This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Localizing Virtual Structure Sheaves for Almost Perfect Obstruction Theories

Young-Hoon Kiem Department of Mathematical Sciences and Research Institute of Mathematics, Seoul National University, Seoul 08826, Korea kiem@snu.ac.kr  and  Michail Savvas Department of Mathematics, University of California, San Diego, La Jolla, CA 92093, USA msavvas@ucsd.edu
Abstract.

Almost perfect obstruction theories were introduced in an earlier paper by the authors as the appropriate notion in order to define virtual structure sheaves and KK-theoretic invariants for many moduli stacks of interest, including KK-theoretic Donaldson-Thomas invariants of sheaves and complexes on Calabi-Yau threefolds. The construction of virtual structure sheaves is based on the KK-theory and Gysin maps of sheaf stacks.

In this paper, we generalize the virtual torus localization and cosection localization formulas and their combination to the setting of almost perfect obstruction theory. To this end, we further investigate the KK-theory of sheaf stacks and its functoriality properties. As applications of the localization formulas, we establish a KK-theoretic wall crossing formula for simple \mathbb{C}^{\ast}-wall crossings and define KK-theoretic invariants refining the Jiang-Thomas virtual signed Euler characteristics.

YHK was partially supported by Samsung Science and Technology Foundation grant SSTF-BA1601-01.

1. Introduction

Enumerative geometry is the study of counts of geometric objects subject to a set of given conditions. More often than not, the moduli stacks parameterizing the objects of interest are highly singular, have many components of dimension different from the expected dimension and do not behave well under deformation.

To address these issues, Li-Tian [LT98] and Behrend-Fantechi [BF97] developed the theory of virtual fundamental cycles, which have been instrumental in defining and investigating several algebro-geometric enumerative invariants of great importance, such as Gromov-Witten [Beh97], Donaldson-Thomas [Tho00] and Pandharipande-Thomas [PT09] invariants, and are still one of the major components in modern enumerative geometry.

Any Deligne-Mumford stack XX is equipped with its intrinsic normal cone 𝒞X\mathcal{C}_{X} which locally for an étale map UXU\to X and a closed embedding UVU\hookrightarrow V into a smooth scheme VV is the quotient stack [CU/V/TV|U][C_{U/V}/T_{V}|_{U}] (cf. [BF97]). A perfect obstruction theory ϕ:E𝕃X\phi\colon E\to\mathbb{L}_{X} gives an embedding of 𝒞X\mathcal{C}_{X} into the vector bundle stack X=h1/h0(E)\mathcal{E}_{X}=h^{1}/h^{0}(E^{\vee}) and the virtual fundamental cycle is defined as the intersection of the zero section 0X0_{\mathcal{E}_{X}} with 𝒞X\mathcal{C}_{X}

[X]vir:=0X![𝒞X]Av.dim.(X).\displaystyle[X]^{\mathrm{vir}}:=0_{\mathcal{E}_{X}}^{!}[\mathcal{C}_{X}]\in A_{\mathrm{v.dim.}}(X).

Recently, a lot of interest has been generated towards refinements of enumerative invariants that go beyond numbers or the intersection theory of cycles. Motivated by theoretical physics and geometric representation theory, it is in particular desirable to obtain such a refinement in KK-theory (cf. for example [Oko17, Oko19]).

When the moduli stack XX admits a perfect obstruction theory with a global presentation E=[E1E0]E=[E^{-1}\to E^{0}], where E1,E0E^{-1},E^{0} are locally free sheaves on XX, one can define the virtual structure sheaf as

[𝒪Xvir]:=0E1![𝒪C1]K0(X)\displaystyle[{\mathscr{O}}_{X}^{\mathrm{vir}}]:=0_{E_{1}}^{!}[\mathscr{O}_{C_{1}}]\in K_{0}(X)

where E1=(E1)E_{1}=(E^{-1})^{\vee} and C1=𝒞X×XE1C_{1}=\mathcal{C}_{X}\times_{\mathcal{E}_{X}}E_{1}.

However, there are many moduli stacks of interest which do not admit perfect obstruction theories, including moduli of simple complexes [Ina02, Lie06] and desingularizations of stacks of semistable sheaves and perfect complexes on Calabi-Yau threefolds [KLS17, Sav20].

In order to resolve this, in our previous paper [KS20] we introduced a relaxed version of perfect obstruction theories, called almost perfect obstruction theories, which arise in the above moduli stacks. An almost perfect obstruction theory has an obstruction sheaf 𝒪bX\mathcal{O}b_{X}, which is the analogue of the sheaf h1(E)h^{1}(E^{\vee}), and induces an embedding of the coarse moduli sheaf 𝔠X\mathfrak{c}_{X} of 𝒞X\mathcal{C}_{X} into 𝒪bX\mathcal{O}b_{X} enabling us to define the virtual structure sheaf of XX as

(1.1) [𝒪Xvir]:=0𝒪bX![𝒪𝔠X]K0(X).\displaystyle[{\mathscr{O}}_{X}^{\mathrm{vir}}]:=0_{\mathcal{O}b_{X}}^{!}[\mathscr{O}_{\mathfrak{c}_{X}}]\in K_{0}(X).

Several techniques have been developed to handle virtual fundamental cycles and virtual structure sheaves arising from perfect obstruction theories on Deligne-Mumford stacks, such as the virtual torus localization of Graber-Pandharipande [GP99, Qu18], the cosection localization of Kiem-Li [KL13a, KL17], virtual pullback [Man12, Qu18] and wall crossing formulas [KL13b]. Often, combining these (cf. for example [CKL17]) can be quite effective.

The aim of the present paper is to generalize the virtual torus localization and cosection localization formulas of virtual structure sheaves and their combination to the setting of almost perfect obstruction theory.

Roughly speaking, an almost perfect obstruction theory ϕ\phi on a Deligne-Mumford stack XX consists of perfect obstruction theories

ϕα:Eα𝕃Uα\phi_{\alpha}\colon E_{\alpha}\longrightarrow\mathbb{L}_{U_{\alpha}}

on an étale cover {UαX}\{U_{\alpha}\to X\} of XX satisfying appropriate combatibility conditions (cf. Definition 2.10), which ensure that we have an obstruction sheaf =𝒪bX\mathcal{F}=\mathcal{O}b_{X} and an embedding of the coarse intrinsic normal cone 𝔠X\mathfrak{c}_{X} into \mathcal{F}, so that the virtual structure sheaf [𝒪Xvir][\mathscr{O}_{X}^{\mathrm{vir}}] can be defined as in (1.1) above.

The definition of [𝒪Xvir][\mathscr{O}_{X}^{\mathrm{vir}}] is based crucially on the development of a KK-theory group K0()K_{0}(\mathcal{F}) of coherent sheaves on the sheaf stack \mathcal{F}, so that [𝒪𝔠X]Coh()[\mathscr{O}_{\mathfrak{c}_{X}}]\in\mathrm{Coh}(\mathcal{F}), and the construction of the Gysin map 0!:K0()K0(X)0_{\mathcal{F}}^{!}\colon K_{0}(\mathcal{F})\to K_{0}(X) in [KS20].

In this paper, we investigate the KK-theory of sheaf stacks in more detail and establish an appropriate version of descent theory for the category Coh()\mathrm{Coh}(\mathcal{F}) of coherent sheaves on \mathcal{F} and several functorial behaviors for Coh()\mathrm{Coh}(\mathcal{F}) and K0()K_{0}(\mathcal{F}) and their properties. These include:

  1. (1)

    Pullback functors for surjective homomorphisms 𝒢\mathcal{G}\to\mathcal{F}.

  2. (2)

    Pullback and pushforward functors for injective homomorphisms 𝒢\mathcal{G}\to\mathcal{F} with locally free quotient L=/𝒢L=\mathcal{F}/\mathcal{G}.

  3. (3)

    Pullback and pushforward functors for morphisms τ:YX\tau\colon Y\to X of the base.

With these well developed, after appropriate modifications, the standard arguments proving the virtual torus localization formula, cosection localization formula and their combination work in our setting.

Thus, when XX admits a T=T=\mathbb{C}^{\ast}-action, and the cover {UαX}\{U_{\alpha}\to X\} and obstruction theories ϕα\phi_{\alpha} are TT-equivariant, we prove that (Theorem 5.13)

[𝒪Xvir]=ι[𝒪Fvir]e(Nvir)K0T(X)[t,t1](t)[\mathscr{O}_{X}^{\mathrm{vir}}]=\iota_{\ast}\frac{[\mathscr{O}_{F}^{\mathrm{vir}}]}{e(N^{\mathrm{vir}})}\in K_{0}^{T}(X)\otimes_{\mathbb{Q}[t,t^{-1}]}\mathbb{Q}(t)

where ι:FX\iota\colon F\to X is the inclusion of the TT-fixed locus, which admits an induced almost perfect obstruction theory, and we assume that the virtual normal bundle NvirN^{\mathrm{vir}} of FF has a global resolution [N0N1][N_{0}\to N_{1}] by locally free sheaves.

Moreover, if there is a cosection σ:𝒪bX𝒪X\sigma\colon\mathcal{O}b_{X}\to\mathscr{O}_{X} with vanishing locus X(σ)X(\sigma), we prove (Definition 4.5, Proposition 4.6) that the virtual structure sheaf [𝒪Xvir][\mathscr{O}_{X}^{\mathrm{vir}}] localizes canonically to an element [𝒪X,locvir]K0(X(σ))[\mathscr{O}_{X,{\mathrm{loc}}}^{\mathrm{vir}}]\in K_{0}(X(\sigma)).

In the presence of a TT-action such that the almost perfect obstruction theory is TT-equivariant and a TT-invariant cosection σ\sigma, we show that the virtual torus localization formula holds for the cosection localized virtual structure sheaves of XX and FF (Theorem 6.1).

An immediate application of the virtual torus localization formula is a KK-theoretic wall crossing formula for simple \mathbb{C}^{\ast}-wall crossings (Theorem 7.2).

Another application is a KK-theoretic refinement of the Jiang-Thomas theory of virtual signed Euler characteristics [JT17]. If XX is a Deligne-Mumford stack with a perfect obstruction theory with obstruction sheaf =𝒪bX\mathcal{F}=\mathcal{O}b_{X}, then we show (Theorem 7.4) that the dual obstruction cone N=SpecX(Sym)N=\mathop{\rm Spec}\nolimits_{X}(\mathop{\rm Sym}\nolimits\mathcal{F}) admits a (symmetric) almost perfect obstruction theory with obstruction sheaf 𝒪bN=ΩN\mathcal{O}b_{N}=\Omega_{N}. This is TT-equivariant for the natural TT-action with fixed locus ι:XN\iota\colon X\to N. Additionally, there is a cosection σ:𝒪bN𝒪N\sigma\colon\mathcal{O}b_{N}\to\mathscr{O}_{N}. When XX is proper, we obtain (Theorem 7.6) the KK-theoretic invariants

χ([𝒪N,locvir]),χt([𝒪Xvir]e(E))(t)\chi\left([\mathscr{O}_{N,{\mathrm{loc}}}^{\mathrm{vir}}]\right)\in\mathbb{Q},\quad\chi_{t}\left(\frac{[\mathscr{O}_{X}^{\mathrm{vir}}]}{e(E^{\vee})}\right)\in\mathbb{Q}(t)

refining the Jiang-Thomas virtual signed Euler characteristics.

Layout of the paper

§2 collects necessary background on the KK-theory of sheaf stacks, almost perfect obstruction theories and virtual structure sheaves that we need from [KS20]. In §3 we study the descent theory and functoriality properties of coherent sheaves on sheaf stacks, which are then used throughout the rest of the paper. §4 treats the cosection localization formula, §5 treats the virtual torus localization formula and §6 their combination. In §7 we apply these formulas to prove the KK-theoretic wall crossing formula for simple \mathbb{C}^{\ast}-wall crossings and construct a KK-theoretic refinement of the Jiang-Thomas theory of virtual signed Euler characteristics. Finally, in the Appendix, we give the proof of the deformation invariance of the cosection localized virtual structure sheaf.

Acknowledgements

We would like to thank Dan Edidin for kindly answering our questions on localization in equivariant KK-theory.

Notation and conventions

Everything in this paper is over the field \mathbb{C} of complex numbers. All stacks are of finite type and Deligne-Mumford stacks are separated.

If EE is a locally free sheaf on a Deligne-Mumford stack XX, we will use the term “vector bundle” to refer to its total space. If \mathcal{F} is a coherent sheaf on a Deligne-Mumford stack XX, we will use the same letter to refer to the associated sheaf stack.

For a morphism f:YXf:Y\to X of stacks and a coherent sheaf \mathcal{F} on XX, its pullback ff^{*}\mathcal{F} is sometimes denoted by |Y\mathcal{F}|_{Y} when the map ff is clear from the context. The bounded derived category of coherent sheaves on a stack XX is denoted by D(X)D(X) and 𝕃X/S=LX/S1\mathbb{L}_{X/S}=L^{\geq-1}_{X/S} denotes the truncated cotangent complex for a morphism XSX\to S. TT typically denotes the torus \mathbb{C}^{*}.


2. KK-Theory on Sheaf Stacks, Almost Perfect Obstruction Theory and Virtual Structure Sheaf

In [KS20], we introduced the notion of coherent sheaves on a sheaf stack \mathcal{F}, defined the KK-theory of \mathcal{F} and constructed a Gysin map 0!0^{!}_{\mathcal{F}} of \mathcal{F}, which enabled us to construct the virtual structure sheaf [𝒪Xvir]K0(X)[{\mathscr{O}}_{X}^{\mathrm{vir}}]\in K_{0}(X) for a Deligne-Mumford stack XX equipped with an almost perfect obstruction theory.

In this preliminary section, we collect necessary ingredients from [KS20].

2.1. Sheaf stacks, local charts and common roofs

In what follows, XX will denote a Deligne-Mumford stack and \mathcal{F} a coherent sheaf on XX.

Definition 2.1.

(Sheaf stack) The sheaf stack associated to \mathcal{F} is the stack that to every morphism ρ:WX\rho\colon W\to X from a scheme WW associates the set Γ(W,ρ)\Gamma(W,\rho^{\ast}\mathcal{F}).

By abuse of notation, we denote by \mathcal{F} the sheaf stack associated to a coherent sheaf \mathcal{F} on XX. A sheaf stack is not algebraic in general and we need an appropriate notion of local charts for geometric constructions.

Definition 2.2.

(Local chart) A local chart Q=(U,ρ,E,rE)Q=(U,\rho,E,r_{E}) for the sheaf stack \mathcal{F} consists of

  1. (1)

    an étale morphism ρ:UX\rho:U\to X from a scheme UU, and

  2. (2)

    a surjective homomorphism rE:Eρ=|Ur_{E}:E\to\rho^{*}\mathcal{F}=\mathcal{F}|_{U} of coherent sheaves on UU from a locally free sheaf EE on UU.

We will call UU the base of the chart QQ. If UU is affine and EE is free, then the local chart Q=(U,ρ,E,rE)Q=(U,\rho,E,r_{E}) is called affine.

Definition 2.3.

(Morphism between local charts) Let Q=(U,ρ,E,rE)Q=(U,\rho,E,r_{E}) and Q=(U,ρ,E,rE)Q^{\prime}=(U^{\prime},\rho^{\prime},E^{\prime},r_{E^{\prime}}) be two local charts for \mathcal{F}. A morphism γ:QQ\gamma\colon Q\to Q^{\prime} is the pair (ργ,rγ)(\rho_{\gamma},r_{\gamma}) of an étale morphism ργ:UU\rho_{\gamma}\colon U\to U^{\prime} and a surjection rγ:EργEr_{\gamma}\colon E\to\rho_{\gamma}^{*}E^{\prime} of locally free sheaves, such that the diagrams

are commutative.

We say that QQ is a restriction of QQ^{\prime} and write Q=Q|UQ=Q^{\prime}|_{U} if E=ργEE=\rho_{\gamma}^{*}E^{\prime} and rγr_{\gamma} is the identity morphism.

The notion of a common roof enables us compare two local charts on \mathcal{F} with the same base ρ:UX\rho\colon U\to X.

Definition 2.4.

(Common roof) Let r:𝒢r:{\mathcal{G}}\to\mathcal{F} and r:𝒢r^{\prime}:{\mathcal{G}}^{\prime}\to\mathcal{F} be two surjective homomorphisms of coherent sheaves on a scheme UU. Their fiber product is defined by

(2.1) 𝒢×𝒢:=ker(𝒢𝒢(r,r)+){\mathcal{G}}\times_{\mathcal{F}}{\mathcal{G}}^{\prime}:=\mathrm{ker}\left({\mathcal{G}}\oplus{\mathcal{G}}^{\prime}\xrightarrow{(r,-r^{\prime})}\mathcal{F}\oplus\mathcal{F}\xrightarrow{+}\mathcal{F}\right)

and we have a commutative diagram

𝒢×𝒢\textstyle{{\mathcal{G}}\times_{\mathcal{F}}{\mathcal{G}}^{\prime}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝒢\textstyle{{\mathcal{G}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝒢\textstyle{{\mathcal{G}}^{\prime}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\textstyle{\mathcal{F}}

of surjective homomorphisms, which is universal among such diagrams of surjective homomorphisms in the obvious sense.

Given two charts Q=(U,ρ,E,rE)Q=(U,\rho,E,r_{E}) and Q=(U,ρ,E,rE)Q^{\prime}=(U,\rho,E^{\prime},r_{E^{\prime}}) with the same quasi-projective base UU, we can pick a surjective homomorphism

WE×|UEW\longrightarrow E\times_{\mathcal{F}|_{U}}E^{\prime}

from a locally free sheaf WW. Denoting the induced surjection W|UW\to\mathcal{F}|_{U} by rWr_{W}, we obtain a local chart (U,ρ,W,rW)(U,\rho,W,r_{W}), which we call a common roof of QQ and QQ^{\prime}.

More generally, given two charts Q=(U,ρ,E,rE)Q=(U,\rho,E,r_{E}) and Q=(U,ρ,E,rE)Q^{\prime}=(U^{\prime},\rho^{\prime},E^{\prime},r_{E^{\prime}}) of the sheaf stack {\mathcal{F}}, we let V=U×XUV=U\times_{X}U^{\prime} and have two local charts Q|VQ|_{V} and Q|VQ^{\prime}|_{V} with the same base. A common roof of Q|VQ|_{V} and Q|VQ^{\prime}|_{V} is called a common roof of QQ and QQ^{\prime}.

2.2. Coherent sheaves on a sheaf stack \mathcal{F}

A coherent sheaf 𝒜\mathcal{A} on \mathcal{F} is an assignment to every local chart Q=(U,ρ,E,rE)Q=(U,\rho,E,r_{E}) of a coherent sheaf 𝒜Q\mathcal{A}_{Q} on the scheme EE (in the étale topology) such that for every morphism γ:QQ\gamma\colon Q\to Q^{\prime} between local charts there exists an isomorphism

(2.2) rγ(ργ𝒜Q)𝒜Qr_{\gamma}^{*}\left(\rho_{\gamma}^{*}\mathcal{A}_{Q^{\prime}}\right)\longrightarrow\mathcal{A}_{Q}

which satisfies the usual compatibilities for composition of morphisms. Note that we abusively write ργ𝒜Q\rho_{\gamma}^{*}\mathcal{A}_{Q^{\prime}} for the pullback of 𝒜Q\mathcal{A}_{Q^{\prime}} to ργE\rho_{\gamma}^{*}E^{\prime} via the morphism of bundles ργEE\rho_{\gamma}^{*}E^{\prime}\to E^{\prime} induced by ργ\rho_{\gamma}. A quasicoherent sheaf on a sheaf stack is defined likewise.

A homomorphism f:𝒜f:\mathcal{A}\to\mathcal{B} of (quasi)coherent sheaves on \mathcal{F} is the data of a homomorphism fQ:𝒜QQf_{Q}:\mathcal{A}_{Q}\to\mathcal{B}_{Q} of (quasi)coherent sheaves on EE for each local chart Q=(U,ρ,E,rE)Q=(U,\rho,E,r_{E}) such that for every morphism γ:QQ\gamma:Q\to Q^{\prime} of local charts, the diagram

rγ(ργ𝒜Q)\textstyle{r_{\gamma}^{*}\left(\rho_{\gamma}^{*}\mathcal{A}_{Q^{\prime}}\right)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}fQ\scriptstyle{f_{Q^{\prime}}}𝒜Q\textstyle{\mathcal{A}_{Q}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}fQ\scriptstyle{f_{Q}}rγ(ργQ)\textstyle{r_{\gamma}^{*}\left(\rho_{\gamma}^{*}\mathcal{B}_{Q^{\prime}}\right)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Q\textstyle{\mathcal{B}_{Q}}

is commutative where the horizontal arrows are (2.2). We say that a homomorphism f:𝒜f:\mathcal{A}\to\mathcal{B} is an isomorphism if fQf_{Q} is an isomorphism for each local chart QQ.

Exact sequences and the KK-group K0()K_{0}(\mathcal{F}) were defined in [KS20] as follows.

Definition 2.5.

(Short exact sequence) Let 𝒜,,𝒞\mathcal{A},\mathcal{B},\mathcal{C} be coherent sheaves on the sheaf stack \mathcal{F}. A sequence

0𝒜𝒞0\displaystyle 0\longrightarrow\mathcal{A}\longrightarrow\mathcal{B}\longrightarrow\mathcal{C}\longrightarrow 0

of homomorphisms of coherent sheaves on \mathcal{F} is exact if for every local chart Q=(U,ρ,E,rE)Q=(U,\rho,E,r_{E}) on \mathcal{F} the sequence

0𝒜QQ𝒞Q0\displaystyle 0\longrightarrow\mathcal{A}_{Q}\longrightarrow\mathcal{B}_{Q}\longrightarrow\mathcal{C}_{Q}\longrightarrow 0

is an exact sequence of coherent sheaves on the scheme EE.

Note that the morphism

ErγργE=U×UEEE\,\smash{\mathop{\longrightarrow}\limits^{r_{\gamma}}}\,\rho_{\gamma}^{*}E^{\prime}=U\times_{U^{\prime}}E^{\prime}\longrightarrow E^{\prime}

is smooth and hence flat. We can likewise define the kernel and cokernel of a homomorphisms f:𝒜f:\mathcal{A}\to\mathcal{B} of coherent sheaves on the sheaf stack \mathcal{F}. Thus coherent and quasicoherent sheaves on \mathcal{F} form abelian categories

Coh()QCoh().\mathrm{Coh}(\mathcal{F})\subset\mathrm{QCoh}(\mathcal{F}).
Definition 2.6.

The KK-group of coherent sheaves on \mathcal{F} is the group generated by the isomorphism classes [𝒜][\mathcal{A}] of coherent sheaves 𝒜\mathcal{A} on \mathcal{F}, with relations generated by []=[𝒜]+[𝒞][\mathcal{B}]=[\mathcal{A}]+[\mathcal{C}] for every short exact sequence

0𝒜𝒞0.0\longrightarrow\mathcal{A}\longrightarrow\mathcal{B}\longrightarrow\mathcal{C}\longrightarrow 0.

In other words, K0()K_{0}({\mathcal{F}}) is the Grothendieck group of the abelian category Coh()\mathrm{Coh}({\mathcal{F}}).

If =E\mathcal{F}=E is locally free, so that \mathcal{F} is an algebraic stack, then the above definitions recover the standard notions of short exact sequences and K0()K_{0}(\mathcal{F}) for the vector bundle EE.

2.3. KK-theoretic Gysin and pullback maps

Let Q=(U,ρ,E,rE)Q=(U,\rho,E,r_{E}) be a local chart for the sheaf stack \mathcal{F} and denote the vector bundle projection map EUE\to U by πE\pi_{E}. The tautological section of the pullback πEE\pi_{E}^{*}E induces an associated Koszul complex

𝒦(E):=πEE{\mathcal{K}}(E):=\wedge^{\bullet}\pi_{E}^{*}E^{\vee}

that resolves the structure sheaf 𝒪U\mathscr{O}_{U} of the zero section of πE\pi_{E}.

Definition 2.7.

For any local chart Q=(U,ρ,E,rE)Q=(U,\rho,E,r_{E}) and a coherent sheaf 𝒜\mathcal{A} on \mathcal{F}, the ii-th Koszul homology sheaf

Qi(𝒜)Coh(U)\mathcal{H}_{Q}^{i}(\mathcal{A})\in\mathrm{Coh}(U)

of 𝒜\mathcal{A} with respect to QQ is defined as the homology of the complex

𝒦(E)𝒪E𝒜Q=πEE𝒪E𝒜Q{\mathcal{K}}(E)\otimes_{{\mathscr{O}}_{E}}\mathcal{A}_{Q}=\wedge^{\bullet}\pi_{E}^{*}E^{\vee}\otimes_{\mathscr{O}_{E}}\mathcal{A}_{Q}

in degree i-i.

Using common roofs and the standard descent theory for coherent sheaves on algebraic stacks, the following is proven in [KS20].

Theorem-Definition 2.8.

Let 𝒜\mathcal{A} be a coherent sheaf on a sheaf stack \mathcal{F} over a Deligne-Mumford stack XX. The coherent sheaves Qi(𝒜)Coh(U)\mathcal{H}_{Q}^{i}(\mathcal{A})\in\mathrm{Coh}(U) glue canonically to a coherent sheaf 𝒦i(𝒜)Coh(X)\mathcal{H}_{\mathcal{K}}^{i}(\mathcal{A})\in\mathrm{Coh}(X) on XX, which is defined to be the ii-th Koszul homology sheaf of 𝒜\mathcal{A}.

The Koszul homology sheaves of 𝒜\mathcal{A} were then used to define a KK-theoretic Gysin map 0!:K0()K0(X)0_{\mathcal{F}}^{!}\colon K_{0}(\mathcal{F})\to K_{0}(X).

Definition 2.9.

(KK-theoretic Gysin map) The KK-theoretic Gysin map is defined by the formula

(2.3) 0!:K0()K0(X),0![𝒜]=i0(1)i[𝒦i(𝒜)]K0(X)\displaystyle 0_{\mathcal{F}}^{!}\colon K_{0}(\mathcal{F})\longrightarrow K_{0}(X),\quad 0_{\mathcal{F}}^{!}[\mathcal{A}]=\sum_{i\geq 0}(-1)^{i}[\mathcal{H}_{\mathcal{K}}^{i}(\mathcal{A})]\in K_{0}(X)

where 𝒜\mathcal{A} is a coherent sheaf on \mathcal{F}.

2.4. Almost perfect obstruction theory and virtual structure sheaf

A perfect obstruction theory on a morphism XSX\to S, where XX is a scheme and SS a smooth Artin stack, is a morphism

ϕ:E𝕃X/S\phi\colon E\longrightarrow\mathbb{L}_{X/S}

in D(X)D(X), where EE is a perfect complex of amplitude [1,0][-1,0], satisfying that h1(ϕ)h^{-1}(\phi) is surjective and h0(ϕ)h^{0}(\phi) is an isomorphism.

We refer to the sheaf 𝒪bX:=h1(E)\mathcal{O}b_{X}:=h^{1}(E^{\vee}) as the obstruction sheaf associated to the perfect obstruction theory ϕ\phi. Then ϕ\phi induces a Cartesian diagram

(2.8)

where 𝒞X/S\mathcal{C}_{X/S} and 𝒩X/S\mathcal{N}_{X/S} are the intrinsic normal cone and intrinsic normal sheaf of XX over SS respectively, while 𝔠X/S\mathfrak{c}_{X/S} and 𝔫X/S\mathfrak{n}_{X/S} are their coarse moduli sheaves. All the horizontal arrows are closed embeddings.

Some interesting moduli spaces in algebraic geometry such as the moduli space of derived category objects do not admit a perfect obstruction theory. In [KS20], we introduced a weaker notion with which moduli stacks for generalized Donaldson-Thomas invariants are equipped.

Definition 2.10.

(Almost perfect obstruction theory) Let XSX\to S be a morphism, where XX is a Deligne-Mumford stack of finite presentation and SS is a smooth Artin stack of pure dimension. An almost perfect obstruction theory ϕ\phi consists of an étale covering {XαX}αA\{X_{\alpha}\to X\}_{\alpha\in A} of XX and perfect obstruction theories ϕα:Eα𝕃Xα/S\phi_{\alpha}\colon E_{\alpha}\to\mathbb{L}_{X_{\alpha}/S} of XαX_{\alpha} over SS such that the following hold.

  1. (1)

    For each pair of indices α,β\alpha,\beta, there exists an isomorphism

    ψαβ:𝒪bXα|Xαβ𝒪bXβ|Xαβ\displaystyle\psi_{\alpha\beta}\colon\mathcal{O}b_{X_{\alpha}}|_{X_{\alpha\beta}}\longrightarrow\mathcal{O}b_{X_{\beta}}|_{X_{\alpha\beta}}

    so that the collection {𝒪bXα=h1(Eα),ψαβ}\{\mathcal{O}b_{X_{\alpha}}=h^{1}(E_{\alpha}^{\vee}),\psi_{\alpha\beta}\} gives descent data of a sheaf 𝒪bX\mathcal{O}b_{X}, called the obstruction sheaf, on XX.

  2. (2)

    For each pair of indices α,β\alpha,\beta, there exists an étale covering {VλXαβ}λΓ\{V_{\lambda}\to X_{\alpha\beta}\}_{\lambda\in\Gamma} of Xαβ=Xα×XXβX_{\alpha\beta}=X_{\alpha}\times_{X}X_{\beta} such that for any λ\lambda, the perfect obstruction theories Eα|VλE_{\alpha}|_{V_{\lambda}} and Eβ|VλE_{\beta}|_{V_{\lambda}} are isomorphic and compatible with ψαβ\psi_{\alpha\beta}. This means that there exists an isomorphism

    ηαβλ:Eα|VλEβ|Vλ\displaystyle\eta_{\alpha\beta\lambda}\colon E_{\alpha}|_{V_{\lambda}}\longrightarrow E_{\beta}|_{V_{\lambda}}

    in D(Vλ)D(V_{\lambda}) fitting in a commutative diagram

    (2.15)

    which moreover satisfies h1(ηαβλ)=ψαβ1|Vλh^{1}(\eta_{\alpha\beta\lambda}^{\vee})=\psi_{\alpha\beta}^{-1}|_{V_{\lambda}}.

Suppose that the morphism XSX\to S admits an almost perfect obstruction theory. Then the definition implies that the closed embeddings given in diagram (2.8)

h1(ϕα):𝔫Uα/S𝒪bXαh^{1}(\phi_{\alpha}^{\vee})\colon\mathfrak{n}_{U_{\alpha}/S}\longrightarrow\mathcal{O}b_{X_{\alpha}}

glue to a global closed embedding

jϕ:𝔫X/S𝒪bXj_{\phi}\colon\mathfrak{n}_{X/S}\longrightarrow\mathcal{O}b_{X}

of sheaf stacks over XX. Therefore, the coarse intrinsic normal cone stack 𝔠X/S\mathfrak{c}_{X/S} embeds as a closed substack into the sheaf stack 𝒪bX\mathcal{O}b_{X}.

Definition 2.11.

[KS20] (Virtual structure sheaf) Let XSX\to S be as above, together with an almost perfect obstruction theory ϕ:XS\phi\colon X\to S. The virtual structure sheaf of XX associated to ϕ\phi is defined as

[𝒪Xvir]:=0𝒪bX![𝒪𝔠X/S]K0(X).\displaystyle[\mathscr{O}_{X}^{\mathrm{vir}}]:=0_{\mathcal{O}b_{X}}^{!}[\mathscr{O}_{\mathfrak{c}_{X/S}}]\in K_{0}(X).

It is straightforward to generalize Definition 2.10 to the relative setting of a morphism XYX\to Y of Deligne-Mumford stacks, by considering an étale cover {YαY}\{Y_{\alpha}\to Y\} and relative perfect obstruction theories on the morphisms Xα=X×YYαYαX_{\alpha}=X\times_{Y}Y_{\alpha}\to Y_{\alpha}. We leave the detail to the reader.

In the subsequent sections, we will generalize the torus localization theorem [GP99, Qu18], the cosection localization theorem [KL13a, KL17] and the wall crossing formula [CKL17] to the virtual structure sheaves associated to almost perfect obstruction theories.


3. Functorial Behavior of Coherent Sheaves on Sheaf Stacks

In this section, we investigate the functorial behavior of coherent sheaves on the sheaf stack {\mathcal{F}}. These functoriality properties will be our fundamental tools in generalizing the localization theorems to almost perfect obstruction theories in the subsequent sections.

We will first establish a descent theory for coherent sheaves on {\mathcal{F}}. Using this, we will prove that there are pullbacks of a coherent sheaf 𝒜\mathcal{A} on {\mathcal{F}} by a morphism τ:YX\tau:Y\to X of the base and by a surjective homomorphism f:𝒢f:{\mathcal{G}}\to{\mathcal{F}} of the sheaves as well as by an injective homomorphism f:𝒢f:{\mathcal{G}}\to{\mathcal{F}} with locally free quotient L=/𝒢L={\mathcal{F}}/{\mathcal{G}}.

Moreover, we will see that there are (higher) pushforwards of a coherent sheaf 𝒜\mathcal{A} on τ\tau^{*}{\mathcal{F}} to coherent sheaves Riτ𝒜R^{i}{\tau}_{*}\mathcal{A} on {\mathcal{F}} for any proper morphism τ:YX\tau:Y\to X. When 𝒢{\mathcal{G}}\to{\mathcal{F}} is an injective homomorphism of coherent sheaves on XX with locally free quotient, we will define the pushforward of a coherent sheaf on 𝒢{\mathcal{G}} to {\mathcal{F}}. These pushforwards and pullbacks satisfy the expected adjunction properties.

3.1. Coherent descent theory

Let f:𝒢f:{\mathcal{G}}\to{\mathcal{F}} be a surjective homomorphism of coherent sheaves on a Deligne-Mumford stack XX. Then any local chart

Q=(ρ:UX,rE:E𝒢)Q=(\rho:U\to X,r_{E}:E\twoheadrightarrow{\mathcal{G}})

of 𝒢{\mathcal{G}} induces the local chart

fQ=(ρ:UX,frE:E𝒢)f_{*}Q=(\rho:U\to X,f_{*}r_{E}:E\twoheadrightarrow{\mathcal{G}}\twoheadrightarrow{\mathcal{F}})

of {\mathcal{F}}. Thus a coherent sheaf 𝒜Coh()\mathcal{A}\in\mathrm{Coh}({\mathcal{F}}) gives a coherent sheaf 𝒜fQCoh(E)\mathcal{A}_{f_{*}Q}\in\mathrm{Coh}(E) for every local chart QQ of 𝒢{\mathcal{G}}. It is easy to see that this assignment is a coherent sheaf on 𝒢{\mathcal{G}}, denoted by f𝒜f^{*}\mathcal{A} or 𝒜|𝒢\mathcal{A}|_{\mathcal{G}}. In this way, we obtain a functor

(3.1) f:Coh()Coh(𝒢)f^{*}:\mathrm{Coh}({\mathcal{F}})\longrightarrow\mathrm{Coh}({\mathcal{G}})

and a homomophism

(3.2) f:K0()K0(𝒢)f^{*}:K_{0}({\mathcal{F}})\longrightarrow K_{0}({\mathcal{G}})

since ff^{*} preserves exact sequences. From the construction, it is straightforward that if g:𝒢𝒢g:{\mathcal{G}}^{\prime}\to{\mathcal{G}} is another surjective homomorphism, then we have the equality

(3.3) (fg)=gf.(f\circ g)^{*}=g^{*}\circ f^{*}.

Using the above pullback functor, we can develop a descent formalism for sheaves on sheaf stacks. To begin with, it is convenient to extend the notion of local charts.

Definition 3.1.

(Coherent chart) Let {\mathcal{F}} be a coherent sheaf on a Deligne-Mumford stack XX. A coherent chart on the sheaf stack \mathcal{F} is the datum of a quadruple

𝒫=(U,ρ,𝒢,r𝒢)\mathcal{P}=(U,\rho,{\mathcal{G}},r_{\mathcal{G}})

where UU is a scheme, ρ:UX\rho\colon U\to X is an étale morphism and r𝒢:𝒢ρr_{\mathcal{G}}\colon{\mathcal{G}}\to\rho^{*}\mathcal{F} is a surjective homomorphism of coherent sheaves on UU.

Of course, when 𝒢{\mathcal{G}} is locally free, a coherent chart is the same as a local chart.

Morphisms between coherent charts are defined in the same way as morphisms between local charts. The main advantage of coherent charts is that one has a natural fiber product.

Definition 3.2.

(Fiber product of coherent charts) Let 𝒫=(U,ρ,𝒢,r𝒢)\mathcal{P}=(U,\rho,{\mathcal{G}},r_{\mathcal{G}}) and 𝒫=(U,ρ,𝒢,r𝒢)\mathcal{P}^{\prime}=(U^{\prime},\rho^{\prime},{\mathcal{G}}^{\prime},r_{{\mathcal{G}}^{\prime}}) be two coherent charts for \mathcal{F}. Let V=U×XUV=U\times_{X}U^{\prime} and ρV:VX\rho_{V}\colon V\to X the natural map to XX. Using (2.1), we have the fiber product

𝒢×𝒢:=𝒢|V×|V𝒢|V.{\mathcal{G}}\times_{\mathcal{F}}{\mathcal{G}}^{\prime}:={\mathcal{G}}|_{V}\times_{{\mathcal{F}}|_{V}}{\mathcal{G}}^{\prime}|_{V}.

Denote the induced surjection 𝒢×𝒢|V{\mathcal{G}}\times_{\mathcal{F}}{\mathcal{G}}^{\prime}\to\mathcal{F}|_{V} by r𝒢×r𝒢r_{\mathcal{G}}\times_{\mathcal{F}}r_{{\mathcal{G}}^{\prime}}. The coherent chart (V,ρV,𝒢×G,r𝒢×r𝒢)(V,\rho_{V},{\mathcal{G}}\times_{\mathcal{F}}G^{\prime},r_{\mathcal{G}}\times_{\mathcal{F}}r_{{\mathcal{G}}^{\prime}}) is called the fiber product of the coherent charts 𝒫\mathcal{P} and 𝒫\mathcal{P}^{\prime} and denoted by 𝒫×𝒫\mathcal{P}\times_{\mathcal{F}}\mathcal{P}^{\prime}. There are natural morphisms of coherent charts 𝒫×𝒫𝒫\mathcal{P}\times_{\mathcal{F}}\mathcal{P}^{\prime}\to\mathcal{P} and 𝒫×𝒫𝒫\mathcal{P}\times_{\mathcal{F}}\mathcal{P}^{\prime}\to\mathcal{P}^{\prime}.

Remark 3.3.

If 𝒫\mathcal{P} and 𝒫\mathcal{P}^{\prime} are local charts, then it is easy to see that a common roof of 𝒫\mathcal{P} and 𝒫\mathcal{P}^{\prime} by Definition 2.4 is a local chart for the fiber product 𝒫×𝒫\mathcal{P}\times_{{\mathcal{F}}}\mathcal{P}^{\prime}.

Definition 3.4.

(Atlas on \mathcal{F}) An atlas on a sheaf stack \mathcal{F} is a collection

{𝒫α=(Uα,ρα,𝒢α,rα)}αΓ\{\mathcal{P}_{\alpha}=(U_{\alpha},\rho_{\alpha},{\mathcal{G}}_{\alpha},r_{\alpha})\}_{\alpha\in\Gamma}

of coherent charts on \mathcal{F} such that the morphisms {ρα:UαX}\{\rho_{\alpha}\colon U_{\alpha}\to X\} give an étale cover of XX. We write Uαβ=Uα×XUβU_{\alpha\beta}=U_{\alpha}\times_{X}U_{\beta} and 𝒫αβ=(Uαβ,ραβ,𝒢αβ,rαβ)\mathcal{P}_{\alpha\beta}=(U_{\alpha\beta},\rho_{\alpha\beta},{\mathcal{G}}_{\alpha\beta},r_{\alpha\beta}) for the fiber product 𝒫α×𝒫β\mathcal{P}_{\alpha}\times_{\mathcal{F}}\mathcal{P}_{\beta}. We use similar notation UαβγU_{\alpha\beta\gamma} and 𝒫αβγ\mathcal{P}_{\alpha\beta\gamma} for triples of indices.

If 𝒜\mathcal{A} is a coherent sheaf on {\mathcal{F}} and {𝒫α}\{\mathcal{P}_{\alpha}\} is an atlas on {\mathcal{F}}, then we have the pullbacks

𝒜αCoh(𝒢α)\mathcal{A}_{\alpha}\in\mathrm{Coh}({\mathcal{G}}_{\alpha})

of 𝒜\mathcal{A} to 𝒢α{\mathcal{G}}_{\alpha} by the surjections rα:𝒢α|Uαr_{\alpha}:{\mathcal{G}}_{\alpha}\to{\mathcal{F}}|_{U_{\alpha}}. Moreover, the pullbacks 𝒜α\mathcal{A}_{\alpha} and 𝒜β\mathcal{A}_{\beta} to 𝒢αβ{\mathcal{G}}_{\alpha\beta} are isomorphic to 𝒜|𝒢αβ\mathcal{A}|_{{\mathcal{G}}_{\alpha\beta}}. By (3.3), we have the isomorphisms

(3.4) gαβ:𝒜α|𝒢αβ=𝒜|𝒢αβ=𝒜β|𝒢αβ,g_{\alpha\beta}:\mathcal{A}_{\alpha}|_{{\mathcal{G}}_{\alpha\beta}}\,\smash{\mathop{\longrightarrow}\limits^{=}}\,\mathcal{A}|_{{\mathcal{G}}_{\alpha\beta}}\,\smash{\mathop{\longleftarrow}\limits^{=}}\,\mathcal{A}_{\beta}|_{{\mathcal{G}}_{\alpha\beta}},

which satisfy the equality

(3.5) gγα|𝒢αβγgβγ|𝒢αβγgαβ|𝒢αβγ=id.g_{\gamma\alpha}|_{{\mathcal{G}}_{\alpha\beta\gamma}}\circ g_{\beta\gamma}|_{{\mathcal{G}}_{\alpha\beta\gamma}}\circ g_{\alpha\beta}|_{{\mathcal{G}}_{\alpha\beta\gamma}}=\mathrm{id}.
Definition 3.5.

(Descent datum) A descent datum on a sheaf stack \mathcal{F} consists of

  1. (a)

    an atlas {𝒫α=(Uα,ρα,𝒢α,rα)}αA\{\mathcal{P}_{\alpha}=(U_{\alpha},\rho_{\alpha},{\mathcal{G}}_{\alpha},r_{\alpha})\}_{\alpha\in A} on \mathcal{F};

  2. (b)

    a coherent sheaf 𝒜α\mathcal{A}_{\alpha} on the sheaf stack 𝒢α{\mathcal{G}}_{\alpha} for every index α\alpha;

  3. (c)

    an isomorphism

    gαβ:𝒜α|𝒢αβ𝒜β|𝒢αβg_{\alpha\beta}\colon\mathcal{A}_{\alpha}|_{{\mathcal{G}}_{\alpha\beta}}\longrightarrow\mathcal{A}_{\beta}|_{{\mathcal{G}}_{\alpha\beta}}

    of coherent sheaves on the sheaf stack 𝒢αβ{\mathcal{G}}_{\alpha\beta} for every pair α,β\alpha,\beta,

such that the cocycle condition (3.5) holds for every triple α,β,γ\alpha,\beta,\gamma of indices.

We say that a descent datum is effective if there exists a coherent sheaf 𝒜\mathcal{A} on \mathcal{F} such that we have 𝒜α=𝒜|𝒢α\mathcal{A}_{\alpha}=\mathcal{A}|_{{\mathcal{G}}_{\alpha}} for all α\alpha and the gαβg_{\alpha\beta} are the naturally induced isomorphisms (3.4) on fiber products. We then say that the datum descends or glues to the sheaf 𝒜\mathcal{A}.

For example, let f:𝒢f:{\mathcal{G}}\to{\mathcal{F}} be a surjective homomorphism of coherent sheaves on a Deligne-Mumford stack XX. The single chart (id:XX,f:𝒢)(\textrm{id}:X\to X,f:{\mathcal{G}}\to{\mathcal{F}}) is then an atlas for {\mathcal{F}}. The fiber product 𝒢×𝒢{\mathcal{G}}\times_{\mathcal{F}}{\mathcal{G}} fits into the commutative diagram

(3.6) 𝒢×𝒢pq𝒢f𝒢f.\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 16.5639pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&\\&\crcr}}}\ignorespaces{\hbox{\kern-16.5639pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{{\mathcal{G}}\times_{\mathcal{F}}{\mathcal{G}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 23.80296pt\raise 5.1875pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.8264pt\hbox{$\scriptstyle{p}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 40.5639pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern-9.37604pt\raise-18.89499pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.8264pt\hbox{$\scriptstyle{q}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 0.0pt\raise-27.95667pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 40.5639pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{{\mathcal{G}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 47.48752pt\raise-18.89499pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{f}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 47.48752pt\raise-27.95667pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern-6.92361pt\raise-37.78998pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{{\mathcal{G}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 18.65347pt\raise-43.90108pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{f}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 41.22362pt\raise-37.78998pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 41.22362pt\raise-37.78998pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\mathcal{F}}$}}}}}}}\ignorespaces}}}}\ignorespaces.

A descent datum for this atlas consists of a coherent sheaf \mathcal{B} on 𝒢{\mathcal{G}} and an isomorphism g:pqg:p^{*}\mathcal{B}\to q^{*}\mathcal{B}. For a local chart (ρ:UX,rE:Eρ)(\rho:U\to X,r_{E}:E\to\rho^{*}{\mathcal{F}}) with affine base UU, we pick a surjection WE×|U𝒢|UW\to E\times_{{\mathcal{F}}|_{U}}{\mathcal{G}}|_{U} from a locally free sheaf WW on UU so that we have surjections

rW:WE×|U𝒢|U𝒢|U,W×EW𝒢×𝒢|Ur_{W}:W\longrightarrow E\times_{{\mathcal{F}}|_{U}}{\mathcal{G}}|_{U}\longrightarrow{\mathcal{G}}|_{U},\quad W\times_{E}W\longrightarrow{\mathcal{G}}\times_{\mathcal{F}}{\mathcal{G}}|_{U}

and a fiber diagram

(3.7) W×EW\textstyle{W\times_{E}W\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}pW\scriptstyle{p_{W}}qW\scriptstyle{q_{W}}W\textstyle{W\ignorespaces\ignorespaces\ignorespaces\ignorespaces}W\textstyle{W\ignorespaces\ignorespaces\ignorespaces\ignorespaces}E\textstyle{E}

lying over (3.6). As Coh(𝒢)\mathcal{B}\in\mathrm{Coh}({\mathcal{G}}), we have a coherent sheaf W\mathcal{B}_{W} on WW and an isomorphism pWWqWWp_{W}^{*}\mathcal{B}_{W}\cong q_{W}^{*}\mathcal{B}_{W}. Since WEW\to E is a surjective homomorphism of vector bundles, the coherent sheaf W\mathcal{B}_{W} descends to a coherent sheaf E\mathcal{B}_{E} on EE. It is easy to see that E\mathcal{B}_{E} is independent of the choice of WW and we have a coherent sheaf E\mathcal{B}_{E} for any local chart of {\mathcal{F}} by considering an affine cover of the base scheme UU. In this way, we obtain a coherent sheaf on {\mathcal{F}}.

By the same argument, we deduce the following.

Proposition 3.6.

(Descent for sheaves on \mathcal{F}) Any descent datum on a sheaf stack \mathcal{F} is effective and descends to a coherent sheaf on \mathcal{F}, which is uniquely determined (up to canonical isomorphism).

Proof.

This is a standard descent argument using smooth descent for sheaves on schemes repeating the reasoning we saw above on an atlas for \mathcal{F} and keeping track of all the indices involved. We leave the details to the reader. ∎

3.2. Pullbacks of coherent sheaves on sheaf stacks

In this subsection, we will see more ways to pull back coherent sheaves or KK-theory classes, other than (3.1) and (3.2).

Let {\mathcal{F}} be a coherent sheaf on a Deligne-Mumford stack XX. Then all local charts of the sheaf stack {\mathcal{F}} form an atlas in the obvious way. Suppose we have a short exact sequence

0𝒢fL00\longrightarrow{\mathcal{G}}\,\smash{\mathop{\longrightarrow}\limits^{f}}\,{\mathcal{F}}\longrightarrow L\longrightarrow 0

of coherent sheaves on XX with LL locally free. Then any local chart Q=(U,ρ,E,rE)Q=(U,\rho,E,r_{E}) of {\mathcal{F}} gives rise to the commutative diagram of exact sequences

(3.8) 0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}E\textstyle{E^{\prime}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f~\scriptstyle{\widetilde{f}}rE\scriptstyle{r_{E^{\prime}}}E\textstyle{E\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}rE\scriptstyle{r_{E}}L|U\textstyle{L|_{U}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝒢|U\textstyle{{\mathcal{G}}|_{U}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f\scriptstyle{f}|U\textstyle{{\mathcal{F}}|_{U}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}L|U\textstyle{L|_{U}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0}

whose vertical arrows are all surjective. Note that EE^{\prime} is locally free and it is straightforward to see that the local charts Q=(U,ρ,E,rE)Q^{\prime}=(U,\rho,E^{\prime},r_{E^{\prime}}) form an atlas on the sheaf stack 𝒢{\mathcal{G}}.

Given a coherent sheaf 𝒜Q\mathcal{A}_{Q} on EE, we can pull it back to EE^{\prime} to get a coherent sheaf 𝒜Q=f~𝒜Q\mathcal{A}^{\prime}_{Q^{\prime}}=\widetilde{f}^{*}\mathcal{A}_{Q}. If 𝒜Coh()\mathcal{A}\in\mathrm{Coh}({\mathcal{F}}), we then obtain a descent datum {𝒜QCoh(E)}\{\mathcal{A}^{\prime}_{Q^{\prime}}\in\mathrm{Coh}(E^{\prime})\} with the atlas {Q}\{Q^{\prime}\} on 𝒢{\mathcal{G}}. By Proposition 3.6, we thus obtain a sheaf 𝒜\mathcal{A}^{\prime} on 𝒢{\mathcal{G}}, which we denote by f𝒜Coh(𝒢)f^{*}\mathcal{A}\in\mathrm{Coh}({\mathcal{G}}). Likewise, we can pull back homomorphisms in Coh()\mathrm{Coh}({\mathcal{F}}) to Coh(𝒢)\mathrm{Coh}({\mathcal{G}}). We thus obtain the pullback functor

(3.9) f:Coh()Coh(𝒢),f^{*}:\mathrm{Coh}({\mathcal{F}})\longrightarrow\mathrm{Coh}({\mathcal{G}}),

for an injective homomorphism f:𝒢f:{\mathcal{G}}\to{\mathcal{F}} of coherent sheaves on XX whose cokernel L=/𝒢L={\mathcal{F}}/{\mathcal{G}} is locally free.

Unfortunately, this functor ff^{*} is not exact and hence does not induce a homomorphism on KK-groups. To get an exact functor, we should use the left derived pullback: Letting πE:EU\pi_{E}:E\to U denote the bundle projection, we have a tautological section ss of πEL\pi^{*}_{E}L whose vanishing locus is EE^{\prime}.

We then have the Koszul complex 𝒦(L){\mathcal{K}}(L) and the homology sheaves of the complex 𝒦(L)𝒜Q{\mathcal{K}}(L)\otimes\mathcal{A}_{Q} for each local chart QQ of {\mathcal{F}} give us descent data with respect to the atlas {Q}\{Q^{\prime}\} on 𝒢{\mathcal{G}}. By Proposition 3.6, we get coherent sheaves

L0f𝒜=f𝒜,L1f𝒜,L2f𝒜,L_{0}f^{*}\mathcal{A}=f^{*}\mathcal{A},\quad L_{1}f^{*}\mathcal{A},\quad L_{2}f^{*}\mathcal{A},\quad\cdots

on 𝒢{\mathcal{G}} (with degrees up to the rank of LL), where each Lif𝒜L_{i}f^{*}\mathcal{A} is the descent of the homology sheaves in degree i-i of the complexes 𝒦(L)𝒜Q{\mathcal{K}}(L)\otimes\mathcal{A}_{Q} for local charts QQ. We thus obtain the pullback homomorphism

(3.10) f:K0()K0(𝒢),[𝒜]i0(1)i[Lif𝒜].f^{*}:K_{0}({\mathcal{F}})\longrightarrow K_{0}({\mathcal{G}}),\quad[\mathcal{A}]\mapsto\sum_{i\geq 0}(-1)^{i}[L_{i}f^{*}\mathcal{A}].

It is straightforward to check that (3.10) is well defined.

The pullback (3.10) is compatible with the Gysin map 0!0^{!}_{\mathcal{F}} as follows.

Lemma 3.7.

Let f:𝒢f:{\mathcal{G}}\to{\mathcal{F}} be an injective homomorphism of coherent sheaves on XX whose cokernel L=/𝒢L={\mathcal{F}}/{\mathcal{G}} is locally free. Then we have the identity

0𝒢!f=0!.0^{!}_{\mathcal{G}}\circ f^{*}=0^{!}_{\mathcal{F}}.
Proof.

For any affine local chart Q=(U,ρ,E,rE)Q=(U,\rho,E,r_{E}), we can split EE as the direct sum ELE^{\prime}\oplus L and we have an induced isomorphism 𝒦(E)𝒦(E)𝒦(L){\mathcal{K}}(E)\cong{\mathcal{K}}(E^{\prime})\otimes{\mathcal{K}}(L) of Koszul complexes. Given a coherent sheaf 𝒜\mathcal{A} on \mathcal{F}, we then obtain an isomorphism

𝒦(E)𝒜Q𝒦(E)(𝒦(L)𝒜Q){\mathcal{K}}(E)\otimes\mathcal{A}_{Q}\cong{\mathcal{K}}(E^{\prime})\otimes({\mathcal{K}}(L)\otimes\mathcal{A}_{Q})

The spectral sequence for the double complex on the right hand side gives an equality in KK-theory for any 0\ell\geq 0

[Q(𝒜)]=i+j=(1)j[Qi(Ljf𝒜)]K0(U).[\mathcal{H}_{Q}^{\ell}(\mathcal{A})]=\sum_{i+j=\ell}(-1)^{j}[\mathcal{H}_{Q^{\prime}}^{i}(L_{j}f^{\ast}\mathcal{A})]\in K_{0}(U).

Since the spectral sequence maps are functorial with respect to morphisms between local charts and independent of the choice of splitting of EE, the above equality is true globally for Koszul homology sheaves using descent and the lemma follows. ∎

We can also pull back coherent sheaves on a sheaf stack by a morphism of the underlying Deligne-Mumford stack. Let τ:YX\tau:Y\to X be a morphism of Deligne-Mumford stacks and {\mathcal{F}} be a coherent sheaf on XX. As we saw above, local charts Q=(U,ρ,E,rE)Q=(U,\rho,E,r_{E}) of the sheaf stack {\mathcal{F}} form an atlas on {\mathcal{F}}. The pullbacks

(3.11) Q=(ρ:U=Y×XUY,rE=τrE:E=τEτ)Q^{\prime}=(\rho^{\prime}:U^{\prime}=Y\times_{X}U\to Y,r_{E^{\prime}}=\tau^{*}r_{E}:E^{\prime}=\tau^{*}E\to\tau^{*}{\mathcal{F}})

form an atlas of the sheaf stack τ\tau^{*}{\mathcal{F}} on YY. By the induced morphism τ~:E=τEE\widetilde{\tau}:E^{\prime}=\tau^{*}E\to E, we can pull back coherent sheaves on EE to EE^{\prime}. If 𝒜Coh()\mathcal{A}\in\mathrm{Coh}({\mathcal{F}}) is a coherent sheaf on {\mathcal{F}}, the coherent sheaves {τ~𝒜QCoh(E)}\{\widetilde{\tau}^{*}\mathcal{A}_{Q}\in\mathrm{Coh}(E^{\prime})\} form a descent datum and hence glue to a coherent sheaf τ𝒜\tau^{*}\mathcal{A} on τ\tau^{*}{\mathcal{F}}. The same holds for homomorphisms in Coh()\mathrm{Coh}({\mathcal{F}}). We thus obtain the pullback functor

(3.12) τ:Coh()Coh(τ)\tau^{*}:\mathrm{Coh}({\mathcal{F}})\longrightarrow\mathrm{Coh}(\tau^{*}{\mathcal{F}})

for a morphism τ:YX\tau:Y\to X of Deligne-Mumford stacks and a sheaf stack {\mathcal{F}} over XX.

If τ\tau is flat, then τ~:EE\widetilde{\tau}:E^{\prime}\to E is flat and τ~\widetilde{\tau}^{*} is exact. Hence we obtain a homomorphism

(3.13) τ:K0()K0(τ)\tau^{*}:K_{0}({\mathcal{F}})\to K_{0}(\tau^{*}{\mathcal{F}})

when τ:YX\tau:Y\to X is flat.

The pullback τ\tau^{*} by a flat morphism is compatible with the Gysin maps.

Lemma 3.8.

Let τ:YX\tau:Y\to X be a flat morphism of Deligne-Mumford stacks and {\mathcal{F}} be a coherent sheaf on XX. Then the pullback (3.13) fits into the commutative diagram

(3.14) K0()\textstyle{K_{0}({\mathcal{F}})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}τ\scriptstyle{\tau^{*}}0!\scriptstyle{0^{!}_{\mathcal{F}}}K0(τ)\textstyle{K_{0}(\tau^{*}{\mathcal{F}})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0τ!\scriptstyle{0^{!}_{\tau^{*}{\mathcal{F}}}}K0(X)\textstyle{K_{0}(X)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}τ\scriptstyle{\tau^{*}}K0(Y).\textstyle{K_{0}(Y).}
Proof.

The lemma follows from the isomorphism τ𝒦(E)𝒦(τE)\tau^{*}{\mathcal{K}}(E)\cong{\mathcal{K}}(\tau^{*}E) of Koszul complexes. ∎

3.3. Pushforwards of coherent sheaves on sheaf stacks

In this subsection, we will consider pushforwards on sheaf stacks.

Suppose we have a short exact sequence

0𝒢fL00\longrightarrow{\mathcal{G}}\,\smash{\mathop{\longrightarrow}\limits^{f}}\,{\mathcal{F}}\longrightarrow L\longrightarrow 0

of coherent sheaves on a Deligne-Mumford stack XX with LL locally free. For any local chart Q=(U,ρ,E,rE)Q=(U,\rho,E,r_{E}), we have a commutative diagram (3.8) of exact sequences and Q=(U,ρ,E,rE)Q^{\prime}=(U,\rho,E^{\prime},r_{E^{\prime}}) is a local chart for 𝒢{\mathcal{G}}. Given a coherent sheaf Coh(𝒢)\mathcal{B}\in\mathrm{Coh}({\mathcal{G}}), we have a coherent sheaf Q\mathcal{B}_{Q^{\prime}} on EE^{\prime} and its pushforward f~QCoh(E)\widetilde{f}_{*}\mathcal{B}_{Q^{\prime}}\in\mathrm{Coh}(E) by the closed immersion f~\widetilde{f}. By the base change property, the assignment Qf~QQ\mapsto\widetilde{f}_{*}\mathcal{B}_{Q^{\prime}} is a coherent sheaf on {\mathcal{F}}, which we denote by fCoh()f_{*}\mathcal{B}\in\mathrm{Coh}({\mathcal{F}}). Likewise, we can pushforward a homomorphism in Coh(𝒢)\mathrm{Coh}({\mathcal{G}}) to Coh()\mathrm{Coh}({\mathcal{F}}) by ff. We thus obtain a functor

(3.15) f:Coh(𝒢)Coh(),f_{*}:\mathrm{Coh}({\mathcal{G}})\longrightarrow\mathrm{Coh}({\mathcal{F}}),

which is exact as f~\widetilde{f} is a closed immersion. So we have a homomorphism

(3.16) f:K0(𝒢)K0()f_{*}:K_{0}({\mathcal{G}})\longrightarrow K_{0}({\mathcal{F}})

for an injective homomorphism f:𝒢f:{\mathcal{G}}\to{\mathcal{F}} of coherent sheaves on XX with locally free cokernel L=/𝒢L={\mathcal{F}}/{\mathcal{G}}.

By construction, the natural adjunction homomorphisms

𝒜Qf~f~𝒜Q,f~f~QQ\mathcal{A}_{Q}\longrightarrow\widetilde{f}_{*}\widetilde{f}^{*}\mathcal{A}_{Q},\quad\widetilde{f}^{*}\widetilde{f}_{*}\mathcal{B}_{Q^{\prime}}\longrightarrow\mathcal{B}_{Q^{\prime}}

induce the natural homomorphisms

(3.17) 𝒜ff𝒜,ff\mathcal{A}\longrightarrow f_{*}f^{*}\mathcal{A},\quad f^{*}f_{*}\mathcal{B}\longrightarrow\mathcal{B}

in Coh()\mathrm{Coh}({\mathcal{F}}) and Coh(𝒢)\mathrm{Coh}({\mathcal{G}}) respectively.

Let τ:YX\tau:Y\to X be a proper morphism of Deligne-Mumford stacks. Let {\mathcal{F}} be a coherent sheaf on XX. A local chart Q=(U,ρ,E,rE)Q=(U,\rho,E,r_{E}) of {\mathcal{F}} induces a local chart QQ^{\prime}, defined by (3.11), of the sheaf stack τ\tau^{*}{\mathcal{F}} and a proper morphism

τ~:E=τEE.\widetilde{\tau}:E^{\prime}=\tau^{*}E\to E.

Let Coh(τ)\mathcal{B}\in\mathrm{Coh}(\tau^{*}{\mathcal{F}}) be a coherent sheaf on τ\tau^{*}{\mathcal{F}}. Then we have the coherent sheaves

τ~Q,Riτ~QCoh(E)\widetilde{\tau}_{*}\mathcal{B}_{Q^{\prime}},\quad R^{i}\widetilde{\tau}_{*}\mathcal{B}_{Q^{\prime}}\in\mathrm{Coh}(E)

by taking the direct and higher direct images. By the base chage property [Har77, III, Proposition 9.3], the assignments

Qτ~Q,QRiτ~QQ\mapsto\widetilde{\tau}_{*}\mathcal{B}_{Q^{\prime}},\quad Q\mapsto R^{i}\widetilde{\tau}_{*}\mathcal{B}_{Q^{\prime}}

are coherent sheaves on {\mathcal{F}}, which we denote by τ=R0τ\tau_{*}\mathcal{B}=R^{0}\tau_{*}\mathcal{B} and RiτR^{i}\tau_{*}\mathcal{B} respectively. We thus obtain functors

(3.18) τ=R0τ,Riτ:Coh(τ)Coh()\tau_{*}=R^{0}\tau_{*},R^{i}\tau_{*}:\mathrm{Coh}(\tau^{*}{\mathcal{F}})\longrightarrow\mathrm{Coh}({\mathcal{F}})

for i>0i>0, which give us the homomorphism

(3.19) τ:K0(τ)K0(),[]i(1)i[Riτ]\tau_{*}:K_{0}(\tau^{*}{\mathcal{F}})\longrightarrow K_{0}({\mathcal{F}}),\quad[\mathcal{B}]\mapsto\sum_{i}(-1)^{i}[R^{i}\tau_{*}\mathcal{B}]

for a proper morphism τ:YX\tau:Y\to X.

Lemma 3.9.

For a proper morphism, the diagram

K0(τ)\textstyle{K_{0}(\tau^{*}{\mathcal{F}})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0τ!\scriptstyle{0^{!}_{\tau^{*}{\mathcal{F}}}}τ\scriptstyle{\tau_{*}}K0()\textstyle{K_{0}({\mathcal{F}})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0!\scriptstyle{0^{!}_{\mathcal{F}}}K0(Y)\textstyle{K_{0}(Y)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}τ\scriptstyle{\tau_{*}}K0(X)\textstyle{K_{0}(X)}

commutes.

Proof.

The lemma follows from Definition 2.9 and the projection formula [Har77, III, Exer. 8.3]. ∎

As above, the usual adjunction homomorphisms give us homomorphisms

(3.20) 𝒜ττ𝒜,ττ\mathcal{A}\longrightarrow\tau_{*}\tau^{*}\mathcal{A},\quad\tau^{*}\tau_{*}\mathcal{B}\to\mathcal{B}

in Coh()\mathrm{Coh}({\mathcal{F}}) and Coh(τ)\mathrm{Coh}(\tau^{*}{\mathcal{F}}) respectively.

4. Cosection Localization

Let XSX\to S be a morphism, where XX is a Deligne-Mumford stack of finite type and SS a smooth quasi-projective curve, together with a perfect obstruction theory ϕ\phi and a cosection σ:𝒪bϕ𝒪X\sigma\colon\mathcal{O}b_{\phi}\to\mathscr{O}_{X}. In [KL13a] and [KL17], it is shown that the virtual fundamental cycle [X]virA(X)[X]^{\mathrm{vir}}\in A_{*}(X) and virtual structure sheaf [𝒪Xvir]K0(X)[\mathscr{O}_{X}^{\mathrm{vir}}]\in K_{0}(X) localize to the vanishing locus X(σ)X(\sigma) of σ\sigma, being the pushforward of localized classes in A(X(σ))A_{*}(X(\sigma)) and K0(X(σ))K_{0}(X(\sigma)) respectively in a canonical way.

In this section, we prove the analogous cosection localization for virtual structure sheaves induced by an almost perfect obstruction theory.

4.1. Cosection localization for perfect obstruction theory

Let XSX\to S be as above. Let ρ:UX\rho:U\to X be an étale morphism from a scheme UU and let ϕ:E𝕃U/S1\phi\colon E\to\mathbb{L}_{U/S}^{\geq-1} be a perfect obstruction theory with E=[E1E0]E=[E^{-1}\to E^{0}] a global resolution by vector bundles. Moreover, suppose that we have a morphism

σ:𝒪bU𝒪U,\displaystyle\sigma\colon\mathcal{O}b_{U}\longrightarrow\mathscr{O}_{U},

which, following [KL13a], we refer to as a cosection.

Let σ¯\underline{\sigma} be the composition E1=(E1)𝒪bU𝒪UE_{1}=(E^{-1})^{\vee}\to\mathcal{O}b_{U}\to\mathscr{O}_{U}, U(σ)U(\sigma) the vanishing locus of σ\sigma, U=UU(σ)U^{\circ}=U-U(\sigma) and

(4.1) E1(σ)=E1|U(σ)ker(σ¯|U:E1|U𝒪U).\displaystyle E_{1}({\sigma})=E_{1}|_{U(\sigma)}\cup\ker\left(\underline{\sigma}|_{U^{\circ}}\colon E_{1}|_{U^{\circ}}\longrightarrow\mathscr{O}_{U^{\circ}}\right).

In [KL17], the authors define a localized Gysin map

0E1,σ!:K0(E1(σ))K0(U(σ)).0^{!}_{E_{1},{\sigma}}\colon K_{0}(E_{1}(\sigma))\to K_{0}(U(\sigma)).

We recall the construction. Let τ:U~U\tau\colon\widetilde{U}\to U be the blowup of UU along U(σ)U(\sigma) with exceptional divisor DD. If E~1=τE1\widetilde{E}_{1}=\tau^{*}E_{1}, we have an induced surjection

σ¯~:E~1𝒪U~(D).\displaystyle\widetilde{\underline{\sigma}}\colon\widetilde{E}_{1}\longrightarrow\mathscr{O}_{\widetilde{U}}(-D).

Let E1=ker~σ¯E_{1}^{\prime}=\ker\widetilde{}\underline{\sigma} and

(4.2) τ~:E1E1(σ)\displaystyle\widetilde{\tau}\colon E_{1}^{\prime}\longrightarrow E_{1}(\sigma)

be the morphism induced from E~1E1\widetilde{E}_{1}\to E_{1}.

For any coherent sheaf 𝒜\mathcal{A} on E1(σ)E_{1}(\sigma), we have a natural morphism by adjunction

η𝒜:𝒜τ~τ~𝒜.\displaystyle\eta_{\mathcal{A}}\colon\mathcal{A}\longrightarrow\widetilde{\tau}_{*}\widetilde{\tau}^{*}\mathcal{A}.

Since η𝒜\eta_{\mathcal{A}} is an isomorphism over UU^{\circ}, the sheaves ker(η𝒜),coker(η𝒜)\ker(\eta_{\mathcal{A}}),\mathop{\rm coker}\nolimits(\eta_{\mathcal{A}}) and Riτ~τ~𝒜R^{i}\widetilde{\tau}_{*}\widetilde{\tau}^{*}\mathcal{A} for i1i\geq 1 are supported on E1|U(σ)E_{1}|_{U(\sigma)}.

We may therefore define

(4.3) R𝒜:=[ker(η𝒜)][coker(η𝒜)]i1(1)i[Riτ~τ~𝒜]K0(E1|U(σ)).\displaystyle R_{\mathcal{A}}:=[\ker(\eta_{\mathcal{A}})]-[\mathop{\rm coker}\nolimits(\eta_{\mathcal{A}})]-\sum_{i\geq 1}(-1)^{i}[R^{i}\widetilde{\tau}_{*}\widetilde{\tau}^{*}\mathcal{A}]\in K_{0}(E_{1}|_{U(\sigma)}).
Definition 4.1.

[KL17] The cosection localized Gysin map is given by the formula

(4.4) 0E1,σ![𝒜]:=(τ|D)(D0E1![τ~𝒜])+0E1|U(σ)!R𝒜K0(U(σ)),\displaystyle 0^{!}_{E_{1},{\sigma}}[\mathcal{A}]:=(\tau|_{D})_{*}\left(D^{\vee}\cdot 0_{E_{1}^{\prime}}^{!}[\widetilde{\tau}^{*}\mathcal{A}]\right)+0^{!}_{E_{1}|_{U(\sigma)}}R_{\mathcal{A}}\in K_{0}(U(\sigma)),

where D[𝒜]=[𝒪X~𝒪X~(D)][𝒜]D^{\vee}\cdot[\mathcal{A}^{\prime}]=[\mathscr{O}_{\widetilde{X}}\to\mathscr{O}_{\widetilde{X}}(D)]\otimes[\mathcal{A}^{\prime}].

Let C1:=𝔠X/S×𝒪bXE1E1C_{1}:=\mathfrak{c}_{X/S}\times_{\mathcal{O}b_{X}}E_{1}\subset E_{1} be the obstruction cone of the perfect obstruction theory ϕ\phi. In [KL13a], it is shown that C1C_{1} has reduced support in E1(σ)E_{1}(\sigma). Therefore, if we let II denote the ideal sheaf of (C1)redC1(C_{1})^{\mathrm{red}}\subset C_{1}, the sheaves 𝒜j=Ij𝒪C1/Ij+1𝒪C1\mathcal{A}_{j}=I^{j}\mathscr{O}_{C_{1}}/I^{j+1}\mathscr{O}_{C_{1}} for j0j\geq 0 are naturally coherent sheaves on E1(σ)E_{1}(\sigma) and moreover

[𝒪C1]=j0[𝒜j]K0(E1(σ))\displaystyle[\mathscr{O}_{C_{1}}]=\sum_{j\geq 0}[\mathcal{A}_{j}]\in K_{0}(E_{1}(\sigma))

where the summation is finite, since Ij=0I^{j}=0 for large enough jj.

Definition-Theorem 4.2.

[KL17] The cosection localized virtual structure sheaf on UU is defined by

[𝒪U,locvir]=0E1,σ![𝒪C1]:=j00E1,σ![𝒜j]K0(U(σ)).\displaystyle[\mathscr{O}_{U,{\mathrm{loc}}}^{\mathrm{vir}}]=0^{!}_{E_{1},{\sigma}}[\mathscr{O}_{C_{1}}]:=\sum_{j\geq 0}0^{!}_{E_{1},{\sigma}}[\mathcal{A}_{j}]\in K_{0}(U(\sigma)).

It satisfies

ι[𝒪U,locvir]=[𝒪Uvir]K0(U).\displaystyle\iota_{*}[\mathscr{O}_{U,{\mathrm{loc}}}^{\mathrm{vir}}]=[\mathscr{O}_{U}^{\mathrm{vir}}]\in K_{0}(U).

where ι:U(σ)U\iota\colon U(\sigma)\to U is the inclusion, is independent of the particular choice of global resolution for EE and deformation invariant.

The purpose of this section is to generalize Definition-Theorem 4.2 to the setting of almost perfect obstruction theories.

4.2. Intrinsic normal cone under a cosection

Recall from §2.4, that under the assumptions of Definition 2.10, if XSX\to S is equipped with an almost perfect obstruction theory ϕ\phi, we have the intrinsic normal sheaf 𝔠X/S\mathfrak{c}_{X/S} which is a closed substack of the obstruction sheaf ObXOb_{X} of ϕ\phi. Let =ObX{\mathcal{F}}=Ob_{X} in the rest of this section.

For any local chart Q=(U,ρ,E,rE)Q=(U,\rho,E,r_{E}) of the sheaf stack {\mathcal{F}}, we have a Cartesian square

(4.5) C\textstyle{C\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}E\textstyle{E\ignorespaces\ignorespaces\ignorespaces\ignorespaces}rE\scriptstyle{r_{E}}𝔠X/S|U\textstyle{\mathfrak{c}_{X/S}|_{U}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}|U\textstyle{{\mathcal{F}}|_{U}}

whose horizontal arrows are closed immersions. Hence CC is a closed subscheme of the vector bundle EE and its structure sheaf 𝒪C{\mathscr{O}}_{C} is a coherent sheaf on EE. It is obvious that the assignment Q𝒪CQ\mapsto{\mathscr{O}}_{C} is a coherent sheaf on the sheaf stack {\mathcal{F}}, which we denote by

𝒪𝔠X/SCoh().{\mathscr{O}}_{\mathfrak{c}_{X/S}}\in\mathrm{Coh}({\mathcal{F}}).

Now suppose we have a cosection

σ:=ObX𝒪X\sigma:{\mathcal{F}}=Ob_{X}\longrightarrow{\mathscr{O}}_{X}

of the obstruction sheaf. As mentioned above, it was proved in [KL13a] that for any local chart Q=(ρ:UX,rE:E|U)Q=(\rho:U\to X,r_{E}:E\to{\mathcal{F}}|_{U}) of the sheaf stack {\mathcal{F}}, the cone C=E×|U𝔠X/S|UEC=E\times_{{\mathcal{F}}|_{U}}\mathfrak{c}_{X/S}|_{U}\subset E in (4.5) has reduced support in

(4.6) E(σ)=E|U(σ)ker(ErE|Uσ𝒪U)E(\sigma)=E|_{U(\sigma)}\cup\ker(E\,\smash{\mathop{\longrightarrow}\limits^{r_{E}}}\,{\mathcal{F}}|_{U}\,\smash{\mathop{\longrightarrow}\limits^{\sigma}}\,{\mathscr{O}}_{U})

where U(σ)U(\sigma) is the vanishing locus of σ\sigma which is the closed subscheme of UU defined by the image of σ|U:|U=ρ𝒪U\sigma|_{U}:{\mathcal{F}}|_{U}=\rho^{*}{\mathcal{F}}\to{\mathscr{O}}_{U}. The closed substacks E(σ)E(\sigma) for local charts Q=(U,ρ,E,rE)Q=(U,\rho,E,r_{E}) define a closed substack which we denote by (σ){\mathcal{F}}(\sigma). We let Coh¯()\underline{\mathrm{Coh}}({\mathcal{F}}) denote the set of isomorphism classes of coherent sheaves on the sheaf stack {\mathcal{F}} and let

(4.7) Coh¯σ()\underline{\mathrm{Coh}}_{\sigma}({\mathcal{F}})

denote the subset of isomorphisms classes of coherent sheaves 𝒜\mathcal{A} on {\mathcal{F}} with support in (σ){\mathcal{F}}(\sigma), i.e. for each local chart Q=(U,ρ,E,rE)Q=(U,\rho,E,r_{E}), 𝒜Q\mathcal{A}_{Q} has support in E(σ)E(\sigma).

The assignment to a local chart QQ of the ideal sheaf IQI_{Q} of E(σ)E(\sigma) on EE is a coherent sheaf \mathcal{I} and there exist exact sequences

0j+1𝒪𝔠X/Sj𝒪𝔠X/Sj𝒪𝔠X/S/j+1𝒪𝔠X/S0.\displaystyle 0\longrightarrow\mathcal{I}^{j+1}\mathscr{O}_{\mathfrak{c}_{X/S}}\longrightarrow\mathcal{I}^{j}\mathscr{O}_{\mathfrak{c}_{X/S}}\longrightarrow\mathcal{I}^{j}\mathscr{O}_{\mathfrak{c}_{X/S}}/\mathcal{I}^{j+1}\mathscr{O}_{\mathfrak{c}_{X/S}}\longrightarrow 0.

We let

(4.8) 𝒜j=j𝒪𝔠X/S/j+1𝒪𝔠X/SCoh()\displaystyle\mathcal{A}_{j}=\mathcal{I}^{j}\mathscr{O}_{\mathfrak{c}_{X/S}}/\mathcal{I}^{j+1}\mathscr{O}_{\mathfrak{c}_{X/S}}\in\mathrm{Coh}({\mathcal{F}})

so that for any local chart Q=(U,ρ,E,rE)Q=(U,\rho,E,r_{E}) of {\mathcal{F}}, (𝒜j)QCoh(E)(\mathcal{A}_{j})_{Q}\in\mathrm{Coh}(E) is a coherent sheaf supported in E(σ)E(\sigma). Note that the isomorphism class of 𝒜j\mathcal{A}_{j} lies in Coh¯σ()\underline{\mathrm{Coh}}_{\sigma}({\mathcal{F}}) and

(4.9) [𝒪𝔠X/S]=j[𝒜j]K0()[{\mathscr{O}}_{\mathfrak{c}_{X/S}}]=\sum_{j}[\mathcal{A}_{j}]\in K_{0}({\mathcal{F}})

by the definition of the 𝒜j\mathcal{A}_{j}.

4.3. Cosection localized Gysin maps

In this subsection, we will define a map

(4.10) 0,σ!:Coh¯σ()K0(X(σ))0^{!}_{{\mathcal{F}},\sigma}:\underline{\mathrm{Coh}}_{\sigma}({\mathcal{F}})\longrightarrow K_{0}(X(\sigma))

where X(σ)X(\sigma) is the vanishing locus of the cosection σ.\sigma. The cosection localized virtual structure sheaf [𝒪X,locvir]K0(X(σ))[{\mathscr{O}}_{X,{\mathrm{loc}}}^{\mathrm{vir}}]\in K_{0}(X(\sigma)) will be defined by

(4.11) [𝒪X,locvir]=j0,σ!(𝒜j)[{\mathscr{O}}_{X,{\mathrm{loc}}}^{\mathrm{vir}}]=\sum_{j}0^{!}_{{\mathcal{F}},\sigma}(\mathcal{A}_{j})

with 𝒜j\mathcal{A}_{j} from (4.8). By construction, it will follow that the pushforward of [𝒪X,locvir][{\mathscr{O}}_{X,{\mathrm{loc}}}^{\mathrm{vir}}] by the inclusion X(σ)XX(\sigma)\hookrightarrow X is the usual virtual structure sheaf [𝒪Xvir]K0(X).[{\mathscr{O}}_{X}^{\mathrm{vir}}]\in K_{0}(X).

Let τ:X~X\tau:\widetilde{X}\to X be the blowup of XX along X(σ)X(\sigma). Let DD denote the exceptional divisor. The cosection σ:𝒪X\sigma:{\mathcal{F}}\to{\mathscr{O}}_{X} lifts to a surjection τ=|X~𝒪X~(D)\tau^{*}{\mathcal{F}}={\mathcal{F}}|_{\widetilde{X}}\to{\mathscr{O}}_{\widetilde{X}}(-D) whose kernel is denoted by {\mathcal{F}}^{\prime}, so that we have an exact sequence

0fτ𝒪X~(D)0.0\longrightarrow{\mathcal{F}}^{\prime}\,\smash{\mathop{\longrightarrow}\limits^{f}}\,\tau^{*}{\mathcal{F}}\longrightarrow{\mathscr{O}}_{\widetilde{X}}(-D)\longrightarrow 0.

Let 𝒜Coh()\mathcal{A}\in\mathrm{Coh}({\mathcal{F}}) whose isomorphism class lies in Coh¯σ()\underline{\mathrm{Coh}}_{\sigma}({\mathcal{F}}). By the pullback functors (3.9) and (3.12), we have

(4.12) [fτ𝒜]K0().[f^{*}\tau^{*}\mathcal{A}]\in K_{0}({\mathcal{F}}^{\prime}).

By applying the Gysin map for {\mathcal{F}}^{\prime} (Definition 2.9), we obtain

0![fτ𝒜]K0(X~).0^{!}_{{\mathcal{F}}^{\prime}}[f^{*}\tau^{*}\mathcal{A}]\in K_{0}(\widetilde{X}).

Then we intersect it with D-D to obtain

D0![fτ𝒜]=[𝒪X~𝒪X~(D)]0![fτ𝒜]K0(D).D^{\vee}\cdot 0^{!}_{{\mathcal{F}}^{\prime}}[f^{*}\tau^{*}\mathcal{A}]=[{\mathscr{O}}_{\widetilde{X}}\to{\mathscr{O}}_{\widetilde{X}}(D)]\otimes 0^{!}_{{\mathcal{F}}^{\prime}}[f^{*}\tau^{*}\mathcal{A}]\in K_{0}(D).

Now we push it down to X(σ)X(\sigma) by τ|D\tau|_{D} to obtain

(4.13) (τ|D)(D0![fτ𝒜])K0(X(σ)).(\tau|_{D})_{*}\left(D^{\vee}\cdot 0^{!}_{{\mathcal{F}}^{\prime}}[f^{*}\tau^{*}\mathcal{A}]\right)\in K_{0}(X(\sigma)).

Let ı:X(σ)X\imath:X(\sigma)\to X and ı~:DX~\widetilde{\imath}:D\to\widetilde{X} denote the inclusions. Then

(4.14) ı(τ|D)(D0![fτ𝒜])=τı~(D0![fτ𝒜])\imath_{*}(\tau|_{D})_{*}\left(D^{\vee}\cdot 0^{!}_{{\mathcal{F}}^{\prime}}[f^{*}\tau^{*}\mathcal{A}]\right)=\tau_{*}\widetilde{\imath}_{*}\left(D^{\vee}\cdot 0^{!}_{{\mathcal{F}}^{\prime}}[f^{*}\tau^{*}\mathcal{A}]\right)
=τ0𝒪X~(D)!0![fτ𝒜]=τ0τ![ffτ𝒜]=\tau_{*}0^{!}_{{\mathscr{O}}_{\widetilde{X}}(-D)}0^{!}_{{\mathcal{F}}^{\prime}}[f^{*}\tau^{*}\mathcal{A}]=\tau_{*}0^{!}_{\tau^{*}{\mathcal{F}}}[f_{*}f^{*}\tau^{*}\mathcal{A}]
=0!τ[ffτ𝒜]=i0(1)i0![Riτffτ𝒜].=0^{!}_{\mathcal{F}}\tau_{*}[f_{*}f^{*}\tau^{*}\mathcal{A}]=\sum_{i\geq 0}(-1)^{i}0^{!}_{\mathcal{F}}[R^{i}\tau_{*}f_{*}f^{*}\tau^{*}\mathcal{A}].

Since 𝒜\mathcal{A} is a sheaf with support in (σ){\mathcal{F}}(\sigma) and τ\tau is an isomorphism on XX(σ)X-X(\sigma), we find that Riτffτ𝒜|XX(σ)=0R^{i}\tau_{*}f_{*}f^{*}\tau^{*}\mathcal{A}|_{X-X(\sigma)}=0 is a coherent sheaf on the closed substack |X(σ){\mathcal{F}}|_{X(\sigma)} for i>0i>0. Likewise, the kernel and cokernel of the natural homomorphism

η𝒜:𝒜τffτ𝒜\eta_{\mathcal{A}}:\mathcal{A}\longrightarrow\tau_{*}f_{*}f^{*}\tau^{*}\mathcal{A}

are coherent sheaves on |X(σ){\mathcal{F}}|_{X(\sigma)}. Let

(4.15) R𝒜:=[ker(η𝒜)][coker(η𝒜)]i1(1)i[Riτffτ𝒜]K0(|X(σ)).R_{\mathcal{A}}:=[\ker(\eta_{\mathcal{A}})]-[\mathop{\rm coker}\nolimits(\eta_{\mathcal{A}})]-\sum_{i\geq 1}(-1)^{i}[R^{i}\tau_{*}f_{*}f^{*}\tau^{*}\mathcal{A}]\in K_{0}({\mathcal{F}}|_{X(\sigma)}).

Then by Lemma 3.9, we have

(4.16) ı0|X(σ)!R𝒜=0!ıR𝒜\imath_{*}0^{!}_{{\mathcal{F}}|_{X(\sigma)}}R_{\mathcal{A}}=0^{!}_{\mathcal{F}}\imath_{*}R_{\mathcal{A}}
=0!([𝒜][τffτ𝒜]i1(1)i[Riτffτ𝒜])=0^{!}_{\mathcal{F}}\left([\mathcal{A}]-[\tau_{*}f_{*}f^{*}\tau^{*}\mathcal{A}]-\sum_{i\geq 1}(-1)^{i}[R^{i}\tau_{*}f_{*}f^{*}\tau^{*}\mathcal{A}]\right)
=0![𝒜]i0(1)i0![Riτffτ𝒜]K0(X).=0^{!}_{\mathcal{F}}[\mathcal{A}]-\sum_{i\geq 0}(-1)^{i}0^{!}_{\mathcal{F}}[R^{i}\tau_{*}f_{*}f^{*}\tau^{*}\mathcal{A}]\in K_{0}(X).
Definition 4.3.

The cosection localized Gysin map

(4.17) 0,σ!:Coh¯σ()K0(X(σ))0^{!}_{{\mathcal{F}},\sigma}:\underline{\mathrm{Coh}}_{\sigma}({\mathcal{F}})\longrightarrow K_{0}(X(\sigma))

for {\mathcal{F}} is defined by

0,σ![𝒜]=(τ|D)(D0![fτ𝒜])+0|X(σ)!R𝒜K0(X(σ))0^{!}_{{\mathcal{F}},\sigma}[\mathcal{A}]=(\tau|_{D})_{*}\left(D^{\vee}\cdot 0^{!}_{{\mathcal{F}}^{\prime}}[f^{*}\tau^{*}\mathcal{A}]\right)+0^{!}_{{\mathcal{F}}|_{X(\sigma)}}R_{\mathcal{A}}\in K_{0}(X(\sigma))

for any coherent sheaf 𝒜\mathcal{A} on {\mathcal{F}} with support in (σ){\mathcal{F}}(\sigma).

By adding (4.13) and (4.16), we obtain the following comparison of the Gysin maps 0!0^{!}_{\mathcal{F}} and 0,σ!0^{!}_{{\mathcal{F}},\sigma}.

Proposition 4.4.

For [𝒜]Coh¯σ()[\mathcal{A}]\in\underline{\mathrm{Coh}}_{\sigma}({\mathcal{F}}), we have the equality

ı0,σ!(𝒜)=0![𝒜]K0(X).\imath_{*}0^{!}_{{\mathcal{F}},\sigma}(\mathcal{A})=0^{!}_{\mathcal{F}}[\mathcal{A}]\in K_{0}(X).

4.4. Cosection localized virtual structure sheaf for almost perfect obstruction theory

Using (4.8), (4.9) and (4.17), we may now generalize the cosection localized virtual structure sheaf in [KL17] to Deligne-Mumford stacks equipped with almost perfect obstruction theories.

Definition 4.5.

The cosection localized virtual structure sheaf for an almost prefect obstruction theory ϕ\phi is defined by

[𝒪X,locvir]:=j00𝒪bX,σ!(𝒜j)K0(X(σ))\displaystyle[\mathscr{O}_{X,{\mathrm{loc}}}^{\mathrm{vir}}]:=\sum_{j\geq 0}0^{!}_{\mathcal{O}b_{X},\sigma}(\mathcal{A}_{j})\in K_{0}(X(\sigma))

where 0𝒪bX,σ!0^{!}_{\mathcal{O}b_{X},\sigma} is the cosection localized Gysin map in Definition 4.17 and the sheaves 𝒜j\mathcal{A}_{j} are defined in (4.8).

Proposition 4.6.

The pushforward of [𝒪X,locvir][{\mathscr{O}}_{X,{\mathrm{loc}}}^{\mathrm{vir}}] by the inclusion ı:X(σ)X\imath:X(\sigma)\to X is the ordinary virtual structure sheaf [𝒪Xvir]K0(X)[{\mathscr{O}}_{X}^{\mathrm{vir}}]\in K_{0}(X) in [KS20].

Proof.

By Proposition 4.4, (4.9) and Definition 2.11, we have

ı[𝒪X,locvir]=j0ı0𝒪bX,σ!(𝒜j)=j00𝒪bX![𝒜j]\imath_{*}[{\mathscr{O}}_{X,{\mathrm{loc}}}^{\mathrm{vir}}]=\sum_{j\geq 0}\imath_{*}0^{!}_{\mathcal{O}b_{X},\sigma}(\mathcal{A}_{j})=\sum_{j\geq 0}0^{!}_{\mathcal{O}b_{X}}[\mathcal{A}_{j}]
=0𝒪bX!j0[𝒜j]=0𝒪bX![𝒪𝔠X/S]=[𝒪Xvir]=0^{!}_{\mathcal{O}b_{X}}\sum_{j\geq 0}[\mathcal{A}_{j}]=0^{!}_{\mathcal{O}b_{X}}[{\mathscr{O}}_{\mathfrak{c}_{X/S}}]=[{\mathscr{O}}_{X}^{\mathrm{vir}}]

as desired. ∎

The cosection localized virtual structure sheaf is deformation invariant. The proof is rather standard and can be found in the Appendix.

Remark 4.7.

As discussed carefully in [KL17], we can be quite flexible in choosing a lift of 𝒜\mathcal{A} to a class in K0()K_{0}({\mathcal{F}}^{\prime}). Above, we used (4.12) for simplicity but we could use left derived pullbacks LfLf^{*} and LτL\tau^{*} instead of the ordinary pullbacks ff^{*} and τ\tau^{*}. With this derived choice, we have a homomorphism

0,loc!:K0((σ))K0(X(σ))0^{!}_{{\mathcal{F}},{\mathrm{loc}}}:K_{0}({\mathcal{F}}(\sigma))\longrightarrow K_{0}(X(\sigma))

where K0((σ))K_{0}({\mathcal{F}}(\sigma)) is the Grothendieck group of the abelian category Cohσ()\mathrm{Coh}_{\sigma}({\mathcal{F}}) of coherent sheaves on {\mathcal{F}} with support in (σ){\mathcal{F}}(\sigma).

5. Virtual Torus Localization

A virtual torus localization formula has been established at the level of intersection theory for virtual fundamental cycles in the cases of perfect [GP99] and semi-perfect obstruction theory [Kie18] and at the level of KK-theory for virtual structure sheaves for perfect obstruction theory [Qu18]. In this section, we generalize the formula to the setting of virtual structure sheaves in KK-theory obtained by an almost perfect obstruction theory.

5.1. TT-equivariant almost perfect obstruction theory

Let T=T=\mathbb{C}^{*} denote the one-dimensional torus and XX a Deligne-Mumford stack with an action of TT. We denote the fixed locus by FF. This is the closed substack locally defined by SpecA/(Amv)\mathop{\rm Spec}\nolimits A/(A^{mv}) on an equivariant étale chart SpecAX\mathop{\rm Spec}\nolimits A\to X, where (Amv)(A^{mv}) denotes the ideal generated by weight spaces corresponding to non-zero TT-weights. Finally, let

ι:FX\displaystyle\iota\colon F\longrightarrow X

denote the inclusion map. For details on group actions on stacks, we refer the reader to [Rom05].

We can give the following definition, which generalizes directly the definition of an almost perfect obstruction theory.

Definition 5.1.

(TT-equivariant almost perfect obstruction theory) Let XX be a Deligne-Mumford stack with a TT-action. A TT-equivariant almost perfect obstruction theory ϕ\phi consists of the following data:

  1. (a)

    A TT-equivariant étale covering {XαX}αA\{X_{\alpha}\to X\}_{\alpha\in A} of XX.

  2. (b)

    For each index αA\alpha\in A, an object EαD([Xα/T])E_{\alpha}\in D([X_{\alpha}/T]) and a morphism ϕα:Eα𝕃Xα\phi_{\alpha}\colon E_{\alpha}\to\mathbb{L}_{X_{\alpha}} in D([Xα/T])D([X_{\alpha}/T]) which is a perfect obstruction theory on XαX_{\alpha}.

These are required to satisfy the following conditions:

  1. (1)

    For each pair of indices α,β\alpha,\beta, there exists a TT-equivariant isomorphism

    ψαβ:𝒪bXα|Xαβ𝒪bXβ|Xαβ\displaystyle\psi_{\alpha\beta}\colon\mathcal{O}b_{X_{\alpha}}|_{X_{\alpha\beta}}\longrightarrow\mathcal{O}b_{X_{\beta}}|_{X_{\alpha\beta}}

    so that the collection {𝒪bXα=h1(Eα),ψαβ}\{\mathcal{O}b_{X_{\alpha}}=h^{1}(E_{\alpha}^{\vee}),\psi_{\alpha\beta}\} gives a descent datum of a sheaf 𝒪bX\mathcal{O}b_{X}, called the obstruction sheaf, on XX.

  2. (2)

    For each pair of indices α,β\alpha,\beta, there exists a TT-equivariant étale covering {VλXαβ}λΓ\{V_{\lambda}\to X_{\alpha\beta}\}_{\lambda\in\Gamma} of Xαβ=Xα×XXβX_{\alpha\beta}=X_{\alpha}\times_{X}X_{\beta} such that for any λ\lambda, the perfect obstruction theories ϕα|Vλ\phi_{\alpha}|_{V_{\lambda}} and ϕβ|Vλ\phi_{\beta}|_{V_{\lambda}} are isomorphic and compatible with ψαβ\psi_{\alpha\beta}. This means that there exists an isomorphism

    ηαβλ:Eα|VλEβ|Vλ\displaystyle\eta_{\alpha\beta\lambda}\colon E_{\alpha}|_{V_{\lambda}}\longrightarrow E_{\beta}|_{V_{\lambda}}

    in D([Vλ/T])D([V_{\lambda}/T]) fitting in a commutative diagram

    (5.7)

    which moreover satisfies h1(ηαβλ)=ψαβ1|Vλh^{1}(\eta_{\alpha\beta\lambda}^{\vee})=\psi_{\alpha\beta}^{-1}|_{V_{\lambda}}.

In the above, D([Xα/T])D([X_{\alpha}/T]) and D([Vλ/T])D([V_{\lambda}/T]) denote the bounded derived categories of TT-equivariant quasi-coherent sheaves on UαU_{\alpha} and VλV_{\lambda} respectively.

5.2. TT-equivariant almost perfect obstruction theory on the fixed locus

Suppose that XX is a Deligne-Mumford stack with an action of TT, equipped with a TT-equivariant almost perfect obstruction theory as above. Let Fα=Xα×XFF_{\alpha}=X_{\alpha}\times_{X}F, so that {FαF}αA\{F_{\alpha}\to F\}_{\alpha\in A} gives an étale covering of the fixed locus FF.

For each index α\alpha, we have the decomposition

(5.8) Eα|Fα=Eα|FαfixEα|Fαmv\displaystyle E_{\alpha}|_{F_{\alpha}}=E_{\alpha}|_{F_{\alpha}}^{fix}\oplus E_{\alpha}|_{F_{\alpha}}^{mv}

into the TT-fixed and moving part. Moreover, ϕα|Fα\phi_{\alpha}|_{F_{\alpha}} similarly decomposes as a direct sum of

(5.9) ϕαfix:Eα|Fαfix𝕃Uα|Fαfix and ϕαmv:Eα|Fαmv𝕃Xα|Fαmv\displaystyle\phi_{\alpha}^{fix}\colon E_{\alpha}|_{F_{\alpha}}^{fix}\to\mathbb{L}_{U_{\alpha}}|_{F_{\alpha}}^{fix}\text{ and }\phi_{\alpha}^{mv}\colon E_{\alpha}|_{F_{\alpha}}^{mv}\to\mathbb{L}_{X_{\alpha}}|_{F_{\alpha}}^{mv}

Since FαF_{\alpha} has a trivial TT-action, the morphism 𝕃Xα|Fα𝕃Fα\mathbb{L}_{X_{\alpha}}|_{F_{\alpha}}\to\mathbb{L}_{F_{\alpha}} factors through

(5.10) 𝕃Xα|Fαfix𝕃Fα\displaystyle\mathbb{L}_{X_{\alpha}}|_{F_{\alpha}}^{fix}\longrightarrow\mathbb{L}_{F_{\alpha}}

Composing (5.9) and (5.10) we obtain a morphism

(5.11) ϕαF:Eα|Fαfix𝕃Fα\displaystyle\phi_{\alpha}^{F}\colon E_{\alpha}|_{F_{\alpha}}^{fix}\longrightarrow\mathbb{L}_{F_{\alpha}}

By [GP99], this gives a perfect obstruction theory on FαF_{\alpha}.

Proposition 5.2.

The étale covering {FαF}\{F_{\alpha}\to F\} and the perfect obstruction theories ϕαF:Eα|Fαfix𝕃Fα\phi_{\alpha}^{F}\colon E_{\alpha}|_{F_{\alpha}}^{fix}\to\mathbb{L}_{F_{\alpha}} form an induced almost perfect obstruction theory ϕF\phi^{F} on the fixed locus FF with obstruction sheaf 𝒪bF=𝒪bX|Ffix\mathcal{O}b_{F}=\mathcal{O}b_{X}|_{F}^{fix}.

Proof.

We need to verify that conditions (1) and (2) in Definition 2.10 hold for the perfect obstruction theories on the given étale cover of FF.

It is clear that 𝒪bFα=h1(Eα|Fαfix)=𝒪bXα|Fαfix\mathcal{O}b_{F_{\alpha}}=h^{1}(E_{\alpha}^{\vee}|_{F_{\alpha}}^{fix})=\mathcal{O}b_{X_{\alpha}}|_{F_{\alpha}}^{fix}. Since Fαβ=Fα×FFβF_{\alpha\beta}=F_{\alpha}\times_{F}F_{\beta} is the fixed locus of Xαβ=Xα×XXβX_{\alpha\beta}=X_{\alpha}\times_{X}X_{\beta} and ψαβ\psi_{\alpha\beta} is TT-equivariant we obtain induced isomorphisms

(5.12) ψαβF:=ψαβ|Fαβfix:𝒪bFα|Fαβ𝒪bFβ|Fαβ\displaystyle\psi_{\alpha\beta}^{F}:=\psi_{\alpha\beta}|_{F_{\alpha\beta}}^{fix}\colon\mathcal{O}b_{F_{\alpha}}|_{F_{\alpha\beta}}\longrightarrow\mathcal{O}b_{F_{\beta}}|_{F_{\alpha\beta}}

which satisfy the cocycle condition and give descent data for the obstruction sheaf 𝒪bF=𝒪bX|Ffix\mathcal{O}b_{F}=\mathcal{O}b_{X}|_{F}^{fix}.

Let VλTV_{\lambda}^{T} denote the fixed locus of VλV_{\lambda}. Similarly by TT-equivariance, the isomorphisms ηαβλ\eta_{\alpha\beta\lambda} induce isomorphisms

ηαβλF:=ηαβλ|VλTfix:Eα|VλTfixEβ|VλTfix\eta_{\alpha\beta\lambda}^{F}:=\eta_{\alpha\beta\lambda}|_{V_{\lambda}^{T}}^{fix}\colon E_{\alpha}|_{V_{\lambda}^{T}}^{fix}\longrightarrow E_{\beta}|_{V_{\lambda}^{T}}^{fix}

fitting in a commutative diagram

(5.19)

and satisfying h1(ηαβλ|VλTfix)=ψαβ1|Fαβfixh^{1}(\eta_{\alpha\beta\lambda}^{\vee}|_{V_{\lambda}^{T}}^{fix})=\psi_{\alpha\beta}^{-1}|_{F_{\alpha\beta}}^{fix}, as desired. ∎

Let Nαvir=(Eα|Fαmv)N_{\alpha}^{\mathrm{vir}}=(E_{\alpha}|_{F_{\alpha}}^{mv})^{\vee} be the virtual normal bundle of FαF_{\alpha} in XαX_{\alpha} and write EαF=Eα|FαfixE_{\alpha}^{F}=E_{\alpha}|_{F_{\alpha}}^{fix} for brevity from now on.

In order to prove the torus localization formula in the next subsection, we will need to modify the almost perfect obstruction theory ϕF\phi^{F} on FF. To this end, we make the following assumption.

Assumption 5.3.

There exists a two-term complex

Nvir=[N0N1]\displaystyle N^{\mathrm{vir}}=[N_{0}\longrightarrow N_{1}]

of locally free sheaves on FF and an isomorphism μ:h1(Nvir)𝒪bϕ|Fmv\mu\colon h^{1}(N^{\mathrm{vir}})\to\mathcal{O}b_{\phi}|_{F}^{mv} such that for any index α\alpha we have an isomorphism Nvir|FαNαvirN^{\mathrm{vir}}|_{F_{\alpha}}\cong N_{\alpha}^{\mathrm{vir}} whose homology in degree 11 induces the restriction μ|Fα\mu|_{F_{\alpha}}. We write N1=N1,N0=N0N^{-1}=N_{1}^{\vee},N^{0}=N_{0}^{\vee}.

This assumption may turn out to be unnecessary in the future but under the current state of technology, this is a weakest assumption for a proof of the virtual torus localization formula, Theorem 5.13 below.

We will compare the virtual structure sheaves [𝒪Xvir][{\mathscr{O}}_{X}^{\mathrm{vir}}] on XX and [𝒪Fvir][{\mathscr{O}}_{F}^{\mathrm{vir}}] on FF through an intermediate virtual structure sheaf [𝒪~Fvir][\widetilde{\mathscr{O}}_{F}^{\mathrm{vir}}], after introducing an auxiliary almost perfect obstruction theory on FF. Here is an outline:

  1. (1)

    (Proposition 5.5) [𝒪~Fvir]=[𝒪Fvir]e(N1)[\widetilde{\mathscr{O}}_{F}^{\mathrm{vir}}]=[{\mathscr{O}}_{F}^{\mathrm{vir}}]\cap e(N_{1}) where ()e(N1)(\cdot)\cap e(N_{1}) is tensoring the Koszul complex N1\wedge^{\bullet}N^{-1} for the zero section of N1N_{1}.

  2. (2)

    (Proposition 5.8) ı![𝒪Xvir]=[𝒪~Fvir]\imath^{!}[{\mathscr{O}}_{X}^{\mathrm{vir}}]=[\widetilde{\mathscr{O}}_{F}^{\mathrm{vir}}] where ı:FX\imath:F\to X is the inclusion and ı!\imath^{!} is the virtual pullback defined in [Qu18].

  3. (3)

    (Proposition 5.12) ıξ=[𝒪Xvir]\imath_{*}\xi=[{\mathscr{O}}_{X}^{\mathrm{vir}}] for some ξK0(F)(t)\xi\in K_{0}(F)\otimes_{\mathbb{Q}}\mathbb{Q}(t).

  4. (4)

    (Theorem 5.13) Since ξe(N0)=ı!ıξ=ı![𝒪Xvir]=[𝒪Fvir]e(N1)\xi\cap e(N_{0})=\imath^{!}\imath_{*}\xi=\imath^{!}[{\mathscr{O}}_{X}^{\mathrm{vir}}]=[{\mathscr{O}}_{F}^{\mathrm{vir}}]\cap e(N_{1}), we have ξ=[𝒪Fvir]/e(Nvir)\xi=[{\mathscr{O}}_{F}^{\mathrm{vir}}]/e(N^{\mathrm{vir}}) where e(Nvir)=e(N0)/e(N1).e(N^{\mathrm{vir}})=e(N_{0})/e(N_{1}). We thus obtain the torus localization formula

    (5.20) [𝒪Xvir]=ı[𝒪Fvir]e(Nvir).[{\mathscr{O}}_{X}^{\mathrm{vir}}]=\imath_{*}\frac{[{\mathscr{O}}_{F}^{\mathrm{vir}}]}{e(N^{\mathrm{vir}})}.

In the subsequent subsections, we will work out the details of the outline.

5.3. An auxiliary almost perfect obstruction theory on the fixed locus

We will introduce a new almost perfect obstruction theory on FF by adding the locally free sheaf N1N_{1} to the obstruction sheaf and compare the virtual structure sheaves arising from the old and new almost perfect obstruction theories.

For each index α\alpha, we let

(5.21) E~αF=EαFN1|Fα[1] and ϕ~αF:E~αFEαFϕαF𝕃Fα,\displaystyle\widetilde{E}_{\alpha}^{F}=E_{\alpha}^{F}\oplus N_{1}^{\vee}|_{F_{\alpha}}[1]\text{ and }\widetilde{\phi}_{\alpha}^{F}\colon\widetilde{E}_{\alpha}^{F}\longrightarrow E_{\alpha}^{F}\xrightarrow{\phi_{\alpha}^{F}}\mathbb{L}_{F_{\alpha}},

where the first arrow E~αFEαF\widetilde{E}_{\alpha}^{F}\to E_{\alpha}^{F} in the composition is projection onto the first summand. It is clear that ϕ~αF\widetilde{\phi}_{\alpha}^{F} is a perfect obstruction theory on FαF_{\alpha} with obstruction sheaf 𝒪bϕ~αF=h1((E~αF))=𝒪bϕαFN1|Fα\mathcal{O}b_{\widetilde{\phi}_{\alpha}^{F}}=h^{1}((\widetilde{E}_{\alpha}^{F})^{\vee})=\mathcal{O}b_{\phi_{\alpha}^{F}}\oplus N_{1}|_{F_{\alpha}}.

Proposition 5.4.

The étale covering {FαF}\{F_{\alpha}\to F\} and the perfect obstruction theories ϕ~αF:E~αF𝕃Fα\widetilde{\phi}_{\alpha}^{F}\colon\widetilde{E}_{\alpha}^{F}\to\mathbb{L}_{F_{\alpha}} form an almost perfect obstruction theory ϕ~F\widetilde{\phi}^{F} on FF with obstruction sheaf 𝒪~bF=𝒪bFN1\widetilde{\mathcal{O}}b_{F}=\mathcal{O}b_{F}\oplus N_{1}.

Proof.

The proof is identical to that of Proposition 5.2 using

ψ~αβF=ψαβFidN1|Fαβandη~αβλF=ηαβλFidN1|VλT\widetilde{\psi}_{\alpha\beta}^{F}=\psi_{\alpha\beta}^{F}\oplus\textrm{id}_{N_{1}|_{F_{\alpha\beta}}}\quad\text{and}\quad\widetilde{\eta}_{\alpha\beta\lambda}^{F}=\eta_{\alpha\beta\lambda}^{F}\oplus\textrm{id}_{N_{1}|_{V_{\lambda}^{T}}}

for the appropriate compatibilities. ∎

The two almost perfect obstruction theories ϕF\phi^{F} and ϕ~F\widetilde{\phi}^{F} on FF induce virtual structure sheaves [𝒪Fvir]K0(F)[\mathscr{O}_{F}^{\mathrm{vir}}]\in K_{0}(F) and [𝒪~Fvir]K0(F)[\widetilde{\mathscr{O}}_{F}^{\mathrm{vir}}]\in K_{0}(F) respectively. These are related by the following formula.

Proposition 5.5.

[𝒪~Fvir]=[𝒪Fvir]e(N1)K0(F)[\widetilde{\mathscr{O}}_{F}^{\mathrm{vir}}]=[\mathscr{O}_{F}^{\mathrm{vir}}]\cap e(N_{1})\in K_{0}(F) where ()e(N1)(\cdot)\cap e(N_{1}) denotes tensoring the Koszul complex (N1)\wedge^{\bullet}(N^{-1}) for the zero section of N1N_{1}.

Proof.

Let jϕF:𝔠F𝒪bFj_{\phi^{F}}\colon\mathfrak{c}_{F}\to\mathcal{O}b_{F} be the induced embedding of the coarse intrinsic normal cone stack of FF into the obstruction sheaf stack of ϕF\phi^{F}. By the definition of ϕ~F\widetilde{\phi}^{F}, it is easy to see that the embedding jϕ~Fj_{\widetilde{\phi}^{F}} is the composition of jϕFj_{\phi^{F}} with the inclusion 𝒪bF𝒪~bF=𝒪bFN1\mathcal{O}b_{F}\to\widetilde{\mathcal{O}}b_{F}=\mathcal{O}b_{F}\oplus N_{1} as the first summand.

By Definition 2.11, we have

[𝒪~Fvir]=0𝒪b~F![𝒪𝔠F]=0𝒪bFN1![𝒪𝔠F][\widetilde{\mathscr{O}}_{F}^{\mathrm{vir}}]=0_{\widetilde{\mathcal{O}b}_{F}}^{!}[\mathscr{O}_{\mathfrak{c}_{F}}]=0_{\mathcal{O}b_{F}\oplus N_{1}}^{!}[\mathscr{O}_{\mathfrak{c}_{F}}]
=0N1!(0ObF![𝒪𝔠F])=0N1![𝒪Fvir]=[𝒪Fvir]e(N1)=0^{!}_{N_{1}}\left(0^{!}_{Ob_{F}}[{\mathscr{O}}_{\mathfrak{c}_{F}}]\right)=0^{!}_{N_{1}}[{\mathscr{O}}_{F}^{\mathrm{vir}}]=[{\mathscr{O}}_{F}^{\mathrm{vir}}]\cap e(N_{1})

as desired. ∎

5.4. Refined intersection with the fixed locus

In this subsection, we prove Proposition 5.8 below.

Lemma 5.6.

[𝒪~Fvir]=0𝒪bX|FN0![𝒪𝔠F/𝒞X]K0(F)[\widetilde{\mathscr{O}}_{F}^{\mathrm{vir}}]=0_{\mathcal{O}b_{X}|_{F}\oplus N_{0}}^{!}[\mathscr{O}_{\mathfrak{c}_{F/\mathcal{C}_{X}}}]\in K_{0}(F).

Proof.

The proof is an adaptation of a standard functoriality argument, following the lines of the proof of [KS20, Theorem 4.3]. We repeat a sketch of the argument here for the convenience of the reader.

Let X1\mathcal{M}_{X}^{\circ}\to\mathbb{P}^{1} be the deformation of Spec\mathrm{Spec}\,\mathbb{C} to the intrinsic normal cone stack 𝒞X\mathcal{C}_{X}. Let 𝒲=F×1/X\mathcal{W}=\mathcal{M}_{F\times\mathbb{P}^{1}/\mathcal{M}_{X}^{\circ}}^{\circ} be the double deformation space given by the deformation of F×1F\times\mathbb{P}^{1} inside X\mathcal{M}_{X}^{\circ} to its normal cone 𝒞F×1/X\mathcal{C}_{F\times\mathbb{P}^{1}/\mathcal{M}_{X}^{\circ}}. We also write 𝒩F×1/X\mathcal{N}_{F\times\mathbb{P}^{1}/\mathcal{M}_{X}^{\circ}} for the intrinsic normal sheaf with coarse moduli sheaf the sheaf stack 𝔫F×1/X\mathfrak{n}_{F\times\mathbb{P}^{1}/\mathcal{M}_{X}^{\circ}}. We have a morphism 𝒲1×1\mathcal{W}\to\mathbb{P}^{1}\times\mathbb{P}^{1} and denote the two projections 𝒲1\mathcal{W}\to\mathbb{P}^{1} by π1\pi_{1} and π2\pi_{2} respectively.

The fiber over (1,0)(1,0) is 𝒞F\mathcal{C}_{F}, while the flat specialization at the point (0,0)(0,0) along {0}×1\{0\}\times\mathbb{P}^{1} is 𝒞F/𝒞X\mathcal{C}_{F/\mathcal{C}_{X}}. In particular, the flat specialization at (0,0)(0,0) along 1×{0}\mathbb{P}^{1}\times\{0\} is also 𝒞F/𝒞X\mathcal{C}_{F/\mathcal{C}_{X}} meaning that there exists a closed substack 𝒵𝒞F×1/X\mathcal{Z}\subset\mathcal{C}_{F\times\mathbb{P}^{1}/\mathcal{M}_{X}^{\circ}}, flat over 1\mathbb{P}^{1} with fibers

(5.22) 𝒵t={𝒞F,t0𝒞F/𝒞X,t=0\displaystyle\mathcal{Z}_{t}=\begin{cases}\mathcal{C}_{F},&t\neq 0\\ \mathcal{C}_{F/\mathcal{C}_{X}},&t=0\end{cases}

Thus

[𝒪𝒵𝒪1L0]\displaystyle[\mathscr{O}_{\mathcal{Z}}\otimes_{\mathscr{O}_{\mathbb{P}^{1}}}^{L}\mathbb{C}_{0}] =[𝒪𝒵0]=[𝒪𝒞F/𝒞X]\displaystyle=[\mathscr{O}_{\mathcal{Z}_{0}}]=[\mathscr{O}_{\mathcal{C}_{F/\mathcal{C}_{X}}}]
[𝒪𝒵𝒪1L1]\displaystyle[\mathscr{O}_{\mathcal{Z}}\otimes_{\mathscr{O}_{\mathbb{P}^{1}}}^{L}\mathbb{C}_{1}] =[𝒪𝒵1]=[𝒪𝒞F],\displaystyle=[\mathscr{O}_{\mathcal{Z}_{1}}]=[\mathscr{O}_{\mathcal{C}_{F}}],

and since [0]=[1]K0(1)[\mathbb{C}_{0}]=[\mathbb{C}_{1}]\in K_{0}(\mathbb{P}^{1}) we obtain

[𝒪𝒞F]=[𝒪𝒞F/𝒞X]K0(𝒞F×1/X).\displaystyle[\mathscr{O}_{\mathcal{C}_{F}}]=[\mathscr{O}_{\mathcal{C}_{F/\mathcal{C}_{X}}}]\in K_{0}(\mathcal{C}_{F\times\mathbb{P}^{1}/\mathcal{M}_{X}^{\circ}}).

Pushing forward to 𝒩F×1/X\mathcal{N}_{F\times\mathbb{P}^{1}/\mathcal{M}_{X}^{\circ}}, the equality holds in K0(𝒩F×1/X)K_{0}(\mathcal{N}_{F\times\mathbb{P}^{1}/\mathcal{M}_{X}^{\circ}}) as well.

The same argument at the level of coarse moduli sheaves yields the equality

(5.23) [𝒪𝔠F]=[𝒪𝔠F/𝒞X]K0(𝔫F×1/X).\displaystyle[\mathscr{O}_{\mathfrak{c}_{F}}]=[\mathscr{O}_{\mathfrak{c}_{F/\mathcal{C}_{X}}}]\in K_{0}(\mathfrak{n}_{F\times\mathbb{P}^{1}/\mathcal{M}_{X}^{\circ}}).

As in [KKP03], for each α\alpha have a commutative diagram of exact triangles on Fα×1F_{\alpha}\times\mathbb{P}^{1}

where κα=(z0id,z1gα)\kappa_{\alpha}=(z_{0}\cdot\textrm{id},z_{1}\cdot g_{\alpha}) with z0,z1z_{0},z_{1} homogeneous coordinates on 1\mathbb{P}^{1} and gαg_{\alpha} is the canonical morphism from the inclusion FαUαF_{\alpha}\to U_{\alpha}. The morphism μα\mu_{\alpha} is the restriction to FαF_{\alpha} of a global arrow μ\mu and it is shown in [KKP03] that h1/h0(c(μ))=𝒩F×1/Xh^{1}/h^{0}(c(\mu)^{\vee})=\mathcal{N}_{F\times\mathbb{P}^{1}/\mathcal{M}_{X}^{\circ}}.

By the compatibilities afforded by the almost perfect obstruction theories and the definition (5.21) of E~αF\widetilde{E}_{\alpha}^{F}, we see that the closed embeddings

h1(c(μα))h1(c(κα))\displaystyle h^{1}(c(\mu_{\alpha})^{\vee})\longrightarrow h^{1}(c(\kappa_{\alpha})^{\vee})

glue to a global embedding of sheaf stacks on X×1X\times\mathbb{P}^{1}

𝔫F×1/X𝒦\displaystyle\mathfrak{n}_{F\times\mathbb{P}^{1}/\mathcal{M}_{X}^{\circ}}\longrightarrow\mathcal{K}

Moreover, it is routine to check that the fiber of 𝒦\mathcal{K} over 010\in\mathbb{P}^{1} is 𝒪bX|FN0\mathcal{O}b_{X}|_{F}\oplus N_{0}, while the fiber at 111\in\mathbb{P}^{1} is 𝒪b~F\widetilde{\mathcal{O}b}_{F}. Therefore, (5.23) and the discussion preceding it imply that

[𝒪~Fvir]=0𝒪b~F![𝒪𝔠F]=0𝒪bX|FN0![𝒪𝔠F/𝒞X],\displaystyle[\widetilde{\mathscr{O}}_{F}^{\mathrm{vir}}]=0_{\widetilde{\mathcal{O}b}_{F}}^{!}[\mathscr{O}_{\mathfrak{c}_{F}}]=0_{\mathcal{O}b_{X}|_{F}\oplus N_{0}}^{!}[\mathscr{O}_{\mathfrak{c}_{F/\mathcal{C}_{X}}}],

as desired. ∎

By the definition of E~αF\widetilde{E}_{\alpha}^{F}, for any index α\alpha, we have a commutative diagram of exact triangles

(5.28)

By the following proposition, θα\theta_{\alpha} gives a perfect obstruction theory on the morphism FαUαF_{\alpha}\to U_{\alpha}.

Proposition 5.7.

The étale covering {FαF}\{F_{\alpha}\to F\} and the perfect obstruction theories θα:N0|Fα[1]𝕃Fα/Xα\theta_{\alpha}\colon N_{0}^{\vee}|_{F_{\alpha}}[1]\to\mathbb{L}_{F_{\alpha}/X_{\alpha}} form an almost perfect obstruction theory θ\theta on ι:FX\iota\colon F\to X with obstruction sheaf 𝒪bF/X=N0\mathcal{O}b_{F/X}=N_{0}.

Proof.

Since FαXαF_{\alpha}\to X_{\alpha} is a closed embedding, 𝕃Fα/Xα\mathbb{L}_{F_{\alpha}/X_{\alpha}} is supported in degree 1-1. The long exact sequence in cohomology for the diagram (5.28) yields

The two leftmost vertical arrows are surjections, while the two rightmost arrows are isomorphisms. Thus, by the five lemma, the middle arrow h1(θα)h^{-1}(\theta_{\alpha}) is a surjection. Since h0(N0|Fα[1])=h0(𝕃Fα/Uα)=0h^{0}(N_{0}^{\vee}|_{F_{\alpha}}[1])=h^{0}(\mathbb{L}_{F_{\alpha}/U_{\alpha}})=0, θα\theta_{\alpha} is a perfect obstruction theory for the inclusion FαXαF_{\alpha}\to X_{\alpha}.

The rest of the proof is a diagram chase using the definition (5.21) of E~αF\widetilde{E}_{\alpha}^{F} and the compatibilities ψαβ\psi_{\alpha\beta} from Definition 2.10 and η~αβλF\widetilde{\eta}_{\alpha\beta\lambda}^{F} from Proposition 5.4. The details are omitted. ∎

The almost perfect obstruction theory θ\theta induces a closed embedding

j:𝔠F/X𝒪bF/X=N0\displaystyle j\colon\mathfrak{c}_{F/X}\longrightarrow\mathcal{O}b_{F/X}=N_{0}

Since ι:FX\iota\colon F\to X is an embedding, the coarse intrinsic normal cone stack 𝔠F/X\mathfrak{c}_{F/X} coincides with the intrinsic normal cone 𝒞F/X\mathcal{C}_{F/X} and we obtain a virtual pullback by the formula

ı!:K0(X)σıK0(𝒞F/X)jK0(N0)0N0!K0(F),\displaystyle\imath^{!}\colon K_{0}(X)\xrightarrow{\sigma_{\imath}}K_{0}(\mathcal{C}_{F/X})\xrightarrow{j_{*}}K_{0}(N_{0})\xrightarrow{0_{N_{0}}^{!}}K_{0}(F),

where σı\sigma_{\imath} is the deformation to the normal cone (cf. [Qu18, §2.1]).

Now we can prove the following.

Proposition 5.8.

With the notation above, we have

ι![𝒪Xvir]=[𝒪Fvir]e(N1).\iota^{!}[{\mathscr{O}}_{X}^{\mathrm{vir}}]=[{\mathscr{O}}_{F}^{\mathrm{vir}}]\cap e(N_{1}).
Proof.

By Lemma 5.6 and Proposition 5.13, it suffices to prove

(5.29) ı![𝒪Xvir]=0𝒪bX|FN0![𝒪𝔠F/𝒞X]K0(F).\imath^{!}[\mathscr{O}_{X}^{\mathrm{vir}}]=0_{\mathcal{O}b_{X}|_{F}\oplus N_{0}}^{!}[\mathscr{O}_{\mathfrak{c}_{F/\mathcal{C}_{X}}}]\in K_{0}(F).

For each local chart Q=(U,ρ,E,rE)Q=(U,\rho,E,r_{E}) of ObXOb_{X}, let FU=F×XUF_{U}=F\times_{X}U, C=𝔠X|U×ObX|UEC=\mathfrak{c}_{X}|_{U}\times_{Ob_{X}|_{U}}E be the lift of the normal cone 𝔠X\mathfrak{c}_{X} to EE.

For a closed immersion ZWZ\hookrightarrow W, MZ/WM_{Z/W}^{\circ} denote the deformation to the normal cone, i.e. it is the blowup of W×1W\times\mathbb{P}^{1} along Z×{0}Z\times\{0\} with the strict transform of W×{0}W\times\{0\} deleted. We have a flat morphism MZ/W1M_{Z/W}^{\circ}\to\mathbb{P}^{1} whose fiber over t0t\neq 0 (resp. t=0t=0) is WW (resp. the normal cone CZ/WC_{Z/W}).

Then we have a commutative diagram

(5.30) C\textstyle{C\ignorespaces\ignorespaces\ignorespaces\ignorespaces}C×𝔸1\textstyle{C\times\mathbb{A}^{1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}MFU/C\textstyle{M^{\circ}_{F_{U}/C}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}CFU/C\textstyle{C_{F_{U}/C}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}E\textstyle{E\ignorespaces\ignorespaces\ignorespaces\ignorespaces}E×𝔸1\textstyle{E\times\mathbb{A}^{1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}pr1\scriptstyle{pr_{1}}MFU/E\textstyle{M^{\circ}_{F_{U}/E}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}CFU/E\textstyle{C_{F_{U}/E}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}E|FUN0|FU\textstyle{E|_{F_{U}}\oplus N_{0}|_{F_{U}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ObX|U\textstyle{Ob_{X}|_{U}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ObX|U×𝔸1\textstyle{Ob_{X}|_{U}\times\mathbb{A}^{1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ObX|U×UMFU/U\textstyle{Ob_{X}|_{U}\times_{U}M_{F_{U}/U}^{\circ}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ObX|FU×FUCFU/U\textstyle{Ob_{X}|_{F_{U}}\times_{F_{U}}C_{F_{U}/U}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ObX|FUN0|FU\textstyle{Ob_{X}|_{F_{U}}\oplus N_{0}|_{F_{U}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}U\textstyle{U}U×𝔸1\textstyle{U\times\mathbb{A}^{1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}pr1\scriptstyle{pr_{1}}MFU/U\textstyle{M^{\circ}_{F_{U}/U}}CFU/U\textstyle{C_{F_{U}/U}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}N0|FU.\textstyle{N_{0}|_{F_{U}}.}

By descent, we have a diagram

(5.31) K0(X)\textstyle{K_{0}(X)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}pr1\scriptstyle{pr_{1}^{*}}K0(X×𝔸1)\textstyle{K_{0}(X\times\mathbb{A}^{1})}K0(MF/X)\textstyle{K_{0}(M^{\circ}_{F/X})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}K0(ObX)\textstyle{K_{0}(Ob_{X})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}pr1\scriptstyle{pr_{1}^{*}}0ObX!\scriptstyle{0^{!}_{Ob_{X}}}K0(ObX|X×𝔸1)\textstyle{K_{0}(Ob_{X}|_{X\times\mathbb{A}^{1}})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0ObX|X×𝔸1!\scriptstyle{0^{!}_{Ob_{X}|_{X\times\mathbb{A}^{1}}}}K0(ObX|MF/X)\textstyle{K_{0}(Ob_{X}|_{M^{\circ}_{F/X}})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0ObX|MF/X!\scriptstyle{0^{!}_{Ob_{X}|_{M^{\circ}_{F/X}}}}
K0(CF/X)\textstyle{K_{0}(C_{F/X})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}j\scriptstyle{j_{*}}K0(N0)\textstyle{K_{0}(N_{0})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0N0!\scriptstyle{0_{N_{0}}^{!}}K0(F)\textstyle{K_{0}(F)}K0(ObX|F×FCF/X)\textstyle{K_{0}(Ob_{X}|_{F}\times_{F}C_{F/X})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0ObX|CF/X!\scriptstyle{0^{!}_{Ob_{X}|_{C_{F/X}}}}K0(ObX|FN0)\textstyle{K_{0}(Ob_{X}|_{F}\oplus N_{0})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0ObX|N0!\scriptstyle{0^{!}_{Ob_{X}|_{N_{0}}}}0ObX|FN0!\scriptstyle{0^{!}_{Ob_{X}|_{F}\oplus N_{0}}}

which is commutative by Lemmas 3.8, 3.9 and 3.7. Although there are left arrows in (5.31), the composition of the horizontal arrows for the top row is well defined. For the bottom row, the composition of the horizontal arrows evaluated at [𝒪𝔠X][{\mathscr{O}}_{\mathfrak{c}_{X}}] is well defined and equal to [𝒪𝔠F/𝒞X][{\mathscr{O}}_{\mathfrak{c}_{F/\mathcal{C}_{X}}}] by (5.30). By the definition of ı!\imath^{!}, 0ObX![𝒪𝔠X]=[𝒪Xvir]0^{!}_{Ob_{X}}[{\mathscr{O}}_{\mathfrak{c}_{X}}]=[{\mathscr{O}}_{X}^{\mathrm{vir}}] is mapped to ı![𝒪Xvir]\imath^{!}[{\mathscr{O}}_{X}^{\mathrm{vir}}]. Hence (5.29) follows from (5.31). ∎

Finally, the following standard equality for virtual pullbacks holds in our setting (cf. [Qu18, Proposition 2.14]).

Proposition 5.9.

For any 𝒜K0(F)\mathcal{A}\in K_{0}(F), ı!ı(𝒜)=𝒜e(N0)=𝒜(N0)\imath^{!}\imath_{*}(\mathcal{A})=\mathcal{A}\cap e(N_{0})=\mathcal{A}\cdot\wedge^{\bullet}(N^{0}).

Proof.

This is an easy computation, similar to the proof of Proposition 5.5 (but simpler), using the fact that σι(𝒜)=𝒜K0(𝒞F/X)\sigma_{\iota}(\mathcal{A})=\mathcal{A}\in K_{0}(\mathcal{C}_{F/X}). ∎

5.5. Virtual torus localization formula

We are now ready to prove the virtual torus localization formula, using the results of the previous subsections.

All KK-groups are now considered with \mathbb{Q}-coefficients. We denote by tt the equivariant parameter so that K0T(Spec)=[t,t1]K_{0}^{T}(\mathop{\rm Spec}\nolimits\mathbb{C})=\mathbb{Q}[t,t^{-1}].

We introduce some terminology.

Definition 5.10.

Let XX be a Deligne-Mumford stack with an action of TT and ı:FX\imath\colon F\to X denote its TT-fixed locus. We say that XX is admissible for torus localization if the homomorphism

ı:K0T(F)K0T(X)\imath_{*}\colon K_{0}^{T}(F)\to K_{0}^{T}(X)

of K0T(Spec)=[t,t1]K_{0}^{T}(\mathop{\rm Spec}\nolimits\mathbb{C})=\mathbb{Q}[t,t^{-1}]-modules becomes an isomorphism after tensoring with (t)\mathbb{Q}(t).

Remark 5.11.

By [EG05], if XX is an algebraic space with a TT-action, then XX is admissible.

The following proposition shows that condition (a) in Definition 5.1 implies that Deligne-Mumford stacks with equivariant almost perfect obstruction theories are admissible.

Proposition 5.12.

Let XX be a Deligne-Mumford stack with an action of TT and a TT-equivariant étale atlas f:UXf\colon U\to X of finite type. Then XX is admissible.

Proof.

Let M=XFM=X-F and V=f1(M)V=f^{-1}(M). Using the existence of the equivariant atlas f:UXf\colon U\to X, we have the excision exact sequence for KK-theory of Deligne-Mumford stacks (cf. [Toe99, Proposition 3.3]), and thus it suffices to show that

KT(M)[t,t1](t)=0\displaystyle K_{\ast}^{T}(M)\otimes_{\mathbb{Q}[t,t^{-1}]}\mathbb{Q}(t)=0

or equivalently

(5.32) KT(M)[t,t1](t)=0,\displaystyle K_{\ast}^{T}(M)\otimes_{\mathbb{Q}[t,t^{-1}]}\mathbb{C}(t)=0,

where KT(M)K_{\ast}^{T}(M) is the direct sum of all TT-equivariant KK-theory groups.

More generally, we will show that if MM is a Deligne-Mumford stack with a TT-action and TT-equivariant atlas f:VMf\colon V\to M with empty fixed locus MT=M^{T}=\emptyset, then (5.32) holds. In the rest of the proof, all KK-groups are considered with \mathbb{C}-coefficients.

Let M1MM_{1}\subset M be an open substack such that f:V1=f1(M1)M1f\colon V_{1}=f^{-1}(M_{1})\to M_{1} is étale of (maximal) degree nn. M1M_{1} is preserved by the TT-action. Then, as in [Kre99, Proposition 4.5.5.(iii)], we have that M1M_{1} is isomorphic to the quotient of the complement of all diagonals in the nn-fold product V1×M1×M1V1V_{1}\times_{M_{1}}...\times_{M_{1}}V_{1} by the action of the symmetric group SnS_{n}. Thus M1M_{1} is of the form [W1/G1][W_{1}/G_{1}] where G1G_{1} is a finite group acting on a scheme W1W_{1} and the TT-action is given by an action on W1W_{1} commuting with the G1G_{1}-action and such that W1T=W_{1}^{T}=\emptyset.

We write dim:R(G1)\dim\colon R(G_{1})\to\mathbb{C} for the morphism induced by mapping every representation to its dimension with kernel the augmentation (maximal) ideal 𝔪G1\mathfrak{m}_{G_{1}}.

We thus have

KT(M1)=KT([W1/G1])=KT×G1(W1).K_{\ast}^{T}(M_{1})=K_{\ast}^{T}([W_{1}/G_{1}])=K_{\ast}^{T\times G_{1}}(W_{1}).

Since W1T=W_{1}^{T}=\emptyset, TT acts on W1W_{1} with finite stabilizers and thus we may choose h1Th_{1}\in T such that W1h1=W_{1}^{h_{1}}=\emptyset. Then h1h_{1} belongs to the center of T×G1T\times G_{1} and so its conjugacy class is just {h1}\{h_{1}\}. Therefore, [EG05, Theorem 3.3(a)] implies that

KT×G1(W1)𝔪h1=0K_{\ast}^{T\times G_{1}}(W_{1})_{\mathfrak{m}_{h_{1}}}=0

where 𝔪h1\mathfrak{m}_{h_{1}} is the maximal ideal of the complex representation ring R(T×G1)=R(G1)[t,t1]R(T\times G_{1})=R(G_{1})[t,t^{-1}] generated by the augmentation ideal 𝔪G1\mathfrak{m}_{G_{1}} of G1G_{1} and (th1)(t-h_{1}).

In particular, for any element [x]KT×G1(W1)[x]\in K_{\ast}^{T\times G_{1}}(W_{1}) there exists a Laurent polynomial μ1(t)R(G1)[t,t1]𝔪h1\mu_{1}(t)\in R(G_{1})[t,t^{-1}]-\mathfrak{m}_{h_{1}} such that

μ1(t)[x]=0KT×G1(W1).\mu_{1}(t)\cdot[x]=0\in K_{\ast}^{T\times G_{1}}(W_{1}).

Letting 1(t)=μ1(t)mod𝔪G1[t,t1]\ell_{1}(t)=\mu_{1}(t)\mod\mathfrak{m}_{G_{1}}\in\mathbb{C}[t,t^{-1}], we have 1(t)0\ell_{1}(t)\neq 0 and

1(t)[x]𝔪G1KT×G1(W1)\ell_{1}(t)\cdot[x]\in\mathfrak{m}_{G_{1}}K_{\ast}^{T\times G_{1}}(W_{1})

so that

1(t)[x]=mi[xi]\ell_{1}(t)\cdot[x]=\sum m_{i}[x_{i}]

with mi𝔪G1m_{i}\in\mathfrak{m}_{G_{1}} and [xi]KT×G1(W1)[x_{i}]\in K_{\ast}^{T\times G_{1}}(W_{1}).

Repeating the argument for the [xi][x_{i}], we can find a non-zero Laurent polynomial 2(t)[t,t1]\ell_{2}(t)\in\mathbb{C}[t,t^{-1}] such that

2(t)1(t)[x]𝔪G12KT×G1(W1)\ell_{2}(t)\ell_{1}(t)\cdot[x]\in\mathfrak{m}_{G_{1}}^{2}K_{\ast}^{T\times G_{1}}(W_{1})

and continuing inductively, for any positive integer NN, non-zero Laurent polynomials 1(t),2(t),,N(t)[t,t1]\ell_{1}(t),\ell_{2}(t),...,\ell_{N}(t)\in\mathbb{C}[t,t^{-1}] such that

N(t)1(t)[x]𝔪G1NKT×G1(W1).\ell_{N}(t)...\ell_{1}(t)\cdot[x]\in\mathfrak{m}_{G_{1}}^{N}K_{\ast}^{T\times G_{1}}(W_{1}).

Since R(G1)R(G_{1}) is an Artinian \mathbb{C}-algebra of finite type, we have 𝔪G1N=0\mathfrak{m}_{G_{1}}^{N}=0 for large enough NN. We conclude that for any [x]KT×G1(W1)[x]\in K_{\ast}^{T\times G_{1}}(W_{1}) there exists a non-zero Laurent polynomial (t)[t,t1]\ell(t)\in\mathbb{C}[t,t^{-1}] such that

(t)[x]=0KT×G1(W1)\ell(t)\cdot[x]=0\in K_{\ast}^{T\times G_{1}}(W_{1})

which implies that

KT(M1)(t)=KT×G1(W1)(t)=0K_{\ast}^{T}(M_{1})\otimes\mathbb{C}(t)=K_{\ast}^{T\times G_{1}}(W_{1})\otimes\mathbb{C}(t)=0

Letting Z1=MM1Z_{1}=M-M_{1} to be the complement of M1M_{1}, by excision we are reduced to showing that KT(Z1)(t)=0K_{\ast}^{T}(Z_{1})\otimes\mathbb{C}(t)=0. Repeating the above argument and using Noetherian induction concludes the proof. ∎

Theorem 5.13.

(Virtual torus localization formula) Let XX be a Deligne-Mumford stack with an action of TT and a TT-equivariant almost perfect obstruction theory ϕ\phi such that Assumption 5.3 holds. Let FF denote the TT-fixed locus of XX and ϕF\phi^{F} its induced almost perfect obstruction theory. Then

[𝒪Xvir]=ι[𝒪Fvir]e(Nvir)K0T(X)[t,t1](t)\displaystyle[\mathscr{O}_{X}^{\mathrm{vir}}]=\iota_{*}\frac{[\mathscr{O}_{F}^{\mathrm{vir}}]}{e(N^{\mathrm{vir}})}\in K_{0}^{T}(X)\otimes_{\mathbb{Q}[t,t^{-1}]}\mathbb{Q}(t)

where the Euler class e(Nvir)=e(N0)/e(N1)=Λ1T((Nvir))e(N^{\mathrm{vir}})=e(N_{0})/e(N_{1})=\Lambda_{-1}^{T}((N^{\mathrm{vir}})^{\vee}) denotes multiplication by N0/N1\wedge^{\bullet}N^{0}/\wedge^{\bullet}N^{-1}.

Proof.

By Propositions 5.8 and 5.9, we have

(5.33) ı!ı[𝒪Fvir]e(Nvir)=ı!ı([𝒪Fvir]e(N1)e(N0))=[𝒪Fvir]e(N1)=ı![𝒪Xvir]\displaystyle\imath^{!}\imath_{*}\frac{[\mathscr{O}_{F}^{\mathrm{vir}}]}{e(N^{\mathrm{vir}})}=\imath^{!}\imath_{*}\left(\frac{[\mathscr{O}_{F}^{\mathrm{vir}}]\cap e(N_{1})}{e(N_{0})}\right)=[\mathscr{O}_{F}^{\mathrm{vir}}]\cap e(N_{1})=\imath^{!}[{\mathscr{O}}_{X}^{\mathrm{vir}}]

By the previous proposition, ı\imath_{*} becomes an isomorphism after tensoring with (t)\mathbb{Q}(t). Hence, Proposition 5.9 implies that ı!e(N0)\frac{\imath^{!}}{e(N_{0})} is the inverse of ı\imath_{*}. In particular, ı!\imath^{!} is injective. Thus the virtual torus localization formula follows from (5.33). ∎

6. Torus Localization of Cosection Localized Virtual Structure Sheaf

Torus localization for cosection localized virtual cycles has been established in [CKL17] and in [Kie18] in the settings of perfect and semi-perfect obstruction theory respectively. In this section, we prove the corresponding statement for virtual structure sheaves obtained by an almost perfect obstruction theory. As usual, TT denotes the torus \mathbb{C}^{\ast}.

Let XX be a Deligne-Mumford stack with a TT-action and a TT-equivariant almost perfect obstruction theory ϕ\phi given by perfect obstruction theories ϕα:Eα𝕃Xα\phi_{\alpha}\colon E_{\alpha}\to\mathbb{L}_{X_{\alpha}} on a TT-equivariant étale cover {ρα:XαX}\{\rho_{\alpha}\colon X_{\alpha}\to X\}. Moreover, suppose that we have a TT-invariant cosection

σ:𝒪bX𝒪X.\displaystyle\sigma\colon\mathcal{O}b_{X}\longrightarrow\mathscr{O}_{X}.

We use the same notation as in §4 and §5. Let F(σ)=F×XX(σ)F(\sigma)=F\times_{X}X(\sigma).

By Proposition 5.2, the fixed locus FF admits an almost perfect obstruction theory ϕF\phi^{F} on the étale cover {FαF}\{F_{\alpha}\to F\} with obstruction sheaf

𝒪bF=𝒪bX|Ffix.\mathcal{O}b_{F}=\mathcal{O}b_{X}|_{F}^{fix}.

Since the cosection σ\sigma is TT-invariant, σ|F\sigma|_{F} factors through a morphism

σF:𝒪bF𝒪F\displaystyle\sigma_{F}\colon\mathcal{O}b_{F}\longrightarrow\mathscr{O}_{F}

whose zero locus is precisely F(σ)F(\sigma). Therefore, by Definition 4.5, we have cosection localized virtual structure sheaves

[𝒪X,locvir]K0(X(σ)),[𝒪F,locvir]K0(F(σ)).\displaystyle[\mathscr{O}_{X,{\mathrm{loc}}}^{\mathrm{vir}}]\in K_{0}(X(\sigma)),\quad[\mathscr{O}_{F,{\mathrm{loc}}}^{\mathrm{vir}}]\in K_{0}(F(\sigma)).
Theorem 6.1.

Let ı:F(σ)X(σ)\imath\colon F(\sigma)\to X(\sigma) denote the inclusion and suppose that Assumption 5.3 holds. Then

[𝒪X,locvir]=ι[𝒪F,locvir]e(Nvir)K0T(X(σ))[t,t1](t).\displaystyle[\mathscr{O}_{X,{\mathrm{loc}}}^{\mathrm{vir}}]=\iota_{*}\frac{[\mathscr{O}_{F,{\mathrm{loc}}}^{\mathrm{vir}}]}{e(N^{\mathrm{vir}})}\in K_{0}^{T}(X(\sigma))\otimes_{\mathbb{Q}[t,t^{-1}]}\mathbb{Q}(t).
Proof.

The proof proceeds along the same steps of the proof of Theorem 5.13 with minor modifications to account for the presence of the cosections σ\sigma and σF\sigma_{F}.

The proof of Proposition 5.5 goes through, using the cosection

σ~F:𝒪b~F=𝒪bFN1𝒪bFσF𝒪F\widetilde{\sigma}_{F}\colon\widetilde{\mathcal{O}b}_{F}=\mathcal{O}b_{F}\oplus N_{1}\longrightarrow\mathcal{O}b_{F}\xrightarrow{\sigma_{F}}\mathscr{O}_{F}

and working with the sheaves 𝒜j\mathcal{A}_{j} defined in (4.8).

For Lemma 5.6, it is shown in [KL13a, Section 5] that there exists an extended cosection σ¯\bar{\sigma} for 𝒦\mathcal{K} which restricts to the cosection σ~F\widetilde{\sigma}^{F} over 111\in\mathbb{P}^{1} and the cosection

𝒪bX|FN0𝒪bX|Fσ|F𝒪F\mathcal{O}b_{X}|_{F}\oplus N_{0}\longrightarrow\mathcal{O}b_{X}|_{F}\xrightarrow{\sigma|_{F}}\mathscr{O}_{F}

over 010\in\mathbb{P}^{1}. Furthermore, it is shown that the coarse intrinsic normal cone 𝔠F×1/X\mathfrak{c}_{F\times\mathbb{P}^{1}/\mathcal{M}_{X}^{\circ}} has reduced support in 𝒦(σ¯)\mathcal{K}(\bar{\sigma}). A more detailed account of the same argument is also given in Appendix A. With these considerations, the proof goes through identically.

Finally, in Proposition 5.8, it is easy to check that all the sheaves and cones have the appropriate supports with respect to the cosections at hand. ∎

7. Applications

We now discuss some applications of the theory developed thus far. We establish a wall-crossing formula for simple \mathbb{C}^{\ast}-wall crossing in the setting of almost perfect obstruction theory, using the torus localization formula of Theorem 5.13. Moreover, we show that the Jiang-Thomas dual obstruction cone in [JT17] admits an almost perfect obstruction theory and thus gives rise to KK-theoretic invariants, using the combination of torus localization and cosection localization in Theorem 6.1.

7.1. KK-theoretic simple \mathbb{C}^{\ast}-wall crossing

In this subsection, we establish a KK-theoretic wall crossing formula for simple \mathbb{C}^{\ast}-wall crossing, following the construction given in [KL13b].

Let XX be a Deligne-Mumford stack acted on by the torus T=T=\mathbb{C}^{\ast} and equipped with a TT-equivariant almost perfect obstruction theory ϕ\phi consisting of perfect obstruction theories ϕα:Eα𝕃Xα\phi_{\alpha}\colon E_{\alpha}\to\mathbb{L}_{X_{\alpha}} on a TT-equivariant étale cover {XαX}\{X_{\alpha}\to X\}. Let FF denote the fixed locus. We assume that Assumption 5.3 holds, so that we have the two-term complex Nvir=[N0N1]N^{\mathrm{vir}}=[N_{0}\to N_{1}] of locally free sheaves on FF. Let

  1. (1)

    XsX^{s} be the open substack of XX, consisting of xXx\in X such that the orbit TxT\cdot x is 11-dimensional and closed in XX;

  2. (2)

    Σ±0={xX(XsF)|limt0t±1xF}\Sigma_{\pm}^{0}=\{x\in X-\left(X^{s}\cup F\right)\ |\ \lim_{t\to 0}t^{\pm 1}\cdot x\in F\};

  3. (3)

    Σ±=Σ±0F\Sigma_{\pm}=\Sigma_{\pm}^{0}\cup F;

  4. (4)

    X±=XΣXX_{\pm}=X-\Sigma_{\mp}\subset X;

  5. (5)

    M±=[X±/T]M=[X/T]M_{\pm}=[X_{\pm}/T]\subset M=[X/T].

We assume that M±M_{\pm} are separated Deligne-Mumford stacks.

The master space associated to the wall crossing M±M_{\pm} is defined by

(7.1) =[X×1Σ×{0}Σ+×{}/]\displaystyle\mathcal{M}=[X\times\mathbb{P}^{1}-\Sigma_{-}\times\{0\}-\Sigma_{+}\times\{\infty\}/\mathbb{C}^{\ast}]

where \mathbb{C}^{\ast} acts trivially on XX and on 1\mathbb{P}^{1} by t(a:b)=(a:tb)t\cdot(a:b)=(a:tb). \mathcal{M} admits an étale cover {α}\{\mathcal{M}_{\alpha}\to\mathcal{M}\} where

α=[Xα×1(Σ×XXα)×{0}(Σ+×XXα)×{}/].\displaystyle\mathcal{M}_{\alpha}=[X_{\alpha}\times\mathbb{P}^{1}-(\Sigma_{-}\times_{X}X_{\alpha})\times\{0\}-(\Sigma_{+}\times_{X}X_{\alpha})\times\{\infty\}/\mathbb{C}^{\ast}].

The TT-action on XX induces an action of TT on \mathcal{M} with fixed locus

M+FM.\displaystyle M_{+}\sqcup F\sqcup M_{-}.

For each index α\alpha, the pullback of ϕα\phi_{\alpha} to Xα×1X_{\alpha}\times\mathbb{P}^{1} is \mathbb{C}^{\ast}-equivariant and therefore by descent we obtain a morphism ϕ¯α:E¯α𝕃α\bar{\phi}_{\alpha}\colon\bar{E}_{\alpha}\to\mathbb{L}_{\mathcal{M}_{\alpha}}.

Proposition 7.1.

The morphisms ϕ¯α:E¯α𝕃α\bar{\phi}_{\alpha}\colon\bar{E}_{\alpha}\to\mathbb{L}_{\mathcal{M}_{\alpha}} on the étale cover {α}\{\mathcal{M}_{\alpha}\to\mathcal{M}\} form a TT-equivariant almost perfect obstruction theory ϕ¯\bar{\phi} on \mathcal{M}.

Proof.

The proof is straightforward, similar to the arguments given for checking the axioms of almost perfect obstruction theories in §5. ∎

Applying the virtual torus localization formula then yields the following theorem.

Theorem 7.2.

With the above notation and conditions, we have

[𝒪M+vir][𝒪Mvir]=rest=1[𝒪Fvir]e(Nvir)K0T().\displaystyle[\mathscr{O}_{M_{+}}^{\mathrm{vir}}]-[\mathscr{O}_{M_{-}}^{\mathrm{vir}}]=\mathrm{res}_{t=1}\frac{[\mathscr{O}_{F}^{\mathrm{vir}}]}{e(N^{\mathrm{vir}})}\in K_{0}^{T}(\mathcal{M}).
Proof.

By Theorem 5.13, we have

(7.2) [𝒪vir]=[𝒪M+vir]1t+[𝒪Mvir]1t1+[𝒪Fvir]e(Nvir)\displaystyle[\mathscr{O}_{\mathcal{M}}^{\mathrm{vir}}]=\frac{[\mathscr{O}_{M_{+}}^{\mathrm{vir}}]}{1-t}+\frac{[\mathscr{O}_{M_{-}}^{\mathrm{vir}}]}{1-t^{-1}}+\frac{[\mathscr{O}_{F}^{\mathrm{vir}}]}{e(N^{\mathrm{vir}})}

since, by construction, the normal bundle of M+M_{+} is trivial with TT-weight 11 and the normal bundle of MM_{-} is trivial with TT-weight 1-1.

Since [𝒪vir]K0T()[\mathscr{O}_{\mathcal{M}}^{\mathrm{vir}}]\in K_{0}^{T}(\mathcal{M}), it has zero residue at t=1t=1. Therefore, taking residues at t=1t=1, the left hand side of (7.2) vanishes and we get that

[𝒪M+vir]+[𝒪Mvir]+rest=1[𝒪Fvir]e(Nvir)\displaystyle-[\mathscr{O}_{M_{+}}^{\mathrm{vir}}]+[\mathscr{O}_{M_{-}}^{\mathrm{vir}}]+\mathrm{res}_{t=1}\frac{[\mathscr{O}_{F}^{\mathrm{vir}}]}{e(N^{\mathrm{vir}})}

is zero, which is what we want. ∎

7.2. Dual obstruction cone

We first recall the definition of the Jiang-Thomas dual obstruction cone [JT17].

Let XX be a Deligne-Mumford stack equipped with a perfect obstruction theory ϕ:E𝕃X\phi\colon E\to\mathbb{L}_{X} with obstruction sheaf =ObX=h1(E)\mathcal{F}=Ob_{X}=h^{1}(E^{\vee}).

Definition 7.3.

The dual obstruction cone of XX is defined by

N=SpecX(Sym)𝜋X\displaystyle N=\mathop{\rm Spec}\nolimits_{X}(\mathop{\rm Sym}\nolimits\mathcal{F})\xrightarrow{\pi}X

which is the functor that assigns to every morphism ρ:UX\rho\colon U\to X the set HomU(ρ,𝒪U)\mathop{\rm Hom}\nolimits_{U}(\rho^{*}\mathcal{F},\mathscr{O}_{U}).

By standard perfect obstruction theory arguments, we can find an étale cover {XαX}\{X_{\alpha}\to X\}, a smooth affine scheme AαA_{\alpha}, a vector bundle 𝒱α\mathcal{V}_{\alpha} on AαA_{\alpha} and a section sαH0(Aα,𝒱α)s_{\alpha}\in H^{0}(A_{\alpha},\mathcal{V}_{\alpha}) such that XαX_{\alpha} is the zero locus of sαs_{\alpha} and the perfect obstruction theory on XαX_{\alpha} is given by the two-term complex

(7.3) Eα=E|Xα[𝒱α|XαdsαΩAα|Xα]\displaystyle E_{\alpha}=E|_{X_{\alpha}}\simeq[\mathcal{V}_{\alpha}^{\vee}|_{X_{\alpha}}\xrightarrow{ds_{\alpha}^{\vee}}\Omega_{A_{\alpha}}|_{X_{\alpha}}]

together with the natural map to 𝕃Xα[Iα/Iα2ΩAα|Xα]\mathbb{L}_{X_{\alpha}}\simeq[I_{\alpha}/I_{\alpha}^{2}\to\Omega_{A_{\alpha}}|_{X_{\alpha}}], where IαI_{\alpha} is the ideal sheaf of XαX_{\alpha} in AαA_{\alpha}.

Let Nα=N|XαN_{\alpha}=N|_{X_{\alpha}} and write πα:𝒱α|XαXα\pi_{\alpha}\colon\mathcal{V}_{\alpha}^{\vee}|_{X_{\alpha}}\to{X_{\alpha}} for the projection. By definition, NαN_{\alpha} is the closed subscheme of 𝒱α|Xα\mathcal{V}_{\alpha}^{\vee}|_{X_{\alpha}} defined by the vanishing of the section

dsα:𝒱α|XαπαΩAα|Xα.\displaystyle ds_{\alpha}^{\vee}\colon\mathcal{V}_{\alpha}^{\vee}|_{X_{\alpha}}\longrightarrow\pi_{\alpha}^{*}\Omega_{A_{\alpha}}|_{X_{\alpha}}.

Let x1,,xnx_{1},\ldots,x_{n} be étale coordinates on AαA_{\alpha} and y1,,yry_{1},\ldots,y_{r} coordinates on the fibers of the bundle 𝒱α\mathcal{V}_{\alpha}^{\vee}. Then NαN_{\alpha} is cut out by the equations

(7.4) {si}1ir,{iyisixj}1jn\displaystyle\{s_{i}\}_{1\leq i\leq r},\ \{\sum_{i}y_{i}\frac{\partial s_{i}}{\partial x_{j}}\}_{1\leq j\leq n}

where si=si(x1,,xn)s_{i}=s_{i}(x_{1},\cdots,x_{n}) are the coordinate functions of the section sαs_{\alpha}.

Let s~α:𝒱α\widetilde{s}_{\alpha}\colon\mathcal{V}_{\alpha}^{\vee}\to\mathbb{C} be the function defined by the formula

s~α=iyisi.\displaystyle\widetilde{s}_{\alpha}=\sum_{i}y_{i}s_{i}.

The differential of s~α\widetilde{s}_{\alpha} is then

(7.5) ds~α=isidyi+j(iyisixj)dxj\displaystyle d\widetilde{s}_{\alpha}=\sum_{i}s_{i}dy_{i}+\sum_{j}\left(\sum_{i}y_{i}\frac{\partial s_{i}}{\partial x_{j}}\right)dx_{j}

Comparing (7.5) with (7.4) we see that NαN_{\alpha} is the d-critical locus of the function s~α\widetilde{s}_{\alpha}. It therefore admits a symmetric perfect obstruction theory (cf. [Beh09]) ψα:Fα𝕃Nα\psi_{\alpha}\colon F_{\alpha}\to\mathbb{L}_{N_{\alpha}} with

(7.6) Fα=[T𝒱α|Nαd(ds~α)Ω𝒱α|Nα]\displaystyle F_{\alpha}=[T_{\mathcal{V}_{\alpha}^{\vee}}|_{N_{\alpha}}\xrightarrow{d(d\widetilde{s}_{\alpha})^{\vee}}\Omega_{\mathcal{V}_{\alpha}^{\vee}}|_{N_{\alpha}}]

and obstruction sheaf 𝒪bNα=h1(Fα)=ΩNα\mathcal{O}b_{N_{\alpha}}=h^{1}(F_{\alpha}^{\vee})=\Omega_{N_{\alpha}}.

Theorem 7.4.

The étale cover {NαN}\{N_{\alpha}\to N\} and the (symmetric) perfect obstruction theories ψα:Fα𝕃Nα\psi_{\alpha}\colon F_{\alpha}\to\mathbb{L}_{N_{\alpha}} form an almost perfect obstruction theory ψ\psi on NN with obstruction sheaf 𝒪bN=ΩN\mathcal{O}b_{N}=\Omega_{N}.

Proof.

Let π:NX\pi\colon N\to X denote the projection. For any index α\alpha, we have a commutative diagram

(7.13)

giving an exact triangle πEαFαπEα[1]\pi^{*}E_{\alpha}\to F_{\alpha}\to\pi^{*}E_{\alpha}^{\vee}[1] fitting in a commutative diagram

(7.18)

where πϕα\pi^{*}\phi_{\alpha} and θα\theta_{\alpha} are restrictions to NαN_{\alpha} of global arrows πϕ:πEπ𝕃X\pi^{*}\phi\colon\pi^{*}E\to\pi^{*}\mathbb{L}_{X} and θ:πE[1]π𝕃N/X\theta\colon\pi^{*}E^{\vee}[1]\to\pi^{*}\mathcal{F}\to\mathbb{L}_{N/X} using the isomorphisms (7.3) and the definition of the dual obstruction cone NN. Since 𝒪bNα=ΩNα=ΩN|Nα\mathcal{O}b_{N_{\alpha}}=\Omega_{N_{\alpha}}=\Omega_{N}|_{N_{\alpha}} the obstruction sheaves glue to an obstruction sheaf 𝒪bN=ΩN\mathcal{O}b_{N}=\Omega_{N}.

Let Xαβ=Xα×XXβX_{\alpha\beta}=X_{\alpha}\times_{X}X_{\beta} and Nαβ=Nα×NNβ=N×XXαβN_{\alpha\beta}=N_{\alpha}\times_{N}N_{\beta}=N\times_{X}X_{\alpha\beta}. Then (7.18) together with the above discussion shows that there exist quasi-isomorphisms

ηαβ:Fα|NαβFβ|Nαβ\displaystyle\eta_{\alpha\beta}\colon F_{\alpha}|_{N_{\alpha\beta}}\longrightarrow F_{\beta}|_{N_{\alpha\beta}}

which are compatible with the morphisms ψα|Nαβ\psi_{\alpha}|_{N_{\alpha\beta}} and ψβ|Nαβ\psi_{\beta}|_{N_{\alpha\beta}} and respect the symmetry of the obstruction theories FαF_{\alpha} and FβF_{\beta}, thus inducing the gluing morphisms for the obstruction sheaf ΩN\Omega_{N}. In particular, the axioms of an almost perfect obstruction theory are all satisfied. ∎

Remark 7.5.

The almost perfect obstruction theory of NN is symmetric in the sense of [Beh09] with respect to the natural generalization of the definition in our context.

From now on, we assume that the perfect obstruction theory EE has a global resolution E=[E1E0]E=[E^{-1}\to E^{0}] where E1,E0E^{-1},E^{0} are locally free sheaves on XX.

The grading on Sym\mathop{\rm Sym}\nolimits\mathcal{F} determines a T=T=\mathbb{C}^{*}-action on NN, scaling the fibers of NN over XX, whose fixed locus is precisely XX. Differentiating the TT-action, we obtain the Euler vector field whose dual is a cosection

(7.19) σ:ΩN𝒪N\displaystyle\sigma\colon\Omega_{N}\longrightarrow\mathscr{O}_{N}

and whose vanishing locus is XX by [JT17, Section 3].

By construction, the almost perfect obstruction theory ψ\psi of Theorem 7.4 is TT-equivariant and has obstruction sheaf 𝒪bN=ΩN\mathcal{O}b_{N}=\Omega_{N}. By (7.13), the virtual normal bundle of XX inside NN is EE^{\vee} which by assumption admits the global resolution [E0E1][E_{0}\to E_{1}] where as usual Ei=(Ei)E_{i}=(E^{-i})^{\vee} for i=0,1i=0,1. Therefore Assumption 5.3 holds and we may apply Theorem 5.13 and Definition 4.5 to obtain the following theorem, keeping in mind that the cosection σ\sigma vanishes on the TT-fixed locus XX.

Theorem 7.6.

Let XX be a Deligne-Mumford stack with a perfect obstruction theory ϕ:E𝕃X\phi\colon E\to\mathbb{L}_{X} with obstruction sheaf =𝒪bX\mathcal{F}=\mathcal{O}b_{X} such that EE admits a global resolution by locally free sheaves. Let ψ\psi denote the induced TT-equivariant almost perfect obstruction theory of the dual obstruction cone N=SpecX(SymF)N=\mathop{\rm Spec}\nolimits_{X}(\mathop{\rm Sym}\nolimits F) with obstruction sheaf 𝒪bN=ΩN\mathcal{O}b_{N}=\Omega_{N} and cosection σ\sigma as in (7.19). Let ι:XN\iota\colon X\to N be the inclusion as the zero section. Then the cosection localized virtual structure sheaf [𝒪N,locvir]K0(X)[\mathscr{O}_{N,{\mathrm{loc}}}^{\mathrm{vir}}]\in K_{0}(X) and the virtual structure sheaves [𝒪Nvir]K0(N)[\mathscr{O}_{N}^{\mathrm{vir}}]\in K_{0}(N) and [𝒪Xvir]K0(X)[\mathscr{O}_{X}^{\mathrm{vir}}]\in K_{0}(X) are related by

[𝒪Nvir]\displaystyle[\mathscr{O}_{N}^{\mathrm{vir}}] =ι[𝒪N,locvir]K0(N),\displaystyle=\iota_{*}[\mathscr{O}_{N,{\mathrm{loc}}}^{\mathrm{vir}}]\in K_{0}(N),
[𝒪Nvir]\displaystyle[\mathscr{O}_{N}^{\mathrm{vir}}] =ι[𝒪Xvir]e(E)K0T(N)[t,t1](t).\displaystyle=\iota_{*}\frac{[\mathscr{O}_{X}^{\mathrm{vir}}]}{e(E^{\vee})}\in K_{0}^{T}(N)\otimes_{\mathbb{Q}[t,t^{-1}]}\mathbb{Q}(t).

In particular, when XX is proper, we may define KK-theoretic invariants by taking regular and equivariant Euler characteristics respectively to obtain

χ([𝒪N,locvir]),χt([𝒪Xvir]e(E))(t).\displaystyle\chi\left([\mathscr{O}_{N,{\mathrm{loc}}}^{\mathrm{vir}}]\right)\in\mathbb{Q},\quad\chi_{t}\left(\frac{[\mathscr{O}_{X}^{\mathrm{vir}}]}{e(E^{\vee})}\right)\in\mathbb{Q}(t).

Appendix A Deformation Invariance of Cosection Localized Virtual Structure Sheaf

Let ϕ\phi be an almost perfect obstruction theory on XSX\to S, given by perfect obstruction theories ϕα:Eα𝕃Xα/S\phi_{\alpha}\colon E_{\alpha}\to\mathbb{L}_{X_{\alpha}/S} on an étale cover {XαX}αA\{X_{\alpha}\to X\}_{\alpha\in A} of XX. Let σ:𝒪bX𝒪X\sigma\colon\mathcal{O}b_{X}\to\mathscr{O}_{X} be a cosection. We follow the notation of §4 throughout.

Suppose that we have a Cartesian diagram

(A.5)

where Z,WZ,W are smooth varieties and vv is a regular embedding, so that we also have cartesian diagrams

(A.10)

Suppose now that we have an almost perfect obstruction theory on YSY\to S given by perfect obstruction theories ϕα:Eα𝕃Yα/S\phi^{\prime}_{\alpha}\colon E_{\alpha}^{\prime}\to\mathbb{L}_{Y_{\alpha}/S} together with commutative diagrams

(A.15)

of distinguished triangles which are compatible with the diagrams (2.15) for ϕ\phi and ϕ\phi^{\prime} such that we have exact sequences

(A.16) NZ/W|Yα𝒪bYαh1(gα)𝒪bXα|Yα0.\displaystyle N_{Z/W}|_{Y_{\alpha}}\longrightarrow\mathcal{O}b_{Y_{\alpha}}\xrightarrow{h^{1}(g_{\alpha}^{\vee})}\mathcal{O}b_{X_{\alpha}}|_{Y_{\alpha}}\longrightarrow 0.

that glue to a sequence

(A.17) NZ/W|Y𝒪bY𝒪bX|Y0.\displaystyle N_{Z/W}|_{Y}\longrightarrow\mathcal{O}b_{Y}\longrightarrow\mathcal{O}b_{X}|_{Y}\longrightarrow 0.

We obtain an induced cosection

σ:𝒪bY𝒪bX|Yσ|Y𝒪Y\displaystyle\sigma^{\prime}\colon\mathcal{O}b_{Y}\longrightarrow\mathcal{O}b_{X}|_{Y}\xrightarrow{\sigma|_{Y}}\mathscr{O}_{Y}

The Cartesian squares (A.5) and (A.10) give rise to a diagram

with Cartesian squares.

Theorem A.1.

[𝒪Y,locvir]=v![𝒪X,locvir]K0(Y(σ))[\mathscr{O}_{Y,{\mathrm{loc}}}^{\mathrm{vir}}]=v^{!}[\mathscr{O}_{X,{\mathrm{loc}}}^{\mathrm{vir}}]\in K_{0}(Y(\sigma^{\prime})).

Here the Gysin map v!:K0(X(σ))K0(Y(σ))v^{!}\colon K_{0}(X(\sigma))\to K_{0}(Y(\sigma^{\prime})) is defined by the formula

(A.18) v![𝒜]=[𝒪ZW|X(σ)𝒪X(σ)𝒜]K0(Y(σ))\displaystyle v^{!}[\mathcal{A}]=[\mathscr{O}_{Z}^{W}|_{X(\sigma)}\otimes_{\mathscr{O}_{X(\sigma)}}\mathcal{A}]\in K_{0}(Y(\sigma^{\prime}))

where we fix 𝒪ZW\mathscr{O}_{Z}^{W} to be a finite locally free resolution of v𝒪Zv_{*}\mathscr{O}_{Z}. By [Lee04], v!v^{!} also equals the composition

(A.19) K0(X(σ))σuK0(CY(σ)/X(σ))0NZ/W!K0(Y(σ))\displaystyle K_{0}(X(\sigma))\xrightarrow{\sigma_{u}}K_{0}(C_{Y(\sigma^{\prime})/X(\sigma)})\xrightarrow{0_{N_{Z/W}}^{!}}K_{0}(Y(\sigma^{\prime}))

where σu\sigma_{u} is specialization to the normal cone and 0NZ/W!0_{N_{Z/W}}^{!} is the Gysin map induced from the Cartesian diagram

Proof of Theorem A.1.

Let X1\mathcal{M}_{X}^{\circ}\to\mathbb{P}^{1} be the deformation of XX to its intrinsic normal cone stack 𝒞X\mathcal{C}_{X} and 𝒲=Y×1/X\mathcal{W}=\mathcal{M}_{Y\times\mathbb{P}^{1}/\mathcal{M}_{X}^{\circ}}^{\circ} be the double deformation space given by the deformation of Y×1Y\times\mathbb{P}^{1} inside X\mathcal{M}_{X}^{\circ} to its normal cone 𝒞Y×1/X\mathcal{C}_{Y\times\mathbb{P}^{1}/\mathcal{M}_{X}^{\circ}}.

As in the proof of Lemma 5.6, we obtain

(A.20) [𝒪𝒞Y]=[𝒪𝒞Y/𝒞X]K0(𝒞Y×1/X).\displaystyle[\mathscr{O}_{\mathcal{C}_{Y}}]=[\mathscr{O}_{\mathcal{C}_{Y/\mathcal{C}_{X}}}]\in K_{0}(\mathcal{C}_{Y\times\mathbb{P}^{1}/\mathcal{M}_{X}^{\circ}}).

Since 𝒞Y×1/X\mathcal{C}_{Y\times\mathbb{P}^{1}/\mathcal{M}_{X}^{\circ}} is a closed substack of 𝒩Y×1/X\mathcal{N}_{Y\times\mathbb{P}^{1}/\mathcal{M}_{X}^{\circ}}, the equality holds in K0(𝒩Y×1/X)K_{0}(\mathcal{N}_{Y\times\mathbb{P}^{1}/\mathcal{M}_{X}^{\circ}}) as well.

Following [KKP03], for each index α\alpha we consider the commutative diagram of distinguished triangles on Yα×1Y_{\alpha}\times\mathbb{P}^{1}

(A.25)

where κα=(Tid,Ugα)\kappa_{\alpha}=(T\cdot\textrm{id},U\cdot g_{\alpha}) with T,UT,U coordinates on 1\mathbb{P}^{1}.

Clearly λα\lambda_{\alpha} is the restriction to VαV_{\alpha} of a global morphism λ\lambda. By [KKP03], we have that h1/h0(c(λ))=𝒩Y×1/Xh^{1}/h^{0}(c(\lambda)^{\vee})=\mathcal{N}_{Y\times\mathbb{P}^{1}/\mathcal{M}_{X}^{\circ}}.

By the properties of almost perfect obstruction theories and the compatibility diagrams (A.15), the closed embeddings

h1(c(λα))h1(c(κα))h^{1}(c(\lambda_{\alpha})^{\vee})\longrightarrow h^{1}(c(\kappa_{\alpha})^{\vee})

glue to a closed embedding of sheaf stacks on Y×1Y\times\mathbb{P}^{1}

𝔫Y×1/X𝒦.\mathfrak{n}_{Y\times\mathbb{P}^{1}/\mathcal{M}_{X}^{\circ}}\longrightarrow\mathcal{K}.

The same argument works at the level of coarse moduli sheaves, where flatness stands for exactness of the pullback functor. Thus we deduce the equality

(A.26) [𝒪𝔠Y]=[𝒪𝔠Y/𝒞X]K0(𝒦).\displaystyle[\mathscr{O}_{\mathfrak{c}_{Y}}]=[\mathscr{O}_{\mathfrak{c}_{Y/\mathcal{C}_{X}}}]\in K_{0}(\mathcal{K}).

The top row of (A.25) together with (A.16) and (A.17) give a commutative diagram

and therefore we obtain a (twisted) cosection σ¯:𝒦L\bar{\sigma}\colon\mathcal{K}\to L, where LL is the line bundle 𝒪Y×1(1)\mathscr{O}_{Y\times\mathbb{P}^{1}}(-1).

By [KL13a, Section 5], 𝔠Y×1/X\mathfrak{c}_{Y\times\mathbb{P}^{1}/\mathcal{M}_{X}^{\circ}} has reduced support in 𝒦(σ¯)\mathcal{K}(\bar{\sigma}). The fiber of 𝒦\mathcal{K} over {0}1\{0\}\in\mathbb{P}^{1} is 𝒪bX|YNZ/W|Y\mathcal{O}b_{X}|_{Y}\oplus N_{Z/W}|_{Y} while the fiber over {1}1\{1\}\in\mathbb{P}^{1} is 𝒪bY\mathcal{O}b_{Y}. The cosection σ¯\bar{\sigma} also restricts to the corresponding cosections over these two fibers. Therefore, we obtain by (A.26)

[𝒪Y,locvir]=0𝒪bY,σ![𝒪𝔠Y]=0𝒪bX|YNZ/W|Y,σ|Y![𝒪𝔠Y/𝒞X]\displaystyle[\mathscr{O}_{Y,{\mathrm{loc}}}^{\mathrm{vir}}]=0_{\mathcal{O}b_{Y},\sigma^{\prime}}^{!}[\mathscr{O}_{\mathfrak{c}_{Y}}]=0_{\mathcal{O}b_{X}|_{Y}\oplus N_{Z/W}|_{Y},\sigma|_{Y}}^{!}[\mathscr{O}_{\mathfrak{c}_{Y/\mathcal{C}_{X}}}]

Now, since the usual properties of Gysin maps hold by working on local charts of the corresponding sheaf stacks, we have

0𝒪bX|YNZ/W|Y,σ|Y![𝒪𝔠Y/𝒞X]=0𝒪bX|Y,σ|Y!0NZ/W|Y![𝒪𝔠Y/𝒞X]=0𝒪bX|Y,σ|Y!v![𝒪𝔠X]\displaystyle 0_{\mathcal{O}b_{X}|_{Y}\oplus N_{Z/W}|_{Y},\sigma|_{Y}}^{!}[\mathscr{O}_{\mathfrak{c}_{Y/\mathcal{C}_{X}}}]=0_{\mathcal{O}b_{X}|_{Y},\sigma|_{Y}}^{!}0_{N_{Z/W}|_{Y}}^{!}[\mathscr{O}_{\mathfrak{c}_{Y/\mathcal{C}_{X}}}]=0_{\mathcal{O}b_{X}|_{Y},\sigma|_{Y}}^{!}v^{!}[\mathscr{O}_{\mathfrak{c}_{X}}]

By the next proposition, we have 0𝒪bX|Y,σ|Y!v!=v!0𝒪bX,σ!0_{\mathcal{O}b_{X}|_{Y},\sigma|_{Y}}^{!}v^{!}=v^{!}0_{\mathcal{O}b_{X},\sigma}^{!}, which implies the desired equality. ∎

Proposition A.2.

For any coherent sheaf 𝒜\mathcal{A} on 𝒪bX\mathcal{O}b_{X} supported on 𝒪bX(σ)\mathcal{O}b_{X}(\sigma), 0𝒪bX|Y,σ|Y!v![𝒜]=v!0𝒪bX,σ![𝒜]0_{\mathcal{O}b_{X}|_{Y},\sigma|_{Y}}^{!}v^{!}[\mathcal{A}]=v^{!}0_{\mathcal{O}b_{X},\sigma}^{!}[\mathcal{A}].

Proof.

Since the pullback v!v^{!} is given by tensoring with the resolution 𝒪ZW\mathscr{O}_{Z}^{W}, the equality follows by combining the proofs of [KL17, Lemma 5.6] and [KS20, Proposition 4.3] together with the construction of the cosection localized Gysin map in §4. ∎

References

  • [Beh97] K. Behrend. Gromov-Witten invariants in algebraic geometry. Invent. Math., 127(3):601–617, 1997.
  • [Beh09] Kai Behrend. Donaldson-Thomas type invariants via microlocal geometry. Ann. of Math. (2), 170(3):1307–1338, 2009.
  • [BF97] Kai Behrend and Barbara Fantechi. The intrinsic normal cone. Invent. Math., 128(1):45–88, 1997.
  • [CKL17] Huai-Liang Chang, Young-Hoon Kiem, and Jun Li. Torus localization and wall crossing for cosection localized virtual cycles. Adv. Math., 308:964–986, 2017.
  • [EG05] Dan Edidin and William Graham. Nonabelian localization in equivariant KK-theory and Riemann-Roch for quotients. Adv. Math., 198(2):547–582, 2005.
  • [GP99] Tom Graber and Rahul Pandharipande. Localization of virtual classes. Invent. Math., 135(2):487–518, 1999.
  • [Har77] Robin Hartshorne. Algebraic geometry. Springer-Verlag, New York-Heidelberg, 1977. Graduate Texts in Mathematics, No. 52.
  • [Ina02] Michi-aki Inaba. Toward a definition of moduli of complexes of coherent sheaves on a projective scheme. J. Math. Kyoto Univ., 42(2):317–329, 2002.
  • [JT17] Yunfeng Jiang and Richard P. Thomas. Virtual signed Euler characteristics. J. Algebraic Geom., 26(2):379–397, 2017.
  • [Kie18] Young-Hoon Kiem. Localizing virtual fundamental cycles for semi-perfect obstruction theories. Internat. J. Math., 29(4):1850032, 30, 2018.
  • [KKP03] Bumsig Kim, Andrew Kresch, and Tony Pantev. Functoriality in intersection theory and a conjecture of Cox, Katz, and Lee. J. Pure Appl. Algebra, 179(1-2):127–136, 2003.
  • [KL13a] Young-Hoon Kiem and Jun Li. Localizing virtual cycles by cosections. J. Amer. Math. Soc., 26(4):1025–1050, 2013.
  • [KL13b] Young-Hoon Kiem and Jun Li. A wall crossing formula of Donaldson-Thomas invariants without Chern-Simons functional. Asian J. Math., 17(1):63–94, 2013.
  • [KL17] Young-Hoon Kiem and Jun Li. Localizing virtual structure sheaves by cosections. arXiv e-prints, page arXiv:1705.09458, May 2017.
  • [KLS17] Young-Hoon Kiem, Jun Li, and Michail Savvas. Generalized Donaldson-Thomas Invariants via Kirwan Blowups. arXiv e-prints, page arXiv:1712.02544, December 2017.
  • [Kre99] Andrew Kresch. Cycle groups for Artin stacks. Invent. Math., 138(3):495–536, 1999.
  • [KS20] Young-Hoon Kiem and Michail Savvas. K-Theoretic Generalized Donaldson–Thomas Invariants. International Mathematics Research Notices, 05 2020. rnaa097.
  • [Lee04] Yuan-Pin Lee. Quantum KK-theory. I. Foundations. Duke Math. J., 121(3):389–424, 2004.
  • [Lie06] Max Lieblich. Moduli of complexes on a proper morphism. J. Algebraic Geom., 15(1):175–206, 2006.
  • [LT98] Jun Li and Gang Tian. Virtual moduli cycles and Gromov-Witten invariants of algebraic varieties. J. Amer. Math. Soc., 11(1):119–174, 1998.
  • [Man12] Cristina Manolache. Virtual pull-backs. J. Algebraic Geom., 21(2):201–245, 2012.
  • [Oko17] Andrei Okounkov. Lectures on K-theoretic computations in enumerative geometry. In Geometry of moduli spaces and representation theory, volume 24 of IAS/Park City Math. Ser., pages 251–380. Amer. Math. Soc., Providence, RI, 2017.
  • [Oko19] Andrei Okounkov. Takagi lectures on Donaldson-Thomas theory. Jpn. J. Math., 14(1):67–133, 2019.
  • [PT09] Rahul Pandharipande and Richard P. Thomas. Curve counting via stable pairs in the derived category. Invent. Math., 178(2):407–447, 2009.
  • [Qu18] Feng Qu. Virtual pullbacks in KK-theory. Ann. Inst. Fourier (Grenoble), 68(4):1609–1641, 2018.
  • [Rom05] Matthieu Romagny. Group actions on stacks and applications. Michigan Math. J., 53(1):209–236, 2005.
  • [Sav20] Michail Savvas. Generalized Donaldson-Thomas Invariants of Derived Objects via Kirwan Blowups. arXiv e-prints, page arXiv:2005.13768, May 2020.
  • [Tho00] Richard P. Thomas. A holomorphic Casson invariant for Calabi-Yau 3-folds, and bundles on K3K3 fibrations. J. Differential Geom., 54(2):367–438, 2000.
  • [Toe99] B. Toen. Théorèmes de Riemann-Roch pour les champs de Deligne-Mumford. KK-Theory, 18(1):33–76, 1999.