.5}\pgfsys@color@gray@fill{.5}\pgfsys@invoke{ }{{}{}{{}}{} {{}{{}}}{{}{}}{}{{}{}}{}{}{}{}{} {\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{.5,.5,.5}\pgfsys@color@gray@fill{.5}\pgfsys@invoke{ }{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}\pgfsys@moveto{81.55827pt}{32.20935pt}\pgfsys@lineto{75.3319pt}{32.20935pt}\pgfsys@curveto{73.12273pt}{32.20935pt}{71.3319pt}{30.41852pt}{71.3319pt}{28.20935pt}\pgfsys@lineto{71.3319pt}{14.86978pt}\pgfsys@curveto{71.3319pt}{12.66061pt}{73.12273pt}{10.86978pt}{75.3319pt}{10.86978pt}\pgfsys@lineto{81.55827pt}{10.86978pt}\pgfsys@curveto{83.76744pt}{10.86978pt}{85.55827pt}{12.66061pt}{85.55827pt}{14.86978pt}\pgfsys@lineto{85.55827pt}{28.20935pt}\pgfsys@curveto{85.55827pt}{30.41852pt}{83.76744pt}{32.20935pt}{81.55827pt}{32.20935pt}\pgfsys@closepath\pgfsys@moveto{71.3319pt}{10.86978pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{78.44508pt}{21.53957pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{.5,.5,.5}\pgfsys@color@gray@fill{.5}\pgfsys@invoke{ }{{}{}{{}}{} {{}{{}}}{{}{}}{}{{}{}}{}{}{}{}{} {\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{.5,.5,.5}\pgfsys@color@gray@fill{.5}\pgfsys@invoke{ }{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}\pgfsys@moveto{124.23741pt}{32.20935pt}\pgfsys@lineto{118.01103pt}{32.20935pt}\pgfsys@curveto{115.80186pt}{32.20935pt}{114.01103pt}{30.41852pt}{114.01103pt}{28.20935pt}\pgfsys@lineto{114.01103pt}{14.86978pt}\pgfsys@curveto{114.01103pt}{12.66061pt}{115.80186pt}{10.86978pt}{118.01103pt}{10.86978pt}\pgfsys@lineto{124.23741pt}{10.86978pt}\pgfsys@curveto{126.44658pt}{10.86978pt}{128.23741pt}{12.66061pt}{128.23741pt}{14.86978pt}\pgfsys@lineto{128.23741pt}{28.20935pt}\pgfsys@curveto{128.23741pt}{30.41852pt}{126.44658pt}{32.20935pt}{124.23741pt}{32.20935pt}\pgfsys@closepath\pgfsys@moveto{114.01103pt}{10.86978pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{121.12422pt}{21.53957pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{.5,.5,.5}\pgfsys@color@gray@fill{.5}\pgfsys@invoke{ }{{}{}{{}}{} {{}{{}}}{{}{}}{}{{}{}}{}{}{}{}{} {\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{.5,.5,.5}\pgfsys@color@gray@fill{.5}\pgfsys@invoke{ }{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}\pgfsys@moveto{166.91655pt}{32.20935pt}\pgfsys@lineto{160.69017pt}{32.20935pt}\pgfsys@curveto{158.481pt}{32.20935pt}{156.69017pt}{30.41852pt}{156.69017pt}{28.20935pt}\pgfsys@lineto{156.69017pt}{14.86978pt}\pgfsys@curveto{156.69017pt}{12.66061pt}{158.481pt}{10.86978pt}{160.69017pt}{10.86978pt}\pgfsys@lineto{166.91655pt}{10.86978pt}\pgfsys@curveto{169.12572pt}{10.86978pt}{170.91655pt}{12.66061pt}{170.91655pt}{14.86978pt}\pgfsys@lineto{170.91655pt}{28.20935pt}\pgfsys@curveto{170.91655pt}{30.41852pt}{169.12572pt}{32.20935pt}{166.91655pt}{32.20935pt}\pgfsys@closepath\pgfsys@moveto{156.69017pt}{10.86978pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{163.80336pt}{21.53957pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \par {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{71.1319pt}{42.67914pt}\pgfsys@lineto{85.35828pt}{42.67914pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{71.1319pt}{56.90552pt}\pgfsys@lineto{85.35828pt}{56.90552pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{71.1319pt}{71.1319pt}\pgfsys@lineto{85.35828pt}{71.1319pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{113.81104pt}{42.67914pt}\pgfsys@lineto{128.03741pt}{42.67914pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{113.81104pt}{56.90552pt}\pgfsys@lineto{128.03741pt}{56.90552pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{113.81104pt}{71.1319pt}\pgfsys@lineto{128.03741pt}{71.1319pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{156.49017pt}{42.67914pt}\pgfsys@lineto{170.71655pt}{42.67914pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{156.49017pt}{56.90552pt}\pgfsys@lineto{170.71655pt}{56.90552pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{156.49017pt}{71.1319pt}\pgfsys@lineto{170.71655pt}{71.1319pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope \par \pgfsys@beginscope\pgfsys@invoke{ }{{}} {}{{}}{}{{}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{42.67914pt}{28.45276pt}\pgfsys@curveto{56.90552pt}{28.45276pt}{56.90552pt}{14.22638pt}{71.1319pt}{14.22638pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope{}{{}}{}{{}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{42.67914pt}{42.67914pt}\pgfsys@curveto{56.90552pt}{42.67914pt}{56.90552pt}{28.45276pt}{71.1319pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope{}{{}}{}{{}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{42.67914pt}{56.90552pt}\pgfsys@curveto{56.90552pt}{56.90552pt}{56.90552pt}{42.67914pt}{71.1319pt}{42.67914pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope{}{{}}{}{{}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{42.67914pt}{71.1319pt}\pgfsys@curveto{56.90552pt}{71.1319pt}{56.90552pt}{56.90552pt}{71.1319pt}{56.90552pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope {}{{}}{}{{}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{42.67914pt}{14.22638pt}\pgfsys@curveto{56.90552pt}{14.22638pt}{56.90552pt}{71.1319pt}{71.1319pt}{71.1319pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope \pgfsys@invoke{ }\pgfsys@endscope \pgfsys@beginscope\pgfsys@invoke{ }{{}} {}{{}}{}{{}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{85.35828pt}{28.45276pt}\pgfsys@curveto{99.58466pt}{28.45276pt}{99.58466pt}{14.22638pt}{113.81104pt}{14.22638pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope{}{{}}{}{{}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{85.35828pt}{42.67914pt}\pgfsys@curveto{99.58466pt}{42.67914pt}{99.58466pt}{28.45276pt}{113.81104pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope{}{{}}{}{{}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{85.35828pt}{56.90552pt}\pgfsys@curveto{99.58466pt}{56.90552pt}{99.58466pt}{42.67914pt}{113.81104pt}{42.67914pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope{}{{}}{}{{}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{85.35828pt}{71.1319pt}\pgfsys@curveto{99.58466pt}{71.1319pt}{99.58466pt}{56.90552pt}{113.81104pt}{56.90552pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope {}{{}}{}{{}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{85.35828pt}{14.22638pt}\pgfsys@curveto{99.58466pt}{14.22638pt}{99.58466pt}{71.1319pt}{113.81104pt}{71.1319pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope \pgfsys@invoke{ }\pgfsys@endscope \pgfsys@beginscope\pgfsys@invoke{ }{{}} {}{{}}{}{{}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{128.03741pt}{28.45276pt}\pgfsys@curveto{142.2638pt}{28.45276pt}{142.2638pt}{14.22638pt}{156.49017pt}{14.22638pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope{}{{}}{}{{}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{128.03741pt}{42.67914pt}\pgfsys@curveto{142.2638pt}{42.67914pt}{142.2638pt}{28.45276pt}{156.49017pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope{}{{}}{}{{}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{128.03741pt}{56.90552pt}\pgfsys@curveto{142.2638pt}{56.90552pt}{142.2638pt}{42.67914pt}{156.49017pt}{42.67914pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope{}{{}}{}{{}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{128.03741pt}{71.1319pt}\pgfsys@curveto{142.2638pt}{71.1319pt}{142.2638pt}{56.90552pt}{156.49017pt}{56.90552pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope {}{{}}{}{{}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{128.03741pt}{14.22638pt}\pgfsys@curveto{142.2638pt}{14.22638pt}{142.2638pt}{71.1319pt}{156.49017pt}{71.1319pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope \pgfsys@invoke{ }\pgfsys@endscope \pgfsys@beginscope\pgfsys@invoke{ }{{}} {}{{}}{}{{}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{170.71655pt}{28.45276pt}\pgfsys@curveto{184.94293pt}{28.45276pt}{184.94293pt}{14.22638pt}{199.16931pt}{14.22638pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope{}{{}}{}{{}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{170.71655pt}{42.67914pt}\pgfsys@curveto{184.94293pt}{42.67914pt}{184.94293pt}{28.45276pt}{199.16931pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope{}{{}}{}{{}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{170.71655pt}{56.90552pt}\pgfsys@curveto{184.94293pt}{56.90552pt}{184.94293pt}{42.67914pt}{199.16931pt}{42.67914pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope{}{{}}{}{{}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{170.71655pt}{71.1319pt}\pgfsys@curveto{184.94293pt}{71.1319pt}{184.94293pt}{56.90552pt}{199.16931pt}{56.90552pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope {}{{}}{}{{}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{170.71655pt}{14.22638pt}\pgfsys@curveto{184.94293pt}{14.22638pt}{184.94293pt}{71.1319pt}{199.16931pt}{71.1319pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope \pgfsys@invoke{ }\pgfsys@endscope \pgfsys@beginscope\pgfsys@invoke{ }{{}} {}{{}}{}{{}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{199.16931pt}{28.45276pt}\pgfsys@curveto{213.39569pt}{28.45276pt}{213.39569pt}{14.22638pt}{227.62207pt}{14.22638pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope{}{{}}{}{{}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{199.16931pt}{42.67914pt}\pgfsys@curveto{213.39569pt}{42.67914pt}{213.39569pt}{28.45276pt}{227.62207pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope{}{{}}{}{{}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{199.16931pt}{56.90552pt}\pgfsys@curveto{213.39569pt}{56.90552pt}{213.39569pt}{42.67914pt}{227.62207pt}{42.67914pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope{}{{}}{}{{}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{199.16931pt}{71.1319pt}\pgfsys@curveto{213.39569pt}{71.1319pt}{213.39569pt}{56.90552pt}{227.62207pt}{56.90552pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope {}{{}}{}{{}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{199.16931pt}{14.22638pt}\pgfsys@curveto{213.39569pt}{14.22638pt}{213.39569pt}{71.1319pt}{227.62207pt}{71.1319pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope \pgfsys@invoke{ }\pgfsys@endscope \par{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{1.00124pt}{12.82361pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$v_{1}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{1.00124pt}{27.04999pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$v_{2}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{1.00124pt}{41.27637pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$v_{3}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{1.00124pt}{55.50275pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$v_{4}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{1.00124pt}{69.72913pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$v_{5}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \par \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}\ , (127)

where

v1v2v3v4v5=WP.\displaystyle\leavevmode\hbox to45.41pt{\vbox to69.38pt{\pgfpicture\makeatletter\hbox{\>\lower 7.9906pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } \pgfsys@beginscope\pgfsys@invoke{ }{{}} {}{{}}{}{{}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{14.22638pt}{28.45276pt}\pgfsys@curveto{28.45276pt}{28.45276pt}{28.45276pt}{14.22638pt}{42.67914pt}{14.22638pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope{}{{}}{}{{}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{14.22638pt}{42.67914pt}\pgfsys@curveto{28.45276pt}{42.67914pt}{28.45276pt}{28.45276pt}{42.67914pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope{}{{}}{}{{}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{14.22638pt}{56.90552pt}\pgfsys@curveto{28.45276pt}{56.90552pt}{28.45276pt}{42.67914pt}{42.67914pt}{42.67914pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope{}{{}}{}{{}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{14.22638pt}{71.1319pt}\pgfsys@curveto{28.45276pt}{71.1319pt}{28.45276pt}{56.90552pt}{42.67914pt}{56.90552pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope {}{{}}{}{{}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{14.22638pt}{14.22638pt}\pgfsys@curveto{28.45276pt}{14.22638pt}{28.45276pt}{71.1319pt}{42.67914pt}{71.1319pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope \pgfsys@invoke{ }\pgfsys@endscope \par{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{1.00124pt}{12.82361pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$v_{1}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{1.00124pt}{27.04999pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$v_{2}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{1.00124pt}{41.27637pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$v_{3}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{1.00124pt}{55.50275pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$v_{4}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{1.00124pt}{69.72913pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$v_{5}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \par \pgfsys@invoke{ }\pgfsys@endscope{{ {}{}{}{}{}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}=W_{P}. (128)

Using the identity m=mSWAPm=m\mathrm{SWAP}, we re-write the expression in Eq. (127) as

v1v2v3v4v5.\displaystyle\leavevmode\hbox to287.26pt{\vbox to69.38pt{\pgfpicture\makeatletter\hbox{\>\lower 7.9906pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{14.22638pt}{14.22638pt}\pgfsys@lineto{42.67914pt}{14.22638pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{14.22638pt}{28.45276pt}\pgfsys@lineto{42.67914pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{14.22638pt}{42.67914pt}\pgfsys@lineto{42.67914pt}{42.67914pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{14.22638pt}{56.90552pt}\pgfsys@lineto{42.67914pt}{56.90552pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{14.22638pt}{71.1319pt}\pgfsys@lineto{42.67914pt}{71.1319pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope \par{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{.5,.5,.5}\pgfsys@color@gray@fill{.5}\pgfsys@invoke{ }{{}{}{{}}{} {{}{{}}}{{}{}}{}{{}{}}{}{}{}{}{} {\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{.5,.5,.5}\pgfsys@color@gray@fill{.5}\pgfsys@invoke{ }{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}\pgfsys@moveto{38.87914pt}{32.20935pt}\pgfsys@lineto{32.65276pt}{32.20935pt}\pgfsys@curveto{30.44359pt}{32.20935pt}{28.65276pt}{30.41852pt}{28.65276pt}{28.20935pt}\pgfsys@lineto{28.65276pt}{14.86978pt}\pgfsys@curveto{28.65276pt}{12.66061pt}{30.44359pt}{10.86978pt}{32.65276pt}{10.86978pt}\pgfsys@lineto{38.87914pt}{10.86978pt}\pgfsys@curveto{41.0883pt}{10.86978pt}{42.87914pt}{12.66061pt}{42.87914pt}{14.86978pt}\pgfsys@lineto{42.87914pt}{28.20935pt}\pgfsys@curveto{42.87914pt}{30.41852pt}{41.0883pt}{32.20935pt}{38.87914pt}{32.20935pt}\pgfsys@closepath\pgfsys@moveto{28.65276pt}{10.86978pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{35.76595pt}{21.53957pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{.5,.5,.5}\pgfsys@color@gray@fill{.5}\pgfsys@invoke{ }{{}{}{{}}{} {{}{{}}}{{}{}}{}{{}{}}{}{}{}{}{} {\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{.5,.5,.5}\pgfsys@color@gray@fill{.5}\pgfsys@invoke{ }{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}\pgfsys@moveto{95.78465pt}{32.20935pt}\pgfsys@lineto{89.55827pt}{32.20935pt}\pgfsys@curveto{87.3491pt}{32.20935pt}{85.55827pt}{30.41852pt}{85.55827pt}{28.20935pt}\pgfsys@lineto{85.55827pt}{14.86978pt}\pgfsys@curveto{85.55827pt}{12.66061pt}{87.3491pt}{10.86978pt}{89.55827pt}{10.86978pt}\pgfsys@lineto{95.78465pt}{10.86978pt}\pgfsys@curveto{97.99382pt}{10.86978pt}{99.78465pt}{12.66061pt}{99.78465pt}{14.86978pt}\pgfsys@lineto{99.78465pt}{28.20935pt}\pgfsys@curveto{99.78465pt}{30.41852pt}{97.99382pt}{32.20935pt}{95.78465pt}{32.20935pt}\pgfsys@closepath\pgfsys@moveto{85.55827pt}{10.86978pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{92.67146pt}{21.53957pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{.5,.5,.5}\pgfsys@color@gray@fill{.5}\pgfsys@invoke{ }{{}{}{{}}{} {{}{{}}}{{}{}}{}{{}{}}{}{}{}{}{} {\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{.5,.5,.5}\pgfsys@color@gray@fill{.5}\pgfsys@invoke{ }{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}\pgfsys@moveto{152.69017pt}{32.20935pt}\pgfsys@lineto{146.46379pt}{32.20935pt}\pgfsys@curveto{144.25462pt}{32.20935pt}{142.46379pt}{30.41852pt}{142.46379pt}{28.20935pt}\pgfsys@lineto{142.46379pt}{14.86978pt}\pgfsys@curveto{142.46379pt}{12.66061pt}{144.25462pt}{10.86978pt}{146.46379pt}{10.86978pt}\pgfsys@lineto{152.69017pt}{10.86978pt}\pgfsys@curveto{154.89934pt}{10.86978pt}{156.69017pt}{12.66061pt}{156.69017pt}{14.86978pt}\pgfsys@lineto{156.69017pt}{28.20935pt}\pgfsys@curveto{156.69017pt}{30.41852pt}{154.89934pt}{32.20935pt}{152.69017pt}{32.20935pt}\pgfsys@closepath\pgfsys@moveto{142.46379pt}{10.86978pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{149.57698pt}{21.53957pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{.5,.5,.5}\pgfsys@color@gray@fill{.5}\pgfsys@invoke{ }{{}{}{{}}{} {{}{{}}}{{}{}}{}{{}{}}{}{}{}{}{} {\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{.5,.5,.5}\pgfsys@color@gray@fill{.5}\pgfsys@invoke{ }{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}\pgfsys@moveto{209.59569pt}{32.20935pt}\pgfsys@lineto{203.36931pt}{32.20935pt}\pgfsys@curveto{201.16014pt}{32.20935pt}{199.36931pt}{30.41852pt}{199.36931pt}{28.20935pt}\pgfsys@lineto{199.36931pt}{14.86978pt}\pgfsys@curveto{199.36931pt}{12.66061pt}{201.16014pt}{10.86978pt}{203.36931pt}{10.86978pt}\pgfsys@lineto{209.59569pt}{10.86978pt}\pgfsys@curveto{211.80486pt}{10.86978pt}{213.59569pt}{12.66061pt}{213.59569pt}{14.86978pt}\pgfsys@lineto{213.59569pt}{28.20935pt}\pgfsys@curveto{213.59569pt}{30.41852pt}{211.80486pt}{32.20935pt}{209.59569pt}{32.20935pt}\pgfsys@closepath\pgfsys@moveto{199.36931pt}{10.86978pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{206.4825pt}{21.53957pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \par {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{42.67914pt}{42.67914pt}\pgfsys@lineto{56.90552pt}{42.67914pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{42.67914pt}{56.90552pt}\pgfsys@lineto{56.90552pt}{56.90552pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{42.67914pt}{71.1319pt}\pgfsys@lineto{56.90552pt}{71.1319pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope \par {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{85.35828pt}{42.67914pt}\pgfsys@lineto{113.81104pt}{42.67914pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{85.35828pt}{56.90552pt}\pgfsys@lineto{113.81104pt}{56.90552pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{85.35828pt}{71.1319pt}\pgfsys@lineto{113.81104pt}{71.1319pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{142.2638pt}{42.67914pt}\pgfsys@lineto{170.71655pt}{42.67914pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{142.2638pt}{56.90552pt}\pgfsys@lineto{170.71655pt}{56.90552pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{142.2638pt}{71.1319pt}\pgfsys@lineto{170.71655pt}{71.1319pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{199.16931pt}{42.67914pt}\pgfsys@lineto{227.62207pt}{42.67914pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{199.16931pt}{56.90552pt}\pgfsys@lineto{227.62207pt}{56.90552pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{199.16931pt}{71.1319pt}\pgfsys@lineto{227.62207pt}{71.1319pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope \par {}{{}}{}{{}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }\pgfsys@setdash{0.8pt,2.0pt}{0.0pt}\pgfsys@invoke{ }{}\pgfsys@moveto{42.67914pt}{14.22638pt}\pgfsys@curveto{49.79233pt}{14.22638pt}{49.79233pt}{28.45276pt}{56.90552pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope{}{{}}{}{{}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }\pgfsys@setdash{0.8pt,2.0pt}{0.0pt}\pgfsys@invoke{ }{}\pgfsys@moveto{42.67914pt}{28.45276pt}\pgfsys@curveto{49.79233pt}{28.45276pt}{49.79233pt}{14.22638pt}{56.90552pt}{14.22638pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope {}{{}}{}{{}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }\pgfsys@setdash{0.8pt,2.0pt}{0.0pt}\pgfsys@invoke{ }{}\pgfsys@moveto{99.58466pt}{14.22638pt}\pgfsys@curveto{106.69785pt}{14.22638pt}{106.69785pt}{28.45276pt}{113.81104pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope{}{{}}{}{{}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }\pgfsys@setdash{0.8pt,2.0pt}{0.0pt}\pgfsys@invoke{ }{}\pgfsys@moveto{99.58466pt}{28.45276pt}\pgfsys@curveto{106.69785pt}{28.45276pt}{106.69785pt}{14.22638pt}{113.81104pt}{14.22638pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope {}{{}}{}{{}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }\pgfsys@setdash{0.8pt,2.0pt}{0.0pt}\pgfsys@invoke{ }{}\pgfsys@moveto{156.49017pt}{14.22638pt}\pgfsys@curveto{163.60336pt}{14.22638pt}{163.60336pt}{28.45276pt}{170.71655pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope{}{{}}{}{{}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }\pgfsys@setdash{0.8pt,2.0pt}{0.0pt}\pgfsys@invoke{ }{}\pgfsys@moveto{156.49017pt}{28.45276pt}\pgfsys@curveto{163.60336pt}{28.45276pt}{163.60336pt}{14.22638pt}{170.71655pt}{14.22638pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope {}{{}}{}{{}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }\pgfsys@setdash{0.8pt,2.0pt}{0.0pt}\pgfsys@invoke{ }{}\pgfsys@moveto{213.39569pt}{14.22638pt}\pgfsys@curveto{220.50888pt}{14.22638pt}{220.50888pt}{28.45276pt}{227.62207pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope{}{{}}{}{{}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }\pgfsys@setdash{0.8pt,2.0pt}{0.0pt}\pgfsys@invoke{ }{}\pgfsys@moveto{213.39569pt}{28.45276pt}\pgfsys@curveto{220.50888pt}{28.45276pt}{220.50888pt}{14.22638pt}{227.62207pt}{14.22638pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope \par \pgfsys@beginscope\pgfsys@invoke{ }{{}} {}{{}}{}{{}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{56.90552pt}{28.45276pt}\pgfsys@curveto{71.1319pt}{28.45276pt}{71.1319pt}{14.22638pt}{85.35828pt}{14.22638pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope{}{{}}{}{{}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{56.90552pt}{42.67914pt}\pgfsys@curveto{71.1319pt}{42.67914pt}{71.1319pt}{28.45276pt}{85.35828pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope{}{{}}{}{{}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{56.90552pt}{56.90552pt}\pgfsys@curveto{71.1319pt}{56.90552pt}{71.1319pt}{42.67914pt}{85.35828pt}{42.67914pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope{}{{}}{}{{}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{56.90552pt}{71.1319pt}\pgfsys@curveto{71.1319pt}{71.1319pt}{71.1319pt}{56.90552pt}{85.35828pt}{56.90552pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope {}{{}}{}{{}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{56.90552pt}{14.22638pt}\pgfsys@curveto{71.1319pt}{14.22638pt}{71.1319pt}{71.1319pt}{85.35828pt}{71.1319pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope \pgfsys@invoke{ }\pgfsys@endscope \pgfsys@beginscope\pgfsys@invoke{ }{{}} {}{{}}{}{{}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{113.81104pt}{28.45276pt}\pgfsys@curveto{128.03741pt}{28.45276pt}{128.03741pt}{14.22638pt}{142.2638pt}{14.22638pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope{}{{}}{}{{}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{113.81104pt}{42.67914pt}\pgfsys@curveto{128.03741pt}{42.67914pt}{128.03741pt}{28.45276pt}{142.2638pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope{}{{}}{}{{}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{113.81104pt}{56.90552pt}\pgfsys@curveto{128.03741pt}{56.90552pt}{128.03741pt}{42.67914pt}{142.2638pt}{42.67914pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope{}{{}}{}{{}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{113.81104pt}{71.1319pt}\pgfsys@curveto{128.03741pt}{71.1319pt}{128.03741pt}{56.90552pt}{142.2638pt}{56.90552pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope {}{{}}{}{{}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{113.81104pt}{14.22638pt}\pgfsys@curveto{128.03741pt}{14.22638pt}{128.03741pt}{71.1319pt}{142.2638pt}{71.1319pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope \pgfsys@invoke{ }\pgfsys@endscope \pgfsys@beginscope\pgfsys@invoke{ }{{}} {}{{}}{}{{}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{170.71655pt}{28.45276pt}\pgfsys@curveto{184.94293pt}{28.45276pt}{184.94293pt}{14.22638pt}{199.16931pt}{14.22638pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope{}{{}}{}{{}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{170.71655pt}{42.67914pt}\pgfsys@curveto{184.94293pt}{42.67914pt}{184.94293pt}{28.45276pt}{199.16931pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope{}{{}}{}{{}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{170.71655pt}{56.90552pt}\pgfsys@curveto{184.94293pt}{56.90552pt}{184.94293pt}{42.67914pt}{199.16931pt}{42.67914pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope{}{{}}{}{{}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{170.71655pt}{71.1319pt}\pgfsys@curveto{184.94293pt}{71.1319pt}{184.94293pt}{56.90552pt}{199.16931pt}{56.90552pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope {}{{}}{}{{}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{170.71655pt}{14.22638pt}\pgfsys@curveto{184.94293pt}{14.22638pt}{184.94293pt}{71.1319pt}{199.16931pt}{71.1319pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope \pgfsys@invoke{ }\pgfsys@endscope \pgfsys@beginscope\pgfsys@invoke{ }{{}} {}{{}}{}{{}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{227.62207pt}{28.45276pt}\pgfsys@curveto{241.84845pt}{28.45276pt}{241.84845pt}{14.22638pt}{256.07483pt}{14.22638pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope{}{{}}{}{{}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{227.62207pt}{42.67914pt}\pgfsys@curveto{241.84845pt}{42.67914pt}{241.84845pt}{28.45276pt}{256.07483pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope{}{{}}{}{{}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{227.62207pt}{56.90552pt}\pgfsys@curveto{241.84845pt}{56.90552pt}{241.84845pt}{42.67914pt}{256.07483pt}{42.67914pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope{}{{}}{}{{}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{227.62207pt}{71.1319pt}\pgfsys@curveto{241.84845pt}{71.1319pt}{241.84845pt}{56.90552pt}{256.07483pt}{56.90552pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope {}{{}}{}{{}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{227.62207pt}{14.22638pt}\pgfsys@curveto{241.84845pt}{14.22638pt}{241.84845pt}{71.1319pt}{256.07483pt}{71.1319pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope \pgfsys@invoke{ }\pgfsys@endscope \pgfsys@beginscope\pgfsys@invoke{ }{{}} {}{{}}{}{{}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{256.07483pt}{28.45276pt}\pgfsys@curveto{270.30121pt}{28.45276pt}{270.30121pt}{14.22638pt}{284.52759pt}{14.22638pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope{}{{}}{}{{}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{256.07483pt}{42.67914pt}\pgfsys@curveto{270.30121pt}{42.67914pt}{270.30121pt}{28.45276pt}{284.52759pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope{}{{}}{}{{}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{256.07483pt}{56.90552pt}\pgfsys@curveto{270.30121pt}{56.90552pt}{270.30121pt}{42.67914pt}{284.52759pt}{42.67914pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope{}{{}}{}{{}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{256.07483pt}{71.1319pt}\pgfsys@curveto{270.30121pt}{71.1319pt}{270.30121pt}{56.90552pt}{284.52759pt}{56.90552pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope {}{{}}{}{{}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{256.07483pt}{14.22638pt}\pgfsys@curveto{270.30121pt}{14.22638pt}{270.30121pt}{71.1319pt}{284.52759pt}{71.1319pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope \pgfsys@invoke{ }\pgfsys@endscope \par{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{1.00124pt}{12.82361pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$v_{1}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{1.00124pt}{27.04999pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$v_{2}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{1.00124pt}{41.27637pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$v_{3}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{1.00124pt}{55.50275pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$v_{4}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{1.00124pt}{69.72913pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$v_{5}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \par \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}\ . (129)

Equation (129) simplifies to

v1v2v3v4v5,\displaystyle\leavevmode\hbox to230.35pt{\vbox to69.38pt{\pgfpicture\makeatletter\hbox{\>\lower 7.9906pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{14.22638pt}{28.45276pt}\pgfsys@lineto{42.67914pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{14.22638pt}{42.67914pt}\pgfsys@lineto{42.67914pt}{42.67914pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{14.22638pt}{56.90552pt}\pgfsys@lineto{42.67914pt}{56.90552pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{14.22638pt}{71.1319pt}\pgfsys@lineto{42.67914pt}{71.1319pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope \par{}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{14.22638pt}{14.22638pt}\pgfsys@lineto{199.16931pt}{14.22638pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope\par{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{.5,.5,.5}\pgfsys@color@gray@fill{.5}\pgfsys@invoke{ }{{}{}{{}}{} {{}{{}}}{{}{}}{}{{}{}}{}{}{}{}{} {\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{.5,.5,.5}\pgfsys@color@gray@fill{.5}\pgfsys@invoke{ }{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}\pgfsys@moveto{38.87914pt}{32.20935pt}\pgfsys@lineto{32.65276pt}{32.20935pt}\pgfsys@curveto{30.44359pt}{32.20935pt}{28.65276pt}{30.41852pt}{28.65276pt}{28.20935pt}\pgfsys@lineto{28.65276pt}{14.86978pt}\pgfsys@curveto{28.65276pt}{12.66061pt}{30.44359pt}{10.86978pt}{32.65276pt}{10.86978pt}\pgfsys@lineto{38.87914pt}{10.86978pt}\pgfsys@curveto{41.0883pt}{10.86978pt}{42.87914pt}{12.66061pt}{42.87914pt}{14.86978pt}\pgfsys@lineto{42.87914pt}{28.20935pt}\pgfsys@curveto{42.87914pt}{30.41852pt}{41.0883pt}{32.20935pt}{38.87914pt}{32.20935pt}\pgfsys@closepath\pgfsys@moveto{28.65276pt}{10.86978pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{35.76595pt}{21.53957pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{.5,.5,.5}\pgfsys@color@gray@fill{.5}\pgfsys@invoke{ }{{}{}{{}}{} {{}{{}}}{{}{}}{}{{}{}}{}{}{}{}{} {\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{.5,.5,.5}\pgfsys@color@gray@fill{.5}\pgfsys@invoke{ }{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}\pgfsys@moveto{81.55827pt}{32.20935pt}\pgfsys@lineto{75.3319pt}{32.20935pt}\pgfsys@curveto{73.12273pt}{32.20935pt}{71.3319pt}{30.41852pt}{71.3319pt}{28.20935pt}\pgfsys@lineto{71.3319pt}{14.86978pt}\pgfsys@curveto{71.3319pt}{12.66061pt}{73.12273pt}{10.86978pt}{75.3319pt}{10.86978pt}\pgfsys@lineto{81.55827pt}{10.86978pt}\pgfsys@curveto{83.76744pt}{10.86978pt}{85.55827pt}{12.66061pt}{85.55827pt}{14.86978pt}\pgfsys@lineto{85.55827pt}{28.20935pt}\pgfsys@curveto{85.55827pt}{30.41852pt}{83.76744pt}{32.20935pt}{81.55827pt}{32.20935pt}\pgfsys@closepath\pgfsys@moveto{71.3319pt}{10.86978pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{78.44508pt}{21.53957pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{.5,.5,.5}\pgfsys@color@gray@fill{.5}\pgfsys@invoke{ }{{}{}{{}}{} {{}{{}}}{{}{}}{}{{}{}}{}{}{}{}{} {\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{.5,.5,.5}\pgfsys@color@gray@fill{.5}\pgfsys@invoke{ }{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}\pgfsys@moveto{124.23741pt}{32.20935pt}\pgfsys@lineto{118.01103pt}{32.20935pt}\pgfsys@curveto{115.80186pt}{32.20935pt}{114.01103pt}{30.41852pt}{114.01103pt}{28.20935pt}\pgfsys@lineto{114.01103pt}{14.86978pt}\pgfsys@curveto{114.01103pt}{12.66061pt}{115.80186pt}{10.86978pt}{118.01103pt}{10.86978pt}\pgfsys@lineto{124.23741pt}{10.86978pt}\pgfsys@curveto{126.44658pt}{10.86978pt}{128.23741pt}{12.66061pt}{128.23741pt}{14.86978pt}\pgfsys@lineto{128.23741pt}{28.20935pt}\pgfsys@curveto{128.23741pt}{30.41852pt}{126.44658pt}{32.20935pt}{124.23741pt}{32.20935pt}\pgfsys@closepath\pgfsys@moveto{114.01103pt}{10.86978pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{121.12422pt}{21.53957pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{.5,.5,.5}\pgfsys@color@gray@fill{.5}\pgfsys@invoke{ }{{}{}{{}}{} {{}{{}}}{{}{}}{}{{}{}}{}{}{}{}{} {\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{.5,.5,.5}\pgfsys@color@gray@fill{.5}\pgfsys@invoke{ }{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}\pgfsys@moveto{166.91655pt}{32.20935pt}\pgfsys@lineto{160.69017pt}{32.20935pt}\pgfsys@curveto{158.481pt}{32.20935pt}{156.69017pt}{30.41852pt}{156.69017pt}{28.20935pt}\pgfsys@lineto{156.69017pt}{14.86978pt}\pgfsys@curveto{156.69017pt}{12.66061pt}{158.481pt}{10.86978pt}{160.69017pt}{10.86978pt}\pgfsys@lineto{166.91655pt}{10.86978pt}\pgfsys@curveto{169.12572pt}{10.86978pt}{170.91655pt}{12.66061pt}{170.91655pt}{14.86978pt}\pgfsys@lineto{170.91655pt}{28.20935pt}\pgfsys@curveto{170.91655pt}{30.41852pt}{169.12572pt}{32.20935pt}{166.91655pt}{32.20935pt}\pgfsys@closepath\pgfsys@moveto{156.69017pt}{10.86978pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{163.80336pt}{21.53957pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \par {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{71.1319pt}{42.67914pt}\pgfsys@lineto{85.35828pt}{42.67914pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{71.1319pt}{56.90552pt}\pgfsys@lineto{85.35828pt}{56.90552pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{71.1319pt}{71.1319pt}\pgfsys@lineto{85.35828pt}{71.1319pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{113.81104pt}{42.67914pt}\pgfsys@lineto{128.03741pt}{42.67914pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{113.81104pt}{56.90552pt}\pgfsys@lineto{128.03741pt}{56.90552pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{113.81104pt}{71.1319pt}\pgfsys@lineto{128.03741pt}{71.1319pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{156.49017pt}{42.67914pt}\pgfsys@lineto{170.71655pt}{42.67914pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{156.49017pt}{56.90552pt}\pgfsys@lineto{170.71655pt}{56.90552pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{156.49017pt}{71.1319pt}\pgfsys@lineto{170.71655pt}{71.1319pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope \par \pgfsys@beginscope\pgfsys@invoke{ }{{}} {}{{}}{}{{}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{42.67914pt}{42.67914pt}\pgfsys@curveto{56.90552pt}{42.67914pt}{56.90552pt}{28.45276pt}{71.1319pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope{}{{}}{}{{}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{42.67914pt}{56.90552pt}\pgfsys@curveto{56.90552pt}{56.90552pt}{56.90552pt}{42.67914pt}{71.1319pt}{42.67914pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope{}{{}}{}{{}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{42.67914pt}{71.1319pt}\pgfsys@curveto{56.90552pt}{71.1319pt}{56.90552pt}{56.90552pt}{71.1319pt}{56.90552pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope {}{{}}{}{{}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{42.67914pt}{28.45276pt}\pgfsys@curveto{56.90552pt}{28.45276pt}{56.90552pt}{71.1319pt}{71.1319pt}{71.1319pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope \pgfsys@invoke{ }\pgfsys@endscope \pgfsys@beginscope\pgfsys@invoke{ }{{}} {}{{}}{}{{}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{85.35828pt}{42.67914pt}\pgfsys@curveto{99.58466pt}{42.67914pt}{99.58466pt}{28.45276pt}{113.81104pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope{}{{}}{}{{}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{85.35828pt}{56.90552pt}\pgfsys@curveto{99.58466pt}{56.90552pt}{99.58466pt}{42.67914pt}{113.81104pt}{42.67914pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope{}{{}}{}{{}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{85.35828pt}{71.1319pt}\pgfsys@curveto{99.58466pt}{71.1319pt}{99.58466pt}{56.90552pt}{113.81104pt}{56.90552pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope {}{{}}{}{{}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{85.35828pt}{28.45276pt}\pgfsys@curveto{99.58466pt}{28.45276pt}{99.58466pt}{71.1319pt}{113.81104pt}{71.1319pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope \pgfsys@invoke{ }\pgfsys@endscope \pgfsys@beginscope\pgfsys@invoke{ }{{}} {}{{}}{}{{}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{128.03741pt}{42.67914pt}\pgfsys@curveto{142.2638pt}{42.67914pt}{142.2638pt}{28.45276pt}{156.49017pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope{}{{}}{}{{}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{128.03741pt}{56.90552pt}\pgfsys@curveto{142.2638pt}{56.90552pt}{142.2638pt}{42.67914pt}{156.49017pt}{42.67914pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope{}{{}}{}{{}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{128.03741pt}{71.1319pt}\pgfsys@curveto{142.2638pt}{71.1319pt}{142.2638pt}{56.90552pt}{156.49017pt}{56.90552pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope {}{{}}{}{{}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{128.03741pt}{28.45276pt}\pgfsys@curveto{142.2638pt}{28.45276pt}{142.2638pt}{71.1319pt}{156.49017pt}{71.1319pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope \pgfsys@invoke{ }\pgfsys@endscope \pgfsys@beginscope\pgfsys@invoke{ }{{}} {}{{}}{}{{}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{170.71655pt}{42.67914pt}\pgfsys@curveto{184.94293pt}{42.67914pt}{184.94293pt}{28.45276pt}{199.16931pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope{}{{}}{}{{}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{170.71655pt}{56.90552pt}\pgfsys@curveto{184.94293pt}{56.90552pt}{184.94293pt}{42.67914pt}{199.16931pt}{42.67914pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope{}{{}}{}{{}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{170.71655pt}{71.1319pt}\pgfsys@curveto{184.94293pt}{71.1319pt}{184.94293pt}{56.90552pt}{199.16931pt}{56.90552pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope {}{{}}{}{{}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{170.71655pt}{28.45276pt}\pgfsys@curveto{184.94293pt}{28.45276pt}{184.94293pt}{71.1319pt}{199.16931pt}{71.1319pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope \pgfsys@invoke{ }\pgfsys@endscope \par\pgfsys@beginscope\pgfsys@invoke{ }{{}} {}{{}}{}{{}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{199.16931pt}{28.45276pt}\pgfsys@curveto{213.39569pt}{28.45276pt}{213.39569pt}{14.22638pt}{227.62207pt}{14.22638pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope{}{{}}{}{{}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{199.16931pt}{42.67914pt}\pgfsys@curveto{213.39569pt}{42.67914pt}{213.39569pt}{28.45276pt}{227.62207pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope{}{{}}{}{{}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{199.16931pt}{56.90552pt}\pgfsys@curveto{213.39569pt}{56.90552pt}{213.39569pt}{42.67914pt}{227.62207pt}{42.67914pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope{}{{}}{}{{}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{199.16931pt}{71.1319pt}\pgfsys@curveto{213.39569pt}{71.1319pt}{213.39569pt}{56.90552pt}{227.62207pt}{56.90552pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope {}{{}}{}{{}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{199.16931pt}{14.22638pt}\pgfsys@curveto{213.39569pt}{14.22638pt}{213.39569pt}{71.1319pt}{227.62207pt}{71.1319pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope \pgfsys@invoke{ }\pgfsys@endscope \par{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{1.00124pt}{12.82361pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$v_{1}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{1.00124pt}{27.04999pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$v_{2}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{1.00124pt}{41.27637pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$v_{3}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{1.00124pt}{55.50275pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$v_{4}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{1.00124pt}{69.72913pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$v_{5}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \par \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}\ , (130)

where we identify the product of operators arranged in a star graph geometry followed by right multiplication by WPW_{P},

v1v2v3v4v5.\displaystyle\leavevmode\hbox to173.45pt{\vbox to69.38pt{\pgfpicture\makeatletter\hbox{\>\lower 7.9906pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{14.22638pt}{14.22638pt}\pgfsys@lineto{142.2638pt}{14.22638pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope{}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{14.22638pt}{28.45276pt}\pgfsys@lineto{142.2638pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope{}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{14.22638pt}{42.67914pt}\pgfsys@lineto{142.2638pt}{42.67914pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope{}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{14.22638pt}{56.90552pt}\pgfsys@lineto{142.2638pt}{56.90552pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope{}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{14.22638pt}{71.1319pt}\pgfsys@lineto{142.2638pt}{71.1319pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope \par{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{.5,.5,.5}\pgfsys@color@gray@fill{.5}\pgfsys@invoke{ }{{}{}{{}}{} {{}{{}}}{{}{}}{}{{}{}}{}{}{}{}{} {\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{.5,.5,.5}\pgfsys@color@gray@fill{.5}\pgfsys@invoke{ }{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}\pgfsys@moveto{38.87914pt}{32.20935pt}\pgfsys@lineto{32.65276pt}{32.20935pt}\pgfsys@curveto{30.44359pt}{32.20935pt}{28.65276pt}{30.41852pt}{28.65276pt}{28.20935pt}\pgfsys@lineto{28.65276pt}{14.86978pt}\pgfsys@curveto{28.65276pt}{12.66061pt}{30.44359pt}{10.86978pt}{32.65276pt}{10.86978pt}\pgfsys@lineto{38.87914pt}{10.86978pt}\pgfsys@curveto{41.0883pt}{10.86978pt}{42.87914pt}{12.66061pt}{42.87914pt}{14.86978pt}\pgfsys@lineto{42.87914pt}{28.20935pt}\pgfsys@curveto{42.87914pt}{30.41852pt}{41.0883pt}{32.20935pt}{38.87914pt}{32.20935pt}\pgfsys@closepath\pgfsys@moveto{28.65276pt}{10.86978pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{35.76595pt}{21.53957pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \par{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{}{{}}{} {{}{{}}}{{}{}}{}{{}{}} {\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }\pgfsys@rect{53.54892pt}{25.09616pt}{21.33957pt}{7.11319pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{64.2187pt}{28.65276pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{.5,.5,.5}\pgfsys@color@gray@fill{.5}\pgfsys@invoke{ }{{}{}{{}}{} {{}{{}}}{{}{}}{}{{}{}}{}{}{}{}{} {\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{.5,.5,.5}\pgfsys@color@gray@fill{.5}\pgfsys@invoke{ }{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}\pgfsys@moveto{67.3319pt}{46.4357pt}\pgfsys@lineto{61.10551pt}{46.4357pt}\pgfsys@curveto{58.89635pt}{46.4357pt}{57.10551pt}{44.64487pt}{57.10551pt}{42.4357pt}\pgfsys@lineto{57.10551pt}{14.86978pt}\pgfsys@curveto{57.10551pt}{12.66061pt}{58.89635pt}{10.86978pt}{61.10551pt}{10.86978pt}\pgfsys@lineto{67.3319pt}{10.86978pt}\pgfsys@curveto{69.54106pt}{10.86978pt}{71.3319pt}{12.66061pt}{71.3319pt}{14.86978pt}\pgfsys@lineto{71.3319pt}{42.4357pt}\pgfsys@curveto{71.3319pt}{44.64487pt}{69.54106pt}{46.4357pt}{67.3319pt}{46.4357pt}\pgfsys@closepath\pgfsys@moveto{57.10551pt}{10.86978pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{64.2187pt}{28.65274pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \par{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{}{{}}{} {{}{{}}}{{}{}}{}{{}{}} {\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }\pgfsys@rect{82.00168pt}{25.09616pt}{21.33957pt}{21.33957pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{92.67146pt}{35.76595pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{.5,.5,.5}\pgfsys@color@gray@fill{.5}\pgfsys@invoke{ }{{}{}{{}}{} {{}{{}}}{{}{}}{}{{}{}}{}{}{}{}{} {\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{.5,.5,.5}\pgfsys@color@gray@fill{.5}\pgfsys@invoke{ }{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}\pgfsys@moveto{95.78465pt}{60.66208pt}\pgfsys@lineto{89.55827pt}{60.66208pt}\pgfsys@curveto{87.3491pt}{60.66208pt}{85.55827pt}{58.87125pt}{85.55827pt}{56.66208pt}\pgfsys@lineto{85.55827pt}{14.86978pt}\pgfsys@curveto{85.55827pt}{12.66061pt}{87.3491pt}{10.86978pt}{89.55827pt}{10.86978pt}\pgfsys@lineto{95.78465pt}{10.86978pt}\pgfsys@curveto{97.99382pt}{10.86978pt}{99.78465pt}{12.66061pt}{99.78465pt}{14.86978pt}\pgfsys@lineto{99.78465pt}{56.66208pt}\pgfsys@curveto{99.78465pt}{58.87125pt}{97.99382pt}{60.66208pt}{95.78465pt}{60.66208pt}\pgfsys@closepath\pgfsys@moveto{85.55827pt}{10.86978pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{92.67146pt}{35.76593pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \par{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{}{{}}{} {{}{{}}}{{}{}}{}{{}{}} {\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }\pgfsys@rect{110.45444pt}{25.09616pt}{21.33957pt}{35.56592pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{121.12422pt}{42.87912pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{.5,.5,.5}\pgfsys@color@gray@fill{.5}\pgfsys@invoke{ }{{}{}{{}}{} {{}{{}}}{{}{}}{}{{}{}}{}{}{}{}{} {\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{.5,.5,.5}\pgfsys@color@gray@fill{.5}\pgfsys@invoke{ }{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}\pgfsys@moveto{124.23741pt}{74.88849pt}\pgfsys@lineto{118.01103pt}{74.88849pt}\pgfsys@curveto{115.80186pt}{74.88849pt}{114.01103pt}{73.09766pt}{114.01103pt}{70.88849pt}\pgfsys@lineto{114.01103pt}{14.86978pt}\pgfsys@curveto{114.01103pt}{12.66061pt}{115.80186pt}{10.86978pt}{118.01103pt}{10.86978pt}\pgfsys@lineto{124.23741pt}{10.86978pt}\pgfsys@curveto{126.44658pt}{10.86978pt}{128.23741pt}{12.66061pt}{128.23741pt}{14.86978pt}\pgfsys@lineto{128.23741pt}{70.88849pt}\pgfsys@curveto{128.23741pt}{73.09766pt}{126.44658pt}{74.88849pt}{124.23741pt}{74.88849pt}\pgfsys@closepath\pgfsys@moveto{114.01103pt}{10.86978pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{121.12422pt}{42.87914pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \par\pgfsys@beginscope\pgfsys@invoke{ }{{}} {}{{}}{}{{}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{142.2638pt}{28.45276pt}\pgfsys@curveto{156.49017pt}{28.45276pt}{156.49017pt}{14.22638pt}{170.71655pt}{14.22638pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope{}{{}}{}{{}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{142.2638pt}{42.67914pt}\pgfsys@curveto{156.49017pt}{42.67914pt}{156.49017pt}{28.45276pt}{170.71655pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope{}{{}}{}{{}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{142.2638pt}{56.90552pt}\pgfsys@curveto{156.49017pt}{56.90552pt}{156.49017pt}{42.67914pt}{170.71655pt}{42.67914pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope{}{{}}{}{{}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{142.2638pt}{71.1319pt}\pgfsys@curveto{156.49017pt}{71.1319pt}{156.49017pt}{56.90552pt}{170.71655pt}{56.90552pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope {}{{}}{}{{}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{142.2638pt}{14.22638pt}\pgfsys@curveto{156.49017pt}{14.22638pt}{156.49017pt}{71.1319pt}{170.71655pt}{71.1319pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope \pgfsys@invoke{ }\pgfsys@endscope \par{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{1.00124pt}{12.82361pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$v_{1}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{1.00124pt}{27.04999pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$v_{2}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{1.00124pt}{41.27637pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$v_{3}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{1.00124pt}{55.50275pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$v_{4}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{1.00124pt}{69.72913pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$v_{5}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \par \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}\ . (131)

A.4 Step 4: Detectability Lemma norm equality for “flattened out” graph

  1. 1.

    Step 4 will be repeated many times. Let each iteration of Step 4 be labelled by i{1,,d}i\in\{1,\dots,d\}. After Step 3, we begin Step 4 with i=1i=1.

  2. 2.

    Only when i=1i=1, we do the following. We choose the root vertex of CST(0)CST^{(0)} to be the same as the root vertex of STST. We note that CST(0)CST^{(0)} must contain at least 33 leaves or else it is a 1D\mathrm{1D} line graph. If CST(0)CST^{(0)} is a 1D\mathrm{1D} line graph, then

    DLST|ψ2=DLCST(0)|ψ~2=DL1D|ψ~211+Δ(1D,n,k)4,\displaystyle\lVert\mathrm{DL}^{ST}\ket{\psi}\rVert^{2}=\lVert\mathrm{DL}^{CST^{(0)}}\ket{\widetilde{\psi}}\rVert^{2}=\lVert\mathrm{DL}^{\mathrm{1D}}\ket{\widetilde{\psi}}\rVert^{2}\leq\cfrac{1}{1+\cfrac{\Delta(\mathrm{1D},n,k)}{4}}\,, (132)

    where |ψ,|ψ~𝒢\ket{\psi},\ket{\widetilde{\psi}}\in\mathcal{G}_{\perp}, the excited state space of H(G,n,k)H(G,n,k). Using the upper bound on DLST|ψ2\lVert\mathrm{DL}^{ST}\ket{\psi}\rVert^{2} from Eq. (132) in the Quantum Union Bound for STST, we find a lower bound on Δ(ST,n,k)\Delta(ST,n,k) and Δ(G,n,k)\Delta(G,n,k) as follows

    Δ(G,n,k)Δ(ST,n,k)14(1DLCST(0)|ψ)Δ(1D,n,k)16.\displaystyle\Delta(G,n,k)\geq\Delta(ST,n,k)\geq\frac{1}{4}\left(1-\lVert\mathrm{DL}^{CST^{(0)}}\ket{\psi}\rVert\right)\geq\frac{\Delta(\mathrm{1D},n,k)}{16}\,. (133)

    In general, CST(0)CST^{(0)} will contain at least 33 leaves. When that is the case, we choose a path between two of the leaves that contains the root vertex and define it to be the lowest layer of CST(0)CST^{(0)}.

  3. 3.

    Let VV denote the vertices in the lowest layer of CST(i1)CST^{(i-1)}, (where we will clarify the notion of the “lowest layer” for i1>0i-1>0 at the end of this Step). Place each vVv\in V on a horizontal line. Each vVv\in V is connected with at least 2 other vertices from VV in the bulk, and at least 1 other vertex from VV at the end points. Placing the vertices in VV in a horizontal line provides an ordering of those vertices that helps with clarity of the following discussion.

  4. 4.

    Let V3VV_{\geq 3}\subseteq V, such that for each vV3v\in V_{\geq 3}, the degree of the vertex vv is greater than or equal to 33. Take any vertex in V3V_{\geq 3} as a reference vertex for the following discussion and label it with v0v_{0}.

  5. 5.

    Recall that N(CST(i1),v)N(CST^{(i-1)},v) is referred to as the neighborhood of the vertex vv in the graph CST(i1)CST^{(i-1)}. N(CST(i1),v)N(CST^{(i-1)},v) denotes the set of vertices containing vv and all vertices connected to vv in the graph CST(i1)CST^{(i-1)}.

  6. 6.

    Suppose x,yVx,y\in V, then we write xy=zx-y=z to mean that the vertex xx is zz edges away from yy along vertices in VV. If z>0z>0, xx is to the right of yy, and if z<0z<0, then xx is to the left of yy.

  7. 7.

    For each vV3v\in V_{\geq 3}, let Cv:=N(CST(i1),v)\{uV:uv=1}C_{v}:=N(CST^{(i-1)},v)\backslash\{u\in V:\ u-v=1\}.

  8. 8.

    Let Veven:={uV:uv0even}V_{\mathrm{even}}:=\{u\in V:\ u-v_{0}\in\mathbb{Z}_{\mathrm{even}}\}, and let Vodd:={uV:uv0odd}V_{\mathrm{odd}}:=\{u\in V:\ u-v_{0}\in\mathbb{Z}_{\mathrm{odd}}\}, where even\mathbb{Z}_{\mathrm{even}} and odd\mathbb{Z}_{\mathrm{odd}} denote the even and odd integers, respectively.

  9. 9.

    Let E(X)E(X) denote the subset of all edges in CST(i1)CST^{(i-1)} among the vertices in XX.

  10. 10.

    Define products of projectors Πeven\Pi_{\mathrm{even}} and Πodd\Pi_{\mathrm{odd}} as follows,

    Πeven=vV3Veven[eE(Cv)me]\displaystyle\Pi_{\mathrm{even}}=\prod_{v\in V_{\geq 3}\cap V_{\mathrm{even}}}\left[\prod_{e\in E(C_{v})}m_{e}\right] (134)
    Πodd=vV3Vodd[eE(Cv)me],\displaystyle\Pi_{\mathrm{odd}}=\prod_{v\in V_{\geq 3}\cap V_{\mathrm{odd}}}\left[\prod_{e\in E(C_{v})}m_{e}\right]\,, (135)

    where when we write eE(Cv)me\prod_{e\in E(C_{v})}m_{e}, the specific order of the product is arbitrary as long as the first term in the product does not correspond to the edge along VV.

  11. 11.

    The following lemma allows us to rewrite the product eE(Cv)me\prod_{e\in E(C_{v})}m_{e} corresponding to the neighborhood of the vertex vv, that is a star graph, in terms of product of projectors corresponding to a line graph on the vertices in CvC_{v}.

    Lemma 8.

    Suppose Cv={v,v1,v2,,v|Cv|1}C_{v}=\{v,v_{1},v_{2},\dots,v_{|C_{v}|-1}\}, then

    eE(Cv)me\displaystyle\prod_{e\in E(C_{v})}m_{e} :=m(v,v1)m(v,v2)m(v,v3)m(v,v|Cv|1)\displaystyle:=m_{(v,v_{1})}m_{(v,v_{2})}m_{(v,v_{3})}\cdots m_{(v,v_{|C_{v}|-1})} (136)
    =m(v,v1)m(v1,v2)m(v2,v3)m(v|Cv|3,v|Cv|2)m(v|Cv|2,v|Cv|1)WCv\displaystyle=m_{(v,v_{1})}m_{(v_{1},v_{2})}m_{(v_{2},v_{3})}\cdots m_{(v_{|C_{v}|-3},v_{|C_{v}|-2})}m_{(v_{|C_{v}|-2},v_{|C_{v}|-1})}W_{C_{v}}^{\dagger} (137)
    or, equivalently,
    =WCvm(v1,v2)m(v2,v3)m(v|Cv|3,v|Cv|2)m(v|Cv|2,v|Cv|1)m(v,v|Cv|1),\displaystyle=W_{C_{v}}^{\dagger}m_{(v_{1},v_{2})}m_{(v_{2},v_{3})}\cdots m_{(v_{|C_{v}|-3},v_{|C_{v}|-2})}m_{(v_{|C_{v}|-2},v_{|C_{v}|-1})}m_{(v,v_{|C_{v}|-1})}\,, (138)

    where WCvW_{C_{v}} is a cyclic permutation over the Hilbert spaces corresponding to the vertices in CvC_{v} such that it takes vv|Cv|1,v1v,v2v1v\rightarrow v_{|C_{v}|-1},v_{1}\rightarrow v,v_{2}\rightarrow v_{1} and so forth.

    Remark 5.

    The proof of Eq. (137) in Lemma 8 is identical to that for Lemma 7. They are the same lemma up to multiplication by the cyclic permutation unitary, nonetheless, we give Lemma 8 explicitly for clarity of the explanations. The proof for Eq. (138) requires a few extra steps, so we give it at the end of this section. In Step 2, Lemma 7 relates products of projectors on 1D\mathrm{1D} graphs to products of projectors on star graphs. Since the later visually look like compressed versions of the former, Step 2 was associated with the procedure of “compression.” In Step 3, Lemma 8 achieves the opposite task compared to Lemma 7 in Step 2, thus, Step 3 is associated with the procedure of “flattening-out.” The remark for Lemma 7 continues to apply here.

  12. 12.

    We apply Lemma 8 to Eqs. (134) and (135). For each vV3Vevenv\in V_{\geq 3}\cap V_{\mathrm{even}} in Eq. (134), we apply Eq. (137) to eE(Cv)me\prod_{e\in E(C_{v})}m_{e} and find

    Πeven\displaystyle\Pi_{\mathrm{even}} =vV3Veven[m(v,v1)m(v1,v2)m(v|Cv|2,v|Cv|1)]WCv\displaystyle=\prod_{v\in V_{\geq 3}\cap V_{\mathrm{even}}}\left[m_{(v,v_{1})}m_{(v_{1},v_{2})}\cdots m_{(v_{|C_{v}|-2},v_{|C_{v}|-1})}\right]W_{C_{v}}^{\dagger} (139)
    =vV3Veven[m(v,v1)m(v1,v2)m(v|Cv|2,v|Cv|1)]vV3VevenWCv\displaystyle=\prod_{v\in V_{\geq 3}\cap V_{\mathrm{even}}}\left[m_{(v,v_{1})}m_{(v_{1},v_{2})}\cdots m_{(v_{|C_{v}|-2},v_{|C_{v}|-1})}\right]\prod_{v\in V_{\geq 3}\cap V_{\mathrm{even}}}W_{C_{v}}^{\dagger} (140)
    =:Π~evenvV3VevenWCv,\displaystyle=:\widetilde{\Pi}_{\mathrm{even}}\prod_{v\in V_{\geq 3}\cap V_{\mathrm{even}}}W_{C_{v}}^{\dagger}\,, (141)

    where, to arrive at Eq. (140), we notice that that WCvW_{C_{v}}^{\dagger} for different vV3Vevenv\in V_{\geq 3}\cap V_{\mathrm{even}} commute with each other because they are defined on disjoint subsets of local Hilbert spaces. We define Π~even\widetilde{\Pi}_{\mathrm{even}} as in Eq. (141) that will be used later. Similarly, for each vV3Voddv\in V_{\geq 3}\cap V_{\mathrm{odd}} in Eq. (135), we apply Eq. (138) to eE(Cv)me\prod_{e\in E(C_{v})}m_{e} and find

    Πodd\displaystyle\Pi_{\mathrm{odd}} =vV3VoddWCv[m(v1,v2)m(v|Cv|2,v|Cv|1)m(v,v|Cv|1)]\displaystyle=\prod_{v\in V_{\geq 3}\cap V_{\mathrm{odd}}}W_{C_{v}}^{\dagger}\left[m_{(v_{1},v_{2})}\cdots m_{(v_{|C_{v}|-2},v_{|C_{v}|-1})}m_{(v,v_{|C_{v}|-1})}\right] (142)
    =vV3VoddWCvvV3Vodd[m(v1,v2)m(v|Cv|2,v|Cv|1)m(v,v|Cv|1)]\displaystyle=\prod_{v\in V_{\geq 3}\cap V_{\mathrm{odd}}}W_{C_{v}}^{\dagger}\prod_{v\in V_{\geq 3}\cap V_{\mathrm{odd}}}\left[m_{(v_{1},v_{2})}\cdots m_{(v_{|C_{v}|-2},v_{|C_{v}|-1})}m_{(v,v_{|C_{v}|-1})}\right] (143)
    =:vV3VoddWCvΠ~odd,\displaystyle=:\prod_{v\in V_{\geq 3}\cap V_{\mathrm{odd}}}W_{C_{v}}^{\dagger}\widetilde{\Pi}_{\mathrm{odd}}\,, (144)

    where, as before, we observe that WCvW_{C_{v}}^{\dagger} for different vV3Voddv\in V_{\geq 3}\cap V_{\mathrm{odd}} commute with each other because they are defined on disjont subsets of local Hilbert spaces, and we defined Π~odd\widetilde{\Pi}_{\mathrm{odd}} as in Eq. (144) to be used later. We can swap our choice of Eqs. (137) and (138) as long as we use the same choice for all eE(Cv)me\prod_{e\in E(C_{v})}m_{e} for each vV3Vevenv\in V_{\geq 3}\cap V_{\mathrm{even}} in Πeven\Pi_{\mathrm{even}} and for each vV3Voddv\in V_{\geq 3}\cap V_{\mathrm{odd}} in Πodd\Pi_{\mathrm{odd}}.

  13. 13.

    All local ground state projectors not accounted for in Πeven\Pi_{\mathrm{even}} or Πodd\Pi_{\mathrm{odd}}, that is, mm corresponding to edges not accounted for in E(Cv)E(C_{v}) for either vV3Vevenv\in V_{\geq 3}\cap V_{\mathrm{even}} or vV3Voddv\in V_{\geq 3}\cap V_{\mathrm{odd}}, can be multiplied in an arbitrary order to form the product denoted by Πothers\Pi_{\mathrm{others}}.

  14. 14.

    We write the Detectability Lemma norm for CST(i1)CST^{(i-1)}, denoted by DLCST(i1)|ψ2\lVert\mathrm{DL}^{CST^{(i-1)}}\lvert\psi\rangle\rVert^{2}, as follows

    DLCST(i1)|ψ2=ΠoddΠothersΠeven|ψ2,\displaystyle\lVert\mathrm{DL}^{CST^{(i-1)}}\lvert\psi\rangle\rVert^{2}=\lVert\Pi_{\mathrm{odd}}\Pi_{\mathrm{others}}\Pi_{\mathrm{even}}\lvert\psi\rangle\rVert^{2}\,, (145)

    where the Detectability Lemma operator is defined by, DLCST(i1):=ΠoddΠothersΠeven\mathrm{DL}^{CST^{(i-1)}}:=\Pi_{\mathrm{odd}}\Pi_{\mathrm{others}}\Pi_{\mathrm{even}}, and |ψ𝒢\ket{\psi}\in\mathcal{G}_{\perp}. Moving forward, we substitute expressions for Πeven\Pi_{\mathrm{even}} and Πodd\Pi_{\mathrm{odd}} from Eqs. (141) and (144), respectively.

    DLCST(i1)|ψ2\displaystyle\lVert\mathrm{DL}^{CST^{(i-1)}}\lvert\psi\rangle\rVert^{2} =tr([vV3VoddWCv]Π~oddΠothersΠ~even[vV3VevenWCv]|ψψ|[vV3VevenWCv]Π~evenΠothersΠ~odd[vV3VoddWCv])\displaystyle=\begin{aligned} \mathrm{tr}\left(\left[\prod_{v\in V_{\geq 3}\cap V_{\mathrm{odd}}}W_{C_{v}}^{\dagger}\right]\widetilde{\Pi}_{\mathrm{odd}}\Pi_{\mathrm{others}}\widetilde{\Pi}_{\mathrm{even}}\left[\prod_{v\in V_{\geq 3}\cap V_{\mathrm{even}}}W_{C_{v}}^{\dagger}\right]|{\psi}\rangle\!\langle{\psi}|\right.\\ \left.\left[\prod_{v\in V_{\geq 3}\cap V_{\mathrm{even}}}W_{C_{v}}^{\dagger}\right]^{\dagger}\widetilde{\Pi}_{\mathrm{even}}^{\dagger}\Pi_{\mathrm{others}}^{\dagger}\widetilde{\Pi}_{\mathrm{odd}}^{\dagger}\left[\prod_{v\in V_{\geq 3}\cap V_{\mathrm{odd}}}W_{C_{v}}^{\dagger}\right]^{\dagger}\right)\end{aligned}
    =tr(Π~oddΠothersΠ~even[vV3VevenWCv]|ψψ|[vV3VevenWCv]Π~evenΠothersΠ~odd)\displaystyle=\begin{aligned} \mathrm{tr}\Bigg{(}\widetilde{\Pi}_{\mathrm{odd}}\Pi_{\mathrm{others}}\widetilde{\Pi}_{\mathrm{even}}\left[\prod_{v\in V_{\geq 3}\cap V_{\mathrm{even}}}W_{C_{v}}^{\dagger}\right]|{\psi}\rangle\!\langle{\psi}|\left[\prod_{v\in V_{\geq 3}\cap V_{\mathrm{even}}}W_{C_{v}}^{\dagger}\right]^{\dagger}\\ \widetilde{\Pi}_{\mathrm{even}}^{\dagger}\Pi_{\mathrm{others}}^{\dagger}\widetilde{\Pi}_{\mathrm{odd}}^{\dagger}\Bigg{)}\end{aligned}
    =tr(Π~oddΠothersΠ~even|ψ~ψ~|Π~evenΠothersΠ~odd),\displaystyle=\mathrm{tr}\Bigg{(}\widetilde{\Pi}_{\mathrm{odd}}\Pi_{\mathrm{others}}\widetilde{\Pi}_{\mathrm{even}}\,|{\widetilde{\psi}}\rangle\!\langle{\widetilde{\psi}}|\,\widetilde{\Pi}_{\mathrm{even}}^{\dagger}\Pi_{\mathrm{others}}^{\dagger}\widetilde{\Pi}_{\mathrm{odd}}^{\dagger}\Bigg{)}, (146)

    where |ψ~:=[vV3VevenWCv]|ψ𝒢\ket{\widetilde{\psi}}:=\left[\prod_{v\in V_{\geq 3}\cap V_{\mathrm{even}}}W_{C_{v}}^{\dagger}\right]\ket{\psi}\in\mathcal{G}_{\perp}, which follows from the same reasoning as in sub-step 11 in Step 3.

  15. 15.

    The r.h.s.\mathrm{r.h.s.} of Eq. (146) is a Detectability Lemma norm for a graph different from CST(i1)CST^{(i-1)} that we will define to be CST(i)CST^{(i)}. Therefore, the Detectability Lemma operator for CST(i)CST^{(i)} is defined by, DLCST(i):=Π~oddΠothersΠ~even\mathrm{DL}^{CST^{(i)}}:=\widetilde{\Pi}_{\mathrm{odd}}\Pi_{\mathrm{others}}\widetilde{\Pi}_{\mathrm{even}}, and Eq. (146) reads,

    DLCST(i1)|ψ2=DLCST(i)|ψ~2.\displaystyle\lVert\mathrm{DL}^{CST^{(i-1)}}\lvert\psi\rangle\rVert^{2}=\lVert\mathrm{DL}^{CST^{(i)}}\lvert\widetilde{\psi}\rangle\rVert^{2}\,. (147)

    All the edges among the nn vertices in CST(i1)CST^{(i-1)} corresponding to the projectors in Πothers\Pi_{\mathrm{others}} are present in CST(i)CST^{(i)}. However, the edges that are arranged in star graph fashion in the neighborhood of each vV3v\in V_{\geq 3} in CST(i1)CST^{(i-1)} are replaced by 1D\mathrm{1D} line graphs in CST(i)CST^{(i)}. This is inferred from the support of the projectors in the products Π~even\widetilde{\Pi}_{\mathrm{even}} and Π~odd\widetilde{\Pi}_{\mathrm{odd}} in Eq. (141) and Eq. (144), respectively. Alternatively, one may think about CST(i)CST^{(i)} as follows; recall that we began Step 4, by choosing a path between two leaves in CST(i1)CST^{(i-1)}. Refer to that path as VV. Then, CST(i)CST^{(i)} is a graph that results from CST(i1)CST^{(i-1)} by reconnecting the neighborhood (not adding nor removing edges) of each vertex vVv\in V of degree 33 or greater such that all vertices in the neighborhood of vv become part of VV. The resulting path VV will be defined as the lowest level of CST(i)CST^{(i)} for the next iteration of Step 4.

    Proof of Eq. (138) of Lemma 8.

    We give a proof for |Cv|=5|C_{v}|=5 and the proof for arbitrary number of vertices is a straight forward extension of the given proof. We begin with the left hand side of the equality in the lemma and re-express it as is shown,

    v0v1v2v3v4={v0v4v3v2v1}.\displaystyle\leavevmode\hbox to145pt{\vbox to69.38pt{\pgfpicture\makeatletter\hbox{\>\lower 7.9906pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{14.22638pt}{14.22638pt}\pgfsys@lineto{142.2638pt}{14.22638pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope{}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{14.22638pt}{28.45276pt}\pgfsys@lineto{142.2638pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope{}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{14.22638pt}{42.67914pt}\pgfsys@lineto{142.2638pt}{42.67914pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope{}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{14.22638pt}{56.90552pt}\pgfsys@lineto{142.2638pt}{56.90552pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope{}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{14.22638pt}{71.1319pt}\pgfsys@lineto{142.2638pt}{71.1319pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope \par{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{.5,.5,.5}\pgfsys@color@gray@fill{.5}\pgfsys@invoke{ }{{}{}{{}}{} {{}{{}}}{{}{}}{}{{}{}}{}{}{}{}{} {\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{.5,.5,.5}\pgfsys@color@gray@fill{.5}\pgfsys@invoke{ }{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}\pgfsys@moveto{38.87914pt}{32.20935pt}\pgfsys@lineto{32.65276pt}{32.20935pt}\pgfsys@curveto{30.44359pt}{32.20935pt}{28.65276pt}{30.41852pt}{28.65276pt}{28.20935pt}\pgfsys@lineto{28.65276pt}{14.86978pt}\pgfsys@curveto{28.65276pt}{12.66061pt}{30.44359pt}{10.86978pt}{32.65276pt}{10.86978pt}\pgfsys@lineto{38.87914pt}{10.86978pt}\pgfsys@curveto{41.0883pt}{10.86978pt}{42.87914pt}{12.66061pt}{42.87914pt}{14.86978pt}\pgfsys@lineto{42.87914pt}{28.20935pt}\pgfsys@curveto{42.87914pt}{30.41852pt}{41.0883pt}{32.20935pt}{38.87914pt}{32.20935pt}\pgfsys@closepath\pgfsys@moveto{28.65276pt}{10.86978pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{35.76595pt}{21.53957pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \par{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{}{{}}{} {{}{{}}}{{}{}}{}{{}{}} {\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }\pgfsys@rect{53.54892pt}{25.09616pt}{21.33957pt}{7.11319pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{64.2187pt}{28.65276pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{.5,.5,.5}\pgfsys@color@gray@fill{.5}\pgfsys@invoke{ }{{}{}{{}}{} {{}{{}}}{{}{}}{}{{}{}}{}{}{}{}{} {\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{.5,.5,.5}\pgfsys@color@gray@fill{.5}\pgfsys@invoke{ }{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}\pgfsys@moveto{67.3319pt}{46.4357pt}\pgfsys@lineto{61.10551pt}{46.4357pt}\pgfsys@curveto{58.89635pt}{46.4357pt}{57.10551pt}{44.64487pt}{57.10551pt}{42.4357pt}\pgfsys@lineto{57.10551pt}{14.86978pt}\pgfsys@curveto{57.10551pt}{12.66061pt}{58.89635pt}{10.86978pt}{61.10551pt}{10.86978pt}\pgfsys@lineto{67.3319pt}{10.86978pt}\pgfsys@curveto{69.54106pt}{10.86978pt}{71.3319pt}{12.66061pt}{71.3319pt}{14.86978pt}\pgfsys@lineto{71.3319pt}{42.4357pt}\pgfsys@curveto{71.3319pt}{44.64487pt}{69.54106pt}{46.4357pt}{67.3319pt}{46.4357pt}\pgfsys@closepath\pgfsys@moveto{57.10551pt}{10.86978pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{64.2187pt}{28.65274pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \par{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{}{{}}{} {{}{{}}}{{}{}}{}{{}{}} {\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }\pgfsys@rect{82.00168pt}{25.09616pt}{21.33957pt}{21.33957pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{92.67146pt}{35.76595pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{.5,.5,.5}\pgfsys@color@gray@fill{.5}\pgfsys@invoke{ }{{}{}{{}}{} {{}{{}}}{{}{}}{}{{}{}}{}{}{}{}{} {\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{.5,.5,.5}\pgfsys@color@gray@fill{.5}\pgfsys@invoke{ }{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}\pgfsys@moveto{95.78465pt}{60.66208pt}\pgfsys@lineto{89.55827pt}{60.66208pt}\pgfsys@curveto{87.3491pt}{60.66208pt}{85.55827pt}{58.87125pt}{85.55827pt}{56.66208pt}\pgfsys@lineto{85.55827pt}{14.86978pt}\pgfsys@curveto{85.55827pt}{12.66061pt}{87.3491pt}{10.86978pt}{89.55827pt}{10.86978pt}\pgfsys@lineto{95.78465pt}{10.86978pt}\pgfsys@curveto{97.99382pt}{10.86978pt}{99.78465pt}{12.66061pt}{99.78465pt}{14.86978pt}\pgfsys@lineto{99.78465pt}{56.66208pt}\pgfsys@curveto{99.78465pt}{58.87125pt}{97.99382pt}{60.66208pt}{95.78465pt}{60.66208pt}\pgfsys@closepath\pgfsys@moveto{85.55827pt}{10.86978pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{92.67146pt}{35.76593pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \par{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{}{{}}{} {{}{{}}}{{}{}}{}{{}{}} {\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }\pgfsys@rect{110.45444pt}{25.09616pt}{21.33957pt}{35.56592pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{121.12422pt}{42.87912pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{.5,.5,.5}\pgfsys@color@gray@fill{.5}\pgfsys@invoke{ }{{}{}{{}}{} {{}{{}}}{{}{}}{}{{}{}}{}{}{}{}{} {\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{.5,.5,.5}\pgfsys@color@gray@fill{.5}\pgfsys@invoke{ }{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}\pgfsys@moveto{124.23741pt}{74.88849pt}\pgfsys@lineto{118.01103pt}{74.88849pt}\pgfsys@curveto{115.80186pt}{74.88849pt}{114.01103pt}{73.09766pt}{114.01103pt}{70.88849pt}\pgfsys@lineto{114.01103pt}{14.86978pt}\pgfsys@curveto{114.01103pt}{12.66061pt}{115.80186pt}{10.86978pt}{118.01103pt}{10.86978pt}\pgfsys@lineto{124.23741pt}{10.86978pt}\pgfsys@curveto{126.44658pt}{10.86978pt}{128.23741pt}{12.66061pt}{128.23741pt}{14.86978pt}\pgfsys@lineto{128.23741pt}{70.88849pt}\pgfsys@curveto{128.23741pt}{73.09766pt}{126.44658pt}{74.88849pt}{124.23741pt}{74.88849pt}\pgfsys@closepath\pgfsys@moveto{114.01103pt}{10.86978pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{121.12422pt}{42.87914pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \par{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{1.00124pt}{12.82361pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$v_{0}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{1.00124pt}{27.04999pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$v_{1}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{1.00124pt}{41.27637pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$v_{2}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{1.00124pt}{55.50275pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$v_{3}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{1.00124pt}{69.72913pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$v_{4}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \par \pgfsys@invoke{ }\pgfsys@endscope{{ {}{}{}{}{}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}=\left\{\leavevmode\hbox to145pt{\vbox to69.38pt{\pgfpicture\makeatletter\hbox{\>\lower 7.9906pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{14.22638pt}{14.22638pt}\pgfsys@lineto{142.2638pt}{14.22638pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope{}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{14.22638pt}{28.45276pt}\pgfsys@lineto{142.2638pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope{}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{14.22638pt}{42.67914pt}\pgfsys@lineto{142.2638pt}{42.67914pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope{}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{14.22638pt}{56.90552pt}\pgfsys@lineto{142.2638pt}{56.90552pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope{}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{14.22638pt}{71.1319pt}\pgfsys@lineto{142.2638pt}{71.1319pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope \par{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{.5,.5,.5}\pgfsys@color@gray@fill{.5}\pgfsys@invoke{ }{{}{}{{}}{} {{}{{}}}{{}{}}{}{{}{}}{}{}{}{}{} {\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{.5,.5,.5}\pgfsys@color@gray@fill{.5}\pgfsys@invoke{ }{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}\pgfsys@moveto{38.87914pt}{32.20935pt}\pgfsys@lineto{32.65276pt}{32.20935pt}\pgfsys@curveto{30.44359pt}{32.20935pt}{28.65276pt}{30.41852pt}{28.65276pt}{28.20935pt}\pgfsys@lineto{28.65276pt}{14.86978pt}\pgfsys@curveto{28.65276pt}{12.66061pt}{30.44359pt}{10.86978pt}{32.65276pt}{10.86978pt}\pgfsys@lineto{38.87914pt}{10.86978pt}\pgfsys@curveto{41.0883pt}{10.86978pt}{42.87914pt}{12.66061pt}{42.87914pt}{14.86978pt}\pgfsys@lineto{42.87914pt}{28.20935pt}\pgfsys@curveto{42.87914pt}{30.41852pt}{41.0883pt}{32.20935pt}{38.87914pt}{32.20935pt}\pgfsys@closepath\pgfsys@moveto{28.65276pt}{10.86978pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{35.76595pt}{21.53957pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \par{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{}{{}}{} {{}{{}}}{{}{}}{}{{}{}} {\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }\pgfsys@rect{53.54892pt}{25.09616pt}{21.33957pt}{7.11319pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{64.2187pt}{28.65276pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{.5,.5,.5}\pgfsys@color@gray@fill{.5}\pgfsys@invoke{ }{{}{}{{}}{} {{}{{}}}{{}{}}{}{{}{}}{}{}{}{}{} {\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{.5,.5,.5}\pgfsys@color@gray@fill{.5}\pgfsys@invoke{ }{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}\pgfsys@moveto{67.3319pt}{46.4357pt}\pgfsys@lineto{61.10551pt}{46.4357pt}\pgfsys@curveto{58.89635pt}{46.4357pt}{57.10551pt}{44.64487pt}{57.10551pt}{42.4357pt}\pgfsys@lineto{57.10551pt}{14.86978pt}\pgfsys@curveto{57.10551pt}{12.66061pt}{58.89635pt}{10.86978pt}{61.10551pt}{10.86978pt}\pgfsys@lineto{67.3319pt}{10.86978pt}\pgfsys@curveto{69.54106pt}{10.86978pt}{71.3319pt}{12.66061pt}{71.3319pt}{14.86978pt}\pgfsys@lineto{71.3319pt}{42.4357pt}\pgfsys@curveto{71.3319pt}{44.64487pt}{69.54106pt}{46.4357pt}{67.3319pt}{46.4357pt}\pgfsys@closepath\pgfsys@moveto{57.10551pt}{10.86978pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{64.2187pt}{28.65274pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \par{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{}{{}}{} {{}{{}}}{{}{}}{}{{}{}} {\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }\pgfsys@rect{82.00168pt}{25.09616pt}{21.33957pt}{21.33957pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{92.67146pt}{35.76595pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{.5,.5,.5}\pgfsys@color@gray@fill{.5}\pgfsys@invoke{ }{{}{}{{}}{} {{}{{}}}{{}{}}{}{{}{}}{}{}{}{}{} {\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{.5,.5,.5}\pgfsys@color@gray@fill{.5}\pgfsys@invoke{ }{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}\pgfsys@moveto{95.78465pt}{60.66208pt}\pgfsys@lineto{89.55827pt}{60.66208pt}\pgfsys@curveto{87.3491pt}{60.66208pt}{85.55827pt}{58.87125pt}{85.55827pt}{56.66208pt}\pgfsys@lineto{85.55827pt}{14.86978pt}\pgfsys@curveto{85.55827pt}{12.66061pt}{87.3491pt}{10.86978pt}{89.55827pt}{10.86978pt}\pgfsys@lineto{95.78465pt}{10.86978pt}\pgfsys@curveto{97.99382pt}{10.86978pt}{99.78465pt}{12.66061pt}{99.78465pt}{14.86978pt}\pgfsys@lineto{99.78465pt}{56.66208pt}\pgfsys@curveto{99.78465pt}{58.87125pt}{97.99382pt}{60.66208pt}{95.78465pt}{60.66208pt}\pgfsys@closepath\pgfsys@moveto{85.55827pt}{10.86978pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{92.67146pt}{35.76593pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \par{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{}{{}}{} {{}{{}}}{{}{}}{}{{}{}} {\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }\pgfsys@rect{110.45444pt}{25.09616pt}{21.33957pt}{35.56592pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{121.12422pt}{42.87912pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{.5,.5,.5}\pgfsys@color@gray@fill{.5}\pgfsys@invoke{ }{{}{}{{}}{} {{}{{}}}{{}{}}{}{{}{}}{}{}{}{}{} {\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{.5,.5,.5}\pgfsys@color@gray@fill{.5}\pgfsys@invoke{ }{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}\pgfsys@moveto{124.23741pt}{74.88849pt}\pgfsys@lineto{118.01103pt}{74.88849pt}\pgfsys@curveto{115.80186pt}{74.88849pt}{114.01103pt}{73.09766pt}{114.01103pt}{70.88849pt}\pgfsys@lineto{114.01103pt}{14.86978pt}\pgfsys@curveto{114.01103pt}{12.66061pt}{115.80186pt}{10.86978pt}{118.01103pt}{10.86978pt}\pgfsys@lineto{124.23741pt}{10.86978pt}\pgfsys@curveto{126.44658pt}{10.86978pt}{128.23741pt}{12.66061pt}{128.23741pt}{14.86978pt}\pgfsys@lineto{128.23741pt}{70.88849pt}\pgfsys@curveto{128.23741pt}{73.09766pt}{126.44658pt}{74.88849pt}{124.23741pt}{74.88849pt}\pgfsys@closepath\pgfsys@moveto{114.01103pt}{10.86978pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{121.12422pt}{42.87914pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \par{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{1.00124pt}{12.82361pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$v_{0}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{1.00124pt}{27.04999pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$v_{4}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{1.00124pt}{41.27637pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$v_{3}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{1.00124pt}{55.50275pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$v_{2}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{1.00124pt}{69.72913pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$v_{1}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \par \pgfsys@invoke{ }\pgfsys@endscope{{ {}{}{}{}{}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}\right\}^{\dagger}\ . (148)

    We use the result of Eq. (137) in Lemma 8 inside the curly bracket,

    v0v_{0}v1v_{1}v2v_{2}v3v_{3}v4v_{4} ={v0v4v3v2v1}\displaystyle=\left\{\leavevmode\hbox to173.45pt{\vbox to69.38pt{\pgfpicture\makeatletter\hbox{\>\lower 7.9906pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{14.22638pt}{14.22638pt}\pgfsys@lineto{142.2638pt}{14.22638pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope{}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{14.22638pt}{28.45276pt}\pgfsys@lineto{142.2638pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope{}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{14.22638pt}{42.67914pt}\pgfsys@lineto{142.2638pt}{42.67914pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope{}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{14.22638pt}{56.90552pt}\pgfsys@lineto{142.2638pt}{56.90552pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope{}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{14.22638pt}{71.1319pt}\pgfsys@lineto{142.2638pt}{71.1319pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope \par{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{.5,.5,.5}\pgfsys@color@gray@fill{.5}\pgfsys@invoke{ }{{}{}{{}}{} {{}{{}}}{{}{}}{}{{}{}}{}{}{}{}{} {\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{.5,.5,.5}\pgfsys@color@gray@fill{.5}\pgfsys@invoke{ }{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}\pgfsys@moveto{38.87914pt}{32.20935pt}\pgfsys@lineto{32.65276pt}{32.20935pt}\pgfsys@curveto{30.44359pt}{32.20935pt}{28.65276pt}{30.41852pt}{28.65276pt}{28.20935pt}\pgfsys@lineto{28.65276pt}{14.86978pt}\pgfsys@curveto{28.65276pt}{12.66061pt}{30.44359pt}{10.86978pt}{32.65276pt}{10.86978pt}\pgfsys@lineto{38.87914pt}{10.86978pt}\pgfsys@curveto{41.0883pt}{10.86978pt}{42.87914pt}{12.66061pt}{42.87914pt}{14.86978pt}\pgfsys@lineto{42.87914pt}{28.20935pt}\pgfsys@curveto{42.87914pt}{30.41852pt}{41.0883pt}{32.20935pt}{38.87914pt}{32.20935pt}\pgfsys@closepath\pgfsys@moveto{28.65276pt}{10.86978pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{35.76595pt}{21.53957pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{.5,.5,.5}\pgfsys@color@gray@fill{.5}\pgfsys@invoke{ }{{}{}{{}}{} {{}{{}}}{{}{}}{}{{}{}}{}{}{}{}{} {\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{.5,.5,.5}\pgfsys@color@gray@fill{.5}\pgfsys@invoke{ }{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}\pgfsys@moveto{67.3319pt}{46.43573pt}\pgfsys@lineto{61.10551pt}{46.43573pt}\pgfsys@curveto{58.89635pt}{46.43573pt}{57.10551pt}{44.6449pt}{57.10551pt}{42.43573pt}\pgfsys@lineto{57.10551pt}{29.09616pt}\pgfsys@curveto{57.10551pt}{26.887pt}{58.89635pt}{25.09616pt}{61.10551pt}{25.09616pt}\pgfsys@lineto{67.3319pt}{25.09616pt}\pgfsys@curveto{69.54106pt}{25.09616pt}{71.3319pt}{26.887pt}{71.3319pt}{29.09616pt}\pgfsys@lineto{71.3319pt}{42.43573pt}\pgfsys@curveto{71.3319pt}{44.6449pt}{69.54106pt}{46.43573pt}{67.3319pt}{46.43573pt}\pgfsys@closepath\pgfsys@moveto{57.10551pt}{25.09616pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{64.2187pt}{35.76595pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{.5,.5,.5}\pgfsys@color@gray@fill{.5}\pgfsys@invoke{ }{{}{}{{}}{} {{}{{}}}{{}{}}{}{{}{}}{}{}{}{}{} {\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{.5,.5,.5}\pgfsys@color@gray@fill{.5}\pgfsys@invoke{ }{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}\pgfsys@moveto{95.78465pt}{60.66211pt}\pgfsys@lineto{89.55827pt}{60.66211pt}\pgfsys@curveto{87.3491pt}{60.66211pt}{85.55827pt}{58.87128pt}{85.55827pt}{56.66211pt}\pgfsys@lineto{85.55827pt}{43.32254pt}\pgfsys@curveto{85.55827pt}{41.11337pt}{87.3491pt}{39.32254pt}{89.55827pt}{39.32254pt}\pgfsys@lineto{95.78465pt}{39.32254pt}\pgfsys@curveto{97.99382pt}{39.32254pt}{99.78465pt}{41.11337pt}{99.78465pt}{43.32254pt}\pgfsys@lineto{99.78465pt}{56.66211pt}\pgfsys@curveto{99.78465pt}{58.87128pt}{97.99382pt}{60.66211pt}{95.78465pt}{60.66211pt}\pgfsys@closepath\pgfsys@moveto{85.55827pt}{39.32254pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{92.67146pt}{49.99232pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{.5,.5,.5}\pgfsys@color@gray@fill{.5}\pgfsys@invoke{ }{{}{}{{}}{} {{}{{}}}{{}{}}{}{{}{}}{}{}{}{}{} {\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{.5,.5,.5}\pgfsys@color@gray@fill{.5}\pgfsys@invoke{ }{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}\pgfsys@moveto{124.23741pt}{74.88849pt}\pgfsys@lineto{118.01103pt}{74.88849pt}\pgfsys@curveto{115.80186pt}{74.88849pt}{114.01103pt}{73.09766pt}{114.01103pt}{70.88849pt}\pgfsys@lineto{114.01103pt}{57.54892pt}\pgfsys@curveto{114.01103pt}{55.33975pt}{115.80186pt}{53.54892pt}{118.01103pt}{53.54892pt}\pgfsys@lineto{124.23741pt}{53.54892pt}\pgfsys@curveto{126.44658pt}{53.54892pt}{128.23741pt}{55.33975pt}{128.23741pt}{57.54892pt}\pgfsys@lineto{128.23741pt}{70.88849pt}\pgfsys@curveto{128.23741pt}{73.09766pt}{126.44658pt}{74.88849pt}{124.23741pt}{74.88849pt}\pgfsys@closepath\pgfsys@moveto{114.01103pt}{53.54892pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{121.12422pt}{64.2187pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \par\pgfsys@beginscope\pgfsys@invoke{ }{{}} {}{{}}{}{{}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{142.2638pt}{14.22638pt}\pgfsys@curveto{156.49017pt}{14.22638pt}{156.49017pt}{28.45276pt}{170.71655pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope{}{{}}{}{{}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{142.2638pt}{28.45276pt}\pgfsys@curveto{156.49017pt}{28.45276pt}{156.49017pt}{42.67914pt}{170.71655pt}{42.67914pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope{}{{}}{}{{}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{142.2638pt}{42.67914pt}\pgfsys@curveto{156.49017pt}{42.67914pt}{156.49017pt}{56.90552pt}{170.71655pt}{56.90552pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope{}{{}}{}{{}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{142.2638pt}{56.90552pt}\pgfsys@curveto{156.49017pt}{56.90552pt}{156.49017pt}{71.1319pt}{170.71655pt}{71.1319pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope {}{{}}{}{{}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{142.2638pt}{71.1319pt}\pgfsys@curveto{156.49017pt}{71.1319pt}{156.49017pt}{14.22638pt}{170.71655pt}{14.22638pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope \pgfsys@invoke{ }\pgfsys@endscope \par{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{1.00124pt}{12.82361pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$v_{0}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{1.00124pt}{27.04999pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$v_{4}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{1.00124pt}{41.27637pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$v_{3}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{1.00124pt}{55.50275pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$v_{2}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{1.00124pt}{69.72913pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$v_{1}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \par \pgfsys@invoke{ }\pgfsys@endscope{{ {}{}{}{}{}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}\right\}^{\dagger} (149)
    =v0v4v3v2v1.\displaystyle=\leavevmode\hbox to173.45pt{\vbox to69.38pt{\pgfpicture\makeatletter\hbox{\>\lower 7.9906pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{42.67914pt}{14.22638pt}\pgfsys@lineto{170.71655pt}{14.22638pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope{}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{42.67914pt}{28.45276pt}\pgfsys@lineto{170.71655pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope{}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{42.67914pt}{42.67914pt}\pgfsys@lineto{170.71655pt}{42.67914pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope{}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{42.67914pt}{56.90552pt}\pgfsys@lineto{170.71655pt}{56.90552pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope{}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{42.67914pt}{71.1319pt}\pgfsys@lineto{170.71655pt}{71.1319pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope \par{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{.5,.5,.5}\pgfsys@color@gray@fill{.5}\pgfsys@invoke{ }{{}{}{{}}{} {{}{{}}}{{}{}}{}{{}{}}{}{}{}{}{} {\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{.5,.5,.5}\pgfsys@color@gray@fill{.5}\pgfsys@invoke{ }{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}\pgfsys@moveto{152.69017pt}{32.20935pt}\pgfsys@lineto{146.46379pt}{32.20935pt}\pgfsys@curveto{144.25462pt}{32.20935pt}{142.46379pt}{30.41852pt}{142.46379pt}{28.20935pt}\pgfsys@lineto{142.46379pt}{14.86978pt}\pgfsys@curveto{142.46379pt}{12.66061pt}{144.25462pt}{10.86978pt}{146.46379pt}{10.86978pt}\pgfsys@lineto{152.69017pt}{10.86978pt}\pgfsys@curveto{154.89934pt}{10.86978pt}{156.69017pt}{12.66061pt}{156.69017pt}{14.86978pt}\pgfsys@lineto{156.69017pt}{28.20935pt}\pgfsys@curveto{156.69017pt}{30.41852pt}{154.89934pt}{32.20935pt}{152.69017pt}{32.20935pt}\pgfsys@closepath\pgfsys@moveto{142.46379pt}{10.86978pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{149.57698pt}{21.53957pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{.5,.5,.5}\pgfsys@color@gray@fill{.5}\pgfsys@invoke{ }{{}{}{{}}{} {{}{{}}}{{}{}}{}{{}{}}{}{}{}{}{} {\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{.5,.5,.5}\pgfsys@color@gray@fill{.5}\pgfsys@invoke{ }{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}\pgfsys@moveto{124.23741pt}{46.43573pt}\pgfsys@lineto{118.01103pt}{46.43573pt}\pgfsys@curveto{115.80186pt}{46.43573pt}{114.01103pt}{44.6449pt}{114.01103pt}{42.43573pt}\pgfsys@lineto{114.01103pt}{29.09616pt}\pgfsys@curveto{114.01103pt}{26.887pt}{115.80186pt}{25.09616pt}{118.01103pt}{25.09616pt}\pgfsys@lineto{124.23741pt}{25.09616pt}\pgfsys@curveto{126.44658pt}{25.09616pt}{128.23741pt}{26.887pt}{128.23741pt}{29.09616pt}\pgfsys@lineto{128.23741pt}{42.43573pt}\pgfsys@curveto{128.23741pt}{44.6449pt}{126.44658pt}{46.43573pt}{124.23741pt}{46.43573pt}\pgfsys@closepath\pgfsys@moveto{114.01103pt}{25.09616pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{121.12422pt}{35.76595pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{.5,.5,.5}\pgfsys@color@gray@fill{.5}\pgfsys@invoke{ }{{}{}{{}}{} {{}{{}}}{{}{}}{}{{}{}}{}{}{}{}{} {\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{.5,.5,.5}\pgfsys@color@gray@fill{.5}\pgfsys@invoke{ }{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}\pgfsys@moveto{95.78465pt}{60.66211pt}\pgfsys@lineto{89.55827pt}{60.66211pt}\pgfsys@curveto{87.3491pt}{60.66211pt}{85.55827pt}{58.87128pt}{85.55827pt}{56.66211pt}\pgfsys@lineto{85.55827pt}{43.32254pt}\pgfsys@curveto{85.55827pt}{41.11337pt}{87.3491pt}{39.32254pt}{89.55827pt}{39.32254pt}\pgfsys@lineto{95.78465pt}{39.32254pt}\pgfsys@curveto{97.99382pt}{39.32254pt}{99.78465pt}{41.11337pt}{99.78465pt}{43.32254pt}\pgfsys@lineto{99.78465pt}{56.66211pt}\pgfsys@curveto{99.78465pt}{58.87128pt}{97.99382pt}{60.66211pt}{95.78465pt}{60.66211pt}\pgfsys@closepath\pgfsys@moveto{85.55827pt}{39.32254pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{92.67146pt}{49.99232pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{.5,.5,.5}\pgfsys@color@gray@fill{.5}\pgfsys@invoke{ }{{}{}{{}}{} {{}{{}}}{{}{}}{}{{}{}}{}{}{}{}{} {\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{.5,.5,.5}\pgfsys@color@gray@fill{.5}\pgfsys@invoke{ }{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}{{}{}{{}}}{{}{}{{}}}{}{}\pgfsys@moveto{67.3319pt}{74.88849pt}\pgfsys@lineto{61.10551pt}{74.88849pt}\pgfsys@curveto{58.89635pt}{74.88849pt}{57.10551pt}{73.09766pt}{57.10551pt}{70.88849pt}\pgfsys@lineto{57.10551pt}{57.54892pt}\pgfsys@curveto{57.10551pt}{55.33975pt}{58.89635pt}{53.54892pt}{61.10551pt}{53.54892pt}\pgfsys@lineto{67.3319pt}{53.54892pt}\pgfsys@curveto{69.54106pt}{53.54892pt}{71.3319pt}{55.33975pt}{71.3319pt}{57.54892pt}\pgfsys@lineto{71.3319pt}{70.88849pt}\pgfsys@curveto{71.3319pt}{73.09766pt}{69.54106pt}{74.88849pt}{67.3319pt}{74.88849pt}\pgfsys@closepath\pgfsys@moveto{57.10551pt}{53.54892pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{64.2187pt}{64.2187pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \par\pgfsys@beginscope\pgfsys@invoke{ }{{}} {}{{}}{}{{}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{14.22638pt}{28.45276pt}\pgfsys@curveto{28.45276pt}{28.45276pt}{28.45276pt}{14.22638pt}{42.67914pt}{14.22638pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope{}{{}}{}{{}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{14.22638pt}{42.67914pt}\pgfsys@curveto{28.45276pt}{42.67914pt}{28.45276pt}{28.45276pt}{42.67914pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope{}{{}}{}{{}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{14.22638pt}{56.90552pt}\pgfsys@curveto{28.45276pt}{56.90552pt}{28.45276pt}{42.67914pt}{42.67914pt}{42.67914pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope{}{{}}{}{{}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{14.22638pt}{71.1319pt}\pgfsys@curveto{28.45276pt}{71.1319pt}{28.45276pt}{56.90552pt}{42.67914pt}{56.90552pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope {}{{}}{}{{}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{14.22638pt}{14.22638pt}\pgfsys@curveto{28.45276pt}{14.22638pt}{28.45276pt}{71.1319pt}{42.67914pt}{71.1319pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope \pgfsys@invoke{ }\pgfsys@endscope \par{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{1.00124pt}{12.82361pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$v_{0}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{1.00124pt}{27.04999pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$v_{4}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{1.00124pt}{41.27637pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$v_{3}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{1.00124pt}{55.50275pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$v_{2}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{1.00124pt}{69.72913pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$v_{1}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \par \pgfsys@invoke{ }\pgfsys@endscope{{ {}{}{}{}{}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}\ . (150)

A.5 Step 5: Repeating the “flattening out” procedure

  1. 1.

    It was necessary to arrange the terms in the product in Eq. (145) in a very specific manner to equate DLCST(i1)|ψ2=DLCST(i)|ψ~2\lVert\mathrm{DL}^{CST^{(i-1)}}\lvert\psi\rangle\rVert^{2}=\lVert\mathrm{DL}^{CST^{(i)}}\lvert\widetilde{\psi}\rangle\rVert^{2}. If we begin with CST(0)CST^{(0)} that has height dd (equal to the “depth” of the corresponding STST), then at the end of dd iterations of Step 4, we would have shown that DLCST(d1)|ψ2=DLCST(d)|ψ2=DL1D|ψ2\lVert\mathrm{DL}^{CST(d-1)}\ket{\psi}\rVert^{2}=\lVert\mathrm{DL}^{CST(d)}\ket{\psi}\rVert^{2}=\lVert\mathrm{DL}^{\mathrm{1D}}\ket{\psi}\rVert^{2}, where CST(d)CST^{(d)} is equal to the nn-vertex 1D\mathrm{1D} line graph with open boundary conditions. The proof of this claim follows from induction and the definition of the “lowest layer” (refer to the last point of Step 4).

    Lemma 9.

    If CST(0)CST^{(0)} is the compressed spanning tree corresponding to the spanning tree STST of an arbitrary nn-vertex connected graph GG and CST(0)CST^{(0)} has height dd, then CST(d)CST^{(d)} is the nn-vertex 1D\mathrm{1D} line graph.

    Proof.

    Proof follows from Step 4. i=1i=1 is the base step and is equal to the Step 4 as is written above. The induction hypothesis is that at the end of the ithi^{\text{th}} iteration of Step 4, CST(i)CST^{(i)} includes, in its lowest layer, all layers of the tree CST(0)CST^{(0)} from its lowest to its ithi^{\text{th}} layer. Consider the (i+1)th(i+1)^{\text{th}} iteration. Since at this iteration, the neighborhood of all degree 33 or greater vertices in CST(i)CST^{(i)} contain vertices from either

    • the lowest layer of CST(i)CST^{(i)}, which by the definition of “lowest layer” (at the end of Step 4) and the induction hypothesis contains all vertices up to and including the ithi^{\text{th}} layer of CST(0)CST^{(0)}, or,

    • vertices from the first layer of CST(i)CST^{(i)}, which is equal to the (i+1)th(i+1)^{\text{th}} layer of CST(0)CST^{(0)},

    the proof of the induction step is complete. CST(0)CST^{(0)} has depth dd and thus dd layers. By the above argument, CST(d)CST^{(d)} will contain in its lowest layer, all the vertices in CST(0)CST^{(0)}. Since, the “lowest layer” is a path graph between two leaves, the prove of the lemma is complete. ∎

    Remark 6.

    In Eq. (147), r.h.s.\mathrm{r.h.s.} in the ithi^{\text{th}} iteration and l.h.s.\mathrm{l.h.s.} in the (i+1)th(i+1)^{\text{th}} of Step 4 are different because the order of product of projectors in the Detectability Lemma operators are different. The affect of this dissimilarity is significant for our eventual lower bound on Δ(G,n,k)\Delta(G,n,k). If the stated difference were absent, then the same lower bound as in Eq. (133) would hold because DLST|ψ2DL1D|ϕ2\lVert\mathrm{DL}^{ST}\ket{\psi}\rVert^{2}\leq\lVert\mathrm{DL}^{\mathrm{1D}}\ket{\phi}\rVert^{2}, for some |ψ,|ϕ𝒢\ket{\psi},\ket{\phi}\in\mathcal{G}_{\perp}. Even if the r.h.s.\mathrm{r.h.s.} of Eq. (147) in the ithi^{\text{th}} iteration of Step 4 were less than or equal to the l.h.s.\mathrm{l.h.s.} of Eq. (147) in the (i+1)th(i+1)^{\text{th}} iteration of the same step, the lower bound of Eq. (133) would hold. However, we do not know of a way to show this. More precisely, if one could show that for every |ψ𝒢\ket{\psi}\in\mathcal{G}_{\perp}, there exists a |ϕ𝒢\ket{\phi}\in\mathcal{G}_{\perp} such that DLCST(i)|ψDL~CST(i)|ϕ\lVert\mathrm{DL}^{CST^{(i)}}\ket{\psi}\rVert\leq\lVert\widetilde{\mathrm{DL}}^{CST^{(i)}}\ket{\phi}\rVert, where DL~\widetilde{\mathrm{DL}} is the Detectability Lemma operator with different order of products of projectors, then lower bound of Eq. (133) holds. We do not know about the truth of falsity of this statement. Instead we take a different approach to relate the r.h.s.\mathrm{r.h.s.} in the ithi^{\text{th}} iteration and l.h.s.\mathrm{l.h.s.} in the (i+1)th(i+1)^{\text{th}} of Eq. (147) of Step 4, because of which we incur an exponentially decreasing in the height dd of CST(0)CST^{(0)} lower bound on Δ(G,n,k)\Delta(G,n,k).

  2. 2.

    To repeat the above procedure the order of terms in the product in Eq. (146) needs to be changed. Suppose a new Detectability Lemma norm for CST(i)CST^{(i)} is composed with different order of terms in the product, denoted by DL~CST(i)|ψ2\lVert\widetilde{\mathrm{DL}}^{CST^{(i)}}\lvert\psi\rangle\rVert^{2}. We can go around the problem of relating DLCST(i)|ψ2\lVert\mathrm{DL}^{CST^{(i)}}\lvert\psi\rangle\rVert^{2} and DL~CST(i)|ψ2\lVert\widetilde{\mathrm{DL}}^{CST^{(i)}}\lvert\psi\rangle\rVert^{2}, by using the upper bound on DLCST(i)|ψ2\lVert\mathrm{DL}^{CST^{(i)}}\lvert\psi\rangle\rVert^{2} in terms of the spectral gap Δ(CST(i),n,k)\Delta(CST^{(i)},n,k) of the Hamiltonian H(CST(i),n,k)H(CST^{(i)},n,k), which in turn can be lower bounded by DL~CST(i)|ψ2\lVert\widetilde{\mathrm{DL}}^{CST^{(i)}}\lvert\psi\rangle\rVert^{2} as follows

    DLCST(i)|ψ211+Δ(CST(i),n,k)(g(i))211+14(g(i))2(1DL~CST(i)|ψ2),\displaystyle\lVert\mathrm{DL}^{CST^{(i)}}\lvert\psi\rangle\rVert^{2}\leq\cfrac{1}{1+\cfrac{\Delta(CST^{(i)},n,k)}{(g^{(i)})^{2}}}\leq\cfrac{1}{1+\cfrac{1}{4(g^{(i)})^{2}}\left(1-\lVert\widetilde{\mathrm{DL}}^{CST^{(i)}}\lvert\psi\rangle\rVert^{2}\right)}\,, (151)

    where g(i)g^{(i)} is the maximum degree of the graph CST(i)CST^{(i)}. The first, inequality is the usual result of the Detectability Lemma, and the second inequality results from inserting the Quantum Union Bound for Δ(CST(i1),n,k)\Delta(CST^{(i-1)},n,k). This approach works to relate DLCST(i)|ψ2\lVert\mathrm{DL}^{CST^{(i)}}\lvert\psi\rangle\rVert^{2} and DL~CST(i)|ψ2\lVert\widetilde{\mathrm{DL}}^{CST^{(i)}}\lvert\psi\rangle\rVert^{2} because the Detectability Lemma upper bound and the Quantum Union Bound lower bound are unconditional on the order of products of projectors in the Detectability Lemma operator.

  3. 3.

    After dd iterations of Step 4, we have the following results.

    1. (a)

      For i{1,2,,d}i\in\{1,2,\dots,d\},

      DLCST(i1)|ψ2=DL~CST(i)|ψ~2,\displaystyle\lVert\mathrm{DL}^{CST^{(i-1)}}\lvert\psi\rangle\rVert^{2}=\lVert\widetilde{\mathrm{DL}}^{CST^{(i)}}\lvert\widetilde{\psi}\rangle\rVert^{2}\,, (152)

      where |ψ,|ψ~𝒢\lvert\psi\rangle,\lvert\widetilde{\psi}\rangle\in\mathcal{G}_{\perp}, and DL~\widetilde{\mathrm{DL}} denotes a particular order of product of projectors such that we would have to reorder that product to equate the Detectability Lemma norms on CST(i)CST^{(i)} and CST(i+1)CST^{(i+1)}. In particular, DLCST(d)|ψ2\lVert\mathrm{DL}^{CST^{(d)}}\lvert\psi\rangle\rVert^{2} is equal to the Detectability Lemma norm on the nn-vertex 1D chain with open boundary conditions, denoted by DL1D|ψ2\lVert\mathrm{DL}^{\mathrm{1D}}\lvert\psi\rangle\rVert^{2}.

    2. (b)

      For DL\mathrm{DL} and DL~\widetilde{\mathrm{DL}} that differ in a very specific manner in the order of products of projectors in their respective definitions,

      DL~CST(i)|ψ~211+14(g(i))2(1DLCST(i)|ψ2).\displaystyle\lVert\widetilde{\mathrm{DL}}^{CST^{(i)}}\lvert\widetilde{\psi}\rangle\rVert^{2}\leq\cfrac{1}{1+\cfrac{1}{4(g^{(i)})^{2}}\left(1-\lVert\mathrm{DL}^{CST^{(i)}}\lvert\psi\rangle\rVert^{2}\right)}\,. (153)

A.6 Step 6: Final lower bound for the spectral gap of G

  1. 1.

    From Step 3, we know that DLST|ψ2=DLCST(0)|ψ~2\lVert\mathrm{DL}^{ST}\ket{\psi}\rVert^{2}=\lVert\mathrm{DL}^{CST^{(0)}}\ket{\widetilde{\psi}}\rVert^{2}, for |ψ,|ψ~𝒢\ket{\psi},\ket{\widetilde{\psi}}\in\mathcal{G}_{\perp}.

  2. 2.

    We can upper bound DLCST(0)|ψ2\lVert\mathrm{DL}^{CST^{(0)}}\ket{\psi}\rVert^{2} and, hence, DLST|ψ2\lVert\mathrm{DL}^{ST}\ket{\psi}\rVert^{2} in the following iterative manner. Begin with i=1i=1.

    1. (a)

      Use Eq. (152) to equate DLCST(i1)|ψ2\lVert\mathrm{DL}^{CST^{(i-1)}}\ket{\psi}\rVert^{2} with DL~CST(i)|ψ~2\lVert\widetilde{\mathrm{DL}}^{CST^{(i)}}\lvert\widetilde{\psi}\rangle\rVert^{2}.

    2. (b)

      Use Eq. (153) to upper bound DLCST(i1)|ψ2\lVert\mathrm{DL}^{CST^{(i-1)}}\ket{\psi}\rVert^{2} in terms of DLCST(i)|ψ2\lVert\mathrm{DL}^{CST^{(i)}}\ket{\psi}\rVert^{2}

    3. (c)

      Increment i=i+1i=i+1.

    Repeat points 2(a), (b) and (c) till i=d1i=d-1 at the end of 2(c). At the dthd^{\text{th}} iteration stop after point 2(a) because at that point, DLCST(d1)|ψ2=DL~CST(d)|ψ~2=DL1D|ψ~211+Δ(1D,n,k)4\lVert\mathrm{DL}^{CST^{(d-1)}}\ket{\psi}\rVert^{2}=\lVert\widetilde{\mathrm{DL}}^{CST^{(d)}}\ket{\widetilde{\psi}}\rVert^{2}=\lVert\mathrm{DL}^{\mathrm{1D}}\ket{\widetilde{\psi}}\rVert^{2}\leq\cfrac{1}{1+\cfrac{\Delta(\mathrm{1D},n,k)}{4}}, where Δ(1D,n,k)\Delta(\mathrm{1D},n,k) is the spectral gap for the Hamiltonian H(1D,n,k)H(\mathrm{1D},n,k) defined on a 1D\mathrm{1D} line graph with open boundary conditions.

  3. 3.

    Consider a CST(0)CST^{(0)} of bounded degree gg. Note that in general, the maximum degree of CST(0)CST^{(0)} is greater than the maximum degree of the corresponding STST. Furthermore, at each flattening out procedure of Step 4, we reduce the degree of vertices in the lowest level of CST(i)CST^{(i)} but we can increase degree of vertices in its first layer by at most 11. Degrees of all other vertices remain unchanged. Therefore, g(i)g+1=g~g^{(i)}\leq g+1=\widetilde{g} for all i{1,2,,d}i\in\{1,2,\dots,d\}, then from the previous item we find

    DLCST(0)|ψ2\displaystyle\lVert\mathrm{DL}^{CST^{(0)}}\lvert\psi\rangle\rVert^{2} 11+14g~214g~211+14g~214g~211+14g~214g~211+.\displaystyle\leq\cfrac{1}{1+\cfrac{1}{4\widetilde{g}^{2}}-\cfrac{1}{4\widetilde{g}^{2}}\cfrac{1}{1+\cfrac{1}{4\widetilde{g}^{2}}-\cfrac{1}{4\widetilde{g}^{2}}\cfrac{1}{1+\cfrac{1}{4\widetilde{g}^{2}}-\cfrac{1}{4\widetilde{g}^{2}}\cfrac{1}{1+\dots}}}}\,. (154)

    For convenience, define

    α:=4g~2,β1:=111+Δ(1D,n,k)4,βi:=1αα+βi1=βi1α+βi1,\alpha:=4\widetilde{g}^{2},\quad\beta_{1}:=1-\cfrac{1}{1+\cfrac{\Delta(\mathrm{1D},n,k)}{4}},\quad\beta_{i}:=1-\cfrac{\alpha}{\alpha+\beta_{i-1}}=\cfrac{\beta_{i-1}}{\alpha+\beta_{i-1}}\,, (155)

    for all i{2,3,,d}i\in\{2,3,\dots,d\}. If the depth of STST is dd, then, DLCST(0)|ψ21βd\lVert\mathrm{DL}^{CST^{(0)}}\lvert\psi\rangle\rVert^{2}\leq 1-\beta_{d}. Now note the recursive relationship between βi\beta_{i}

    βd\displaystyle\beta_{d} =βd1α+βd1\displaystyle=\cfrac{\beta_{d-1}}{\alpha+\beta_{d-1}} (156)
    =βd2α+βd21α+βd2α+βd2=βd2α(α+βd2)+βd2\displaystyle=\cfrac{\beta_{d-2}}{\alpha+\beta_{d-2}}\cfrac{1}{\alpha+\cfrac{\beta_{d-2}}{\alpha+\beta_{d-2}}}=\cfrac{\beta_{d-2}}{\alpha(\alpha+\beta_{d-2})+\beta_{d-2}} (157)
    =βd3α+βd31α(α(α+βd3)+βd3)α+βd3+βd3α+βd3=βd3α(α(α+βd3)+βd3)+βd3\displaystyle=\cfrac{\beta_{d-3}}{\alpha+\beta_{d-3}}\cfrac{1}{\cfrac{\alpha(\alpha(\alpha+\beta_{d-3})+\beta_{d-3})}{\alpha+\beta_{d-3}}+\cfrac{\beta_{d-3}}{\alpha+\beta_{d-3}}}=\cfrac{\beta_{d-3}}{\alpha(\alpha(\alpha+\beta_{d-3})+\beta_{d-3})+\beta_{d-3}} (158)
    \displaystyle\vdots
    =β1αd1+β1i=0d2αi.\displaystyle=\cfrac{\beta_{1}}{\alpha^{d-1}+\beta_{1}\sum_{i=0}^{d-2}\alpha^{i}}\,. (159)

    Using the formula for geometric sum,

    βd\displaystyle\beta_{d} =β1αd1(1+β1i=1d1αi)\displaystyle=\cfrac{\beta_{1}}{\alpha^{d-1}(1+\beta_{1}\sum_{i=1}^{d-1}\alpha^{-i})} (160)
    =β1αd111+β1(1α(d1)α1)\displaystyle=\cfrac{\beta_{1}}{\alpha^{d-1}}\cfrac{1}{1+\beta_{1}\left(\cfrac{1-\alpha^{-(d-1)}}{\alpha-1}\right)} (161)
    β1αd111+β1α1.\displaystyle\geq\cfrac{\beta_{1}}{\alpha^{d-1}}\cfrac{1}{1+\cfrac{\beta_{1}}{\alpha-1}}\,. (162)

    We note that α=4g~236\alpha=4\widetilde{g}^{2}\geq 36, for g=2g=2, and recall that β1=111+Δ(1D,n,k)41\beta_{1}=1-\cfrac{1}{1+\cfrac{\Delta(\mathrm{1D},n,k)}{4}}\leq 1. Therefore,

    βd\displaystyle\beta_{d} 3536β1αd1\displaystyle\geq\cfrac{35}{36}\cfrac{\beta_{1}}{\alpha^{d-1}} (163)
    35361(4(g+1)2)d1(1(1+Δ(1D,n,k)4)1)\displaystyle\geq\cfrac{35}{36}\cfrac{1}{(4(g+1)^{2})^{d-1}}\left(1-\left(1+\frac{\Delta(\mathrm{1D},n,k)}{4}\right)^{-1}\right) (164)
    35361(4(g+1)2)d1(Δ(1D,n,k)4Δ(1D,n,k)216)\displaystyle\geq\cfrac{35}{36}\cfrac{1}{(4(g+1)^{2})^{d-1}}\left(\frac{\Delta(\mathrm{1D},n,k)}{4}-\frac{\Delta(\mathrm{1D},n,k)^{2}}{16}\right) (165)
    35361(4(g+1)2)d1(Δ(1D,n,k)4Δ(1D,n,k)16)\displaystyle\geq\cfrac{35}{36}\cfrac{1}{(4(g+1)^{2})^{d-1}}\left(\frac{\Delta(\mathrm{1D},n,k)}{4}-\frac{\Delta(\mathrm{1D},n,k)}{16}\right) (166)
    105576Δ(1D,n,k)(4(g+1)2)d1,\displaystyle\geq\cfrac{105}{576}\cfrac{\Delta(\mathrm{1D},n,k)}{(4(g+1)^{2})^{d-1}}, (167)

    which implies

    DLCST(0)|ψ21105576Δ(1D,n,k)(4(g+1)2)d1.\displaystyle\lVert\mathrm{DL}^{CST^{(0)}}\lvert\psi\rangle\rVert^{2}\leq 1-\cfrac{105}{576}\cfrac{\Delta(\mathrm{1D},n,k)}{(4(g+1)^{2})^{d-1}}\,. (168)

    From Step 3, we know that equating the Detectability Lemma norms for STST and CST(0)CST^{(0)} followed by changing the order of terms in the later to relate it to CST(1)CST^{(1)} incurs one extra step of item 2 of this section. This amounts to changing the exponent of 4(g+1)24(g+1)^{2} from d1d-1 to dd, thus

    DLST|ψ21105576Δ(1D,n,k)(4(g+1)2)d.\displaystyle\lVert\mathrm{DL}^{ST}\lvert\psi\rangle\rVert^{2}\leq 1-\cfrac{105}{576}\cfrac{\Delta(\mathrm{1D},n,k)}{(4(g+1)^{2})^{d}}\,. (169)

    Finally, we apply the Quantum Union Bound for STST to lower bound Δ(ST,n,k)\Delta(ST,n,k) in terms of DLST|ψ2\lVert\mathrm{DL}^{ST}\lvert\psi\rangle\rVert^{2} and, hence, in terms of Δ(1D,n,k)\Delta(\mathrm{1D},n,k) by the above equation as follows

    Δ(ST,n,k)\displaystyle\Delta(ST,n,k) 14(1DLST|ψ2)\displaystyle\geq\frac{1}{4}\left(1-\lVert\mathrm{DL}^{ST}\lvert\psi\rangle\rVert^{2}\right) (170)
    35768Δ(1D,n,k)(4(g+1)2)d,\displaystyle\geq\cfrac{35}{768}\cfrac{\Delta(\mathrm{1D},n,k)}{(4(g+1)^{2})^{d}}\,, (171)

    and use the fact that Δ(G,n,k)Δ(ST,n,k)\Delta(G,n,k)\geq\Delta(ST,n,k) to conclude the proof of Lemma 3

    Δ(G,n,k)35768Δ(1D,n,k)(4(g+1)2)d.\displaystyle\Delta(G,n,k)\geq\cfrac{35}{768}\cfrac{\Delta(\mathrm{1D},n,k)}{(4(g+1)^{2})^{d}}\,. (172)

A.7 Logarithmic upper bound on tree depth

Here we prove that the depth dd of a tree TT of order nn is, d=O(log(n))d=O(\log(n)). Intuitively, the minimum and/or maximum and/or average degree of the tree should appear in the upper bound on the depth. An upper bound on the depth in terms of both the number of vertices and some function of the degree of vertices should improve the lower bound reported in Lemma 3. The improvement could be significant and increase the lower bound from 1 over quasi-polynomial in nn, which comes from setting gng\leq n and d=O(log(n))d=O(\log(n)), to perhaps 11 over a polynomial in nn. We leave that improvement to future work. We prove the upper bound on the depth via three lemmas that build on top of one another. In the following, when we say depth of TT, then we mean the definition of depth as given in Appendix A.3, and when we say depth of a vertex vv in TT, then we mean the label for vv in that output of the function f({T},𝒜,0)f(\{T\},\mathcal{A},0) whose max is the definition of the depth of TT.

Lemma 10.

If a leaf of a tree graph is at depth dd, then there must necessarily be at least d/2\lfloor d/2\rfloor degree 33 or greater vertices along the path from the root to that leaf.

Proof.

Consider a tree graph TT, with a root vertex rr. Assume to the contrary that there exists a leaf ll such that the rlr-l path contains fewer than d/2\lfloor d/2\rfloor degree 33 or greater vertices and there exists a list of choices that could be made in ff such that ll is labelled with depth dd.

By the definition of the algorithm ff, two degree 33 or greater vertices connected by an arbitrary length path graph can differ from each other by not more than 22 units. If there are kd/21k\leq\lfloor d/2\rfloor-1 degree 33 or greater vertices, then the first and the last such vertices differ by at most 2(k1)2(k-1) units in depth. Connecting an arbitrary length path graph between rr and the first and ll and the last degree 3 or greater vertices can add at most 11 and 22 units of depth to the depth of ll, respectively. Therefore, with addition of path graphs (no degree 3 or greater vertices), the depth of ll can be increased by at most 33 units. The maximum depth of ll could be,

2(k1)+32(d/21)+1={d1,devend2,dodd.\displaystyle 2(k-1)+3\leq 2(\lfloor d/2\rfloor-1)+1=\begin{cases}d-1,\ d\in\mathrm{even}\\ d-2,\ d\in\mathrm{odd}\end{cases}\,. (173)

We arrive at a contradiction about the depth of ll, hence, the assumption that rlr-l path could have fewer than d/2\lfloor d/2\rfloor degree 33 or greater vertices is false, and the Lemma is proved. ∎

Lemma 11.

Suppose that the depth of a tree graph is dd. Suppose further that there are leaves in this tree such that the paths from the root to the leaves contain fewer than d/2\lfloor d/2\rfloor degree 33 or greater vertices. If those leaves are deleted from the graph, then a tree graph of smaller order results whose depth remains unchanged at dd.

Proof.

Suppose a tree graph TT and the set L<dL_{<d} of all such leaves in TT. Denote the set of all choices made in ff for TT by choiceswith\mathrm{choices}_{\text{with}}. By Lemma 10, for any choice of paths in choiceswith\mathrm{choices}_{\text{with}}, leaves in L<dL_{<d} cannot be labelled by depth greater than or equal to dd. Thus, if depth of TT is dd, then for each choice in choiceswith\mathrm{choices}_{\text{with}}, there exists a leaf lL<dl\notin L_{<d} such that the depth of ll is greater than or equal to dd.

Consider another graph, denoted by TT^{\prime}, which is derived from TT by recursively subtracting the leaves in L<dL_{<d} and edges that connect to those leaves, till L<dL_{<d} is empty for the resulting graph. Observe that choiceswith\mathrm{choices}_{\text{with}} contains the set of all choices made in ff for TT^{\prime}, denoted by choiceswithout\mathrm{choices}_{\text{without}}. That is, choiceswithoutchoiceswith\mathrm{choices}_{\text{without}}\subset\mathrm{choices}_{\text{with}}. Then, from the result established in the last line of the first paragraph above, we conclude that for each choice in the subset choiceswithout\mathrm{choices}_{\text{without}} of choiceswith\mathrm{choices}_{\text{with}}, there exists a leaf in ll in TT^{\prime} such that the depth of ll is greater than or equal to dd. Therefore, the depth of TT^{\prime} is also dd and its order is strictly less than that of TT, which completes the proof. ∎

Corollary 8.

All paths from root to leaves in a depth dd tree graph of minimum order must contain at least d/2\lfloor d/2\rfloor degree 3 or greater vertices.

Proof.

If this were not the case, then from Lemma 11 a graph of smaller order with same depth could be constructed. Hence, proved by contradiction. ∎

Lemma 12.

The minimum number mm of degree 33 or greater vertices in a tree graph of depth dd is such that d=O(log(m))d=O(\log(m)).

Proof.

Suppose GG is a tree graph with minimum number of vertices with depth dd. By Lemma 11, all paths from the root rr to leaves ll must contain Dd/2D\geq\lfloor d/2\rfloor degree 33 or greater vertices. Pick one leaf ll, and label the first d/2\lfloor d/2\rfloor degree 33 or greater vertices in the directed path from rr to ll by viv_{i}, for i{1,2,,d/2}i\in\{1,2,\dots,\lfloor d/2\rfloor\}. When we say “outgoing” paths from a vertex viv_{i}, we mean to indicate sub-paths from viv_{i} to leaves that do not pass through vi1v_{i-1}.

Since vd/21v_{\lfloor d/2\rfloor-1} is at least degree 33, it has at least two outgoing paths, one that contains vd/2v_{\lfloor d/2\rfloor}, and the other that does not. To satisfy Lemma 11, each outgoing path from vd/21v_{\lfloor d/2\rfloor-1} must contain at least Ld/21:=1L_{\lfloor d/2\rfloor-1}:=1 degree 33 or greater vertex. (Note that, along one of the outgoing paths from vd/21v_{\lfloor d/2\rfloor-1}, vd/2v_{\lfloor d/2\rfloor} is the required degree 3 or greater vertex.)

Similarly, since vd/22v_{\lfloor d/2\rfloor-2} is at least degree 33, it has at least two outgoing paths, one that contains vd/21v_{\lfloor d/2\rfloor-1}, and the other that does not. We know that an outgoing path from vd/22v_{\lfloor d/2\rfloor-2} that contains vd/21v_{\lfloor d/2\rfloor-1} must contain at least Ld/22=1+2Ld/21L_{\lfloor d/2\rfloor-2}=1+2L_{\lfloor d/2\rfloor-1} degree 33 or greater vertices. Note that, in the sum, the 11 corresponds to vd/21v_{\lfloor d/2\rfloor-1} and the 2Ld/212L_{\lfloor d/2\rfloor-1} corresponds to the fewest number of degree 33 or greater vertices in the outgoing paths from vd/21v_{\lfloor d/2\rfloor-1} not including vd/21v_{\lfloor d/2\rfloor-1} itself, which was established in the previous paragraph. The same lower bound of Ld/22L_{\lfloor d/2\rfloor-2} must apply to the other outgoing path from vd/22v_{\lfloor d/2\rfloor-2}, or else, there exists an outgoing path from vd/22v_{\lfloor d/2\rfloor-2} (that does not contain vd/21v_{\lfloor d/2\rfloor-1}) that violates Corollary 8.

Continuing by the same logic, Ld/2i=1+2Ld/2(i1)L_{\lfloor d/2\rfloor-i}=1+2L_{\lfloor d/2\rfloor-(i-1)}, and the lower bound on the minimum number of degree 3 or greater vertices in GG is L1=2L0=2(1+2L1)=2(1+2(1+2(1+)))=i=1d/212i=2d/22L_{-1}=2L_{0}=2(1+2L_{1})=2(1+2(1+2(1+\dots)))=\sum_{i=1}^{\lfloor d/2\rfloor-1}2^{i}=2^{\lfloor d/2\rfloor}-2. Note that the additive factor of 11 is missing in L1L_{-1} because the root of the tree may or may not be a degree 33 or greater vertex.

Suppose mm denotes the number of degree 33 or greater vertices in GG, then,

m2d/22,\displaystyle m\geq 2^{\lfloor d/2\rfloor}-2\,, (174)
d(2/log(2))log(m+2)+1=O(log(m)).\displaystyle d\leq(2/\log(2))\log(m+2)+1=O(\log(m))\,. (175)

Remark 7.

Consider the counting argument in the proof of Lemma 12. Alternatively, we could consider a perfect binary tree of height d/2\lfloor d/2\rfloor and a one to one map from each of its degree 33 vertices to a degree 33 or greater vertex in the tree graph TT considered in the proof. Note the domain of the map excludes the root of the perfect binary tree. The co-domain of the map is the set of all degree 33 or greater vertices in TT. Since the size of the co-domain of a one-to-one map is greater than or equal to the size of its domain, the number of degree 33 or greater vertices in TT is greater than or equal to number of vertices in the perfect binary tree of height d/2\lfloor d/2\rfloor minus 11, for excluding the root of the binary tree from the domain. That is m2d/22m\geq 2^{\lfloor d/2\rfloor}-2

Corollary 9.

The order nn of a tree graph of depth dd and maximum degree κ4\kappa\geq 4 is such that d(2/log(2))log(n+1)1d\leq(2/\log(2))\log(n+1)-1.

Proof.

The number of leaves in TT is greater than or equal to twice the number of out-going paths from the degree 33 or greater vertices closest to the leaves. Continue the point of view from Remark 7, then pre-images of the degree 33 or greater vertices closest to the leaves in TT are the leaves of the perfect binary tree. Therefore, the number of degree 33 or greater vertices in TT closest to the leaves is 2d/212^{\lfloor d/2\rfloor-1}, the number of leaves in the perfect binary tree of height d/2\lfloor d/2\rfloor. Since each degree 33 or greater vertex closest to the leaves in TT contributes at least 22 leaves to the graph, the total number of leaves in TT is at least 2d/22^{\lfloor d/2\rfloor}. The sum total of leaves and a single root vertex is 1+2d/21+2^{\lfloor d/2\rfloor}. Therefore, n(1+2d/2)n-(1+2^{\lfloor d/2\rfloor}) must be greater than or equal to the number of degree 33 or greater vertices. From Eq. (174), we find,

n(1+2d/2)m2d/22\displaystyle n-(1+2^{\lfloor d/2\rfloor})\geq m\geq 2^{\lfloor d/2\rfloor}-2 (176)
n+12d/2+1\displaystyle n+1\geq 2^{\lfloor d/2\rfloor+1} (177)
d2log(2)log(n+1)1.\displaystyle d\leq\frac{2}{\log(2)}\log(n+1)-1. (178)

Remark 8.

The upper bound in Corollary 9 can be slightly improved if we further suppose that the maximum degree of TT is κ\kappa. On repeating the proof for that case, we find that at least κ3\kappa-3 vertices are left out in the mapping from TT to the perfect binary tree (consider the degree κ\kappa vertex to correspond to any vertex that is not a leaf in the perfect binary tree). Consequently, n(1+2d/2)(κ3)n-(1+2^{\lfloor d/2\rfloor})-(\kappa-3) must be greater than the number of degree 33 or greater vertices. This improves the upper bound on d=O(log(nκ))d=O(\log(n-\kappa)). However, this improvement is not sufficient to reduce the quasi-polynomial circuit size in Theorem 4 to polynomial circuit size.

Appendix B Semiclassical Approximation

We presented rigorous spectral gap lower bounds for the Hamiltonians defined via Definition 5. However, it is interesting to note that for k=2k=2, we can speculate about the behavior of the asymptotic (in nn) star graph spectral gaps to provide evidence in favor of Conjecture 1 using semiclassical approximation. Here, we follow the prescription of [Žni08], where such a semiclassical approximation was done for complete graphs. First, we write the Hamiltonian for star graph for k=2k=2 in terms of usual spin-1/21/2 Pauli matrices. Note that regardless of the local dimension of the qudits, the moment operator for k=2k=2 is analogous to an nn spin-1/21/2 interaction Hamiltonian. For star graphs, it is given by,

H(G,n,2)=n12(n1)q2(q2+1)σz(0)qq2+1Szq2q2+1σx(0)Sx1q2+1σy(0)Sy,\displaystyle H(G_{\star},n,2)=\frac{n-1}{2}-\frac{(n-1)q}{2\left(q^{2}+1\right)}\sigma_{z}^{(0)}-\frac{q}{q^{2}+1}S_{z}-\frac{q^{2}}{q^{2}+1}\sigma_{x}^{(0)}S_{x}-\frac{1}{q^{2}+1}\sigma_{y}^{(0)}S_{y}, (179)

where σα\sigma_{\alpha} denote the usual Pauli matrices and the superscript of (0)(0) denotes that they are defined on the central spin Hilbert space. Sα:=12i=1n1σα(i)S_{\alpha}:=\frac{1}{2}\sum_{i=1}^{n-1}\sigma_{\alpha}^{(i)}, for α{x,y,z}\alpha\in\{x,y,z\}, where the superscript denotes the Hilbert spaces of the remaining n1n-1 spins. Since, the Hilbert spaces on which the operators act is clear from Eq. (179), we simplify the notation by omitting the superscript over Pauli matrices. Then, we insert the semiclassical approximation by treating total spin of n1n-1 spin-1/21/2 as a classical spin. We demote the operators Sx,SyS_{x},S_{y} and SzS_{z} to variables Ssinθcosϕ,SsinθsinϕS\sin{\theta}\cos{\phi},S\sin{\theta}\sin{\phi} and ScosθS\cos{\theta}, where SS denotes the total angular momentum. A heuristic justification of this is that the Hamiltonian should achieve its lowest eigenvalue for the largest value of the total spin [Žni08, LH05]. Since we are interested in the asymptotic gap, we define a rescaled total spin ξ=2S/n\xi=2S/n and take it to be 11. Then, the resulting semiclassical Hamiltonian in the asymptotic limit, denoted by Hs.c.(G)H_{\mathrm{s.c.}}(G_{\star}) reads,

Hs.c.(G)=12q2(q2+1)σzq2(q2+1)cos(θ)q22(q2+1)sin(θ)cos(ϕ)σx12(q2+1)sin(θ)sin(ϕ)σy,H_{\mathrm{s.c.}}(G_{\star})=\frac{1}{2}-\frac{q}{2\left(q^{2}+1\right)}\sigma_{z}-\frac{q}{2\left(q^{2}+1\right)}\cos(\theta)-\frac{q^{2}}{2\left(q^{2}+1\right)}\sin(\theta)\cos(\phi)\sigma_{x}\\ -\frac{1}{2\left(q^{2}+1\right)}\sin(\theta)\sin(\phi)\sigma_{y}, (180)

which in its matrix form is given as

Hs.c.(G)=[12q2(q2+1)(1+cos(θ))sin(θ)2(q2+1)(q2cos(ϕ)+isin(ϕ))sin(θ)2(q2+1)(q2cos(ϕ)isin(ϕ))12+q2(q2+1)(1cos(θ))].\displaystyle H_{\mathrm{s.c.}}(G_{\star})=\begin{bmatrix}\frac{1}{2}-\frac{q}{2(q^{2}+1)}(1+\cos(\theta))&\frac{\sin(\theta)}{2(q^{2}+1)}(-q^{2}\cos(\phi)+i\sin(\phi))\\ \frac{\sin(\theta)}{2(q^{2}+1)}(-q^{2}\cos(\phi)-i\sin(\phi))&\frac{1}{2}+\frac{q}{2(q^{2}+1)}(1-\cos(\theta))\end{bmatrix}. (181)

We find the spectrum of the semiclassical Hamiltonian in the asymptotic limit, which is parameterized by θ\theta and ϕ\phi, then we find the minimum of the two eigenvalues and expand that about its minimum value of 0 (ground state energy) in the parameter θ\theta. The choice is slightly arbitrary, but the asymptotic gaps seem to change for different values of qq as observed in numerics, so we chose to expand in θ\theta about ϕ=0\phi=0 and θ=arctan(q21)\theta=\arctan(\sqrt{q^{2}-1})). We do this step via symbolic computing. We expand up to the second order because the first order term vanishes. To evaluate the second order term we need to insert a value for θarctan(q21)=:δθ\theta-\arctan(\sqrt{q^{2}-1})=:\delta\theta. We choose δθ\delta\theta as follows: imagine two classical angular momentum vectors whose zz-components of the angular momentum are the successive eigenvalues of the SzS_{z} quantum angular moment operator. We take δθ\delta\theta to be the minimum over all such successive pairs of vectors of the angle between those vectors in the ϕ=0\phi=0 plane. Using this expression for δθ\delta\theta in the expansion of the eigenvalue near its minimum value, we find the asymptotic expression for the gap to be Δ(G,n,2)11q2\Delta(G_{\star},n\rightarrow\infty,2)\approx 1-\frac{1}{q^{2}}. Note that the numerical calculations presented in Table 4 up to n=22n=22 are consistent with the k=2k=2 star graph gaps approaching the semiclassical asymptotic gap 11/q21-1/q^{2}.

We further hint at a potential connection between the Hamiltonian on star graphs for k=2k=2 to the well-known Jaynes-Cumming (JC) model of a two-level atom interacting with a bosonic field. The original JC model is known to be an integrable quantum Hamiltonian. The Hamiltonian on star graphs that we work with is almost identical with the only significant difference being that instead of having standard raising and lowering operators for the two level system, we have those operators modified such that their commutator is different by a qq dependent constant from the standard value. In the past, connections to integrable quantum Hamiltonians have led to exact determination of the second moment operator for 1D\mathrm{1D} RQCs. Maybe the above connection to other integrable systems could offer insight to determining the exact spectral gap of the Hamiltonian on star graphs for k=2k=2, which would directly provide the circuit size for forming unitary 22-designs on arbitrary architectures through Theorem 1.

Appendix C Numerical Calculations

We present our numerical determination of the star graph gaps in Table 4. At best, we could numerically compute the spectral gap of a 288×2882^{88}\times 2^{88} Hamiltonian matrix (spectral gap for k=2k=2, n=22n=22). In order to achieve this, we had to take two steps. First, we projected the Hamiltonian to the relevant subspace that contains the spectral gap as was done in [BH13]. This alone was not sufficient to make the spectral gap calculation for k=2k=2 and n=22n=22 tractable. So, next we found a basis in which the Hamiltonian matrix was more sparse than it would have been were it expressed in the computational basis. That basis for k=2k=2 is the single site basis that corresponds to the normalized and vectorized projector on to the symmetric and anti-symmetric sub-spaces. For any higher values of kk, an analogous single site basis was found by taking the QRQR decomposition of the matrix whose columns were the ground state vectors.

k=2k=2
q=2q=2 q=3q=3 q=4q=4
nn_{\star} Δ(G,n,k)\Delta(G_{\star},n_{\star},k) nn_{\star} Δ(G,n,k)\Delta(G_{\star},n_{\star},k) nn_{\star} Δ(G,n,k)\Delta(G_{\star},n_{\star},k)
3 0.6000 3 0.7000 3 0.7647
4 0.5566 4 0.7190 4 0.8134
5 0.5583 5 0.7650 5 0.8668
6 0.5776 6 0.8078 6 0.8997
7 0.6038 7 0.8373 7 0.9153
8 0.6309 8 0.8545 8 0.9222
9 0.6556 9 0.8638 9 0.9256
10 0.6759 10 0.8691 10 0.9276
11 0.6913 11 0.8723 11 0.9290
12 0.7025 12 0.8745 12 0.9300
13 0.7105 13 0.8761 13 0.9307
14 0.7161 14 0.8773 14 0.9314
15 0.7203 15 0.8783 15 0.9319
16 0.7233 16 0.8792 16 0.9323
17 0.7257 17 0.8799 17 0.9327
18 0.7277 18 0.8805 18 0.9330
19 0.7293 19 0.8810 19 0.9333
20 0.7306 20 0.8815 20 0.9336
21 0.7318 21 0.8819 21 0.9338
22 0.7328 22 0.8823 22 0.9340
k=3k=3
q=2q=2 q=3q=3 q=4q=4
nn_{\star} Δ(G,n,k)\Delta(G_{\star},n_{\star},k) nn_{\star} Δ(G,n,k)\Delta(G_{\star},n_{\star},k) nn_{\star} Δ(G,n,k)\Delta(G_{\star},n_{\star},k)
3 0.6000 3 0.7000 3 0.7647
4 0.5566 4 0.7190 4 0.8134
5 0.5583 5 0.7650 5 0.8668
6 0.5776 6 0.8078 6 0.8997
7 0.6038 7 0.8373 7 0.9153
8 0.6309 8 0.8545 8 0.9222
9 0.6556 9 - 9 -
k=4k=4
q=2q=2 q=3q=3 q=4q=4
nn_{\star} Δ(G,n,k)\Delta(G_{\star},n_{\star},k) nn_{\star} Δ(G,n,k)\Delta(G_{\star},n_{\star},k) nn_{\star} Δ(G,n,k)\Delta(G_{\star},n_{\star},k)
3 0.5000 3 0.7000 3 0.7647
4 0.5566 4 0.7190 4 0.8134
5 0.5583 5 - 5 -
k=5k=5
q=2q=2 q=3q=3 q=4q=4
nn_{\star} Δ(G,n,k)\Delta(G_{\star},n_{\star},k) nn_{\star} Δ(G,n,k)\Delta(G_{\star},n_{\star},k) nn_{\star} Δ(G,n,k)\Delta(G_{\star},n_{\star},k)
3 0.5000 3 - 3 -
Table 4: The table presents our numerical calculations for the spectral gaps, Δ(G,n,k)\Delta(G_{\star},n_{\star},k), for various values of the parameters k,qk,q and nn_{\star}. We note that increasing We note that the dimension of the matrices increasing exponentially in kk and nn_{*} and the cost to compute the matrix elements grows exponentially in qq, and thus quickly becomes computationally prohibitive.

References

  • [AAV16] Anurag Anshu, Itai Arad and Thomas Vidick “Simple proof of the detectability lemma and spectral gap amplification” In Physical Review B 93.20 APS, 2016, pp. 205142 DOI: 10.1103/PhysRevB.93.205142
  • [Aha+08] Dorit Aharonov, Itai Arad, Zeph Landau and Umesh Vazirani “The Detectability Lemma and Quantum Gap Amplification” In arXiv e-prints, 2008 arXiv:0811.3412 [quant-ph]
  • [Aha+23] Dorit Aharonov, Xun Gao, Zeph Landau, Yunchao Liu and Umesh Vazirani “A polynomial-time classical algorithm for noisy random circuit sampling” In Proceedings of the 55th Annual ACM Symposium on Theory of Computing, 2023, pp. 945–957 arXiv:2211.03999 [quant-ph]
  • [Ans20] Anurag Anshu “Improved local spectral gap thresholds for lattices of finite size” In Phys. Rev. B 101, 2020, pp. 165104 DOI: 10.1103/PhysRevB.101.165104
  • [Aru+19] Frank Arute et al. “Quantum supremacy using a programmable superconducting processor” In Nature 574.7779 Nature Publishing Group, 2019, pp. 505–510 DOI: 10.1038/s41586-019-1666-5
  • [Bar+95] Adriano Barenco, Charles H Bennett, Richard Cleve, David P DiVincenzo, Norman Margolus, Peter Shor, Tycho Sleator, John A Smolin and Harald Weinfurter “Elementary gates for quantum computation” In Physical Review A 52.5 APS, 1995, pp. 3457 DOI: 10.1103/PhysRevA.52.3457
  • [Bel+23] Daniel Belkin, James Allen, Soumik Ghosh, Christopher Kang, Sophia Lin, James Sud, Fred Chong, Bill Fefferman and Bryan K. Clark “Approximate tt-designs in generic circuit architectures” To appear In arXiv e-prints, 2023
  • [BF12] Winton Brown and Omar Fawzi “Scrambling speed of random quantum circuits” In arXiv e-prints, 2012 arXiv:1210.6644 [quant-ph]
  • [BF13] Winton Brown and Omar Fawzi “Short random circuits define good quantum error correcting codes” In 2013 IEEE International Symposium on Information Theory, 2013, pp. 346–350 IEEE arXiv:1312.7646 [quant-ph]
  • [BF15] Winton Brown and Omar Fawzi “Decoupling with Random Quantum Circuits” In Communications in Mathematical Physics 340.3, 2015, pp. 867–900 DOI: 10.1007/s00220-015-2470-1
  • [BG11] Jean Bourgain and Alex Gamburd “A Spectral Gap Theorem in SU(d)SU(d) In arXiv e-prints, 2011 arXiv:1108.6264 [math.GR]
  • [BH13] Fernando G… Brandão and Michal Horodecki “Exponential Quantum Speed-ups Are Generic” In Quantum Info. Comput. 13, 2013, pp. 901 arXiv:1010.3654 [quant-ph]
  • [BHH16] Fernando G… Brandao, Aram W Harrow and Michał Horodecki “Local random quantum circuits are approximate polynomial-designs” In Communications in Mathematical Physics 346 Springer, 2016, pp. 397–434 DOI: 10.1007/s00220-016-2706-8
  • [Boi+18] Sergio Boixo, Sergei V Isakov, Vadim N Smelyanskiy, Ryan Babbush, Nan Ding, Zhang Jiang, Michael J Bremner, John M Martinis and Hartmut Neven “Characterizing quantum supremacy in near-term devices” In Nature Physics 14.6 Nature Publishing Group UK London, 2018, pp. 595–600 DOI: 10.48550/arXiv.1608.00263
  • [Bou+19] Adam Bouland, Bill Fefferman, Chinmay Nirkhe and Umesh Vazirani “On the complexity and verification of quantum random circuit sampling” In Nature Physics 15.2 Nature Publishing Group UK London, 2019, pp. 159–163 arXiv:1803.04402 [quant-ph]
  • [Bra+21] Fernando G… Brandão, Wissam Chemissany, Nicholas Hunter-Jones, Richard Kueng and John Preskill “Models of quantum complexity growth” In PRX Quantum 2.3 APS, 2021, pp. 030316 DOI: 10.48550/arXiv.1912.04297
  • [BV10] Winton Brown and Lorenza Viola “Convergence rates for arbitrary statistical moments of random quantum circuits” In Physical Review Letters 104.25 APS, 2010, pp. 250501 DOI: 10.1103/PhysRevLett.104.250501
  • [BŽ21] Jaš Bensa and Marko Žnidarič “Fastest Local Entanglement Scrambler, Multistage Thermalization, and a Non-Hermitian Phantom” In Physical Review X 11.3 APS, 2021, pp. 031019 DOI: 10.1103/PhysRevX.11.031019
  • [CHR22] Jordan Cotler, Nicholas Hunter-Jones and Daniel Ranard “Fluctuations of subsystem entropies at late times” In Phys. Rev. A 105 American Physical Society, 2022, pp. 022416 DOI: 10.1103/PhysRevA.105.022416
  • [Dan+09] Christoph Dankert, Richard Cleve, Joseph Emerson and Etera Livine “Exact and approximate unitary 2-designs and their application to fidelity estimation” In Physical Review A 80.1 APS, 2009, pp. 012304 DOI: 10.1103/PhysRevA.80.012304
  • [DHB22] Alexander M. Dalzell, Nicholas Hunter-Jones and Fernando G… Brandão “Random Quantum Circuits Anticoncentrate in Log Depth” In PRX Quantum 3, 2022, pp. 010333 DOI: 10.1103/PRXQuantum.3.010333
  • [DJ11] Igor Tuche Diniz and Daniel Jonathan “Comment on “Random Quantum Circuits are Approximate 2-designs” by A.W. Harrow and R.A. Low (Commun. Math. Phys. 291, 257-302 (2009))” In Comm. Math. Phys. 304, 2011, pp. 281 DOI: 10.1007/s00220-011-1217-x
  • [DOP07] O… Dahlsten, R. Oliveira and M.. Plenio “The emergence of typical entanglement in two-party random processes” In Journal of Physics A: Mathematical and Theoretical 40.28 IOP Publishing, 2007, pp. 8081 DOI: 10.1088/1751-8113/40/28/S16
  • [GAE07] David Gross, Koenraad Audenaert and Jens Eisert “Evenly distributed unitaries: On the structure of unitary designs” In Journal of Mathematical Physics 48.5 AIP Publishing, 2007 DOI: 10.1063/1.2716992
  • [Gao15] Jingliang Gao “Quantum union bounds for sequential projective measurements” In Physical Review A 92.5 APS, 2015, pp. 052331 DOI: 10.1103/PhysRevA.92.052331
  • [GM16] David Gosset and Evgeny Mozgunov “Local gap threshold for frustration-free spin systems” In J. Math. Phys. 57, 2016, pp. 091901 DOI: 10.1063/1.4962337
  • [Haf22] Jonas Haferkamp “Random quantum circuits are approximate unitary tt-designs in depth O(nt5+o(1))O\left(nt^{5+o(1)}\right) In Quantum 6, 2022, pp. 795 DOI: 10.22331/q-2022-09-08-795
  • [HH21] Jonas Haferkamp and Nicholas Hunter-Jones “Improved spectral gaps for random quantum circuits: large local dimensions and all-to-all interactions” In Physical Review A 104.2 APS, 2021, pp. 022417 DOI: 10.1103/PhysRevA.104.022417
  • [HL09] A.. Harrow and R.. Low “Random Quantum Circuits are Approximate 2-designs” In Commun. Math. Phys. 291, 2009, pp. 257 DOI: 10.1007/s00220-009-0873-6
  • [HM23] Aram W Harrow and Saeed Mehraban “Approximate Unitary tt-Designs by Short Random Quantum Circuits Using Nearest-Neighbor and Long-Range Gates” In Communications in Mathematical Physics Springer, 2023, pp. 1–96 DOI: 10.1007/s00220-023-04675-z
  • [HP07] Patrick Hayden and John Preskill “Black holes as mirrors: quantum information in random subsystems” In Journal of High Energy Physics 2007.09 IOP Publishing, 2007, pp. 120 DOI: 10.1088/1126-6708/2007/09/120
  • [Hun19] Nicholas Hunter-Jones “Unitary designs from statistical mechanics in random quantum circuits” In arXiv e-prints, 2019 arXiv:1905.12053 [quant-ph]
  • [Key+18] Curt W Keyserlingk, Tibor Rakovszky, Frank Pollmann and Shivaji Lal Sondhi “Operator hydrodynamics, OTOCs, and entanglement growth in systems without conservation laws” In Physical Review X 8.2 APS, 2018, pp. 021013 DOI: 10.1103/PhysRevX.8.021013
  • [Kna88] Stefan Knabe “Energy gaps and elementary excitations for certain VBS-quantum antiferromagnets” In J. Stat. Phys. 52, 1988, pp. 627 DOI: 10.1007/BF01019721
  • [Kni95] Emanuel Knill “Approximation by quantum circuits” In arXiv e-prints, 1995 arXiv:quant-ph/9508006
  • [Lem19] Marius Lemm “Finite-size criteria for spectral gaps in DD-dimensional quantum spin systems” In arXiv e-prints, 2019 arXiv:1902.07141 [quant-ph]
  • [LH05] F. Leyvraz and W.. Heiss “Large-NN Scaling Behavior of the Lipkin-Meshkov-Glick Model” In Phys. Rev. Lett. 95.5 APS, 2005, pp. 050402 DOI: 10.1103/PhysRevLett.95.050402
  • [LM19] Marius Lemm and Evgeny Mozgunov “Spectral gaps of frustration-free spin systems with boundary” In J. Math. Phys. 60, 2019, pp. 051901 DOI: 10.1063/1.5089773
  • [LX22] Marius Lemm and David Xiang “Quantitatively improved finite-size criteria for spectral gaps” In Journal of Physics A: Mathematical and Theoretical 55.29 IOP Publishing, 2022, pp. 295203 DOI: 10.1088/1751-8121/ac7989
  • [Mor+23] A. Morvan et al. “Phase transition in Random Circuit Sampling” In arXiv e-prints, 2023 arXiv:2304.11119 [quant-ph]
  • [Nah+17] Adam Nahum, Jonathan Ruhman, Sagar Vijay and Jeongwan Haah “Quantum entanglement growth under random unitary dynamics” In Physical Review X 7.3 APS, 2017, pp. 031016 DOI: 10.1103/PhysRevX.7.031016
  • [Nie+23] Alexander Nietner, Marios Ioannou, Ryan Sweke, Richard Kueng, Jens Eisert, Marcel Hinsche and Jonas Haferkamp “On the average-case complexity of learning output distributions of quantum circuits” In arXiv e-prints, 2023 arXiv:2305.05765 [quant-ph]
  • [NVH18] Adam Nahum, Sagar Vijay and Jeongwan Haah “Operator spreading in random unitary circuits” In Physical Review X 8.2 APS, 2018, pp. 021014 DOI: 10.1103/PhysRevX.8.021014
  • [ODP07] R. Oliveira, O… Dahlsten and M.. Plenio “Generic Entanglement Can Be Generated Efficiently” In Phys. Rev. Lett. 98 American Physical Society, 2007, pp. 130502 DOI: 10.1103/PhysRevLett.98.130502
  • [OHH22] Michał Oszmaniec, Michał Horodecki and Nicholas Hunter-Jones “Saturation and recurrence of quantum complexity in random quantum circuits” In arXiv e-prints, 2022 arXiv:2205.09734 [quant-ph]
  • [Ono+17] E. Onorati, O. Buerschaper, M. Kliesch, W. Brown, A.. Werner and J. Eisert “Mixing properties of stochastic quantum Hamiltonians” In Commun. Math. Phys. 355, 2017, pp. 905 DOI: 10.1007/s00220-017-2950-6
  • [OSH22] Michał Oszmaniec, Adam Sawicki and Michał Horodecki “Epsilon-Nets, Unitary Designs, and Random Quantum Circuits” In IEEE Trans. Inf. Theory 68, 2022, pp. 989 DOI: 10.1109/TIT.2021.3128110
  • [RY17] Daniel A Roberts and Beni Yoshida “Chaos and complexity by design” In Journal of High Energy Physics 2017.4 Springer, 2017, pp. 1–64 DOI: 10.1007/JHEP04(2017)121
  • [SS08] Yasuhiro Sekino and Leonard Susskind “Fast Scramblers” In JHEP 10, 2008, pp. 065 DOI: 10.1088/1126-6708/2008/10/065
  • [Var13] Péter Pál Varjú “Random walks in compact groups” In Doc. Math. 18, 2013, pp. 1137 arXiv:1209.1745 [math.GR]
  • [Wu+21] Yulin Wu et al. “Strong Quantum Computational Advantage Using a Superconducting Quantum Processor” In Phys. Rev. Lett. 127, 2021, pp. 180501 DOI: 10.1103/PhysRevLett.127.180501
  • [Zhu+22] Qingling Zhu et al. “Quantum computational advantage via 60-qubit 24-cycle random circuit sampling” In Science Bulletin 67 Elsevier, 2022, pp. 240–245 DOI: 10.1016/j.scib.2021.10.017
  • [Žni08] Marko Žnidarič “Exact convergence times for generation of random bipartite entanglement” In Physical Review A 78.3 APS, 2008, pp. 032324 arXiv:0809.0554 [quant-ph]