This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

LPHE-MS-Sept-24-revised
Topological 4D gravity and
gravitational defects

Y. Boujakhrout 111boujakhroutyoussra@gmail.com, R. Sammani, E.H Saidi
1. LPHE-MS, Science Faculty, Mohammed V University in Rabat, Morocco
2. Centre of Physics and Mathematics, CPM- Morocco
Abstract

Using the Chern-Simons formulation of AdS3 gravity as well as the Costello-Witten-Yamazaki (CWY) theory for quantum integrability, we construct a novel topological 4D gravity given by Eq(5.1) with observables based on gravitational gauge field holonomies. The field action ๐’ฎ4โ€‹Dgโ€‹rโ€‹aโ€‹v\mathcal{S}_{4D}^{grav} of this gravity has a gauge symmetry Sโ€‹Lโ€‹(2,โ„‚)SL(2,\mathbb{C}) and reads also as the difference ๐’ฎ4โ€‹DCโ€‹Wโ€‹YLโˆ’๐’ฎ4โ€‹DCโ€‹Wโ€‹YR\mathcal{S}_{4D}^{CWY_{L}}-\mathcal{S}_{4D}^{CWY_{R}}ย with 4D Chern-Simons field actions ๐’ฎ4โ€‹DCโ€‹Wโ€‹YL/R\mathcal{S}_{4D}^{CWY_{L/R}} given by left/right CWY theory Eq(3.9). We also use this 4D gravity derivation to build observables describing gravitational topological defects and their interactions.ย Weย conclude our study with few comments regarding quantum integrability and the extension of AdS3/CFT2ย correspondence with regard to the obtained topological 4D gravity.

Keywords: AdS3ย gravity and CS formulation, AdS3/CFT2, Line defects in CS and 4D gravity, Integrable spin chains and brane realisations in strings.

1 Introduction

Following [1], the 3D Chern-Simons theory with hermitian gauge field action ๐’ฎ3โ€‹DCโ€‹Sโ€‹[A]\mathcal{S}_{3D}^{{\small CS}}\left[A\right] has an unconventional 4D extension giving a powerful QFT framework to study quantum integrability [2]-[4]. This is an exotic 4D extension of the usual 3D Chern-Simons (CS) modeling to which we refer below to as the Costello-Witten-Yamazaki theory. It lives in a 4D space ๐‘ด4โ€‹D\boldsymbol{M}_{4D} fibered like ฮฃ2ร—ฮฃ~2\Sigma_{2}\times\tilde{\Sigma}_{2}; that is the products of two 2D real surfaces thought of in this study as โ„2ร—โ„‚โ€‹โ„™1\mathbb{R}^{2}\times\mathbb{CP}^{1} with complex projective line isomorphic to the real 2-sphere ๐•Š2\mathbb{S}^{2} [5]. The Costello-Witten-Yamazaki (CWY) theory is a 4D topological quantum field theory with field action ๐’ฎ4โ€‹DCโ€‹Wโ€‹Yโ€‹[๐€]\mathcal{S}_{4D}^{{\small CWY}}\left[\mathbf{A}\right] leading to a flat 2-form gauge curvature F=2d๐€+๐€2=0{}_{2}=d\mathbf{A}+\mathbf{A}^{2}=0. Its observables are given by line and surface defects that have been shown to carry precious information on quantum integrability [6]-[13]. Typical gauge invariant line defects are given by Wilson and โ€™t Hooft lines as well as their braiding [14],[15]. These line defects have been given interpretations in terms of Q-operators of integrable quantum spin and superspin chains [16]; and were realised in terms of intersecting branes in type II strings and M-theory [17]-[19]. The main steps in the derivation of the CWY theory by starting from the 3D Chern-Simons are given in section 3; we refer to these steps as the Building ALgorithm (BAL); this BAL will be in our construction.

On the other hand, it is quite well known that 3D Anti-de Sitter (AdS3) gravity is intimately related with 3D Chern-Simons theory [20]-[24]. The field action ๐’ฎAโ€‹dโ€‹S3gโ€‹rโ€‹aโ€‹vโ€‹[๐ž,ฯ‰]\mathcal{S}_{AdS_{3}}^{grav}\left[\mathbf{e,\omega}\right] of the AdS3 gravity is a functional of two 1-forms given by the real dreibein ๐ž\mathbf{e}ย and the real 3D spin connection ฯ‰\mathbf{\omega}. But it has been shown that ๐ž\mathbf{e} andฯ‰\ \mathbf{\omega} can be expressed in terms of left/right pair (AL,ARA_{L},A_{R}) of Chern-Simons gauge fields in 3D. In this CS description, the ฯ‰\mathbf{\omega} is given by the mean field (AL+ARA_{L}+A_{R})/2 and ๐ž\mathbf{e} by the reduced field variable (ALโˆ’ARA_{L}-A_{R})/2. Concretely, it was found that the ๐’ฎAโ€‹dโ€‹S3gโ€‹rโ€‹aโ€‹v\mathcal{S}_{AdS_{3}}^{grav} can be nicely formulated like the difference of two Chern-Simons field actions as

๐’ฎAโ€‹dโ€‹S3gโ€‹rโ€‹aโ€‹v=๐’ฎ3โ€‹DCโ€‹Sโ€‹[AL]โˆ’๐’ฎ3โ€‹DCโ€‹Sโ€‹[AR]\mathcal{S}_{AdS_{3}}^{grav}=\mathcal{S}_{3D}^{{\small CS}}\left[A_{L}\right]-\mathcal{S}_{3D}^{{\small CS}}\left[A_{R}\right] (1.1)

where ALA_{L} and ARA_{R} are hermitian 1-form CSย gauge potentials valued in left and right Lie algebras; say ALA_{L} valued in sโ€‹lโ€‹(2,โ„)Lsl(2,\mathbb{R})_{L} and ARA_{R} valued in sโ€‹lโ€‹(2,โ„)R.sl(2,\mathbb{R})_{R}. Because of its rich properties, the AdS3 gravity has been the subject of increasing interest; especially in connection with AdS3/CFT2 correspondence [22, 23, 25], BTZ black holes [26] and higher spin 3D gravitiesย [22, 23, 27].

In this paper, we contribute to the study of AdS3 gravity from the view of quantum integrability and topological gravitational defects. For that, we apply the method of CWY of integrable systems to the AdS3 gravity with Anti-de Sitter group Sโ€‹Oโ€‹(2,2)SO(2,2) while using its formulation in terms of the CS gauge potentials AL/RA_{L/R}. In this way, one opens a window on applications of integrable system methods obtained by CWY in QFT to 4D topological gravity with line and surface defects. The outcome of this study is twofold:

First, the derivation of a novel 4D topological gravity living on the 4D space โ„2ร—โ„‚โ€‹โ„™1\mathbb{R}^{2}\times\mathbb{CP}^{1} with field action ๐’ฎ4โ€‹Dgโ€‹rโ€‹aโ€‹v\mathcal{S}_{4D}^{grav} that can be expressed in two equivalent ways: (๐ข)\left(\mathbf{i}\right) as a functional of a 4D left ๐€L\mathbf{A}_{L} and a 4D right ๐€R\mathbf{A}_{R} Chern-Simons like fields (two CWY gauge fields ๐€L/๐€R\mathbf{A}_{L}/\mathbf{A}_{R}) as follows

๐’ฎ4โ€‹Dgโ€‹rโ€‹aโ€‹vโ€‹[๐€L,๐€R]=๐’ฎ4โ€‹DCโ€‹Wโ€‹Yโ€‹[๐€L]โˆ’๐’ฎ4โ€‹DCโ€‹Wโ€‹Yโ€‹[๐€R]\mathcal{S}_{4D}^{grav}\left[\mathbf{A}_{L}\mathbf{,A}_{R}\right]=\mathcal{S}_{4D}^{{\small CWY}}\left[\mathbf{A}_{L}\right]-\mathcal{S}_{4D}^{{\small CWY}}\left[\mathbf{A}_{R}\right] (1.2)

with ๐’ฎ4โ€‹DCโ€‹Wโ€‹Yโ€‹[๐€L/R]\mathcal{S}_{4D}^{{\small CWY}}\left[\mathbf{A}_{L/R}\right] given by eqs(4.2-4.8); or (๐ข๐ข)\left(\mathbf{ii}\right) like the functional ๐’ฎ4โ€‹Dgโ€‹rโ€‹aโ€‹vโ€‹[๐„,๐›€]\mathcal{S}_{4D}^{grav}\left[\mathbf{E,\Omega}\right] reading as in eq(5.1). The four dimensional ๐„\mathbf{E} and ๐›€\mathbf{\Omega} are the vielbein and the spin connection 1-forms living on โ„2ร—โ„‚โ€‹โ„™1\mathbb{R}^{2}\times\mathbb{CP}^{1} and valued in sโ€‹lโ€‹(2,โ„‚)sl(2,\mathbb{C}). These gravity potentials are given by linear combinations (๐€Lยฑ๐€R)/2(\mathbf{A}_{L}\pm\mathbf{A}_{R})/2 in a similar fashion to the Achucarro-Townsend 3D Chern- Simons derivation. We show that the two point correlation functions โŸจ๐„โ€‹(ฮถ1)โ€‹๐„โ€‹(ฮถ2)โŸฉ\left\langle\mathbf{E}(\zeta_{1})\mathbf{E}(\zeta_{2})\right\rangle and โŸจ๐›€โ€‹(ฮถ1)โ€‹๐›€โ€‹(ฮถ2)โŸฉ\left\langle\mathbf{\Omega}(\zeta_{1})\mathbf{\Omega}(\zeta_{2})\right\rangle vanish identically while โŸจ๐„โ€‹(ฮถ1)โ€‹๐›€โ€‹(ฮถ2)โŸฉ\left\langle\mathbf{E}(\zeta_{1})\mathbf{\Omega}(\zeta_{2})\right\rangle is a non vanishing propagator ๐‘ทโ€‹(ฮถ1โˆ’ฮถ2)\boldsymbol{P}(\zeta_{1}-\zeta_{2}) given by eqs(4.33-4.35).

Second, considering the aboveย 4D topological field action (1.2) with ๐„\mathbf{E} and ๐›€\mathbf{\Omega} expressed in terms of CYW connections (๐€Lยฑ๐€R)/2(\mathbf{A}_{L}\pm\mathbf{A}_{R})/2, we obtain two types of 4D gravitational line defects W[ฮณz]E{}_{E}\left[\mathrm{\gamma}_{z}\right] and W[ฮณw]ฮฉ{}_{\Omega}\left[\mathrm{\gamma}_{w}\right] described by topological observables based on the holonomy of the topological gravitational 1-form potentials

ฮฆE=โˆฎฮณz๐„,ฮฆฮฉ=โˆฎฮณw๐›€\Phi_{E}=\mathop{\displaystyle\oint}\nolimits_{\mathrm{\gamma}_{z}}\mathbf{E}\qquad,\qquad\Phi_{\Omega}=\mathop{\displaystyle\oint}\nolimits_{\mathrm{\gamma}_{w}}\mathbf{\Omega} (1.3)

with loops ฮณz\mathrm{\gamma}_{z} and ฮณw\mathrm{\gamma}_{w} spreading in the topological plane โ„2\mathbb{R}^{2} and located at the points z and w in โ„‚โ€‹โ„™1โ‰ƒ๐•Š2\mathbb{CP}^{1}\simeq\mathbb{S}^{2}. Moreover, using the topological invariant ๐’ฎ4โ€‹Dgโ€‹rโ€‹aโ€‹v\mathcal{S}_{4D}^{grav} as well as the vielbein and spin connection line defects, we give partial results on quantum integrability including Yang-Baxter and RLL equations; and commentย on the extension of the AdS3/CFT2ย correspondence in the new framework of 4D topological gravity (1.2).

Before proceeding, we would like to emphasise that the derivation of the field action (1.2) of the 4D topological gravity will be carried out in three consecutive steps 1, 2 and 3 as indicated by the following diagram in Table 1.

3D : AdS3 gravity SAโ€‹dโ€‹S3gโ€‹rโ€‹aโ€‹vโ€‹[e,ฯ‰]S_{AdS_{3}}^{grav}\left[e,\omega\right] ย stepย โ€‹1โ€‹โ†’\ \ \ \underrightarrow{\text{ \ \ step }1\text{ \ \ }} S3โ€‹Dcโ€‹sโ€‹[AL]โˆ’S3โ€‹Dcโ€‹sโ€‹[AR]S_{3D}^{cs}\left[A_{L}\right]-S_{3D}^{cs}\left[A_{R}\right] โ†“\downarrow stepsย โ€‹1\ \ \text{steps }1-22-33 โ†“\downarrow ย ย step 22 4D : 4D gravity S4โ€‹Dgโ€‹rโ€‹aโ€‹vโ€‹[E,ฮฉ]S_{4D}^{grav}\left[E,\Omega\right] ย stepย โ€‹3โ€‹โ†\underleftarrow{\text{ \ \ step }3\text{ \ \ \ }} S4โ€‹Dcโ€‹yโ€‹wโ€‹[AL]โˆ’S4โ€‹Dcโ€‹yโ€‹wโ€‹[AR]S_{4D}^{cyw}\left[A_{L}\right]-S_{4D}^{cyw}\left[A_{R}\right]

Table 1: the way diagram to build 4D topological gravity by starting from AdS3 gravity. The way is achieved into three steps 1, 2 and 3 as indicated by the arrows.

The organisation of the paper is as follows: In section 2, we revisit useful aspects of the Chern-Simons formulation of AdS3 gravity and its boundary CFT2. In section 3, we give the building algorithm (BAL) for the derivation of the CWY theory by starting from the usual 3D-Chern-Simons. In section 4, we develop the basis of the 4D topological gravity deduced from the AdS3 gravity and investigate the topological defects within. Section 5 is devoted to conclusion and comments with regards to integrable quantum spin chains and the extension of AdS3/CFT2 correspondence.

2 Chern-Simons formulation of AdS3 gravity

We begin by describing the Anti-de Sitter 3D gravity with spacetime metric gฮผโ€‹ฮฝ=eฮผaโ€‹ฮทaโ€‹bโ€‹eฮฝbg_{\mu\nu}=e_{\mu}^{a}\eta_{ab}e_{\nu}^{b} where ฮทaโ€‹b\eta_{ab} is the usual flat dโ€‹iโ€‹aโ€‹gโ€‹(โˆ’,+,+)diag(-,+,+) of 3D with rotation group in tangent space given by Sโ€‹Oโ€‹(1,2).SO\left(1,2\right). This non compact space is a maximally symmetric solution of 3D Einsteinโ€™s equation with a negative cosmological constant (negative constant curvature). By using the Dreibein eฮผae_{\mu}^{a} and the (dualized) spin connection ฯ‰ฮผa\omega_{\mu}^{a} of AdS3 as well as the associated 1-forms ea=eฮผaโ€‹dโ€‹xฮผe^{a}=e_{\mu}^{a}dx^{\mu} and ฯ‰a=ฯ‰ฮผaโ€‹dโ€‹xฮผ\omega^{a}=\omega_{\mu}^{a}dx^{\mu} invariant under Diff(AdS3) but transforming as Sโ€‹Oโ€‹(1,2)SO\left(1,2\right) vectors, the field action ๐’ฎ3โ€‹Dgโ€‹rโ€‹aโ€‹v=๐’ฎ3โ€‹Dgโ€‹rโ€‹aโ€‹vโ€‹[e,ฯ‰]\mathcal{S}_{{\small 3D}}^{{\small grav}}=\mathcal{S}_{{\small 3D}}^{{\small grav}}\left[e,\omega\right] of the AdS3 gravity reads in differential form language as follows [20, 22, 29, 30]

๐’ฎ3โ€‹Dgโ€‹rโ€‹aโ€‹v=18โ€‹ฯ€โ€‹Gโ€‹โˆซโ„ณ3โ€‹Dโ„’3gโ€‹rโ€‹aโ€‹v\mathcal{S}_{{\small 3D}}^{{\small grav}}=\frac{1}{8\pi G}\mathop{\displaystyle\int}\nolimits_{\mathcal{M}_{3D}}\mathcal{L}_{3}^{grav} (2.1)

The 3-form Lagrangian density reads in terms of the curvature 2-form โ„›a\mathcal{R}_{a} like,

โ„’3gโ€‹rโ€‹aโ€‹v\mathcal{L}_{3}^{grav} == eaโˆงโ„›a+ฮพ3!โ€‹ฮตaโ€‹bโ€‹cโ€‹eaโˆงebโˆงece^{a}\wedge\mathcal{R}_{a}+\frac{\xi}{3!}\varepsilon_{abc}e^{a}\wedge e^{b}\wedge e^{c}
โ„›a\mathcal{R}_{a} == dโ€‹ฯ‰a+12โ€‹ฮตaโ€‹bโ€‹cโ€‹ฯ‰bโˆงฯ‰cd\omega_{a}+\frac{1}{2}\varepsilon_{abc}\omega^{b}\wedge\omega^{c}
(2.2)

where for convenience we have set ฮพ=8โ€‹ฯ€โ€‹GN/lAโ€‹dโ€‹S2\xi=8\pi G_{N}/l_{{\small AdS}}^{2} with lAโ€‹dโ€‹Sl_{{\small AdS}} the AdS3 radius and GNG_{N} the Newton constant in 3D. The field equations of motion following from the above ๐’ฎ3โ€‹Dgโ€‹rโ€‹aโ€‹v\mathcal{S}_{{\small 3D}}^{{\small grav}} are given by

โ„›a\mathcal{R}_{a} == โˆ’ฮพ2โ€‹ฮตaโ€‹bโ€‹cโ€‹ebโˆงec-\frac{\xi}{2}\varepsilon_{abc}e^{b}\wedge e^{c}
dโ€‹eade_{a} == โˆ’12โ€‹ฮตaโ€‹bโ€‹cโ€‹ebโˆงฯ‰c-\frac{1}{2}\varepsilon_{abc}e^{b}\wedge\omega^{c}
(2.3)

and are solved by the AdS3 metric [31]. Notice that the 3D field action ๐’ฎ3โ€‹Dgโ€‹rโ€‹aโ€‹v\mathcal{S}_{{\small 3D}}^{{\small grav}} is sometimes termed as the spin scโ€‹fโ€‹t=2s_{cft}=2 AdS3 gravity; a terminology due to the AdS3/CFT2 correspondence [22, 25, 32]. This duality means that on the boundary of AdS3 lives a scale invariant field theory with quantum states described by conformal symmetry generated by a conformal spin scโ€‹fโ€‹t=2s_{cft}=2 current Tzz satisfying the Virasoro algebra [28].

On the other hand, following [20, 22, 23, 28], the gravity field action ๐’ฎ3โ€‹Dgโ€‹rโ€‹aโ€‹v\mathcal{S}_{{\small 3D}}^{{\small grav}} given by (2.2) can be expressed like the difference of two Chern-Simons field actions as follows

๐’ฎ3โ€‹Dgโ€‹rโ€‹aโ€‹v=๐’ฎ3โ€‹DCโ€‹Sโ€‹[AL]โˆ’๐’ฎ3โ€‹DCโ€‹Sโ€‹[AR]\mathcal{S}_{{\small 3D}}^{{\small grav}}=\mathcal{S}_{{\small 3D}}^{{\small CS}}\left[A_{L}\right]-\mathcal{S}_{{\small 3D}}^{{\small CS}}\left[A_{R}\right] (2.4)

with

๐’ฎ3โ€‹DCโ€‹Sโ€‹[A]=k4โ€‹ฯ€โ€‹โˆซโ„ณ3โ€‹DTโ€‹rโ€‹(Aโ€‹dโ€‹A+23โ€‹A3)\mathcal{S}_{{\small 3D}}^{{\small CS}}\left[A\right]=\frac{k}{4\pi}\mathop{\displaystyle\int}\nolimits_{\mathcal{M}_{3D}}Tr\left(AdA+\frac{2}{3}A^{3}\right) (2.5)

In the eqs(2.5), the Chern-Simons levels kLk_{L} and kRk_{R} are taken equal; and the AL=ALโ€‹(x0,x1,x2)A_{L}=A_{L}(x^{0},x^{1},x^{2}) and AR=ARโ€‹(x0,x1,x2)A_{R}=A_{R}(x^{0},x^{1},x^{2}) are the 3D Chern-Simons gauge potentials. They are valued in the Sโ€‹Oโ€‹(1,2)LSO\left(1,2\right)_{L} and Sโ€‹Oโ€‹(1,2)RSO\left(1,2\right)_{R} gauge symmetries having the homomorphisms

Sโ€‹Oโ€‹(1,2)โ‰ƒSโ€‹Uโ€‹(1,1)โ‰ƒSโ€‹Lโ€‹(2,โ„)SO\left(1,2\right)\simeq SU\left(1,1\right)\simeq SL\left(2,\mathbb{R}\right) (2.6)

These Chern-Simons 1-forms ALA_{L} and ARA_{R} expand in terms of the space-time 1-forms dโ€‹xฮผdx^{\mu} and the three Sโ€‹Uโ€‹(1,1)SU\left(1,1\right) generators JaJ_{a} like

A=Aaโ€‹Ja=dโ€‹xฮผโ€‹Aฮผ=dโ€‹xฮผโ€‹Aฮผaโ€‹JaA=A^{a}J_{a}=dx^{\mu}A_{\mu}=dx^{\mu}A_{\mu}^{a}J_{a} (2.7)

The link between the CS gauge fields AL,A_{L}, ARA_{R} and the gravity fields eฮผa,e_{\mu}^{a}, ฯ‰ฮผa\omega_{\mu}^{a} is given by the Achucarro-Townsend relations [20, 22, 23]

ALaA_{L}^{a} == ฯ‰a+1lAโ€‹dโ€‹Sโ€‹ea\omega^{a}+\frac{1}{l_{{\small AdS}}}e^{a}
ARaA_{R}^{a} == ฯ‰aโˆ’1lAโ€‹dโ€‹Sโ€‹ea\omega^{a}-\frac{1}{l_{{\small AdS}}}e^{a}
(2.8)

In what follows, we set lAโ€‹dโ€‹S=1l_{{\small AdS}}=1 for simplicity; and by using eq(2.7), we then have AL/Ra=ฯ‰aยฑeaA_{L/R}^{a}=\omega^{a}\pm e^{a}. With the relations (2.1-2.2) and (2.4-2.5) as well as (2.8), we have completed the step-1 in the way diagram of Table 1.

3 From 3D Chern-Simons to CWY theory

First, we recall useful aspects of the 3D Chern-Simons theory; then we give the Building ALgorithm (BAL) where we briefly describe the main pillars to extend the 3D Chern-Simons theory to the CWY theory. This investigation constitutes the second step of Table 1 towards the derivation of the novel topological 4D gravity (1.2).

3.1 More on 3D Chern-Simons action

In 3D, the Chern-Simons gauge field action ๐’ฎ3โ€‹DCโ€‹S=โˆซโ„ณ3โ€‹Dโ„’3Cโ€‹S\mathcal{S}_{3D}^{{\small CS}}=\int_{\mathcal{M}_{3D}}\mathcal{L}_{3}^{{\small CS}} with generic gauge symmetry Gย depends on the 1-form gauge potential field dโ€‹xฮผโ€‹Aฮผadx^{\mu}A_{\mu}^{a} as follows [33]

โ„’3Cโ€‹S=Aaโˆงdโ€‹Aa+23โ€‹ฮตaโ€‹bโ€‹cโ€‹AaโˆงAbโˆงAc\mathcal{L}_{3}^{{\small CS}}=A^{a}\wedge dA_{a}+\frac{2}{3}\varepsilon_{abc}A^{a}\wedge A^{b}\wedge A^{c} (3.1)

Here, we will think about G either as Sโ€‹Uโ€‹(2)SU\left(2\right) or like Sโ€‹Uโ€‹(1,1)SU\left(1,1\right) having the homomorphisms (2.6). These two gauge symmetries are the two real forms of the complex Sโ€‹Lโ€‹(2,โ„‚)SL(2,\mathbb{C}) which turns out to play a basic role in our derivation of 4D topological gravity. In passing, note that when considering applications in 3D higher spin theory, the tangent space of the 3D spacetime can be imagined either as the euclidian โ„3\mathbb{R}^{3} with Sโ€‹Oโ€‹(3)โ‰ƒSโ€‹Uโ€‹(2)SO\left(3\right)\simeq SU\left(2\right) isotropy, or like the Lorentzian โ„1,2\mathbb{R}^{1,2} with Sโ€‹Oโ€‹(1,2)โ‰ƒSโ€‹Uโ€‹(1,1)SO\left(1,2\right)\simeq SU\left(1,1\right) symmetry.

The field equation of the three dimensional Sโ€‹Lโ€‹(2,โ„)SL\left(2,\mathbb{R}\right) CS gauge field is given by

Fa=dโ€‹Aa+ฮตaโ€‹bโ€‹cโ€‹AbโˆงAc=0F_{a}=dA_{a}+\varepsilon_{abc}A^{b}\wedge A^{c}=0 (3.2)

By using the expansions Aโ€‹(x)=Aaโ€‹(x)โ€‹JaA\left(x\right)=A^{a}\left(x\right)J_{a}ย and Fโ€‹(x)=Faโ€‹(x)โ€‹JaF\left(x\right)=F^{a}\left(x\right)J_{a} in terms of the generators JaJ_{a} of the Lie algebra of the gauge symmetry, the above field equation reads shortly as follows

F=dโ€‹A+AโˆงA=0F=dA+A\wedge A=0 (3.3)

So, the CS gauge field AA has a flat curvature showing that the 3D Chern-Simons theory has no observable constructed out of the 2-form F.F. However, one can still build gauge invariant observables in this topological 3D gauge theory; they are given by gauge topological line defects such as the Wilson loops ฮณ\mathrm{\gamma} on which propagate quantum states |ฮปโŸฉ\left|\lambda\right\rangle sitting in some representation ๐‘น\boldsymbol{R} of the gauge symmetry G. These observables are built as [1],

W๐‘นโ€‹[ฮณ]=Tโ€‹r๐‘นโ€‹[Pโ€‹expโก(โˆฎฮณA)]W_{\boldsymbol{R}}\left[\mathrm{\gamma}\right]=Tr_{\boldsymbol{R}}\left[P\exp\left(\mathop{\displaystyle\oint}\nolimits_{\mathrm{\gamma}}A\right)\right] (3.4)

where for the case G=Sโ€‹Uโ€‹(2)G=SU\left(2\right), the ๐‘น\boldsymbol{R} representation (labeled as ๐‘นj\boldsymbol{R}_{j}) have spin states |j,mโŸฉ\left|j,m\right\rangle sitting in multiplets ๐”j\mathfrak{M}_{j} with dimension 2โ€‹j+1.2j+1. This construction extends straightforwardly to the classical gauge symmetries in the Cartan classification of Lie algebras; but here below we will focuss on the real forms of Sโ€‹Lโ€‹(2,โ„‚)SL\left(2,\mathbb{C}\right).

3.2 CWY theory: building algorithm

The CWY theory is a 4D topological quantum field theory that can derived from the usual 3D Chern-Simons theory using BAL[1]. This topological QFT4Dย also has a six dimensional origin [34]. From a practical point of view, the CWY construction is a complexified gauge theory living on the 4D space ๐‘ด4=ฮฃ2ร—C\boldsymbol{M}_{4}=\Sigma_{2}\times C with ฮฃ2\Sigma_{2} a real surface thought of here as โ„2\mathbb{R}^{2}; and CC a complex curve which can be either (i)\left(i\right) the complex projective line โ„‚โ€‹โ„™1\mathbb{CP}^{1}, (iโ€‹i)\left(ii\right) the complex line โ„‚ร—\mathbb{C}^{\times} without the origin; or (iโ€‹iโ€‹i)\left(iii\right) an elliptic curve โ„ฐ\mathcal{E}. This theory has been a subject of big interest in the few last years especially when it comes to quantum integrability and brane realisation of integrable systems [17, 18, 19, 35].

Below, we give a rough re-derivation of this theory; starting from eq(3.1) and following [1], one can construct a 4D extension of the usual 3D Chern-Simons gauge theory by performing some surgery on the 3D Chern-Simons theory. The building algorithm of the 4D topological CWY theory from 3D-Chern-Simons may be done into three steps as follows.

(๐Ÿ)\left(\mathbf{1}\right)

the 3D space โ„ณ3โ€‹D\mathcal{M}_{3D} in the CS field action

๐’ฎ3โ€‹DCโ€‹S=โˆซโ„ณ3โ€‹Dโ„’3Cโ€‹S\mathcal{S}_{3D}^{{\small CS}}=\int_{\mathcal{M}_{3D}}\mathcal{L}_{3}^{{\small CS}} (3.5)

is broken to Rtร—ฮฃ2R_{t}\times\Sigma_{2}. The surface ฮฃ2\Sigma_{2} is named the real topological plane where spread the gauge invariant line defects ฮณ\mathrm{\gamma} of the CWY theory. The real line ฮณ\mathrm{\gamma} can be imagined in terms of sites in the integrable quantum spin chain; or as branes intersection line in type II strings and M- theory [17]-[19]. In what follows, this surface ฮฃ2\Sigma_{2} will be taken as โ„2\mathbb{R}^{2}.

(๐Ÿ)\mathbf{(2)}

promote the time axis RtR_{t} to a complex line CC with local coordinate z=x3+iโ€‹tz=x^{3}+it; this is possible by adding a fourth coordinate x3x^{3} to the old three (t,x1,x2t,x^{1},x^{2}); thus leading to (t,x1,x2,x3t,x^{1},x^{2},x^{3}) imagined as (x,y,z,zยฏx,y,z,\bar{z}). Here, we think about this zz as the local coordinate of the projective โ„‚โ€‹โ„™1\mathbb{CP}^{1} which is isomorphic to the real 2-sphere ๐•Š2.\mathbb{S}^{2}. The complex line CC in the CWY theory is sometimes termed as the holomorphic plane. With this surgery, the space โ„ณ3โ€‹D\mathcal{M}_{3D} of the Chern-Simons theory becomes a 4D space ๐‘ด4\boldsymbol{M}_{4} factorised like

๐‘ด4=ฮฃ2ร—โ„‚โ€‹โ„™1=โ„2ร—๐•Š2\boldsymbol{M}_{4}=\Sigma_{2}\times\mathbb{CP}^{1}=\mathbb{R}^{2}\times\mathbb{S}^{2} (3.6)

Regarding the fields and symmetries of the CWY theory, we have the following emerging quantities: (i)\left(i\right) Under surgery, the initial 1-form 3D CS gauge field Aaโ€‹(x,y,t)A^{a}\left(x,y,t\right) with expansion Aa=Axaโ€‹dโ€‹x+Ayaโ€‹dโ€‹y+Ataโ€‹dโ€‹tA^{a}=A_{x}^{a}dx+A_{y}^{a}dy+A_{t}^{a}dt becomes a complex 4D gauge field ๐‘จa=๐‘จaโ€‹(x,y,z,zยฏ)\boldsymbol{A}^{a}=\boldsymbol{A}^{a}\left(x,y,z,\bar{z}\right) with the expansion

dโ€‹zโˆง๐‘จa=dโ€‹zยฏโˆง(๐‘จxaโ€‹dโ€‹x+๐‘จyaโ€‹dโ€‹y+๐‘จzยฏaโ€‹dโ€‹zยฏ)dz\wedge\boldsymbol{A}^{a}=d\bar{z}\wedge\left(\boldsymbol{A}_{x}^{a}dx+\boldsymbol{A}_{y}^{a}dy+\boldsymbol{A}_{\bar{z}}^{a}d\bar{z}\right) (3.7)

that we denote shortly asย dโ€‹zโˆงdโ€‹ฮถaโ€‹Aadz\wedge d\zeta^{\text{{a}}}A_{\text{{a}}} where ฮถa\zeta^{\text{{a}}}ย refers to (x,y,zยฏx,y,\bar{z}). (iโ€‹i)\left(ii\right) the gauge symmetry, which in the 3D Chern-Simons was taken as sโ€‹uโ€‹(2)su\left(2\right) or sโ€‹uโ€‹(1,1)su(1,1), gets replaced by the complexified version namely sโ€‹lโ€‹(2,โ„‚)sl(2,\mathbb{C}).

(๐Ÿ‘)\left(\mathbf{3}\right)

the gauge field action ๐’ฎ4โ€‹DCโ€‹Wโ€‹Y\mathcal{S}_{4D}^{{\small CWY}} resulting from the promotion of the 3D CS theory to ๐‘ด4=โ„2ร—โ„‚โ€‹โ„™1\boldsymbol{M}_{4}=\mathbb{R}^{2}\times\mathbb{CP}^{1} defines the CWY theory. This field action is complex and can be presented as follows

๐’ฎ4โ€‹DCโ€‹Wโ€‹Y=โˆซ๐‘ด4โ„’4Cโ€‹Wโ€‹Y\mathcal{S}_{4D}^{{\small CWY}}=\mathop{\displaystyle\int}\nolimits_{\boldsymbol{M}_{4}}\mathcal{L}_{4}^{{\small CWY}} (3.8)

with Lagrangian 4-form given by the trace

โ„’4Cโ€‹Wโ€‹Y=dโ€‹zโˆงTโ€‹rโ€‹(๐‘จaโˆงdโ€‹๐‘จa+23โ€‹ฮตaโ€‹bโ€‹cโ€‹๐‘จaโˆง๐‘จbโˆง๐‘จc)\mathcal{L}_{4}^{{\small CWY}}=dz\wedge Tr\left(\boldsymbol{A}^{a}\wedge d\boldsymbol{A}_{a}+\frac{2}{3}\varepsilon_{abc}\boldsymbol{A}^{a}\wedge\boldsymbol{A}^{b}\wedge\boldsymbol{A}^{c}\right) (3.9)

Notice that because of the factor dโ€‹zโˆงdz\wedge in the Lagrangian 4-form, the 1-form gauge field ๐‘จaโ€‹(x,y,z,zยฏ)\boldsymbol{A}^{a}\left(x,y,z,\bar{z}\right) living on ๐‘ด4\boldsymbol{M}_{4} contributes only through the partial expansion (3.7) namely ๐‘จxaโ€‹dโ€‹x+๐‘จyaโ€‹dโ€‹y+Azยฏaโ€‹dโ€‹zยฏ\boldsymbol{A}_{x}^{a}dx+\boldsymbol{A}_{y}^{a}dy+A_{\bar{z}}^{a}d\bar{z}. The shift of ๐‘จa\boldsymbol{A}^{a} by the missing term ๐‘จzaโ€‹dโ€‹z\boldsymbol{A}_{z}^{a}dz is a symmetry of โ„’4\mathcal{L}_{4} and so can be dropped out due to the property dโ€‹zโˆงdโ€‹z=0dz\wedge dz=0.

The field equation of motion of the CWY gauge potential (3.7) expressed as ๐‘จ=๐‘จaโ€‹Ja\boldsymbol{A}=\boldsymbol{A}^{a}J_{a} is given by

H3=dโ€‹zโˆง๐‘ญ2=0โ‡’๐‘ญ2=0H_{3}=dz\wedge\boldsymbol{F}_{2}=0\qquad\Rightarrow\qquad\boldsymbol{F}_{2}=0 (3.10)

with ๐‘ญ2=dโ€‹๐‘จ+๐‘จโˆง๐‘จ\boldsymbol{F}_{2}=d\boldsymbol{A}+\boldsymbol{A}\wedge\boldsymbol{A} expanding like dโ€‹ฮถaโˆงdโ€‹ฮถbโ€‹F[ab].d\zeta^{\text{{a}}}\wedge d\zeta^{\text{{b}}}F_{\left[\text{{ab}}\right]}. So, for this 4D Chern-Simons theory there is no observable constructed from the gauge curvature ๐‘ญ2\boldsymbol{F}_{2}. However, we do have topological observables given by surface and line defects [1, 2, 5, 14] as exemplified by the pictures of the Figure 1. For instance, we have the Wilson loop W๐‘นโ€‹[ฮณz]W_{\boldsymbol{R}}\left[\mathrm{\gamma}_{z}\right] defined as

W๐‘นโ€‹[ฮณz]=Pโ€‹expโก(โˆฎฮณ๐‘จ)=Pโ€‹expโก(โˆฎฮณ(๐‘จxโ€‹dโ€‹x+๐‘จyโ€‹dโ€‹y))W_{\boldsymbol{R}}\left[\mathrm{\gamma}_{z}\right]=P\exp\left(\mathop{\displaystyle\oint}\nolimits_{\mathrm{\gamma}}\boldsymbol{A}\right)=P\exp\left(\mathop{\displaystyle\oint}\nolimits_{\mathrm{\gamma}}\left(\boldsymbol{A}_{x}dx+\boldsymbol{A}_{y}dy\right)\right) (3.11)

with loop ฮณz\mathrm{\gamma}_{z} spreading in the topological plane โ„2\mathbb{R}^{2}; but located the point z in โ„‚โ€‹โ„™1\mathbb{CP}^{1}. The prefactor PP refers to path ordering.

Refer to caption
Figure 1: On the left, the Lax operator โ„’โ€‹(z)\mathcal{L}\left(z\right) given by the crossing of a โ€™t Hooft line at z=0 (in red) and a Wilson line at z (in blue) with incoming โŸจi|\left\langle i\right| and out going |jโŸฉ\left|j\right\rangle states. On the right, the RLL relations encoding the commutation relations between two L-operators at z and w.

Notice that in eq(3.11), the usual trace has been dropped out while W๐‘นโ€‹[ฮณz]W_{\boldsymbol{R}}\left[\mathrm{\gamma}_{z}\right] still preserving gauge symmetry; this remarkable feature is due to asymptotic conditions described in [1]. Along with the line defects, one may also have their couplings given by linesโ€™ crossings like those involved in Yang-Baxter equation (YBE). Another special type of lines crossings is given by the so-called Lax operator denoted as ๐‘ณ(ฮผ^)\boldsymbol{L}_{(\mathbf{\hat{\mu})}}; it describes the crossing of Wilson line W๐‘นโ€‹[ฮณz]W_{\boldsymbol{R}}\left[\mathrm{\gamma}_{z}\right] by a โ€™t Hooft line tH[ฮณ0]๐{}_{\boldsymbol{\mu}}\left[\mathrm{\gamma}_{0}\right] characterised by a minuscule coweight ฮผ^.\mathbf{\hat{\mu}}. An interesting realisation of this ๐‘ณ(ฮผ^)\boldsymbol{L}_{(\mathbf{\hat{\mu})}} has been obtained in the CWY theory; it is given by [5],

๐‘ณฮผ=eXโ€‹zฮผ^โ€‹eY\boldsymbol{L}_{\mathbf{\mu}}=e^{X}z^{\mathbf{\hat{\mu}}}e^{Y} (3.12)

where ฮผ^\mathbf{\hat{\mu}} is a minuscule coweight and X and Y are nilpotent operators of the gauge symmetry of the CWY theory. For explicit calculations regarding eq(3.12), see [19]. With this description regarding lines defects and their couplings, we complete the step-2 in the way diagram of Table 1.

4 From AdS3 to topological 4D gravity

In this section, weย carry out the third step in the way diagram of Table 1. First, we derive the field action (1.2) of the topological 4D gravity from the AdS3 theory by implementing the building algorithm used in the derivation of the CWY theory as described above. Then, we construct gravitational line defects of the 4D topological theory and discuss their application in integrable quantum systems.

4.1 Deriving the topological 4D gravity

Following [20, 22], the AdS3 gravity can be formulated as a difference of two Chern-Simons gauge theories. In this tricky formulation briefly revisited in section 2 as shown by eqs(2.4-2.5), the AdS3 gravity action reads in terms ofย the differential- form language as the difference of two 3D CS- field actions as follows

๐’ฎ3โ€‹Dgโ€‹rโ€‹aโ€‹vโ€‹iโ€‹tโ€‹y=โˆซโ„ณ3โ€‹Dโ„’3Cโ€‹SLโˆ’โˆซโ„ณ3โ€‹Dโ„’3Cโ€‹SR\mathcal{S}_{3D}^{gravity}=\mathop{\displaystyle\int}\nolimits_{\mathcal{M}_{3D}}\mathcal{L}_{3}^{{\small CS}_{L}}-\mathop{\displaystyle\int}\nolimits_{\mathcal{M}_{3D}}\mathcal{L}_{3}^{{\small CS}_{R}} (4.1)

where โ„’3Cโ€‹SL\mathcal{L}_{3}^{{\small CS}_{L}} and โ„’3Cโ€‹SR\mathcal{L}_{3}^{{\small CS}_{R}} are Chern-Simons 3-forms with gauge symmetries GL and GR.

4.1.1 Action ๐’ฎ4โ€‹Dgโ€‹rโ€‹aโ€‹vโ€‹iโ€‹tโ€‹y\mathcal{S}_{4D}^{gravity} in terms of CWY fields

Applying the building algorithm, used in the derivation of the CWY theory (3.5-3.10), to the 3D AdS3 gravity action (4.1), we end up with a 4D topological gravity described by

๐’ฎ4โ€‹Dgโ€‹rโ€‹aโ€‹vโ€‹iโ€‹tโ€‹y=โˆซ๐‘ด4โ€‹Dโ„’4gโ€‹rโ€‹aโ€‹vโ€‹iโ€‹tโ€‹y\mathcal{S}_{4D}^{gravity}=\mathop{\displaystyle\int}\nolimits_{\boldsymbol{M}_{4D}}\mathcal{L}_{4}^{gravity} (4.2)

with

โ„’4gโ€‹rโ€‹aโ€‹vโ€‹iโ€‹tโ€‹y=โ„’4Cโ€‹Wโ€‹YLโˆ’โ„’4Cโ€‹Wโ€‹YR\mathcal{L}_{4}^{gravity}=\mathcal{L}_{4}^{{\small CWY}_{L}}-\mathcal{L}_{4}^{{\small CWY}_{R}} (4.3)

In this field action, the 4D space ๐‘ด4โ€‹D\boldsymbol{M}_{4D} is given by the fibration โ„2ร—โ„‚โ€‹โ„™1\mathbb{R}^{2}\times\mathbb{CP}^{1} while the left โ„’4Cโ€‹Wโ€‹YL\mathcal{L}_{4}^{{\small CWY}_{L}} and the right โ„’4Cโ€‹Wโ€‹YR\mathcal{L}_{4}^{{\small CWY}_{R}} Lagrangian 4-forms read as follows

โ„’4Cโ€‹Wโ€‹YL\mathcal{L}_{4}^{{\small CWY}_{L}} == dโ€‹zโˆงtโ€‹rโ€‹โ„’3Cโ€‹Wโ€‹YLdz\wedge tr\mathcal{L}_{3}^{{\small CWY}_{L}}
โ„’4Cโ€‹Wโ€‹YR\mathcal{L}_{4}^{{\small CWY}_{R}} == dโ€‹zโˆงtโ€‹rโ€‹โ„’3Cโ€‹Wโ€‹YRdz\wedge tr\mathcal{L}_{3}^{{\small CWY}_{R}}
(4.4)

with

โ„’3Cโ€‹Wโ€‹YL\displaystyle\mathcal{L}_{3}^{{\small CWY}_{L}} =\displaystyle= ๐‘จLโˆงdโ€‹๐‘จL+23โ€‹๐‘จLโˆง๐‘จLโˆง๐‘จL\displaystyle\boldsymbol{A}_{L}\wedge d\boldsymbol{A}_{L}+\frac{2}{3}\boldsymbol{A}_{L}\wedge\boldsymbol{A}_{L}\wedge\boldsymbol{A}_{L} (4.5)
โ„’3Cโ€‹Wโ€‹YR\displaystyle\mathcal{L}_{3}^{{\small CWY}_{R}} =\displaystyle= ๐‘จRโˆงdโ€‹๐‘จR+23โ€‹๐‘จRโˆง๐‘จRโˆง๐‘จR\displaystyle\boldsymbol{A}_{R}\wedge d\boldsymbol{A}_{R}+\frac{2}{3}\boldsymbol{A}_{R}\wedge\boldsymbol{A}_{R}\wedge\boldsymbol{A}_{R} (4.6)

Notice that the gauge fields ๐‘จL/R=๐‘จL/Rโ€‹(x,y,z,zยฏ)\boldsymbol{A}_{L/R}=\boldsymbol{A}_{L/R}\left(x,y,z,\bar{z}\right) are given by eq(3.7); i.e ๐‘จL/R=dโ€‹ฮถaโ€‹AaL/R\boldsymbol{A}_{L/R}=d\zeta^{\text{{a}}}A_{\text{{a}}}^{L/R}; and the operator dโ€‹zโˆงdz\wedge is as in the CWY topological theory. Here, the ๐‘จL\boldsymbol{A}_{L} is valued into the Lie algebra sโ€‹lโ€‹(2,โ„‚)Lsl(2,\mathbb{C})_{L} generated by JLaJ_{L}^{a}; that is ๐‘จL=JaLโ€‹ALa\boldsymbol{A}_{L}=J_{a}^{L}A_{L}^{a}. Similarly, the ๐‘จR\boldsymbol{A}_{R} is valued into the Lie algebra sโ€‹lโ€‹(2,โ„‚)Rsl(2,\mathbb{C})_{R} generated by JRaJ_{R}^{a} allowing ๐‘จR=JaRโ€‹ARa.\boldsymbol{A}_{R}=J_{a}^{R}A_{R}^{a}. By performing the trace in the above relationships, we obtain

โ„’3Cโ€‹Wโ€‹YL\displaystyle\mathcal{L}_{3}^{{\small CWY}_{L}} =\displaystyle= qaโ€‹bโ€‹๐‘จLaโˆงdโ€‹๐‘จLb+23โ€‹ฮตaโ€‹bโ€‹cโ€‹๐‘จLaโˆง๐‘จLbโˆง๐‘จLc\displaystyle q_{ab}\boldsymbol{A}_{L}^{a}\wedge d\boldsymbol{A}_{L}^{b}+\frac{2}{3}\varepsilon_{abc}\boldsymbol{A}_{L}^{a}\wedge\boldsymbol{A}_{L}^{b}\wedge\boldsymbol{A}_{L}^{c} (4.7)
โ„’3Cโ€‹Wโ€‹YR\displaystyle\mathcal{L}_{3}^{{\small CWY}_{R}} =\displaystyle= qaโ€‹bโ€‹๐‘จRaโˆงdโ€‹๐‘จRb+23โ€‹ฮตaโ€‹bโ€‹cโ€‹๐‘จRaโˆง๐‘จRbโˆง๐‘จRc\displaystyle q_{ab}\boldsymbol{A}_{R}^{a}\wedge d\boldsymbol{A}_{R}^{b}+\frac{2}{3}\varepsilon_{abc}\boldsymbol{A}_{R}^{a}\wedge\boldsymbol{A}_{R}^{b}\wedge\boldsymbol{A}_{R}^{c} (4.8)

with Killing form qaโ€‹b=Tโ€‹rโ€‹(Jaโ€‹Jb)q_{ab}=Tr\left(J_{a}J_{b}\right) for both sโ€‹lโ€‹(2,โ„‚)Lsl(2,\mathbb{C})_{L} and sโ€‹lโ€‹(2,โ„‚)R.sl(2,\mathbb{C})_{R}. The field equation of the CWY gauge potentials 1-forms ๐‘จL\boldsymbol{A}_{L} and ๐‘จR\boldsymbol{A}_{R} are given by

๐‘ฏ3L\displaystyle\boldsymbol{H}_{3}^{L} =\displaystyle= dโ€‹zโˆง๐‘ญ2L=0โ‡’๐‘ญ2L=0\displaystyle dz\wedge\boldsymbol{F}_{2}^{L}=0\,\qquad\Rightarrow\qquad\boldsymbol{F}_{2}^{L}=0 (4.9)
๐‘ฏ3R\displaystyle\boldsymbol{H}_{3}^{R} =\displaystyle= dโ€‹zโˆง๐‘ญ2R=0โ‡’๐‘ญ2R=0\displaystyle dz\wedge\boldsymbol{F}_{2}^{R}=0\,\qquad\Rightarrow\qquad\boldsymbol{F}_{2}^{R}=0 (4.10)

where

๐‘ญ2L\displaystyle\boldsymbol{F}_{2}^{L} =\displaystyle= dโ€‹๐‘จL+๐‘จLโˆง๐‘จL\displaystyle d\boldsymbol{A}_{L}+\boldsymbol{A}_{L}\wedge\boldsymbol{A}_{L} (4.11)
๐‘ญ2R\displaystyle\boldsymbol{F}_{2}^{R} =\displaystyle= dโ€‹๐‘จR+๐‘จRโˆง๐‘จR\displaystyle d\boldsymbol{A}_{R}+\boldsymbol{A}_{R}\wedge\boldsymbol{A}_{R} (4.12)

The topological 4D gravity action (4.2) is one of the main results in this paper. Its explicit expression in termsย of the 4D gravity 1-forms is obtained by substituting into eq(4.2) the AL/RaA_{L/R}^{a} by the following

ALaA_{L}^{a} == ฮฉa+Ea\Omega^{a}+E^{a}
ARaA_{R}^{a} == ฮฉaโˆ’Ea\Omega^{a}-E^{a}
(4.13)

They behave as 3-vectors of the complexified gauge symmetry; that is ALaA_{L}^{a} a complex triplet of Sโ€‹Lโ€‹(2,โ„‚)LSL(2,\mathbb{C})_{L} while ARaA_{R}^{a} a triplet of Sโ€‹Lโ€‹(2,โ„‚)RSL(2,\mathbb{C})_{R}. In this new setting, the complex potential EaE^{a} is the 1-form dreibein expanding as dโ€‹ฮถaโ€‹Eaad\zeta^{\text{{a}}}E_{\text{{a}}}^{a} with sections Eaa=Eaaโ€‹(x,y,z,zยฏ)E_{\text{{a}}}^{a}=E_{\text{{a}}}^{a}\left(x,y,z,\bar{z}\right) living in the 4D space โ„2ร—โ„‚โ€‹โ„™1\mathbb{R}^{2}\times\mathbb{CP}^{1}; and the complex ฮฉa\Omega^{a} is the l-form spin connection dโ€‹ฮถaโ€‹ฮฉaad\zeta^{\text{{a}}}\Omega_{\text{{a}}}^{a} with components ฮฉaa=ฮฉaaโ€‹(x,y,z,zยฏ)\Omega_{\text{{a}}}^{a}=\Omega_{\text{{a}}}^{a}\left(x,y,z,\bar{z}\right). For later use, we denote the two- points Green functions of these gauge fields AL/Raโ€‹(ฮถ)=dโ€‹ฮถaโ€‹Aaโ€‹L/Raโ€‹(ฮถ)A_{L/R}^{a}\left(\zeta\right)=d\zeta^{\text{{a}}}A_{\text{{a}}L/R}^{a}\left(\zeta\right) as follows

โŸจAaโ€‹Laโ€‹(ฮถ1)โ€‹Abโ€‹Lbโ€‹(ฮถ2)โŸฉ\left\langle A_{\text{{a}}L}^{a}\left(\zeta_{1}\right)A_{\text{{b}}L}^{b}\left(\zeta_{2}\right)\right\rangle == ๐’ซabโ€‹Laโ€‹bโ€‹(ฮถ1โˆ’ฮถ2)\mathcal{P}_{\text{{ab}}L}^{ab}\left(\zeta_{1}-\zeta_{2}\right)
โŸจAaโ€‹Laโ€‹(ฮถ1)โ€‹Abโ€‹Rbโ€‹(ฮถ2)โŸฉ\left\langle A_{\text{{a}}L}^{a}\left(\zeta_{1}\right)A_{\text{{b}}R}^{b}\left(\zeta_{2}\right)\right\rangle == 0
โŸจAaโ€‹Raโ€‹(ฮถ1)โ€‹Abโ€‹Rbโ€‹(ฮถ2)โŸฉ\left\langle A_{\text{{a}}R}^{a}\left(\zeta_{1}\right)A_{\text{{b}}R}^{b}\left(\zeta_{2}\right)\right\rangle == ๐’ซabโ€‹Raโ€‹bโ€‹(ฮถ1โˆ’ฮถ2)\mathcal{P}_{\text{{ab}}R}^{ab}\left(\zeta_{1}-\zeta_{2}\right)
(4.14)

where the translation invariant tensor ๐’ซabaโ€‹b\mathcal{P}_{\text{{ab}}}^{ab} can be read from [1, 2]. Because of the minus sign in the โ„’4gโ€‹rโ€‹aโ€‹vโ€‹iโ€‹tโ€‹y\mathcal{L}_{4}^{gravity} gravity Lagrangian given by the difference โ„’4Cโ€‹Wโ€‹YLโˆ’โ„’4Cโ€‹Wโ€‹YR\mathcal{L}_{4}^{{\small CWY}_{L}}-\mathcal{L}_{4}^{{\small CWY}_{R}}, the two-points Green functions in the right sector are related to their homologue in the left sector as

๐’ซabโ€‹Raโ€‹b=โˆ’๐’ซabโ€‹Laโ€‹bโ‰กโˆ’๐’ซabaโ€‹b\mathcal{P}_{\text{{ab}}R}^{ab}=-\mathcal{P}_{\text{{ab}}L}^{ab}\equiv-\mathcal{P}_{\text{{ab}}}^{ab} (4.15)

4.1.2 Action ๐’ฎ4โ€‹Dgโ€‹rโ€‹aโ€‹vโ€‹iโ€‹tโ€‹y\mathcal{S}_{4D}^{gravity} in terms of gravity fields

Here, we study the building of the action ๐’ฎ4โ€‹Dgโ€‹rโ€‹aโ€‹vโ€‹iโ€‹tโ€‹y\mathcal{S}_{4D}^{gravity} in terms of 4D gravity fields EaE^{a} and ฮฉa;\Omega^{a}; it can be obtained by substituting (4.13) into eqs (4.2-4.8). From the relations (4.13), we deduce interesting features; in particular the following two:

(๐Ÿ)\left(\mathbf{1}\right) The complexified 1-form spin connection ฮฉa\Omega^{a} is related to the left and right CWY fields as the mean field of the two gauge potentials namely (ALa+ARa)/2(A_{L}^{a}+A_{R}^{a})/2; while the complexified 1-form vielbein EaE^{a} is given by the reduced field given by (ALaโˆ’ARa)/2(A_{L}^{a}-A_{R}^{a})/2. Notice that by putting ALa=ARa=AaA_{L}^{a}=A_{R}^{a}=A^{a}; then the Ea|ALa=ARa\left.E^{a}\right|_{A_{L}^{a}=A_{R}^{a}} vanishes and the spin connection ฮฉa|ALa=ARa\left.\Omega^{a}\right|_{A_{L}^{a}=A_{R}^{a}} reduces to AaA^{a}; thus leading to

โ„’4Cโ€‹Wโ€‹YL|ALa=ARa=โ„’4Cโ€‹Wโ€‹YR|ALa=ARa\left.\mathcal{L}_{4}^{{\small CWY}_{L}}\right|_{A_{L}^{a}=A_{R}^{a}}=\left.\mathcal{L}_{4}^{{\small CWY}_{R}}\right|_{A_{L}^{a}=A_{R}^{a}} (4.16)

and consequently ๐’ฎ4โ€‹Dgโ€‹rโ€‹aโ€‹vโ€‹iโ€‹tโ€‹y|ALa=ARa\left.\mathcal{S}_{4D}^{gravity}\right|_{A_{L}^{a}=A_{R}^{a}} vanishes. This property indicates that the topological Lagrangian 4-form โ„’4gโ€‹rโ€‹aโ€‹vโ€‹iโ€‹tโ€‹yโ€‹(๐„,๐›€)\mathcal{L}_{4}^{gravity}(\mathbf{E},\mathbf{\Omega}) is factorised like

๐’ฎ4โ€‹Dgโ€‹rโ€‹aโ€‹vโ€‹iโ€‹tโ€‹y=โˆซ๐‘ด4โ€‹Dโ„’4gโ€‹rโ€‹aโ€‹vโ€‹iโ€‹tโ€‹y=โˆซ๐‘ด4โ€‹DEaโˆง๐’ฆ3a\mathcal{S}_{4D}^{gravity}=\mathop{\displaystyle\int}\nolimits_{\boldsymbol{M}_{4D}}\mathcal{L}_{4}^{gravity}=\mathop{\displaystyle\int}\nolimits_{\boldsymbol{M}_{4D}}E_{a}\wedge\mathcal{K}_{3}^{a} (4.17)

with ๐’ฆ3=๐’ฆ3โ€‹(๐„,๐›€)\mathcal{K}_{3}=\mathcal{K}_{3}(\mathbf{E},\mathbf{\Omega}) is a 3-form function of the vielbein ๐„\mathbf{E} and the spin connection ๐›€\mathbf{\Omega} one-forms.

(๐Ÿ)\left(\mathbf{2}\right) Using the operators Ja=(JLa+JRa)/2J^{a}=(J_{L}^{a}+J_{R}^{a})/\sqrt{2} generating the diagonal Lie algebra of the CS gauge symmetry namely

Sโ€‹Lโ€‹(2,โ„‚)+=Sโ€‹Lโ€‹(2,โ„‚)Lร—Sโ€‹Lโ€‹(2,โ„‚)RSโ€‹Lโ€‹(2,โ„‚)โˆ’SL(2,\mathbb{C})_{+}=\frac{SL(2,\mathbb{C})_{L}\times SL(2,\mathbb{C})_{R}}{SL(2,\mathbb{C})_{-}} (4.18)

one can deal with the vielbein ๐„\mathbf{E} and the spin connection ๐›€\mathbf{\Omega} as 1-form matrices valued in sโ€‹lโ€‹(2,โ„‚)+;sl(2,\mathbb{C})_{+}; thus facilitating the explicit calculations. In this formulation, the two 1-forms decompose like ๐›€=ฮฉaโ€‹Ja\mathbf{\Omega}=\Omega^{a}J_{a} and ๐„=Eaโ€‹Ja\mathbf{E}=E^{a}J_{a}; which by using the Killing form qaโ€‹b=tโ€‹rโ€‹(Jaโ€‹Jb)q_{ab}=tr\left(J_{a}J_{b}\right), give tโ€‹rโ€‹(Jaโ€‹๐›€)=qaโ€‹bโ€‹ฮฉbtr\left(J_{a}\mathbf{\Omega}\right)=q_{ab}\Omega^{b} and tโ€‹rโ€‹(Jaโ€‹๐„)=qaโ€‹bโ€‹Eb.tr\left(J_{a}\mathbf{E}\right)=q_{ab}E^{b}. With the help of the inverse matrix qbโ€‹aq^{ba}, we also have

ฮฉa=qaโ€‹btr(Jb๐›€),Ea=qaโ€‹btr(Jb๐„)\Omega^{a}=q^{ab}tr\left(J_{b}\mathbf{\Omega}\right)\qquad,\qquad E^{a}=q^{ab}tr\left(J_{b}\mathbf{E}\right) (4.19)

consequently the eq(4.17) can be rewritten as

๐’ฎ4โ€‹Dgโ€‹rโ€‹aโ€‹vโ€‹iโ€‹tโ€‹y=โˆซ๐‘ด4โ€‹Dtโ€‹rโ€‹(๐„โˆง๐Š3)\mathcal{S}_{4D}^{gravity}=\mathop{\displaystyle\int}\nolimits_{\boldsymbol{M}_{4D}}tr\left(\mathbf{E}\wedge\mathbf{K}_{3}\right) (4.20)

Moreover, because of the building algorithm (3.5-3.10), the gravity 1-forms have partial expansions as follows

Ea\displaystyle E^{a} =\displaystyle= Exaโ€‹dโ€‹x+Eyaโ€‹dโ€‹y+Ezยฏaโ€‹dโ€‹zยฏ\displaystyle E_{x}^{a}dx+E_{y}^{a}dy+E_{\bar{z}}^{a}d\bar{z} (4.21)
ฮฉa\displaystyle\Omega^{a} =\displaystyle= ฮฉxaโ€‹dโ€‹x+ฮฉyaโ€‹dโ€‹y+ฮฉzยฏaโ€‹dโ€‹zยฏ\displaystyle\Omega_{x}^{a}dx+\Omega_{y}^{a}dy+\Omega_{\bar{z}}^{a}d\bar{z} (4.22)

with no component Ezaโ€‹dโ€‹zE_{z}^{a}dz nor ฮฉzaโ€‹dโ€‹z\Omega_{z}^{a}dz. Combining these quantities with eq(2.2), we end up with the expression of the topological 4D gravity in terms of the complexified vielbein and the spin connection namely

โ„’4gโ€‹rโ€‹aโ€‹vโ€‹iโ€‹tโ€‹y\mathcal{L}_{4}^{gravity} == dโ€‹zโˆง(Eaโˆง๐‘นa+ฮพโ€‹ฮตaโ€‹bโ€‹cโ€‹EaโˆงEbโˆงEc)dz\wedge\left(E^{a}\wedge\boldsymbol{R}_{a}+\xi\varepsilon_{abc}E^{a}\wedge E^{b}\wedge E^{c}\right)
๐‘นa\boldsymbol{R}_{a} == dโ€‹ฮฉa+12โ€‹ฮตaโ€‹bโ€‹cโ€‹ฮฉbโˆงฮฉcd\Omega_{a}+\frac{1}{2}\varepsilon_{abc}\Omega^{b}\wedge\Omega^{c}
(4.23)

In comparison with (4.17,4.20), the 3-form ๐Š3\mathbf{K}_{3} is given by

๐Š3=dโ€‹zโˆง(๐‘น+ฮพโ€‹๐„โˆง๐„)\mathbf{K}_{3}=dz\wedge\left(\boldsymbol{R}+\xi\mathbf{E}\wedge\mathbf{E}\right) (4.24)

Furthermore, using the formulation (4.2) of the obtained 4D topological gravity, one can compute interesting quantities characterising the ๐’ฎ4โ€‹Dgโ€‹rโ€‹aโ€‹v;\mathcal{S}_{4D}^{grav}; for instance, we can construct observables using the gauge ๐€L\mathbf{A}_{L} and ๐€R\mathbf{A}_{R} (or equivalently the gravitational ๐›€\mathbf{\Omega} and ๐„\mathbf{E}) through their gauge invariant holonomies as shown in next subsection. In due time, notice thatย by using the short notation A=dโ€‹ฮถaโ€‹AaA=d\zeta^{\text{{a}}}A_{\text{{a}}}ย introduced in eq(3.7) while setting U=dโ€‹ฮถaโ€‹UaU=d\zeta^{\text{{a}}}U_{\text{{a}}}ย andย ๐‘ฝ=dโ€‹ฮถaโ€‹Va\boldsymbol{V}=d\zeta^{\text{{a}}}V_{\text{{a}}} with ๐‘ผ\boldsymbol{U} and ๐‘ฝ\boldsymbol{V} referring to ๐›€\boldsymbol{\Omega} and ๐‘ฌ\boldsymbol{E}; then calculating their product, we obtain

๐‘ผ๐‘ฝ=12dฮถbโˆงdฮถcZbc,Zbc=[Ub,Vc]\boldsymbol{UV}=\frac{1}{2}d\zeta^{\text{{b}}}\wedge d\zeta^{\text{{c}}}Z_{\text{{bc}}}\qquad,\qquad Z_{\text{{bc}}}=\left[U_{\text{{b}}},V_{\text{{c}}}\right] (4.25)

For the case where both ๐‘ผ\boldsymbol{U} and ๐‘ฝ\boldsymbol{V} are equal to ๐€L\mathbf{A}_{L} or to ๐€R\mathbf{A}_{R}, the commutators [ALโ€‹b,ALโ€‹c]\left[A_{L\text{{b}}},A_{L\text{{c}}}\right] and [ARโ€‹b,ARโ€‹c]\left[A_{R\text{{b}}},A_{R\text{{c}}}\right] are respectively given by ALbโ€‹fbโ€‹caโ€‹ALโ€‹ccA_{L}^{b}\mathrm{f}_{bc}^{a}A_{L\text{{c}}}^{c} and ARbโ€‹fยฏbโ€‹caโ€‹ARโ€‹ccA_{R}^{b}\mathrm{\bar{f}}_{bc}^{a}A_{R\text{{c}}}^{c}ย with fbโ€‹ca\mathrm{f}_{bc}^{a} and fยฏbโ€‹ca\mathrm{\bar{f}}_{bc}^{a} the complex structures of sโ€‹lโ€‹(2,โ„‚)Lsl(2,\mathbb{C})_{L} and sโ€‹lโ€‹(2,โ„‚)R.sl(2,\mathbb{C})_{R}. The commutators [ALโ€‹b,ALโ€‹c]\left[A_{L\text{{b}}},A_{L\text{{c}}}\right] and [ARโ€‹b,ARโ€‹c]\left[A_{R\text{{b}}},A_{R\text{{c}}}\right] show that traces tโ€‹rโ€‹(๐€Lโ€‹๐€L)tr(\mathbf{A}_{L}\mathbf{A}_{L}) and tโ€‹rโ€‹(๐€Rโ€‹๐€R)tr(\mathbf{A}_{R}\mathbf{A}_{R}) vanish identically because tโ€‹rโ€‹JaL=tโ€‹rโ€‹JaR=0trJ_{a}^{L}=trJ_{a}^{R}=0. For the case where ๐‘ผ=๐€L\boldsymbol{U}=\mathbf{A}_{L} and ๐‘ฝ=๐€R\boldsymbol{V}=\mathbf{A}_{R}, the commutator [ALโ€‹b,ARโ€‹c]\left[A_{L\text{{b}}},A_{R\text{{c}}}\right] and tโ€‹rโ€‹(๐€Lโ€‹๐€R)tr(\mathbf{A}_{L}\mathbf{A}_{R}) vanish due to the vanishing of [JLโ€‹a,JRโ€‹b].[J_{La},J_{Rb}].

Notice also that by using eq(4.13) and the property

๐’ซabโ€‹Laโ€‹b=+๐’ซabaโ€‹b,๐’ซabโ€‹Raโ€‹b=โˆ’๐’ซabaโ€‹b\mathcal{P}_{\text{{ab}}L}^{ab}=+\mathcal{P}_{\text{{ab}}}^{ab}\qquad,\qquad\mathcal{P}_{\text{{ab}}R}^{ab}=-\mathcal{P}_{\text{{ab}}}^{ab} (4.26)

we can express the Chern-Simons two-points Green functions (4.14) in terms of the two-points of the gravity fields. Straightforward calculations lead, amongst others, to the following interesting constraint relations

โŸจEaaโ€‹(ฮถ1)โ€‹ฮฉbbโ€‹(ฮถ2)โŸฉ+โŸจฮฉaaโ€‹(ฮถ1)โ€‹Ebbโ€‹(ฮถ2)โŸฉ\displaystyle\left\langle E_{\text{{a}}}^{a}\left(\zeta_{1}\right)\Omega_{\text{{b}}}^{b}\left(\zeta_{2}\right)\right\rangle+\left\langle\Omega_{\text{{a}}}^{a}\left(\zeta_{1}\right)E_{\text{{b}}}^{b}\left(\zeta_{2}\right)\right\rangle =\displaystyle= ๐’ซabaโ€‹bโ€‹(ฮถ1โˆ’ฮถ2)\displaystyle\mathcal{P}_{\text{{ab}}}^{ab}\left(\zeta_{1}-\zeta_{2}\right) (4.27)
โŸจEaaโ€‹(ฮถ1)โ€‹ฮฉbbโ€‹(ฮถ2)โŸฉโˆ’โŸจฮฉaaโ€‹(ฮถ1)โ€‹Ebbโ€‹(ฮถ2)โŸฉ\displaystyle\left\langle E_{\text{{a}}}^{a}\left(\zeta_{1}\right)\Omega_{\text{{b}}}^{b}\left(\zeta_{2}\right)\right\rangle-\left\langle\Omega_{\text{{a}}}^{a}\left(\zeta_{1}\right)E_{\text{{b}}}^{b}\left(\zeta_{2}\right)\right\rangle =\displaystyle= 0\displaystyle 0 (4.28)

As a result, the non trivial two-point Green functions of the gravity fields Eaaโ€‹(ฮถ)E_{\text{{a}}}^{a}\left(\zeta\right) and ฮฉbbโ€‹(ฮถ)\Omega_{\text{{b}}}^{b}\left(\zeta\right) are given by,

โŸจEaaโ€‹(ฮถ1)โ€‹ฮฉbbโ€‹(ฮถ2)โŸฉ\displaystyle\left\langle E_{\text{{a}}}^{a}\left(\zeta_{1}\right)\Omega_{\text{{b}}}^{b}\left(\zeta_{2}\right)\right\rangle =\displaystyle= 12โ€‹๐’ซabaโ€‹bโ€‹(ฮถ1โˆ’ฮถ2)\displaystyle\frac{1}{2}\mathcal{P}_{\text{{ab}}}^{ab}\left(\zeta_{1}-\zeta_{2}\right) (4.29)
โŸจฮฉaaโ€‹(ฮถ1)โ€‹ฮฉbbโ€‹(ฮถ2)โŸฉ\displaystyle\left\langle\Omega_{\text{{a}}}^{a}\left(\zeta_{1}\right)\Omega_{\text{{b}}}^{b}\left(\zeta_{2}\right)\right\rangle =\displaystyle= 0\displaystyle 0 (4.30)
โŸจEaaโ€‹(ฮถ1)โ€‹Ebbโ€‹(ฮถ2)โŸฉ\displaystyle\left\langle E_{\text{{a}}}^{a}\left(\zeta_{1}\right)E_{\text{{b}}}^{b}\left(\zeta_{2}\right)\right\rangle =\displaystyle= 0\displaystyle 0 (4.31)

Aย graphical description of the above propagator is illustrated in the Figure 2 where a vielbein line defect ๐‘ฌa\boldsymbol{E}^{a} at ฮถ1\zeta_{1} exchanges a topological graviton with a spin connection line defect ๐›€a\boldsymbol{\Omega}^{a} at ฮถ2\zeta_{2}.

Refer to caption
Figure 2: Propagator โŸจEaโ€‹(ฮถ1)โ€‹ฮฉbโ€‹(ฮถ2)โŸฉ\left\langle E^{a}\left(\zeta_{1}\right)\Omega^{b}\left(\zeta_{2}\right)\right\rangle between a vielbein line defects: ๐„a\mathbf{E}^{a} located at ฮถ1\zeta_{1} in โ„‚โ€‹โ„™1\mathbb{CP}^{1}; and a spin connection line defect ๐›€b\mathbf{\Omega}^{b} located at ฮถ2.\zeta_{2}. The wavy line in red represents the exchanged graviton state.

Using the 1-forms ๐‘ฌa=dโ€‹ฮถaโ€‹Eaa\boldsymbol{E}^{a}=d\zeta^{\text{{a}}}E_{\text{{a}}}^{a}ย andย ๐›€a=dโ€‹ฮถaโ€‹ฮฉaa\boldsymbol{\Omega}^{a}=d\zeta^{\text{{a}}}\Omega_{\text{{a}}}^{a} as well as the 2-form,

๐’ซaโ€‹bโ€‹(ฮถ)=12โ€‹dโ€‹ฮถaโˆงdโ€‹ฮถbโ€‹๐’ซabaโ€‹bโ€‹(ฮถ)\mathcal{P}^{ab}\left(\zeta\right)=\frac{1}{2}d\zeta^{\text{{a}}}\wedge d\zeta^{\text{{b}}}\mathcal{P}_{\text{{ab}}}^{ab}\left(\zeta\right) (4.32)

we can present the gravitational two-points Green functions (4.29-4.31) in a shortened form as follows

โŸจ๐‘ฌaโ€‹(ฮถ1)โ€‹๐›€bโ€‹(ฮถ2)โŸฉ=๐’ซaโ€‹bโ€‹(ฮถ1โˆ’ฮถ2)\left\langle\boldsymbol{E}^{a}\left(\zeta_{1}\right)\boldsymbol{\Omega}^{b}\left(\zeta_{2}\right)\right\rangle=\mathcal{P}^{ab}\left(\zeta_{1}-\zeta_{2}\right) (4.33)

and

โŸจ๐‘ฌaโ€‹(ฮถ1)โ€‹๐‘ฌbโ€‹(ฮถ2)โŸฉ=โŸจ๐›€aโ€‹(ฮถ1)โ€‹๐›€bโ€‹(ฮถ2)โŸฉ=0\left\langle\boldsymbol{E}^{a}\left(\zeta_{1}\right)\boldsymbol{E}^{b}\left(\zeta_{2}\right)\right\rangle=\left\langle\boldsymbol{\Omega}^{a}\left(\zeta_{1}\right)\boldsymbol{\Omega}^{b}\left(\zeta_{2}\right)\right\rangle=0 (4.34)

where ๐’ซaโ€‹bโ€‹(ฮถ)=ฮดaโ€‹bโ€‹๐’ซโ€‹(ฮถ)\mathcal{P}^{ab}\left(\zeta\right)=\delta^{ab}\mathcal{P}\left(\zeta\right) with scalar 2-form,

๐’ซโ€‹(ฮถ)=12โ€‹ฯ€โ€‹(x2+y2+ฮถโ€‹ฮถยฏ)2โ€‹(xโ€‹dโ€‹yโˆงdโ€‹ฮถ+yโ€‹dโ€‹ฮถยฏโˆงdโ€‹x+2โ€‹ฮถโ€‹dโ€‹xโˆงdโ€‹y)\mathcal{P}\left(\zeta\right)=\frac{1}{2\pi\left(x^{2}+y^{2}+\zeta\bar{\zeta}\right)^{2}}\left(xdy\wedge d\zeta+yd\bar{\zeta}\wedge dx+2\zeta dx\wedge dy\right) (4.35)

The vanishing propagators โŸจ๐‘ฌโ€‹(ฮถ1)โ€‹๐‘ฌโ€‹(ฮถ2)โŸฉ\left\langle\boldsymbol{E}\left(\zeta_{1}\right)\boldsymbol{E}\left(\zeta_{2}\right)\right\rangle and โŸจ๐›€โ€‹(ฮถ1)โ€‹๐›€โ€‹(ฮถ2)โŸฉ\left\langle\boldsymbol{\Omega}\left(\zeta_{1}\right)\boldsymbol{\Omega}\left(\zeta_{2}\right)\right\rangle given by (4.30-4.31) show that identical topological gravitational line defects cannot interact directly; they must couple either indirectly via a different topological defect as exhibited by the Figure 3,

Refer to caption
Figure 3: Interaction between gravitational line defects. Two blue line defects E interact through a green line defect ฮฉ.\Omega. Similarly, two green line defects ฮฉ\Omega couple through a blue line defect E.

or via quantum corrections.

4.2 Line defects in 4D topological gravity

Because of the flatness of the gauge curvatures (4.9-4.10), no gauge invariant observable can be built out of the gauge 2-forms ๐‘ญ2L\boldsymbol{F}_{2}^{L} and ๐‘ญ2R\boldsymbol{F}_{2}^{R}ย as they vanish on shell. Observables in this 4D topological gravity are given by surface and line defects [14, 15] sitting in โ„2ร—โ„‚โ€‹โ„™1\mathbb{R}^{2}\times\mathbb{CP}^{1}; they are obtained by extending results from the CWY theory while using the loop matrices

ฮฆ๐‘จL[ฮณz]=โˆฎฮณz๐‘จL,ฮฆ๐‘จR[ฮณz]=โˆฎฮณz๐‘จR\Phi_{\boldsymbol{A}_{L}}\left[\mathrm{\gamma}_{z}\right]=\mathop{\displaystyle\oint}\nolimits_{\mathrm{\gamma}_{z}}\boldsymbol{A}_{L}\qquad,\qquad\Phi_{\boldsymbol{A}_{R}}\left[\mathrm{\gamma}_{z}\right]=\mathop{\displaystyle\oint}\nolimits_{\mathrm{\gamma}_{z}}\boldsymbol{A}_{R} (4.36)

with ฮฆ๐‘จL/๐‘จR\Phi_{\boldsymbol{A}_{L}/\boldsymbol{A}_{R}} valued in sโ€‹lโ€‹(2,โ„‚)L/R.sl(2,\mathbb{C})_{L/R}.

4.2.1 Gravitational holonomies

The above loop matrices are gauge holonomies of the topological CS fields ๐‘จL\boldsymbol{A}_{L} and ๐‘จR.\boldsymbol{A}_{R}.With the help of the change (4.13), we can also express these gravitational holonomies of 4D gravity in terms of the gravitational 1-form potentials as follows

ฮฆฮฉ[ฮณz]=โˆฎฮณz๐›€,ฮฆE[ฮณw]=โˆฎฮณw๐‘ฌ\Phi_{\Omega}\left[\mathrm{\gamma}_{z}\right]=\mathop{\displaystyle\oint}\nolimits_{\mathrm{\gamma}_{z}}\boldsymbol{\Omega}\qquad,\qquad\Phi_{E}\left[\mathrm{\gamma}_{w}\right]=\mathop{\displaystyle\oint}\nolimits_{\mathrm{\gamma}_{w}}\boldsymbol{E} (4.37)

These novel loop matrices are valued in sโ€‹lโ€‹(2,โ„‚)sl(2,\mathbb{C}) given by eq(4.18) and generated by the diagonal JaJ_{a}s; they define the gravitational holonomies in opposition to the gauge holonomies (4.36). Notice that as in eq(4.36), the real lines ฮณz\mathrm{\gamma}_{z} and ฮณw\mathrm{\gamma}_{w} appearing (4.37) are loops spreading in โ„2\mathbb{R}^{2}; but sitting at the point z and w in the complex projective line โ„‚โ€‹โ„™1\mathbb{CP}^{1}. These loop matricesโ€‰are given by eq(1.3); because ฮณz\mathrm{\gamma}_{z} and ฮณw\mathrm{\gamma}_{w} spread in the topological plane โ„2\mathbb{R}^{2}, they read explicitly as follows

ฮฆEโ€‹[ฮณz]\displaystyle\Phi_{E}{\small[}\mathrm{\gamma}_{z}{\small]} =\displaystyle= โˆฎฮณz(๐„xโ€‹dโ€‹x+๐„yโ€‹dโ€‹y)\displaystyle\mathop{\displaystyle\oint}\nolimits_{\mathrm{\gamma}_{z}}\left(\mathbf{E}_{x}dx+\mathbf{E}_{y}dy\right) (4.38)
ฮฆฮฉโ€‹[ฮณw]\displaystyle\Phi_{\Omega}{\small[}\mathrm{\gamma}_{w}{\small]} =\displaystyle= โˆฎฮณw(๐›€xโ€‹dโ€‹x+๐›€yโ€‹dโ€‹y)\displaystyle\mathop{\displaystyle\oint}\nolimits_{\mathrm{\gamma}_{w}}\left(\mathbf{\Omega}_{x}dx+\mathbf{\Omega}_{y}dy\right) (4.39)

Using ๐‘จL=JaLโ€‹ALa\boldsymbol{A}_{L}=J_{a}^{L}A_{L}^{a} and ๐‘จR=JaRโ€‹ARa\boldsymbol{A}_{R}=J_{a}^{R}A_{R}^{a} as well as ๐„=Jaโ€‹Ea\mathbf{E}=J_{a}E^{a} and ๐›€=Jaโ€‹ฮฉa,\mathbf{\Omega}=J_{a}\Omega^{a}, the gauge and gravity loop matrices expand like

ฮฆ๐‘จLโ€‹[ฮณz]\Phi_{\boldsymbol{A}_{L}}\left[\mathrm{\gamma}_{z}\right] == JaLโ€‹ฮฆ๐‘จLaโ€‹[ฮณz]J_{a}^{L}\Phi_{\boldsymbol{A}_{L}}^{a}{\small[}\mathrm{\gamma}_{z}{\small]}
ฮฆ๐‘จRโ€‹[ฮณz]\Phi_{\boldsymbol{A}_{R}}\left[\mathrm{\gamma}_{z}\right] == JaRโ€‹ฮฆ๐‘จRaโ€‹[ฮณz]J_{a}^{R}\Phi_{\boldsymbol{A}_{R}}^{a}{\small[}\mathrm{\gamma}_{z}{\small]}
ฮฆEโ€‹[ฮณz]\Phi_{E}{\small[}\mathrm{\gamma}_{z}{\small]} == Jaโ€‹ฮฆEaโ€‹[ฮณz]J_{a}\Phi_{E}^{a}{\small[}\mathrm{\gamma}_{z}{\small]}
ฮฆฮฉโ€‹[ฮณz]\Phi_{\Omega}{\small[}\mathrm{\gamma}_{z}{\small]} == Jaโ€‹ฮฆฮฉaโ€‹[ฮณz]J_{a}\Phi_{\Omega}^{a}{\small[}\mathrm{\gamma}_{z}{\small]}
(4.40)

with components as

ฮฆ๐‘จLaโ€‹[ฮณz]\Phi_{\boldsymbol{A}_{L}}^{a}\left[\mathrm{\gamma}_{z}\right] == โˆฎฮณz๐‘จLa\mathop{\displaystyle\oint}\nolimits_{\mathrm{\gamma}_{z}}\boldsymbol{A}_{L}^{a}
ฮฆ๐‘จRaโ€‹[ฮณz]\Phi_{\boldsymbol{A}_{R}}^{a}\left[\mathrm{\gamma}_{z}\right] == โˆฎฮณz๐‘จRa\mathop{\displaystyle\oint}\nolimits_{\mathrm{\gamma}_{z}}\boldsymbol{A}_{R}^{a}
ฮฆฮฉaโ€‹[ฮณz]\Phi_{\Omega}^{a}\left[\mathrm{\gamma}_{z}\right] == โˆฎฮณz๐›€a\mathop{\displaystyle\oint}\nolimits_{\mathrm{\gamma}_{z}}\boldsymbol{\Omega}^{a}
ฮฆEaโ€‹[ฮณz]\Phi_{E}^{a}\left[\mathrm{\gamma}_{z}\right] == โˆฎฮณz๐‘ฌa\mathop{\displaystyle\oint}\nolimits_{\mathrm{\gamma}_{z}}\boldsymbol{E}^{a}
(4.41)

These holonomy components follow from the projections

ฮฆ๐‘จL/Ra\Phi_{\boldsymbol{A}_{L/R}}^{a} == qL/Raโ€‹bโ€‹tโ€‹rโ€‹(JbL/Rโ€‹ฮฆ๐‘จL/R)q_{L/R}^{ab}tr(J_{b}^{L/R}\Phi_{\boldsymbol{A}_{L/R}})
ฮฆ๐›€a\Phi_{\boldsymbol{\Omega}}^{a} == qaโ€‹bโ€‹tโ€‹rโ€‹(Jbโ€‹ฮฆ๐›€)q^{ab}tr(J_{b}\Phi_{\boldsymbol{\Omega}})
ฮฆ๐‘ฌa\Phi_{\boldsymbol{E}}^{a} == qaโ€‹bโ€‹tโ€‹rโ€‹(Jbโ€‹ฮฆ๐‘ฌ)q^{ab}tr(J_{b}\Phi_{\boldsymbol{E}})
(4.42)

with qaโ€‹bL/R=tโ€‹rโ€‹(JaL/Rโ€‹JbL/R)q_{ab}^{L/R}=tr(J_{a}^{L/R}J_{b}^{L/R}) and qL/Raโ€‹bq_{L/R}^{ab} its inverse qL/Rbโ€‹aq_{L/R}^{ba}. The gravitational loop matrices (4.40) satisfy the commutation property

ฮฆ๐‘จLโ€‹[ฮณz]โˆ™ฮฆ๐‘จRโ€‹[ฮณz]=ฮฆ๐‘จRโ€‹[ฮณz]โˆ™ฮฆ๐‘จLโ€‹[ฮณz]\Phi_{\boldsymbol{A}_{L}}{\small[}\mathrm{\gamma}_{z}{\small]}\bullet\Phi_{\boldsymbol{A}_{R}}{\small[}\mathrm{\gamma}_{z}{\small]}=\Phi_{\boldsymbol{A}_{R}}{\small[}\mathrm{\gamma}_{z}{\small]}\bullet\Phi_{\boldsymbol{A}_{L}}{\small[}\mathrm{\gamma}_{z}{\small]} (4.43)

as well as the non commutation relations

ฮฆฮฉโ€‹[ฮณz]โˆ™ฮฆEโ€‹[ฮณz]โˆ’ฮฆEโ€‹[ฮณz]โˆ™ฮฆฮฉโ€‹[ฮณz]=ฮจฮฉโ€‹Eโ€‹[ฮณz]\Phi_{\Omega}{\small[}\mathrm{\gamma}_{z}{\small]}\bullet\Phi_{E}{\small[}\mathrm{\gamma}_{z}{\small]}-\Phi_{E}{\small[}\mathrm{\gamma}_{z}{\small]}\bullet\Phi_{\Omega}{\small[}\mathrm{\gamma}_{z}{\small]}=\Psi_{\Omega E}{\small[}\mathrm{\gamma}_{z}{\small]} (4.44)

with

ฮจฮฉโ€‹Eโ€‹[ฮณz]=Jaโ€‹ฮจฮฉโ€‹Eaโ€‹[ฮณz]\Psi_{\Omega E}{\small[}\mathrm{\gamma}_{z}{\small]}=J_{a}\Psi_{\Omega E}^{a}{\small[}\mathrm{\gamma}_{z}{\small]} (4.45)

and

(ฮจฮฉโ€‹Eโ€‹[ฮณz])a=ฮตaโ€‹bโ€‹cโ€‹ฮฆฮฉbโ€‹[ฮณz]โ€‹ฮฆEcโ€‹[ฮณz](\Psi_{\Omega E}{\small[}\mathrm{\gamma}_{z}{\small])}_{a}=\varepsilon_{abc}\Phi_{\Omega}^{b}{\small[}\mathrm{\gamma}_{z}{\small]}\Phi_{E}^{c}{\small[}\mathrm{\gamma}_{z}{\small]} (4.46)

By using eq(4.13), we have the relationships

ฮฆ๐‘จLaโ€‹[ฮณz]\Phi_{\boldsymbol{A}_{L}}^{a}\left[\mathrm{\gamma}_{z}\right] == ฮฆฮฉaโ€‹[ฮณz]+ฮฆ๐‘ฌaโ€‹[ฮณz]\Phi_{\Omega}^{a}\left[\mathrm{\gamma}_{z}\right]+\Phi_{\boldsymbol{E}}^{a}\left[\mathrm{\gamma}_{z}\right]
ฮฆ๐‘จRaโ€‹[ฮณz]\Phi_{\boldsymbol{A}_{R}}^{a}\left[\mathrm{\gamma}_{z}\right] == ฮฆฮฉaโ€‹[ฮณz]โˆ’ฮฆ๐‘ฌaโ€‹[ฮณz]\Phi_{\Omega}^{a}\left[\mathrm{\gamma}_{z}\right]-\Phi_{\boldsymbol{E}}^{a}\left[\mathrm{\gamma}_{z}\right]
ฮฆฮฉaโ€‹[ฮณz]\Phi_{\Omega}^{a}\left[\mathrm{\gamma}_{z}\right] == 12โ€‹(ฮฆ๐‘จLaโ€‹[ฮณz]+ฮฆ๐‘จRaโ€‹[ฮณz])\frac{1}{2}\left(\Phi_{\boldsymbol{A}_{L}}^{a}\left[\mathrm{\gamma}_{z}\right]+\Phi_{\boldsymbol{A}_{R}}^{a}\left[\mathrm{\gamma}_{z}\right]\right)
ฮฆ๐‘ฌaโ€‹[ฮณz]\Phi_{\boldsymbol{E}}^{a}\left[\mathrm{\gamma}_{z}\right] == 12โ€‹(ฮฆ๐‘จLaโ€‹[ฮณz]โˆ’ฮฆ๐‘จRaโ€‹[ฮณz])\frac{1}{2}\left(\Phi_{\boldsymbol{A}_{L}}^{a}\left[\mathrm{\gamma}_{z}\right]-\Phi_{\boldsymbol{A}_{R}}^{a}\left[\mathrm{\gamma}_{z}\right]\right)
(4.47)

leading to

ฮฆฮฉaโ€‹[ฮณz]\displaystyle\Phi_{\Omega}^{a}\left[\mathrm{\gamma}_{z}\right] =\displaystyle= qaโ€‹b2โ€‹[tโ€‹rโ€‹(JbLโ€‹ฮฆ๐‘จLโ€‹[ฮณz])+tโ€‹rโ€‹(JbRโ€‹ฮฆ๐‘จRโ€‹[ฮณz])]\displaystyle\frac{q^{ab}}{2}\left[tr(J_{b}^{L}\Phi_{\boldsymbol{A}_{L}}\left[\mathrm{\gamma}_{z}\right])+tr(J_{b}^{R}\Phi_{\boldsymbol{A}_{R}}\left[\mathrm{\gamma}_{z}\right])\right] (4.48)
ฮฆEaโ€‹[ฮณz]\displaystyle\Phi_{E}^{a}\left[\mathrm{\gamma}_{z}\right] =\displaystyle= qaโ€‹b2โ€‹[tโ€‹rโ€‹(JbLโ€‹ฮฆ๐‘จLโ€‹[ฮณz])โˆ’tโ€‹rโ€‹(JbRโ€‹ฮฆ๐‘จRโ€‹[ฮณz])]\displaystyle\frac{q^{ab}}{2}\left[tr(J_{b}^{L}\Phi_{\boldsymbol{A}_{L}}\left[\mathrm{\gamma}_{z}\right])-tr(J_{b}^{R}\Phi_{\boldsymbol{A}_{R}}\left[\mathrm{\gamma}_{z}\right])\right] (4.49)

where we have used qLaโ€‹b=qRaโ€‹b=qaโ€‹bq_{L}^{ab}=q_{R}^{ab}=q^{ab}. By setting

tr(JaJbL)=ฯ‡aโ€‹bL,tr(JaJbR)=ฯ‡aโ€‹bRtr(J_{a}J_{b}^{L})=\chi_{ab}^{L}\qquad,\qquad tr(J_{a}J_{b}^{R})=\chi_{ab}^{R} (4.50)

they read as follows

ฮฆฮฉaโ€‹[ฮณz]\displaystyle\Phi_{\Omega}^{a}\left[\mathrm{\gamma}_{z}\right] =\displaystyle= qaโ€‹b2โ€‹(ฯ‡bโ€‹cLโ€‹ฮฆ๐‘จLcโ€‹[ฮณz]+ฯ‡bโ€‹cRโ€‹ฮฆ๐‘จRcโ€‹[ฮณz])\displaystyle\frac{q^{ab}}{2}\left(\chi_{bc}^{L}\Phi_{\boldsymbol{A}_{L}}^{c}\left[\mathrm{\gamma}_{z}\right]+\chi_{bc}^{R}\Phi_{\boldsymbol{A}_{R}}^{c}\left[\mathrm{\gamma}_{z}\right]\right) (4.51)
ฮฆEaโ€‹[ฮณz]\displaystyle\Phi_{E}^{a}\left[\mathrm{\gamma}_{z}\right] =\displaystyle= qaโ€‹b2โ€‹(ฯ‡bโ€‹cLโ€‹ฮฆ๐‘จLcโ€‹[ฮณz]โˆ’ฯ‡bโ€‹cRโ€‹ฮฆ๐‘จRcโ€‹[ฮณz])\displaystyle\frac{q^{ab}}{2}\left(\chi_{bc}^{L}\Phi_{\boldsymbol{A}_{L}}^{c}\left[\mathrm{\gamma}_{z}\right]-\chi_{bc}^{R}\Phi_{\boldsymbol{A}_{R}}^{c}\left[\mathrm{\gamma}_{z}\right]\right) (4.52)

By using ฯ‡bโ€‹cL=ฯ‡bโ€‹cR=qbโ€‹c\chi_{bc}^{L}=\chi_{bc}^{R}=q_{bc}, we bring the above relations to a simpler form

ฮฆฮฉaโ€‹[ฮณz]\displaystyle\Phi_{\Omega}^{a}\left[\mathrm{\gamma}_{z}\right] =\displaystyle= 12โ€‹(ฮฆ๐‘จLaโ€‹[ฮณz]+ฮฆ๐‘จRaโ€‹[ฮณz])\displaystyle\frac{1}{2}\left(\Phi_{\boldsymbol{A}_{L}}^{a}\left[\mathrm{\gamma}_{z}\right]+\Phi_{\boldsymbol{A}_{R}}^{a}\left[\mathrm{\gamma}_{z}\right]\right) (4.53)
ฮฆEaโ€‹[ฮณz]\displaystyle\Phi_{E}^{a}\left[\mathrm{\gamma}_{z}\right] =\displaystyle= 12โ€‹(ฮฆ๐‘จLaโ€‹[ฮณz]โˆ’ฮฆ๐‘จRaโ€‹[ฮณz])\displaystyle\frac{1}{2}\left(\Phi_{\boldsymbol{A}_{L}}^{a}\left[\mathrm{\gamma}_{z}\right]-\Phi_{\boldsymbol{A}_{R}}^{a}\left[\mathrm{\gamma}_{z}\right]\right) (4.54)

showing that gravitational holonomies ฮฆฮฉaโ€‹[ฮณz]\Phi_{\Omega}^{a}\left[\mathrm{\gamma}_{z}\right] and ฮฆEaโ€‹[ฮณz]\Phi_{E}^{a}\left[\mathrm{\gamma}_{z}\right] are given by linear combinations of the left/right gauge holonomies ฮฆ๐‘จLa\Phi_{\boldsymbol{A}_{L}}^{a} and ฮฆ๐‘จRa\Phi_{\boldsymbol{A}_{R}}^{a} used in eq(3.11). The ฮฆฮฉaโ€‹[ฮณz]\Phi_{\Omega}^{a}\left[\mathrm{\gamma}_{z}\right] is the mean value of ฮฆ๐‘จLaโ€‹[ฮณz]\Phi_{\boldsymbol{A}_{L}}^{a}\left[\mathrm{\gamma}_{z}\right] and ฮฆ๐‘จRaโ€‹[ฮณz]\Phi_{\boldsymbol{A}_{R}}^{a}\left[\mathrm{\gamma}_{z}\right] while the ฮฆEaโ€‹[ฮณz]\Phi_{E}^{a}\left[\mathrm{\gamma}_{z}\right] is the relative โ€”reducedโ€” value.

Moreover using line defects of the CWY theory such as the Wilson loops (3.11), we see that due to eqs(4.2-4.6), they appear in both varieties left W๐‘จLโ€‹[ฮณz]W_{\boldsymbol{A}_{L}}\left[\mathrm{\gamma}_{z}\right] and right W๐‘จRโ€‹[ฮณz]W_{\boldsymbol{A}_{R}}\left[\mathrm{\gamma}_{z}\right] given by

W๐‘จLโ€‹[ฮณz]\displaystyle W_{\boldsymbol{A}_{L}}\left[\mathrm{\gamma}_{z}\right] =\displaystyle= Pโ€‹eฮฆALโ€‹[ฮณz]\displaystyle Pe^{\Phi_{A_{L}}\left[\mathrm{\gamma}_{z}\right]} (4.55)
W๐‘จRโ€‹[ฮณz]\displaystyle W_{\boldsymbol{A}_{R}}\left[\mathrm{\gamma}_{z}\right] =\displaystyle= Pโ€‹eฮฆARโ€‹[ฮณz]\displaystyle Pe^{\Phi_{A_{R}}\left[\mathrm{\gamma}_{z}\right]} (4.56)

By using eq(4.13), these topological gauge lines can be presented in terms of gravitational defects WEโ€‹[ฮณz]W_{E}\left[\mathrm{\gamma}_{z}\right] and Wฮฉโ€‹[ฮณz]W_{\Omega}\left[\mathrm{\gamma}_{z}\right] like

W๐‘จLโ€‹[ฮณz]\displaystyle W_{\boldsymbol{A}_{L}}\left[\mathrm{\gamma}_{z}\right] =\displaystyle= Pโ€‹expโก(โˆฎฮณzฮฉ+โˆฎฮณzE)\displaystyle P\exp\left(\mathop{\displaystyle\oint}\nolimits_{\mathrm{\gamma}_{z}}\Omega+\mathop{\displaystyle\oint}\nolimits_{\mathrm{\gamma}_{z}}E\right) (4.57)
W๐‘จRโ€‹[ฮณw]\displaystyle W_{\boldsymbol{A}_{R}}\left[\mathrm{\gamma}_{w}\right] =\displaystyle= Pโ€‹expโก(โˆฎฮณzฮฉโˆ’โˆฎฮณzE)\displaystyle P\exp\left(\mathop{\displaystyle\oint}\nolimits_{\mathrm{\gamma}_{z}}\Omega-\mathop{\displaystyle\oint}\nolimits_{\mathrm{\gamma}_{z}}E\right) (4.58)

These relations show that in the 4D topological gravity (4.2), one distinguishes two non commuting gravitational Wilson-like lines WEโ€‹[ฮณz]W_{E}\left[\mathrm{\gamma}_{z}\right] and Wฮฉโ€‹[ฮณz]W_{\Omega}\left[\mathrm{\gamma}_{z}\right] defined as

WEโ€‹[ฮณz]\displaystyle W_{E}\left[\mathrm{\gamma}_{z}\right] =\displaystyle= Pโ€‹expโก(โˆฎฮณz๐„)\displaystyle P\exp\left(\mathop{\displaystyle\oint}\nolimits_{\mathrm{\gamma}_{z}}\mathbf{E}\right) (4.59)
Wฮฉโ€‹[ฮณz]\displaystyle W_{\Omega}\left[\mathrm{\gamma}_{z}\right] =\displaystyle= Pโ€‹expโก(โˆฎฮณz๐›€)\displaystyle P\exp\left(\mathop{\displaystyle\oint}\nolimits_{\mathrm{\gamma}_{z}}\mathbf{\Omega}\right) (4.60)

These gravitational line defects give basic topological observables that constitute building blocks towards the study of quantum integrability in the obtained 4D topological gravity.

Refer to caption
Figure 4: Yang-Baxter equations for the gravitational line defects (๐„1,๐„2)\left(\mathbf{E}_{1},\mathbf{E}_{2}\right) and (๐›€1,๐›€2)\left(\mathbf{\Omega}_{1},\mathbf{\Omega}_{2}\right): ย 2+2 crossing gravitational line defects. Because of eq(4.29-4.31), the contributions are given by the crossing of vielbein lines with spin connection lines (red points).

Other basic building blocks will be given below.

4.2.2 Gravitational integrable equations

Applications of the gravitational line defects constructed above to quantum integrable systems and brane realisations in type II strings along the line of [18] will be given in a future occasion. Below, we give partial results by considering below two particular systems of crossing line defects.

A) gravitational Yang-Baxter like system
Here, we give two examples of integrable relations having a description in terms of crossing gravitational line defects (4.59-4.60). The first example we give concerns the gravitational Yang-Baxter like equation; it is represented graphically by the Figureย 4. It is given by a set of 2+2 non trivial crossings of topological line defects involving:

(๐š)\left(\mathbf{a}\right)

two Wilson line defects of vielbein like WE[ฮณz1]\mathrm{\gamma}_{z_{1}}{\small]} and WE[ฮณz2]\mathrm{\gamma}_{z_{2}}{\small]}; they are given by the lines ฮณz1\mathrm{\gamma}_{z_{1}} and ฮณz2\mathrm{\gamma}_{z_{2}}ย spreading in the topological plane โ„2\mathbb{R}^{2}; and respectively located at z1z_{1} and z2z_{2} in the holomorphic โ„‚โ€‹โ„™1.\mathbb{CP}^{1}{\small.}

(๐›)\left(\mathbf{b}\right)

two Wilson line defects of spin connection like Wฮฉ[ฮพw3],\mathrm{\xi}_{w_{3}}{\small]}, Wฮฉ[ฮพw4]\mathrm{\xi}_{w_{4}}{\small]}; they are given by the lines ฮพw3\mathrm{\xi}_{w_{3}} and ฮพw4\mathrm{\xi}_{w_{4}}ย spreading in โ„2\mathbb{R}^{2} and located at w3w_{3} and w4w_{4}.

The positions of these gravitational topological lines in the plane โ„2\mathbb{R}^{2} are such that they have crossings as depicted by the Figure 3. This particular configuration of four lines have three intersection points given by

P13P_{13} == ฮณz1โˆฉฮพw3\mathrm{\gamma}_{z_{1}}\cap\mathrm{\xi}_{w_{3}}
P14P_{14} == ฮณz1โˆฉฮพw4\mathrm{\gamma}_{z_{1}}\cap\mathrm{\xi}_{w_{4}}
P23P_{23} == ฮณz2โˆฉฮพw3\mathrm{\gamma}_{z_{2}}\cap\mathrm{\xi}_{w_{3}}
(4.61)

but no intersection point P24P_{24} because WE[ฮณz2]\mathrm{\gamma}_{z_{2}}{\small]} and Wฮฉ[ฮพw3]\mathrm{\xi}_{w_{3}}{\small]} are parallel. Then, we use the topological symmetry in the topological โ„2\mathbb{R}^{2} to move the two vertical line defects WE[ฮณz2]\mathrm{\gamma}_{z_{2}}{\small]} and Wฮฉ[ฮพw3]\mathrm{\xi}_{w_{3}}{\small]} from the left side of the node ๐‘14\mathbf{R}_{14} to the right side. This shifting process in โ„2\mathbb{R}^{2} generates the integrability equations

๐‘13โŠ—๐‘14โŠ—๐‘24=๐‘24โŠ—๐‘14โŠ—๐‘13\mathbf{R}_{13}\otimes\mathbf{R}_{14}\otimes\mathbf{R}_{24}=\mathbf{R}_{24}\otimes\mathbf{R}_{14}\otimes\mathbf{R}_{13} (4.62)

with ziโ€‹j=ziโˆ’zjz_{ij}=z_{i}-z_{j}; and where ๐‘iโ€‹j=๐‘โ€‹(ziโ€‹j)\mathbf{R}_{ij}=\mathbf{R}\left(z_{ij}\right) is the Yang-Baxter R-matrix of integrable quantum systems [1] acting in the tensor space

V1โŠ—V2โŠ—V3โŠ—V4V_{1}\otimes V_{2}\otimes V_{3}\otimes V_{4} (4.63)

A semi classical expression of ๐‘iโ€‹j\mathbf{R}_{ij} is given by

๐‘abcdโ€‹(ziโˆ’zj)=ฮดacโ€‹ฮดbd+โ„ziโˆ’zjโ€‹๐œabcd+Oโ€‹(โ„2)\mathbf{R}_{\text{{ab}}}^{\text{{cd}}}\left(z_{i}-z_{j}\right)=\delta_{\text{{a}}}^{\text{{c}}}\delta_{\text{{b}}}^{\text{{d}}}+\frac{\hbar}{z_{i}-z_{j}}\mathbf{c}_{\text{{ab}}}^{\text{{cd}}}+O\left(\hbar^{2}\right) (4.64)

where ๐œabcd\mathbf{c}_{\text{{ab}}}^{\text{{cd}}} stands for the double Casimir of the gauge symmetry; its value for sโ€‹lโ€‹(N,โ„‚)sl\left(N,\mathbb{C}\right) is ฮดacโ€‹ฮดbd.\delta_{\text{{a}}}^{\text{{c}}}\delta_{\text{{b}}}^{\text{{d}}}. The second example we give involves the crossings of three topological lines; this system can be: (i)\left(i\right) completely trivial as for the cases where the three lines are of same nature; that is having the same color; or (iโ€‹i)\left(ii\right) lead to commutative products as for the situation depicted by the the Figure 5.

Refer to caption
Figure 5: The crossing of three line defects with one having a different color.

For this line system, the obtained integrability equation leads the following commutation relation resulting from the move of the line E1 from the left to the right of the line E2,

๐‘13โŠ—๐‘23=๐‘23โŠ—๐‘13\mathbf{R}_{13}\otimes\mathbf{R}_{23}=\mathbf{R}_{23}\otimes\mathbf{R}_{13} (4.65)

B) gravitational RLL- like system
This is an interesting system of topological 4D gravity generalising the usual RLL relations in the CWY gauge theory depicted by the Figure 1-(b). It involves a set of 2+2 non trivial crossings of topological line defects as described here below:

(ฮฑ)\left(\mathbf{\alpha}\right)

two Wilson-like lines WE[ฮณz1],\mathrm{\gamma}_{z_{1}}{\small]}, Wฮฉ2{}_{\Omega_{2}}[ฮพw2]\mathrm{\xi}_{w_{2}}{\small]} with quantum states respectively characterised by highest weights (HW) ๐’†\boldsymbol{e} and ๐€\boldsymbol{\lambda} of the gauge symmetry โ€”here SL(2,โ„‚\mathbb{C})โ€”. These two HWs can be taken equal.

(ฮฒ)\left(\mathbf{\beta}\right)

two dual line defects described by โ€™t Hooft lines tHE[ฮณz3]\mathrm{\gamma}_{z_{3}}{\small]} and tHฮฉ[ฮพw4]\mathrm{\xi}_{w_{4}}{\small]}.

Refer to caption
Figure 6: โ€™t Hooft lines tHฮผ and tHฯ‰ respectively dual to the Wilson lines WE and Wฮฉ. On the left the vielbein pair given by a horizontal magenta โ€™t Hooft line dual to vertical blue Wilson line line ย On the right the spin connection pair given by a horizontal yellow t Hooft line dual to vertical green Wilson line.

These โ€™t Hooft lines are characterised by coweights ฮผ\mu and ฯ‰\omega respectively dual to the weights ๐’†\boldsymbol{e} and ๐€\boldsymbol{\lambda}. These โ€™t Hooft lines are depicted by the red and the Yellow lines in the Figure 6.

Using the gravitational Wilson-like lines WE[ฮณz1],\mathrm{\gamma}_{z_{1}}{\small]}, Wฮฉ2{}_{\Omega_{2}}[ฮพw2]\mathrm{\xi}_{w_{2}}{\small]} and their magnetic duals tHE[ฮณz3],\mathrm{\gamma}_{z_{3}}{\small]}, tHฮฉ[ฮพw4]\mathrm{\xi}_{w_{4}}{\small]} all of them spreading in the topological plane with intersections as depicted by the Figure 7,

Refer to caption
Figure 7: An interacting system of 2+2 lines defects made of : (i)\left(i\right) a blue vielbein line defect WEโ€‹[ฮณz1]W_{E}\left[\mathrm{\gamma}_{z_{1}}\right] crossed by spin line Wฮฉโ€‹[ฮพw1]W_{\Omega}\left[\mathrm{\xi}_{w_{1}}\right]. (iโ€‹i)\left(ii\right) two horizontal โ€™t Hooft lines tH[ฮณz3]E{}_{E}\left[\mathrm{\gamma}_{z_{3}}\right] and tโ€‹Hฮฉโ€‹[ฮพw2]tH_{\Omega}\left[\mathrm{\xi}_{w_{2}}\right] traversing the Wilson lines. The identification of the two ways gives the gravitational RLL-like equation.

one can derive the integrability equation describing the solvability of this gravitational system. Indeed, starting from the left side in the Figure 7 with horizontal โ€™t Hooft lines (in yellow and magenta colors); then moving these two horizontal lines below the vertex ๐‘12\mathbf{R}_{12}, we obtain the gravitational RLL- like in topological 4D gravity. It reads formally as

๐‘12โŠ—๐‹23โŠ—๐‹14=๐‹14โŠ—๐‹23โŠ—๐‘12\mathbf{R}_{12}\otimes\mathbf{L}_{23}\otimes\mathbf{L}_{14}=\mathbf{L}_{14}\otimes\mathbf{L}_{23}\otimes\mathbf{R}_{12} (4.66)

where ๐‹14\mathbf{L}_{14} and ๐‹23\mathbf{L}_{23} are Lax operators whose expressions can be obtained by using the formula eq(3.12), for technical computations of the ๐‹iโ€‹j\mathbf{L}_{ij}โ€™s in CWY theory see [19]. The explicit expression of the integrability relation (4.66) reads as follows

๐‘efadโ€‹(z1โˆ’z2)โ€‹๐‹beโ€‹(z1)โ€‹๐‹cfโ€‹(z2)=๐‹eaโ€‹(z2)โ€‹๐‹fdโ€‹(z1)โ€‹๐‘adefโ€‹(z1โˆ’z2)\mathbf{R}_{\text{{ef}}}^{\text{{ad}}}\left(z_{1}-z_{2}\right)\mathbf{L}_{\text{{b}}}^{\text{{e}}}\left(z_{1}\right)\mathbf{L}_{\text{{c}}}^{\text{{f}}}\left(z_{2}\right)=\mathbf{L}_{\text{{e}}}^{\text{{a}}}\left(z_{2}\right)\mathbf{L}_{\text{{f}}}^{\text{{d}}}\left(z_{1}\right)\mathbf{R}_{\text{{ad}}}^{\text{{ef}}}\left(z_{1}-z_{2}\right) (4.67)

5 Conclusion and comments

In this study, we have constructed a novel integrable 4D topological gravity obtained by extending the CWY method, used in the derivation of the so-called 4D Chern-Simons of integrable spin chains, to the 3D Anti de Sitter gravity. Here, the CWY method has been applied to the AdS3 gravity; thus leading to an emergent 4D topological gravity with observables given by topological gravitational defects. Concretely, the field action ๐’ฎ4โ€‹Dgโ€‹rโ€‹aโ€‹v\mathcal{S}_{4D}^{grav} of the obtained 4D gravity is given by eqs(4.2-4.6) or equivalently by (4.23);

๐’ฎ4โ€‹Dgโ€‹rโ€‹aโ€‹vโ€‹iโ€‹tโ€‹y=โˆซR2ร—โ„‚โ€‹โ„™1dโ€‹zโˆงEaโˆง(dโ€‹ฮฉa+12โ€‹ฮตaโ€‹bโ€‹cโ€‹ฮฉbโˆงฮฉc+ฮพโ€‹ฮตaโ€‹bโ€‹cโ€‹EbโˆงEc)\mathcal{S}_{4D}^{gravity}=\mathop{\displaystyle\int}\nolimits_{R^{2}\times\mathbb{CP}^{1}}dz\wedge E^{a}\wedge\left(d\Omega_{a}+\frac{1}{2}\varepsilon_{abc}\Omega^{b}\wedge\Omega^{c}+\xi\varepsilon_{abc}E^{b}\wedge E^{c}\right) (5.1)

It has been obtained by using the Chern-Simons formulation of AdS3 gravity as shown by eqs (2.4) and (4.1). Moreover, because ๐’ฎAโ€‹dโ€‹S3gโ€‹rโ€‹aโ€‹v\mathcal{S}_{AdS_{3}}^{grav} is formulated in terms of two copies of Chern-Simons fields ALA_{L} and ARA_{R}, we ended up with two particular gravitational lines defects WEโ€‹[ฮณz]W_{E}\left[\mathrm{\gamma}_{z}\right] and Wฮฉโ€‹[ฮณz]W_{\Omega}\left[\mathrm{\gamma}_{z}\right] respectively termed as vielbein and spin connection lines. These line defects are given by eqs(4.57-4.60) and were used to derive partial results regarding their crossings. Applications of this construction in quantum integrability and embeddings in string theory as well as in link with BTZ black-hole will be considered in a future occasion.

In the end of this investigation, we want to make a comment regarding the extension of the AdS3/CFT2 correspondence. Applying the AdS/CFT duality to the CWY theory, one expects to have an emergent 4D bulk/3D edge correspondence for topological 4D gravity. Below, we give an argument indicating that this emergent 4D bulk/3D edge constitute an interesting example of Gravity/Gauge duality where (i)\left(i\right) the gravity sector is given by the obtained topological 4D gravity described by the field action ๐’ฎ4โ€‹Dgโ€‹rโ€‹aโ€‹vโ€‹iโ€‹tโ€‹y\mathcal{S}_{4D}^{gravity} (5.1); and (iโ€‹i)\left(ii\right) the gauge sector is given by the topological 3D Chern-Simons with field action ๐’ฎ3โ€‹DCโ€‹S\mathcal{S}_{3D}^{{\small CS}} as in (3.1). Indeed, in this conjectured 4D/3D correspondence, gravitational line defects ฮณz\mathrm{\gamma}_{z} spreading in the โ„2\mathbb{R}^{2} plane of the 4D space ๐‘ด4=โ„2ร—โ„‚โ€‹โ„™1\boldsymbol{M}_{4}=\mathbb{R}^{2}\times\mathbb{CP}^{1} gets mapped into point-like particles on the 3D boundary

โˆ‚๐‘ด4=(โˆ‚โ„2)ร—โ„‚โ„™1,โˆ‚(โ„‚โ„™1)=โˆ…\partial\boldsymbol{M}_{4}=\left(\partial\mathbb{R}^{2}\right)\times\mathbb{CP}^{1}\qquad,\qquad\partial\left(\mathbb{CP}^{1}\right)=\emptyset (5.2)

Because ๐’ฎ4โ€‹Dgโ€‹rโ€‹aโ€‹vโ€‹iโ€‹tโ€‹y\mathcal{S}_{4D}^{gravity} on ๐‘ด4\boldsymbol{M}_{4} is topological, the dual gauge theory on โˆ‚๐‘ด4=๐‘ด3\partial\boldsymbol{M}_{4}=\boldsymbol{M}_{3} should be topological; thus justifying the ๐’ฎ3โ€‹DCโ€‹S\mathcal{S}_{3D}^{{\small CS}} on the 3D boundary. This 4D/3D duality can be made more explicit by thinking about the topological plane โ„2\mathbb{R}^{2} in terms of the fibration โ„>0ร—๐•Š1\mathbb{R}_{>0}\times\mathbb{S}^{1} with (โˆ‚โ„2)โˆผ๐•Š1\left(\partial\mathbb{R}^{2}\right)\sim\mathbb{S}^{1}; then the 3D boundary โˆ‚๐‘ด4\partial\boldsymbol{M}_{4} is given by ๐•Š1ร—๐•Š2\mathbb{S}^{1}\times\mathbb{S}^{2} which is isomorphic to a 3-sphere ๐•Š3.\mathbb{S}^{3}. Within this view, we see that

โ„2ร—โ„‚โ€‹โ„™1โˆผโ„>0ร—๐•Š3\mathbb{R}^{2}\times\mathbb{CP}^{1}\sim\mathbb{R}_{>0}\times\mathbb{S}^{3} (5.3)

and consequently gravitational line defects ฮณz\mathrm{\gamma}_{z} spreading in โ„2\mathbb{R}^{2} are dual to particle states on the 3-sphere. Notice also that for the elliptic case where ๐‘ด4=โ„2ร—๐•‹2\boldsymbol{M}_{4}=\mathbb{R}^{2}\times\mathbb{T}^{2}; the 3D boundary has a ๐•‹3\mathbb{T}^{3} geometry; then the dual CS gauge theory lives on a 3-torus. Progress in this direction will be reported in a future occasion.

References

  • [1] Costello, K., Witten, E., & Yamazaki, M. (2017). Gauge theory and integrability, I. arXiv preprint arXiv:1709.09993.
  • [2] Costello, K., Witten, E., & Yamazaki, M. (2018). Gauge theory and integrability, II. arXiv preprint arXiv:1802.01579.
  • [3] Costello, K., & Stefaล„ski Jr, B. (2020). Chern-Simons origin of superstring integrability. Physical Review Letters, 125(12), 121602.
  • [4] Costello, K., & Yamazaki, M. (2019). Gauge theory and integrability, III. arXiv preprint arXiv:1908.02289.
  • [5] Costello, K., Gaiotto, D., & Yagi, J. (2021). Q-operators areโ€™t Hooft lines. arXiv preprint arXiv:2103.01835.
  • [6] Retore, A. L. (2022). Introduction to classical and quantum integrability. Journal of Physics A: Mathematical and Theoretical, 55(17), 173001.
  • [7] Lacroix, S. (2022). Four-dimensional Chernโ€“Simons theory and integrable field theories. Journal of Physics A: Mathematical and Theoretical, 55(8), 083001.
  • [8] Liniado, J., & Vicedo, B. (2023, October). Integrable Degenerate E-Models from 4d Chernโ€“Simons Theory. In Annales Henri Poincare (Vol. 24, No. 10, pp. 3421-3459). Cham: Springer International Publishing.
  • [9] Khan, A. Z. (2022). Holomorphic Surface Defects in Four-Dimensional Chern-Simons Theory. arXiv preprint arXiv:2209.07387.
  • [10] Ashwinkumar, M. (2021). Integrable lattice models and holography. Journal of High Energy Physics, 2021(2), 1-22.
  • [11] Ashwinkumar, M., Tan, M. C., & Zhao, Q. (2018). Branes and categorifying integrable lattice models. arXiv preprint arXiv:1806.02821.
  • [12] Ashwinkumar, M., & Tan, M. C. (2019). Unifying lattice models, links and quantum geometric Langlands via branes in string theory. arXiv preprint arXiv:1910.01134.
  • [13] Fukushima, O., Sakamoto, J. I., & Yoshida, K. (2021). Faddeev-Reshetikhin model from a 4D Chern-Simons theory. Journal of High Energy Physics, 2021(2), 1-18. arXiv:2012.07370v1 [hep-th].
  • [14] Saidi, E. H. (2020). Quantum line operators from Lax pairs. Journal of Mathematical Physics, 61(6).
  • [15] Maruyoshi, K., Ota, T., & Yagi, J. (2021). Wilson-โ€™t Hooft lines as transfer matrices. Journal of High Energy Physics, 2021(1), 1-31.
  • [16] Bazhanov, V. V., Frassek, R., ลukowski, T., Meneghelli, C., & Staudacher, M. (2011). Baxter Q-operators and representations of Yangians. Nuclear Physics B, 850(1), 148-174.
  • [17] Ishtiaque, N., Moosavian, S. F., Raghavendran, S., & Yagi, J. (2022). Superspin chains from superstring theory. SciPost Physics, 13(4), 083.
  • [18] Boujakhrout, Y., Saidi, E. H., Laamara, R. A., & Drissi, L. B. (2023). Embedding integrable superspin chain in string theory. Nuclear Physics B, 990, 116156.
  • [19] Boujakhrout, Y., Saidi, E. H., Ahl Laamara, R., & Btissam Drissi, L. (2023). โ€™t Hooft lines of ADE-type and topological quivers. SciPost Physics, 15(3), 078.
  • [20] Achucarro, A., & Townsend, P. K. (1986). A Chern-Simons action for three-dimensional anti-de Sitter supergravity theories. Physics Letters B, 180(1-2), 89-92.
  • [21] Avery, S. G., Poojary, R. R., & Suryanarayana, N. V. (2014). An sl (2, โ„\mathbb{R}) current algebra from AdS 3 gravity. Journal of High Energy Physics, 2014(1), 1-9.
  • [22] Castro, A. (2016). Lectures on higher spin black holes in AdS3 gravity. Acta Phys. Polon. B, 47, 2479.
  • [23] Sammani, R., Boujakhrout, Y., Saidi, E. H., Laamara, R. A., & Drissi, L. B. (2023). Swampland constraints on higher spin AdS 3 gravity Landscape. arXiv preprint arXiv:2304.01887.
  • [24] Sammani, R., Boujakhrout, Y., Saidi, E. H., Laamara, R. A., & Drissi, L. B. (2023). Higher spin AdS 3 gravity and Tits-Satake diagrams. Physical Review D, 108(10), 106019.
  • [25] Hubeny, V. E. (2015). The ads/cft correspondence. Classical and Quantum Gravity, 32(12), 124010.
  • [26] Santos, F. F., Capossoli, E. F., & Boschi-Filho, H. (2021). AdS/BCFT correspondence and BTZ black hole thermodynamics within Horndeski gravity. Physical Review D, 104(6), 066014.
  • [27] Blencowe, M. P. (1989). A consistent interacting massless higher-spin field theory in D= 2+ 1. Classical and Quantum Gravity, 6(4), 443.
  • [28] Santos, F. F. (2022). AdS/BCFT correspondence and BTZ black hole within electric field. arXiv preprint arXiv:2206.09502.
  • [29] Barnich, G., Donnay, L., Matulich, J., & Troncoso, R. (2017). Super-BMS3 invariant boundary theory from three-dimensional flat supergravity. Journal of High Energy Physics, 2017(1), 1-15.
  • [30] Cotler, J., & Jensen, K. (2021). AdS3 gravity and random CFT. Journal of High Energy Physics, 2021(4), 1-58.
  • [31] Loran, F., & Sheikh-Jabbari, M. M. (2011). Orientifolded locally AdS3 geometries. Classical and Quantum Gravity, 28(2), 025013.
  • [32] Benkaddour, I., Rhalami, A. E., & Saidi, E. H. (2001). Non-trivial extension of the (1+ 2)-Poincaรฉ algebra and conformal invariance on the boundary of. The European Physical Journal C-Particles and Fields, 21(4), 735-747.
  • [33] Laamara, R. A., Drissi, L. B., & Saidi, E. H. (2006). D-string fluid in conifold, I: Topological gauge model. Nuclear Physics B, 743(3), 333-353.
  • [34] He, Y. J., Tian, J., & Chen, B. (2022). Deformed integrable models from holomorphic Chern-Simons theory. Science China Physics, Mechanics & Astronomy, 65(10), 100413.
  • [35] Frassek, R. (2020). Oscillator realisations associated to the D-type Yangian: Towards the operatorial Q-system of orthogonal spin chains. Nuclear Physics B, 956, 115063.