This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

loop grassmaniann

dongmouren    dongmouren    Zhijie Dong
(February 2015; February 2015)

loop grassmaniann

dongmouren    dongmouren    Zhijie Dong
(February 2015; February 2015)

A relation between Mirković-Vilonen cycles and modules over preprojective algebra of Dynkin quiver of type ADE

dongmouren    dongmouren    Zhijie Dong
(February 2015; February 2015)
Abstract

The irreducible components of the variety of all modules over the preprojective algebra and MV cycles both index bases of the universal enveloping algebra of the positive part of a semisimple Lie algebra canonically. To relate these two objects Baumann and Kamnitzer associate a cycle in the affine Grassmannian for a given module. It is conjectured that the ring of functions of the T-fixed point subscheme of the associated cycle is isomorphic to the cohomology ring of the quiver Grassmannian of the module. I give a proof of part of this conjecture. Given this conjecture, I give a proof of the reduceness conjecture in [KMW16].

1 Introduction

Let 𝔤\mathfrak{g} be simply-laced semisimple finite dimensional complex Lie algebra. There are several modern constructions of irreducible representation of 𝔤\mathfrak{g}. In this paper we consider two models which realize the crystal of the positive part U(𝔫)U(\mathfrak{n}) of U(𝔤)U(\mathfrak{g}). One is by Mirkovic-Vilonen (MV) cycles and the other is by the irreducible compotents of Lusztig’s nilpotent variety Λ\Lambda of the preprojective algebra of the quiver QQ corresponding to 𝔤\mathfrak{g}.

Baumann and Kamnitzer [BK12] studied the relations between Λ\Lambda and MV polytopes. They associate an MV polytope P(M)P(M) to a generic module MM and construct a bijection between the set of irreducible components of Λ\Lambda and MV polytopes compatible with respect to crystal structures. Since MV polytopes are in bijection with MV cycles, Kamnitzer and Knutson launched a program towards geometric construction of the MV cycle X(M)X(M) in terms of a module MM over the preprojective algebra.

Here we consider a version by Kamnizter, Knutson and Mirkovic: conjecturally, the ring of functions 𝒪(X(M)T)\mathcal{O}(X(M)^{T}) on the TT fixed point subscheme of the cycle X(M)X(M) associted to MM, is isomorphic to H(GrΠ(M))H^{*}(Gr^{\Pi}(M)), the cohomology ring of the quiver Qrassmannian of MM. In this paper I will construct a map from 𝒪(X(M)T)\mathcal{O}(X(M)^{T}) to H(GrΠ(M))H^{*}(Gr^{\Pi}(M)) and prove it is isomorphism for the case when MM is a representation of QQ.

In section two I recall the definition of MV cycles, quivers, preprojective algebra and Lusztig’s nilpotent variety and state the conjecture precisely.

In chapter three I describe the ring of functions on the TT fixed point subscheme of the intersection of closures of certain semi-infinite orbits (which is called ”cycle” in this paper). A particular case of these intersections is a scheme theoretic version of MV cycles. We realize these cycles as the loop Grassmannian with a certain condition Y.

In section four I construct the map Ψ\Psi from 𝒪(X(M)T)\mathcal{O}(X(M)^{T}) to H(GrΠ(M))H^{*}(Gr^{\Pi}(M)). Here, Ψ\Psi maps certain generators of 𝒪(X(M)T)\mathcal{O}(X(M)^{T}) to Chern classes of tautological bundles over GrΠ(M)Gr^{\Pi}(M). So we need to check that the Chern classes satisfy the relations of generators of 𝒪(X(M)T)\mathcal{O}(X(M)^{T}). We reduce this problem to a simple SL3SL_{3} case. In this case we have a torus action on GrΠ(M)Gr^{\Pi}(M) so we could use localization in equivariant cohomology theory (GKM theory).

In chapter five I will prove Ψ\Psi is an isomorphism in the case when MM is a representation of QQ of type A.

In chapter six I will state some consequences given the conjecture (one of which is the reduceness conjecture).

This is a piece of a big project to relate 𝒢(G)\mathcal{G}(G) and the quiver QQ, see [Mir14], and more recently [Mir17b].

2 Statement of the conjecture

2.1 Notation

Let GG be a simply-laced semisimple group over complex numbers. Let I be the set of vertices in the Dynkin diagram of GG. In this paper I will work over base field k=k=\mathbb{C}. We fix a Cartan subgroup TT of GG and a Borel subgroup BGB\subset G. Denote by NN the unipotent radical of BB. Let ϖi,iI\varpi_{i},i\in I be the fundamental weights. Let X,XX_{*},X^{*} be the cocharacter, character lattice and ,\langle\ ,\ \rangle be the pairing between them. Let W be the Weyl group. Let ee and w0w_{0} be the unit and the longest element in WW. Let αi\alpha_{i} and αˇi\check{\alpha}_{i} be simple roots and coroots. Let Γ={wϖi,wW,iI}\Gamma=\{w\varpi_{i},w\in W,i\in I\}. Γ\Gamma is called the set of chamber weights.

Let dd be the formal disc and dd^{*} be the punctured formal disc. The ring of formal Taylor series is the ring of functions on the formal disc, 𝒪={n0antn}\mathcal{O}=\{\sum_{n\geq 0}a_{n}t^{n}\}. The ring of formal Laurent series is the ring of functions on the punctured formal disc, 𝒦={nn0antn}\mathcal{K}=\{\sum_{n\geq{n_{0}}}a_{n}t^{n}\}.

For XX a variety, let Irr(XX) be the set of irreducible components of XX.

2.2 MV cycles and polytopes

For a group GG, let G𝒦G_{\mathcal{K}} be the loop group of GG and G𝒪G_{\mathcal{O}} the disc group of GG. We define loop grassmannian 𝒢(G)\mathcal{G}(G) as the left quotient G𝒪G𝒦G_{\mathcal{O}}\setminus G_{\mathcal{K}} and view 𝒢(G)\mathcal{G}(G) as an ind-scheme [BD91], [Zhu16]. An MV cycle is a certain finite dimentional subscheme in 𝒢(G)\mathcal{G}(G). For a cocharacter λX(T)\lambda\in X_{*}(T), we denote the point it determines in 𝒢(G)\mathcal{G}(G) by LλL_{\lambda}. For wWw\in W, let Nw=wNw1N^{w}=wNw^{-1}. Define Sλw=LλN𝒦w.S^{w}_{\lambda}=L_{\lambda}N^{w}_{\mathcal{K}}. This orbit is an ind-subscheme of 𝒢(G)\mathcal{G}(G) and is called semi-infinite orbit since it is of infinite dimension and codimension in 𝒢(G)\mathcal{G}(G).
An irreducible component of S0eSλw0¯\overline{S_{0}^{e}\bigcap S^{w_{0}}_{\lambda}} is called an MV cycle of weight λ\lambda. Kamnizter [Kam05] describes them as follows:

Theorem 1 ([Kam05]).

Given a collection of integers (Mγ)γΓ(M_{\gamma})_{\gamma\in\Gamma}, if it satisfies edge inequalities, and certain tropical relations, put λw=iMwϖiwαiˇ.\lambda_{w}=\sum_{i}M_{w\varpi_{i}}w\check{\alpha_{i}}.
ThenwWSλww¯\overline{\bigcap_{w\in W}S^{w}_{\lambda_{w}}} is an MV cycle, and each MV cycle arises from this way for the unique data (Mγ)(M_{\gamma}).

The data (Mγ)γΓ(M_{\gamma})_{\gamma\in\Gamma} determines a pseudo-Weyl polytope. It is called an MV polytope if the corresponding cycle wWSλww¯\overline{\bigcap_{w\in W}S^{w}_{\lambda_{w}}} is an MV cycle. MV polytopes are in bijection with MV cycles. Using this description, Kamnizter [Kam07] reconstruct the crystal structure for MV cycles.

Proposition 1 ([Kam07]).

MV polytopes have a crystal structure isomorphic to B()B(\infty).

2.3 Objects on the quiver side

Let Q={I,E}Q=\{I,E\} be a Dynkin quiver of type ADE, where I is the set of vertices and E is the set of edges. We double the edge set E by adding all the opposite edges. Let E={a|aE}E^{*}=\{a^{*}|a\in E\} where for a:ij,a=jia:i\xrightarrow[]{}j,a^{*}=j\xrightarrow[]{}i, also we define s(a)=i,t(a)=js(a)=i,t(a)=j. Define ϵ(a)=1\epsilon(a)=1 when aEa\in E, ϵ(a)=1\epsilon(a)=-1, when aEa\in E^{*}. Let H=EEH=E\bigsqcup E^{*} and Q¯={I,H}\overline{Q}=\{I,H\}. The preprojective algebra Π\Pi of QQ is defined as quotient of the path algebra by a certain ideal:

ΠQ=kQ¯/<aHϵ(a)aa>.\Pi_{Q}=k\overline{Q}/<\sum_{a\in H}\epsilon(a)aa^{*}>.

A ΠQ\Pi_{Q}-module is the data of an II graded vector space iIMi\bigoplus_{i\in I}M_{i} and linear maps ϕa:Ms(a)Mt(a)\phi_{a}:M_{s(a)}\xrightarrow[]{}M_{t(a)} for each aHa\in H satisfying the preprojective relations aH,t(a)=iϵ(a)ϕaϕa=0\sum_{a\in H,t(a)=i}\epsilon(a)\phi_{a}\phi_{a*}=0.

Given a dimension vector dId\in\mathbb{N}^{I}, define Λ(d)\Lambda(d) to be the variety of all representations of Π\Pi on M for Mi=kdiM_{i}=k^{d_{i}}.

Proposition 2 ([Lus90], [BK12]).

Irr(Λ)(\Lambda) has a crystal structure isomorphic to B()B(\infty).

2.4 A conjectural relation between MV cycles and modules over the preprojective algebra

Baumann and Kamnitzer found an isomorphism between the crystal structure of Irr(Λ)(\Lambda) and MV polytopes. For each γΓ\gamma\in\Gamma, they define constructible funtion Dγ:Λ(d)0D_{\gamma}:\Lambda(d)\xrightarrow[]{}\mathbb{Z}_{{\geq 0}}222Λ(d)\Lambda(d) and DγD_{\gamma} do not depend on the direction of the edges in E.. For any MΛ(d)M\in\Lambda(d), the collection (Dγ)γΓ(D_{\gamma})_{\gamma\in\Gamma} satisfies certain edge inequalities hence determines a polytope which we denote by P(M)P(M).

Theorem 2 ([BK12]).

When MM is generic, P(M)P(M) is an MV-polytope and for d=(di)iId=(d_{i})_{i\in I} this gives a map from Irr(Λ(d))\Lambda(d)) to the set of MV polytopes of weight iIdiαi\sum_{i\in I}d_{i}\alpha_{i}. This map is a bijection compatible with the crystal structures.

We have MV-cycles (in bijection with MV-polytopes) as the geometric object on the loop Grassmannian side. In order to upgrade the relations geometrically, Kamnitzer-Knutson consider the quiver Grassmannian on the quiver side.

The quiver Grassmannian GrΠ(M)Gr^{\Pi}(M) of a Π\Pi-module MM is defined as the moduli of submodules of MM.

It is a subscheme of the moduli of kk-vector subspaces of MM which is product of usual grassmannian iIGr(Mi)\prod_{i\in I}Gr(M_{i}). Here we will only consider GrΠ(M)Gr^{\Pi}(M) with its reduced structure, and actually just as a topological space. As the case of usual grassmannian, the quiver Grassmannian GrΠ(M)Gr^{\Pi}(M) is disjoint union of Grassmannians of different dimension vectors. Denote GreΠ(M)Gr_{e}^{\Pi}(M) by the moduli of submodule N of M of dimension vector ee, we have GreΠ(M)iIGrei(Mi)Gr_{e}^{\Pi}(M)\subset\prod_{i\in I}Gr_{e_{i}}(M_{i}).

Given a module MΛ(d)M\in\Lambda(d), form the subscheme333We will call it cycle in this paper. X(M)X(M)=wWSλww¯\bigcap_{w\in W}\overline{S^{w}_{\lambda_{w}}}, where λw=iIDwϖi(M)wαiˇ\lambda_{w}=\sum_{i\in I}-D_{-w\varpi_{i}}(M)w\check{\alpha{{}_{i}}}. T acts on SλwwS^{w}_{\lambda_{w}} by multiplication, hence it also acts on the closure and the intersection X(M)X(M).

Conjecture 1.

The ring of functions on the TT-fixed point subscheme of X(M)X(M) is isomorphic to the cohomology ring of the quiver grassmannian of MM

𝒪(X(M)T)ΨH(GrΠ(M)).\mathcal{O}(X(M)^{T})\xrightarrow[\sim]{\Psi}H^{*}(Gr^{\Pi}(M)).

More precisely, X(M)TX(M)^{T} is disjoint union of finite schemes X(M)νTX(M)^{T}_{\nu} supported at LνL_{\nu}, νX(T)\nu\in X_{*}(T) and we can further identify two sides for each connnected component

𝒪(X(M)νT)ΨH(GreΠ(M)), where ei=(ν,ϖi).\mathcal{O}(X(M)_{\nu}^{T})\xrightarrow[\sim]{\Psi}H^{*}(Gr_{e}^{\Pi}(M)),\text{ where }e_{i}=(\nu,\varpi_{i}).

Remark: we define X(M)X(M) as a scheme theoretic intersection of closures while MV-cycles have been defined as varieties (closure of intersections). We notice that X(M)X(M) may be reducible even when P(M)P(M) is an MV-polytope. For an example, see the appendix444Not yet written, I will add this later on.. The former certainly contains the latter and a further hope is to relate the latter to some subvariety of the quiver Grassmannian.

3 The T fixed point subscheme of the cycle

We introduce some notation first. It is known that the TT-fixed point subscheme of the loop grassmannian of a reductive group GG is the loop grassmannian of the Cartan TT of GG, i.e., 𝒢(G)T=𝒢(T)\mathcal{G}(G)^{T}=\mathcal{G}(T). We indentify TT with II copies of the multiplicative group by TϖiGmIT\xrightarrow[\sim]{\prod\varpi_{i}}G_{m}^{I} and this gives 𝒢(T)ϖi𝒢(Gm)I\mathcal{G}(T)\xrightarrow[\sim]{\prod\varpi_{i}}\mathcal{G}(G_{m})^{I}.

For 𝒢(Gm)\mathcal{G}(G_{m}), we have

𝒢(Gm)=Gm(𝒪)Gm(𝒦)\displaystyle\mathcal{G}(G_{m})=G_{m}(\mathcal{O})\setminus G_{m}(\mathcal{K}) (1)
={unit𝒪}{unit𝒦}\displaystyle=\{\text{unit}\in\mathcal{O}\}\setminus\{\text{unit}\in\mathcal{K}\} (2)
=tK\displaystyle=t^{\mathbb{Z}}\cdot K_{-} (3)

where KK_{-} is called the negative congruence subgroup (of GmG_{m}). The RR-points of KK_{-} can be described as:

K(R)={a=(1+a1t1++amtm)|ai is nilpotent in R}.K_{-}(R)=\{a=(1+a_{1}t^{-1}+...+a_{m}t^{-m})|a_{i}\text{ is nilpotent in }R\}.

We define the degree function from K(R)K_{-}(R) to \mathbb{Z}_{\geq}: deg(a)=m(a)=m if am0a_{m}\neq 0.

Then (Sλww¯)T(\bigcap\overline{S^{w}_{\lambda_{w}}})^{T} is a subscheme of 𝒢(G)T(tK)|I|\mathcal{G}(G)^{T}\cong(t^{\mathbb{Z}}\cdot K_{-})^{|I|}.

Theorem 3.

Let (λw)wW(\lambda_{w})_{w\in W} be a collection of cocharacters such that λvwλw\lambda_{v}\geq_{w}\lambda_{w}555This notation is used in [Kam05], λvwλw\lambda_{v}\geq_{w}\lambda_{w} whenever w1λvw1λww^{-1}\lambda_{v}\geq w^{-1}\lambda_{w}. for all wWw\in W in which case we know ([Kam05]) that (λw)wW(\lambda_{w})_{w\in W} determines a pseudo-Weyl polytope. The integers AwϖiA_{w\varpi_{i}} are well defined by Awϖi=(λw,wϖi)A_{w\varpi_{i}}=(\lambda_{w},w\varpi_{i}). The R-points of (Sλww¯)νT(\bigcap\overline{S^{w}_{\lambda_{w}}})_{\nu}^{T} is the subset of R-point of (tK)|I|(t^{\mathbb{Z}}\cdot K_{-})^{|I|} containing elements (t(ν,ϖi)ai)(tK)|I||(t^{(\nu,\varpi_{i})}a_{i})\in\prod(t^{\mathbb{N}}\cdot K_{-})^{|I|}| subject to the degree relations:

deg(ΠiIai(γ,αiˇ))Aγ+(γ,ν) for all γΓ}.deg(\Pi_{i\in I}a_{i}^{(\gamma,\check{\alpha_{i}})})\leq-A_{\gamma}+\sum(\gamma,\nu)\text{ for all }\gamma\in\Gamma\}.
Proof.

We define loop grassmannian with a condition YY and list the facts we need. For details, see [Mir17a]. Let GG acts on scheme YY and yy be a point in YY. Denote the stack quotient by Y/GY/G. Then 𝒢(G,Y)\mathcal{G}(G,Y) is the moduli of maps of pairs from (d,d)(d,d^{*}) to (Y/G,y)(Y/G,y). When YY is a point we recover 𝒢(G)\mathcal{G}(G). In general, 𝒢(G,Y)\mathcal{G}(G,Y) is the subfunctor of 𝒢(G)\mathcal{G}(G) subject to a certain extension condition:

𝒢(G,Y)=G𝒪{gG𝒦|d𝑔G𝑜Y extends to d}, where o(g)=gy.\mathcal{G}(G,Y)=G_{\mathcal{O}}\setminus\{g\in G_{\mathcal{K}}\ |\ d^{*}\xrightarrow[]{g}G\xrightarrow[]{o}Y\text{ extends to $d$}\},\text{ where }o(g)=gy.

We can realize semi-infinite orbits and their closures as follows:

  • 𝒢(G,G/N)=S0\mathcal{G}(G,G/N)=S_{0}, where G acts G/N by left multiplication.

  • 𝒢(G,(G/N)aff)=S0¯\mathcal{G}(G,(G/N)^{aff})=\overline{S_{0}}, where ”aff” means affinization.

  • 𝒢(G×T,(G/N)aff)red=Sλ¯\mathcal{G}(G\times T,(G/N)^{aff})_{red}=\bigsqcup\overline{S_{\lambda}}, where ”red” means the reduced subscheme. Here T acts on G/NG/N by left multiplication with the inverse and this extends to an action on (G/N)aff(G/N)^{aff}.

  • 𝒢(G×wWTw,wW(G/Nw)aff)=(λw)wW(wWSλww¯)\mathcal{G}(G\times\prod_{w\in W}T_{w},\prod_{w\in W}(G/N^{w})^{aff})=\bigsqcup_{(\lambda_{w})_{w\in W}}(\bigcap_{w\in W}\overline{S^{w}_{\lambda_{w}}})

    , We denote a copy of T corresponding to wWw\in W by TwT_{w}.

A single cycle wWSλww¯\bigcap_{w\in W}\overline{S^{w}_{\lambda_{w}}} can be written as the fiber product:

wWSλww¯=𝒢(G×wWTw,(G/Nw)aff)×𝒢(wWTw)(tλw)wW.\bigcap_{w\in W}\overline{S^{w}_{\lambda_{w}}}=\mathcal{G}(G\times\prod_{w\in W}T_{w},\prod(G/N^{w})^{aff})\times_{\mathcal{G}(\prod_{w\in W}T_{w})}(t^{\lambda_{w}})_{w\in W}.

In this fiber product, the morphism for the first factor is the second projection and the morphism for the second factor is the inclusion of the single point tλ¯=(tλw)wWt^{\underline{\lambda}}=(t^{\lambda_{w}})_{w\in W}.
For a reductive group G, we have 𝒢(G,Y)T=𝒢(T,Y)\mathcal{G}(G,Y)^{T}=\mathcal{G}(T,Y), where T is the cartan of G.
So, the T fixed point subscheme is

(wWSλww¯)T=𝒢(T×wWTw,(G/Nw)aff)×𝒢(wWTw)tλ¯.(\bigcap_{w\in W}\overline{S^{w}_{\lambda_{w}}})^{T}=\mathcal{G}(T\times\prod_{w\in W}T_{w},\prod(G/N^{w})^{aff})\times_{\mathcal{G}(\prod_{w\in W}T_{w})}t^{\underline{\lambda}}.

In terms of the above extension condition, this fiber product is:

(wWSλww¯)T=T(𝒪){gT𝒦, such that dg,tλ¯T×TW(G/Nw)aff extends to d}(\bigcap_{w\in W}\overline{S^{w}_{\lambda_{w}}})^{T}=T(\mathcal{O})\setminus\{g\in T_{\mathcal{K}},\text{ such that }d^{*}\xrightarrow[]{g,t^{\underline{\lambda}}}T\times T^{W}\xrightarrow[]{}\prod(G/N^{w})^{aff}\text{ extends to }d\}

This is the T(𝒪)T(\mathcal{O}) quotient of the set of all gT𝒦g\in T_{\mathcal{K}}, such that

dg,tλwT×Tw(G/Nw)aff extends to d for all wW.d^{*}\xrightarrow[]{g,t^{\lambda_{w}}}T\times T_{w}\xrightarrow[]{}(G/N^{w})^{aff}\text{ extends to }d\text{ for all }w\in W.

For γWϖiΓ\gamma\in W\cdot\varpi_{i}\subset\Gamma , we fix weight vectors vγ in the weight space(Vϖi)γv_{\gamma}\text{ in the weight space}\ (V_{\varpi_{i}})_{\gamma} of VϖiV_{\varpi_{i}}. For each wWw\in W, we embed G/Nw into iIVϖi by g(gvwϖi)iIG/N^{w}\text{ into }\bigoplus_{i\in I}V_{\varpi_{i}}\text{ by }g\mapsto(g\cdot v_{w\varpi_{i}})_{i\in I}. Under this embedding, (G/Nw)aff(G/N^{w})^{aff} is a closed subscheme in iIVϖi\bigoplus_{i\in I}V_{\varpi_{i}}.

For gT𝒦g\in T_{\mathcal{K}}, wWw\in W, the composition yw(g)y_{w}(g) of the map :

dg,tλwT×TwG/NwVϖid^{*}\xrightarrow[]{g,t^{\lambda_{w}}}T\times T_{w}\xrightarrow[]{}G/N^{w}\hookrightarrow\bigoplus V_{\varpi_{i}}

is

yw(g)=(g(tλw)1)iIvwϖi=iI(wϖi(gtλw))vwϖi.y_{w}(g)=(g\cdot(t^{\lambda_{w}})^{-1})\sum_{i\in I}v_{w\varpi_{i}}=\sum_{i\in I}(w\varpi_{i}(g\cdot t^{-\lambda_{w}}))v_{w\varpi_{i}}.

This map extends to dd when for each iIi\in I, the coefficient of vwϖiv_{w\varpi_{i}} is in 𝒪\mathcal{O}. The coefficient of vwϖiv_{w\varpi_{i}} is

wϖi(gtλw)=wϖi(g)wϖi(tλw)=wϖi(g)t(wϖi,λw)\displaystyle w\varpi_{i}(g\cdot t^{-\lambda_{w}})=w\varpi_{i}(g)\cdot w\varpi_{i}(t^{-\lambda_{w}})=w\varpi_{i}(g)\cdot t^{-(w\varpi_{i},\ \lambda_{w})}
=wϖi(g)tAwϖi=γ(g)zAγ where γ=wϖi.\displaystyle=w\varpi_{i}(g)t^{-A_{w\varpi_{i}}}=\gamma(g)z^{-A_{\gamma}}\text{ where }\gamma=w\varpi_{i}.

It follows that

(wWSλww¯)T=T(𝒪){gT(𝒦);γ(g)tAγ𝒪 for all γΓ}.(\bigcap_{w\in W}\overline{S^{w}_{\lambda_{w}}})^{T}=T(\mathcal{O})\setminus\{g\in T(\mathcal{K});\gamma(g)t^{-A_{\gamma}}\in\mathcal{O}\text{ for all }\gamma\in\Gamma\}.

and the description of the R-points of (Sλww¯)νT(\bigcap\overline{S^{w}_{\lambda_{w}}})_{\nu}^{T} in the theorem follows when we identify 𝒢(T)ϖi𝒢(Gm)I=(tK)I\mathcal{G}(T)\xrightarrow[]{\prod\varpi_{i}}\mathcal{G}(G_{m})^{I}=(t^{\mathbb{Z}}\cdot K_{-})^{I}.

3.1 Ring of functions on (Sλww¯)νT(\bigcap\overline{S^{w}_{\lambda_{w}}})_{\nu}^{T}

For an R-point (t(ν,ϖi)ai)iI(t^{(\nu,\varpi_{i})}a_{i})_{i\in I} of (Sλww¯)νT(\bigcap\overline{S^{w}_{\lambda_{w}}})_{\nu}^{T}, let us write ai=1+ai1t1++aimtma_{i}=1+a_{i1}t^{-1}+\cdots+a_{im}t^{-m}. When γ=ϖi\gamma=\varpi_{i}, the degree inequality is deg(ai)(ϖi,ν)Aϖi(a_{i})\leq(\varpi_{i},\nu)-A_{\varpi_{i}}. We can take the coefficients aija_{ij} to be the coordinate functions on (Sλww¯)νT(\bigcap\overline{S^{w}_{\lambda_{w}}})_{\nu}^{T}. Since deg(ai)(ϖi,ν)Aϖi(a_{i})\leq(\varpi_{i},\nu)-A_{\varpi_{i}} , there are finitely many aija_{ij}s which generate the ring of functions on 𝒪((Sλww¯)νT)\mathcal{O}((\bigcap\overline{S^{w}_{\lambda_{w}}})_{\nu}^{T}).
When we take inverse of aia_{i}, it is computed in KK_{-} as ai1=1+s0(1)i(ai1t1++aimtm)sa_{i}^{-1}=1+\sum_{s\geq 0}(-1)^{i}(a_{i1}t^{-1}+\cdots+a_{im}t^{-m})^{s} and then expands in the form ibiktk\sum_{i}b_{ik}t^{-k}, where bikb_{ik} is the coefficient of tkt^{-k} in ai1a_{i}^{-1}.

deg(ΠiIai(γ,αiˇ))Aγ+(γ,ν) for all γΓ.deg(\Pi_{i\in I}a_{i}^{(\gamma,\check{\alpha_{i}})})\leq-A_{\gamma}+\sum(\gamma,\nu)\text{ for all }\gamma\in\Gamma.

is equivalent to the condition that the coefficient of the term t1t^{-1} to the power Aγ+(γ,ν)+1-A_{\gamma}+\sum(\gamma,\nu)+1 in (ΠiIai(γ,αiˇ))(\Pi_{i\in I}a_{i}^{(\gamma,\check{\alpha_{i}})}) is 0. These coefficients are polynomials of aija_{ij}s. Set bi=1+kbiktk=ai1b_{i}=1+\sum_{k}b_{ik}t^{-k}=a_{i}^{-1}, add bijb_{ij}’s as generaters and also add the relations aibi=1a_{i}b_{i}=1 for iIi\in I which eliminate all bijb_{ij}’s. For γγ\gamma\in\gamma, let γi=(γ,αiˇ)\gamma_{i}=(\gamma,\check{\alpha_{i}}). Denote by Iγ+I_{\gamma}^{+} the subset of I containing all i such that γi\gamma_{i} is positive and by IγI_{\gamma}^{-} containing all i γi\gamma_{i} is negative. Set γi+=γi\gamma^{+}_{i}=\gamma_{i} when γi\gamma_{i} is positive and γi=γi\gamma^{-}_{i}=-\gamma_{i} when γi\gamma_{i} negative.

Corollary 1.

The ring of functions on 𝒪((Sλww¯)νT)\mathcal{O}((\bigcap\overline{S^{w}_{\lambda_{w}}})_{\nu}^{T}) is generated by aija_{ij}’s and bikb_{ik}’s, for iIi\in I. The relations are degree conditions:

deg(iIγ+aiγ+iiIγbiγi)(γ,ν)Aγdeg(\prod_{i\in I_{\gamma}^{+}}a_{i}^{\gamma{{}_{i}}^{+}}\prod_{i\in I_{\gamma}^{-}}b_{i}^{\gamma{{}_{i}}^{-}})\leq(\gamma,\nu)-A_{\gamma}

for each γΓ\gamma\in\Gamma and conditions aibi=1a_{i}b_{i}=1 for each i in I.

4 Construction of the map Ψ\Psi from functions to cohomology

4.1 Map Ψ\Psi

For MΛ(d)M\in\Lambda(d), to apply corollary 1 to X(M)X(M), we set Aγ=Dγ(M)A_{\gamma}=-D_{-\gamma}(M). Then

𝒪(X(M)νT)=k[aij,bik]/I(M)\mathcal{O}(X(M)_{\nu}^{T})=k[a_{ij},b_{ik}]/I(M)

where I(M)I(M) is the ideal generated by the degree conditions:

deg(iIγ+(ai)γi+iIγ(bi)γi)(γ,ν)+Dγ(M)deg(\prod_{i\in I_{\gamma}^{+}}(a_{i})^{\gamma_{i}^{+}}\prod_{i\in I_{\gamma}^{-}}(b_{i})^{\gamma_{i}^{-}})\leq(\gamma,\nu)+D_{-\gamma}(M)

for each γΓ\gamma\in\Gamma and the conditions aibi=1a_{i}b_{i}=1 for each i in I.

The conjecture 𝒪(X(M)νT)H(GreΠ(M))\mathcal{O}(X(M)_{\nu}^{T})\cong H^{*}(Gr_{e}^{\Pi}(M)), where ei=(ν,ϖi)e_{i}=(\nu,\varpi_{i}), is now equivalent to

k[aij,bik]/I(M)H(GreΠ(M)).k[a_{ij},b_{ik}]/I(M)\cong H^{*}(Gr_{e}^{\Pi}(M)).

The quiver Grassmannian GreΠ(M))Gr_{e}^{\Pi}(M)) is a subvareity of iIGrei(Mi)\prod_{i\in I}Gr_{e_{i}}(M_{i}) and we have on each Grei(Mi)Gr_{e_{i}}(M_{i}) the tautological subbundle SiS_{i} and quotient bundle QiQ_{i}. We pull back SiS_{i} and QiQ_{i} to iIGrei(Mi)\prod_{i\in I}Gr_{e_{i}}(M_{i}) and denote their restrictions on GreΠ(M))Gr_{e}^{\Pi}(M)) still by SiS_{i} and QiQ_{i} by abusing notion. For a rank n bundle E, denote the Chern class by c(E)c(E) and the ithi^{t}h Chern class ci(E)c_{i}(E), where c(E)=1+c1(E)++cn(E)c(E)=1+c_{1}(E)+\cdots+c_{n}(E). We want to define the map

Ψ:𝒪(X(M)νT)H(GreΠ(M)), where ei=(ν,ϖi),\Psi:\mathcal{O}(X(M)_{\nu}^{T})\xrightarrow[]{}H^{*}(Gr_{e}^{\Pi}(M)),\text{ where }e_{i}=(\nu,\varpi_{i}),

by mapping the generators aija_{ij} to cj(Si)c_{j}(S_{i}) and bijb_{ij} to cj(Qi)c_{j}(Q_{i}).

Theorem 4.

The map Ψ\Psi described above is well defined.

4.2 Two lemmas

For the proof, we need two lemmas. Lemma 1 is the special case of theorem 4 when QQ is the quiver 121\xrightarrow[]{}2 and MM is a kQkQ-module.

Lemma 1.

Let QQ be the quiver 121\xrightarrow[]{}2 and MM be d1ϕd2\mathbb{C}^{d_{1}}\xrightarrow[]{\phi}\mathbb{C}^{d_{2}}.On X=GreΠ(M)X=Gr^{\Pi}_{e}(M), we have ci(S2Q1)=0c_{i}(S_{2}\oplus Q_{1})=0 when i>e2e1+dim(kerϕ)i>e_{2}-e_{1}+\text{dim}(ker\phi).

Let ϕij:MiMj\phi_{ij}:M_{i}\xrightarrow[]{}M_{j} be the composition of ϕa\phi_{a} where a travels over the unique no going-back path which links i and j. Let Mγ=iIγMiγϕγ=ϕijiIγ+Miγ+M_{\gamma}=\oplus_{i\in I_{\gamma}^{-}}M_{i}^{\gamma^{-}}\xrightarrow[]{\phi_{\gamma}=\oplus\phi_{ij}}\oplus_{i\in I_{\gamma}^{+}}M_{i}^{\gamma^{+}} be the module over k(12)k(1\xrightarrow[]{}2).

Lemma 2.

For a Π\Pi-module MM and any chamber weight γ\gamma, we have

dim(kerϕγ)=Dγ(M).dim(ker\phi_{\gamma})=D_{-\gamma}(M).

Lemma 2 is a property of DγD_{\gamma} and will be proved in the appendix.

4.3 Proof of theorem 4 from lemmas in §\mathsection 4.2

Proof of theorem 4.

We prove the theorem can be reduced to lemma 1.

For each γΓ\gamma\in\Gamma,we have to prove the degree inequilities carry over to Chern classes:

Ψ(iIγ+tiγi+iIγsiγi)=iIγ+c(Si)γi+iIγc(Qi)γiDw0γ(M)+(ν,γ).\Psi(\prod_{i\in I_{\gamma}^{+}}t_{i}^{\gamma_{i}^{+}}\prod_{i\in I_{\gamma}^{-}}s_{i}^{\gamma_{i}^{-}})=\prod_{i\in I_{\gamma}^{+}}c(S_{i})^{\gamma_{i}^{+}}\prod_{i\in I_{\gamma}^{-}}c(Q_{i})^{\gamma_{i}^{-}}\leq D_{w_{0}\gamma}(M)+(\nu,\gamma).

Define a map Φ\Phi from GrΠ(M)Gr^{\Pi}(M) to Grk(12)(Mγ)Gr^{k(1\xrightarrow[]{}2)}(M_{\gamma}): for NGrΠ(M)N\in Gr^{\Pi}(M), Φ(N)=iIγNiϕγiIγ+Ni\Phi(N)=\oplus_{i\in I_{\gamma}^{-}}N_{i}\xrightarrow[]{\phi_{\gamma}}\oplus_{i\in I_{\gamma}^{+}}N_{i}. We have

Φ(c(S2)c(Q1))=c(Φ(S2))c(Φ(Q1))=c(iIγ+Siγi+)c(iIγQiγi)\Phi^{*}(c(S_{2})c(Q_{1}))=c(\Phi^{*}(S_{2}))c(\Phi^{*}(Q_{1}))=c(\oplus_{i\in I_{\gamma}^{+}}S_{i}^{\gamma_{i}^{+}})c(\oplus_{i\in I_{\gamma}^{-}}Q_{i}^{\gamma_{i}^{-}})
=iIγ+c(Si)γi+iIγc(Qi)γi.=\prod_{i\in I_{\gamma}^{+}}c(S_{i})^{\gamma_{i}^{+}}\prod_{i\in I_{\gamma}^{-}}c(Q_{i})^{\gamma_{i}^{-}}.

Apply lemma1 to MγM_{\gamma} we have

deg(c(Q1)c(S2))dimker(ϕγ)+iIγ+γieiiIγγieideg(c(Q_{1})c(S_{2}))\leq dimker(\phi_{\gamma})+\sum_{i\in I_{\gamma}^{+}}\gamma_{i}e_{i}-\sum_{i\in I_{\gamma}^{-}}\gamma_{i}e_{i}
=dimker(ϕγ)+iIγiei=dimker(ϕγ)+(γ,ν).=dimker(\phi_{\gamma})+\sum_{i\in I}\gamma_{i}e_{i}=dimker(\phi_{\gamma})+(\gamma,\nu).

Then the theorem follows by lemma 2. ∎

Chern class vanishes in certain degree when the bundle contains a trivial bundle of certain degree but the desired trivial bundle in Q1S2Q_{1}\oplus S_{2} does not exist. The idea is to pass to T-equivariant cohomology. Over XTX^{T} which is just a union of isolated points we will decompose Q1S2Q_{1}\oplus S_{2} into the sum of the other two bundles E1E_{1} and E2E_{2} pointwisely, where E1E_{1} will play the role of trivial bundle. Although there is no bundle over X whose restriction is E2E_{2}, there exist T-equivariant cohomology class in HT(X)H_{T}^{*}(X) whose restriction on XTX^{T} is the T-equivariant Chern class of E2E_{2}.

4.4 Recollection of GKM theory

We first recall some facts in T-equivariant cohomoloy theory.

We follow the paper [Tym05]. Denote a n-dimensional torus by TT, topologically TT is homotopic to(S1)n(S^{1})^{n}. Take ETET to be a contractible space with a free TT-action. Define BTBT to be the quotient ET/TET/T. The diagonal action of TT on X×ETX\times ET is free, since the action on ETET is free. Define X×TETX\times_{T}ET to be the quotient (X×ET)/T(X\times ET)/T. We define the equivariant cohomology of XX to be

HT(X)=H(X×TET).H^{*}_{T}(X)=H^{*}(X\times_{T}ET).

When XX is a point and T=GmT=G_{m},

HT(X)=H(pt×TET)=H(ET/T)=H(BT)=H()k[t].H^{*}_{T}(X)=H^{*}(\textup{pt}\times_{T}ET)=H^{*}(ET/T)=H^{*}(BT)=H^{*}(\mathbb{CP}^{\infty})\cong k[t].

When T=(S1)nT=(S^{1})^{n},

H(pt)=k[t1,,tn]S(𝔱).\displaystyle H^{*}(pt)=k[t_{1},\cdots,t_{n}]\cong S(\mathfrak{t}^{*}). (4)

So we can identify any class in H(pt)H^{*}(pt) as a function on the lie algebra 𝔱\mathfrak{t} of TT. The map XptX\xrightarrow[]{}pt allows us to pull back each class in HT(pt)H^{*}_{T}(\textup{pt}) to HT(X)H^{*}_{T}(X), so HT(X)H^{*}_{T}(X) is a module over HT(pt)H^{*}_{T}(\textup{pt}).

Fix a projective variety XX with an action of TT. We say that XX is equivariantly formal with respect to this TT-action if E2=EE^{2}=E^{\infty} in the spectral sequence associated to the fibration X×TETBTX\times_{T}ET\longrightarrow BT.

When XX is equivariantly formal with respect to TT, the ordinary cohomology of XX can be reconstructed from its equivariant cohomology. Fix an inclusion map XX×TETX\xrightarrow[]{}X\times_{T}ET, we have the pull back map of cohomologies: H(X×TET𝑖H(X)H^{*}(X\times_{T}ET\xrightarrow[]{i}H^{*}(X). The kernel of ii is s=1ntsHT(X)\sum_{s=1}^{n}t_{s}\cdot H^{*}_{T}(X), where tst_{s} is the generator of HT(pt)H^{*}_{T}(pt) (see (4)) and we view it as an element in HT(X)H^{*}_{T}(X) by pulling back the map XptX\xrightarrow[]{}pt. Also ii is surjective so H(X)=HT(X)/ker(i)H^{*}(X)=H^{*}_{T}(X)/ker(i).

If in addition XX has finitely many fixed points and finitely many one-dimensional orbits, Goresky, Kottwitz, and MacPherson show that the combinatorial data encoded in the graph of fixed points and one-dimensional orbits of TT in XX implies a particular algebraic characterization of HT(X)H^{*}_{T}(X).

Theorem 5 (GKM, see [Tym05], [GKM97]).

Let XX be an algebraic variety with a TT-action with respect to which XX is equivariantly formal, and which has finitely many fixed points and finitely many one-dimensional orbits. Denote the one-dimensional orbits O1O_{1}, \ldots, OmO_{m}. For each ii, denote the the TT-fixed points of OiO_{i} by NiN_{i} and SiS_{i} and denote the stabilizer of a point in OiO_{i} by TiT_{i}. Then the map HT(X)𝑙HT(XT)=piXTHT(pi)H^{*}_{T}(X)\xrightarrow[]{l}H^{*}_{T}(X^{T})=\oplus_{p_{i}\in X^{T}}H^{*}_{T}(p_{i}) is injective and its image is

{f=(fp1,,fpm)fixed ptsS(t):fNi|𝔱i=fSi|𝔱i for each i=1,,m}.\left\{f=(f_{p_{1}},\ldots,f_{p_{m}})\in\bigoplus_{\textup{fixed pts}}S(t^{*}):f_{N_{i}}|_{\mathfrak{t}_{i}}=f_{S_{i}}|_{\mathfrak{t}_{i}}\textup{ for each }i=1,\ldots,m\right\}.

Here 𝔱i\mathfrak{t}_{i} is the lie algebra of TiT_{i}.

4.5 Affine paving of GreΠ(M)Gr^{\Pi}_{e}(M) when MM is a representation of QQ of type A

Definition 1 ([Tym07] 2.2).

We say a space XX is paved by affines if XX has an order partition into disjoint X1,X2,X_{1},X_{2},\cdots such that each finite union i=1jXi\bigcup_{i=1}^{j}X_{i} is closed in X and each XiX_{i} is an affine space.

A space with an affine paving has odd cohomology vanishing.

Proposition 3 ([Tym07], 2.3).

Let X=XiX=\bigcup X_{i} be a paving by a finite number of affines with each XiX_{i} homeomorphic to di\mathbb{C}^{d_{i}}. The cohomology groups of XX are given by H2k(X)={iI|di=k}H^{2k}(X)=\bigoplus_{\{i\in I\ |\ d_{i}=k\}}\mathbb{Z}.

The main observation is the following lemma.

Lemma 3.

Let MM be a representation of Q, where Q is of type A with all edges in E pointing to the right. Then the quiver Grassmannian GreΠ(M)Gr^{\Pi}_{e}(M) is paved by affines for any dimension vector e.

We need a sublemma first.

Sublemma 1.

Suppose X is paved by XiX_{i}’s. Let YXY\subset X be a subspace. if for each i, Yi=XiYY_{i}=X_{i}\bigcap Y is \emptyset or affine then Y=YiY=\bigcup Y_{i} is an affine paving.

Proof.

ijYi=ij(XiY)=(ijXi)Y\bigcup_{i\leq j}Y_{i}=\bigcup_{i\leq j}(X_{i}\bigcap Y)=(\bigcup_{i\leq j}X_{i})\bigcap Y is closed in YY since ijXi\bigcup_{i\leq j}X_{i} is closed in XX. ∎

Proof of lemma 3.

Let V=MiV=\oplus M_{i} be the underlying vector space and ϕ=aHϕa\phi=\oplus_{a\in H}\phi_{a} be the nilpotent operator on VV. We adopt the notations in [Shi85]. Let n=dimVn=dimV and d=eid=\sum e_{i}. Let Cαϕ={(v1,vd)Cα,ϕvi=vjC^{\phi}_{\alpha}=\{(v_{1},...v_{d})\in C_{\alpha},\phi v_{i}=v_{j} if α\alpha contains αi\alpha_{i} αj\alpha_{j}      ,(1i<j<d)},(1\leq i<j<d)\}. We know that Grd(kn)ϕ=CαϕGr_{d}(k^{n})^{\phi}=\bigsqcup C_{\alpha}^{\phi}. We want to show SαϕGreΠ(M)S^{\phi}_{\alpha}\bigcap Gr^{\Pi}_{e}(M) is affine. Take xSαϕGreΠ(M)x\in S^{\phi}_{\alpha}\bigcap Gr^{\Pi}_{e}(M), from 1.10 in [Shi85], x=v1vdx=v_{1}\wedge...\wedge v_{d} where x=(ϕhwi:isx=\wedge(\phi^{h}w_{i}:i^{\prime}s are the initial numbers of α\alpha and ϕhwi0).\phi^{h}w_{i}\neq 0).
We now show that for x=v1vdGreΠ(M)x=v_{1}\wedge\cdots\wedge v_{d}\in Gr^{\Pi}_{e}(M), where vi=ei+jixi(j)ejv_{i}=e_{i}+\sum_{j\neq i}x_{i}(j)e_{j}, if eiMte_{i}\in M_{t}, we have viMtv_{i}\in M_{t}. Conversely, if for each i, there exists t such that viMtv_{i}\in M_{t}, xGreΠ(M)x\in Gr^{\Pi}_{e}(M).Denote this t determined uniquely by i as t(i).
Since span(v1,,vd)span(v_{1},...,v_{d}) is a direct sum of some NiMiN_{i}\subset M_{i}, we have Prt(vi)span(v1,,vd)Pr_{t}(v_{i})\in span(v_{1},...,v_{d}), where PrtPr_{t} is the projection from V to MtM_{t}, and so Prt(vi)=apvpPr_{t}(v_{i})=\sum a_{p}v_{p}. Comparing the coefficient of epe_{p}, by the definition of CαC_{\alpha}, we have ap=0a_{p}=0 for pip\neq i. So we have Prt(vi)=viPr_{t}(v_{i})=v_{i}, which implies viMtv_{i}\in M_{t}.
Note that {v1,,vd}\{v_{1},\cdots,v_{d}\} is determined by wiw_{i} where i is an initial number(and vice versa).
We have wiMt(i)w_{i}\in M_{t(i)}. Denote l(i)l(i) be the number on the left of i in the d-tableaus. If i is the leftmost, set l(i)l(i) to be \emptyset, and set e=0e_{\emptyset}=0. Write wi=ei+xijejw_{i}=e_{i}+\sum x_{ij}e_{j}, where ejMtie_{j}\in M_{t_{i}}, we have ϕr(wi)=elr(i)+xijelr(j)\phi^{r}(w_{i})=e_{l^{r}(i)}+\sum x_{ij}e_{l^{r}(j)}. Since M is kQ-module, we have lr(i)=lr(j)l^{r}(i)=l^{r}(j) hence virMt(ir)v_{i_{r}}\in M_{t(i_{r})} and xGreΠ(M)x\in Gr^{\Pi}_{e}(M). So we have SαϕGreΠ(M)S^{\phi}_{\alpha}\bigcap Gr^{\Pi}_{e}(M) is affine. Apply lemma 3, we are done.

4.6 Proof of lemma 1

Proof.

For MM given by d1ϕd2\mathbb{C}^{d_{1}}\xrightarrow[]{\phi}\mathbb{C}^{d_{2}} and a choice of e=(e1,e2)e=(e_{1},e_{2}), denote X=GreΠ(M)X=Gr^{\Pi}_{e}(M). First, we define a torus action on XX. Let I=kerϕI=ker\phi. Choose a basis e1,e2,,ese_{1},e_{2},\cdots,e_{s} of II and extend it to a basis e1,,es,es+1,,ete_{1},\cdots,e_{s},e_{s+1},\cdots,e_{t} of M1M_{1}. Let JJ be span{es+1,,et)}\{e_{s+1},\cdots,e_{t})\} so the image of JJ is span {fs+1,,ft}\{f_{s+1},\cdots,f_{t}\}. We extend the basis {fi=ϕ(ei)}\{f_{i}=\phi(e_{i})\} of the image of JJ to a basis (fs+1,,ft,ft+1,,fr)f_{s+1},\cdots,f_{t},f_{t+1},\cdots,f_{r}) of M2M_{2}. Let K=span{ft+1,fr}\{f_{t+1},...f_{r}\}. we have M1=IJM_{1}=I\oplus J and M2=ϕ(J)KM_{2}=\phi(J)\oplus K.

Let ={1,,s}\mathcal{I}=\{1,\cdots,s\}, 𝒥={s+1,,t}\mathcal{J}=\{s+1,\cdots,t\} and ={t+1,,r}\mathcal{L}=\{t+1,\cdots,r\}. Let tori TI=Gm,TJ=Gm𝒥,TL=GmT_{I}=G_{m}^{\mathcal{I}},T_{J}=G_{m}^{\mathcal{J}},T_{L}=G_{m}^{\mathcal{L}} act on I,Jϕ(J)I,J\cong\phi(J), KK by multiplication compotentwisely (For instance, TIT_{I} acts on I by (t1,,ts)aiei=aitiei(t_{1},\cdots,t_{s})\sum a_{i}e_{i}=\sum a_{i}t_{i}e_{i} and on J,KJ,K trivially). Hence they act on M1=IJM_{1}=I\oplus J and M2=ϕ(J)KM_{2}=\phi(J)\oplus K. This induces an action of T=TI×TJ×TKT=T_{I}\times T_{J}\times T_{K} on GreΠ(M)Gr^{\Pi}_{e}(M). By lemma 3, GreΠ(M)Gr^{\Pi}_{e}(M) is paved by affines so by proposition 3 it has odd cohomology vanishing therefore the spectral sequence associated to the fibration X×TETBTX\times_{T}ET\longrightarrow BT converges at E2E^{2} and X is equivariantly formal.

Denote by ff the forgetful map HT(X)𝑓H(X)H^{*}_{T}(X)\xrightarrow[]{f}H^{*}(X). From §4.4\mathsection 4.4 we have ker(f)=1dimTtsHT(X)ker(f)=\sum_{1}^{dimT}t_{s}H^{*}_{T}(X). Since ci(S2Q1)=f(cTi(S2Q1))c^{i}(S_{2}\oplus Q_{1})=f(c^{i}_{T}(S_{2}\oplus Q_{1})), it suffices to prove cTi(S2Q1))ker(f)c^{i}_{T}(S_{2}\oplus Q_{1}))\in ker(f) when i>e2e1+dimIi>e_{2}-e_{1}+dimI.

To use GKM theorem, we need to know the one dimensional orbits and T-fixed points of X.

First, we see what XTX^{T} is. For a point p=(V1,V2)p=(V_{1},V_{2}) in XX, in order to be fixed by TT, V1V_{1} and V2V_{2} need to be spanned by some of basis vectors eie_{i} and fif_{i}. For a subset SS of \mathcal{I} (resp. 𝒥\mathcal{J}), we denote by eSe_{S} (resp. fSf_{S}) the span {ei|iS}\{e_{i}|i\in S\} (resp. span{fi|iS}\{f_{i}|i\in S\}). The T-fixed points in XX consist of all V=(V1,V2)V=(V_{1},V_{2}), such that V1=eAB,V2=fCDV_{1}=e_{A\bigcup B},V_{2}=f_{C\bigcup D}, for some AI,BCJA\subset I,B\subset C\subset J and DKD\subset K.

For any point p=(V1,V2)p=(V_{1},V_{2}) in XTX^{T}, let V1=eAB,V2=fCDV_{1}=e_{A\bigcup B},V_{2}=f_{C\bigcup D}. Over pp, Q1=(IJ)/eABQ_{1}=(I\oplus J)/e_{A\bigcup B} is isomorphic to e(A)(𝒥B)e_{(\mathcal{I}\setminus A)\oplus(\mathcal{J}\setminus B)} (The restriction of a TT-equivariant bundle to a T-fixed point is just a TT-module). So over XTX^{T}, we can decompose S2Q1S_{2}\oplus Q_{1} as follows:

S2Q1e(A)(𝒥B)f(CD)=(e(A)(CB)fD)(e𝒥CfC).S_{2}\oplus Q_{1}\cong e_{(\mathcal{I}\setminus A)\oplus(\mathcal{J}\setminus B)}\oplus f_{(C\bigcup D)}=(e_{(\mathcal{I}\setminus A)\oplus(C\setminus B)}\oplus f_{D})\oplus(e_{\mathcal{J}\setminus C}\oplus f_{C}).

Denote the bundle over XTX^{T} whose fiber over each point p is e(A)(CB)fD)e_{(\mathcal{I}\setminus A)\oplus(C\setminus B)}\oplus f_{D}) by E1E_{1} and the bundle over XTX^{T} whose fiber over p is e(𝒥C)fCe_{(\mathcal{J}\setminus C)}\oplus f_{C} by E2E_{2}.

We now use localization. Denote by ll the map HT(X)𝑙HT(XT)=pXTH(p)H^{*}_{T}(X)\xrightarrow[]{l}H^{*}_{T}(X^{T})=\oplus_{p\in X^{T}}H^{*}(p). From GKM theory ll is injective, so the condition cTi(S2Q1))ker(f)c^{i}_{T}(S_{2}\oplus Q_{1}))\in ker(f) is equivalent to l(cTi(S2Q1))l(ker(f))l(c^{i}_{T}(S_{2}\oplus Q_{1}))\in l(ker(f)). We have

l(ker(f))=l(s=1dimTtsHT(X))=s=1dimT(ts,,ts)the number of T-fixed points in Xl(HT(X)).\displaystyle l(ker(f))=l(\sum_{s=1}^{dimT}t_{s}H^{*}_{T}(X))=\sum_{s=1}^{dimT}\underbrace{(t_{s},\cdots,t_{s})}_{\text{the number of T-fixed points in X}}l(H^{*}_{T}(X)). (5)

By functorality of Chern class, l(cTi(S2Q1))=cTi(S2|XTQ1|XT))l(c^{i}_{T}(S_{2}\oplus Q_{1}))=c^{i}_{T}(S_{2}|_{X^{T}}\oplus Q_{1}|_{X^{T}})).
We compute the TT-equivariant Chern class over XTX^{T}. For666We always denote S and Q but indicate over which space we are considering. each p,

cTp(S2Q1)=cTp(E2E1)=icTpi(E1)cTi(E2)=i1cTpi(E1)cTi(E2).c_{T}^{p}(S_{2}\oplus Q_{1})=c_{T}^{p}(E_{2}\oplus E_{1})=\sum_{i}c_{T}^{p-i}(E_{1})c_{T}^{i}(E_{2})=\sum_{i\geq 1}c_{T}^{p-i}(E_{1})c_{T}^{i}(E_{2}).

The last equality holds since cTp(E2)=0c_{T}^{p}(E_{2})=0 when p>dimE2=dimI+e2e1p>dimE_{2}=dimI+e_{2}-e_{1}. Now to show cTp(S2Q1)l(ker(f))c_{T}^{p}(S_{2}\oplus Q_{1})\in l(ker(f)), It suffices to show that cTpi(E1)cTi(E2)l(ker(f))c_{T}^{p-i}(E_{1})c_{T}^{i}(E_{2})\in l(ker(f)), for any ii. The action of T on E2E_{2} is actually the same on each T-fixed point. And at each point, cTi(E2)c_{T}^{i}(E_{2}) is the ithi^{th} elementary symmetric polynomial of ts,1sdimTt_{s},1\leq s\leq dimT. So by (5), it suffices to show that cTi(E1)l(HT(X))c_{T}^{i}(E_{1})\in l(H_{T}^{*}(X)).

Now we will see what 1-dimensional orbits are. Take an orbit OiO_{i}, in order to be 1 dimensional its closure must contain two fixed points. Let Oi¯=Oi{Ni}{Si}\overline{O_{i}}=O_{i}\bigcup\{N_{i}\}\bigcup\{S_{i}\}, where Ni=(eAB,fCD)N_{i}=(e_{A\bigcup B},f_{C\bigcup D}) and Si=(eAB,fCD)S_{i}=(e_{A^{\prime}\bigcup B^{\prime}},f_{C^{\prime}\bigcup D^{\prime}}) are the fixed points. OiO_{i} is one dimensional whenever either ABA\bigcup B and ABA^{\prime}\bigcup B^{\prime} differ by one element with CD=CDC\bigcup D=C^{\prime}\bigcup D^{\prime} or CDC\bigcup D and CDC^{\prime}\bigcup D^{\prime} differ by one element with AB=ABA\bigcup B=A^{\prime}\bigcup B^{\prime} . In the first case, we have some sABs\in A\bigcup B and sABs^{\prime}\in A^{\prime}\bigcup B^{\prime}, such that ABs=ABsA\bigcup B\setminus s=A^{\prime}\bigcup B^{\prime}\setminus s^{\prime}.

Notice that the annihilator for the lie algebra 𝔱i\mathfrak{t}_{i} in S(t)S(t^{*}) is generated by tstst_{s}-t_{s^{\prime}}, so by theorem 5, the condition along OiO_{i} for an element hHT(XT)h\in H^{*}_{T}(X^{T}) to be in im(l)im(l) is

(tsts)|(hNihSi).(t_{s}-t_{s^{\prime}})\ |\ (h_{N_{i}}-h_{S_{i}}).

But we have

cT(E1)|NicT(E1)|Si=(1+ts)iC(AB){s}(1+ti)(1+ts)iC(AB){s}(1+ti).c_{T}(E_{1})|_{N_{i}}-c_{T}(E_{1})|_{S_{i}}=\\ (1+t_{s{\prime}})\prod_{i\in\mathcal{I}\bigcup C\setminus(A\bigcup B)\setminus\{s^{\prime}\}}(1+t_{i})-(1+t_{s})\prod_{i\in\mathcal{I}\bigcup C\setminus(A^{\prime}\bigcup B^{\prime})\setminus\{s\}}(1+t_{i}).

Note that C(AB){s}=C(AB){s}\mathcal{I}\bigcup C\setminus(A\bigcup B)\setminus\{s^{\prime}\}=\mathcal{I}\bigcup C\setminus(A^{\prime}\bigcup B^{\prime})\setminus\{s\}, so tstst_{s}-t_{s^{\prime}} divides cT(E1)|NicT(E1)|Sic_{T}(E_{1})|_{N_{i}}-c_{T}(E_{1})|_{S_{i}}. We conclude that cTi(E1)l(HT(X))c_{T}^{i}(E_{1})\in l(H_{T}^{*}(X)).
The other case is similar.

5 Proof of isomorphism when MM is a representation of QQ of type A

We first prove that Ψ\Psi is surjective.

Lemma 4.

(a) Denote Y=Grei(kdi)Y=\prod Gr_{e_{i}}(k^{d_{i}}) and X=GreΠ(M)X=Gr^{\Pi}_{e}(M). Then YXY\setminus X is paved by affines.
(b) Ψ\Psi is surjective.

Proof.

(a). Let a be the number where the Young diagram of ϕY\phi_{Y} has atha^{th} row as the first row from the bottom that does not have one block. For example, in the left diagram, a=4.

 
 
\leavevmode\hbox{\vtop{ \offinterlineskip\openup-0.39993pt\halign{&\opttoksa@YT={\font@YT}\getcolor@YT{\save@YT{\opttoksb@YT}}\nil@YT\getcolor@YT{\startbox@@YT\the\opttoksa@YT\the\opttoksb@YT}#\endbox@YT\cr\lower 0.39993pt\vbox{\kern 0.19997pt\hbox{\kern 0.39993pt\vbox to15.39995pt{\vss\hbox to15.00002pt{\hss$$\hss}\vss}\kern-15.39995pt\vrule height=15.39995pt,width=0.39993pt\kern 15.00002pt\vrule height=15.39995pt,width=0.39993pt}\kern-0.19997pt\kern-15.39995pt\hrule width=15.79988pt,height=0.39993pt\kern 15.00002pt\hrule width=15.79988pt,height=0.39993pt}&\lower 0.39993pt\vbox{\kern 0.19997pt\hbox{\kern 0.39993pt\vbox to15.39995pt{\vss\hbox to15.00002pt{\hss$$\hss}\vss}\kern-15.39995pt\vrule height=15.39995pt,width=0.39993pt\kern 15.00002pt\vrule height=15.39995pt,width=0.39993pt}\kern-0.19997pt\kern-15.39995pt\hrule width=15.79988pt,height=0.39993pt\kern 15.00002pt\hrule width=15.79988pt,height=0.39993pt}&\lower 0.39993pt\vbox{\kern 0.19997pt\hbox{\kern 0.39993pt\vbox to15.39995pt{\vss\hbox to15.00002pt{\hss$$\hss}\vss}\kern-15.39995pt\vrule height=15.39995pt,width=0.39993pt\kern 15.00002pt\vrule height=15.39995pt,width=0.39993pt}\kern-0.19997pt\kern-15.39995pt\hrule width=15.79988pt,height=0.39993pt\kern 15.00002pt\hrule width=15.79988pt,height=0.39993pt}&\lower 0.39993pt\vbox{\kern 0.19997pt\hbox{\kern 0.39993pt\vbox to15.39995pt{\vss\hbox to15.00002pt{\hss$$\hss}\vss}\kern-15.39995pt\vrule height=15.39995pt,width=0.39993pt\kern 15.00002pt\vrule height=15.39995pt,width=0.39993pt}\kern-0.19997pt\kern-15.39995pt\hrule width=15.79988pt,height=0.39993pt\kern 15.00002pt\hrule width=15.79988pt,height=0.39993pt}\cr\lower 0.39993pt\vbox{\kern 0.19997pt\hbox{\kern 0.39993pt\vbox to15.39995pt{\vss\hbox to15.00002pt{\hss$$\hss}\vss}\kern-15.39995pt\vrule height=15.39995pt,width=0.39993pt\kern 15.00002pt\vrule height=15.39995pt,width=0.39993pt}\kern-0.19997pt\kern-15.39995pt\hrule width=15.79988pt,height=0.39993pt\kern 15.00002pt\hrule width=15.79988pt,height=0.39993pt}&\lower 0.39993pt\vbox{\kern 0.19997pt\hbox{\kern 0.39993pt\vbox to15.39995pt{\vss\hbox to15.00002pt{\hss$$\hss}\vss}\kern-15.39995pt\vrule height=15.39995pt,width=0.39993pt\kern 15.00002pt\vrule height=15.39995pt,width=0.39993pt}\kern-0.19997pt\kern-15.39995pt\hrule width=15.79988pt,height=0.39993pt\kern 15.00002pt\hrule width=15.79988pt,height=0.39993pt}&\lower 0.39993pt\vbox{\kern 0.19997pt\hbox{\kern 0.39993pt\vbox to15.39995pt{\vss\hbox to15.00002pt{\hss$$\hss}\vss}\kern-15.39995pt\vrule height=15.39995pt,width=0.39993pt\kern 15.00002pt\vrule height=15.39995pt,width=0.39993pt}\kern-0.19997pt\kern-15.39995pt\hrule width=15.79988pt,height=0.39993pt\kern 15.00002pt\hrule width=15.79988pt,height=0.39993pt}\cr\lower 0.39993pt\vbox{\kern 0.19997pt\hbox{\kern 0.39993pt\vbox to15.39995pt{\vss\hbox to15.00002pt{\hss$$\hss}\vss}\kern-15.39995pt\vrule height=15.39995pt,width=0.39993pt\kern 15.00002pt\vrule height=15.39995pt,width=0.39993pt}\kern-0.19997pt\kern-15.39995pt\hrule width=15.79988pt,height=0.39993pt\kern 15.00002pt\hrule width=15.79988pt,height=0.39993pt}&\lower 0.39993pt\vbox{\kern 0.19997pt\hbox{\kern 0.39993pt\vbox to15.39995pt{\vss\hbox to15.00002pt{\hss$$\hss}\vss}\kern-15.39995pt\vrule height=15.39995pt,width=0.39993pt\kern 15.00002pt\vrule height=15.39995pt,width=0.39993pt}\kern-0.19997pt\kern-15.39995pt\hrule width=15.79988pt,height=0.39993pt\kern 15.00002pt\hrule width=15.79988pt,height=0.39993pt}\cr\lower 0.39993pt\vbox{\kern 0.19997pt\hbox{\kern 0.39993pt\vbox to15.39995pt{\vss\hbox to15.00002pt{\hss$$\hss}\vss}\kern-15.39995pt\vrule height=15.39995pt,width=0.39993pt\kern 15.00002pt\vrule height=15.39995pt,width=0.39993pt}\kern-0.19997pt\kern-15.39995pt\hrule width=15.79988pt,height=0.39993pt\kern 15.00002pt\hrule width=15.79988pt,height=0.39993pt}&\lower 0.39993pt\vbox{\kern 0.19997pt\hbox{\kern 0.39993pt\vbox to15.39995pt{\vss\hbox to15.00002pt{\hss$$\hss}\vss}\kern-15.39995pt\vrule height=15.39995pt,width=0.39993pt\kern 15.00002pt\vrule height=15.39995pt,width=0.39993pt}\kern-0.19997pt\kern-15.39995pt\hrule width=15.79988pt,height=0.39993pt\kern 15.00002pt\hrule width=15.79988pt,height=0.39993pt}\cr\lower 0.39993pt\vbox{\kern 0.19997pt\hbox{\kern 0.39993pt\vbox to15.39995pt{\vss\hbox to15.00002pt{\hss$$\hss}\vss}\kern-15.39995pt\vrule height=15.39995pt,width=0.39993pt\kern 15.00002pt\vrule height=15.39995pt,width=0.39993pt}\kern-0.19997pt\kern-15.39995pt\hrule width=15.79988pt,height=0.39993pt\kern 15.00002pt\hrule width=15.79988pt,height=0.39993pt}\cr\lower 0.39993pt\vbox{\kern 0.19997pt\hbox{\kern 0.39993pt\vbox to15.39995pt{\vss\hbox to15.00002pt{\hss$$\hss}\vss}\kern-15.39995pt\vrule height=15.39995pt,width=0.39993pt\kern 15.00002pt\vrule height=15.39995pt,width=0.39993pt}\kern-0.19997pt\kern-15.39995pt\hrule width=15.79988pt,height=0.39993pt\kern 15.00002pt\hrule width=15.79988pt,height=0.39993pt}\cr\lower 0.39993pt\vbox{\kern 0.19997pt\hbox{\kern 0.39993pt\vbox to15.39995pt{\vss\hbox to15.00002pt{\hss$$\hss}\vss}\kern-15.39995pt\vrule height=15.39995pt,width=0.39993pt\kern 15.00002pt\vrule height=15.39995pt,width=0.39993pt}\kern-0.19997pt\kern-15.39995pt\hrule width=15.79988pt,height=0.39993pt\kern 15.00002pt\hrule width=15.79988pt,height=0.39993pt}\cr}}\kern 31.99976pt}\xrightarrow[]{}\leavevmode\hbox{\vtop{ \offinterlineskip\openup-0.39993pt\halign{&\opttoksa@YT={\font@YT}\getcolor@YT{\save@YT{\opttoksb@YT}}\nil@YT\getcolor@YT{\startbox@@YT\the\opttoksa@YT\the\opttoksb@YT}#\endbox@YT\cr\lower 0.39993pt\vbox{\kern 0.19997pt\hbox{\kern 0.39993pt\vbox to15.39995pt{\vss\hbox to15.00002pt{\hss$$\hss}\vss}\kern-15.39995pt\vrule height=15.39995pt,width=0.39993pt\kern 15.00002pt\vrule height=15.39995pt,width=0.39993pt}\kern-0.19997pt\kern-15.39995pt\hrule width=15.79988pt,height=0.39993pt\kern 15.00002pt\hrule width=15.79988pt,height=0.39993pt}&\lower 0.39993pt\vbox{\kern 0.19997pt\hbox{\kern 0.39993pt\vbox to15.39995pt{\vss\hbox to15.00002pt{\hss$$\hss}\vss}\kern-15.39995pt\vrule height=15.39995pt,width=0.39993pt\kern 15.00002pt\vrule height=15.39995pt,width=0.39993pt}\kern-0.19997pt\kern-15.39995pt\hrule width=15.79988pt,height=0.39993pt\kern 15.00002pt\hrule width=15.79988pt,height=0.39993pt}&\lower 0.39993pt\vbox{\kern 0.19997pt\hbox{\kern 0.39993pt\vbox to15.39995pt{\vss\hbox to15.00002pt{\hss$$\hss}\vss}\kern-15.39995pt\vrule height=15.39995pt,width=0.39993pt\kern 15.00002pt\vrule height=15.39995pt,width=0.39993pt}\kern-0.19997pt\kern-15.39995pt\hrule width=15.79988pt,height=0.39993pt\kern 15.00002pt\hrule width=15.79988pt,height=0.39993pt}&\lower 0.39993pt\vbox{\kern 0.19997pt\hbox{\kern 0.39993pt\vbox to15.39995pt{\vss\hbox to15.00002pt{\hss$$\hss}\vss}\kern-15.39995pt\vrule height=15.39995pt,width=0.39993pt\kern 15.00002pt\vrule height=15.39995pt,width=0.39993pt}\kern-0.19997pt\kern-15.39995pt\hrule width=15.79988pt,height=0.39993pt\kern 15.00002pt\hrule width=15.79988pt,height=0.39993pt}\cr\lower 0.39993pt\vbox{\kern 0.19997pt\hbox{\kern 0.39993pt\vbox to15.39995pt{\vss\hbox to15.00002pt{\hss$$\hss}\vss}\kern-15.39995pt\vrule height=15.39995pt,width=0.39993pt\kern 15.00002pt\vrule height=15.39995pt,width=0.39993pt}\kern-0.19997pt\kern-15.39995pt\hrule width=15.79988pt,height=0.39993pt\kern 15.00002pt\hrule width=15.79988pt,height=0.39993pt}&\lower 0.39993pt\vbox{\kern 0.19997pt\hbox{\kern 0.39993pt\vbox to15.39995pt{\vss\hbox to15.00002pt{\hss$$\hss}\vss}\kern-15.39995pt\vrule height=15.39995pt,width=0.39993pt\kern 15.00002pt\vrule height=15.39995pt,width=0.39993pt}\kern-0.19997pt\kern-15.39995pt\hrule width=15.79988pt,height=0.39993pt\kern 15.00002pt\hrule width=15.79988pt,height=0.39993pt}&\lower 0.39993pt\vbox{\kern 0.19997pt\hbox{\kern 0.39993pt\vbox to15.39995pt{\vss\hbox to15.00002pt{\hss$$\hss}\vss}\kern-15.39995pt\vrule height=15.39995pt,width=0.39993pt\kern 15.00002pt\vrule height=15.39995pt,width=0.39993pt}\kern-0.19997pt\kern-15.39995pt\hrule width=15.79988pt,height=0.39993pt\kern 15.00002pt\hrule width=15.79988pt,height=0.39993pt}\cr\lower 0.39993pt\vbox{\kern 0.19997pt\hbox{\kern 0.39993pt\vbox to15.39995pt{\vss\hbox to15.00002pt{\hss$$\hss}\vss}\kern-15.39995pt\vrule height=15.39995pt,width=0.39993pt\kern 15.00002pt\vrule height=15.39995pt,width=0.39993pt}\kern-0.19997pt\kern-15.39995pt\hrule width=15.79988pt,height=0.39993pt\kern 15.00002pt\hrule width=15.79988pt,height=0.39993pt}&\lower 0.39993pt\vbox{\kern 0.19997pt\hbox{\kern 0.39993pt\vbox to15.39995pt{\vss\hbox to15.00002pt{\hss$$\hss}\vss}\kern-15.39995pt\vrule height=15.39995pt,width=0.39993pt\kern 15.00002pt\vrule height=15.39995pt,width=0.39993pt}\kern-0.19997pt\kern-15.39995pt\hrule width=15.79988pt,height=0.39993pt\kern 15.00002pt\hrule width=15.79988pt,height=0.39993pt}\cr\lower 0.39993pt\vbox{\kern 0.19997pt\hbox{\kern 0.39993pt\vbox to15.39995pt{\vss\hbox to15.00002pt{\hss$$\hss}\vss}\kern-15.39995pt\vrule height=15.39995pt,width=0.39993pt\kern 15.00002pt\vrule height=15.39995pt,width=0.39993pt}\kern-0.19997pt\kern-15.39995pt\hrule width=15.79988pt,height=0.39993pt\kern 15.00002pt\hrule width=15.79988pt,height=0.39993pt}\cr\lower 0.39993pt\vbox{\kern 0.19997pt\hbox{\kern 0.39993pt\vbox to15.39995pt{\vss\hbox to15.00002pt{\hss$$\hss}\vss}\kern-15.39995pt\vrule height=15.39995pt,width=0.39993pt\kern 15.00002pt\vrule height=15.39995pt,width=0.39993pt}\kern-0.19997pt\kern-15.39995pt\hrule width=15.79988pt,height=0.39993pt\kern 15.00002pt\hrule width=15.79988pt,height=0.39993pt}\cr\lower 0.39993pt\vbox{\kern 0.19997pt\hbox{\kern 0.39993pt\vbox to15.39995pt{\vss\hbox to15.00002pt{\hss$$\hss}\vss}\kern-15.39995pt\vrule height=15.39995pt,width=0.39993pt\kern 15.00002pt\vrule height=15.39995pt,width=0.39993pt}\kern-0.19997pt\kern-15.39995pt\hrule width=15.79988pt,height=0.39993pt\kern 15.00002pt\hrule width=15.79988pt,height=0.39993pt}\cr\lower 0.39993pt\vbox{\kern 0.19997pt\hbox{\kern 0.39993pt\vbox to15.39995pt{\vss\hbox to15.00002pt{\hss$$\hss}\vss}\kern-15.39995pt\vrule height=15.39995pt,width=0.39993pt\kern 15.00002pt\vrule height=15.39995pt,width=0.39993pt}\kern-0.19997pt\kern-15.39995pt\hrule width=15.79988pt,height=0.39993pt\kern 15.00002pt\hrule width=15.79988pt,height=0.39993pt}\cr\lower 0.39993pt\vbox{\kern 0.19997pt\hbox{\kern 0.39993pt\vbox to15.39995pt{\vss\hbox to15.00002pt{\hss$$\hss}\vss}\kern-15.39995pt\vrule height=15.39995pt,width=0.39993pt\kern 15.00002pt\vrule height=15.39995pt,width=0.39993pt}\kern-0.19997pt\kern-15.39995pt\hrule width=15.79988pt,height=0.39993pt\kern 15.00002pt\hrule width=15.79988pt,height=0.39993pt}\cr}}\kern 31.99976pt}

Define ϕ\phi^{\prime} be the operator of VV that corresponds to the diagram by moving the left most block A of the atha^{th} row to the bottom in the diagram of ϕY\phi_{Y}. Let MM^{\prime} be the corresponding module and XX^{\prime} be GreMGr_{e}{M^{\prime}}.
We claim that XXX^{\prime}\setminus X is paved by affines.
By lemma 4, we have X=αICαX=\bigsqcup_{\alpha\in I}C_{\alpha}, where II^{\prime} is the set of all semi-standard young tableau in λ\lambda. Also we have Y=αICαY^{\prime}=\bigsqcup_{\alpha\in I^{\prime}}C^{\prime}_{\alpha}, where II is the set of all semi-standard young tableau in λ\lambda^{\prime}. If α\alpha contains block A, α\alpha is s.s in λ\lambda implies α\alpha^{\prime} is s.s in λ\lambda^{\prime}. If α\alpha does not contain block A , α\alpha also does not contain any block in that row, so α\alpha is still s.s in λ\lambda^{\prime}. So III\subset I^{\prime}.
For α\alpha that contains block A, there are two types. Let E be the set of α\alpha that contains block A and some other block in the row of A. Let F be the set of α\alpha that contains block A but no other block in the row of A. Let G be the set of α\alpha that does not contain block A. So we have I=EFG=F(EG)I=E\bigsqcup F\bigsqcup G=F\bigsqcup(E\bigsqcup G).
Take αF\alpha\in F, in λ\lambda, the block A in α\alpha is not initial so the vector indexed by A is determined by the initial vector. In λ\lambda^{\prime}, A is the last block so the vector indexed by A is the basis vector indexed by block A. In both case the vector indexed by A has been determined, so Cα=CαC_{\alpha}=C_{\alpha}^{\prime} when αF.\alpha\in F.

For αEG\alpha\in E\bigcup G, let s(α)s(\alpha) be the tableau of the same relative position in λ\lambda^{\prime} as α\alpha in λ\lambda. Then Cα=Cs(α)C_{\alpha}=C^{\prime}_{s(\alpha)}. Since s is a bijection between EGE\bigsqcup G and EGE^{\prime}\bigsqcup G^{\prime} we have αEGCα=αEGCα\bigsqcup_{\alpha\in E\bigsqcup G}C_{\alpha}=\bigsqcup_{\alpha\in E^{\prime}\bigsqcup G^{\prime}}C^{\prime}_{\alpha} .
Then we have XX=αIICαX^{\prime}\setminus X=\bigsqcup_{\alpha\in I^{\prime}\setminus I}C^{\prime}_{\alpha} is paved by affines. We can do this procedure step by step until XX^{\prime} becomes Y, so we are done.

(b). By lemma 1, X is paved. With part(a) , we have the homology map from X to Y is injective hence Ψ\Psi is surjective (see 2.2 in[Tym07]). ∎

We want to prove the two sides of Ψ\Psi have the same dimension as k-vector spaces and actually we will prove it for a more general setting.

Definition 2.

For a Π\Pi-mod MM Let V=MiV=\oplus M_{i} be the underlying vector space and ϕ=aHϕa\phi=\oplus_{a\in H}\phi_{a} be the nilpotent operator on VV. We say MM is II-compatible if there is a Jordan basis {vij}\{v_{ij}\} of V such that each vijv_{ij} is contained in some MrM_{r}.

Definition 3.

For a Π\Pi-module MM, if the Young diagram of the associated operator ϕ\phi has one raw, we call MM one direction module.

Proposition 4.

If MM is I-compatible, it is a direct sum of one direction module with multiplicities.

Lemma 5.

If M is I-compatible, the dimension of two sides of Ψ\Psi have the inequality: dim k[aij,bik]/I(M,e))χ(GreΠ(M))k[a_{ij},b_{ik}]/I(M,e))\leq\chi(Gr^{\Pi}_{e}(M)), where χ\chi is the Euler character. We denote the ring on the left by R(M,e)R(M,e).

First we state a lemma due to Caldero and Chapoton.

Lemma 6 (see prop 3.6 in [CC04]).

For Π\Pi-module M,NM,N, we have

χ(Grg(MN)=d+e=gχ(Grd(M))χ(Gre(N)).\chi(Gr_{g}(M\oplus N)=\sum_{d+e=g}\chi(Gr_{d}(M))\chi(Gr_{e}(N)).

The following two lemmas are proved after the proof of lemma 5.

Lemma 7.

R(M,e)/<b1(d1e1)>R(M,e)R(M,e)/<b_{1(d_{1}-e_{1})}>\cong R(M^{\prime},e).

Lemma 8.

b1(d1e1)R(M,e)b_{1(d_{1}-e_{1})}R(M,e) is a module over R(M′′,eiIαi)R(M^{\prime\prime},e-\sum_{i\in I}\alpha_{i}).

Proof of lemma 5.
777The rest of this chapter is not well-written and should be revised.

We index the basis vector according to the Young diagram of ϕ\phi as before but slightly different: eije_{ij} corresponds to the block of ithi^{th} row (from up to down) and jthj^{th} column (from right to left, which is the difference from before and this will cause the problem that two blocks in the same column but different row have different j but we will fix an i sooner so will not be of trouble). so ϕ(eij)=ei(j1)\phi(e_{ij})=e_{i(j-1)}.
The basis vector in M1M_{1} appears in the first column or in the last column. If it lies in the last, we can take the dual to make it in the first. So, there exist i such that ei1M1e_{i1}\in M_{1}.
Let λ\lambda^{\prime} be the young diagram removing the block of ei1e_{i1} from the original one and MM^{\prime} be the corresponding module. Let λ′′\lambda^{\prime\prime} be the young diagram removing ithi^{th} row and M′′M^{\prime\prime} be the corresponding module. Apply lemma 6, we have

χ(GreΠ(M))=χ(Gre(M))+χ(Greαi(M′′)).\chi(Gr^{\Pi}_{e}(M))=\chi(Gr_{e}(M^{\prime}))+\chi(Gr_{e-\sum\alpha_{i}}(M^{\prime\prime})).

We count the dim of R(M,e)R(M,e) by dividing it into two parts.

dimR(M,e)=dimb1(d1e1)R(M,e)+dimR(M,e)/b1(d1e1)R(M,e).dimR(M,e)=dimb_{1(d_{1}-e_{1})}R(M,e)+dimR(M,e)/b_{1(d_{1}-e_{1})}R(M,e).

By lemma 7 and 8, since b1(d1e1)R(M,e)b_{1(d_{1}-e_{1})}R(M,e) is acyclic,

dimb1(d1e1)R(M,e)dimR(M′′,eiIαi).dimb_{1(d_{1}-e_{1})}R(M,e)\leq dimR(M^{\prime\prime},e-\sum_{i\in I}\alpha_{i}).

So dimR(M,e)=dimb1(d1e1)R(M,e))+dimR(M,e)/b1(d1e1)R(M,e)dimR(M′′,eiIαi)+dimR(M,e)=χ(Gre(M)+χ(Gr(eiIαi)(M′′))=χ(GreΠ(M))dimR(M,e)=dimb_{1(d_{1}-e_{1})}R(M,e))+dimR(M,e)/b_{1(d_{1}-e_{1})}R(M,e)\\ \leq dimR(M^{\prime\prime},e-\sum_{i\in I}\alpha_{i})+dimR(M^{\prime},e)=\chi(Gr_{e}(M^{\prime})+\chi(Gr_{(e-\sum_{i\in I}\alpha_{i})}(M^{\prime\prime}))=\chi(Gr^{\Pi}_{e}(M)). ∎

Now we prove lemma 7 and 8.

Proof of lemma 7.

Recall I(M)=degiI+(ti)γiiI(si)γi(γ,ν)+Dγ(M)I(M)=\text{deg}\prod_{i\in I{+}}(t_{i})^{\gamma_{i}}\prod_{i\in I{-}}(s_{i})^{\gamma_{i}}\leq(\gamma,\nu)+D_{-\gamma}(M) We denote v(M,γ,e)=(γ,ν)+Dw0γ(M)v(M,\gamma,e)=(\gamma,\nu)+D_{w_{0}\gamma}(M). The difference between I(M)I(M) and I(M)I(M)^{\prime} only occurs when γ=ϖ1\gamma=-\varpi_{1}. In this case v(M,ϖ1,e)=v(M,ϖ1,e)1v(M^{\prime},-\varpi_{1},e)=v(M,-\varpi_{1},e)-1. The degree of s1s_{1} goes down by by 1, meaning we have one more vanishing condition which is b1(d1e1)=0b_{1(d_{1}-e_{1})}=0. ∎

Proof of lemma 8.

In order to define a module structure on b1(d1e1)R(M,e)b_{1(d_{1}-e_{1})}R(M,e), we lift the element in R(M′′,eiIαi)R(M^{\prime\prime},e-\sum_{i\in I}\alpha_{i}) to R(M,e)R(M,e) (since the former is a quotient of the latter) and let it act on b1(d1e1)R(M,e)b_{1(d_{1}-e_{1})}R(M,e) by multiplication. We denote J to be the degree v(M,γ,e)v(M,\gamma,e) part of <iI+(ti)γiiI(si)γi,γΓ><\prod_{i\in I{+}}(t_{i})^{\gamma_{i}}\prod_{i\in I{-}}(s_{i})^{\gamma_{i}},\gamma\in\Gamma>.

We need to check it is independent of the choice of the lift:

b1(d1e1)JI(M,e), where I(M,e)=JI(M′′,eiIαi).b_{1(d_{1}-e_{1})}J\subset I(M,e),\textup{ where }I(M,e)=J\oplus I(M^{\prime\prime},e-\sum_{i\in I}\alpha_{i}).

Denote the module corresponding to ithi^{th} row P. We have M=M′′PM=M^{\prime\prime}\oplus P. Then v(M,γ,e)v(M′′,γ,iIαi)=v(P,γ,iIαi)v(M,\gamma,e)-v(M^{\prime\prime},\gamma,\sum_{i\in I}\alpha_{i})=v(P,\gamma,\sum_{i\in I}\alpha_{i}).
We claim that v(P,γ,iIαi)=0or 1v(P,\gamma,\sum_{i\in I}\alpha_{i})=0\ or\ 1 and is 0 when γ1=1\gamma_{1}=1.
This is a direct calculation.

When γ1=1\gamma_{1}=-1, t1jt_{1j} appears in each summand iI+(ti)γiiI(si)γi,γΓ\prod_{i\in I{+}}(t_{i})^{\gamma_{i}}\prod_{i\in I{-}}(s_{i})^{\gamma_{i}},\gamma\in\Gamma. Let one of the summand be t1jkt_{1j}k.
s1(d1e1)t1jk=p+q=d1e1+js1pt1qk=s1(d1e1+jq)q>jt1qks_{1(d_{1}-e_{1})}t_{1j}k=-\sum_{p+q=d_{1}-e_{1}+j}s_{1p}t_{1q}k=-s_{1(d_{1}-e_{1}+j-q)}\sum_{q>j}t_{1q}k. We have q>jt1qk\sum_{q>j}t_{1q}k is in I(M,e)I(M,e) since this is of degree larger than v(M,γ,e)v(M,\gamma,e).
When γ1=0\gamma_{1}=0,
we claim that when v(P,γ,iIαi)v(P,\gamma,\sum_{i\in I}\alpha_{i}) is 1 , we have γϖ1Γ\gamma-\varpi_{1}\in\Gamma.
Then we want to show s1(d1e1)iI+(ti)γiiI(si)γis_{1(d_{1}-e_{1})}\prod_{i\in I{+}}(t_{i})^{\gamma_{i}}\prod_{i\in I{-}}(s_{i})^{\gamma_{i}} is in I(M,e)I(M,e). Let k is a summand of degree v(M,γ,e)v(M,\gamma,e) part of I(M,e)I(M,e). We want to show s1(d1e1)ks_{1(d_{1}-e_{1})}k is of degree v(M,γϖ1,e)+1v(M,\gamma-\varpi_{1},e)+1. So we need v(M,γ,e)+d1e1v(M,γϖ1,e)+1v(M,\gamma,e)+d_{1}-e_{1}\geq v(M,\gamma-\varpi_{1},e)+1. By the dimension description, the image of Φγϖ1\Phi_{\gamma-\varpi_{1}} is at least 1 dimensional bigger than the image of Φγ\Phi_{\gamma} since ϕ1m(ei1)=eim\phi_{1m}(e_{i1})=e_{im} is in the image but for γϖ1\gamma-\varpi_{1} (since ϕ1m\phi_{1m} is not a summand of ϕ\phi) the projection of img(ϕ)img(\phi) on VmV_{m} is zero, where m is the smallest number in Γ+\Gamma_{+}. ∎

Theorem 6.

Ψ\Psi is an isomorphism when M is a kQ-module.

Proof.

by lemma 4, Ψ\Psi is surjective so dim k[aij,bik]/I(M,e))χ(GreΠ(M))k[a_{ij},b_{ik}]/I(M,e))\geq\chi(Gr^{\Pi}_{e}(M)) and by lemma 5 this is an equality so the theorem follows. ∎

6 A consequence of this conjecture

In section 3, we defined 𝒢(G,Y)\mathcal{G}(G,Y) as moduli of maps of between pairs form (d,d)(d,d^{*}) to (G/Y,pt)(G/Y,pt). This is actually a local version of (fiber at a closed point c) the global loop Grassmannian with a condition Y to a curve CC, 𝒢C(G,Y)\mathcal{G}^{C}(G,Y). To a curve C, define 𝒢C(G,Y)\mathcal{G}^{C}(G,Y) over the ran space C\mathcal{R}_{C} with the fiber at ECE\in\mathcal{R}_{C}:

𝒢C(G,Y)E=defmap[(C,CE),(G/Y,pt)].\mathcal{G}^{C}(G,Y)_{E}=^{def}map[(C,C-E),(G/Y,pt)].

Denote the map from 𝒢C(G,Y)\mathcal{G}^{C}(G,Y) to C\mathcal{R}_{C} remembering the singularities by π\pi.

One can ask if π\pi is (ind) flat for any GG and (Y,pt)(Y,pt). The case we are concerned is when G=G×wTwG^{\prime}=G\times\prod_{w}T_{w} and Y=w(G/Nw)aff.Y=\prod_{w}(G/N^{w})^{aff}. Let cC,λw¯,μw¯X(T)W.c\in C,\underline{\lambda_{w}},\underline{\mu_{w}}\in X_{*}(T)^{W}. In particular, we restrict 𝒢C(G,Y)\mathcal{G}^{C}(G^{\prime},Y) to C×cC\times c and denote the image under projection from 𝒢(G\mathcal{G}(G^{\prime} to 𝒢(G)\mathcal{G}(G) by XX. We have XX is a closed subscheme of GrG,X×cGr_{G,X\times c}. Explicitly, an RR-point of GrG,X×cGr_{G,X\times c} consists of the following data

  • x:specRCx:specR\xrightarrow[]{}C. Let Γx\Gamma_{x} be the graph of x. Let Γc\Gamma_{c} be the graph of the constant map taking value c.

  • β\beta a G-bundle on specR×CR\times C.

  • A trivialization η:β0𝜂β\eta:\beta_{0}\xrightarrow[]{\eta}\beta defined on specR×C(ΓxΓc)specR\times C-(\Gamma_{x}\bigcup\Gamma_{c}).

An RR-point of XX over C×cC\times c consists of an RR-point of GrG,X×cGr_{G,X\times c} subject to the condition: For every iIi\in I, the composition

ηi:β0×GV(ϖi)β×GV(ϖi)β×GV(ϖi)𝒪(γ,λwΓx+γ,μwΓc).\eta_{i}:\beta_{0}\times^{G}V(\varpi_{i})\xrightarrow[]{}\beta\times^{G}V(\varpi_{i})\xrightarrow[]{}\beta\times^{G}V(\varpi_{i})\otimes\mathcal{O}(\langle\gamma,\lambda_{w}\rangle\cdot\Gamma_{x}+\langle\gamma,\mu_{w}\rangle\cdot\Gamma_{c}).

is regular on all of specR×CspecR\times C.

We can show the fiber over a closed point other than cc is Sλww¯×Sμww¯\bigcap\overline{S^{w}_{\lambda_{w}}}\times\bigcap\overline{S^{w}_{\mu_{w}}} and the fiber over cc is Sλw+μww¯\bigcap\overline{S^{w}_{\lambda_{w}+\mu_{w}}}.

Corollary 2 (Given the conjecture).

The T-fixed point subscheme of this family is flat.

Proof.

dim𝒪((Sλw+μww¯T)ν)=dimH(GreΠ(M))=e1+e2=edimH(Gre1Π(M1)dimH(Gre2Π(M2)=ν1+ν2=ν𝒪(Sλww¯ν1T)𝒪(Sμww¯ν2T)=dim𝒪(ν1+ν2=νSλww¯ν1T×Sμww¯ν2T=dim(Sλww¯T×Sλww¯T)ν.dim\mathcal{O}((\overline{\bigcap S^{w}_{\lambda_{w}+\mu_{w}}}^{T})_{\nu})=dimH^{*}(Gr^{\Pi}_{e}(M))=\sum_{e_{1}+e_{2}=e}dimH^{*}(Gr^{\Pi}_{e_{1}}(M_{1})dimH^{*}(Gr^{\Pi}_{e_{2}}(M_{2})=\sum_{\nu_{1}+\nu_{2}=\nu}\mathcal{O}(\overline{\bigcap S^{w}_{\lambda_{w}}}^{T}_{\nu_{1}})\cdot\mathcal{O}(\overline{\bigcap S^{w}_{\mu_{w}}}^{T}_{\nu_{2}})=dim\mathcal{O}(\bigsqcup_{\nu_{1}+\nu_{2}=\nu}\overline{\bigcap S^{w}_{\lambda_{w}}}^{T}_{\nu_{1}}\times\overline{\bigcap S^{w}_{\mu_{w}}}^{T}_{\nu_{2}}=dim(\overline{\bigcup S^{w}_{\lambda_{w}}}^{T}\times\overline{\bigcap S^{w}_{\lambda_{w}}}^{T})_{\nu}.888By lemma 6, and given the conjecture, Euler character is the same as total cohomology.

Conjecture 2.

T-fixed subschemes flatness imply flatness.

We take λw=w0λ+wλ\lambda_{w}=-w_{0}\lambda+w\lambda, then Sλww¯=Yλ¯\overline{\bigcap S^{w}_{\lambda_{w}}}=\overline{Y^{\lambda}}. In this case the conjecture is proved to be true. This flatness is mentioned in [KMW16] remark 4.3 and will reduce the proof of reduceness of Yλ¯\overline{Y^{\lambda}} to the case when λ\lambda is ϖi\varpi_{i} for each iIi\in I.

7 Appendix

For an expression simsi1s_{i_{m}}\cdots s_{i_{1}} of an element w in W, we say it is j-admissible if αia,sia1si1ϖj0\langle\alpha_{i_{a}},s_{i_{a-1}}\cdots s_{i_{1}}\varpi_{j}\geq 0 for any ama\leq m.

Lemma 9.

For any element wWw\in W, any reduced expression of ww is j-admissible.(since we will fix an j, we will omit j and just say admissible).

Proof.

Since we are in the ADE case,

siϖi\displaystyle s_{i}\varpi_{i} =ϖi+h is adjacent to i ϖh.\displaystyle=-\varpi_{i}+\sum_{h\text{ is adjacent to i }}\varpi_{h}. (6)
siϖh\displaystyle s_{i}\varpi_{h} =ϖh, for hi.\displaystyle=\varpi_{h},\textup{ for $h\neq i$.} (7)

We use induction on the length of ww. Suppose lemma holds when l(w)ml(w)\leq m. Take a reduced expression of wWw\in W with length m+1m+1 : w=sim+1si1w=s_{i_{m+1}}\cdots s_{i_{1}}. Suppose this expression is not admissible, we have αim+1,simsi1ϖj0\langle\alpha_{i_{m+1}},s_{i_{m}}\cdots s_{i_{1}}\varpi_{j}\rangle\leq 0. Since αim+1,ϖj0\langle\alpha_{i_{m+1}},\varpi_{j}\rangle\geq 0, and by (6),(7)

αim+1,stγαim+1,γ.\langle\alpha_{i_{m+1}},s_{t}\gamma\rangle\geq\langle\alpha_{i_{m+1}},\gamma\rangle.

unless t=im+1t=i_{m+1}, there must exists kk such that ik=im+1i_{k}=i_{m+1}.Let k be the biggest number such that ik=im+1i_{k}=i_{m+1}.
In the case there is no element in the set {im,,ik+1}\{i_{m},\cdots,i_{k+1}\} is adjacent to im+1i_{m+1} in the Coxeter diagram, sim+1s_{i_{m+1}} commutes with simsik+1s_{i_{m}}\cdots s_{i_{k+1}}. Therefore sim+1simsik+1sim+1=sim+1sim+1simsik+1=simsik+1s_{i_{m+1}}s_{i_{m}}\cdots s_{i_{k+1}}s_{i_{m+1}}=s_{i_{m+1}}s_{i_{m+1}}s_{i_{m}}\cdots s_{i_{k+1}}=s_{i_{m}}\cdots s_{i_{k+1}} so the w=sim+1si1w=s_{i_{m+1}}\cdots s_{i_{1}} is not reduced, contradiction.
In the case where for some tt, iti_{t} is adjacent to im+1i_{m+1}, we will show we can reduce to the case we have only one such t. Suppose we have at least two elements it1,it2,ithi_{t_{1}},i_{t_{2}}\cdots,i_{t_{h}} such that they are all adjacent to im+1i_{m+1}. Since αim+1,sim+1siksi1ϖj0\langle\alpha_{i_{m+1}},s_{i_{m+1}}\cdots s_{i_{k}}\cdots s_{i_{1}}\varpi_{j}\rangle\leq 0 and h>1h>1, by (6), (7), we must have some iu1,iu2i_{u_{1}},i_{u_{2}} such that they are adjacent to im+1i_{m+1}. Since one point at most has 3 adjacent points we must have some iux=ity.i_{u_{x}}=i_{t_{y}}. Let p=iux=ityp=i_{u_{x}}=i_{t_{y}}. Using spsim+1sp=sim+1spsim+1s_{p}s_{i_{m+1}}s_{p}=s_{i_{m+1}}s_{p}s_{i_{m+1}} we can move sim+1s_{i_{m+1}} in front of stys_{t_{y}} so the number h is reduced by 1. We could do this procedure until h=1. In this case we can rewrite the sequence before sik1s_{i_{k-1}} using the braid relation between im+1i_{m+1} and iti_{t}:

sim+1sitsik=sim+1sitsim+1=sim+1sitsim+1=sitsim+1sit.s_{i_{m}+1}\cdots s_{i_{t}}\cdots s_{i_{k}}=s_{i_{m}+1}\cdots s_{i_{t}}\cdots s_{{i_{m}+1}}=\cdots s_{i_{m+1}}s_{i_{t}}s_{i_{m+1}}\cdots=\cdots s_{i_{t}}s_{i_{m+1}}s_{i_{t}}\cdots.

Set β=sik1si1ϖj\beta=s_{i_{k-1}}\cdots s_{i_{1}}\varpi_{j}. By induction hypothesis, sim+1sitsim+1s_{i_{m+1}}s_{i_{t}}s_{i_{m+1}}\cdotsand sitsim+1sits_{i_{t}}s_{i_{m+1}}s_{i_{t}}\cdots are admissible. So αit,β0\langle\alpha_{i_{t}},\beta\rangle\geq 0 and αim+1,β0\langle\alpha_{i_{m+1}},\beta\rangle\geq 0. Again using (6) and (7) we have sitsim+1β,αim+10\langle s_{i_{t}}s_{i_{m+1}}\beta,\alpha_{i_{m+1}}\rangle\geq 0. Then sim+1si1ϖj,αim+1=sitsim+1β,αim+10\langle s_{i_{m+1}}\cdots s_{i_{1}}\varpi_{j},\alpha_{i_{m+1}}\rangle=\langle s_{i_{t}}s_{i_{m+1}}\beta,\alpha_{i_{m+1}}\rangle\geq 0, contradicts with sim+1si1s_{i_{m+1}}\cdots s_{i_{1}} is not admissible.

Proof of lemma 2.

Set F0={ϖj}F_{0}=\{\varpi_{j}\}. Let FmF_{m} be the set which contains all wϖjw\varpi_{j}, where l(w)ml(w)\leq m. We use induction. Suppose lemma 2 holds for γFm\gamma\in F_{m}, we will prove lemma holds when γFm+1.\gamma\in F_{m+1}. For any γ=wϖjFm+1\gamma=w\varpi_{j}\in F_{m+1}, by lemma 1, w has a reduced admissible expression: w=sim+1si1w=s_{i_{m+1}}\cdots s_{i_{1}}. Denote im+1i_{m+1} by i and β\beta by simsi1ϖjs_{i_{m}}\cdots s_{i_{1}}\varpi_{j}. So γ=siβ\gamma=s_{i}\beta, βFm\beta\in F_{m}. Since sim+1si1s_{i_{m+1}}\cdots s_{i_{1}} is admissible, β,αi0\langle\beta,\alpha_{i}\rangle\geq 0. Therefore γ,αi=siβ,αi=β,αi0\langle\gamma,\alpha_{i}\rangle=\langle s_{i}\beta,\alpha_{i}\rangle=-\langle\beta,\alpha_{i}\rangle\leq 0 and we can apply prop 4.1 in [BK12]. Then Dγ(M)=Dsi(siγ)(M)=Dsiγ(ΣiM)D_{\gamma}(M)=D_{s_{i}(s_{i}\gamma)}(M)=D_{s_{i}\gamma}(\Sigma_{i}M) , where Σi\Sigma_{i} is the reflection functor defined in section 2.2 in [BK12].
Let A={j|j is adjacent to i, jI}A=\{j\ |\ j\text{ is adjacent to i, }j\in I\} and MA=sAMsM_{A}=\oplus_{s\in A}M_{s}. The ithi^{th} component of ΣiM\Sigma_{i}M is the kernel of the map ξ\xi (Still see section 2.2 in [BK12] for the definition of ξ\xi) from MAM_{A} to MiM_{i}. Since βFm\beta\in F_{m}, by induction hypothesis, we can apply this lemma to the case where γ\gamma is taken to be β\beta and the module MM is ΣiM\Sigma_{i}M. Recall we denote by Iγ+I_{\gamma}^{+} the subset of I containing all i such that γ,αiˇ\langle\gamma,\check{\alpha_{i}}\rangle is positive and by IγI_{\gamma}^{-} containing all i γ,αiˇ\langle\gamma,\check{\alpha_{i}}\rangle is negative.

Denote A+={j|j is adjacent to i, jIγ+}A_{+}=\{j\ |\ j\text{ is adjacent to i, }j\in I_{\gamma}^{+}\} and A=AA+.A_{-}=A\setminus A_{+}. For a multiset SS, let MS=Msm(s)M_{S}=\oplus M_{s}^{m(s)}. Regarding IγI_{\gamma}^{-} as a multiset by setting m(i)=γim(i)=\gamma_{i}^{-}, we can rewrite iIγMiγ\oplus_{i\in I_{\gamma}^{-}}M_{i}^{\gamma^{-}} as MIγM_{I^{-}_{\gamma}}, similarly iIγ+Miγ+\oplus_{i\in I_{\gamma}^{+}}M_{i}^{\gamma^{+}} as MIγ+M_{I^{+}_{\gamma}}.

Consider the case when γ,αi=1\langle\gamma,\alpha_{i}\rangle=-1. We have Iβ+=Isiγ+=(Iγ+A+){i}I_{\beta}^{+}=I_{s_{i}\gamma}^{+}=(I_{\gamma}^{+}\setminus A_{+})\bigcup\{i\} and Iβ=Isiγ=(Iγ{i})AI_{\beta}^{-}=I_{s_{i}\gamma}^{-}=(I_{\gamma}^{-}\setminus\{i\})\bigcup A_{-} as multisets. Therefore Dsiγ(ΣiM)D_{s_{i}\gamma}(\Sigma_{i}M) is the dimension of the kernel the natural map (which is ϕβ\phi_{\beta}) from MIγ+A+ker(MA𝜉Mi)M_{I^{+}_{\gamma}\setminus A_{+}}\oplus ker(M_{A}\xrightarrow[]{\xi}M_{i}) to MIγ{i}MAM_{I^{-}_{\gamma}\setminus\{i\}}\oplus M_{A_{-}}. This is equal to the dimension of the kernel of the natural map from MIγ+A+ker(MA+𝜉Mi)M_{I^{+}_{\gamma}\setminus A_{+}}\oplus ker(M_{A_{+}}\xrightarrow[]{\xi}M_{i}) to MIγ+{i}M_{I^{+}_{\gamma}\setminus\{i\}}, which is just ker(MIγ+ϕγMIγ+)ker(M^{+}_{I_{\gamma}}\xrightarrow[]{\phi_{\gamma}}M_{I^{+}_{\gamma}}). The case when γ,αi=2\langle\gamma,\alpha_{i}\rangle=-2 is similar.

References

  • [BD91] Alexander Beilinson and Vladimir Drinfeld. Quantization of hitchin’s integrable system and hecke eigensheaves, 1991.
  • [BK12] Pierre Baumann and Joel Kamnitzer. Preprojective algebras and MV polytopes. Represent. Theory, 16:152–188, 2012.
  • [CC04] Philippe Caldero and Frédéric Chapoton. Cluster algebras as hall algebras of quiver representations. arXiv preprint math/0410187, 2004.
  • [GKM97] Mark Goresky, Robert Kottwitz, and Robert MacPherson. Equivariant cohomology, koszul duality, and the localization theorem. Inventiones mathematicae, 131(1):25–83, 1997.
  • [Kam05] Joel Kamnitzer. Mirkovic-vilonen cycles and polytopes. arXiv preprint math/0501365, 2005.
  • [Kam07] Joel Kamnitzer. The crystal structure on the set of mirković–vilonen polytopes. Advances in Mathematics, 215(1):66–93, 2007.
  • [KMW16] Joel Kamnitzer, Dinakar Muthiah, and Alex Weekes. On a reducedness conjecture for spherical schubert varieties and slices in the affine grassmannian. arXiv preprint arXiv:1604.00053, 2016.
  • [Lus90] George Lusztig. Canonical bases arising from quantized enveloping algebras. Journal of the American Mathematical Society, 3(2):447–498, 1990.
  • [Mir14] Ivan Mirković. Loop Grassmannians in the framework of local spaces over a curve. In Recent advances in representation theory, quantum groups, algebraic geometry, and related topics, volume 623 of Contemp. Math., pages 215–226. Amer. Math. Soc., Providence, RI, 2014.
  • [Mir17a] I Mirković. Classifying spaces. unpublished notes, 2017.
  • [Mir17b] I Mirković. Some extensions of the notion of loop grassmannians. http://hrcak.srce.hr/186430, 2017.
  • [Shi85] Naohisa Shimomura. The fixed point subvarieties of unipotent transformations on the flag varieties. Journal of the Mathematical Society of Japan, 37(3):537–556, 1985.
  • [Tym05] J Tymoczko. An introduction to equivariant cohomology and homology. In Snowbird Lectures in Algebraic Geometry: Proceedings of an AMS-IMS-SIAM Joint Summer Research Conference on Algebraic Geometry: Presentations by Young Researchers, July 4-8, 2004, volume 388, page 169. American Mathematical Soc., 2005.
  • [Tym07] Julianna S Tymoczko. Paving hessenberg varieties by affines. Selecta Mathematica, New Series, 13(2):353–367, 2007.
  • [Zhu16] Xinwen Zhu. An introduction to affine grassmannians and the geometric satake equivalence. arXiv preprint arXiv:1603.05593, 2016.

University of Massachusetts, Amherst, MA.
E-mail address: zdong@math.umass.edu