This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Long-time behavior of a non-autonomous stochastic predator-prey model with jumps

Olg.Olga Borysenkolabel=e1]olga_borisenko@ukr.net\orcid0000-0000-0000-0000 [    O.Oleksandr Borysenkolabel=e2]odb@univ.kiev.ua [ \institutionDepartment of Mathematical Physics, National Technical University of Ukraine, 37, Prosp.Peremohy, Kyiv, 03056, \cny Ukraine \institutionDepartment of Probability Theory, Statistics and Actuarial Mathematics, Taras Shevchenko National University of Kyiv , Ukraine, 64 Volodymyrska Str., Kyiv, 01601 \cnyUkraine
(2020)
Abstract

It is proved the existence and uniqueness of the global positive solution to the system of stochastic differential equations describing a non-autonomous stochastic predator-prey model with modified version of Leslie-Gower term and Holling-type II functional response disturbed by white noise, centered and non-centered Poisson noises. We obtain sufficient conditions of stochastic ultimate boundedness, stochastic permanence, non-persistence in the mean, weak persistence in the mean and extinction of the solution to the considered system.

Stochastic Predator-Prey Model,
Leslie-Gower and Holling-type II functional response,
Global Solution,
Stochastic Ultimate Boundedness,
Stochastic Permanence,
Extinction,
Non-Persistence in the Mean,
Weak Persistence in the Mean,
92D25,
60H10,
60H30,
keywords:
keywords:
[MSC2010]
volume: 0issue: 0articletype: research-article
\pretitle

Research Article

[id=cor1]Corresponding author.

1 Introduction

The deterministic predator-prey model with modified version of Leslie-Gower term and Holling-type II functional response is studied in [1]. This model has a form

dx1(t)=x1(t)(abx1(t)cx2(t)m1+x1(t))dt,\displaystyle dx_{1}(t)=x_{1}(t)\left(a-bx_{1}(t)-\frac{cx_{2}(t)}{m_{1}+x_{1}(t)}\right)dt,
dx2(t)=x2(t)(rfx2(t)m2+x1(t))dt,\displaystyle dx_{2}(t)=x_{2}(t)\left(r-\frac{fx_{2}(t)}{m_{2}+x_{1}(t)}\right)dt, (1)

where x1(t)x_{1}(t) and x2(t)x_{2}(t) are the prey and predator population densities at time tt, respectively. Positive constants a,b,c,r,f,m1,m2a,b,c,r,f,m_{1},m_{2} defined as follows: aa is the growth rate of prey x1x_{1}; bb measures the strength of competition among individuals of species x1x_{1}; cc is the maximum value of the per capita reduction rate of x1x_{1} due to x2x_{2}; m1m_{1} and m2m_{2} measure the extent to which the environment provides protection to prey x1x_{1} and to the predator x2x_{2}, respectively; rr is the growth rate of predator x2x_{2}, and ff has a similar meaning to cc. In [1] the authors study boundedness and global stability of the positive equilibrium of the model (1)(\ref{eq1}).

In the papers [2], [3], [4] it is considered the stochastic version of model (1)(\ref{eq1}) in the following form

dx1(t)=x1(t)(abx1(t)cx2(t)m1+x1(t))dt+αx1(t)dw1(t),\displaystyle dx_{1}(t)=x_{1}(t)\left(a-bx_{1}(t)-\frac{cx_{2}(t)}{m_{1}+x_{1}(t)}\right)dt+\alpha x_{1}(t)dw_{1}(t),
dx2(t)=x2(t)(rfx2(t)m2+x1(t))dt+βx2(t)dw2(t),\displaystyle dx_{2}(t)=x_{2}(t)\left(r-\frac{fx_{2}(t)}{m_{2}+x_{1}(t)}\right)dt+\beta x_{2}(t)dw_{2}(t), (2)

where w1(t)w_{1}(t) and w2(t)w_{2}(t) are mutually independent Wiener processes in [2], [3], and processes w1(t),w2(t)w_{1}(t),w_{2}(t) are correlated in [4]. In [2] the authors proved that there is a unique positive solution to the system (1)(\ref{eq2}), obtaining the sufficient conditions for extinction and persistence in the mean of predator and prey. In [3] it is shown that, under appropriate conditions, there is a stationary distribution of the solution to the system (1)(\ref{eq2}) which is ergodic. In [4] the authors prove that the densities of the distributions of the solution to the system (1)(\ref{eq2}) can converges in L1L^{1} to an invariant density or can converge weakly to a singular measure under appropriate conditions.

Population systems may suffer abrupt environmental perturbations, such as epidemics, fires, earthquakes, etc. So it is natural to introduce Poisson noises into the population model for describing such discontinuous systems.

In this paper, we consider the non-autonomous predator-prey model with modified version of Leslie-Gower term and Holling-type II functional response, disturbed by white noise and jumps generated by centered and non-centered Poisson measures. So, we take into account not only “small” jumps, corresponding to the centered Poisson measure, but also the “large” jumps, corresponding to the non-centered Poisson measure. This model is driven by the system of stochastic differential equations

dxi(t)=xi(t)[ai(t)bi(t)xi(t)ci(t)x2(t)m(t)+x1(t)]dt+σi(t)xi(t)dwi(t)\displaystyle dx_{i}(t)=x_{i}(t)\left[a_{i}(t)-b_{i}(t)x_{i}(t)-\frac{c_{i}(t)x_{2}(t)}{m(t)+x_{1}(t)}\right]dt+\sigma_{i}(t)x_{i}(t)dw_{i}(t)
+γi(t,z)xi(t)ν~1(dt,dz)+δi(t,z)xi(t)ν2(dt,dz),\displaystyle+\int\limits_{\mathbb{R}}\gamma_{i}(t,z)x_{i}(t)\tilde{\nu}_{1}(dt,dz)+\int\limits_{\mathbb{R}}\delta_{i}(t,z)x_{i}(t)\nu_{2}(dt,dz),
xi(0)=xi0>0,i=1,2.\displaystyle x_{i}(0)=x_{i0}>0,\ i=1,2. (3)

where x1(t)x_{1}(t) and x2(t)x_{2}(t) are the prey and predator population densities at time tt, respectively, b2(t)0b_{2}(t)\equiv 0, wi(t),i=1,2w_{i}(t),i=1,2 are independent standard one-dimensional Wiener processes, νi(t,A),i=1,2\nu_{i}(t,A),i=1,2 are independent Poisson measures, which are independent on wi(t),i=1,2w_{i}(t),i=1,2, ν~1(t,A)=ν1(t,A)tΠ1(A)\tilde{\nu}_{1}(t,A)=\nu_{1}(t,A)-t\Pi_{1}(A), E[νi(t,A)]=tΠi(A),i=1,2E[\nu_{i}(t,A)]=t\Pi_{i}(A),i=1,2, Πi(A),i=1,2\Pi_{i}(A),i=1,2 are finite measures on the Borel sets AA in \mathbb{R}.

To the best of our knowledge, there have been no papers devoted to the dynamical properties of the stochastic predator-prey model (1)(\ref{eq3}), even in the case of centered Poisson noise. It is worth noting that the impact of centered and non-centered Poisson noises to the stochastic non-autonomous logistic model and to the stochastic two-species mutualism model is studied in the papers [5][7].

In the following we will use the notations X(t)=(x1(t),x2(t))X(t)=(x_{1}(t),x_{2}(t)), X0=(x10,x20)X_{0}=(x_{10},x_{20}), |X(t)|=x12(t)+x22(t)|X(t)|=\sqrt{x_{1}^{2}(t)+x_{2}^{2}(t)}, +2={X2:x1>0,x2>0}\mathbb{R}^{2}_{+}=\{X\in\mathbb{R}^{2}:\ x_{1}>0,x_{2}>0\},

αi(t)=ai(t)+δi(t,z)Π2(dz),\displaystyle\alpha_{i}(t)=a_{i}(t)+\int_{\mathbb{R}}\delta_{i}(t,z)\Pi_{2}(dz),
βi(t)=σi2(t)2+[γi(t,z)ln(1+γi(t,z))]Π1(dz)ln(1+δi(t,z))Π2(dz),\displaystyle\beta_{i}(t)\!=\!\frac{\sigma^{2}_{i}(t)}{2}\!+\!\!\!\int\limits_{\mathbb{R}}[\gamma_{i}(t,z)\!-\!\ln(1\!+\!\gamma_{i}(t,z))]\Pi_{1}(dz)\!-\!\!\!\int\limits_{\mathbb{R}}\ln(1\!+\!\delta_{i}(t,z))\Pi_{2}(dz),

i=1,2i=1,2. For bounded, continuous functions fi(t),t[0,+),i=1,2f_{i}(t),t\in[0,+\infty),i=1,2, let us denote

fisup=supt0fi(t),fiinf=inft0fi(t),i=1,2,\displaystyle f_{i\sup}=\sup_{t\geq 0}f_{i}(t),f_{i\inf}=\inf_{t\geq 0}f_{i}(t),i=1,2,
fmax=max{f1sup,f2sup},fmin=min{f1inf,f2inf}.\displaystyle f_{\max}=\max\{f_{1\sup},f_{2\sup}\},f_{\min}=\min\{f_{1\inf},f_{2\inf}\}.

We prove that system (1)(\ref{eq3}) has a unique, positive, global (no explosion in a finite time) solution for any positive initial value, and that this solution is stochastically ultimately bounded. The sufficient conditions for stochastic permanence, non-persistence in the mean, weak persistence in the mean and extinction of solution are derived.

The rest of this paper is organized as follows. In Section 2, we prove the existence of the unique global positive solution to the system (1)(\ref{eq3}) and derive some auxiliary results. In Section 3, we prove the stochastic ultimate boundedness of the solution to the system (1)(\ref{eq3}), obtainig conditions under which the solution is stochastically permanent. The sufficient conditions for non-persistence in the mean, weak persistence in the mean and extinction of the solution are derived.

2 Existence of global solution and some auxiliary lemmas

Let (Ω,,P)(\Omega,{\cal F},\mathrm{P}) be a probability space, wi(t),i=1,2,t0w_{i}(t),i=1,2,t\geq 0 are independent standard one-dimensional Wiener processes on (Ω,,P)(\Omega,{\cal F},\mathrm{P}), and νi(t,A),i=1,2\nu_{i}(t,A),i=1,2 are independent Poisson measures defined on (Ω,,P)(\Omega,{\cal F},\mathrm{P}) independent on wi(t),i=1,2w_{i}(t),i=1,2. Here E[νi(t,A)]=tΠi(A),i=1,2\mathrm{E}[\nu_{i}(t,A)]=t\Pi_{i}(A),i=1,2, ν~i(t,A)=νi(t,A)tΠi(A),i=1,2\tilde{\nu}_{i}(t,A)=\nu_{i}(t,A)-t\Pi_{i}(A),i=1,2, Πi(),i=1,2\Pi_{i}(\cdot),i=1,2 are finite measures on the Borel sets in \mathbb{R}. On the probability space (Ω,,P)(\Omega,{\cal F},\mathrm{P}) we consider an increasing, right continuous family of complete sub-σ\sigma-algebras {t}t0\{{\cal F}_{t}\}_{t\geq 0}, where t=σ{wi(s),νi(s,A),st,i=1,2}{\cal F}_{t}=\sigma\{w_{i}(s),\nu_{i}(s,A),s\leq t,i=1,2\}.

We need the following assumption.

Assumption 1.

It is assumed, that ai(t),b1(t)a_{i}(t),b_{1}(t), ci(t),σi(t),γi(t,z),δi(t,z),i=1,2c_{i}(t),\sigma_{i}(t),\gamma_{i}(t,z),\delta_{i}(t,z),i=1,2, m(t)m(t) are bounded, continuous on tt functions, ai(t)>0,i=1,2a_{i}(t)>0,i=1,2, b1inf>0b_{1\inf}>0, ciinf>0,i=1,2c_{i\inf}>0,i=1,2, minf=inft0m(t)>0m_{\inf}=\inf_{t\geq 0}m(t)>0, and ln(1+γi(t,z)),ln(1+δi(t,z)),i=1,2\ln(1+\gamma_{i}(t,z)),\ln(1+\delta_{i}(t,z)),i=1,2 are bounded, Πi()<,i=1,2\Pi_{i}(\mathbb{R})<\infty,i=1,2.

In what follows we will assume that Assumption 1 holds.

Theorem 1.

There exists a unique global solution X(t)X(t) to the system (1)(\ref{eq3}) for any initial value X(0)=X0+2X(0)=X_{0}\in\mathbb{R}^{2}_{+}, and P{X(t)+2}=1\mathrm{P}\{X(t)\in\mathbb{R}^{2}_{+}\}=1.

Proof.

Let us consider the system of stochastic differential equations

dξi(t)=[ai(t)bi(t)exp{ξi(t)}ci(t)exp{ξ2(t)}m(t)+exp{ξ1(t)}βi(t)]dt\displaystyle d\xi_{i}(t)=\left[a_{i}(t)-b_{i}(t)\exp\{\xi_{i}(t)\}-\frac{c_{i}(t)\exp\{\xi_{2}(t)\}}{m(t)+\exp\{\xi_{1}(t)\}}-\beta_{i}(t)\right]dt
+σi(t)dwi(t)+ln(1+γi(t,z))ν~1(dt,dz)+ln(1+δi(t,z))ν~2(dt,dz),\displaystyle+\sigma_{i}(t)dw_{i}(t)+\int\limits_{\mathbb{R}}\ln(1+\gamma_{i}(t,z))\tilde{\nu}_{1}(dt,dz)+\int\limits_{\mathbb{R}}\ln(1+\delta_{i}(t,z))\tilde{\nu}_{2}(dt,dz),
vi(0)=lnxi0,i=1,2.\displaystyle v_{i}(0)=\ln x_{i0},\ i=1,2. (4)

The coefficients of the system (2)(\ref{eq4}) are local Lipschitz continuous. So, for any initial value (ξ1(0),ξ2(0))(\xi_{1}(0),\xi_{2}(0)) there exists a unique local solution Ξ(t)=(ξ1(t),ξ2(t))\Xi(t)=(\xi_{1}(t),\xi_{2}(t)) on [0,τe)[0,\tau_{e}), where supt<τe|Ξ(t)|=+\sup_{t<\tau_{e}}|\Xi(t)|=+\infty (cf. Theorem 6, p.246, [8]). Therefore, from the Itô formula we derive that the process X(t)=(exp{ξ1(t)},exp{ξ2(t)})X(t)=(\exp\{\xi_{1}(t)\},\linebreak\exp\{\xi_{2}(t)\}) is a unique, positive local solution to the system (1). To show this solution is global, we need to show that τe=+\tau_{e}=+\infty a.s. Let n0n_{0}\in\mathbb{N} be sufficiently large for xi0[1/n0,n0],i=1,2x_{i0}\in[1/n_{0},n_{0}],i=1,2. For any nn0n\geq n_{0} we define the stopping time

τn=inf{t[0,τe):X(t)(1n,n)×(1n,n)}.\displaystyle\tau_{n}=\inf\left\{t\in[0,\tau_{e}):\ X(t)\notin\left(\frac{1}{n},n\right)\times\left(\frac{1}{n},n\right)\right\}.

It is easy to see that τn\tau_{n} is increasing as n+n\to+\infty. Denote τ=limnτn\tau_{\infty}=\lim_{n\to\infty}\tau_{n}, whence ττe\tau_{\infty}\leq\tau_{e} a.s. If we prove that τ=\tau_{\infty}=\infty a.s., then τe=\tau_{e}=\infty a.s. and X(t)+2X(t)\in\mathbb{R}^{2}_{+} a.s. for all t[0,+)t\in[0,+\infty). So we need to show that τ=\tau_{\infty}=\infty a.s. If it is not true, there are constants T>0T>0 and ε(0,1)\varepsilon\in(0,1), such that P{τ<T}>ε\mathrm{P}\{\tau_{\infty}<T\}>\varepsilon. Hence, there is n1n0n_{1}\geq n_{0} such that

P{τn<T}>ε,nn1.\displaystyle\mathrm{P}\{\tau_{n}<T\}>\varepsilon,\quad\forall n\geq n_{1}. (5)

For the non-negative function V(X)=i=12ki(xi1lnxi)V(X)=\sum\limits_{i=1}^{2}k_{i}(x_{i}-1-\ln x_{i}), X=(x1,x2)X=(x_{1},x_{2}), xi>0x_{i}>0, ki>0k_{i}>0, i=1,2i=1,2 by the Itô formula we obtain

dV(X(t))=i=12ki{(xi(t)1)[ai(t)bi(t)xi(t)ci(t)x2(t)m(t)+x1(t)]\displaystyle dV(X(t))=\sum_{i=1}^{2}k_{i}\left\{\rule{0.0pt}{20.0pt}(x_{i}(t)-1)\left[a_{i}(t)-b_{i}(t)x_{i}(t)-\frac{c_{i}(t)x_{2}(t)}{m(t)+x_{1}(t)}\right]\right.
+βi(t)+δi(t,z)xi(t)Π2(dz)}dt+i=12ki{(xi(t)1)σi(t)dwi(t)\displaystyle\left.+\beta_{i}(t)+\int\limits_{\mathbb{R}}\delta_{i}(t,z)x_{i}(t)\Pi_{2}(dz)\right\}dt+\sum_{i=1}^{2}k_{i}\left\{\rule{0.0pt}{20.0pt}(x_{i}(t)-1)\sigma_{i}(t)dw_{i}(t)\right.
+[γi(t,z)xi(t)ln(1+γi(t,z))]ν~1(dt,dz)\displaystyle+\int\limits_{\mathbb{R}}\![\gamma_{i}(t,z)x_{i}(t)-\ln(1+\gamma_{i}(t,z))]\tilde{\nu}_{1}(dt,dz)
+[δi(t,z)xi(t)ln(1+δi(t,z))]ν~2(dt,dz)}.\displaystyle\left.+\int\limits_{\mathbb{R}}[\delta_{i}(t,z)x_{i}(t)-\ln(1+\delta_{i}(t,z))]\tilde{\nu}_{2}(dt,dz)\right\}. (6)

Let us consider the function f(t,x1,x2)=ϕ(t,x1)+ψ(t,x1,x2)f(t,x_{1},x_{2})=\phi(t,x_{1})+\psi(t,x_{1},x_{2}), x1>0,x2>0x_{1}>0,\linebreak x_{2}>0 where

ϕ(t,x1)=k1b1(t)x12+k1(α1(t)+b1(t))x1+k1β1(t)+k2β2(t)\displaystyle\phi(t,x_{1})=-k_{1}b_{1}(t)x_{1}^{2}+k_{1}\left(\rule{0.0pt}{12.0pt}\alpha_{1}(t)+b_{1}(t)\right)x_{1}+k_{1}\beta_{1}(t)+k_{2}\beta_{2}(t)
k1a1(t)k2a2(t),\displaystyle-k_{1}a_{1}(t)-k_{2}a_{2}(t),
ψ(t,x1,x2)=(m(t)+x1)1[k2c2(t)x22+(k2α2(t)k1c1(t))x1x2\displaystyle\psi(t,x_{1},x_{2})=(m(t)+x_{1})^{-1}\left[\rule{0.0pt}{12.0pt}-k_{2}c_{2}(t)x_{2}^{2}+\left(\rule{0.0pt}{12.0pt}k_{2}\alpha_{2}(t)-k_{1}c_{1}(t)\right)x_{1}x_{2}\right.
+(k2α2(t)m(t)+k1c1(t)+k2c2(t))x2].\displaystyle\left.+\left(\rule{0.0pt}{12.0pt}k_{2}\alpha_{2}(t)m(t)+k_{1}c_{1}(t)+k_{2}c_{2}(t)\right)x_{2}\rule{0.0pt}{12.0pt}\right].

Under Assumption 1 there is a constant L1(k1,k2)>0L_{1}(k_{1},k_{2})>0, such that

ϕ(t,x1)k1[b1infx12+(α1sup+b1sup)x1]+βmax(k1+k2)L1(k1,k2).\displaystyle\phi(t,x_{1})\leq k_{1}\left[\rule{0.0pt}{12.0pt}-b_{1\inf}x_{1}^{2}+\left(\alpha_{1\sup}+b_{1\sup}\right)x_{1}\right]+\beta_{\max}(k_{1}+k_{2})\leq L_{1}(k_{1},k_{2}).

If α2sup0\alpha_{2\sup}\leq 0, then for the function ψ(t,x1,x2)\psi(t,x_{1},x_{2}) we have

ψ(t,x1,x2)k2c2infx22+(k1+k2)cmaxx2m(t)+x1L2(k1,k2).\displaystyle\psi(t,x_{1},x_{2})\leq\frac{-k_{2}c_{2\inf}x_{2}^{2}+(k_{1}+k_{2})c_{\max}x_{2}}{m(t)+x_{1}}\leq L_{2}(k_{1},k_{2}).

If α2sup>0\alpha_{2\sup}>0, then for k2=k1c1infα2supk_{2}=k_{1}\frac{c_{1\inf}}{\alpha_{2\sup}} there is a constant L3(k1,k2)>0L_{3}(k_{1},k_{2})>0, such that

ψ(t,x1,x2){k2c2infx22+(k2α2supk1c1inf)x1x2+[k2α2supmsup\displaystyle\psi(t,x_{1},x_{2})\leq\left\{\rule{0.0pt}{12.0pt}-k_{2}c_{2\inf}x_{2}^{2}+(k_{2}\alpha_{2\sup}-k_{1}c_{1\inf})x_{1}x_{2}+\left[\rule{0.0pt}{12.0pt}k_{2}\alpha_{2\sup}m_{\sup}\right.\right.
+(k1+k2)cmax]x2}(m(t)+x1)1=k1m(t)+x1{c1infc2infα2supx22\displaystyle+\left.\left.\rule{0.0pt}{12.0pt}(k_{1}+k_{2})c_{\max}\right]x_{2}\right\}(m(t)+x_{1})^{-1}=\frac{k_{1}}{m(t)+x_{1}}\left\{-\frac{c_{1\inf}c_{2\inf}}{\alpha_{2\sup}}x_{2}^{2}\right.
+[c1infmsup+(1+c1infα2sup)cmax]x2}L3(k1,k2).\displaystyle\left.+\left[\rule{0.0pt}{14.0pt}c_{1\inf}m_{\sup}+\left(1+\frac{c_{1\inf}}{\alpha_{2\sup}}\right)c_{\max}\right]x_{2}\right\}\leq L_{3}(k_{1},k_{2}).

Therefore there is a constant L(k1,k2)>0L(k_{1},k_{2})>0, such that f(t,x1,x2)L(k1,k2)f(t,x_{1},x_{2})\leq L(k_{1},k_{2}). So from (2)(\ref{eq6}) we obtain by integrating

V(X(Tτn))V(X0)+L(k1,k2)(Tτn)\displaystyle V(X(T\wedge\tau_{n}))\leq V(X_{0})+L(k_{1},k_{2})(T\wedge\tau_{n})
+i=12ki{0Tτn(xi(t)1)σi(t)dwi(t)+0Tτn[γi(t,z)xi(t)ln(1\displaystyle+\sum_{i=1}^{2}k_{i}\left\{\int\limits_{0}^{T\wedge\tau_{n}}(x_{i}(t)-1)\sigma_{i}(t)dw_{i}(t)+\int\limits_{0}^{T\wedge\tau_{n}}\!\!\!\int\limits_{\mathbb{R}}\left[\gamma_{i}(t,z)x_{i}(t)-\ln(1\right.\right.
+γi(t,z))]ν~1(dt,dz)+0Tτn[δi(t,z)xi(t)ln(1+δi(t,z))]ν~2(dt,dz)}.\displaystyle\left.\left.+\gamma_{i}(t,z))\right]\tilde{\nu}_{1}(dt,dz)+\int\limits_{0}^{T\wedge\tau_{n}}\!\!\!\int\limits_{\mathbb{R}}[\delta_{i}(t,z)x_{i}(t)-\ln(1+\delta_{i}(t,z))]\tilde{\nu}_{2}(dt,dz)\right\}. (7)

Taking expectations we derive from (2)(\ref{eq7})

E[V(X(Tτn))]V(X0)+L(k1,k2)T.\displaystyle\mathrm{E}\left[V(X(T\wedge\tau_{n}))\right]\leq V(X_{0})+L(k_{1},k_{2})T. (8)

Set Ωn={τnT}\Omega_{n}=\{\tau_{n}\leq T\} for nn1n\geq n_{1}. Then by (5)(\ref{eq5}), P(Ωn)=P{τnT}>ε\mathrm{P}(\Omega_{n})=\mathrm{P}\{\tau_{n}\leq T\}>\varepsilon, nn1\forall n\geq n_{1}. Note that for every ωΩn\omega\in\Omega_{n} there is at least one of x1(τn,ω)x_{1}(\tau_{n},\omega) and x2(τn,ω)x_{2}(\tau_{n},\omega) equals either nn or 1/n1/n. So

V(X(τn))min{k1,k2}min{n1lnn,1n1+lnn}.\displaystyle V(X(\tau_{n}))\geq\min\{k_{1},k_{2}\}\min\{n-1-\ln n,\frac{1}{n}-1+\ln n\}.

From (8)(\ref{eq8}) it follows

V(X0)+L(k1,k2)TE[𝟏ΩnV(X(τn))]\displaystyle V(X_{0})+L(k_{1},k_{2})T\geq\mathrm{E}[\mathbf{1}_{\Omega_{n}}V(X(\tau_{n}))]
εmin{k1,k2}min{n1lnn,1n1+lnn},\displaystyle\geq\varepsilon\min\{k_{1},k_{2}\}\min\{n-1-\ln n,\frac{1}{n}-1+\ln n\},

where 𝟏Ωn\mathbf{1}_{\Omega_{n}} is the indicator function of Ωn\Omega_{n}. Letting nn\to\infty leads to the contradiction >V(X0)+L(k1,k2)T=\infty>V(X_{0})+L(k_{1},k_{2})T=\infty. This completes the proof of the theorem. ∎

Lemma 1.

The density of prey population x1(t)x_{1}(t) obeys

lim suptln(m+x1(t))t0,m>0,a.s.\displaystyle\limsup_{t\to\infty}\frac{\ln(m+x_{1}(t))}{t}\leq 0,\ \forall m>0,\qquad\hbox{a.s.} (9)
Proof.

By Itô formula for the process etln(m+x1(t))e^{t}\ln(m+x_{1}(t)) we have

etln(m+x1(t))ln(m+x10)=0tes{ln(m+x1(s))\displaystyle e^{t}\ln(m+x_{1}(t))-\ln(m+x_{10})=\int_{0}^{t}e^{s}\left\{\rule{0.0pt}{14.0pt}\ln(m+x_{1}(s))\right.
+x1(s)m+x1(s)[a1(s)b1(s)x1(s)c1(s)x2(s)m(s)+x1(s)]σ12(s)x12(s)2(m+x1(s))2\displaystyle+\!\frac{x_{1}(s)}{m+x_{1}(s)}\left[\rule{0.0pt}{14.0pt}a_{1}(s)\!-\!b_{1}(s)x_{1}(s)\!-\!\frac{c_{1}(s)x_{2}(s)}{m(s)+x_{1}(s)}\right]\!-\!\frac{\sigma_{1}^{2}(s)x_{1}^{2}(s)}{2(m+x_{1}(s))^{2}}
+[ln(1+γ1(s,z)x1(s)m+x1(s))γ1(s,z)x1(s)m+x1(s)]Π1(dz)}ds\displaystyle\left.+\int\limits_{\mathbb{R}}\left[\rule{0.0pt}{14.0pt}\ln\left(\rule{0.0pt}{12.0pt}1+\frac{\gamma_{1}(s,z)x_{1}(s)}{m+x_{1}(s)}\right)-\frac{\gamma_{1}(s,z)x_{1}(s)}{m+x_{1}(s)}\right]\Pi_{1}(dz)\right\}ds
+0tesσ1(s)x1(s)m+x1(s)𝑑w1(s)+0tesln(1+γ1(s,z)x1(s)m+x1(s))ν~1(ds,dz)\displaystyle+\int_{0}^{t}e^{s}\frac{\sigma_{1}(s)x_{1}(s)}{m+x_{1}(s)}dw_{1}(s)+\int\limits_{0}^{t}\!\!\int\limits_{\mathbb{R}}e^{s}\ln\left(\rule{0.0pt}{12.0pt}1+\frac{\gamma_{1}(s,z)x_{1}(s)}{m+x_{1}(s)}\right)\tilde{\nu}_{1}(ds,dz)
+0tesln(1+δ1(s,z)x1(s)m+x1(s))ν2(ds,dz).\displaystyle+\int\limits_{0}^{t}\!\!\int\limits_{\mathbb{R}}e^{s}\ln\left(\rule{0.0pt}{12.0pt}1+\frac{\delta_{1}(s,z)x_{1}(s)}{m+x_{1}(s)}\right)\nu_{2}(ds,dz). (10)

Let us denote for 0<κ10<\kappa\leq 1 the process

ζκ(t)=0tesσ1(s)x1(s)m+x1(s)𝑑w1(s)+0tesln(1+γ1(s,z)x1(s)m+x1(s))ν~1(ds,dz)\displaystyle\zeta_{\kappa}(t)=\int_{0}^{t}\!\!\!e^{s}\frac{\sigma_{1}(s)x_{1}(s)}{m+x_{1}(s)}dw_{1}(s)\!+\!\int\limits_{0}^{t}\!\!\!\int\limits_{\mathbb{R}}\!e^{s}\ln\left(\rule{0.0pt}{12.0pt}1+\frac{\gamma_{1}(s,z)x_{1}(s)}{m+x_{1}(s)}\right)\tilde{\nu}_{1}(ds,dz)
+0tesln(1+δ1(s,z)x1(s)m+x1(s))ν2(ds,dz)κ20te2sσ12(s)(x1(s)m+x1(s))2𝑑s\displaystyle+\!\int\limits_{0}^{t}\!\!\!\int\limits_{\mathbb{R}}\!e^{s}\ln\left(\rule{0.0pt}{12.0pt}1\!+\!\frac{\delta_{1}(s,z)x_{1}(s)}{m+x_{1}(s)}\right)\!\nu_{2}(ds,dz)\!-\!\frac{\kappa}{2}\!\int_{0}^{t}\!\!e^{2s}\sigma_{1}^{2}(s)\left(\frac{x_{1}(s)}{m+x_{1}(s)}\right)^{2}\!\!ds
1κ0t[(1+γ1(s,z)x1(s)m+x1(s))κes1κesln(1+γ1(s,z)x1(s)m+x1(s))]Π1(dz)𝑑s\displaystyle-\frac{1}{\kappa}\int\limits_{0}^{t}\!\!\!\int\limits_{\mathbb{R}}\!\left[\left(1\!+\!\frac{\gamma_{1}(s,z)x_{1}(s)}{m+x_{1}(s)}\right)^{\kappa e^{s}}\!\!\!\!\!-\!1\!-\!\kappa e^{s}\ln\left(1\!+\!\frac{\gamma_{1}(s,z)x_{1}(s)}{m+x_{1}(s)}\right)\right]\Pi_{1}(dz)ds
1κ0t[(1+δ1(s,z)x1(s)m+x1(s))κes1]Π2(dz)𝑑s.\displaystyle-\frac{1}{\kappa}\int\limits_{0}^{t}\!\!\!\int\limits_{\mathbb{R}}\!\left[\left(1\!+\!\frac{\delta_{1}(s,z)x_{1}(s)}{m+x_{1}(s)}\right)^{\kappa e^{s}}-1\right]\Pi_{2}(dz)ds.

By virtue of the exponential inequality ([6], Lemma 2.2) for any T>0T>0,0<κ10<\kappa\leq 1, β>0\beta>0 we have

P{sup0tTζκ(t)>β}eκβ.\displaystyle\mathrm{P}\{\sup_{0\leq t\leq T}\zeta_{\kappa}(t)>\beta\}\leq e^{-\kappa\beta}. (11)

Choose T=kτ,k,τ>0,κ=εekτ,β=θekτε1lnkT=k\tau,k\in\mathbb{N},\tau>0,\kappa=\varepsilon e^{-k\tau},\beta=\theta e^{k\tau}\varepsilon^{-1}\ln k, 0<ε<10<\varepsilon<1, θ>1\theta>1 we get

P{sup0tTζκ(t)>θekτε1lnk}1kθ.\displaystyle\mathrm{P}\{\sup_{0\leq t\leq T}\zeta_{\kappa}(t)>\theta e^{k\tau}\varepsilon^{-1}\ln k\}\leq\frac{1}{k^{\theta}}.

By Borel-Cantelli lemma for almost all ωΩ\omega\in\Omega, there is a random integer k0(ω)k_{0}(\omega), such that kk0(ω)\forall k\geq k_{0}(\omega) and 0tkτ0\leq t\leq k\tau we have

0tesσ1(s)x1(s)m+x1(s)𝑑w1(s)+0tesln(1+γ1(s,z)x1(s)m+x1(s))ν~1(ds,dz)\displaystyle\int_{0}^{t}\!\!\!e^{s}\frac{\sigma_{1}(s)x_{1}(s)}{m+x_{1}(s)}dw_{1}(s)\!+\!\int\limits_{0}^{t}\!\!\!\int\limits_{\mathbb{R}}\!e^{s}\ln\left(\rule{0.0pt}{12.0pt}1+\frac{\gamma_{1}(s,z)x_{1}(s)}{m+x_{1}(s)}\right)\tilde{\nu}_{1}(ds,dz)
+0tesln(1+δ1(s,z)x1(s)m+x1(s))ν2(ds,dz)\displaystyle+\!\int\limits_{0}^{t}\!\!\!\int\limits_{\mathbb{R}}\!e^{s}\ln\left(\rule{0.0pt}{12.0pt}1\!+\!\frac{\delta_{1}(s,z)x_{1}(s)}{m+x_{1}(s)}\right)\!\nu_{2}(ds,dz)\leq
ε2ekτ0te2s(σ1(s)x1(s)m+x1(s))2ds+ekτε0t[(1+γ1(s,z)x1(s)m+x1(s))εeskτ\displaystyle\frac{\varepsilon}{2e^{k\tau}}\!\!\int_{0}^{t}\!\!e^{2s}\left(\frac{\sigma_{1}(s)x_{1}(s)}{m+x_{1}(s)}\right)^{2}\!\!ds+\frac{e^{k\tau}}{\varepsilon}\int\limits_{0}^{t}\!\!\!\int\limits_{\mathbb{R}}\!\left[\left(1\!+\!\frac{\gamma_{1}(s,z)x_{1}(s)}{m+x_{1}(s)}\right)^{\varepsilon e^{s-k\tau}}\right.
1εeskτln(1+γ1(s,z)x1(s)m+x1(s))]Π1(dz)ds\displaystyle\left.-1-\varepsilon e^{s-k\tau}\ln\left(1\!+\!\frac{\gamma_{1}(s,z)x_{1}(s)}{m+x_{1}(s)}\right)\right]\Pi_{1}(dz)ds
+ekτε0t[(1+δ1(s,z)x1(s)m+x1(s))εeskτ1]Π2(dz)𝑑s+θekτlnkε.\displaystyle+\frac{e^{k\tau}}{\varepsilon}\int\limits_{0}^{t}\!\!\!\int\limits_{\mathbb{R}}\!\left[\left(1\!+\!\frac{\delta_{1}(s,z)x_{1}(s)}{m+x_{1}(s)}\right)^{\varepsilon e^{s-k\tau}}-1\right]\Pi_{2}(dz)ds+\frac{\theta e^{k\tau}\ln k}{\varepsilon}. (12)

By using the inequality xr1+r(x1)x^{r}\leq 1+r(x-1), x0\forall x\geq 0, 0r10\leq r\leq 1 for x=1+γ1(s,z)x1(s)m+x1(s)x=1+\frac{\gamma_{1}(s,z)x_{1}(s)}{m+x_{1}(s)}, r=εeskτr=\varepsilon e^{s-k\tau}, then for x=1+δ1(s,z)x1(s)m+x1(s)x=1+\frac{\delta_{1}(s,z)x_{1}(s)}{m+x_{1}(s)}, r=εeskτr=\varepsilon e^{s-k\tau}, we derive the estimates

ekτε0t[(1+γ1(s,z)x1(s)m+x1(s))εeskτ1\displaystyle\frac{e^{k\tau}}{\varepsilon}\int\limits_{0}^{t}\!\!\!\int\limits_{\mathbb{R}}\!\left[\left(1\!+\!\frac{\gamma_{1}(s,z)x_{1}(s)}{m+x_{1}(s)}\right)^{\varepsilon e^{s-k\tau}}-1\right.
εeskτln(1+γ1(s,z)x1(s)m+x1(s))]Π1(dz)ds\displaystyle\left.-\varepsilon e^{s-k\tau}\ln\left(1\!+\!\frac{\gamma_{1}(s,z)x_{1}(s)}{m+x_{1}(s)}\right)\right]\Pi_{1}(dz)ds
0tes[γ1(s,z)x1(s)m+x1(s)ln(1+γ1(s,z)x1(s)m+x1(s))]Π1(dz)𝑑s,\displaystyle\leq\int\limits_{0}^{t}\!\!\!\int\limits_{\mathbb{R}}\!e^{s}\left[\frac{\gamma_{1}(s,z)x_{1}(s)}{m+x_{1}(s)}-\ln\left(1\!+\!\frac{\gamma_{1}(s,z)x_{1}(s)}{m+x_{1}(s)}\right)\right]\Pi_{1}(dz)ds, (13)
ekτε0t[(1+δ1(s,z)x1(s)m+x1(s))εeskτ1]Π2(dz)𝑑s\displaystyle\frac{e^{k\tau}}{\varepsilon}\int\limits_{0}^{t}\!\!\!\int\limits_{\mathbb{R}}\!\left[\left(1\!+\!\frac{\delta_{1}(s,z)x_{1}(s)}{m+x_{1}(s)}\right)^{\varepsilon e^{s-k\tau}}-1\right]\Pi_{2}(dz)ds
0tesδ1(s,z)x1(s)m+x1(s)Π2(dz)𝑑s.\displaystyle\leq\int\limits_{0}^{t}\!\!\!\int\limits_{\mathbb{R}}\!e^{s}\frac{\delta_{1}(s,z)x_{1}(s)}{m+x_{1}(s)}\Pi_{2}(dz)ds. (14)

From (2)(\ref{eq10}), by using (2)(\ref{eq12})(2)(\ref{eq14}) we get

etln(m+x1(t))ln(m+x10)+0tes{ln(m+x1(s))\displaystyle e^{t}\ln(m+x_{1}(t))\leq\ln(m+x_{10})+\int_{0}^{t}e^{s}\left\{\rule{0.0pt}{20.0pt}\ln(m+x_{1}(s))\right.
+x1(s)m+x1(s)[a1(s)b1(s)x1(s)c1(s)x2(s)m(s)+x1(s)]σ12(s)x12(s)2(m+x1(s))2\displaystyle+\frac{x_{1}(s)}{m+x_{1}(s)}\left[\rule{0.0pt}{14.0pt}a_{1}(s)\!-\!b_{1}(s)x_{1}(s)\!-\!\frac{c_{1}(s)x_{2}(s)}{m(s)+x_{1}(s)}\right]\!-\!\frac{\sigma_{1}^{2}(s)x_{1}^{2}(s)}{2(m+x_{1}(s))^{2}}
×(1εeskτ)+δ1(s,z)x1(s)m+x1(s)Π2(dz)}ds+θekτlnkε,a.s.\displaystyle\left.\times\left(1-\varepsilon e^{s-k\tau}\right)+\int\limits_{\mathbb{R}}\frac{\delta_{1}(s,z)x_{1}(s)}{m+x_{1}(s)}\Pi_{2}(dz)\right\}ds+\frac{\theta e^{k\tau}\ln k}{\varepsilon},\ \hbox{a.s.} (15)

It is easy to see that, under Assumption 1, for any x>0x>0 there exists a constant L>0L>0 independent on k,sk,s and xx, such that

ln(m+x)x2b1(s)m+x+xα1(s)m+xL.\displaystyle\ln(m+x)-\frac{x^{2}b_{1}(s)}{m+x}+\frac{x\alpha_{1}(s)}{m+x}\leq L.

So, from (2)(\ref{eq15}) for any (k1)τtkτ(k-1)\tau\leq t\leq k\tau we have (a.s.)

ln(m+x1(t))lntetln(m+x10)lnt+Llnt(1et)+θekτlnkεe(k1)τln(k1)τ.\displaystyle\frac{\ln(m+x_{1}(t))}{\ln t}\leq e^{-t}\frac{\ln(m+x_{10})}{\ln t}+\frac{L}{\ln t}(1-e^{-t})+\frac{\theta e^{k\tau}\ln k}{\varepsilon e^{(k-1)\tau}\ln(k-1)\tau}.

Therefore

lim suptln(m+x1(t))lntθeτε,θ>1,τ>0,ε(0,1),a.s.\displaystyle\limsup_{t\to\infty}\frac{\ln(m+x_{1}(t))}{\ln t}\leq\frac{\theta e^{\tau}}{\varepsilon},\ \forall\theta>1,\tau>0,\varepsilon\in(0,1),\quad\hbox{a.s.}

If θ1,τ0,ε1\theta\downarrow 1,\tau\downarrow 0,\varepsilon\uparrow 1, then we obtain

lim suptln(m+x1(t))lnt1,a.s.\displaystyle\limsup_{t\to\infty}\frac{\ln(m+x_{1}(t))}{\ln t}\leq 1,\quad\hbox{a.s.}

So

lim suptln(m+x1(t))t0,a.s.\displaystyle\limsup_{t\to\infty}\frac{\ln(m+x_{1}(t))}{t}\leq 0,\quad\hbox{a.s.}

Corollary 1.

The density of prey population x1(t)x_{1}(t) obeys

lim suptlnx1(t)t0,a.s.\displaystyle\limsup_{t\to\infty}\frac{\ln x_{1}(t)}{t}\leq 0,\quad\hbox{a.s.}
Lemma 2.

The density of predator population x2(t)x_{2}(t) has the property that

lim suptlnx2(t)t0,a.s.\displaystyle\limsup_{t\to\infty}\frac{\ln x_{2}(t)}{t}\leq 0,\quad\hbox{a.s.}
Proof.

Making use of Itô formula we get

etlnx2(t)lnx20=0tes{lnx2(s)+a2(s)c2(s)x2(s)m(s)+x1(s)σ22(s)2\displaystyle e^{t}\ln x_{2}(t)-\ln x_{20}=\int_{0}^{t}e^{s}\left\{\rule{0.0pt}{16.0pt}\ln x_{2}(s)+a_{2}(s)\!-\!\frac{c_{2}(s)x_{2}(s)}{m(s)+x_{1}(s)}\right.\!-\!\frac{\sigma_{2}^{2}(s)}{2}
+[ln(1+γ2(s,z))γ2(s,z)]Π1(dz)}ds+ψ(t),\displaystyle\left.+\int\limits_{\mathbb{R}}\left[\rule{0.0pt}{14.0pt}\ln\left(\rule{0.0pt}{12.0pt}1+\gamma_{2}(s,z)\right)-\gamma_{2}(s,z)\right]\Pi_{1}(dz)\right\}ds+\psi(t), (16)

where

ψ(t)=0tesσ2(s)𝑑w2(s)+0tesln(1+γ2(s,z))ν~1(ds,dz)\displaystyle\psi(t)=\int_{0}^{t}e^{s}\sigma_{2}(s)dw_{2}(s)+\int\limits_{0}^{t}\!\!\int\limits_{\mathbb{R}}e^{s}\ln\left(\rule{0.0pt}{12.0pt}1+\gamma_{2}(s,z)\right)\tilde{\nu}_{1}(ds,dz)
+0tesln(1+δ2(s,z))ν2(ds,dz).\displaystyle+\int\limits_{0}^{t}\!\!\int\limits_{\mathbb{R}}e^{s}\ln\left(\rule{0.0pt}{12.0pt}1+\delta_{2}(s,z)\right)\nu_{2}(ds,dz).

By virtue of the exponential inequality (11)(\ref{eq11}) we have

P{sup0tTζκ(t)>β}eκβ,0<κ1,β>0,\displaystyle\mathrm{P}\{\sup_{0\leq t\leq T}\zeta_{\kappa}(t)>\beta\}\leq e^{-\kappa\beta},\forall 0<\kappa\leq 1,\beta>0,

where

ζκ(t)=ψ(t)κ20te2sσ22(s)ds1κ0t[(1+γ2(s,z))κes1\displaystyle\zeta_{\kappa}(t)=\psi(t)-\frac{\kappa}{2}\int\limits_{0}^{t}e^{2s}\sigma_{2}^{2}(s)ds-\frac{1}{\kappa}\int\limits_{0}^{t}\!\!\int\limits_{\mathbb{R}}\left[(1+\gamma_{2}(s,z))^{\kappa e^{s}}-1\right.
κesln(1+γ2(s,z))]Π1(dz)ds1κ0t[(1+δ2(s,z))κes1]Π2(dz)ds.\displaystyle\left.-\kappa e^{s}\ln(1+\gamma_{2}(s,z))\right]\Pi_{1}(dz)ds-\frac{1}{\kappa}\int\limits_{0}^{t}\!\!\int\limits_{\mathbb{R}}\left[(1+\delta_{2}(s,z))^{\kappa e^{s}}-1\right]\Pi_{2}(dz)ds.

Choose T=kτ,k,τ>0,κ=ekτ,β=θekτlnkT=k\tau,k\in\mathbb{N},\tau>0,\kappa=e^{-k\tau},\beta=\theta e^{k\tau}\ln k, θ>1\theta>1 we get

P{sup0tTζκ(t)>θekτlnk}1kθ.\displaystyle\mathrm{P}\{\sup_{0\leq t\leq T}\zeta_{\kappa}(t)>\theta e^{k\tau}\ln k\}\leq\frac{1}{k^{\theta}}.

By the same arguments as in the proof of Lemma 1, using Borel-Cantelli lemma, we derive from (2)(\ref{eq16})

etlnx2(t)lnx20+0tes{lnx2(s)+a2(s)c2(s)x2(s)m(s)+x1(s)\displaystyle e^{t}\ln x_{2}(t)\leq\ln x_{20}+\int_{0}^{t}e^{s}\left\{\rule{0.0pt}{16.0pt}\ln x_{2}(s)+a_{2}(s)\!-\!\frac{c_{2}(s)x_{2}(s)}{m(s)+x_{1}(s)}\right.
σ22(s)2(1eskτ)+δ2(s,z)Π2(dz)}ds+θekτlnk,a.s.\displaystyle\left.-\frac{\sigma_{2}^{2}(s)}{2}\left(1-e^{s-k\tau}\right)+\int\limits_{\mathbb{R}}\delta_{2}(s,z)\Pi_{2}(dz)\right\}ds+\theta e^{k\tau}\ln k,\quad\hbox{a.s.} (17)

for all sufficiently large kk0(ω)k\geq k_{0}(\omega) and 0tkτ0\leq t\leq k\tau.

Using inequality lnxcxlnc1\ln x-cx\leq-\ln c-1, x0\forall x\geq 0, c>0c>0 for x=x2(s)x=x_{2}(s), c=c2(s)m(s)+x1(s)c=\frac{c_{2}(s)}{m(s)+x_{1}(s)}, we derive from (2)(\ref{eq17}) the estimate

etlnx2(t)lnx20+0tesln(msup+x1(s))𝑑s+L(et1)+θekτlnk,\displaystyle e^{t}\ln x_{2}(t)\leq\ln x_{20}+\int\limits_{0}^{t}e^{s}\ln\left(\rule{0.0pt}{12.0pt}m_{\sup}+x_{1}(s)\right)ds+L(e^{t}-1)+\theta e^{k\tau}\ln k,

for some constant L>0L>0.

So for (k1)τtkτ(k-1)\tau\leq t\leq k\tau, kk0(ω)k\geq k_{0}(\omega) we have

lim suptlnx2(t)tlim supt1t0testln(msup+x1(s))𝑑s0,\displaystyle\limsup_{t\to\infty}\frac{\ln x_{2}(t)}{t}\leq\limsup_{t\to\infty}\frac{1}{t}\int\limits_{0}^{t}e^{s-t}\ln\left(\rule{0.0pt}{12.0pt}m_{\sup}+x_{1}(s)\right)ds\leq 0,

by virtue of Lemma 1. ∎

Lemma 3.

Let p>0p>0. Then for any initial value x10>0x_{10}>0, the ppth-moment of prey population density x1(t)x_{1}(t) obeys

lim suptE[x1p(t)]K1(p),\displaystyle\limsup_{t\to\infty}\mathrm{E}\left[x_{1}^{p}(t)\right]\leq K_{1}(p), (18)

where K1(p)>0K_{1}(p)>0 is independent of x10x_{10}.

For any initial value x20>0x_{20}>0, the expectation of predator population density x2(t)x_{2}(t) obeys

lim suptE[x2(t)]K2,\displaystyle\limsup_{t\to\infty}\mathrm{E}\left[x_{2}(t)\right]\leq K_{2}, (19)

where K2>0K_{2}>0 is independent of x20x_{20}.

Proof.

Let τn\tau_{n} be the stopping time defined in Theorem 1. Applying the Itô formula to the process V(t,x1(t))=etx1p(t)V(t,x_{1}(t))=e^{t}x_{1}^{p}(t), p>0p>0 we obtain

V(tτn,x1(tτn))=x10p+0tτnesx1p(s){1+p[a1(s)b1(s)x1(s)\displaystyle V(t\wedge\tau_{n},x_{1}(t\wedge\tau_{n}))=x_{10}^{p}+\int\limits_{0}^{t\wedge\tau_{n}}e^{s}x_{1}^{p}(s)\left\{\rule{0.0pt}{18.0pt}1+p\left[\rule{0.0pt}{16.0pt}a_{1}(s)-b_{1}(s)x_{1}(s)\right.\right.
c1(s)x2(s)m(s)+x1(s)]+p(p1)σ12(s)2+[(1+γ1(s,z))p1pγ1(s,z)]Π1(dz)\displaystyle\left.-\frac{c_{1}(s)x_{2}(s)}{m(s)+x_{1}(s)}\right]\!\!+\!\frac{p(p-1)\sigma_{1}^{2}(s)}{2}\!+\!\!\int\limits_{\mathbb{R}}\!\!\!\left[(1+\gamma_{1}(s,z))^{p}\!-\!1\!-\!p\gamma_{1}(s,z)\right]\Pi_{1}(dz)\!
+[(1+δ1(s,z))p1]Π2(dz)}ds+0tτnpesx1p(s)σ1(s)dw1(s)\displaystyle\left.+\!\int\limits_{\mathbb{R}}\!\!\!\left[(1+\delta_{1}(s,z))^{p}\!-\!1\right]\Pi_{2}(dz)\right\}ds+\int\limits_{0}^{t\wedge\tau_{n}}\!\!\!pe^{s}x_{1}^{p}(s)\sigma_{1}(s)dw_{1}(s)
+0tτnesx1p(s)[(1+γ1(s,z))p1]ν~1(ds,dz)\displaystyle+\int\limits_{0}^{t\wedge\tau_{n}}\!\!\!\int\limits_{\mathbb{R}}e^{s}x_{1}^{p}(s)\left[(1+\gamma_{1}(s,z))^{p}-1\right]\tilde{\nu}_{1}(ds,dz)
+0tτnesx1p(s)[(1+δ1(s,z))p1]ν~2(ds,dz).\displaystyle+\int\limits_{0}^{t\wedge\tau_{n}}\!\!\!\int\limits_{\mathbb{R}}e^{s}x_{1}^{p}(s)\left[(1+\delta_{1}(s,z))^{p}-1\right]\tilde{\nu}_{2}(ds,dz). (20)

Under Assumption 1 there is constant K1(p)>0K_{1}(p)>0, such that

esx1p{1+p[a1(s)b1(s)x1c1(s)x2m(s)+x1]+p(p1)σ12(s)2+\displaystyle e^{s}x_{1}^{p}\left\{\rule{0.0pt}{18.0pt}1+p\left[a_{1}(s)-b_{1}(s)x_{1}-\frac{c_{1}(s)x_{2}}{m(s)+x_{1}}\right]\!+\!\frac{p(p-1)\sigma_{1}^{2}(s)}{2}+\right.
+[(1+γ1(s,z))p1pγ1(s,z)]Π1(dz)+[(1+δ1(s,z))p1]Π2(dz)}\displaystyle\left.+\!\!\int\limits_{\mathbb{R}}\!\!\left[(1\!+\!\gamma_{1}(s,z))^{p}\!-\!1\!-\!p\gamma_{1}(s,z)\right]\Pi_{1}(dz)\!+\!\!\int\limits_{\mathbb{R}}\!\!\left[(1+\delta_{1}(s,z))^{p}\!-\!1\right]\Pi_{2}(dz)\right\}
K1(p)es.\displaystyle\leq K_{1}(p)e^{s}. (21)

From (2)(\ref{eq20}) and (2)(\ref{eq21}), taking expectations, we obtain

E[V(tτn,x1(tτn))]x10p+K1(p)et.\displaystyle\mathrm{E}[V(t\wedge\tau_{n},x_{1}(t\wedge\tau_{n}))]\leq x_{10}^{p}+K_{1}(p)e^{t}.

Letting nn\to\infty leads to the estimate

etE[x1p(t)]x10p+etK1(p).\displaystyle e^{t}\mathrm{E}[x_{1}^{p}(t)]\leq x_{10}^{p}+e^{t}K_{1}(p). (22)

So from (22)(\ref{eq22}) we derive (18)(\ref{eq18}).

Let us prove the estimate (19)(\ref{eq19}). Applying the Itô formula to the process U(t,X(t))=et[k1x1(t)+k2x2(t)]U(t,X(t))=e^{t}[k_{1}x_{1}(t)+k_{2}x_{2}(t)], ki>0,i=1,2k_{i}>0,i=1,2 we obtain

dU(t,X(t))=et{k1x1(t)+k2x2(t)+k1[a1(t)x1(t)b1(t)x12(t)\displaystyle dU(t,X(t))=e^{t}\left\{\rule{0.0pt}{18.0pt}k_{1}x_{1}(t)+k_{2}x_{2}(t)+k_{1}\left[\rule{0.0pt}{16.0pt}a_{1}(t)x_{1}(t)-b_{1}(t)x_{1}^{2}(t)\right.\right.
c1(t)x1(t)x2(t)m(t)+x1(t)]+k2[a2(t)x2(t)c2(t)x22(t)m(t)+x1(t)]\displaystyle\left.-\frac{c_{1}(t)x_{1}(t)x_{2}(t)}{m(t)+x_{1}(t)}\right]+k_{2}\left[\rule{0.0pt}{16.0pt}a_{2}(t)x_{2}(t)-\frac{c_{2}(t)x^{2}_{2}(t)}{m(t)+x_{1}(t)}\right]
+i=12kixi(t)δi(t,z)Π2(dz)}dt+et{i=12ki[xi(t)σi(t)dwi(t)\displaystyle\left.+\!\sum_{i=1}^{2}k_{i}\int\limits_{\mathbb{R}}\!\!\!x_{i}(t)\delta_{i}(t,z)\Pi_{2}(dz)\right\}dt+e^{t}\left\{\sum_{i=1}^{2}k_{i}\left[\rule{0.0pt}{18.0pt}x_{i}(t)\sigma_{i}(t)dw_{i}(t)\right.\right.
+xi(t)γi(t,z)ν~1(dt,dz)+xi(t)δi(t,z)ν~2(dt,dz)]}.\displaystyle\left.\left.+\int\limits_{\mathbb{R}}x_{i}(t)\gamma_{i}(t,z)\tilde{\nu}_{1}(dt,dz)+\int\limits_{\mathbb{R}}x_{i}(t)\delta_{i}(t,z)\tilde{\nu}_{2}(dt,dz)\right]\right\}. (23)

For the function

f(t,x1,x2)=1m(t)+x1{k1[b1(t)x13+(1+a1(t)+δ¯1(t)b1(t)m(t))x12\displaystyle f(t,x_{1},x_{2})\!=\!\frac{1}{m(t)+x_{1}}\!\left\{\rule{0.0pt}{13.0pt}\!k_{1}\!\left[\!-b_{1}(t)x_{1}^{3}\!+\!\left(\rule{0.0pt}{12.0pt}1\!+\!a_{1}(t)\!+\!\bar{\delta}_{1}(t)\!-\!b_{1}(t)m(t)\right)x_{1}^{2}\right.\right.
+m(t)(1+a1(t)+δ¯1(t))x1]+[k2(1+a2(t)+δ¯2(t))k1c1(t)]x1x2\displaystyle\left.+m(t)\left(\rule{0.0pt}{12.0pt}1\!+\!a_{1}(t)\!+\!\bar{\delta}_{1}(t)\right)x_{1}\right]+\left[\rule{0.0pt}{12.0pt}k_{2}\left(\rule{0.0pt}{12.0pt}1+a_{2}(t)+\bar{\delta}_{2}(t)\right)-k_{1}c_{1}(t)\right]x_{1}x_{2}
+k2[c2(t)x22+m(t)(1+a2(t)+δ¯2(t))x2]},\displaystyle\left.+k_{2}\left[-c_{2}(t)x_{2}^{2}+m(t)\left(\rule{0.0pt}{12.0pt}1+a_{2}(t)+\bar{\delta}_{2}(t)\right)x_{2}\right]\rule{0.0pt}{13.0pt}\right\},
whereδ¯i(t)=δi(t,z)Π2(dz),i=1,2\displaystyle\hbox{where}\ \bar{\delta}_{i}(t)=\int\limits_{\mathbb{R}}\!\!\!\delta_{i}(t,z)\Pi_{2}(dz),\ i=1,2

we have

f(t,x1,x2)ϕ1(x1,x2)+ϕ2(x2)m(t)+x1,\displaystyle f(t,x_{1},x_{2})\leq\frac{\phi_{1}(x_{1},x_{2})+\phi_{2}(x_{2})}{m(t)+x_{1}},

where

ϕ1(x1,x2)=k1[b1infx13+(d1b1infminf)x12+msupd1x1]\displaystyle\phi_{1}(x_{1},x_{2})=k_{1}\!\left[\!-b_{1\inf}x_{1}^{3}\!+\!\left(\rule{0.0pt}{12.0pt}d_{1}-\!b_{1\inf}m_{\inf}\right)x_{1}^{2}+m_{\sup}d_{1}x_{1}\right]
+[k2d2k1c1inf]x1x2,\displaystyle+\left[\rule{0.0pt}{12.0pt}k_{2}d_{2}-k_{1}c_{1\inf}\right]x_{1}x_{2},
ϕ2(x2)=k2[c2infx22+msupd2x2],di=1+aisup+|δ¯i|sup,i=1,2.\displaystyle\phi_{2}(x_{2})=k_{2}\left[-c_{2\inf}x_{2}^{2}+m_{\sup}d_{2}x_{2}\right],\ d_{i}=1\!+\!a_{i\sup}+|\bar{\delta}_{i}|_{\sup},\ i=1,2.

For k2=k1c1inf/d2k_{2}=k_{1}c_{1\inf}/d_{2} there is a constant L>0L^{\prime}>0, such that ϕ1(x1,x2)Lk1\phi_{1}(x_{1},x_{2})\leq L^{\prime}k_{1} and ϕ2(x2)Lk1\phi_{2}(x_{2})\leq L^{\prime}k_{1}. So there is a constant L>0L>0, such that

f(t,x1,x2)Lk1.\displaystyle f(t,x_{1},x_{2})\leq Lk_{1}. (24)

From (2)(\ref{eq23}) and (24)(\ref{eq24}) by integrating and taking expectation, we derive

E[U(tτn,X(tτn))]k1[x10+c1infd2x20+Let].\displaystyle\mathrm{E}[U(t\wedge\tau_{n},X(t\wedge\tau_{n}))]\leq k_{1}\left[x_{10}+\frac{c_{1\inf}}{d_{2}}x_{20}+Le^{t}\right].

Letting nn\to\infty leads to the estimate

etE[x1(t)+c1infd2x2(t)]x10+c1infd2x20+Let.\displaystyle e^{t}\mathrm{E}\left[x_{1}(t)+\frac{c_{1\inf}}{d_{2}}x_{2}(t)\right]\leq x_{10}+\frac{c_{1\inf}}{d_{2}}x_{20}+Le^{t}.

So

E[x2(t)](d2c1infx10+x20)et+d2c1infL.\displaystyle\mathrm{E}[x_{2}(t)]\leq\left(\frac{d_{2}}{c_{1\inf}}x_{10}+x_{20}\right)e^{-t}+\frac{d_{2}}{c_{1\inf}}L. (25)

From (25)(\ref{eq25}) we have (19)(\ref{eq19}). ∎

Lemma 4.

If p2inf>0p_{2\inf}>0, where p2(t)=a2(t)β2(t)p_{2}(t)=a_{2}(t)-\beta_{2}(t), then for any initial value x20>0x_{20}>0, the predator population density x2(t)x_{2}(t) satisfies

lim suptE[(1x2(t))θ]K(θ), 0<θ<1,\displaystyle\limsup_{t\to\infty}\mathrm{E}\left[\left(\frac{1}{x_{2}(t)}\right)^{\theta}\right]\leq K(\theta),\ 0<\theta<1, (26)
Proof.

For the process U(t)=1/x2(t)U(t)=1/x_{2}(t) by the Itô formula we derive

U(t)=U(0)+0tU(s)[c2(s)x2(s)m(s)+x1(s)a2(s)+σ22(s)\displaystyle U(t)=U(0)+\int\limits_{0}^{t}U(s)\left[\rule{0.0pt}{20.0pt}\frac{c_{2}(s)x_{2}(s)}{m(s)+x_{1}(s)}-a_{2}(s)+\sigma_{2}^{2}(s)\right.
+γ22(s,z)1+γ2(s,z)Π1(dz)]ds0tU(s)σ2(s)dw2(s)\displaystyle\left.+\int\limits_{\mathbb{R}}\frac{\gamma_{2}^{2}(s,z)}{1+\gamma_{2}(s,z)}\Pi_{1}(dz)\right]ds-\int\limits_{0}^{t}U(s)\sigma_{2}(s)dw_{2}(s)
0tU(s)γ2(s,z)1+γ2(s,z)ν~1(ds,dz)0tU(s)δ2(s,z)1+δ2(s,z)ν2(ds,dz).\displaystyle-\int\limits_{0}^{t}\!\!\!\int\limits_{\mathbb{R}}U(s)\frac{\gamma_{2}(s,z)}{1+\gamma_{2}(s,z)}\tilde{\nu}_{1}(ds,dz)-\int\limits_{0}^{t}\!\!\!\int\limits_{\mathbb{R}}U(s)\frac{\delta_{2}(s,z)}{1+\delta_{2}(s,z)}\nu_{2}(ds,dz).

Then, by applying Itô formula, we derive, for 0<θ<10<\theta<1

(1+U(t))θ=(1+U(0))θ+0tθ(1+U(s))θ2{(1+U(s))U(s)\displaystyle(1+U(t))^{\theta}=(1+U(0))^{\theta}+\int\limits_{0}^{t}\theta(1+U(s))^{\theta-2}\left\{\rule{0.0pt}{20.0pt}(1+U(s))U(s)\right.
×[c2(s)x2(s)m(s)+x1(s)a2(s)+σ22(s)+γ22(s,z)1+γ2(s,z)Π1(dz)]\displaystyle\times\left[\frac{c_{2}(s)x_{2}(s)}{m(s)+x_{1}(s)}-a_{2}(s)+\sigma_{2}^{2}(s)\!+\!\int\limits_{\mathbb{R}}\frac{\gamma_{2}^{2}(s,z)}{1+\gamma_{2}(s,z)}\Pi_{1}(dz)\right]
+θ12U2(s)σ22(s)\displaystyle+\frac{\theta-1}{2}U^{2}(s)\sigma_{2}^{2}(s)
+1θ[(1+U(s))2((1+U(s)+γ2(s,z)(1+γ2(s,z))(1+U(s)))θ1)\displaystyle+\frac{1}{\theta}\int\limits_{\mathbb{R}}\left[(1+U(s))^{2}\left(\left(\frac{1+U(s)+\gamma_{2}(s,z)}{(1+\gamma_{2}(s,z))(1+U(s))}\right)^{\theta}-1\right)\right.
+θ(1+U(s))U(s)γ2(s,z)1+γ2(s,z)]Π1(dz)\displaystyle+\left.\theta(1+U(s))\frac{U(s)\gamma_{2}(s,z)}{1+\gamma_{2}(s,z)}\right]\Pi_{1}(dz)
+1θ(1+U(s))2[(1+U(s)+δ2(s,z)(1+δ2(s,z))(1+U(s)))θ1]Π2(dz)}ds\displaystyle\left.+\frac{1}{\theta}\int\limits_{\mathbb{R}}(1+U(s))^{2}\left[\left(\frac{1+U(s)+\delta_{2}(s,z)}{(1+\delta_{2}(s,z))(1+U(s))}\right)^{\theta}-1\right]\Pi_{2}(dz)\right\}ds
0tθ(1+U(s))θ1U(s)σ2(s)𝑑w2(s)\displaystyle-\int\limits_{0}^{t}\theta(1+U(s))^{\theta-1}U(s)\sigma_{2}(s)dw_{2}(s)
+0t[(1+U(s)1+γ2(s,z))θ(1+U(s))θ]ν~1(ds,dz)\displaystyle+\int\limits_{0}^{t}\!\!\int\limits_{\mathbb{R}}\left[\left(1+\frac{U(s)}{1+\gamma_{2}(s,z)}\right)^{\theta}-(1+U(s))^{\theta}\right]\tilde{\nu}_{1}(ds,dz)
+0t[(1+U(s)1+δ2(s,z))θ(1+U(s))θ]ν~2(ds,dz)\displaystyle+\int\limits_{0}^{t}\!\!\int\limits_{\mathbb{R}}\left[\left(1+\frac{U(s)}{1+\delta_{2}(s,z)}\right)^{\theta}-(1+U(s))^{\theta}\right]\tilde{\nu}_{2}(ds,dz)
=(1+U(0))θ+0tθ(1+U(s))θ2J(s)𝑑s\displaystyle=(1+U(0))^{\theta}+\int\limits_{0}^{t}\theta(1+U(s))^{\theta-2}J(s)ds
I1,stoch(t)+I2,stoch(t)+I3,stoch(t),\displaystyle-I_{1,stoch}(t)+I_{2,stoch}(t)+I_{3,stoch}(t), (27)

where Ij,stoch(t),j=1,3¯I_{j,stoch}(t),j=\overline{1,3} are the corresponding stochastic integrals in (2)(\ref{eq27}). Under the Assumption 1 there exists constants |K1(θ)|<|K_{1}(\theta)|<\infty, |K2(θ)|<|K_{2}(\theta)|<\infty such, that for the process J(t)J(t) we have the estimate

J(t)(1+U(t))U(t)[a2(t)+c2supU1(t)minf+σ22(t)\displaystyle J(t)\leq(1+U(t))U(t)\left[-a_{2}(t)+\frac{c_{2\sup}U^{-1}(t)}{m_{inf}}+\sigma_{2}^{2}(t)\!\!\phantom{\int\limits_{\mathbb{R}}}\right.
+γ22(s,z)1+γ2(s,z)Π1(dz)]+θ12U2(s)σ22(s)\displaystyle\left.+\int\limits_{\mathbb{R}}\frac{\gamma_{2}^{2}(s,z)}{1+\gamma_{2}(s,z)}\Pi_{1}(dz)\right]+\frac{\theta-1}{2}U^{2}(s)\sigma_{2}^{2}(s)
+1θ[(1+U(s))2((11+γ2(s,z)+11+U(s))θ1)\displaystyle+\frac{1}{\theta}\int\limits_{\mathbb{R}}\left[(1+U(s))^{2}\left(\left(\frac{1}{1+\gamma_{2}(s,z)}+\frac{1}{1+U(s)}\right)^{\theta}-1\right)\right.
+θ(1+U(s))U(s)γ2(s,z)1+γ2(s,z)]Π1(dz)\displaystyle+\left.\theta(1+U(s))\frac{U(s)\gamma_{2}(s,z)}{1+\gamma_{2}(s,z)}\right]\Pi_{1}(dz)
+1θ(1+U(s))2[(11+δ2(s,z)+11+U(s))θ1]Π2(dz)\displaystyle+\frac{1}{\theta}\int\limits_{\mathbb{R}}(1+U(s))^{2}\left[\left(\frac{1}{1+\delta_{2}(s,z)}+\frac{1}{1+U(s)}\right)^{\theta}-1\right]\Pi_{2}(dz)
U2(t)[a2(t)+σ22(t)2+γ2(t,z)Π1(dz)+θ2σ22(t)\displaystyle\leq U^{2}(t)\left[-a_{2}(t)+\frac{\sigma_{2}^{2}(t)}{2}+\int\limits_{\mathbb{R}}\gamma_{2}(t,z)\Pi_{1}(dz)+\frac{\theta}{2}\sigma_{2}^{2}(t)\right.
+1θ[(1+γ2(t,z))θ1]Π1(dz)+1θ[(1+δ2(t,z))θ1]Π2(dz)]\displaystyle\left.+\frac{1}{\theta}\int\limits_{\mathbb{R}}[(1+\gamma_{2}(t,z))^{-\theta}-1]\Pi_{1}(dz)+\frac{1}{\theta}\int\limits_{\mathbb{R}}[(1+\delta_{2}(t,z))^{-\theta}-1]\Pi_{2}(dz)\right]
+K1(θ)U(t)+K2(θ)=K0(t,θ)U2(t)+K1(θ)U(t)+K2(θ),\displaystyle+K_{1}(\theta)U(t)+K_{2}(\theta)=-K_{0}(t,\theta)U^{2}(t)+K_{1}(\theta)U(t)+K_{2}(\theta),

where we used the inequality (x+y)θxθ+θxθ1y(x+y)^{\theta}\leq x^{\theta}+\theta x^{\theta-1}y, 0<θ<10<\theta<1, x,y>0x,y>0. Due to

limθ0+[θ2σ22(t)+1θ[(1+γ2(t,z))θ1]Π1(dz)\displaystyle\lim_{\theta\to 0+}\left[\frac{\theta}{2}\sigma_{2}^{2}(t)+\frac{1}{\theta}\int\limits_{\mathbb{R}}[(1+\gamma_{2}(t,z))^{-\theta}-1]\Pi_{1}(dz)\right.
+1θ[(1+δ2(t,z))θ1]Π2(dz)+ln(1+γ2(t,z))Π1(dz)\displaystyle\left.+\frac{1}{\theta}\int\limits_{\mathbb{R}}[(1+\delta_{2}(t,z))^{-\theta}-1]\Pi_{2}(dz)+\int\limits_{\mathbb{R}}\ln(1+\gamma_{2}(t,z))\Pi_{1}(dz)\right.
+ln(1+δ2(t,z))Π2(dz)]=limθ0+Δ(θ)=0,\displaystyle\left.+\int\limits_{\mathbb{R}}\ln(1+\delta_{2}(t,z))\Pi_{2}(dz)\right]=\lim_{\theta\to 0+}\Delta(\theta)=0,

and condition p2inf>0p_{2\inf}>0 we can choose a sufficiently small 0<θ<10<\theta<1 to satisfy

K0(θ)=inft0K0(t,θ)=inft0[p2(t)Δ(θ)]=p2infΔ(θ)>0.\displaystyle K_{0}(\theta)=\inf_{t\geq 0}K_{0}(t,\theta)=\inf_{t\geq 0}[p_{2}(t)-\Delta(\theta)]=p_{2\inf}-\Delta(\theta)>0.

So from (2)(\ref{eq27}) and the estimate for J(t)J(t) we derive

d[(1+U(t))θ]θ(1+U(t))θ2[K0(θ)U2(t)+K1(θ)U(t)+K2(θ)]dt\displaystyle d\left[(1+U(t))^{\theta}\right]\leq\theta(1+U(t))^{\theta-2}[-K_{0}(\theta)U^{2}(t)+K_{1}(\theta)U(t)+K_{2}(\theta)]dt
θ(1+U(t))θ1U(t)σ2(t)dw2(t)+[(1+U(t)1+γ2(t,z))θ\displaystyle-\theta(1+U(t))^{\theta-1}U(t)\sigma_{2}(t)dw_{2}(t)+\int\limits_{\mathbb{R}}\left[\left(1+\frac{U(t)}{1+\gamma_{2}(t,z)}\right)^{\theta}\right.
(1+U(t))θ]ν~1(dt,dz)+[(1+U(t)1+δ2(t,z))θ(1+U(t))θ]ν~2(dt,dz).\displaystyle\left.-(1\!+\!U(t))^{\theta}\rule{0.0pt}{18.0pt}\right]\!\tilde{\nu}_{1}(dt,dz)\!+\!\int\limits_{\mathbb{R}}\!\left[\left(1\!+\!\frac{U(t)}{1+\delta_{2}(t,z)}\right)^{\theta}\!\!-\!(1\!+\!U(t))^{\theta}\right]\!\tilde{\nu}_{2}(dt,dz). (28)

By the Itô formula and (2)(\ref{eq28}) we have

d[eλt(1+U(t))θ]=λeλt(1+U(t))θdt+eλtd[(1+U(t))θ]\displaystyle d\left[e^{\lambda t}(1+U(t))^{\theta}\right]=\lambda e^{\lambda t}(1+U(t))^{\theta}dt+e^{\lambda t}d\left[(1+U(t))^{\theta}\right]
eλtθ(1+U(t))θ2[(K0(θ)λθ)U2(t)+(K1(θ)+2λθ)U(t)\displaystyle\leq e^{\lambda t}\theta(1+U(t))^{\theta-2}\left[-\left(K_{0}(\theta)-\frac{\lambda}{\theta}\right)U^{2}(t)+\left(K_{1}(\theta)+\frac{2\lambda}{\theta}\right)U(t)\right.
+K2(θ)+λθ]dtθeλt(1+U(t))θ1U(t)σ2(t)dw2(t)\displaystyle\left.+K_{2}(\theta)+\frac{\lambda}{\theta}\right]dt-\theta e^{\lambda t}(1+U(t))^{\theta-1}U(t)\sigma_{2}(t)dw_{2}(t)
+eλt[(1+U(t)1+γ2(t,z))θ(1+U(t))θ]ν~1(dt,dz)\displaystyle+e^{\lambda t}\int\limits_{\mathbb{R}}\left[\left(1+\frac{U(t)}{1+\gamma_{2}(t,z)}\right)^{\theta}-(1+U(t))^{\theta}\right]\tilde{\nu}_{1}(dt,dz)
+eλt[(1+U(t)1+δ2(t,z))θ(1+U(t))θ]ν~2(dt,dz).\displaystyle\displaystyle+e^{\lambda t}\int\limits_{\mathbb{R}}\left[\left(1+\frac{U(t)}{1+\delta_{2}(t,z)}\right)^{\theta}-(1+U(t))^{\theta}\right]\tilde{\nu}_{2}(dt,dz). (29)

Let us choose λ=λ(θ)>0\lambda=\lambda(\theta)>0 such that K0(θ)λ/θ>0K_{0}(\theta)-\lambda/\theta>0. Then there is a constant K>0K>0, such that

(1+U(t))θ2[(K0(θ)λθ)U2(t)\displaystyle(1+U(t))^{\theta-2}\left[-\left(K_{0}(\theta)-\frac{\lambda}{\theta}\right)U^{2}(t)\right.
+(K1(θ)+2λθ)U(t)+K2(θ)+λθ]K.\displaystyle\left.+\left(K_{1}(\theta)+\frac{2\lambda}{\theta}\right)U(t)+K_{2}(\theta)+\frac{\lambda}{\theta}\right]\leq K. (30)

Let τn\tau_{n} be the stopping time defined in Theorem 1. Then by integrating (2)(\ref{eq29}), using (2)(\ref{eq30}) and taking the expectation we obtain

E[eλ(tτn)(1+U(tτn))θ](1+1x20)θ+θλK(eλt1).\displaystyle\mathrm{E}\left[e^{\lambda(t\wedge\tau_{n})}(1+U(t\wedge\tau_{n}))^{\theta}\right]\leq\left(1+\frac{1}{x_{20}}\right)^{\theta}+\frac{\theta}{\lambda}K\left(e^{\lambda t}-1\right).

Letting nn\to\infty leads to the estimate

etE[(1+U(t))θ](1+1x20)θ+θλK(eλt1).\displaystyle e^{t}\mathrm{E}\left[(1+U(t))^{\theta}\right]\leq\left(1+\frac{1}{x_{20}}\right)^{\theta}+\frac{\theta}{\lambda}K\left(e^{\lambda t}-1\right). (31)

From (31)(\ref{eq31}) we obtain

lim suptE[(1x2(t))θ]=lim suptE[Uθ(t)]\displaystyle\limsup_{t\to\infty}\mathrm{E}\left[\left(\frac{1}{x_{2}(t)}\right)^{\theta}\right]=\limsup_{t\to\infty}\mathrm{E}\left[U^{\theta}(t)\right]
lim suptE[(1+U(t))θ]θλ(θ)K,\displaystyle\leq\limsup_{t\to\infty}\mathrm{E}\left[(1+U(t))^{\theta}\right]\leq\frac{\theta}{\lambda(\theta)}K,

this implies (26)(\ref{eq26}). ∎

3 The long time behaviour

Definition 1.

([9]) The solution X(t)X(t) to the system (1)(\ref{eq3}) is said to be stochastically ultimately bounded, if for any ε(0,1)\varepsilon\in(0,1), there is a positive constant χ=χ(ε)>0\chi=\chi(\varepsilon)>0, such that for any initial value X0+2X_{0}\in\mathbb{R}^{2}_{+}, the solution to the system (1)(\ref{eq3}) has the property that

lim suptP{|X(t)|>χ}<ε.\displaystyle\limsup_{t\to\infty}\mathrm{P}\left\{|X(t)|>\chi\right\}<\varepsilon.

In what follows in this section we will assume that Assumption 1 holds.

Theorem 2.

The solution X(t)X(t) to the system (1)(\ref{eq3}) with initial value X0+2X_{0}\in\mathbb{R}^{2}_{+} is stochastically ultimately bounded.

Proof.

From the Lemma 3 we have the estimate

lim suptE[xi(t)]Ki,i=1,2.\displaystyle\limsup_{t\to\infty}E[x_{i}(t)]\leq K_{i},\ i=1,2. (32)

For X=(x1,x2)+2X=(x_{1},x_{2})\in\mathbb{R}^{2}_{+} we have |X|x1+x2|X|\leq x_{1}+x_{2}, therefore, from (32)(\ref{eq32})lim suptE[|X(t)|]L=K1+K2\limsup_{t\to\infty}E[|X(t)|]\leq L=K_{1}+K_{2}. Let χ>L/ε\chi>L/\varepsilon, ε(0,1)\forall\varepsilon\in(0,1). Then applying the Chebyshev inequality yields

lim suptP{|X(t)|>χ}1χlimsuptE[|X(t)|]Lχ<ε.\displaystyle\limsup_{t\to\infty}\mathrm{P}\{|X(t)|>\chi\}\leq\frac{1}{\chi}\lim\sup_{t\to\infty}E[|X(t)|]\leq\frac{L}{\chi}<\varepsilon.

The property of stochastic permanence is important since it means the long-time survival in a population dynamics.

Definition 2.

The population density x(t)x(t) is said to be stochastically permanent if for any ε>0\varepsilon>0, there are positive constants H=H(ε)H=H(\varepsilon), h=h(ε)h=h(\varepsilon) such that

lim inftP{x(t)H}1ε,lim inftP{x(t)h}1ε,\displaystyle\liminf\limits_{t\to\infty}\mathrm{P}\{x(t)\leq H\}\geq 1-\varepsilon,\quad\liminf\limits_{t\to\infty}\mathrm{P}\{x(t)\geq h\}\geq 1-\varepsilon,

for any inial value x0>0x_{0}>0.

Theorem 3.

If p2inf>0p_{2\inf}>0, where p2(t)=a2(t)β2(t)p_{2}(t)=a_{2}(t)-\beta_{2}(t), then for any initial value x20>0x_{20}>0, the predator population density x2(t)x_{2}(t) is stochastically permanent.

Proof.

From Lemma 3 we have estimate

lim suptE[x2(t)]K.\displaystyle\limsup_{t\to\infty}E[x_{2}(t)]\leq K.

Thus for any given ε>0\varepsilon>0, let H=K/εH=K/\varepsilon, by virtue of Chebyshev’s inequality, we can derive that

lim suptP{x2(t)H}1Hlim suptE[x2(t)]ε.\displaystyle\limsup\limits_{t\to\infty}\mathrm{P}\{x_{2}(t)\geq H\}\leq\frac{1}{H}\limsup_{t\to\infty}E[x_{2}(t)]\leq\varepsilon.

Consequently lim inftP{x2(t)H}1ε\liminf\limits_{t\to\infty}\mathrm{P}\{x_{2}(t)\leq H\}\geq 1-\varepsilon.

From Lemma 4 we have estimate

lim suptE[(1x2(t))θ]K(θ), 0<θ<1.\displaystyle\limsup_{t\to\infty}\mathrm{E}\left[\left(\frac{1}{x_{2}(t)}\right)^{\theta}\right]\leq K(\theta),\ 0<\theta<1.

For any given ε>0\varepsilon>0, let h=(ε/K(θ))1/θh=(\varepsilon/K(\theta))^{1/\theta}, then by Chebyshev’s inequality, we have

lim suptP{x2(t)<h}lim suptP{(1x2(t))θ>hθ}\displaystyle\limsup\limits_{t\to\infty}\mathrm{P}\{x_{2}(t)<h\}\leq\limsup\limits_{t\to\infty}\mathrm{P}\left\{\left(\frac{1}{x_{2}(t)}\right)^{\theta}>h^{-\theta}\right\}
hθlim suptE[(1x2(t))θ]ε.\displaystyle\leq h^{\theta}\limsup\limits_{t\to\infty}\mathrm{E}\left[\left(\frac{1}{x_{2}(t)}\right)^{\theta}\right]\leq\varepsilon.

Consequently lim inftP{x2(t)h}1ε\liminf\limits_{t\to\infty}\mathrm{P}\{x_{2}(t)\geq h\}\geq 1-\varepsilon. ∎

Theorem 4.

If the predator is absent, i.e. x2(t)=0x_{2}(t)=0 a.s., and p1inf>0p_{1\inf}>0, where p1(t)=a1(t)β1(t)p_{1}(t)=a_{1}(t)-\beta_{1}(t), then for any initial value x10>0x_{10}>0, the prey population density x1(t)x_{1}(t) is stochastically permanent.

Proof.

From Lemma 3 we have estimate

lim suptE[x1(t)]K.\displaystyle\limsup_{t\to\infty}E[x_{1}(t)]\leq K.

Thus for any given ε>0\varepsilon>0, let H=K/εH=K/\varepsilon, by virtue of Chebyshev’s inequality, we can derive that

lim suptP{x1(t)H}1Hlim suptE[x1(t)]ε.\displaystyle\limsup\limits_{t\to\infty}\mathrm{P}\{x_{1}(t)\geq H\}\leq\frac{1}{H}\limsup_{t\to\infty}E[x_{1}(t)]\leq\varepsilon.

Consequently lim inftP{x1(t)H}1ε\liminf\limits_{t\to\infty}\mathrm{P}\{x_{1}(t)\leq H\}\geq 1-\varepsilon.

For the process U(t)=1/x1(t)U(t)=1/x_{1}(t) by the Itô formula we have

U(t)=U(0)+0tU(s)[b1(s)x1(s)a1(s)+σ12(s)\displaystyle U(t)=U(0)+\int\limits_{0}^{t}U(s)\left[\rule{0.0pt}{20.0pt}b_{1}(s)x_{1}(s)-a_{1}(s)+\sigma_{1}^{2}(s)\right.
+γ12(s,z)1+γ1(s,z)Π1(dz)]ds0tU(s)σ1(s)dw1(s)\displaystyle\left.+\int\limits_{\mathbb{R}}\frac{\gamma_{1}^{2}(s,z)}{1+\gamma_{1}(s,z)}\Pi_{1}(dz)\right]ds-\int\limits_{0}^{t}U(s)\sigma_{1}(s)dw_{1}(s)
0tU(s)γ1(s,z)1+γ1(s,z)ν~1(ds,dz)0tU(s)δ1(s,z)1+δ1(s,z)ν2(ds,dz).\displaystyle-\int\limits_{0}^{t}\!\!\!\!\int\limits_{\mathbb{R}}U(s)\frac{\gamma_{1}(s,z)}{1+\gamma_{1}(s,z)}\tilde{\nu}_{1}(ds,dz)-\int\limits_{0}^{t}\!\!\!\int\limits_{\mathbb{R}}U(s)\frac{\delta_{1}(s,z)}{1+\delta_{1}(s,z)}\nu_{2}(ds,dz).

Then, using the same arguments as in the proof of Lemma 4 we can derive the estimate

lim suptE[(1x1(t))θ]K(θ), 0<θ<1,\displaystyle\limsup_{t\to\infty}\mathrm{E}\left[\left(\frac{1}{x_{1}(t)}\right)^{\theta}\right]\leq K(\theta),\ 0<\theta<1,

For any given ε>0\varepsilon>0, let h=(ε/K(θ))1/θh=(\varepsilon/K(\theta))^{1/\theta}, then by Chebyshev’s inequality, we have

lim suptP{x1(t)<h}=lim suptP{(1x1(t))θ>hθ}\displaystyle\limsup\limits_{t\to\infty}\mathrm{P}\{x_{1}(t)<h\}=\limsup\limits_{t\to\infty}\mathrm{P}\left\{\left(\frac{1}{x_{1}(t)}\right)^{\theta}>h^{-\theta}\right\}
hθlim suptE[(1x1(t))θ]ε.\displaystyle\leq h^{\theta}\limsup\limits_{t\to\infty}\mathrm{E}\left[\left(\frac{1}{x_{1}(t)}\right)^{\theta}\right]\leq\varepsilon.

Consequently lim inftP{x1(t)h}1ε\liminf\limits_{t\to\infty}\mathrm{P}\{x_{1}(t)\geq h\}\geq 1-\varepsilon. ∎

Remark 1.

If the predator is absent, i.e. x2(t)=0x_{2}(t)=0 a.s., then the equation for the prey x1(t)x_{1}(t) has the logistic form. So Theorem 4 gives us the sufficient conditions for the stochastic permanence of the solution to the stochastic non-autonomous logistic equation disturbed by white noise, centered and non-centered Poisson noises.

Definition 3.

The solution X(t)=(x1(t),x2(t))X(t)=(x_{1}(t),x_{2}(t)), t0t\geq 0 to the equation (1)(\ref{eq3}) will be said extinct if for every initial data X0+2X_{0}\in\mathbb{R}^{2}_{+}, we have limtxi(t)=0\lim_{t\to\infty}x_{i}(t)=0 almost surely (a.s.), i=1,2i=1,2.

Theorem 5.

If

p¯i=lim supt1t0tpi(s)𝑑s<0,wherepi(t)=ai(t)βi(t),i=1,2,\displaystyle{\bar{p}}^{*}_{i}=\limsup_{t\to\infty}\frac{1}{t}\int\limits_{0}^{t}p_{i}(s)ds<0,\ \hbox{where}\ p_{i}(t)=a_{i}(t)-\beta_{i}(t),\ i=1,2,

then the solution X(t)X(t) to the equation (1)(\ref{eq3}) with initial condition X0+2X_{0}\in\mathbb{R}^{2}_{+} will be extinct.

Proof.

By the Itô formula, we have

dlnxi(t)=[ai(t)bi(t)xi(t)ci(t)x2(t)m(t)+x1(t)βi(t)]dt+dMi(t)\displaystyle d\ln x_{i}(t)=\left[a_{i}(t)-b_{i}(t)x_{i}(t)-\frac{c_{i}(t)x_{2}(t)}{m(t)+x_{1}(t)}-\beta_{i}(t)\right]dt+dM_{i}(t)
[ai(t)βi(t)]dt+dMi(t),i=1,2,\displaystyle\leq[a_{i}(t)-\beta_{i}(t)]dt+dM_{i}(t),\ i=1,2, (33)

where the martingale

Mi(t)=0tσi(s)𝑑wi(s)+0tln(1+γi(s,z))ν~1(ds,dz)\displaystyle M_{i}(t)=\int\limits_{0}^{t}\sigma_{i}(s)dw_{i}(s)+\int\limits_{0}^{t}\!\!\int\limits_{\mathbb{R}}\ln(1+\gamma_{i}(s,z))\tilde{\nu}_{1}(ds,dz)
+0tln(1+δi(s,z))ν~2(ds,dz),i=1,2,\displaystyle+\int\limits_{0}^{t}\!\!\int\limits_{\mathbb{R}}\ln(1+\delta_{i}(s,z))\tilde{\nu}_{2}(ds,dz),\ i=1,2, (34)

has quadratic variation

Mi,Mi(t)=0tσi2(s)𝑑s+0tln2(1+γi(s,z))Π1(dz)𝑑s\displaystyle\langle M_{i},M_{i}\rangle(t)=\int\limits_{0}^{t}\sigma^{2}_{i}(s)ds+\int\limits_{0}^{t}\!\!\int\limits_{\mathbb{R}}\ln^{2}(1+\gamma_{i}(s,z))\Pi_{1}(dz)ds
+0tln2(1+δi(s,z))Π2(dz)𝑑sKt,i=1,2.\displaystyle+\int\limits_{0}^{t}\!\!\int\limits_{\mathbb{R}}\ln^{2}(1+\delta_{i}(s,z))\Pi_{2}(dz)ds\leq Kt,\ i=1,2.

Then the strong law of large numbers for local martingales ([10]) yields limtMi(t)/t=0,i=1,2\lim_{t\to\infty}M_{i}(t)/t=0,i=1,2 a.s. Therefore, from (3)(\ref{eq33}) we obtain

lim suptlnxi(t)tlim supt1t0tpi(s)𝑑s<0,a.s.\limsup_{t\to\infty}\frac{\ln x_{i}(t)}{t}\leq\limsup_{t\to\infty}\frac{1}{t}\int\limits_{0}^{t}p_{i}(s)ds<0,\quad\hbox{a.s.}

So limtxi(t)=0,i=1,2\lim_{t\to\infty}x_{i}(t)=0,i=1,2 a.s. ∎

Definition 4 ([11]).

The population density x(t)x(t) will be said non-persistent in the mean if

limt1t0tx(s)𝑑s=0a.s.\displaystyle\lim_{t\to\infty}\frac{1}{t}\int_{0}^{t}x(s)ds=0\ \hbox{a.s.}
Theorem 6.

If p¯1=0{\bar{p}}_{1}^{*}=0, then the prey population density x1(t)x_{1}(t) with initial condition x10>0x_{10}>0 will be non-persistent in the mean.

Proof.

From the first equality in (3)(\ref{eq33}) we have for i=1i=1

lnx1(t)lnx10+0tp1(s)𝑑sb1inf0tx1(s)𝑑s+M1(t),\displaystyle\ln x_{1}(t)\leq\ln x_{10}+\int\limits_{0}^{t}p_{1}(s)ds-b_{1\inf}\int\limits_{0}^{t}x_{1}(s)ds+M_{1}(t), (35)

where martingale M1(t)M_{1}(t) is defined in (3)(\ref{eq34}). From the definition of p¯1{\bar{p}}^{*}_{1} and the strong law of large numbers for M1(t)M_{1}(t) it follows, that ε>0\forall\varepsilon>0, t00\exists t_{0}\geq 0, and ΩεΩ\exists\Omega_{\varepsilon}\subset\Omega, with P(Ωε)1ε\mathrm{P}(\Omega_{\varepsilon})\geq 1-\varepsilon, such that

1t0tp1(s)𝑑sp¯1+ε2,M1(t)tε2,tt0,ωΩε.\displaystyle\frac{1}{t}\int\limits_{0}^{t}p_{1}(s)ds\leq{\bar{p}}^{*}_{1}+\frac{\varepsilon}{2},\ \frac{M_{1}(t)}{t}\leq\frac{\varepsilon}{2},\ \forall t\geq t_{0},\ \omega\in\Omega_{\varepsilon}.

So, from (35)(\ref{eq35}) we derive

lnx1(t)lnx10t(p¯1+ε)b1inf0tx1(s)𝑑s\displaystyle\ln x_{1}(t)-\ln x_{10}\leq t({\bar{p}}^{*}_{1}+\varepsilon)-b_{1\inf}\int\limits_{0}^{t}x_{1}(s)ds
=tεb1inf0tx1(s)𝑑s,tt0,ωΩε.\displaystyle=t\varepsilon-b_{1\inf}\int\limits_{0}^{t}x_{1}(s)ds,\forall t\geq t_{0},\ \omega\in\Omega_{\varepsilon}. (36)

Let y1(t)=0tx1(s)𝑑sy_{1}(t)=\int_{0}^{t}x_{1}(s)ds, then from (3)(\ref{eq36}) we have

ln(dy1(t)dt)εtb1infy1(t)+lnx10\displaystyle\ln\left(\frac{dy_{1}(t)}{dt}\right)\leq\varepsilon t-b_{1\inf}y_{1}(t)+\ln x_{10}
eb1infy1(t)dy1(t)dtx10eεt,tt0,ωΩε.\displaystyle\Rightarrow e^{b_{1\inf}y_{1}(t)}\frac{dy_{1}(t)}{dt}\leq x_{10}e^{\varepsilon t},\forall t\geq t_{0},\ \omega\in\Omega_{\varepsilon}.

By integrating of last inequality from t0t_{0} to tt we obtain

eb1infy1(t)b1infx10ε(eεteεt0)+eb1infy1(t0),tt0,ωΩε.\displaystyle e^{b_{1\inf}y_{1}(t)}\leq\frac{b_{1\inf}x_{10}}{\varepsilon}\left(e^{\varepsilon t}-e^{\varepsilon t_{0}}\right)+e^{b_{1\inf}y_{1}(t_{0})},\ \forall t\geq t_{0},\ \omega\in\Omega_{\varepsilon}.

So

y1(t)1b1infln[eb1infy1(t0)+b1infx10ε(eεteεt0)],tt0,ωΩε,\displaystyle y_{1}(t)\leq\frac{1}{b_{1\inf}}\ln\left[e^{b_{1\inf}y_{1}(t_{0})}+\frac{b_{1\inf}x_{10}}{\varepsilon}\left(e^{\varepsilon t}-e^{\varepsilon t_{0}}\right)\right],\ \forall t\geq t_{0},\ \omega\in\Omega_{\varepsilon},

and therefore

lim supt1t0tx1(s)𝑑sεb1inf,ωΩε.\displaystyle\limsup_{t\to\infty}\frac{1}{t}\int\limits_{0}^{t}x_{1}(s)ds\leq\frac{\varepsilon}{b_{1\inf}},\ \forall\omega\in\Omega_{\varepsilon}.

Since ε>0\varepsilon>0 is arbitrary and x1(t)>0x_{1}(t)>0 a.s., we have

limt1t0tx1(s)𝑑s=0a.s.\displaystyle\lim_{t\to\infty}\frac{1}{t}\int\limits_{0}^{t}x_{1}(s)ds=0\ a.s.

Theorem 7.

If p¯2=0{\bar{p}}_{2}^{*}=0 and p¯1<0{\bar{p}}_{1}^{*}<0, then the predator population density x2(t)x_{2}(t) with initial condition x20>0x_{20}>0 will be non-persistent in the mean.

Proof.

From the first equality in (3)(\ref{eq33}) with i=2i=2 we have for c=c2inf/msupc=c_{2\inf}/m_{\sup}

lnx2(t)lnx20+0tp2(s)𝑑sc2inf0tx2(s)m(s)+x1(s)𝑑s+M2(t)\displaystyle\ln x_{2}(t)\leq\ln x_{20}+\int\limits_{0}^{t}p_{2}(s)ds-c_{2\inf}\int\limits_{0}^{t}\frac{x_{2}(s)}{m(s)+x_{1}(s)}ds+M_{2}(t)
=lnx20+0tp2(s)𝑑sc2inf0t1m(s)[x2(s)x1(s)x2(s)m(s)+x1(s)]𝑑s+M2(t)\displaystyle=\ln x_{20}\!+\!\int\limits_{0}^{t}p_{2}(s)ds\!-\!c_{2\inf}\int\limits_{0}^{t}\frac{1}{m(s)}\left[x_{2}(s)\!-\!\frac{x_{1}(s)x_{2}(s)}{m(s)+x_{1}(s)}\right]ds\!+\!M_{2}(t)
lnx20+0tp2(s)𝑑sc0tx2(s)𝑑s+c0tx1(s)x2(s)msup+x1(s)𝑑s+M2(t),\displaystyle\leq\ln x_{20}+\int\limits_{0}^{t}p_{2}(s)ds-c\int\limits_{0}^{t}x_{2}(s)ds+c\int\limits_{0}^{t}\frac{x_{1}(s)x_{2}(s)}{m_{\sup}+x_{1}(s)}ds+M_{2}(t), (37)

where martingale M2(t)M_{2}(t) is defined in (3)(\ref{eq34}). From Theorem 5, the definition of p¯2{\bar{p}}^{*}_{2} and the strong law of large numbers for M2(t)M_{2}(t) it follows, that ε>0\forall\varepsilon>0, t00\exists t_{0}\geq 0, and ΩεΩ\exists\Omega_{\varepsilon}\subset\Omega with P(Ωε)1ε\mathrm{P}(\Omega_{\varepsilon})\geq 1-\varepsilon, such that

1t0tp2(s)𝑑sp¯2+ε2,M2(t)tε2,x1(t)msup+x1(t)ε,tt0,ωΩε.\displaystyle\frac{1}{t}\int\limits_{0}^{t}p_{2}(s)ds\leq{\bar{p}}^{*}_{2}+\frac{\varepsilon}{2},\ \frac{M_{2}(t)}{t}\leq\frac{\varepsilon}{2},\ \frac{x_{1}(t)}{m_{\sup}+x_{1}(t)}\leq\varepsilon,\ \forall t\geq t_{0},\ \omega\in\Omega_{\varepsilon}.

So, from (3)(\ref{eq37}) we derive

lnx2(t)lnx20t(p¯2+ε)c(1ε)t0tx2(s)𝑑s\displaystyle\ln x_{2}(t)-\ln x_{20}\leq t({\bar{p}}^{*}_{2}+\varepsilon)-c(1-\varepsilon)\int\limits_{t_{0}}^{t}x_{2}(s)ds
=tεc(1ε)t0tx2(s)𝑑s,tt0,ωΩε.\displaystyle=t\varepsilon-c(1-\varepsilon)\int\limits_{t_{0}}^{t}x_{2}(s)ds,\forall t\geq t_{0},\ \omega\in\Omega_{\varepsilon}. (38)

Let y2(t)=t0tx2(s)𝑑sy_{2}(t)=\int_{t_{0}}^{t}x_{2}(s)ds, then from (3)(\ref{eq38}) we have

ln(dy2(t)dt)εtc(1ε)y2(t)+lnx20\displaystyle\ln\left(\frac{dy_{2}(t)}{dt}\right)\leq\varepsilon t-c(1-\varepsilon)y_{2}(t)+\ln x_{20}
ec(1ε)y2(t)dy2(t)dtx20eεt,tt0,ωΩε.\displaystyle\Rightarrow e^{c(1-\varepsilon)y_{2}(t)}\frac{dy_{2}(t)}{dt}\leq x_{20}e^{\varepsilon t},\forall t\geq t_{0},\ \omega\in\Omega_{\varepsilon}.

By integrating of last inequality from t0t_{0} to tt we obtain

ec(1ε)y2(t)c(1ε)x20ε(eεteεt0)+1,tt0,ωΩε.\displaystyle e^{c(1-\varepsilon)y_{2}(t)}\leq\frac{c(1-\varepsilon)x_{20}}{\varepsilon}\left(e^{\varepsilon t}-e^{\varepsilon t_{0}}\right)+1,\ \forall t\geq t_{0},\ \omega\in\Omega_{\varepsilon}.

So

y2(t)1c(1ε)ln[1+c(1ε)x20ε(eεteεt0)],tt0,ωΩε,\displaystyle y_{2}(t)\leq\frac{1}{c(1-\varepsilon)}\ln\left[1+\frac{c(1-\varepsilon)x_{20}}{\varepsilon}\left(e^{\varepsilon t}-e^{\varepsilon t_{0}}\right)\right],\ \forall t\geq t_{0},\ \omega\in\Omega_{\varepsilon},

and therefore

lim supt1t0tx2(s)𝑑sεc(1ε),ωΩε.\displaystyle\limsup_{t\to\infty}\frac{1}{t}\int\limits_{0}^{t}x_{2}(s)ds\leq\frac{\varepsilon}{c(1-\varepsilon)},\ \forall\omega\in\Omega_{\varepsilon}.

Since ε>0\varepsilon>0 is arbitrary and x2(t)>0x_{2}(t)>0 a.s., we have

limt1t0tx2(s)𝑑s=0a.s.\displaystyle\lim_{t\to\infty}\frac{1}{t}\int\limits_{0}^{t}x_{2}(s)ds=0\ a.s.

Definition 5 ([11]).

The population density x(t)x(t) will be said weakly persistent in the mean if

x¯=lim supt1t0tx(s)𝑑s>0a.s.\displaystyle{\bar{x}}^{*}=\limsup_{t\to\infty}\frac{1}{t}\int_{0}^{t}x(s)ds>0\ \hbox{a.s.}
Theorem 8.

If p¯2>0{\bar{p}}_{2}^{*}>0, then the predator population density x2(t)x_{2}(t) with initial condition x20>0x_{20}>0 will be weakly persistent in the mean.

Proof.

If the assertion of theorem is not true, then P{x¯2=0}>0\mathrm{P}\{{\bar{x}}_{2}^{*}=0\}>0. From the first equality in (3)(\ref{eq33}) we get

1t(lnx2(t)lnx20)=1t0tp2(s)𝑑s1t0tc2(s)x2(s)m(s)+x1(s)𝑑s+M2(t)t\displaystyle\frac{1}{t}(\ln x_{2}(t)-\ln x_{20})=\frac{1}{t}\int_{0}^{t}p_{2}(s)ds-\frac{1}{t}\int_{0}^{t}\frac{c_{2}(s)x_{2}(s)}{m(s)+x_{1}(s)}ds+\frac{M_{2}(t)}{t}
1t0tp2(s)𝑑sc2supminft0tx2(s)𝑑s+M2(t)t,\displaystyle\geq\frac{1}{t}\int_{0}^{t}p_{2}(s)ds-\frac{c_{2\sup}}{m_{\inf}t}\int_{0}^{t}x_{2}(s)ds+\frac{M_{2}(t)}{t},

where martingale M2(t)M_{2}(t) is defined in (3)(\ref{eq34}). For ω{ωΩ|x¯2=0}\forall\omega\in\{\omega\in\Omega|\ {\bar{x}}_{2}^{*}=0\} in virtue strong law of large numbers for martingale M2(t)M_{2}(t) we have

lim suptlnx2(t)tp¯2>0.\displaystyle\limsup_{t\to\infty}\frac{\ln x_{2}(t)}{t}\geq{\bar{p}}_{2}^{*}>0.

Therefore

P{ωΩ|lim suptlnx2(t)t>0}>0.\displaystyle\mathrm{P}\left\{\omega\in\Omega|\ \limsup_{t\to\infty}\frac{\ln x_{2}(t)}{t}>0\right\}>0.

But from Lemma 2 we have

P{ωΩ|lim suptlnx2(t)t0}=1.\displaystyle\mathrm{P}\left\{\omega\in\Omega|\ \limsup_{t\to\infty}\frac{\ln x_{2}(t)}{t}\leq 0\right\}=1.

This is a contradiction. ∎

Theorem 9.

If p¯1>0{\bar{p}}_{1}^{*}>0 and p¯2<0{\bar{p}}_{2}^{*}<0, then the prey population density x1(t)x_{1}(t) with initial condition x10>0x_{10}>0 will be weakly persistent in the mean.

Proof.

Let P{x¯1=0}>0\mathrm{P}\{{\bar{x}}_{1}^{*}=0\}>0. From the first equality in (3)(\ref{eq33}) with i=1i=1 we get

1t(lnx1(t)lnx10)=1t0tp1(s)𝑑s1t0tb1(s)x1(s)𝑑s\displaystyle\frac{1}{t}(\ln x_{1}(t)-\ln x_{10})=\frac{1}{t}\int_{0}^{t}p_{1}(s)ds-\frac{1}{t}\int_{0}^{t}b_{1}(s)x_{1}(s)ds
1t0tc1(s)x2(s)m(s)+x1(s)𝑑s+M1(t)t\displaystyle-\frac{1}{t}\int_{0}^{t}\frac{c_{1}(s)x_{2}(s)}{m(s)+x_{1}(s)}ds+\frac{M_{1}(t)}{t}
1t0tp1(s)𝑑sb1supt0tx1(s)𝑑sc1supminft0tx2(s)𝑑s+M1(t)t\displaystyle\geq\frac{1}{t}\int_{0}^{t}p_{1}(s)ds-\frac{b_{1\sup}}{t}\int_{0}^{t}x_{1}(s)ds-\frac{c_{1\sup}}{m_{\inf}t}\int_{0}^{t}x_{2}(s)ds+\frac{M_{1}(t)}{t} (39)

where martingale M1(t)M_{1}(t) is defined in (3)(\ref{eq34}). From definition of p¯1{\bar{p}}^{*}_{1}, strong law of large numbers for martingale M1(t)M_{1}(t) and Theorem 2 for x2(t)x_{2}(t) we have ε>0\forall\varepsilon>0, t00\exists t_{0}\geq 0, ΩεΩ\exists\Omega_{\varepsilon}\subset\Omega with P(Ωε)1ε\mathrm{P}(\Omega_{\varepsilon})\geq 1-\varepsilon, such that

1t0tp1(s)𝑑sp¯1ε3,M1(t)tε3,1t0tx2(s)𝑑sεminf3c1sup,tt0,ωΩε.\displaystyle\frac{1}{t}\int\limits_{0}^{t}p_{1}(s)ds\geq{\bar{p}}^{*}_{1}-\frac{\varepsilon}{3},\ \frac{M_{1}(t)}{t}\geq-\frac{\varepsilon}{3},\ \frac{1}{t}\int_{0}^{t}x_{2}(s)ds\leq\frac{\varepsilon m_{\inf}}{3c_{1\sup}},\forall t\geq t_{0},\omega\in\Omega_{\varepsilon}.

So, from (3)(\ref{eq39}) we get for ω{ωΩ|x¯1=0}Ωε\omega\in\{\omega\in\Omega|{\bar{x}}_{1}^{*}=0\}\cap\Omega_{\varepsilon}

lim suptlnx1(t)tp¯1ε>0\displaystyle\limsup_{t\to\infty}\frac{\ln x_{1}(t)}{t}\geq{\bar{p}}_{1}^{*}-\varepsilon>0

for sufficiently small ε>0\varepsilon>0. Therefore

P{ωΩ|lim suptlnx1(t)t>0}>0.\displaystyle\mathrm{P}\left\{\omega\in\Omega|\ \limsup_{t\to\infty}\frac{\ln x_{1}(t)}{t}>0\right\}>0.

But from Corollary 1

P{ωΩ|lim suptlnx1(t)t0}=1.\displaystyle\mathrm{P}\left\{\omega\in\Omega|\ \limsup_{t\to\infty}\frac{\ln x_{1}(t)}{t}\leq 0\right\}=1.

Therefore we have a contradiction. ∎

References

  • [1] Aziz-Alaoui, M.A., Daher Okiye, M.: Boundedness and global stability for a predator-prey model with modified Leslie-Gower and Holling-type II schemes, Applied Mathematics Letters, no. 16, 1069–1075, (2003).
  • [2] Ji, C.Y., Jiang, D.Q, Shi, N.Z: Analysis of a predator-prey model with modified Leslie-Gower and Holling-type II schemes with stochastic perturbation, Journal of Mathematical Analysis and Applications, 359, 482–498, (2009).
  • [3] Ji, C.Y., Jiang, D.Q, Shi, N.Z.: A note on a predator-prey model with modified Leslie-Gower and Holling-type II schemes with stochastic perturbation, Journal of Mathematical Analysis and Applications, 377, 435–440, (2011).
  • [4] Lin, Y., Jiang, D.: Long-time behavior of a stochastic predator-prey model with modified Leslie-Gower and Holling-type II schemes, International Journal of Biomathematics, vol.9, no. 3, 1650039 (18p.),(2016).
  • [5] Borysenko, O.D., Borysenko, D.O.: Persistence and Extinction in Stochastic Nonautonomous Logistic Model of Population Dynamics, Theory of Probability and Mathematical Statistics, 2(99), 63–70, (2018).
  • [6] Borysenko, O.D., Borysenko, D.O.: Asymptotic Behavior of the Solution to the Non-Autonomous Stochastic Logistic Differential Equation, Theory of Probability and Mathematical Statistics, 2(101), 40–48, (2019).
  • [7] Borysenko, Olga, Borysenko, Oleksandr: Stochastic two-species mutualism model with jumps, Modern Stochastics: Theory and Applications, 7(1), 1–15, (2020), https://doi.org/10.15559/20-VMSTA150.
  • [8] Gikhman, I.I., Skorokhod, A.V.: Stochastic Differential Equations and its Applications, Kyiv, Naukova Dumka, (1982). (In Russian)
  • [9] Li, X., Mao, X.: Population Dynamical Behavior of Non-Autonomous Lotka-Volterra Competitive System with Random Perturbation, Discrete & Continuous Dynamical Systems, 24, 523 – 545, (2009).
  • [10] Lipster, R.: A strong law of large numbers for local martingales, Stochastics, 3, 217–228, (1980).
  • [11] Liu, M., Wang, K.: Persistence and extinction in stochastic non-autonomous logistic systems, Journal of Mathematical Analysis and Applications 375, 443–457, (2011).