This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Lévy driven stochastic heat equation with logarithmic nonlinearity: Well-posedness and Large deviation principle

R. Kavin
Department of Mathematics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
maz198757@iitd.ac.in
 and  Ananta K. Majee
Department of Mathematics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India.
majee@maths.iitd.ac.in
Abstract.

In this article, we study the well-posedness theory for solutions of the stochastic heat equations with logarithmic nonlinearity perturbed by multiplicative Lévy noise. By using Aldous tightness criteria and Jakubowski’s version of the Skorokhod theorem on non-metric spaces along with the standard L2L^{2}-method, we establish the existence of a path-wise unique strong solution. Moreover, by using a weak convergence method, we establish a large deviation principle for the strong solution of the underlying problem. Due to the lack of linear growth and locally Lipschitzness of the term ulog(|u|)u\log(|u|) present in the underlying problem, the logarithmic Sobolev inequality and the nonlinear versions of Gronwall’s inequalities play a crucial role.

Key words and phrases:
Nonlinear stochastic PDE, Logarithmic nonlinearity, Strong and martingale solution, Jakubowski’s version of Skorokhod theorem.
2000 Mathematics Subject Classification:
45K05, 46S50, 49L20, 49L25, 91A23, 93E20

1. Introduction

Let DdD\subset\mathbb{R}^{d} be a bounded domain with Lipschitz boundary D\partial D, N(dz,dt)N({\rm d}z,{\rm d}t) be a time-homogeneous Poisson random measure [PZ07, BH09, pp. 631] on (𝑬,(𝑬))({\boldsymbol{E}},\mathcal{B}({\boldsymbol{E}})) with intensity measure m(dz)m({\rm d}z), defined on the given filtered probability space (Ω,,,𝔽={t}t0)(\Omega,\mathcal{F},\mathbb{P},\mathbb{F}=\{\mathcal{F}_{t}\}_{t\geq 0}) satisfying the usual hypothesis, where (𝑬,(𝑬),m)({\boldsymbol{E}},\mathcal{B}({\boldsymbol{E}}),m) is a σ\sigma-finite measure space. We are interested in the well-posedness theory and theory of large deviation principle of a strong solution for the nonlinear stochastic problem perturbed by Lévy noise:

du(t,x)Δu(t,x)dt\displaystyle{\rm d}u(t,x)-\Delta u(t,x)\,{\rm d}t =u(t,x)log|u(t,x)|dt+𝑬η(u(t,x);z)N~(dz,dt),t>0,xD,\displaystyle=u(t,x)\log|u(t,x)|\,{\rm d}t+\int_{{\boldsymbol{E}}}\eta(u(t,x);z)\widetilde{N}({\rm d}z,{\rm d}t),\quad t>0,~{}x\in D\,, (1.1)
u(t,x)\displaystyle u(t,x) =0,t>0,xD,\displaystyle=0,\quad t>0,~{}x\in\partial D\,,
u(0,x)\displaystyle u(0,x) =u0(x),xD.\displaystyle=u_{0}(x),\quad x\in D\,.

In (1.1), η:×𝑬\eta:\mathbb{R}\times\boldsymbol{E}\mapsto\mathbb{R} is a given noise coefficient signifying the multiplicative nature of the noise, and

N~(dz,dt):=N(dz,dt)m(dz)dt,\widetilde{N}({\rm d}z,{\rm d}t):=N({\rm d}z,{\rm d}t)-\,m({\rm d}z)\,{\rm d}t,

the time-homogeneous compensated Poisson random measure.

In the last decades, among researchers, there has been growing interest in studying the stochastic partial differential equations (in short, SPDEs) with monotone or locally monotone coefficients/non-linearity. We recommend readers see the monographs [DPZ14] and [PR07] for a thorough understanding of SPDEs in general. However, coefficients with logarithmic non-linearity do not fit into this category. The exploration of logarithmic non-linearity has been addressed in the study of relativistic fields in physics and nonlinear wave mechanics, as discussed in references [Ros69, BBM76]. Logarithmic nonlinear partial differential equations have applications across various fields of science and engineering, such as physics, mathematical biology, material science, geophysics, nonlinear photonics, and fluid dynamics [EK05, Zlo19, WHL+12]. Equation (1.1) could be viewed as a stochastic perturbation of heat equation with logarithmic non-linearity perturbed by Lévy noise. Due to technical novelties and the wide range of applications in physical contexts, the study of the well-posedness results for equation (1.1) is more subtle. There is a requirement to analyze and quantify the probability of rare events across various fields, enabling an understanding of the limiting behaviour of specific probability models. Furthermore, the following natural question arises: what is the asymptotic relationship between the solution of the underlying problem (1.1) and the corresponding deterministic equation when the stochastic perturbation is significantly small? In other words, one needs to study the small noise large deviation principle (LDP in short) for the solution of (1.1).

In the absence of noise term, (1.1) becomes a deterministic heat equation involving logarithmic non-linearity. A number of authors have contributed since then, and we mention a few of the works e.g, [CLL15, CT15, AC17, JYC16] and references therein. The deterministic heat equation with logarithmic non-linearity on a bounded domain was investigated by Chen et al. in [CLL15]; see also [CT15]. They established the existence of global solutions and blow-up at infinity under some appropriate conditions. However, their study did not establish the uniqueness of the solutions. In [AC17], the authors studied the problem on a whole real line and established the well-posedness of solutions in the case of a bounded and smooth initial condition.

We mention the paper [DKZ19], where the authors investigated stochastic reaction diffusion equations with logarithmic non-linearity driven by space-time white noise on the bounded domain [0,1][0,1]. They have shown non-blow up L2L^{2}-valued solution but did not provide the well-posedness theory for it. Very recently, Shang and Zhang in [SZ22] have revealed the global existence and uniqueness of solutions of the stochastic heat equation (1.1) in case of multiplicative Brownian noise. The authors have constructed a sequence of approximate solutions (via Galerkin methods), and shown the tightness of the approximate solutions on some appropriate space. Using the theorems of Skorokhod and Prokhorov along with the pathwise uniqueness of solutions and the Yamada Watanabe theorem, they have shown the well-posedness of a global strong solution of the underlying problem in the case of sub-linear and super-linear growth of the noise coefficient. In the case of sub-linear growth, they are able to derive the global moment estimate of the solution.

To the best of our knowledge, there are currently no results available regarding the global solution aspect in this context. We mention the works of [Don18, XZ19] where the SDEs with logarithic non-linearity was studied. Taking primary motivation from [Don18], in the first part of this article, we aim to generalize the well-posedness result of [SZ22] in the case of jump-diffusion noise.

The concept of large deviation theory, which concerns the asymptotic behaviour of remote tails of some sequence of probability distribution, is a popular and important topic in probability and statistics; see [Str84, Var84, Var66, DS89]. In the last three decades, there have been numerous results available over LDP for SPDEs, and most of them are limited to SPDEs driven by Gaussian noise; see for example, [BDM08, CR04, FG23, BGJ17, MSZ21, Liu10, WRD12, RZ12, HLL21] and references therein to name a few. Recently, in [KM24, KAV23] the authors achieved LDP for stochastic evolutionary pp-Laplace equation and pseudo-monotone evolutionary equation, respectively. Moreover, because of the nonlinear perturbation flux function, the authors could not use the results of monotone or locally monotone SPDEs to establish LDP. However, coefficients with logarithmic nonlinearity do not fit into this category. Very recently, using nonlinear versions of Gronwall’s inequalities and log-Sobolev inequalities along with the weak convergence approach, the authors in [PSZ22] established a large deviation principle for the solutions of equation (1.1) with Brownian noise— which is neither locally Lipschitz nor locally monotone.

There has not been very much works about the LDP for SPDEs driven by Lévy noise. In [BCD13], the authors utilized the results of Budhiraja and Dupuis [BD00, BDM11] to establish the LDP for SPDEs with Poisson noises. Their method involved establishing the Laplace principle in Polish spaces using the weak convergence approach. The study of LDP was carried out for multiplicative Lévy noise for fully nonlinear stochastic equation in [YZZ15], for 22-D stochastic Navier-Stokes equations driven by multiplicative Lévy noise in [ZZ15, BPZ23], for 22-D primitive equations in [MZ21], for stochastic generalized Ginzburg-Landau equation in [WZ23], for stochastic generalized porous media equations driven by Lévy noise in [WZ24]. Although SPDEs with monotone or locally monotone coefficients have been extensively studied (cf.[XZ18, LLX20, HLL21] etc., and references therein), the systems characterized by logarithmic nonlinearity remain relatively less explored in the literature. This is primarily due to the lack of well-posedness results previously established for such systems. In the second part of this article, we propose to study Freidlin-Wentzell’s large deviation principle for (1.1) along with the weak convergence approach and the improved sufficient criterion proposed by [LSZZ23].

1.1. Aim and outline of the paper

The aim of this article is bi-fold. In the first part, we analyze the well-posedness theory for the SPDEs (1.1) driven by Lévy noise. The second part establishes Freidlin-Wentzell’s large deviation principle for the strong solution of (2.7). More precisely, we proceed as follows.

  • (i)

    Firstly, we prove the well-posedness of strong solutions of (1.1). To do so, we first construct an approximate solution {un(t)}\{u_{n}(t)\} (cf. (3.3)) of the finite dimensional stochastic differential equations (3.2) via Galerkin method, and then using logarithmic Sobolev inequality and the nonlinear versions of Gronwall’s inequality, we derive its necessary a-priori estimates—which is essential to prove the tightness of ((un))n\big{(}\mathcal{L}(u_{n})\big{)}_{n\in\mathbb{N}} in some appropriate space via Aldous condition (see Definition 3.1). Then, we use Jakubowski’s version of the Skorokhod theorem on a non-metric space to generate a new probability space (Ω¯,¯,¯)(\bar{\Omega},\bar{\mathcal{F}},\bar{\mathbb{P}}), and a sequence of random variables un,uu_{n}^{*},u_{*} in (Ω¯,¯,¯)(\bar{\Omega},\bar{\mathcal{F}},\bar{\mathbb{P}}) such that with probability 11, unuu_{n}^{*}\rightarrow u_{*} which leads to existence of weak solution π¯:=(Ω¯,¯,¯,𝔽¯,N,u)\bar{\pi}:=\big{(}\bar{\Omega},\bar{\mathcal{F}},\bar{\mathbb{P}},\bar{\mathbb{F}},N_{*},u_{*}\big{)} of (1.1) on the time interval [0,T2][0,T_{2}]  (see Lemma 3.8 for the definition of T2T_{2}). Moreover, using the moment estimates, we construct a weak solution on the time interval [0,T][0,T] for any given t>0t>0. We utilize the standard L2L^{2}-contraction principle to determine the path-wise uniqueness of weak solutions. Later, we use the Yamada-Watanabe theorem to assure the existence of a unique strong solution of (1.1).

  • (ii)

    Secondly, we establish the small perturbation LDP for the strong solution of (1.1) on the solution space T=𝔻([0,T];L2(D))L2([0,T];W01,2(D))\mathcal{E}_{T}=\mathbb{D}([0,T];L^{2}(D))\cap L^{2}([0,T];W_{0}^{1,2}(D)) via the weak convergence method and the variational representation of the Poisson random measure.

    • a)

      We first prove the well-posedness result of the corresponding skeleton equation (cf. (2.8)) based on the technique of Galerkin method, nonlinear versions of Gronwall’s lemma, the log-Sobolev inequality and the adaptation of a series of technical lemmas. We construct a sequence of approximate solutions and avail of a-priori estimates together with the necessary compact embedding to prove the existence of a solution for the skeleton equation. Uniqueness is achieved via the standard L2L^{2}–contraction principle.

    • b)

      Based on the improved sufficient conditions [LSZZ23] and a certain generalization of Girsanov-type theorem for Poisson random measures together with the weak convergence approach [BDM11] and the a-priori estimates for the skeleton equation and the u~ϵ\tilde{u}_{\epsilon}, the solution of equation (5.5), we first establish the LDP for (2.7) on the space T\mathcal{E}_{T^{*}} for some T>0T^{*}>0 and then extend it to the whole time interval [0,T][0,T] by induction.

The remaining part of the paper is organized as follows. We state the technical assumptions, define the notion of solutions for the problems (1.1), and state the main results of the paper in Section 2. Section 3 is devoted to establish the well-posedness theory for the strong solution of (1.1). In Section 4, we show the well-posedness result for the skeleton equation. The final Section 5 is devoted to proving the LDP for the strong solution of (2.7).

2. Technical framework and statement of the main results

We refer to numerous generic constants in every section of this article by the letters C, K, etc. Here and throughout, we represent the standard spaces of pthp^{th} order integrable functions on DD and the standard Sobolev spaces on DD by (Lp(D),Lp(D))(L^{p}(D),\|\cdot\|_{L^{p}(D)}) and (W01,p(D),W01,p(D))(W_{0}^{1,p}(D),\|\cdot\|_{W_{0}^{1,p}(D)}) respectively for pp\in\mathbb{N}. By W1,p(D)W^{-1,p^{\prime}}(D), we denote the dual space of W01,p(D)W_{0}^{1,p}(D) with duality pairing ,\big{\langle}\cdot,\cdot\big{\rangle}, where pp^{\prime} is the convex conjugate of pp. For any x,yx,y\in\mathbb{R}, we denote xy:=min{x,y}x\wedge y:=\min\{x,y\} and xy:=max{x,y}x\vee y:=\max\{x,y\}. Moreover, for any zz\in\mathbb{R}, we set log+z:=log(1z)\log_{+}z:=\log(1\vee z). For any 0a<b<+0\leq a<b<+\infty, define the space

a,b:=𝔻([a,b];L2(D))L2([a,b];W01,2(D)).\mathcal{E}_{a,b}:=\mathbb{D}([a,b];L^{2}(D))\cap L^{2}([a,b];W_{0}^{1,2}(D)).

It is standard that the space a,b\mathcal{E}_{a,b} endowed with the norm a,b\|\cdot\|_{\mathcal{E}_{a,b}} defined by

ya,b:=sups[a,b]y(s)L2(D)+(aby(s)W01,2(D)2ds)12\displaystyle\|y\|_{\mathcal{E}_{a,b}}:=\sup_{s\in[a,b]}\|y(s)\|_{L^{2}(D)}+\Big{(}\int_{a}^{b}\|y(s)\|_{W_{0}^{1,2}(D)}^{2}\,{\rm d}s\Big{)}^{\frac{1}{2}}

is a Banach space. Consider the metric ρa,b\rho_{a,b} on a,b\mathcal{E}_{a,b} as

ρa,b2(u,v):=sups[a,b]u(s)v(s)L2(D)2+abu(s)v(s)W01,2(D)2ds,u,va,b.\displaystyle\rho_{a,b}^{2}(u,v):=\sup_{s\in[a,b]}\|u(s)-v(s)\|_{L^{2}(D)}^{2}+\int_{a}^{b}\|u(s)-v(s)\|_{W_{0}^{1,2}(D)}^{2}\,{\rm d}s\,,~{}~{}~{}u,v\in\mathcal{E}_{a,b}. (2.1)

For any b>0b>0, we write ρb=ρ0,b\rho_{b}=\rho_{0,b} and b=0,b\mathcal{E}_{b}=\mathcal{E}_{0,b}.

2.1. Notion of solutions and main theorem

In the theory of stochastic evolution equations, two types of solution concepts are considered namely strong solution and weak solution. We first provide the notion of a strong solution for (1.1).

Definition 2.1 (Strong solution).

Let (Ω,,,{t}t0)(\Omega,\mathcal{F},\mathbb{P},\{\mathcal{F}_{t}\}_{t\geq 0}) be a given complete stochastic basis, NN be a time-homogeneous Poisson random measure on 𝑬\boldsymbol{E} with intensity measure m(dz)m({\rm d}z) defined on (Ω,,,{t}t0)(\Omega,\mathcal{F},\mathbb{P},\{\mathcal{F}_{t}\}_{t\geq 0}). We say that a predictable process u:Ω×[0,)L2(D)u:\Omega\times[0,\infty)\rightarrow L^{2}(D) is a global strong solution of (1.1), if and only if for any T>0T>0, uL2(Ω;𝔻([0,T];L2(D)))L2(Ω;L2([0,T];W01,2(D)))L2(Ω;L([0,T];L2(D)))u\in L^{2}(\Omega;\mathbb{D}([0,T];L^{2}(D)))\cap L^{2}(\Omega;L^{2}([0,T];W_{0}^{1,2}(D)))\cap L^{2}(\Omega;L^{\infty}([0,T];L^{2}(D))) such that

  • i)

    u(0,)=u0u(0,\cdot)=u_{0} in L2(D)L^{2}(D),

  • ii)

    \mathbb{P}-a.s., and for any t0t\geq 0,

    u(t)\displaystyle u(t) =u0+0tΔu(s)ds+0tu(s)log|u(s)|ds+0t|z|>0η(u(s);z)N~(dz,ds)inW1,2(D).\displaystyle=u_{0}+\int_{0}^{t}\Delta u(s)\,{\rm d}s+\int_{0}^{t}u(s)\log|u(s)|\,{\rm d}s+\int_{0}^{t}\int_{|z|>0}\eta(u(s);z)\widetilde{N}({\rm d}z,{\rm d}s)\quad\text{in}~{}~{}W^{-1,2}(D)\,. (2.2)

In situations where the drift and diffusion operators lack Lipschitz continuity, establishing the existence of a strong solution might not be feasible, and therefore one needs to consider the concept of a weak solution.

Definition 2.2 (Weak solution).

We say that a 66-tuple π¯=(Ω¯,¯,¯,{¯t},N¯,u¯)\bar{\pi}=\big{(}\bar{\Omega},\bar{\mathcal{F}},\bar{\mathbb{P}},\{\bar{\mathcal{F}}_{t}\},\bar{N},\bar{u}\big{)} is a weak solution of (1.1), if

  • (i)

    (Ω¯,¯,¯,{¯t}t0)(\bar{\Omega},\bar{\mathcal{F}},\bar{\mathbb{P}},\{\bar{\mathcal{F}}_{t}\}_{t\geq 0}) is a complete stochastic basis,

  • ii)

    N¯\bar{N} is a time-homogeneous Poisson random measure on 𝑬\boldsymbol{E} with intensity measure m(dz)m({\rm d}z) defined on (Ω¯,¯,¯,{¯t}t0)(\bar{\Omega},\bar{\mathcal{F}},\bar{\mathbb{P}},\{\bar{\mathcal{F}}_{t}\}_{t\geq 0}),

  • (iii)

    u¯\bar{u} is a L2(D)L^{2}(D)-valued {¯t}\{\bar{\mathcal{F}}_{t}\}-predictable process such that for any T>0T>0

    • a)

      u¯(0)=u0\bar{u}(0)=u_{0} in L2(D)L^{2}(D),

    • b)

      u¯L2(Ω¯;𝔻([0,T];L2(D)))L2(Ω¯;L2([0,T];W01,2(D)))L2(Ω¯;L([0,T];L2(D)))\bar{u}\in L^{2}(\bar{\Omega};\mathbb{D}([0,T];L^{2}(D)))\cap L^{2}(\bar{\Omega};L^{2}([0,T];W_{0}^{1,2}(D)))\cap L^{2}(\bar{\Omega};L^{\infty}([0,T];L^{2}(D))),

    • c)

      ¯\bar{\mathbb{P}}-a.s., and for any t0t\geq 0, (2.2) holds.

We will study the well-posedness theory for problem (1.1) under the following assumptions.

  1. A.1

    Initial data u0u_{0} is deterministic and u0L2(D)u_{0}\in L^{2}(D).

  2. A.2

    There exist non-negative constants K1,K2K_{1},K_{2} and a non-negative function 𝚑L(𝑬,m)L1(𝑬,m){\tt h}\in L^{\infty}(\boldsymbol{E},m)\cap L^{1}(\boldsymbol{E},m) such that for all u,vu,v\in\mathbb{R} and z𝑬z\in\boldsymbol{E}

    |η(u;z)η(v;z)|{K1|uv|+K2|uv|(log+(|u||v|))12}𝚑(z).\displaystyle|\eta(u;z)-\eta(v;z)|\leq\Big{\{}K_{1}|u-v|+K_{2}|u-v|\big{(}\log_{+}(|u|\vee|v|)\big{)}^{\frac{1}{2}}\Big{\}}{\tt h}(z).
  3. A.3

    η\eta satisfies the following sub-linear growth condition: there exist non-negative constants M1,M2M_{1},M_{2} and θ[0,1)\theta\in[0,1) such that

    |η(u;z)|{M1+M2|u|θ}𝚑(z) for all u and z𝑬.\displaystyle|\eta(u;z)|\leq\Big{\{}M_{1}+M_{2}|u|^{\theta}\Big{\}}{\tt h}(z)\quad\text{ for all $u\in\mathbb{R}$ and $z\in\boldsymbol{E}$}.

Now, we state one of the main results of our article.

Theorem 2.1 (Well-posedness of strong solution).

Let the assumptions A.1-A.3 hold true. Then there exists a unique global strong solution of (1.1) in the sense of Definition 2.1. Moreover, for any T>0T>0 and p2p\geq 2, there exists a positive constant C=C(p,θ,u0L2(D),T)C=C(p,\theta,\|u_{0}\|_{L^{2}(D)},T) such that

𝔼[sup0tTu(t)L2(D)p+0Tu(t)L2(D)p2u(t)W01,2(D)2dt]C(p,θ,u0L2(D),T).\mathbb{E}\bigg{[}\sup_{0\leq t\leq T}\|u(t)\|_{L^{2}(D)}^{p}+\int_{0}^{T}\|u(t)\|_{L^{2}(D)}^{p-2}\|u(t)\|_{W_{0}^{1,2}(D)}^{2}\,{\rm d}t\bigg{]}\leq C(p,\theta,\|u_{0}\|_{L^{2}(D)},T)\,. (2.3)

2.2. Large deviation principle

We recall some fundamental definitions and results of the Freidlin–Wentzell-type large deviation theory. Let {Yϵ}ϵ>0\{Y^{\epsilon}\}_{\epsilon>0} be a sequence of random variables defined on a given probability space (Ω,,)(\Omega,\mathcal{F},\mathbb{P}) taking values in some Polish space 𝕆\mathbb{O}. It is well-known that the large deviation principle characterizes the exponential decay of the remote tails of some sequences of probability distributions. The rate of such decay is described by the “rate function”.

Definition 2.3 (Rate Function).

A function 𝙸:𝕆[0,]{\tt I}:\mathbb{O}\rightarrow[0,\infty] is called a rate function on 𝕆\mathbb{O} if it is lower semi-continuous. If the level set {x𝕆:𝙸(x)M}\{x\in\mathbb{O}:{\tt I}(x)\leq M\} is compact for each M<M<\infty, then 𝙸{\tt I} is called a good rate function.

Definition 2.4 (Large deviation principle).

The sequence {Yϵ}ϵ>0\{Y^{\epsilon}\}_{\epsilon>0} is said to satisfy the large deviation principle on 𝕆\mathbb{O} with rate function 𝙸{\tt I} if for any Borel subset OO of 𝕆\mathbb{O}

infxO0𝙸(x)lim infϵ0ϵ2log((YϵO))\displaystyle-\underset{x\in O^{0}}{\inf}{\tt I}(x)\leq\underset{\epsilon\longrightarrow 0}{\liminf}\,\epsilon^{2}\log\big{(}\mathbb{P}(Y^{\epsilon}\in O)\big{)} lim supϵ0ϵ2log((YϵO))infxO¯𝙸(x),\displaystyle\leq\underset{\epsilon\longrightarrow 0}{\limsup}\,\epsilon^{2}\log\big{(}\mathbb{P}(Y^{\epsilon}\in O)\big{)}\leq-\underset{x\in\bar{O}}{\inf}{\tt I}(x),

where O0O^{0} and O¯\bar{O} are the interior and closure of OO in 𝕆\mathbb{O} respectively.

Let 𝒪\mathcal{O} be a locally compact Polish space and (𝒪)\mathcal{M}(\mathcal{O}) be the space of all measures 𝚖{\tt m} on (𝒪,(𝒪))(\mathcal{O},\mathcal{B}(\mathcal{O})) such that 𝚖(K)<{\tt m}(K)<\infty for every compact KK in 𝒪\mathcal{O}. Let 𝒯((𝒪))\mathcal{T}(\mathcal{M}(\mathcal{O})) be the weakest topology on (𝒪)\mathcal{M}(\mathcal{O}) such that for every fCc(𝒪)f\in C_{c}(\mathcal{O})

(𝒪)𝚖𝒪f(u)𝚖(du)\mathcal{M}(\mathcal{O})\ni{\tt m}\mapsto\int_{\mathcal{O}}f(u)\,{\tt m}(du)\in\mathbb{R}

is continuous, where Cc(𝒪)C_{c}(\mathcal{O}) denotes the space of continuous functions with compact support. It is well-known that ((𝒪),𝒯((𝒪)))(\mathcal{M}(\mathcal{O}),\mathcal{T}(\mathcal{M}(\mathcal{O}))) is a Polish space; cf. [BDM11].

Fix a σ\sigma-finite measure mm on (𝑬,(𝑬))(\boldsymbol{E},\mathcal{B}(\boldsymbol{E})) as mentioned in the introduction. Set 𝙼T:=([0,T]×𝑬){\tt M}_{T}:=\mathcal{M}([0,T]\times\boldsymbol{E}) and 𝕄T:=([0,T]×𝑬×[0,))\mathbb{M}_{T}:=\mathcal{M}([0,T]\times\boldsymbol{E}\times[0,\infty)) for fixed T>0T>0. Both (𝙼T,𝒯(𝙼T))({\tt M}_{T},\mathcal{T}({\tt M}_{T})) and (𝕄T,𝒯(𝕄T))(\mathbb{M}_{T},\mathcal{T}(\mathbb{M}_{T})) are Polish spaces. In this part, we specify the probability space

Ω:=𝕄T,:=𝒯(𝕄T).\Omega:=\mathbb{M}_{T},\quad\mathcal{F}:=\mathcal{T}(\mathbb{M}_{T}).

For the given m(𝑬)m\in\mathcal{M}(\boldsymbol{E}), by [IW81, Section 1.8], there exists a unique probability measure \mathbb{P} on (Ω,)(\Omega,\mathcal{F}) such that the canonical map

N:Ωνν𝕄TN:\Omega\ni\nu\mapsto\nu\in\mathbb{M}_{T}

is a Poisson random measure (PRM) on [0,T]×𝑬×[0,)[0,T]\times\boldsymbol{E}\times[0,\infty) with intensity measure λTmλ\lambda_{T}\otimes m\otimes\lambda_{\infty}, where λT\lambda_{T} and λ\lambda_{\infty} are Lebesgue measure on [0,T][0,T] and [0,)[0,\infty) respectively. For each t[0,T]t\in[0,T], define the σ\sigma-algebra 𝒢t\mathcal{G}_{t} as

𝒢t:=σ{N((0,s]×A):0st,A(𝑬×[0,))}.\mathcal{G}_{t}:=\sigma\{N((0,s]\times A):0\leq s\leq t,A\in\mathcal{B}(\boldsymbol{E}\times[0,\infty))\}.

We take 𝔽:={t}t[0,T]\mathbb{F}:=\{\mathcal{F}_{t}\}_{t\in[0,T]} as the \mathbb{P}-completion of {𝒢t}t[0,T]\{\mathcal{G}_{t}\}_{t\in[0,T]}. By 𝒫T\mathcal{P}_{T}, we denote the 𝔽\mathbb{F}-predictable σ\sigma-field on [0,T]×Ω[0,T]\times\Omega. The corresponding compensated Poisson random measure is denoted by N~\widetilde{N}. Denote

𝒜:={φ:[0,T]×𝑬×Ω[0,): φ is (𝒫T(𝑬))/([0,)]) measurable}.\mathcal{A}:=\Big{\{}\varphi:[0,T]\times\boldsymbol{E}\times\Omega\rightarrow[0,\infty):~{}\text{ $\varphi$ is $(\mathcal{P}_{T}\otimes\mathcal{B}(\boldsymbol{E}))/\mathcal{B}([0,\infty)])$ measurable}\Big{\}}.

For φ𝒜\varphi\in\mathcal{A}, define a counting process NφN^{\varphi} on [0,T]×𝑬[0,T]\times\boldsymbol{E} by

Nφ((0,t]×A):=(0,t]×A(0,)1[0,φ(s,z)](r)N(ds,dz,dr),t[0,T],A(𝑬).\displaystyle N^{\varphi}((0,t]\times A):=\int_{(0,t]\times A}\int_{(0,\infty)}1_{[0,\varphi(s,z)]}(r)\,N({\rm d}s,{\rm d}z,{\rm d}r),\quad t\in[0,T],~{}A\in\mathcal{B}(\boldsymbol{E})\,. (2.4)

NφN^{\varphi} can be viewed as a controlled random measure, with φ\varphi selecting the intensity. Analogously, N~φ\widetilde{N}^{\varphi} is defined by replacing NN with N~\widetilde{N} in (2.4). When φ𝚊(0,)\varphi\equiv{\tt a}\in(0,\infty), we write Nφ=N𝚊N^{\varphi}=N^{\tt a}. In particular, for any 𝚊>0{\tt a}>0, N𝚊N^{\tt a} is a Poisson random measure on [0,T]×𝑬[0,T]\times\boldsymbol{E} with intensity measure λT(dt)𝚊m(dz)\lambda_{T}({\rm d}t)\otimes{\tt a}m({\rm d}z), and N~𝚊\widetilde{N}^{\tt a} is equal to the corresponding compensated Poisson random measure; cf. [BPZ23, Proposition 5.1].

Let us define

2:={𝚑:𝑬+:𝚑 is Borel measurable and there exists δ(0,) such that\displaystyle\mathcal{H}_{2}:=\Big{\{}{\tt h}:\boldsymbol{E}\rightarrow\mathbb{R}^{+}:~{}\text{${\tt h}$ is Borel measurable and there exists $\delta\in(0,\infty)$ such that}
Eexp{δ𝚑2(z)}m(dz)<+for all E(𝑬) with m(E)<+}.\displaystyle\int_{E}\exp\{\delta\,{\tt h}^{2}(z)\}\,m({\rm d}z)<+\infty~{}\text{for all $E\in\mathcal{B}(\boldsymbol{E})$ with $m(E)<+\infty$}\Big{\}}\,.

To study the large deviation principle, we consider the following assumptions on the diffusion coefficient η(u;z)\eta(u;z).

  1. B.1

    There exist 𝚑1,𝚑22L1(𝑬,m)L2(𝑬,m){\tt h}_{1},~{}{\tt h}_{2}\in\mathcal{H}_{2}\cap L^{1}(\boldsymbol{E},m)\cap L^{2}(\boldsymbol{E},m) with 𝚑21{\tt h}_{2}\leq 1 such that

    η(u;z)η(v;z)L2(D)𝚑1(z)uvL2(D)for all u,vL2(D) and z𝑬,\displaystyle\|\eta(u;z)-\eta(v;z)\|_{L^{2}(D)}\leq{\tt h}_{1}(z)\|u-v\|_{L^{2}(D)}~{}~{}\text{for all $u,v~{}\in L^{2}(D)$ and $z\in\boldsymbol{E}$}\,, (2.5)
    η(u,z)L2(D)𝚑2(z)(1+uL2(D)θ)for all uL2(D) and z𝑬.\displaystyle\|\eta(u,z)\|_{L^{2}(D)}\leq{\tt h}_{2}(z)\big{(}1+\|u\|_{L^{2}(D)}^{\theta}\big{)}~{}~{}\text{for all $u~{}\in L^{2}(D)$ and $z\in\boldsymbol{E}$}\,. (2.6)
Remark 2.1.

Thanks to [WWJ2r, Remark 3.13.1], one has for any β0\beta\geq 0,

L2(𝑬,m)2Lβ+2(𝑬,m)2.L^{2}(\boldsymbol{E},m)\cap\mathcal{H}_{2}\subset L^{\beta+2}(\boldsymbol{E},m)\cap\mathcal{H}_{2}.
Remark 2.2.

If 𝚑2{\tt h}\in\mathcal{H}_{2}, then for every δ(0,)\delta\in(0,\infty) and all E(𝑬)E\in\mathcal{B}(\boldsymbol{E}) with m(E)<+m(E)<+\infty,

Eexp(δ𝚑(z))m(dz)<+.\int_{E}\exp(\delta{\tt h}(z))\,m({\rm d}z)<+\infty.

For ϵ>0\epsilon>0, consider the following SPDE on the probability space (Ω,,,𝔽)(\Omega,\mathcal{F},\mathbb{P},\mathbb{F}) as described above.

duϵΔuϵdt\displaystyle du_{\epsilon}-\Delta u_{\epsilon}\,{\rm d}t =uϵlog|uϵ|dt+ϵ|z|>0η(uϵ;z)N~ϵ1(dz,dt),(t,x)(0,T]×D,\displaystyle=u_{\epsilon}\log|u_{\epsilon}|\,{\rm d}t+\epsilon\int_{|z|>0}\eta(u_{\epsilon};z)\widetilde{N}^{\epsilon^{-1}}({\rm d}z,{\rm d}t),~{}~{}(t,x)\in(0,T]\times D\,, (2.7)
uϵ(0,x)\displaystyle u_{\epsilon}(0,x) =u0(x),xD.\displaystyle=u_{0}(x),~{}~{}~{}x\in D\,.

In view of Remark 2.1 and Theorem 2.1, under the assumptions A.1 and B.1, equation (2.7) has a unique strong solution uϵu_{\epsilon} whose trajectories a.s. belong to the space T:=𝔻([0,T];L2(D))L2([0,T];W01,2(D))\mathcal{E}_{T}:=\mathbb{D}([0,T];L^{2}(D))\cap L^{2}([0,T];W_{0}^{1,2}(D)). Moreover, in view of Yamada-Watanabe theorem [Zha14, Theorem 8], there exists a family {𝒢ϵ}ϵ>0\{\mathcal{G}^{\epsilon}\}_{\epsilon>0}, where 𝒢ϵ:𝙼TT\mathcal{G}^{\epsilon}:{\tt M}_{T}\rightarrow\mathcal{E}_{T} is a measurable map, such that uε=𝒢ϵ(ϵNϵ1)u_{\varepsilon}=\mathcal{G}^{\epsilon}(\epsilon N^{\epsilon^{-1}}).

Like in the Brownian noise case, we need to introduce so called skeleton equation. For any Borel measurable function φ:[0,T]×𝑬[0,)\varphi:[0,T]\times\boldsymbol{E}\rightarrow[0,\infty), define

LT(φ):=[0,T]×𝑬(φ(t,z)log(φ(t,z))φ(t,z)+1)m(dz)dt.L_{T}(\varphi):=\int_{[0,T]\times\boldsymbol{E}}\big{(}\varphi(t,z)\log(\varphi(t,z))-\varphi(t,z)+1\big{)}\,m({\rm d}z)\,{\rm d}t\,.

For any NN\in\mathbb{N}, define

SN={g:[0,T]×𝑬[0,):LT(g)N},𝕊:=N1SN.S_{N}=\left\{g:[0,T]\times\boldsymbol{E}\rightarrow[0,\infty):L_{T}(g)\leq N\right\},\quad\mathbb{S}:=\cup_{N\geq 1}S_{N}\,.

Any gSNg\in S_{N} can be identified with a measure νTg𝙼T\nu_{T}^{g}\in{\tt M}_{T}, defined by

νTg(A)=Ag(s,z)m(dz)ds,A([0,T]×𝑬).\nu_{T}^{g}(A)=\int_{A}g(s,z)\,m({\rm d}z)\,{\rm d}s,\quad~{}~{}A\in\mathcal{B}([0,T]\times\boldsymbol{E}).

This identification induces a topology τ(SN)\tau(S_{N}) on SNS_{N} in which (SN,τ(SN))(S_{N},\tau(S_{N})) is a compact space; see [BCD13, Appendix]. Define the following set

𝒰N:={ϕ𝒜:ϕ(ω)SN,-a.e.ωΩ}.\mathcal{U}_{N}:=\left\{\phi\in\mathcal{A}:\phi(\omega)\in S_{N},\mathbb{P}\,\text{-a.e.}\,\omega\in\Omega\right\}.

Fix an increasing sequence {𝑬n}n\{\boldsymbol{E}_{n}\}_{n\in\mathbb{N}} of compact sets in 𝑬\boldsymbol{E} such that 𝑬=n=1𝑬n\boldsymbol{E}=\bigcup_{n=1}^{\infty}\boldsymbol{E}_{n}. Define

𝒜~\displaystyle\tilde{\mathcal{A}} :=n=1{φ𝒜:φ(t,z,ω)[1n,n]if (t,z,ω)[0,T]×𝑬n×Ω\displaystyle:=\bigcup_{n=1}^{\infty}\Big{\{}\varphi\in\mathcal{A}:~{}~{}\varphi(t,z,\omega)\in[\frac{1}{n},n]~{}\text{if $(t,z,\omega)\in[0,T]\times\boldsymbol{E}_{n}\times\Omega$}
and φ(t,z,ω)=1 if (t,z,ω)[0,T]×𝑬nc×Ω},\displaystyle\hskip 56.9055pt\text{and $\varphi(t,z,\omega)=1$ if $(t,z,\omega)\in[0,T]\times\boldsymbol{E}_{n}^{c}\times\Omega$}\Big{\}}\,,
𝒰~N\displaystyle\tilde{\mathcal{U}}_{N} :={φ𝒜~:φ(,,ω)SN,-a.e.ωΩ}.\displaystyle:=\left\{\varphi\in\tilde{\mathcal{A}}:\varphi(\cdot,\cdot,\omega)\in S_{N},\mathbb{P}\,\text{-a.e.}\,\omega\in\Omega\right\}.

For any g𝕊g\in\mathbb{S}, consider the following deterministic equation (called skeleton equation):

dug(t,x)Δugdt\displaystyle du_{g}(t,x)-\Delta u_{g}\,{\rm d}t =uglog|ug|dt+𝑬η(ug(t,x);z)(g(t,z)1)m(dz)dt,(t,x)(0,T]×D,\displaystyle=u_{g}\log|u_{g}|\,{\rm d}t+\int_{\boldsymbol{E}}\eta(u_{g}(t,x);z)\,(g(t,z)-1)\,m({\rm d}z)\,{\rm d}t,~{}~{}(t,x)\in(0,T]\times D\,, (2.8)
ug(0,x)\displaystyle u_{g}(0,x) =u0(x),xD,ug(t,x)=0,(t,x)[0,T]×D.\displaystyle=u_{0}(x),~{}~{}x\in D,\quad u_{g}(t,x)=0,~{}~{}(t,x)\in[0,T]\times\partial D\,.
Theorem 2.2.

Let the assumptions A.1 and B.1 hold true. Then there exists a unique solution ugC([0,T];L2(D))L2([0,T];W01,2(D))u_{g}\in C([0,T];L^{2}(D))\cap L^{2}([0,T];W_{0}^{1,2}(D)) of the skeleton equation (2.8). Moreover, for fixed NN\in\mathbb{N}, there exists a constant CN>0C_{N}>0 such that

supgSN{supt[0,T]ug(t)L2(D)2+0Tug(t)W01,2(D)2dt}CN.\displaystyle\sup_{g\in S_{N}}\Big{\{}\sup_{t\in[0,T]}\|u_{g}(t)\|_{L^{2}(D)}^{2}+\int_{0}^{T}\|u_{g}(t)\|_{W_{0}^{1,2}(D)}^{2}\,{\rm d}t\Big{\}}\leq C_{N}\,. (2.9)

This allow us to define a measurable map 𝒢0:𝕊gugT\mathcal{G}^{0}:\mathbb{S}\ni g\mapsto u_{g}\in\mathcal{E}_{T}.

We now state the main result regarding the large deviation principle.

Theorem 2.3.

Let the assumptions A.1 and B.1 hold true. Then the family {uϵ}ϵ>0\{u_{\epsilon}\}_{\epsilon>0} satisfies a large deviation principle on T\mathcal{E}_{T} with the good rate function 𝙸:T[0,+]{\tt I}:\mathcal{E}_{T}\rightarrow[0,+\infty] given by

𝙸(ϕ):=inf{LT(g): g𝕊 with ug=ϕ},ϕT{\tt I}(\phi):=\inf\Big{\{}L_{T}(g):~{}~{}~{}\text{ $g\in\mathbb{S}$ with $u_{g}=\phi$}\Big{\}},\quad\phi\in\mathcal{E}_{T}

with the convention that inf()=\inf(\emptyset)=\infty, where for g𝕊g\in\mathbb{S}, ugu_{g} is the unique solution of (2.8).

3. Well-posedness theory for strong solution of (1.1)

In this section, we establish the well-posedness of equation (1.1). In order to achieve this, we initially use the Galerkin methods to construct approximate solutions. Following this, we derive its necessary a-priori bounds. Firstly, we show the existence of a martingale solution and then prove its global solution.

3.1. Galerkin approximating solutions

Let {en}\{e_{n}\} be an orthogonal basis of V:=W01,2(D)V:=W_{0}^{1,2}(D) and orthonormal basis of L2(D)L^{2}(D) consists of the eigen-functions of Δ-\Delta operator with a Dirichlet boundary condition corresponding to the eigenvalue λn\lambda_{n}. Note that for each nn\in\mathbb{N}, enL(D)e_{n}\in L^{\infty}(D). Let LnL_{n} denote the nn-dimensional subspace of L2(D)L^{2}(D) spanned by {e1,,en}\left\{e_{1},\ldots,e_{n}\right\}. Let Pn:VLnP_{n}:V^{*}\rightarrow L_{n} be the projection operator defined by

Pnh:=j=1nh,ejej,hV.\displaystyle P_{n}h:=\sum_{j=1}^{n}\left\langle h,e_{j}\right\rangle e_{j}\,,\quad h\in V^{*}\,. (3.1)

For any nn\in\mathbb{N}, we consider the following stochastic differential equation in LnL_{n}:

{dun(t)=Δun(t)dt+Pn[un(t)log|un(t)|]dt+𝑬Pn[η(un;z)]N~(dz,dt),t>0,un(0)=Pnu0,\displaystyle\begin{cases}\displaystyle{\rm d}u_{n}(t)=\Delta u_{n}(t){\rm d}t+P_{n}\left[u_{n}(t)\log\left|u_{n}(t)\right|\right]{\rm d}t+\int_{\boldsymbol{E}}P_{n}[\eta(u_{n};z)]\widetilde{N}({\rm d}z,{\rm d}t),\quad t>0\,,\\ u_{n}(0)=P_{n}u_{0}\,,\end{cases} (3.2)

such that

un(t)=j=1nhjn(t)ej.\displaystyle u_{n}(t)=\sum_{j=1}^{n}h_{jn}(t)e_{j}\,. (3.3)

Note that unu_{n} solves (3.2) if and only if {hjn}j=1n\left\{h_{jn}\right\}_{j=1}^{n} solves the system of SDE

dhin(t)\displaystyle{\rm d}h_{in}(t) =λihin(t)dt+(j=1nhjn(t)ejlog|j=1nhjn(t)ej|,ei)dt\displaystyle=-\lambda_{i}h_{in}(t)\,{\rm d}t+\left(\sum_{j=1}^{n}h_{jn}(t)e_{j}\log\left|\sum_{j=1}^{n}h_{jn}(t)e_{j}\right|,e_{i}\right)\,{\rm d}t
+𝑬(η(j=1nhjn(t)ej;z),ei)N~(dz,dt),i=1,2,,n.\displaystyle+\int_{\boldsymbol{E}}\left(\eta\bigg{(}\sum_{j=1}^{n}h_{jn}(t)e_{j};z\bigg{)},e_{i}\right)\widetilde{N}({\rm d}z,{\rm d}t),\quad i=1,2,\ldots,n\,. (3.4)

To present the existence and uniqueness results for the system (3.1), we introduce the following functions FiF_{i} and Hi,i=1,,nH_{i},i=1,\ldots,n, on n\mathbb{R}^{n}:

Fi(y1,,yn)\displaystyle F_{i}\left(y_{1},\ldots,y_{n}\right) :=Dei(x)(j=1nyjej(x))log|j=1nyjej(x)|dx,\displaystyle:=\displaystyle\int_{D}e_{i}(x)\left(\sum_{j=1}^{n}y_{j}e_{j}(x)\right)\log\left|\sum_{j=1}^{n}y_{j}e_{j}(x)\right|\,{\rm d}x\,,
Hi(y1,,yn;z)\displaystyle H_{i}\left(y_{1},\ldots,y_{n};z\right) :=Dei(x)η(j=1nyjej(x);z)dx.\displaystyle:=\int_{D}e_{i}(x)\,\eta\bigg{(}\sum_{j=1}^{n}y_{j}e_{j}(x);z\bigg{)}\,{\rm d}x\,.

To proceed further, we first recall the following estimates for the difference between two logarithmic terms. For its proof, we refer to see [SZ22, Lemmas 3.13.1 &\& 3.23.2].

Lemma 3.1.

For any ξ,ζV,ϵ>0\xi,\zeta\in V,\epsilon>0, and α(0,1)\alpha\in(0,1), we have

(ξlog|ξ|ζlog|ζ|,ξζ)\displaystyle(\xi\log|\xi|-\zeta\log|\zeta|,\xi-\zeta)
ϵξζW01,2(D)2+(1+d4log1ϵ)ξζL2(D)2+ξζL2(D)2logξζL2(D)\displaystyle\leq\epsilon\,\|\xi-\zeta\|_{W_{0}^{1,2}(D)}^{2}+\left(1+\frac{d}{4}\log\frac{1}{\epsilon}\right)\|\xi-\zeta\|_{L^{2}(D)}^{2}+\|\xi-\zeta\|_{L^{2}(D)}^{2}\log\|\xi-\zeta\|_{L^{2}(D)}
+12(1α)e(ξL2(D)2(1α)+ζL2(D)2(1α))ξζL2(D)2α.\displaystyle\quad+\frac{1}{2(1-\alpha)\mathrm{e}}\left(\|\xi\|_{L^{2}(D)}^{2(1-\alpha)}+\|\zeta\|_{L^{2}(D)}^{2(1-\alpha)}\right)\|\xi-\zeta\|_{L^{2}(D)}^{2\alpha}\,.
Lemma 3.2.

For any ξ,ζV,ϵ>0\xi,\zeta\in V,\epsilon>0, and α(0,1)\alpha\in(0,1), we have

D|ξ(x)ζ(x)|2log+(|ξ(x)||ζ(x)|)dx\displaystyle\int_{D}|\xi(x)-\zeta(x)|^{2}\log_{+}(|\xi(x)|\vee|\zeta(x)|)\,{\rm d}x
ϵξζW01,2(D)2+(d4log1ϵ)ξζL2(D)2+ξζL2(D)2logξζL2(D)\displaystyle\leq\epsilon\,\|\xi-\zeta\|_{W_{0}^{1,2}(D)}^{2}+\left(\frac{d}{4}\log\frac{1}{\epsilon}\right)\|\xi-\zeta\|_{L^{2}(D)}^{2}+\|\xi-\zeta\|_{L^{2}(D)}^{2}\log\|\xi-\zeta\|_{L^{2}(D)}
+12(1α)e(ξL2(D)2(1α)+ζL2(D)2(1α))ξζL2(D)2α\displaystyle\quad+\frac{1}{2(1-\alpha)\mathrm{e}}\left(\|\xi\|_{L^{2}(D)}^{2(1-\alpha)}+\|\zeta\|_{L^{2}(D)}^{2(1-\alpha)}\right)\|\xi-\zeta\|_{L^{2}(D)}^{2\alpha}
+12(1α)e(4λ(D))1αξζL2(D)2α,\displaystyle\qquad+\frac{1}{2(1-\alpha)\mathrm{e}}(4\lambda(D))^{1-\alpha}\|\xi-\zeta\|_{L^{2}(D)}^{2\alpha}\,,

where λ(D)\lambda(D) is the Lebesgue measure of the domain DD.

For any vector v=(v1,,vn)nv=\left(v_{1},\ldots,v_{n}\right)\in\mathbb{R}^{n}, we denote the length of vv as |v||v|. We provide some essential estimates for the functions FiF_{i} and Gi,i=1,,nG_{i},~{}i=1,\ldots,n.

Lemma 3.3.

Under the assumptions A.1-A.3, the following estimates hold.

  • (i)

    There exist non-negative constants K1~,K2~,K3~\widetilde{K_{1}},\widetilde{K_{2}},\widetilde{K_{3}} and δ>0\delta>0 such that for any v,wnv,w\in\mathbb{R}^{n} with |vw|δ|v-w|\leq\delta,

    |Fi(v1,,vn)Fi(w1,,wn)|\displaystyle\left|F_{i}\left(v_{1},\ldots,v_{n}\right)-F_{i}\left(w_{1},\ldots,w_{n}\right)\right|
    \displaystyle\leq K1~|vw|+K2~|vw|log+(|v||w|)+K3~|vw|log1|vw|.\displaystyle\widetilde{K_{1}}|v-w|+\widetilde{K_{2}}|v-w|\log_{+}(|v|\vee|w|)+\widetilde{K_{3}}|v-w|\log\frac{1}{|v-w|}\,.
  • (ii)

    There exist constants C1~,C2~0\widetilde{C_{1}},\widetilde{C_{2}}\geq 0 such that for any vnv\in\mathbb{R}^{n},

    |Fi(v1,,vn)|C1~+C2~|v|log+|v|.\displaystyle\left|F_{i}\left(v_{1},\ldots,v_{n}\right)\right|\leq\widetilde{C_{1}}+\widetilde{C_{2}}|v|\log_{+}|v|\,.
  • (iii)

    There exist non-negative constants K4~,K5~\widetilde{K_{4}},\widetilde{K_{5}} such that for any v,wnv,w\in\mathbb{R}^{n},

    𝑬|Hi(v1,,vn;z)Hi(w1,,wn;z)|2m(dz)\displaystyle\int_{\boldsymbol{E}}\left|H_{i}\left(v_{1},\ldots,v_{n};z\right)-H_{i}\left(w_{1},\ldots,w_{n};z\right)\right|^{2}\,m({\rm d}z)
    \displaystyle\leq K4~|vw|2+K5~|vw|log+(|v||w|).\displaystyle\widetilde{K_{4}}|v-w|^{2}+\widetilde{K_{5}}|v-w|\log_{+}(|v|\vee|w|)\,.
  • (iv)

    There exist constants C3~,C4~0\widetilde{C_{3}},\widetilde{C_{4}}\geq 0 such that for any vnv\in\mathbb{R}^{n},

    𝑬|Hi(v1,,vn;z)|2m(dz)C3~+C4~|v|2(log+|v|).\displaystyle\int_{\boldsymbol{E}}\left|H_{i}\left(v_{1},\ldots,v_{n};z\right)\right|^{2}\,m({\rm d}z)\leq\widetilde{C_{3}}+\widetilde{C_{4}}|v|^{2}(\log_{+}|v|)\,.
Proof.

The assertions (i) and (ii) follow from [SZ22, Lemma 4.1]. To prove (iii), we first set

y1(x):=j=1nvjej(x),y2(x):=j=1nwjej(x).\displaystyle y_{1}(x):=\sum_{j=1}^{n}v_{j}e_{j}(x),\quad y_{2}(x):=\sum_{j=1}^{n}w_{j}e_{j}(x).

Note that

|y1(x)|=|j=1nvjej(x)||v|(j=1nejL(D)2)12(|v||w|)(j=1nejL(D)2)12.\displaystyle|y_{1}(x)|=\left|\sum_{j=1}^{n}v_{j}e_{j}(x)\right|\leq|v|\left(\sum_{j=1}^{n}\|e_{j}\|_{L^{\infty}(D)}^{2}\right)^{\frac{1}{2}}\leq(|v|\vee|w|)\left(\sum_{j=1}^{n}\|e_{j}\|_{L^{\infty}(D)}^{2}\right)^{\frac{1}{2}}\,. (3.5)

In view of the assumption A.2, we get

𝑬\displaystyle\int_{\boldsymbol{E}} |Hi(v1,,vn;z)Hi(w1,,wn;z)|2m(dz)\displaystyle|H_{i}\left(v_{1},\ldots,v_{n};z\right)-H_{i}\left(w_{1},\ldots,w_{n};z\right)|^{2}\,m({\rm d}z)
=𝑬|Dei(x)(η(y1(x);z)η(y2(x);z))dx|2m(dz)\displaystyle=\int_{\boldsymbol{E}}\left|\int_{D}e_{i}(x)\bigg{(}\eta(y_{1}(x);z)-\eta(y_{2}(x);z)\bigg{)}{\rm d}x\right|^{2}\,m({\rm d}z)
CDei2(x)[𝑬|η(y1(x);z)η(y2(x);z)|2m(dz)]dx\displaystyle\leq C\int_{D}e_{i}^{2}(x)\left[\int_{\boldsymbol{E}}\left|\eta(y_{1}(x);z)-\eta(y_{2}(x);z)\right|^{2}\,m({\rm d}z)\right]{\rm d}x
CeiL(D)2D𝑬{2K12|y1y2|2+2K22|y1y2|2log+(|y1||y2|)}𝚑2(z)m(dz)dx\displaystyle\leq C\|e_{i}\|_{L^{\infty}(D)}^{2}\int_{D}\int_{\boldsymbol{E}}\Big{\{}2\,K_{1}^{2}|y_{1}-y_{2}|^{2}+2\,K_{2}^{2}|y_{1}-y_{2}|^{2}\log_{+}(|y_{1}|\vee|y_{2}|)\Big{\}}{\tt h}^{2}(z)\,m({\rm d}z){\rm d}x
CeiL(D)2[D|y1y2|2dx+D|y1y2|2(log+(|y1||y2|))dx].\displaystyle\leq C\|e_{i}\|_{L^{\infty}(D)}^{2}\left[\int_{D}|y_{1}-y_{2}|^{2}\,{\rm d}x+\int_{D}|y_{1}-y_{2}|^{2}\big{(}\log_{+}(|y_{1}|\vee|y_{2}|)\big{)}\,{\rm d}x\right]\,.

By using (3.5) and using similar argument (with the cosmetic modifications) as in the proof of [SZ22, Lemma 4.14.1, pp. 97-99] to conclude the assertion (iii){\rm(iii)}. The proof of assertion (iv) is similar to the proof of assertion (iii). ∎

Thanks to Lemma 3.3, we can directly utilize Theorems 2.22.2 and 2.42.4 of [XZ19] (see also [Don18, Sit05]) to obtain the following theorem.

Theorem 3.4.

Under A.1-A.3, the equation (3.2) admits a unique strong solution.

3.2. A-priori estimates

In this subsection, we wish to derive the necessary uniform bounds for {un}\{u_{n}\}. To begin with, we state the following logarithmic Sobolev inequality; see [SZ22].

Lemma 3.5 (Logarithmic Sobolev inequality).

For any ε>0\varepsilon>0 and uW01,2(D),u\in W_{0}^{1,2}(D), the following inequalities hold:

i)D|u(x)|2log(|u(x)|)dxεuW01,2(D)2+d4log(1ε)uL2(D)2+uL2(D)2log(uL2(D)).\displaystyle{i)}~{}~{}\int_{D}|u(x)|^{2}\log(|u(x)|)\,{\rm d}x\leq\varepsilon\|u\|_{W_{0}^{1,2}(D)}^{2}+\frac{d}{4}\log(\frac{1}{\varepsilon})\|u\|_{L^{2}(D)}^{2}+\|u\|_{L^{2}(D)}^{2}\log(\|u\|_{L^{2}(D)})\,. (3.6)
ii)D|u(x)|2log+(|u(x)|)dxεuW01,2(D)2+d4log(1ε)uL2(D)2+uL2(D)2log(uL2(D))+12eλ(D).\displaystyle{ii)}~{}~{}\int_{D}|u(x)|^{2}\log_{+}(|u(x)|)\,{\rm d}x\leq\varepsilon\|u\|_{W_{0}^{1,2}(D)}^{2}+\frac{d}{4}\log(\frac{1}{\varepsilon})\|u\|_{L^{2}(D)}^{2}+\|u\|_{L^{2}(D)}^{2}\log(\|u\|_{L^{2}(D)})+\frac{1}{2e}\lambda(D)\,.

We frequently use the following nonlinear versions of Gronwall’s inequalities, whose proof can be found in [MPF91, SZ22]

Lemma 3.6.

Let y(),f()y(\cdot),f(\cdot) and g()g(\cdot) be non-negative functions on \mathbb{R} such that y()y(\cdot) satisfies the integral inequality

y(t)C+t0t(f(s)y(s)+g(s)yα(s))ds,tt00,\displaystyle y(t)\leq C+\int_{t_{0}}^{t}\big{(}f(s)y(s)+g(s)y^{\alpha}(s)\big{)}\,{\rm d}s,~{}~{}~{}t\geq t_{0}\geq 0,

where C0C\geq 0 and α[0,1)\alpha\in[0,1) are given constants. Then, for any tt00t\geq t_{0}\geq 0,

y(t){C1αexp((1α)t0tf(s)ds)+(1α)t0tg(s)exp((1α)stf(r)dr)ds}11α.\displaystyle y(t)\leq\Bigg{\{}C^{1-\alpha}\exp\Big{(}(1-\alpha)\int_{t_{0}}^{t}f(s)\,{\rm d}s\Big{)}+(1-\alpha)\int_{t_{0}}^{t}g(s)\exp\Big{(}(1-\alpha)\int_{s}^{t}f(r)\,{\rm d}r\Big{)}\,{\rm d}s\Bigg{\}}^{\frac{1}{1-\alpha}}\,.
Lemma 3.7.

Let y(),f(),g(),h()y(\cdot),f(\cdot),g(\cdot),h(\cdot) and a()a(\cdot) be non-negative functions on [0,)[0,\infty), and h()h(\cdot) be increasing function with h(0)1h(0)\geq 1. Assume that, for any t0t\geq 0, the following inequality

y(t)+a(t)h(t)+0tf(s)y(s)ds+0tg(s)y(s)log(y(s))ds\displaystyle y(t)+a(t)\leq h(t)+\int_{0}^{t}f(s)y(s)\,{\rm d}s+\int_{0}^{t}g(s)y(s)\log(y(s))\,{\rm d}s

holds and all the integrals are finite. Then for any t0t\geq 0, one has

y(t)+a(t)(h(t))exp(G(t))exp{exp(G(t))0tf(s)exp(G(s))ds},\displaystyle y(t)+a(t)\leq\Big{(}h(t)\Big{)}^{\exp(G(t))}\exp\Big{\{}\exp(G(t))\int_{0}^{t}f(s)\exp(-G(s))\,{\rm d}s\Big{\}}\,,

where the function G(t)G(t) is given by

G(t):=0tg(s)ds.G(t):=\int_{0}^{t}g(s)\,{\rm d}s\,.
Lemma 3.8.

Under assumptions A.1-A.3, the following estimate holds: for any p2p\geq 2,

sup𝑛𝔼\displaystyle\underset{n}{\sup}\,\mathbb{E} [supt[0,Tp]un(s)L2(D)p+0Tpun(s)L2(D)p2un(s)W01,2(D)2ds]\displaystyle\Big{[}\underset{t\in[0,T_{p}]}{\sup}\,\|u_{n}(s)\|_{L^{2}(D)}^{p}+\int_{0}^{T_{p}}\|u_{n}(s)\|_{L^{2}(D)}^{p-2}\|u_{n}(s)\|_{W_{0}^{1,2}(D)}^{2}\,{\rm d}s\Big{]}
Cp,θ(1+u0L2(D)p2p1+θ)<,\displaystyle\leq C_{p,\theta}\big{(}1+\|u_{0}\|_{L^{2}(D)}^{\frac{p^{2}}{p-1+\theta}}\big{)}<\infty\,, (3.7)

for some constant Cp,θC_{p,\theta}, where Tp:=logpp1+θT_{p}:=\log\frac{p}{p-1+\theta} and θ\theta is the constant in the assumption A.3. Moreover, TpT_{p} is decreasing in p[2,)p\in[2,\infty).

Proof.

For any n,R>0,n\in\mathbb{N},R>0, we define stopping times

τRn:=inf{t>0:un(t)L2(D)>R}Tp.\displaystyle\tau_{R}^{n}:=\inf\Big{\{}t>0:\|u_{n}(t)\|_{L^{2}(D)}>R\Big{\}}\wedge T_{p}.

Because unu_{n} has no explosion, as RR\rightarrow\infty we have,

τRnTpfora.s.\displaystyle\tau_{R}^{n}\rightarrow T_{p}~{}~{}\text{for}~{}~{}\ \mathbb{P}-a.s.

By employing the Itô-Lévy formula, one has, for tτRnt\leq\tau_{R}^{n}

dun(t)L2(D)2\displaystyle{\rm d}\|u_{n}(t)\|_{L^{2}(D)}^{2} =2un(t)L2(D)2dt+2(un(t)log|un(t)|,un(t))dt\displaystyle=-2\|\nabla u_{n}(t)\|_{L^{2}(D)}^{2}\,{\rm d}t+2\big{(}u_{n}(t)\log|u_{n}(t)|,u_{n}(t)\big{)}\,{\rm d}t
+𝑬(un(t)+Pnη(un(t);z)L2(D)2un(t)L2(D)2)N~(dz,dt)\displaystyle+\int_{\boldsymbol{E}}\Big{(}\|u_{n}(t)+P_{n}\eta(u_{n}(t);z)\|_{L^{2}(D)}^{2}-\|u_{n}(t)\|_{L^{2}(D)}^{2}\Big{)}\,\widetilde{N}({\rm d}z,{\rm d}t)
+𝑬Pnη(un(t);z)L2(D)2m(dz)dt.\displaystyle+\int_{\boldsymbol{E}}\|P_{n}\eta(u_{n}(t);z)\|_{L^{2}(D)}^{2}m({\rm d}z)\,{\rm d}t.

Again, using Itô-Lévy formula, we have

un(t)L2(D)p\displaystyle\|u_{n}(t)\|_{L^{2}(D)}^{p} =u0L2(D)pp0tun(s)L2(D)p2un(s)W01,2(D)2ds\displaystyle=\|u_{0}\|_{L^{2}(D)}^{p}-p\int_{0}^{t}\|u_{n}(s)\|_{L^{2}(D)}^{p-2}\|u_{n}(s)\|_{W_{0}^{1,2}(D)}^{2}\,{\rm d}s
+p0tun(s)L2(D)p2(un(s)log|un(s)|,un(s))ds\displaystyle+p\int_{0}^{t}\|u_{n}(s)\|_{L^{2}(D)}^{p-2}\big{(}u_{n}(s)\log|u_{n}(s)|,u_{n}(s)\big{)}\,{\rm d}s
+0t𝑬(un(s)+Pnη(un(s);z)L2(D)pun(s)L2(D)p)N~(dz,ds)\displaystyle+\int_{0}^{t}\int_{\boldsymbol{E}}\Big{(}\|u_{n}(s)+P_{n}\eta(u_{n}(s);z)\|_{L^{2}(D)}^{p}-\|u_{n}(s)\|_{L^{2}(D)}^{p}\Big{)}\,\widetilde{N}({\rm d}z,{\rm d}s)
+0t𝑬(un(s)+Pnη(un(s);z)L2(D)pun(s)L2(D)p\displaystyle+\int_{0}^{t}\int_{\boldsymbol{E}}\Big{(}\|u_{n}(s)+P_{n}\eta(u_{n}(s);z)\|_{L^{2}(D)}^{p}-\|u_{n}(s)\|_{L^{2}(D)}^{p}
pun(s)L2(D)p2(Pnη(un(s);z),un(s)))m(dz)ds.\displaystyle\hskip 85.35826pt-p\|u_{n}(s)\|_{L^{2}(D)}^{p-2}\big{(}P_{n}\eta(u_{n}(s);z),u_{n}(s)\big{)}\Big{)}\,m({\rm d}z)\,{\rm d}s.

We use Taylor’s formula and the logarithmic Sobolev inequality (3.6) with ϵ=12\epsilon=\frac{1}{2} to have

\displaystyle\| un(t)L2(D)p+p0tun(s)L2(D)p2un(s)W01,2(D)2ds\displaystyle u_{n}(t)\|_{L^{2}(D)}^{p}+p\int_{0}^{t}\|u_{n}(s)\|_{L^{2}(D)}^{p-2}\|u_{n}(s)\|_{W_{0}^{1,2}(D)}^{2}\,{\rm d}s
u0L2(D)p+p0tun(s)L2(D)p2(12un(s)W01,2(D)2+d4log(2)un(s)L2(D)2\displaystyle\leq\|u_{0}\|_{L^{2}(D)}^{p}+p\int_{0}^{t}\|u_{n}(s)\|_{L^{2}(D)}^{p-2}\bigg{(}\frac{1}{2}\|u_{n}(s)\|_{W_{0}^{1,2}(D)}^{2}+\frac{d}{4}\log(2)\|u_{n}(s)\|_{L^{2}(D)}^{2}
+un(s)L2(D)2logun(s)L2(D))ds+p0t𝑬un(s)L2(D)p2(Pnη(un(s);z),un(s))N~(dz,ds)\displaystyle+\|u_{n}(s)\|_{L^{2}(D)}^{2}\log\|u_{n}(s)\|_{L^{2}(D)}\bigg{)}\,{\rm d}s+p\int_{0}^{t}\int_{\boldsymbol{E}}\|u_{n}(s)\|_{L^{2}(D)}^{p-2}\big{(}P_{n}\eta(u_{n}(s);z),u_{n}(s)\big{)}\,\widetilde{N}({\rm d}z,{\rm d}s)
+p(p1)0t𝑬01(1γ)(un(s)+γPnη(un(s);z)L2(D)p2Pnη(un(s);z)L2(D)2)𝑑γN(dz,ds),\displaystyle+p(p-1)\int_{0}^{t}\int_{\boldsymbol{E}}\int_{0}^{1}(1-\gamma)\Big{(}\|u_{n}(s)+\gamma P_{n}\eta(u_{n}(s);z)\|_{L^{2}(D)}^{p-2}\|P_{n}\eta(u_{n}(s);z)\|_{L^{2}(D)}^{2}\Big{)}\,d\gamma\,N({\rm d}z,{\rm d}s),

and hence we get

un(t)L2(D)p+p20tun(s)L2(D)p2un(s)W01,2(D)2ds\displaystyle\|u_{n}(t)\|_{L^{2}(D)}^{p}+\frac{p}{2}\int_{0}^{t}\|u_{n}(s)\|_{L^{2}(D)}^{p-2}\|u_{n}(s)\|_{W_{0}^{1,2}(D)}^{2}\,{\rm d}s
u0L2(D)p+C0tun(s)L2(D)pds+0tun(s)L2(D)plogun(s)L2(D)pds\displaystyle\leq\|u_{0}\|_{L^{2}(D)}^{p}+C\int_{0}^{t}\|u_{n}(s)\|_{L^{2}(D)}^{p}\,{\rm d}s+\int_{0}^{t}\|u_{n}(s)\|_{L^{2}(D)}^{p}\log\|u_{n}(s)\|_{L^{2}(D)}^{p}\,{\rm d}s
+psupr[0,t]|0r𝑬un(s)L2(D)p2(Pnη(un(s);z),un(s))N~(dz,ds)|\displaystyle+p\underset{r\in[0,t]}{\sup}\left|\int_{0}^{r}\int_{\boldsymbol{E}}\|u_{n}(s)\|_{L^{2}(D)}^{p-2}\big{(}P_{n}\eta(u_{n}(s);z),u_{n}(s)\big{)}\,\widetilde{N}({\rm d}z,{\rm d}s)\right|
+Cp0t𝑬(un(s)L2(D)p2η(un(s);z)L2(D)2+η(un(s);z)L2(D)p)N(dz,ds)\displaystyle+C_{p}\int_{0}^{t}\int_{\boldsymbol{E}}\Big{(}\|u_{n}(s)\|_{L^{2}(D)}^{p-2}\|\eta(u_{n}(s);z)\|_{L^{2}(D)}^{2}+\|\eta(u_{n}(s);z)\|_{L^{2}(D)}^{p}\Big{)}\,N({\rm d}z,{\rm d}s)
𝙼(t)+C0tun(s)L2(D)ds+0tun(s)L2(D)plogun(s)L2(D)pds,\displaystyle\leq{\tt M}(t)+C\int_{0}^{t}\|u_{n}(s)\|_{L^{2}(D)}\,{\rm d}s+\int_{0}^{t}\|u_{n}(s)\|_{L^{2}(D)}^{p}\log\|u_{n}(s)\|_{L^{2}(D)}^{p}\,{\rm d}s, (3.8)

where

𝙼(t):=\displaystyle{\tt M}(t):= u0L2(D)p+psupr[0,t]|0r𝑬un(s)L2(D)p2(Pnη(un(s);z),un(s))N~(dz,ds)|\displaystyle\|u_{0}\|_{L^{2}(D)}^{p}+p\underset{r\in[0,t]}{\sup}\left|\int_{0}^{r}\int_{\boldsymbol{E}}\|u_{n}(s)\|_{L^{2}(D)}^{p-2}\big{(}P_{n}\eta(u_{n}(s);z),u_{n}(s)\big{)}\,\widetilde{N}({\rm d}z,{\rm d}s)\right|
+Cp0t𝑬(un(s)L2(D)p2η(un(s);z)L2(D)2+η(un(s);z)L2(D)p)N(dz,ds).\displaystyle+C_{p}\int_{0}^{t}\int_{\boldsymbol{E}}\Big{(}\|u_{n}(s)\|_{L^{2}(D)}^{p-2}\|\eta(u_{n}(s);z)\|_{L^{2}(D)}^{2}+\|\eta(u_{n}(s);z)\|_{L^{2}(D)}^{p}\Big{)}\,N({\rm d}z,{\rm d}s).

Note that these constants C,CpC,C_{p} are independent of nn. We use log-Gronwall’s inequality i.e., Lemma 3.7 to (3.2) to have

\displaystyle\| un(t)L2(D)p+p20tun(s)L2(D)p2un(s)W01,2(D)2ds(1𝙼(t))et×eC(et1).\displaystyle u_{n}(t)\|_{L^{2}(D)}^{p}+\frac{p}{2}\int_{0}^{t}\|u_{n}(s)\|_{L^{2}(D)}^{p-2}\|u_{n}(s)\|_{W_{0}^{1,2}(D)}^{2}\,{\rm d}s\leq\big{(}1\vee{\tt M}(t)\big{)}^{e^{t}}\times e^{C(e^{t}-1)}. (3.9)

Hence, from (3.9), we get

𝔼\displaystyle\mathbb{E} [sups[0,tτRn]un(s)L2(D)p]+p2𝔼[0tτRnun(s)L2(D)p2un(s)W01,2(D)2ds]\displaystyle\bigg{[}\underset{s\in[0,t\wedge\tau_{R}^{n}]}{\sup}\|u_{n}(s)\|_{L^{2}(D)}^{p}\bigg{]}+\frac{p}{2}\mathbb{E}\Big{[}\int_{0}^{t\wedge\tau_{R}^{n}}\|u_{n}(s)\|_{L^{2}(D)}^{p-2}\|u_{n}(s)\|_{W_{0}^{1,2}(D)}^{2}\,{\rm d}s\Big{]}
eC(eTp1)𝔼[(𝙼(tτRn)+1)eTp]C𝔼[(𝙼(tτRn)+1)pp1+θ]\displaystyle\leq e^{C(e^{T_{p}}-1)}\mathbb{E}\bigg{[}\big{(}{\tt M}(t\wedge\tau_{R}^{n})+1\big{)}^{e^{T_{p}}}\bigg{]}\leq C\mathbb{E}\bigg{[}\big{(}{\tt M}(t\wedge\tau_{R}^{n})+1\big{)}^{\frac{p}{p-1+\theta}}\bigg{]}
C(1+u0L2(D)p2p1+θ)+C𝔼[supr[0,tτRn]|0r𝑬un(s)L2(D)p2(Pnη(un(s);z),un(s))N~(dz,ds)|pp1+θ]\displaystyle\leq C\bigg{(}1+\|u_{0}\|_{L^{2}(D)}^{\frac{p^{2}}{p-1+\theta}}\bigg{)}+C\mathbb{E}\Bigg{[}\underset{r\in[0,t\wedge\tau_{R}^{n}]}{\sup}\left|\int_{0}^{r}\int_{\boldsymbol{E}}\|u_{n}(s)\|_{L^{2}(D)}^{p-2}\big{(}P_{n}\eta(u_{n}(s);z),u_{n}(s)\big{)}\,\widetilde{N}({\rm d}z,{\rm d}s)\right|^{\frac{p}{p-1+\theta}}\Bigg{]}
+C|𝔼[0tτRn𝑬(un(s)L2(D)p2η(un(s);z)L2(D)2+η(un(s);z)L2(D)p)N(dz,ds)]|pp1+θ\displaystyle\quad+C\Bigg{|}\mathbb{E}\Big{[}\int_{0}^{t\wedge\tau_{R}^{n}}\int_{\boldsymbol{E}}\Big{(}\|u_{n}(s)\|_{L^{2}(D)}^{p-2}\|\eta(u_{n}(s);z)\|_{L^{2}(D)}^{2}+\|\eta(u_{n}(s);z)\|_{L^{2}(D)}^{p}\Big{)}\,N({\rm d}z,{\rm d}s)\Big{]}\Bigg{|}^{\frac{p}{p-1+\theta}}
i=13𝒦i.\displaystyle\equiv\sum_{i=1}^{3}\mathcal{K}_{i}. (3.10)

One can easily see that using the assumption A.3 and Hölder’s inequality to have

0t𝑬η(u(s);z)L2(D)γm(dz)dsC0t(1+uL2(D)γθ)ds,γ2.\displaystyle\int_{0}^{t}\int_{\boldsymbol{E}}\|\eta(u(s);z)\|_{L^{2}(D)}^{\gamma}m({\rm d}z)\,{\rm d}s\leq C\int_{0}^{t}\big{(}1+\|u\|_{L^{2}(D)}^{\gamma\theta}\big{)}\,{\rm d}s,\quad\forall\gamma\geq 2. (3.11)

By applying Burkholder-Davis-Gundy inequality (BDG inequality), Young’s inequality and [ZBL19, Corollary 2.42.4] along with (3.11), we obtain

𝒦2\displaystyle\mathcal{K}_{2} C𝔼[(0tτRn𝑬un(s)L2(D)2p2Pnη(un(s);z)L2(D)2N(dz,ds))p2(p1+θ)]\displaystyle\leq C\mathbb{E}\Bigg{[}\bigg{(}\int_{0}^{t\wedge\tau_{R}^{n}}\int_{\boldsymbol{E}}\|u_{n}(s)\|_{L^{2}(D)}^{2p-2}\|P_{n}\eta(u_{n}(s);z)\|_{L^{2}(D)}^{2}\,N({\rm d}z,{\rm d}s)\bigg{)}^{\frac{p}{2(p-1+\theta)}}\Bigg{]}
C𝔼[sups[0,tτRn]un(s)L2(D)p(p1)p1+θ(0tτRn𝑬η(un(s);z)L2(D)2N(dz,ds))p2(p1+θ)]\displaystyle\leq C\mathbb{E}\bigg{[}\underset{s\in[0,t\wedge\tau_{R}^{n}]}{\sup}\|u_{n}(s)\|_{L^{2}(D)}^{\frac{p(p-1)}{p-1+\theta}}\bigg{(}\int_{0}^{t\wedge\tau_{R}^{n}}\int_{\boldsymbol{E}}\|\eta(u_{n}(s);z)\|_{L^{2}(D)}^{2}\,N({\rm d}z,{\rm d}s)\bigg{)}^{\frac{p}{2(p-1+\theta)}}\bigg{]}
ϵ1𝔼[sups[0,tτRn]un(s)L2(D)p]+Cϵ1𝔼[(0tτRn𝑬η(un(s);z)L2(D)2N(dz,ds))p2θ]\displaystyle\leq\epsilon_{1}\mathbb{E}\bigg{[}\underset{s\in[0,t\wedge\tau_{R}^{n}]}{\sup}\|u_{n}(s)\|_{L^{2}(D)}^{p}\bigg{]}+C_{\epsilon_{1}}\mathbb{E}\Bigg{[}\bigg{(}\int_{0}^{t\wedge\tau_{R}^{n}}\int_{\boldsymbol{E}}\|\eta(u_{n}(s);z)\|_{L^{2}(D)}^{2}\,N({\rm d}z,{\rm d}s)\bigg{)}^{\frac{p}{2\theta}}\Bigg{]}
ϵ1𝔼[sups[0,tτRn]un(s)L2(D)p]+C(ϵ1)𝔼[0tτRn𝑬η(un(s);z)L2(D)pθm(dz)ds]\displaystyle\leq\epsilon_{1}\mathbb{E}\bigg{[}\underset{s\in[0,t\wedge\tau_{R}^{n}]}{\sup}\|u_{n}(s)\|_{L^{2}(D)}^{p}\bigg{]}+C(\epsilon_{1})\mathbb{E}\bigg{[}\int_{0}^{t\wedge\tau_{R}^{n}}\int_{\boldsymbol{E}}\|\eta(u_{n}(s);z)\|_{L^{2}(D)}^{\frac{p}{\theta}}\,m({\rm d}z)\,{\rm d}s\bigg{]}
+C(ϵ1)𝔼[(0tτRn𝑬η(un(s);z)L2(D)2m(dz)ds)p2θ]\displaystyle\hskip 113.81102pt+C(\epsilon_{1})\mathbb{E}\bigg{[}\bigg{(}\int_{0}^{t\wedge\tau_{R}^{n}}\int_{\boldsymbol{E}}\|\eta(u_{n}(s);z)\|_{L^{2}(D)}^{2}\,m({\rm d}z)\,{\rm d}s\bigg{)}^{\frac{p}{2\theta}}\bigg{]}
CTp+ϵ1𝔼[sups[0,tτRn]un(s)L2(D)p]+C(ϵ1)𝔼[0tτRnun(s)L2(D)pds]\displaystyle\leq C_{T_{p}}+\epsilon_{1}\mathbb{E}\bigg{[}\underset{s\in[0,t\wedge\tau_{R}^{n}]}{\sup}\|u_{n}(s)\|_{L^{2}(D)}^{p}\bigg{]}+C(\epsilon_{1})\mathbb{E}\bigg{[}\int_{0}^{t\wedge\tau_{R}^{n}}\|u_{n}(s)\|_{L^{2}(D)}^{p}\,{\rm d}s\bigg{]}
+C(ϵ1)𝔼[(0tτRnun(s)L2(D)2θds)p2θ]\displaystyle\hskip 56.9055pt+C(\epsilon_{1})\mathbb{E}\bigg{[}\Big{(}\int_{0}^{t\wedge\tau_{R}^{n}}\|u_{n}(s)\|_{L^{2}(D)}^{2\theta}\,{\rm d}s\Big{)}^{\frac{p}{2\theta}}\bigg{]}
CTp+ϵ1𝔼[sups[0,tτRn]un(s)L2(D)p]+C(ϵ1)𝔼[0tτRnun(s)L2(D)pds]\displaystyle\leq C_{T_{p}}+\epsilon_{1}\mathbb{E}\bigg{[}\underset{s\in[0,t\wedge\tau_{R}^{n}]}{\sup}\|u_{n}(s)\|_{L^{2}(D)}^{p}\bigg{]}+C(\epsilon_{1})\mathbb{E}\bigg{[}\int_{0}^{t\wedge\tau_{R}^{n}}\|u_{n}(s)\|_{L^{2}(D)}^{p}\,{\rm d}s\bigg{]}
CTp+ϵ1𝔼[sups[0,tτRn]un(s)L2(D)p]+C(ϵ1)0t𝔼[supr[0,sτRn]un(r)L2(D)p]ds.\displaystyle\leq C_{T_{p}}+\epsilon_{1}\mathbb{E}\bigg{[}\underset{s\in[0,t\wedge\tau_{R}^{n}]}{\sup}\|u_{n}(s)\|_{L^{2}(D)}^{p}\bigg{]}+C(\epsilon_{1})\int_{0}^{t}\mathbb{E}\bigg{[}\underset{r\in[0,s\wedge\tau_{R}^{n}]}{\sup}\|u_{n}(r)\|_{L^{2}(D)}^{p}\bigg{]}\,{\rm d}s. (3.12)

We use [ZBL19, Corollary 2.42.4] along with (3.11) to estimate 𝒦3\mathcal{K}_{3} as follows.

𝒦3\displaystyle\mathcal{K}_{3} Cp𝔼[(0tτRn𝑬un(s)L2(D)p2η(un(s);z)L2(D)2N(dz,ds))pp1+θ]\displaystyle\leq C_{p}\mathbb{E}\Bigg{[}\bigg{(}\int_{0}^{t\wedge\tau_{R}^{n}}\int_{\boldsymbol{E}}\|u_{n}(s)\|_{L^{2}(D)}^{p-2}\|\eta(u_{n}(s);z)\|_{L^{2}(D)}^{2}\,N({\rm d}z,{\rm d}s)\bigg{)}^{\frac{p}{p-1+\theta}}\Bigg{]}
+Cp𝔼[(0tτRn𝑬Pnη(un(s);z)L2(D)pN(dz,ds))pp1+θ]\displaystyle\quad+C_{p}\mathbb{E}\Bigg{[}\bigg{(}\int_{0}^{t\wedge\tau_{R}^{n}}\int_{\boldsymbol{E}}\|P_{n}\eta(u_{n}(s);z)\|_{L^{2}(D)}^{p}\,N({\rm d}z,{\rm d}s)\bigg{)}^{\frac{p}{p-1+\theta}}\Bigg{]}
Cp𝔼[0tτRn𝑬(un(s)L2(D)p2η(un(s);z)L2(D)2)pp1+θm(dz)ds]\displaystyle\leq C_{p}\mathbb{E}\Bigg{[}\int_{0}^{t\wedge\tau_{R}^{n}}\int_{\boldsymbol{E}}\bigg{(}\|u_{n}(s)\|_{L^{2}(D)}^{p-2}\|\eta(u_{n}(s);z)\|_{L^{2}(D)}^{2}\bigg{)}^{\frac{p}{p-1+\theta}}\,m({\rm d}z)\,{\rm d}s\Bigg{]}
+Cp𝔼[(0tτRn𝑬un(s)L2(D)p2η(un(s);z)L2(D)2m(dz)ds)pp1+θ]\displaystyle\quad+C_{p}\mathbb{E}\Bigg{[}\bigg{(}\int_{0}^{t\wedge\tau_{R}^{n}}\int_{\boldsymbol{E}}\|u_{n}(s)\|_{L^{2}(D)}^{p-2}\|\eta(u_{n}(s);z)\|_{L^{2}(D)}^{2}\,m({\rm d}z)\,{\rm d}s\bigg{)}^{\frac{p}{p-1+\theta}}\Bigg{]}
+Cp𝔼[0tτRn𝑬Pnη(un(s);z)L2(D)p2p1+θm(dz)ds]\displaystyle\quad+C_{p}\mathbb{E}\Bigg{[}\int_{0}^{t\wedge\tau_{R}^{n}}\int_{\boldsymbol{E}}\|P_{n}\eta(u_{n}(s);z)\|_{L^{2}(D)}^{\frac{p^{2}}{p-1+\theta}}\,m({\rm d}z)\,{\rm d}s\Bigg{]}
+Cp𝔼[(0tτRn𝑬Pnη(un(s);z)L2(D)pm(dz)ds)pp1+θ]i=14𝒦3,i.\displaystyle\quad+C_{p}\mathbb{E}\Bigg{[}\bigg{(}\int_{0}^{t\wedge\tau_{R}^{n}}\int_{\boldsymbol{E}}\|P_{n}\eta(u_{n}(s);z)\|_{L^{2}(D)}^{p}\,m({\rm d}z)\,{\rm d}s\bigg{)}^{\frac{p}{p-1+\theta}}\Bigg{]}\equiv\sum_{i=1}^{4}\mathcal{K}_{3,i}.

One can use Young’s inequality along with (3.11) to have

𝒦3,1\displaystyle\mathcal{K}_{3,1} C𝔼[sups[0,tτRn]un(s)L2(D)p(p2)p1+θ(0tτRn𝑬η(un(s);z)L2(D)2pp1+θ)]\displaystyle\leq C\mathbb{E}\Bigg{[}\sup_{s\in[0,t\wedge\tau_{R}^{n}]}\|u_{n}(s)\|_{L^{2}(D)}^{\frac{p(p-2)}{p-1+\theta}}\Big{(}\int_{0}^{t\wedge\tau_{R}^{n}}\int_{\boldsymbol{E}}\|\eta(u_{n}(s);z)\|_{L^{2}(D)}^{\frac{2p}{p-1+\theta}}\Big{)}\Bigg{]}
C+ϵ2𝔼[sups[0,tτRn]un(s)L2(D)p]+Cp,ϵ2𝔼[0tτRnun(s)L2(D)2pθp1+θds]p1+θ1+θ\displaystyle\leq C+\epsilon_{2}\mathbb{E}\bigg{[}\underset{s\in[0,t\wedge\tau_{R}^{n}]}{\sup}\|u_{n}(s)\|_{L^{2}(D)}^{p}\bigg{]}+C_{p,\epsilon_{2}}\mathbb{E}\bigg{[}\int_{0}^{t\wedge\tau_{R}^{n}}\|u_{n}(s)\|_{L^{2}(D)}^{\frac{2p\theta}{p-1+\theta}}\,{\rm d}s\bigg{]}^{\frac{p-1+\theta}{1+\theta}}
C+ϵ2𝔼[sups[0,tτRn]un(s)L2(D)p]+Cp,ϵ20t𝔼[supr[0,sτRn]un(r)L2(D)p]ds.\displaystyle\leq C+\epsilon_{2}\mathbb{E}\bigg{[}\underset{s\in[0,t\wedge\tau_{R}^{n}]}{\sup}\|u_{n}(s)\|_{L^{2}(D)}^{p}\bigg{]}+C_{p,\epsilon_{2}}\int_{0}^{t}\mathbb{E}\bigg{[}\underset{r\in[0,s\wedge\tau_{R}^{n}]}{\sup}\|u_{n}(r)\|_{L^{2}(D)}^{p}\bigg{]}\,{\rm d}s.

Similarly, we have

𝒦3,2C+ϵ3𝔼[sups[0,tτRn]un(s)L2(D)p]+Cp,ϵ30t𝔼[supr[0,sτRn]un(r)L2(D)p]ds.\displaystyle\mathcal{K}_{3,2}\leq C+\epsilon_{3}\mathbb{E}\bigg{[}\underset{s\in[0,t\wedge\tau_{R}^{n}]}{\sup}\|u_{n}(s)\|_{L^{2}(D)}^{p}\bigg{]}+C_{p,\epsilon_{3}}\int_{0}^{t}\mathbb{E}\bigg{[}\underset{r\in[0,s\wedge\tau_{R}^{n}]}{\sup}\|u_{n}(r)\|_{L^{2}(D)}^{p}\bigg{]}\,{\rm d}s.

Now, we use (3.11) along with Young’s inequality and the fact pθp1+θ<1\frac{p\theta}{p-1+\theta}<1 to have

𝒦3,3CTp+C𝔼[0tτRnun(s)L2(D)p2θp1+θds]CTp+0t𝔼[supr[0,sτRn]un(r)L2(D)p]ds.\displaystyle\mathcal{K}_{3,3}\leq C_{T_{p}}+C\mathbb{E}\bigg{[}\int_{0}^{t\wedge\tau_{R}^{n}}\|u_{n}(s)\|_{L^{2}(D)}^{\frac{p^{2}\theta}{p-1+\theta}}\,{\rm d}s\bigg{]}\leq C_{T_{p}}+\int_{0}^{t}\mathbb{E}\bigg{[}\underset{r\in[0,s\wedge\tau_{R}^{n}]}{\sup}\|u_{n}(r)\|_{L^{2}(D)}^{p}\bigg{]}\,{\rm d}s.

Similarly, we get

𝒦3,4CTp+0t𝔼[supr[0,sτRn]un(r)L2(D)p]ds.\displaystyle\mathcal{K}_{3,4}\leq C_{T_{p}}+\int_{0}^{t}\mathbb{E}\bigg{[}\underset{r\in[0,s\wedge\tau_{R}^{n}]}{\sup}\|u_{n}(r)\|_{L^{2}(D)}^{p}\bigg{]}\,{\rm d}s.

Hence we have

𝒦3C+(ϵ2+ϵ3)𝔼[sups[0,tτRn]un(s)L2(D)p]+C(ϵ2,ϵ3,p,θ)0t𝔼[supr[0,sτRn]un(r)L2(D)p]ds.\displaystyle\mathcal{K}_{3}\leq C+(\epsilon_{2}+\epsilon_{3})\mathbb{E}\bigg{[}\underset{s\in[0,t\wedge\tau_{R}^{n}]}{\sup}\|u_{n}(s)\|_{L^{2}(D)}^{p}\bigg{]}+C(\epsilon_{2},\epsilon_{3},p,\theta)\int_{0}^{t}\mathbb{E}\bigg{[}\underset{r\in[0,s\wedge\tau_{R}^{n}]}{\sup}\|u_{n}(r)\|_{L^{2}(D)}^{p}\bigg{]}\,{\rm d}s\,. (3.13)

Putting the inequalities (3.12) and (3.13) in (3.2) and choose ϵ1,ϵ2,ϵ3>0\epsilon_{1},\epsilon_{2},\epsilon_{3}>0 such that 1ϵ1ϵ2ϵ3>01-\epsilon_{1}-\epsilon_{2}-\epsilon_{3}>0, we arrive at

𝔼[sups[0,tτRn]un(s)L2(D)p]C(1+u0L2(D)p2p1+θ)+C0t𝔼[sups[0,tτRn]un(s)L2(D)p]ds.\displaystyle\mathbb{E}\bigg{[}\underset{s\in[0,t\wedge\tau_{R}^{n}]}{\sup}\|u_{n}(s)\|_{L^{2}(D)}^{p}\bigg{]}\leq C\bigg{(}1+\|u_{0}\|_{L^{2}(D)}^{\frac{p^{2}}{p-1+\theta}}\bigg{)}+C\int_{0}^{t}\mathbb{E}\bigg{[}\underset{s\in[0,t\wedge\tau_{R}^{n}]}{\sup}\|u_{n}(s)\|_{L^{2}(D)}^{p}\bigg{]}\,{\rm d}s.

Using the Grönwall’s inequality we obtain that

𝔼[sups[0,TpτRn]un(s)L2(D)p]+p2𝔼0TpτRnun(s)L2(D)p2un(s)W01,2(D)2dsC(1+u0L2(D)p2p1+θ).\displaystyle\mathbb{E}\bigg{[}\underset{s\in[0,T_{p}\wedge\tau_{R}^{n}]}{\sup}\|u_{n}(s)\|_{L^{2}(D)}^{p}\bigg{]}+\frac{p}{2}\mathbb{E}\int_{0}^{T_{p}\wedge\tau_{R}^{n}}\|u_{n}(s)\|_{L^{2}(D)}^{p-2}\|u_{n}(s)\|_{W_{0}^{1,2}(D)}^{2}\,{\rm d}s\leq C\bigg{(}1+\|u_{0}\|_{L^{2}(D)}^{\frac{p^{2}}{p-1+\theta}}\bigg{)}.

Hence, the assertion follows once we send RR\rightarrow\infty and use Fatou’s lemmma. ∎

We would like to have a strong convergence of {un}\{u_{n}\} in some appropriate Banach space. The uniform bound (3.7) guarantees only weak convergence of the sequence {un}\{u_{n}\}. To get strong convergence, one may derive the uniform bound of {un}\{u_{n}\} in some appropriate fractional Sobolev space and use compactness theorem as in [FG95, Theorem 2.1]. To proceed further, we need some preparation. Assume that (,)(\mathbb{Z},\left\|\cdot\right\|_{\mathbb{Z}}) be a separable metric space. For any r>1r>1 and α(0,1)\alpha\in(0,1), let Wα,r([0,T];)W^{\alpha,r}([0,T];\mathbb{Z}) be the Sobolev space of all functions uLr([0,T];)u\in L^{r}([0,T];\mathbb{Z}) such that

0T0Tu(t)u(s)r|ts|1+αrdtds<+.\displaystyle\int_{0}^{T}\int_{0}^{T}\frac{\left\|u(t)-u(s)\right\|_{\mathbb{Z}}^{r}}{\left|t-s\right|^{1+\alpha r}}\,{\rm d}t\,{\rm d}s<+\infty\,. (3.14)

with the norm

uWα,r([0,T];)r=0Tu(t)rdt+0T0Tu(t)u(s)r|ts|1+αrdtds.\left\|u\right\|_{W^{\alpha,r}([0,T];\mathbb{Z})}^{r}=\int_{0}^{T}\left\|u(t)\right\|_{\mathbb{Z}}^{r}\,{\rm d}t+\int_{0}^{T}\int_{0}^{T}\frac{\left\|u(t)-u(s)\right\|_{\mathbb{Z}}^{r}}{\left|t-s\right|^{1+\alpha r}}\,{\rm d}t\,{\rm d}s.
Lemma 3.9.

The following estimation holds: for α(0,12)\alpha\in(0,\frac{1}{2}) and p(1,2)p\in(1,2)

supn𝔼{unWα,p([0,T2];W1,2(D))p}<,\displaystyle\underset{n\in\mathbb{N}}{\sup}\,\mathbb{E}\left\{\|u_{n}\|_{W^{\alpha,p}([0,T_{2}];{W^{-1,2}(D)})}^{p}\right\}<\infty,

where T2T_{2} is given in Lemma 3.8.

Proof.

From Lemma 3.8, we see that

supn𝔼[0T2un(s)W01,2(D)2ds]C2,θ(1+u0L2(D)41+θ)<+.\sup_{n\in\mathbb{N}}\mathbb{E}\Big{[}\int_{0}^{T_{2}}\|u_{n}(s)\|_{W_{0}^{1,2}(D)}^{2}\,{\rm d}s\Big{]}\leq C_{2,\theta}\big{(}1+\|u_{0}\|_{L^{2}(D)}^{\frac{4}{1+\theta}}\big{)}<+\infty.

Hence, thanks to the Sobolev embedding W01,2(D)W1,2(D)W_{0}^{1,2}(D)\hookrightarrow W^{-1,2}(D), Young’s inequality and the above estimate, we get, for 1<p<21<p<2,

𝔼[0T2un(s)W1,2(D)pds]C𝔼[0T2un(s)W01,2(D)pds]C{1+𝔼[0T2un(s)W01,2(D)2ds]}C.\displaystyle\mathbb{E}\Big{[}\int_{0}^{T_{2}}\|u_{n}(s)\|_{W^{-1,2}(D)}^{p}\,{\rm d}s\Big{]}\leq C\mathbb{E}\Big{[}\int_{0}^{T_{2}}\|u_{n}(s)\|_{W^{1,2}_{0}(D)}^{p}\,{\rm d}s\Big{]}\leq C\Big{\{}1+\mathbb{E}\Big{[}\int_{0}^{T_{2}}\|u_{n}(s)\|_{W_{0}^{1,2}(D)}^{2}\,{\rm d}s\Big{]}\Big{\}}\leq C\,.

Note that un()u_{n}(\cdot) satisfies the following integral equation.

un(t)\displaystyle u_{n}(t) =un(0)+0tΔun(s)ds+0tPn[un(s)log|un(s)|]ds+0t𝑬Pn[η(un(s);z)]N~(dz,ds)\displaystyle=u_{n}(0)+\int_{0}^{t}\Delta u_{n}(s)\,{\rm d}s+\int_{0}^{t}P_{n}[u_{n}(s)\log|u_{n}(s)|]\,{\rm d}s+\int_{0}^{t}\int_{\boldsymbol{E}}P_{n}[\eta(u_{n}(s);z)]\,\widetilde{N}({\rm d}z,{\rm d}s)
i=03𝒦in(t).\displaystyle\equiv\sum_{i=0}^{3}\mathcal{K}_{i}^{n}(t).

W.L.O.G. , we assume that s<ts<t. 𝒦0n()\mathcal{K}_{0}^{n}(\cdot) fulfills the estimation (3.14) for any α(0,12)\alpha\in(0,\frac{1}{2}) as it is independent of time. Following the line of argument as invoked in the proof of [SZ22, Lemma 5.25.2], we get

𝔼[0T20T2𝒦in(t)𝒦in(s)W1,2(D)2|ts|1+αpdtds]Cifori=1,2.\displaystyle\mathbb{E}\left[\int_{0}^{T_{2}}\int_{0}^{T_{2}}\frac{\left\|\mathcal{K}_{i}^{n}(t)-\mathcal{K}_{i}^{n}(s)\right\|_{W^{-1,2}(D)}^{2}}{\left|t-s\right|^{1+\alpha p}}\,{\rm d}t\,{\rm d}s\right]\leq C_{i}\quad\text{for}~{}~{}i=1,2\,.

Using the assumption A.2, the maximal inequality [ZBL19] and the uniform estimate (3.7), we have

𝔼[𝒦3n(t)𝒦3n(s)W1,2(D)p]=𝔼st𝑬Pn[η(un(r);z)]N~(dz,dr)W1,2(D)p\displaystyle\mathbb{E}\Big{[}\|\mathcal{K}_{3}^{n}(t)-\mathcal{K}_{3}^{n}(s)\|_{W^{-1,2}(D)}^{p}\Big{]}=\mathbb{E}\left\|\int_{s}^{t}\int_{\boldsymbol{E}}P_{n}[\eta(u_{n}(r);z)]\widetilde{N}({\rm d}z,{\rm d}r)\right\|_{W^{-1,2}(D)}^{p}
Cp𝔼[(st𝑬η(un(r);z)L2(D)2m(dz)dr)p2]C𝔼[(st(1+un(r)L2(D)2θ)dr)p2]\displaystyle\leq C_{p}\,\mathbb{E}\Bigg{[}\bigg{(}\int_{s}^{t}\int_{\boldsymbol{E}}\|\eta(u_{n}(r);z)\|_{L^{2}(D)}^{2}m({\rm d}z){\rm d}r\bigg{)}^{\frac{p}{2}}\Bigg{]}\leq C\,\mathbb{E}\Bigg{[}\bigg{(}\int_{s}^{t}\big{(}1+\|u_{n}(r)\|_{L^{2}(D)}^{2\theta}\big{)}{\rm d}r\bigg{)}^{\frac{p}{2}}\Big{]}
C𝔼[1+supr[0,T2]un(r)L2(D)2](ts)p2.\displaystyle\leq C\,\mathbb{E}\bigg{[}1+\underset{r\in[0,T_{2}]}{\sup}\|u_{n}(r)\|_{L^{2}(D)}^{2}\bigg{]}(t-s)^{\frac{p}{2}}.

Hence

𝔼[0T20T2𝒦3n(t)𝒦3n(s)W1,2(D)2|ts|1+αpdtds]C.\displaystyle\mathbb{E}\left[\int_{0}^{T_{2}}\int_{0}^{T_{2}}\frac{\left\|\mathcal{K}_{3}^{n}(t)-\mathcal{K}_{3}^{n}(s)\right\|_{W^{-1,2}(D)}^{2}}{\left|t-s\right|^{1+\alpha p}}\,{\rm d}t\,{\rm d}s\right]\leq C\,.

We combine all the above estimates to arrive at the required assertion. ∎

3.3. Tightness of the sequence {(un)}\{\mathcal{L}(u_{n})\}:

We now discuss the tightness of the law of the sequence {un}\{u_{n}\}, denoted by {(un)}\{\mathcal{L}(u_{n})\}, on some appropriate spaces of càdlàg functions. We first recall the following well-known lemma.

Lemma 3.10.

[FG95, Theorem 2.1] Let 𝕏𝕐𝕏\mathbb{X}\subset\mathbb{Y}\subset\mathbb{X^{*}} be Banach spaces, 𝕏\mathbb{X} and 𝕏\mathbb{X^{*}} reflexive, with compact embedding of 𝕏\mathbb{X} in 𝕐\mathbb{Y}. For any q(1,)q\in(1,\infty) and α(0,1)\alpha\in(0,1), the embedding of Lq([0,T];𝕏)Wα,q([0,T];𝕏)L^{q}([0,T];\mathbb{X})\cap W^{\alpha,q}([0,T];\mathbb{X^{*}}) equipped with natural norm in Lq([0,T];𝕐)L^{q}([0,T];\mathbb{Y}) is compact.

In view of Lemma 3.10 along with the estimations in Lemmas 3.8 and 3.9, one case use similar line of argument as invoked in [KM24, Corollary 4.2] to conclude that {(un)}\left\{\mathcal{L}(u_{n})\right\} is tight on Lp([0,T2];L2(D))L^{p}([0,T_{2}];L^{2}(D)) for any p(1,2)p\in(1,2); see also in [KAV23, Corollary 4.84.8 ].

To pass to the limit in the Galerkin approximations, tightness of {(un)}\left\{\mathcal{L}(u_{n})\right\} on the space Lp([0,T2];L2(D))L^{p}([0,T_{2}];L^{2}(D)) is not enough. We may require for example the tightness of {(un)}\left\{\mathcal{L}(u_{n})\right\} on the space of càdlàg functions u:[0,T2]W1,2(D)u:[0,T_{2}]\rightarrow W^{-1,2}(D) with extended Skorokhod topology [Sko56, Bil99]. Taking motivation from [BM13, Maj20, M+23, Mét88] and looking at the estimations in Lemma 3.8, we show the tightness of {(un)}\{\mathcal{L}(u_{n})\} on the functional space

𝒵T2:=𝔻([0,T2];W1,2(D))𝔻([0,T2];Lw2(D))Lw2([0,T2];W1,2(D))L2([0,T2];L2(D))\displaystyle\mathcal{Z}_{T_{2}}:=\mathbb{D}([0,T_{2}];W^{-1,2}(D))\cap\mathbb{D}([0,T_{2}];L^{2}_{w}(D))\cap L^{2}_{w}([0,T_{2}];W^{1,2}(D))\cap L^{2}([0,T_{2}];L^{2}(D))

equipped with the supremum topology 𝒯T2\mathcal{T}_{T_{2}} ; see [Maj23] for its notations. To proceed further, we recall the definition of Aldous condition.

Definition 3.1 (Aldous condition).

Let (𝔹,𝔹)(\mathbb{B},\|\cdot\|_{\mathbb{B}}) be a separable Banach space. We say that a sequence of {t}0tT\{\mathcal{F}_{t}\}_{0\leq t\leq T}-adapted, 𝔹\mathbb{B}-valued càdlàg processes (𝚉n)n({\tt Z}_{n})_{n\in\mathbb{N}} satisfy the Aldous condition if for every δ,m>0\delta,~{}m>0, there exists ε>0\varepsilon>0 such that

supnsup0<βε{𝚉n(κn+β)𝚉n(κn)𝔹m}δ\displaystyle\sup_{n\in\mathbb{N}}\sup_{0<\beta\leq\varepsilon}\mathbb{P}\big{\{}\|{\tt Z}_{n}(\kappa_{n}+\beta)-{\tt Z}_{n}(\kappa_{n})\|_{\mathbb{B}}\geq m\big{\}}\leq\delta\,

holds for every {t}\{\mathcal{F}_{t}\}-adapted sequence of stopping times (κn)n(\kappa_{n})_{n\in\mathbb{N}} with κnT\kappa_{n}\leq T.

We mention a sufficient condition to satisfy Aldous condition; cf.  [Mot13, Lemma 9].

Lemma 3.11.

The sequence (𝚉n)n({\tt Z}_{n})_{n\in\mathbb{N}} as mentioned in Definition 3.1 be a sequence of càdlàg stochastic processes satisfies the Aldous condition if there exist positive constants α,ζ\alpha,\,\zeta and CC such that for any β>0\beta>0,

𝔼[𝚉n(κn+β)𝚉n(κn)𝔹α]Cβζ\displaystyle\mathbb{E}\Big{[}\|{\tt Z}_{n}(\kappa_{n}+\beta)-{\tt Z}_{n}(\kappa_{n})\|^{\alpha}_{\mathbb{B}}\Big{]}\leq C\beta^{\zeta} (3.15)

holds for every sequence of {t}\{\mathcal{F}_{t}\}-stopping times (κn)(\kappa_{n}) with κnT\kappa_{n}\leq T.

Following the line arguments of [BM13, Lemma 3.33.3], [Mot13, Theorem 22, Lemma 77&\& Corollary 11], we now state (without proof) tightness criterion of the family of laws of some process in 𝒵T2\mathcal{Z}_{T_{2}}.

Theorem 3.12.

Let (𝚇n)n({\tt X}_{n})_{n\in\mathbb{N}} be a sequence of 𝔽\mathbb{F}-adapted, W1,2(D)W^{-1,2}(D)-valued càdlàg stochastic process such that

  • (i)

    (𝚇n)n({\tt X}_{n})_{n\in\mathbb{N}} satisfies the Aldous condition in W1,2(D)W^{-1,2}(D),

  • (ii)

    for some constant C>0C>0,

    supn𝔼[supt[0,T2]𝚇n(t)L2(D)]C,supn𝔼[0T2𝚇n(t)W01,2(D)2dt]C.\displaystyle\sup_{n\in\mathbb{N}}\mathbb{E}\Big{[}\sup_{t\in[0,T_{2}]}\|{\tt X}_{n}(t)\|_{L^{2}(D)}\Big{]}\leq C,\quad\sup_{n\in\mathbb{N}}\mathbb{E}\Big{[}\int_{0}^{T_{2}}\|{\tt X}_{n}(t)\|_{W_{0}^{1,2}(D)}^{2}\,{\rm d}t\Big{]}\leq C\,.

Then the sequence {(𝚇n)}n\big{\{}\mathcal{L}({\tt X}_{n})\big{\}}_{n\in\mathbb{N}} is tight on (𝒵T2,𝒯T2)(\mathcal{Z}_{T_{2}},\mathcal{T}_{T_{2}}) .

Lemma 3.13.

The sequence {(un)}n\big{\{}\mathcal{L}(u_{n})\big{\}}_{n\in\mathbb{N}} is tight on (𝒵T2,𝒯T2)(\mathcal{Z}_{T_{2}},\mathcal{T}_{T_{2}}).

Proof.

We follow the same line of argument as invoked in [Maj20]. By Lemma 3.8, the assertion (ii){\rm(ii)} of Theorem 3.12 holds true for the sequences {un}n\{u_{n}\}_{n\in\mathbb{N}}. Thus, it remains to show that {un}n\{u_{n}\}_{n\in\mathbb{N}} satisfies the Aldous condition in W1,2(D)W^{-1,2}(D). Let {κm}m\big{\{}\kappa_{m}\big{\}}_{m\in\mathbb{N}} be a sequence of stopping times such that 0κmT20\leq\kappa_{m}\leq T_{2}. By (3.2), we have

un(t)\displaystyle u_{n}(t) =Pnu0+0tΔun(s)ds+0tPn[un(s)log|un(s)|]ds+0t𝑬Pn[η(un(s);z)]N~(dz,ds)\displaystyle=P_{n}u_{0}+\int_{0}^{t}\Delta u_{n}(s)\,{\rm d}s+\int_{0}^{t}P_{n}\left[u_{n}(s)\log\left|u_{n}(s)\right|\right]\,{\rm d}s+\int_{0}^{t}\int_{\boldsymbol{E}}P_{n}[\eta(u_{n}(s);z)]\widetilde{N}({\rm d}z,{\rm d}s)
𝚃1n(t)+𝚃2n(t)+𝚃3n(t)+𝚃4n(t).\displaystyle\equiv{\tt T}_{1}^{n}(t)+{\tt T}_{2}^{n}(t)+{\tt T}_{3}^{n}(t)+{\tt T}_{4}^{n}(t)\,. (3.16)

We show that each term in (3.16) satisfies (3.15) for certain choices of α\alpha and ζ\zeta. Clearly, 𝚃1n(){\tt T}_{1}^{n}(\cdot) satisfies (3.15) for any α,ζ\alpha,\zeta. For 𝚃2n(t){\tt T}_{2}^{n}(t), we have, for any β>0\beta>0

𝔼[𝚃2n(κm+β)𝚃2n(κm)W1,2(D)]C𝔼[κmκm+βun(s)W01,2(D)ds]\displaystyle\mathbb{E}\Big{[}\big{\|}{\tt T}_{2}^{n}(\kappa_{m}+\beta)-{\tt T}_{2}^{n}(\kappa_{m})\big{\|}_{W^{-1,2}(D)}\Big{]}\leq C\mathbb{E}\Big{[}\int_{\kappa_{m}}^{\kappa_{m}+\beta}\|u_{n}(s)\big{\|}_{W_{0}^{1,2}(D)}\,{\rm d}s\Big{]}
Cβ12(𝔼[0T2un(s)W01,2(D)2ds])12Cβ12,\displaystyle\leq C\beta^{\frac{1}{2}}\Big{(}\mathbb{E}\Big{[}\int_{0}^{T_{2}}\|u_{n}(s)\|_{W_{0}^{1,2}(D)}^{2}\,{\rm d}s\Big{]}\Big{)}^{\frac{1}{2}}\leq C\beta^{\frac{1}{2}}\,,

where (κm)(\kappa_{m}) is a sequence of 𝔽\mathbb{F}- stopping times with κmT2\kappa_{m}\leq T_{2}. Let us recall the following embedding:

Lq(D)W1,2(D),whereq{[2dd+2,2)ifd>2,(1,2)ifd=1,2.\displaystyle L^{q^{*}}(D)\hookrightarrow W^{-1,2}(D),~{}\text{where}~{}q^{*}\in\begin{cases}[\frac{2d}{d+2},2)~{}~{}\text{if}~{}d>2\,,\\ (1,2)~{}~{}\text{if}~{}d=1,2\,.\end{cases} (3.17)

Note that, for any given ϵ>0\epsilon>0, there exists a constant C(ϵ)C(\epsilon) such that for any a0a\geq 0

|alog|a||C(ϵ)(1+a1+ϵ).\displaystyle\big{|}a\log|a|\big{|}\leq C(\epsilon)\big{(}1+a^{1+\epsilon}\big{)}\,. (3.18)

Using (3.17), (3.18) with ϵ>0\epsilon>0 satisfying (1+ε)2(1+\varepsilon)\leq 2 and (1+ε)q2(1+\varepsilon)q^{*}\leq 2, and Hölder’s inequality, we have

𝔼[𝚃3n(κm+β)𝚃3n(κm)W1,2(D)]𝔼[κmκm+βun(s)log|un(s)|Lq(D)ds]\displaystyle\mathbb{E}\Big{[}\big{\|}{\tt T}_{3}^{n}(\kappa_{m}+\beta)-{\tt T}_{3}^{n}(\kappa_{m})\big{\|}_{W^{-1,2}(D)}\Big{]}\leq\mathbb{E}\Big{[}\int_{\kappa_{m}}^{\kappa_{m}+\beta}\big{\|}u_{n}(s)\log|u_{n}(s)|\big{\|}_{L^{q^{*}}(D)}\,{\rm d}s\Big{]}
C𝔼[κmκm+β(D{1+|un(s)|(1+ϵ)q}dx)1qds]C𝔼[κmκm+β(1+{D|un(s)|2dx}1+ε)ds]\displaystyle\leq C\,\mathbb{E}\Big{[}\int_{\kappa_{m}}^{\kappa_{m}+\beta}\Big{(}\int_{D}\{1+|u_{n}(s)|^{(1+\epsilon)q^{*}}\}\,{\rm d}x\Big{)}^{\frac{1}{q^{*}}}\,{\rm d}s\Big{]}\leq C\,\mathbb{E}\Big{[}\int_{\kappa_{m}}^{\kappa_{m}+\beta}\Big{(}1+\Big{\{}\int_{D}|u_{n}(s)|^{2}\,{\rm d}x\Big{\}}^{1+\varepsilon}\Big{)}\,{\rm d}s\Big{]}
C(1+supn𝔼[supt[0,T2]un(t)L2(D)2])β.\displaystyle\leq C\,\Big{(}1+\sup_{n}\mathbb{E}\Big{[}\sup_{t\in[0,T_{2}]}\|u_{n}(t)\|_{L^{2}(D)}^{2}\Big{]}\Big{)}\beta\,.

Thus, (3.15) is satisfied by 𝚃3n(t){\tt T}_{3}^{n}(t) for α=1\alpha=1 and ζ=1\zeta=1. Furthermore, by using the embedding W01,2L2(D)W1,2(D)W_{0}^{1,2}\hookrightarrow L^{2}(D)\hookrightarrow W^{-1,2}(D), Itô-Lévy isometry and the assumption A.3, we obtain

𝔼[𝚃4n(κm+β)𝚃4n(κm)W1,22]C𝔼[κmκm+β𝑬Pn[η(un;z)]N~(dz,ds)L2(D)2]\displaystyle\mathbb{E}\Big{[}\big{\|}{\tt T}_{4}^{n}(\kappa_{m}+\beta)-{\tt T}_{4}^{n}(\kappa_{m})\big{\|}_{W^{-1,2}}^{2}\Big{]}\leq C\mathbb{E}\Big{[}\Big{\|}\int_{\kappa_{m}}^{\kappa_{m}+\beta}\int_{\boldsymbol{E}}P_{n}[\eta(u_{n};z)]\widetilde{N}({\rm d}z,{\rm d}s)\Big{\|}_{L^{2}(D)}^{2}\Big{]}
C𝔼[κmκm+β𝑬Pn[η(un;z)]L2(D)2m(dz)ds]C𝔼[κmκm+β(1+un(s)L2(D)2θ)ds]\displaystyle\leq C\,\mathbb{E}\Big{[}\int_{\kappa_{m}}^{\kappa_{m}+\beta}\int_{\boldsymbol{E}}\big{\|}P_{n}[\eta(u_{n};z)]\big{\|}_{L^{2}(D)}^{2}\,m({\rm d}z)\,{\rm d}s\Big{]}\leq C\,\mathbb{E}\Big{[}\int_{\kappa_{m}}^{\kappa_{m}+\beta}\big{(}1+\|u_{n}(s)\|_{L^{2}(D)}^{2\theta}\big{)}\,{\rm d}s\Big{]}
C(1+supn𝔼[supt[0,T2]un(t)L2(D)2])β.\displaystyle\leq C\,\Big{(}1+\sup_{n}\mathbb{E}\Big{[}\sup_{t\in[0,T_{2}]}\|u_{n}(t)\|_{L^{2}(D)}^{2}\Big{]}\Big{)}\beta\,.

This shows that 𝚃4κ(t){\tt T}_{4}^{\kappa}(t) satisfies (3.15) for α=2\alpha=2 and ζ=1\zeta=1. Thus, the sequence {(un)}n\big{\{}\mathcal{L}(u_{n})\big{\}}_{n\in\mathbb{N}} is tight on (𝒵T2,𝒯T2)(\mathcal{Z}_{T_{2}},\mathcal{T}_{T_{2}}). ∎

Let M¯(𝑬×[0,T])M_{\bar{\mathbb{N}}}(\boldsymbol{E}\times[0,T]) be set of all ¯:={}\bar{\mathbb{N}}:=\mathbb{N}\cup\{\infty\}-valued measures on (𝑬×[0,T],(𝑬×[0,T]))(\boldsymbol{E}\times[0,T],\mathcal{B}(\boldsymbol{E}\times[0,T])) endowed with the σ\sigma-field ¯(𝑬×[0,T])\mathcal{M}_{\bar{\mathbb{N}}}(\boldsymbol{E}\times[0,T]) generated by the projection maps iB:M¯(𝑬×[0,T])μμ(B)¯B(𝑬×[0,T])i_{B}:M_{\bar{\mathbb{N}}}(\boldsymbol{E}\times[0,T])\ni\mu\mapsto\mu(B)\in\bar{\mathbb{N}}\quad\forall B\in\mathcal{B}(\boldsymbol{E}\times[0,T]). Observe that M¯(𝑬×[0,T])M_{\bar{\mathbb{N}}}(\boldsymbol{E}\times[0,T]) is a separable metric space. For n>0n>0, define Nn(dz,dt):=N(dz,dt)N_{n}({\rm d}z,{\rm d}t):=N({\rm d}z,{\rm d}t). Then, by [Par05, Theorem 3.2], we arrive at the following conclusion.

Lemma 3.14.

The laws of the family {Nn(dz,dt)}\{N_{n}({\rm d}z,{\rm d}t)\} is tight on M¯(𝐄×[0,T2])M_{\bar{\mathbb{N}}}(\boldsymbol{E}\times[0,T_{2}]).

3.4. Existence of weak solution of (1.1) on the interval [0,T2][0,T_{2}]

In this subsection, we show the existence of a weak solution of the underlying problem (1.1) on the interval [0,T2][0,T_{2}].

Thanks to Lemmas 3.13-3.14, we infer that the family of the laws of sequence {(un,Nn):n}\big{\{}(u_{n},N_{n}):n\in\mathbb{N}\big{\}} is tight on 𝒳T2\mathcal{X}_{T_{2}}, where the space 𝒳T2\mathcal{X}_{T_{2}} is defined as

𝒳T2:=[Lp([0,T2];L2(D))𝒵T2]×M¯(𝑬×[0,T]),p(1,2).\mathcal{X}_{T_{2}}:=\big{[}L^{p}([0,T_{2}];L^{2}(D))\cap\mathcal{Z}_{T_{2}}\big{]}\times M_{\bar{\mathbb{N}}}(\boldsymbol{E}\times[0,T]),\quad p\in(1,2).

We then apply Jakubowski’s version of Skorokhod theorem together with [Mot13, Corollary 2], and [BH09, Theorem D1D1] to arrive at the following proposition.

Proposition 3.15.

There exist a new probability space (Ω¯,¯,¯)(\bar{\Omega},\bar{\mathcal{F}},\bar{\mathbb{P}}), a subsequence of {n}\{n\}, still denoted by {n}\{n\}, and 𝒳T2\mathcal{X}_{T_{2}}-valued random variables (un,Nn)(u_{n}^{*},N_{n}^{*}) and (u,N)(u_{*},N_{*}) defined on (Ω¯,¯,¯)(\bar{\Omega},\bar{\mathcal{F}},\bar{\mathbb{P}}) satisfying the followings:

  • a).

    (un,Nn)=(un,Nn)\mathcal{L}({u}_{n}^{*},N_{n}^{*})=\mathcal{L}(u_{n},N_{n}) for all nn\in\mathbb{N},

  • b).

    (un,Nn)(u,N)({u}_{n}^{*},N_{n}^{*})\rightarrow({u}_{*},N_{*}) in 𝒳T2¯\mathcal{X}_{T_{2}}\quad\bar{\mathbb{P}}-a.s. as nn\rightarrow\infty,

  • c).

    Nn(ω¯)=N(ω¯)N_{n}^{*}(\bar{\omega})=N_{*}(\bar{\omega}) for all ω¯Ω¯\bar{\omega}\in\bar{\Omega}.

Moreover, there exists a sequence of perfect functions ϕn:Ω¯Ω\phi_{n}:\bar{\Omega}\to\Omega such that

un=unϕn,=¯ϕn1;\displaystyle{u}_{n}^{*}=u_{n}\circ\phi_{n}\,,\quad\mathbb{P}=\bar{\mathbb{P}}\circ\phi_{n}^{-1}\,; (3.19)

see e.g., [vdVW23, Theorem 1.10.41.10.4 & Addendum 1.10.51.10.5]. Furthermore, by [BH09, Section 9] we infer that NnN_{n}^{*} and NN_{*} are time-homogeneous Poisson random measures on 𝑬\boldsymbol{E} with the intensity measure m(dz)m({\rm d}z) over the stochastic basis (Ω¯,¯,¯,𝔽¯)(\bar{\Omega},\bar{\mathcal{F}},\bar{\mathbb{P}},\bar{\mathbb{F}}), where the filtration 𝔽¯:=(¯t)t[0,T2]\bar{\mathbb{F}}:=\big{(}\bar{\mathcal{F}}_{t}\big{)}_{t\in[0,T_{2}]} is defined by

¯t:=σ{(un(s),Nn(s),u(s),N(s)):0st},t[0,T2].\displaystyle\bar{\mathcal{F}}_{t}:=\sigma\big{\{}({u}_{n}^{*}(s),\,N_{n}^{*}(s),\,{u}_{*}(s),N_{*}(s)):0\leq s\leq t\big{\}},\quad t\in[0,T_{2}].

With the help of (3.19) and Proposition 3.15, we see that unu_{n}^{*} satisfies the following integral equation in W1,2(D)W^{-1,2}(D): for all t[0,T2]t\in[0,T_{2}],

un(t)\displaystyle u_{n}^{*}(t) =Pnu0+0tΔun(s)ds+0tPn[un(s)log|un(s)|]ds+0t𝑬Pn[η(un(s);z)]N~(dz,ds).\displaystyle=P_{n}u_{0}+\int_{0}^{t}\Delta u_{n}^{*}(s)\,{\rm d}s+\int_{0}^{t}P_{n}[u_{n}^{*}(s)\log|u_{n}^{*}(s)|]\,{\rm d}s+\int_{0}^{t}\int_{\boldsymbol{E}}P_{n}[\eta(u_{n}^{*}(s);z)]\,\widetilde{N}_{*}({\rm d}z,{\rm d}s)\,. (3.20)

Following the same calculations as invoked in the proof of Lemma 3.8, we derive the following uniform bounds for {un}\{u_{n}^{*}\}: for r(1,2)r\in(1,2)

sup𝑛𝔼¯[supt[0,T2]un(t)L2(D)2+0T2un(s)W01,2(D)2ds]C,\displaystyle\underset{n}{\sup}\,\bar{\mathbb{E}}\bigg{[}\underset{t\in[0,T_{2}]}{\sup}\,\|{u}_{n}^{*}(t)\|_{L^{2}(D)}^{2}+\int_{0}^{T_{2}}\|{u}_{n}^{*}(s)\|_{W_{0}^{1,2}(D)}^{2}\,{\rm d}s\bigg{]}\leq C, (3.21)
𝔼¯[0T2Pn[un(t)log(|un(t)|)]W1,2(D)rdt]C(1+𝔼¯[supt[0,T2]un(t)L2(D)2]),\displaystyle\bar{\mathbb{E}}\bigg{[}\int_{0}^{T_{2}}\|P_{n}[u_{n}^{*}(t)\log(|u_{n}^{*}(t)|)]\|_{W^{-1,2}(D)}^{r}\,{\rm d}t\bigg{]}\leq C\Bigg{(}1+\bar{\mathbb{E}}\bigg{[}\underset{t\in[0,T_{2}]}{\sup}\,\|{u}_{n}^{*}(t)\|_{L^{2}(D)}^{2}\bigg{]}\Bigg{)}\,,
𝔼¯[0T2Δun(t)W1,2(D)2dt]C𝔼¯[0T2un(t)W01,2(D)2dt].\displaystyle\bar{\mathbb{E}}\bigg{[}\int_{0}^{T_{2}}\|\Delta u_{n}^{*}(t)\|_{W^{-1,2}(D)}^{2}\,{\rm d}t\bigg{]}\leq C\bar{\mathbb{E}}\bigg{[}\int_{0}^{T_{2}}\|u_{n}^{*}(t)\|_{W^{1,2}_{0}(D)}^{2}\,{\rm d}t\bigg{]}\,.

By employing the fact that L2(D)\|\cdot\|_{L^{2}(D)} and W01,2(D)\|\cdot\|_{W_{0}^{1,2}(D)} are lower semi-continuous on W1,2(D)W^{-1,2}(D), PnP_{n} is a projection operator from W1,2(D)W^{-1,2}(D) to LnL_{n}, together with Fatou’s lemma, the uniform bound (3.21), and Proposition 3.15, we get

𝔼¯[supt[0,T2]u(t)L2(D)2]𝔼¯[supt[0,T2]lim infmPmu(t)L2(D)2]\displaystyle\bar{\mathbb{E}}\bigg{[}\underset{t\in[0,T_{2}]}{\sup}\,\|{u}_{*}(t)\|_{L^{2}(D)}^{2}\bigg{]}\leq\bar{\mathbb{E}}\bigg{[}\underset{t\in[0,T_{2}]}{\sup}\,\underset{m\rightarrow\infty}{\liminf}\,\|P_{m}{u}_{*}(t)\|_{L^{2}(D)}^{2}\bigg{]}
lim infmlim infn𝔼¯[supt[0,T]Pmun(t)L2(D)2]sup𝑛𝔼¯[supt[0,T2]un(t)L2(D)2]<+.\displaystyle\leq\underset{m\rightarrow\infty}{\liminf}\,\underset{n\rightarrow\infty}{\liminf}\,\bar{\mathbb{E}}\bigg{[}\underset{t\in[0,T]}{\sup}\,\|P_{m}{u}_{n}^{*}(t)\|_{L^{2}(D)}^{2}\bigg{]}\leq\underset{n}{\sup}\,\bar{\mathbb{E}}\Big{[}\underset{t\in[0,T_{2}]}{\sup}\,\|{u}_{n}^{*}(t)\|_{L^{2}(D)}^{2}\Big{]}<+\infty\,. (3.22)

Similarly, we have

𝔼¯[0T2u(s)W01,2(D)2ds]<.\displaystyle\bar{\mathbb{E}}\bigg{[}\int_{0}^{T_{2}}\|{u}_{*}(s)\|_{W_{0}^{1,2}(D)}^{2}\,{\rm d}s\bigg{]}<\infty\,. (3.23)

In view of Proposition 3.15 and the uniform moment estimate (3.21), we arrive at the following lemma.

Lemma 3.16.

There exists a subsequence of {un}\{{u}_{n}^{*}\}, still denoted by {un}\{{u}_{n}^{*}\} and {¯t}\{\bar{\mathcal{F}}_{t}\}- adapted process u𝔻([0,T2];W1,2(D))L2([0,T];W01,2(D))L([0,T];L2(D)){u}_{*}\in\mathbb{D}([0,T_{2}];W^{-1,2}(D))\cap\,L^{2}([0,T];W_{0}^{1,2}(D))\,\cap\,L^{\infty}([0,T];L^{2}(D)) such that

  • (a)

    un(ω¯,t,x)u(ω¯,t,x)for ¯-a.s., and for a.e. (t,x)[0,T2]×Du_{n}^{*}(\bar{\omega},t,x)\rightarrow u_{*}(\bar{\omega},t,x)~{}~{}\text{for $\bar{\mathbb{P}}$-a.s., and for a.e. $(t,x)\in[0,T_{2}]\times D$}.

  • (b)

    unu{u}_{n}^{*}\rightarrow{u}_{*} in Lr(Ω¯;Lr([0,T2];L2(D))L^{r}\big{(}\bar{\Omega};L^{r}([0,T_{2}];L^{2}(D)),  r(1,2)r\in(1,2),

  • (c)

    unu{u}_{n}^{*}\rightharpoonup{u}_{*} in L2(Ω¯;L2([0,T2];W01,2(D)),L^{2}\big{(}\bar{\Omega};L^{2}([0,T_{2}];W_{0}^{1,2}(D)),

  • (d)

    ΔunΔu\Delta{u}_{n}^{*}\rightharpoonup\Delta{u}_{*} in L2(Ω¯;L2([0,T2];W1,2(D)),L^{2}\big{(}\bar{\Omega};L^{2}([0,T_{2}];W^{-1,2}(D)),

  • (e)

    Pn[unlog|un|]ulog|u|P_{n}\left[{u}_{n}^{*}\log\left|{u}_{n}^{*}\right|\right]\rightarrow{u}_{*}\log|{u}_{*}| in Lr(Ω¯;Lr([0,T2];W1,2(D))L^{r}\big{(}\bar{\Omega};L^{r}([0,T_{2}];W^{-1,2}(D)).

We now discuss about the convergence of the stochastic integral. Let L2((Γ,𝒢,τ);)L^{2}((\Gamma,\mathcal{G},\tau);\mathbb{R}) denote the square integrable predictable integrands for Itô-Lévy integrals with respect to the compensated Poisson random measure N~(dz,ds)\widetilde{N}_{*}({\rm d}z,{\rm d}s), where

Γ=Ω¯×[0,T2]×𝑬,𝒢=𝒫T2×(𝑬),τ=¯λtm(dz)\Gamma=\bar{\Omega}\times[0,T_{2}]\times\boldsymbol{E},~{}~{}~{}\mathcal{G}=\mathcal{P}_{T_{2}}\times\mathcal{B}(\boldsymbol{E}),~{}~{}~{}\tau=\bar{\mathbb{P}}\otimes\lambda_{t}\otimes m({\rm d}z)

with 𝒫T2\mathcal{P}_{T_{2}} being the predictable σ\sigma-field on Ω¯×[0,T2]\bar{\Omega}\times[0,T_{2}] with respect to {¯t}\{\bar{\mathcal{F}}_{t}\} and λt\lambda_{t} the Lebesgue measure on [0,T2][0,T_{2}]. Since the Itô-Lévy integral from L2((Γ,𝒢,τ);)L^{2}((\Gamma,\mathcal{G},\tau);\mathbb{R}) to L2((Ω¯,¯T2);)L^{2}((\bar{\Omega},\bar{\mathcal{F}}_{T_{2}});\mathbb{R}) is a linear isometry operator and any isometry between two Hilbert spaces preserves the weak convergence, one can easily see that any weakly converging sequence of integrands {χn(t,z)}L2((Γ,𝒢,τ);)\{\chi_{n}(t,z)\}\subset L^{2}((\Gamma,\mathcal{G},\tau);\mathbb{R}), the corresponding sequence of Itô-Lévy integrals with respect to N~(dz,ds)\widetilde{N}_{*}({\rm d}z,{\rm d}s) also converge weakly in L2((Ω¯,¯T2);)L^{2}((\bar{\Omega},\bar{\mathcal{F}}_{T_{2}});\mathbb{R}).

Thanks to the sublinear growth of η\eta, the uniform moment estimate (3.21) and a)a) of Lemma 3.16, we see that χn(t,x):=Pn(η(un(t);z)),ϕ\chi_{n}(t,x):=\langle P_{n}(\eta(u_{n}^{*}(t);z)),\phi\rangle for ϕW01,2(D)\phi\in W_{0}^{1,2}(D) converges weakly to χ(t,z):=η(u(t);z)),ϕ\chi(t,z):=\langle\eta(u_{*}(t);z)),\phi\rangle in L2((Γ,𝒢,τ);)L^{2}((\Gamma,\mathcal{G},\tau);\mathbb{R}). As a consequence of the above discussion, the Itô-Lévy integrals

0T2𝑬χn(s,z)N~(dz,ds)0T2𝑬χ(s,z)N~(dz,ds)inL2((Ω¯,¯T2);).\int_{0}^{T_{2}}\int_{\boldsymbol{E}}\chi_{n}(s,z)\widetilde{N}_{*}({\rm d}z,{\rm d}s)\rightharpoonup\int_{0}^{T_{2}}\int_{\boldsymbol{E}}\chi(s,z)\widetilde{N}_{*}({\rm d}z,{\rm d}s)~{}~{}~{}\text{in}~{}~{}L^{2}((\bar{\Omega},\bar{\mathcal{F}}_{T_{2}});\mathbb{R}).

In other words, we get

0𝑬Pnη(un(s);z)N~(dz,ds)0𝑬η(u(s);z)N~(dz,ds)inL2([0,T2];L2(Ω¯,W1,2(D)).\displaystyle\int_{0}^{\cdot}\int_{\boldsymbol{E}}P_{n}\eta({u}_{n}^{*}(s);z)\widetilde{N}_{*}({\rm d}z,{\rm d}s)\rightharpoonup\int_{0}^{\cdot}\int_{\boldsymbol{E}}\eta({u}_{*}(s);z)\,\widetilde{N}_{*}({\rm d}z,{\rm d}s)~{}~{}\text{in}~{}\,L^{2}([0,T_{2}];L^{2}(\bar{\Omega},W^{-1,2}(D))\,. (3.24)

Thanks to Lemma 3.16 and the convergence result in (3.24), we pass to the limit in (3.20) to conclude that uu_{*} is indeed a weak solution of (1.1) on the interval [0,T2][0,T_{2}]. Moreover, in view of (3.4) and (3.23) and by [GK82, Theorem 2], u𝔻([0,T2];L2(D))u_{*}\in\mathbb{D}([0,T_{2}];L^{2}(D)).

3.5. Uniqueness of solution of (1.1)

In this subsection, we wish to show the path-wise uniqueness of solutions for (1.1) via the standard L2L^{2}-contraction method. Let u1,u2u_{1},u_{2} be two solutions of equation (1.1) defined on the same stochastic basis (Ω,,,{t},N)(\Omega,\mathcal{F},\mathbb{P},\{\mathcal{F}_{t}\},N). For any R>0R>0 and δ(0,1]\delta\in(0,1], we define

τR\displaystyle\tau_{R} :=inf{t>0:u1(t)L2(D)2u2(t)L2(D)2>R},\displaystyle:=\inf\left\{t>0:\|u_{1}(t)\|_{L^{2}(D)}^{2}\vee\|u_{2}(t)\|_{L^{2}(D)}^{2}>R\right\},
τR\displaystyle\tau_{R}^{\prime} :=inf{t>0:0tu1(s)W01,2(D)2ds>R}inf{t>0:0tu2(s)W01,2(D)2ds>R},\displaystyle:=\inf\left\{t>0:\int_{0}^{t}\|u_{1}(s)\|_{W_{0}^{1,2}(D)}^{2}\,{\rm d}s>R\right\}\wedge\inf\left\{t>0:\int_{0}^{t}\|u_{2}(s)\|_{W_{0}^{1,2}(D)}^{2}\,{\rm d}s>R\right\},
τδ\displaystyle\tau^{\delta} :=inf{t>0:u1(t)u2(t)L2(D)>δ},\displaystyle:=\inf\{t>0:\|u_{1}(t)-u_{2}(t)\|_{L^{2}(D)}>\delta\},
τRδ\displaystyle\tau_{R}^{\delta} :=τRτRτδ.\displaystyle:=\tau_{R}\wedge\tau_{R}^{\prime}\wedge\tau^{\delta}.

We apply Itô-Lévy formula to the function xxL2(D)2x\mapsto\|x\|_{L^{2}(D)}^{2} on u(t):=u1(t)u2(t)u(t):=u_{1}(t)-u_{2}(t), and use the integration by parts formula to have

u(tτRδ)L2(D)2+20tτRδu(s)W01,2(D)2ds\displaystyle\|u(t\wedge\tau_{R}^{\delta})\|_{L^{2}(D)}^{2}+2\int_{0}^{t\wedge\tau_{R}^{\delta}}\|u(s)\|_{W_{0}^{1,2}(D)}^{2}\,{\rm d}s
=20tτRδ(u1(s)log|u1(s)|u2(s)log|u2(s)|,u1(s)u2(s))ds\displaystyle=2\int_{0}^{t\wedge\tau_{R}^{\delta}}\big{(}u_{1}(s)\log|u_{1}(s)|-u_{2}(s)\log|u_{2}(s)|,u_{1}(s)-u_{2}(s)\big{)}\,{\rm d}s
+20tτRδ𝑬(u(s)+η(u1(s);z)η(u2(s);z)L2(D)2u(s)L2(D)2)N~(dz,ds)\displaystyle\quad+2\int_{0}^{t\wedge\tau_{R}^{\delta}}\int_{\boldsymbol{E}}\Big{(}\|u(s)+\eta(u_{1}(s);z)-\eta(u_{2}(s);z)\|_{L^{2}(D)}^{2}-\|u(s)\|_{L^{2}(D)}^{2}\Big{)}\,\widetilde{N}({\rm d}z,{\rm d}s)
+0tτRδ𝑬η(u1(s);z)η(u2(s);z)L2(D)2m(dz)dsi=13i.\displaystyle\quad+\int_{0}^{t\wedge\tau_{R}^{\delta}}\int_{\boldsymbol{E}}\|\eta(u_{1}(s);z)-\eta(u_{2}(s);z)\|_{L^{2}(D)}^{2}\,m({\rm d}z)\,{\rm d}s\equiv\sum_{i=1}^{3}\mathcal{B}_{i}\,. (3.25)

In view of the assumption A.2, one has

3\displaystyle\mathcal{B}_{3}\leq 2K120tτRδu(s)L2(D)2ds+3,1,\displaystyle 2K_{1}^{2}\int_{0}^{t\wedge\tau_{R}^{\delta}}\|u(s)\|_{L^{2}(D)}^{2}\,{\rm d}s+\mathcal{B}_{3,1}\,,

where 3,1\mathcal{B}_{3,1} is given by

3,1:=2K220tτRδD|u1(s,x)u2(s,x)|2log+(|u1(s,x)||u2(s,x)|)dxds.\displaystyle\mathcal{B}_{3,1}:=2K_{2}^{2}\int_{0}^{t\wedge\tau_{R}^{\delta}}\int_{D}|u_{1}(s,x)-u_{2}(s,x)|^{2}\log_{+}(|u_{1}(s,x)|\vee|u_{2}(s,x)|)\,{\rm d}x\,{\rm d}s\,.

By using Lemma 3.1 with ϵ=14\epsilon=\frac{1}{4}, we estimate 1\mathcal{B}_{1} as follows.

1\displaystyle\mathcal{B}_{1}\leq 120tτRδu(s)W01,2(D)2ds+2(1+d4log4)0tτRδu(s)L2(D)2ds\displaystyle\frac{1}{2}\int_{0}^{t\wedge\tau_{R}^{\delta}}\|u(s)\|_{W_{0}^{1,2}(D)}^{2}\,{\rm d}s+2(1+\frac{d}{4}\log 4)\int_{0}^{t\wedge\tau_{R}^{\delta}}\|u(s)\|_{L^{2}(D)}^{2}\,{\rm d}s
+20tτRδu(s)L2(D)2log(u(s)L2(D))ds\displaystyle+2\int_{0}^{t\wedge\tau_{R}^{\delta}}\|u(s)\|_{L^{2}(D)}^{2}\log(\|u(s)\|_{L^{2}(D)})\,{\rm d}s
+1(1α)e0tτRδ(u1(s)L2(D)2(1α)+u2(s)L2(D)2(1α))u(s)L2(D)2αds.\displaystyle\qquad+\frac{1}{(1-\alpha)e}\int_{0}^{t\wedge\tau_{R}^{\delta}}\big{(}\|u_{1}(s)\|_{L^{2}(D)}^{2(1-\alpha)}+\|u_{2}(s)\|_{L^{2}(D)}^{2(1-\alpha)}\big{)}\|u(s)\|_{L^{2}(D)}^{2\alpha}\,{\rm d}s\,.

Again we use Lemma 3.2 with ϵ=14K22\epsilon=\frac{1}{4K_{2}^{2}} to estimate 3,1\mathcal{B}_{3,1}:

3,1\displaystyle\mathcal{B}_{3,1}\leq 120tτRδu(s)W01,2(D)2ds+2K22d4log(4K22)0tτRδu(s)L2(D)2ds\displaystyle\frac{1}{2}\int_{0}^{t\wedge\tau_{R}^{\delta}}\|u(s)\|_{W_{0}^{1,2}(D)}^{2}\,{\rm d}s+2K_{2}^{2}\frac{d}{4}\log(4K_{2}^{2})\int_{0}^{t\wedge\tau_{R}^{\delta}}\|u(s)\|_{L^{2}(D)}^{2}\,{\rm d}s
+2K220tτRδu(s)L2(D)2log(u(s)L2(D))ds\displaystyle+2K_{2}^{2}\int_{0}^{t\wedge\tau_{R}^{\delta}}\|u(s)\|_{L^{2}(D)}^{2}\log(\|u(s)\|_{L^{2}(D)})\,{\rm d}s
+K22(1α)e0tτRδ(u1(s)L2(D)2(1α)+u2(s)L2(D)2(1α))u(s)L2(D)2αds\displaystyle\quad+\frac{K_{2}^{2}}{(1-\alpha)e}\int_{0}^{t\wedge\tau_{R}^{\delta}}\big{(}\|u_{1}(s)\|_{L^{2}(D)}^{2(1-\alpha)}+\|u_{2}(s)\|_{L^{2}(D)}^{2(1-\alpha)}\big{)}\|u(s)\|_{L^{2}(D)}^{2\alpha}\,{\rm d}s
+K22(1α)e0tτRδ(4λ(D))1αu(s)L2(D)2α.\displaystyle\qquad+\frac{K_{2}^{2}}{(1-\alpha)e}\int_{0}^{t\wedge\tau_{R}^{\delta}}\big{(}4\lambda(D)\big{)}^{1-\alpha}\|u(s)\|_{L^{2}(D)}^{2\alpha}\,.

Hence, from (3.25), we have

u(tτRδ)L2(D)2+0tτRδu(s)W01,2(D)2ds\displaystyle\|u(t\wedge\tau_{R}^{\delta})\|_{L^{2}(D)}^{2}+\int_{0}^{t\wedge\tau_{R}^{\delta}}\|u(s)\|_{W_{0}^{1,2}(D)}^{2}\,{\rm d}s
C0tτRδu(s)L2(D)2ds+C0tτRδu(s)L2(D)2logu(s)L2(D)ds\displaystyle\leq C\int_{0}^{t\wedge\tau_{R}^{\delta}}\|u(s)\|_{L^{2}(D)}^{2}\,{\rm d}s+C\int_{0}^{t\wedge\tau_{R}^{\delta}}\|u(s)\|_{L^{2}(D)}^{2}\log\|u(s)\|_{L^{2}(D)}\,{\rm d}s
+1+K22(1α)e0tτRδ(u1(s)L2(D)2(1α)+u2(s)L2(D)2(1α))u(s)L2(D)2αds\displaystyle+\frac{1+K_{2}^{2}}{(1-\alpha)\mathrm{e}}\int_{0}^{t\wedge\tau_{R}^{\delta}}\left(\|u_{1}(s)\|_{L^{2}(D)}^{2(1-\alpha)}+\|u_{2}(s)\|_{L^{2}(D)}^{2(1-\alpha)}\right)\|u(s)\|_{L^{2}(D)}^{2\alpha}\,{\rm d}s
+K22(1α)e0tτRδ(4λ(D))1αu(s)L2(D)2αds\displaystyle+\frac{K_{2}^{2}}{(1-\alpha)\mathrm{e}}\int_{0}^{t\wedge\tau_{R}^{\delta}}(4\lambda(D))^{1-\alpha}\|u(s)\|_{L^{2}(D)}^{2\alpha}\,{\rm d}s
+20tτRδ𝑬(u(s)+η(u1(s);z)η(u2(s);z)L2(D)2u(s)L2(D)2)N~(dz,ds).\displaystyle+2\int_{0}^{t\wedge\tau_{R}^{\delta}}\int_{\boldsymbol{E}}\Big{(}\|u(s)+\eta(u_{1}(s);z)-\eta(u_{2}(s);z)\|_{L^{2}(D)}^{2}-\|u(s)\|_{L^{2}(D)}^{2}\Big{)}\,\widetilde{N}({\rm d}z,{\rm d}s)\,. (3.26)

Recalling the definition of τRδ\tau_{R}^{\delta}, we have from (3.26), after taking expectation

𝔼[u(tτRδ)L2(D)2]\displaystyle\mathbb{E}\big{[}\|u(t\wedge\tau_{R}^{\delta})\|_{L^{2}(D)}^{2}\big{]} C0tτRδ𝔼[u(s)L2(D)2]ds\displaystyle\leq C\int_{0}^{t\wedge\tau_{R}^{\delta}}\mathbb{E}\big{[}\|u(s)\|_{L^{2}(D)}^{2}\big{]}\,{\rm d}s
+2(1+K22)R1α+K22(4λ(D))1α(1α)e0tτRδ𝔼[u(s)L2(D)2α]ds\displaystyle+\frac{2\left(1+K_{2}^{2}\right)R^{1-\alpha}+K_{2}^{2}(4\lambda(D))^{1-\alpha}}{(1-\alpha)\mathrm{e}}\int_{0}^{t\wedge\tau_{R}^{\delta}}\mathbb{E}\big{[}\|u(s)\|_{L^{2}(D)}^{2\alpha}\big{]}\,{\rm d}s

Setting 𝚞(t):=𝔼[u(tτRδ)L2(D)2]{\tt u}(t):=\mathbb{E}\big{[}\|u(t\wedge\tau_{R}^{\delta})\|_{L^{2}(D)}^{2}\big{]}, and applying Lemma 3.6, we get

𝚞(t)\displaystyle{\tt u}(t) {2(1+K22)R1α+K22(4λ(D))1αe0teC(1α)(ts)ds}11α\displaystyle\leq\left\{\frac{2\left(1+K_{2}^{2}\right)R^{1-\alpha}+K_{2}^{2}(4\lambda(D))^{1-\alpha}}{\mathrm{e}}\int_{0}^{t}e^{C(1-\alpha)(t-s)}\,{\rm d}s\right\}^{\frac{1}{1-\alpha}}
=[2(1+K22)R1α+K22(4λ(D))1αe]11α×(0teC(1α)sds)11α\displaystyle=\left[\frac{2\left(1+K_{2}^{2}\right)R^{1-\alpha}+K_{2}^{2}(4\lambda(D))^{1-\alpha}}{\mathrm{e}}\right]^{\frac{1}{1-\alpha}}\times\left(\int_{0}^{t}e^{C(1-\alpha)s}\,{\rm d}s\right)^{\frac{1}{1-\alpha}}
12{[4(1+K22)tαe]11αR+[2K22tαe]11α×4λ(D)}×(0teCsds).\displaystyle\leq\frac{1}{2}\left\{\left[\frac{4\left(1+K_{2}^{2}\right)t^{\alpha}}{\mathrm{e}}\right]^{\frac{1}{1-\alpha}}R+\left[\frac{2K_{2}^{2}t^{\alpha}}{\mathrm{e}}\right]^{\frac{1}{1-\alpha}}\times 4\lambda(D)\right\}\times\left(\int_{0}^{t}e^{Cs}\,{\rm d}s\right).

Setting T:=(e4(1+K22))2T^{*}:=\left(\frac{\mathrm{e}}{4\left(1+K_{2}^{2}\right)}\right)^{2}, and then letting α1\alpha\rightarrow 1, we obtain

𝚞(t)=0, 0tT.\displaystyle{\tt u}(t)=0,\quad\forall\,0\leq t\leq T^{*}\,.

Note that TT^{*} is independent of the initial value. Hence, one can use the same argument repeatedly on [T,2T][T^{*},2T^{*}], [2T,3T][2T^{*},3T^{*}] and so on to deduce that 𝚞(t)=0{\tt u}(t)=0 for any t0t\geq 0. This means

𝔼[(u1u2)(tτRτRτδ)L2(D)2]=0t0.\displaystyle\mathbb{E}\Big{[}\left\|(u_{1}-u_{2})\left(t\wedge\tau_{R}\wedge\tau_{R}^{\prime}\wedge\tau^{\delta}\right)\right\|_{L^{2}(D)}^{2}\Big{]}=0\quad\forall t\geq 0.

Observe that \mathbb{P}-a.s., τR,τR\tau_{R},~{}\tau_{R}^{\prime}\rightarrow\infty as RR\rightarrow\infty. Hence, we have

𝔼[(u1u2)(tτδ)L2(D)2]=0,t0.\displaystyle\mathbb{E}\Big{[}\left\|(u_{1}-u_{2})\left(t\wedge\tau^{\delta}\right)\right\|_{L^{2}(D)}^{2}\Big{]}=0,\quad\forall~{}t\geq 0\,.

In view of the definition of τδ\tau^{\delta} and the above equality, one can easily conclude that

u1(t)=u2(t),-a.s., t0.\displaystyle u_{1}(t)=u_{2}(t),\quad\mathbb{P}\text{-a.s., }\quad\forall t\geq 0.

This completes the proof.

3.6. Proof of Theorem 2.1

In view of Subsections 3.4 and 3.5, equation (1.1) has a unique weak solution uu on [0,T2][0,T_{2}]. Hence, the existence of a unique strong solution of (1.1) follows from [Ond04, Theorem 2]. Moreover, uu satisfies the a-priori estimate as in Lemma 3.8. To prove the existence of a global strong solution, we closely follow the argument of [SZ22]. For any t0t\geq 0 and A(𝑬)A\in\mathcal{B}(\boldsymbol{E}), define

Nt(A)=N((0,t]×A).N_{t}(A)=N((0,t]\times A).

One can easily check that, for any 𝚜0{\tt s}\geq 0, Nt𝚜():=Nt+𝚜()N𝚜()N_{t}^{\tt s}(\cdot):=N_{t+{\tt s}}(\cdot)-N_{{\tt s}}(\cdot) is a time-homogeneous Poisson random measure with respect to the filtration {t𝚜:=t+𝚜}t0\{\mathcal{F}_{t}^{{\tt s}}:=\mathcal{F}_{t+{\tt s}}\}_{t\geq 0}. Moreover, Nt𝚜()N_{t}^{\tt s}(\cdot) and Nt()N_{t}(\cdot) have the same distribution. Keeping these in mind, one can follow the proof of [SZ22, Step 22, Theorem 5.45.4] to conclude the existence of a probabilistic strong solution uu to the equation (1.1) on the interval [0,T][0,T] for any given T>0T>0. Moreover, uu satisfies the moment estimate (2.3). Furthermore, since T>0T>0 is arbitrary and pathwise uniqueness holds, the solution uu is global. This finishes the proof of Theorem 2.1.

4. Skeleton equation: wellposedness

In this section, we prove the wellposedness theory for the skeleton equation (2.8) under the assumptions A.1 and B.1. We start with the following lemmas whose proof can be found in [BCD13] and [YZZ15].

Lemma 4.1.

Let the assumption B.1 hold. Then the following are true.

  • (a)

    For i=1,2i=1,2 and every NN\in\mathbb{N},

    Ci,2N:=supgSN0T𝑬𝚑i2(z)(g(s,z)+1)m(dz)ds<+,\displaystyle C_{i,2}^{N}:=\underset{g\in S_{N}}{\sup}\int_{0}^{T}\int_{\boldsymbol{E}}{\tt h}_{i}^{2}(z)(g(s,z)+1)\,m({\rm d}z){\rm d}s<+\infty,
    Ci,1N:=supgSN0T𝑬𝚑i(z)|g(s,z)1|m(dz)ds<+.\displaystyle C_{i,1}^{N}:=\underset{g\in S_{N}}{\sup}\int_{0}^{T}\int_{\boldsymbol{E}}{\tt h}_{i}(z)|g(s,z)-1|\,m({\rm d}z){\rm d}s<+\infty.
  • (b)

    For every η>0\eta>0, there exists δ~>0\tilde{\delta}>0 such that for any A[0,T]A\subset[0,T] satisfying λT(A)<δ~\lambda_{T}(A)<\tilde{\delta},

    supgSNA𝑬𝚑i(z)|g(s,z)1|m(dz)dsη.\displaystyle\underset{g\in S_{N}}{\sup}\int_{A}\int_{\boldsymbol{E}}{\tt h}_{i}(z)|g(s,z)-1|\,m({\rm d}z){\rm d}s\leq\eta.
Lemma 4.2.

Under the assumption B.1, the following holds:

  • (i)

    If supt[0,T]y(t)L2(D)<\underset{t\in[0,T]}{\sup}\|y(t)\|_{L^{2}(D)}<\infty, then for any g𝕊g\in\mathbb{S}

    𝑬η(y();z)(g(,z)1)m(dz)L1([0,T];L2(D)).\displaystyle\int_{\boldsymbol{E}}\eta(y(\cdot);z)\,(g(\cdot,z)-1)\,m({\rm d}z)\in L^{1}([0,T];L^{2}(D))\,.
  • (ii)

    Let {yn}n\{y_{n}\}_{n\in\mathbb{N}} be a family of mapping from [0,T][0,T] to L2(D)L^{2}(D) such that

    supnsups[0,T]yn(s)L2(D)<.\underset{n\in\mathbb{N}}{\sup}\,\underset{s\in[0,T]}{\sup}\,\left\|y_{n}(s)\right\|_{L^{2}(D)}<\infty.

    Then, for any NN\in\mathbb{N}, there exists a finite constant C~N>0\tilde{C}_{N}>0 such that

    C~N:=supgSNsupn0T𝑬η(yn(s);z)(g(s,z)1)m(dz)L2(D)ds<.\displaystyle\tilde{C}_{N}:=\sup_{g\in S_{N}}\sup_{n\in\mathbb{N}}\int_{0}^{T}\Big{\|}\int_{\boldsymbol{E}}\eta(y_{n}(s);z)(g(s,z)-1)\,m({\rm d}z)\Big{\|}_{L^{2}(D)}{\rm d}s<\infty\,.

4.1. Galerkin approximations of (2.8) and a-priori estimate:

To show the existence of a solution for (2.8), as a first step, we demonstrate the existence of an approximate solutions (via Galerkin method), and then derive necessary a-priori estimates. Using the a-priori estimates, we prove certain strong convergence result of approximate solutions, which then leads to the existence of a solution of the control equation (2.8).

Let g𝕊g\in\mathbb{S} be fixed. Let PnP_{n} be the projection operator given in (3.1) in Section 3. For each fixed nn\in\mathbb{N}, consider the following ODE in the finite-dimensional space LnL_{n}:

{d𝚞n(t)Δ𝚞n(t)dt=Pn[𝚞n(t)log|𝚞n(t)|]dt+Pn(𝑬η(𝚞n;z)(g(t,z)1)m(dz))dt,t>0,𝚞n(0)=Pnu0.\displaystyle\begin{cases}\displaystyle{\rm d}{\tt u}_{n}(t)-\Delta{\tt u}_{n}(t){\rm d}t=P_{n}\left[{\tt u}_{n}(t)\log\left|{\tt u}_{n}(t)\right|\right]{\rm d}t+P_{n}\Big{(}\int_{\boldsymbol{E}}\eta({\tt u}_{n};z)\,(g(t,z)-1)\,m({\rm d}z)\Big{)}\,{\rm d}t,~{}~{}t>0,\\ {\tt u}_{n}(0)=P_{n}u_{0}\,.\end{cases} (4.1)

One can follow a similar line of argument (under cosmetic change) as in Section 3 and make a minor adjustment as in the proof of [FZ05, Theorem 2.12.1] to arrive at the following theorem.

Theorem 4.3.

Let the assumptions A.1 and B.1 hold true. For any nn\in\mathbb{N}, there exists a unique global solution 𝚞n{\tt u}_{n} to equation (4.1).

We wish to analyze the strong convergence of the family {𝚞n}\{{\tt u}_{n}\} on some appropriate space. To do so, we need to derive some essential a-priori estimates.

Lemma 4.4.

Under assumptions A.1 and B.1, the following estimates on {𝚞n}\{{\tt u}_{n}\} hold.

  • a)

    There exists a constant C>0C>0, independent of nn such that

    supn[sups[0,T]𝚞n(s)L2(D)2+0T𝚞n(s)W01,2(D)2ds]C.\displaystyle\underset{n\in\mathbb{N}}{\sup}\,\bigg{[}\underset{s\in[0,T]}{\sup}\,\|{\tt u}_{n}(s)\|_{L^{2}(D)}^{2}+\int_{0}^{T}\|{\tt u}_{n}(s)\|_{W_{0}^{1,2}(D)}^{2}\,{\rm d}s\bigg{]}\leq C\,. (4.2)
  • b)

    For α(0,12)\alpha\in(0,\frac{1}{2}), there exists Cα>0C_{\alpha}>0 such that

    supn[𝚞nWα,2([0,T];W1,2(D))]Cα.\displaystyle\underset{n\in\mathbb{N}}{\sup}\,\bigg{[}\|{\tt u}_{n}\|_{W^{\alpha,2}([0,T];{W^{-1,2}(D)})}\bigg{]}\leq C_{\alpha}\,.
Proof.

We use the chain-rule, Cauchy-Schwartz inequality, Poincaré inequality and the logarithmic Sobolev inequality (3.6) with ϵ=12\epsilon=\frac{1}{2} to have

𝚞n(t)L2(D)2+0t𝚞n(t)W01,2(D)2ds\displaystyle\left\|{\tt u}_{n}(t)\right\|_{L^{2}(D)}^{2}+\int_{0}^{t}\|{\tt u}_{n}(t)\|_{W_{0}^{1,2}(D)}^{2}\,{\rm d}s
u0L2(D)2+C0tΦ2(s)ds+C0t(1+Φ2(s))𝚞n(s)L2(D)2ds\displaystyle\leq\left\|u_{0}\right\|_{L^{2}(D)}^{2}+C\int_{0}^{t}\Phi_{2}(s)\,{\rm d}s+C\int_{0}^{t}(1+\Phi_{2}(s))\|{\tt u}_{n}(s)\|_{L^{2}(D)}^{2}\,{\rm d}s
+20t𝚞n(s)L2(D)2log(𝚞n(s)L2(D))ds,\displaystyle\qquad+2\int_{0}^{t}\|{\tt u}_{n}(s)\|_{L^{2}(D)}^{2}\log\big{(}\|{\tt u}_{n}(s)\|_{L^{2}(D)}\big{)}\,{\rm d}s\,,

where Φ2(s)\Phi_{2}(s) is given by

Φ2(s):=𝑬𝚑2(z)|g(s,z)1|m(dz).\Phi_{2}(s):=\int_{\boldsymbol{E}}{\tt h}_{2}(z)|g(s,z)-1|\,m({\rm d}z).

One can use Gronwall’s lemma with logarithmic nonlinearity together with Lemma 4.1 to arrive at the uniform estimate (4.2). To prove the assertion b){\rm b)}, we write 𝚞n{\tt u}_{n} as

𝚞n(t)\displaystyle{\tt u}_{n}(t) =Pnu0+0tΔ𝚞n(s)ds+0tPn(𝚞n(s)log(|𝚞n(s)|))ds+0tPn(𝑬η(𝚞n;z)(g(t,z)1)m(dz))ds\displaystyle=P_{n}u_{0}+\int_{0}^{t}\Delta{\tt u}_{n}(s)\,{\rm d}s+\int_{0}^{t}P_{n}\big{(}{\tt u}_{n}(s)\log(|{\tt u}_{n}(s)|)\big{)}\,{\rm d}s+\int_{0}^{t}P_{n}\Big{(}\int_{\boldsymbol{E}}\eta({\tt u}_{n};z)\,(g(t,z)-1)\,m({\rm d}z)\Big{)}\,{\rm d}s
J1+J2(t)+J3(t)+J4(t).\displaystyle\equiv J_{1}+J_{2}(t)+J_{3}(t)+J_{4}(t)\,.

Following the calculation as in the proof of [PSZ22, Lemma 4.6], we have

JiWα,2([0,T];W1,2(D))Ci,(1i3).\displaystyle\|J_{i}\|_{W^{\alpha,2}([0,T];{W^{-1,2}(D)})}\leq C_{i},~{}~{}~{}(1\leq i\leq 3)\,.

In view of (2.6), Lemma (4.1) and the uniform estimate (4.2) we have, for any s,t[0,T]s,t\in[0,T],

J4(t)J4(s)W1,2(D)2\displaystyle\|J_{4}(t)-J_{4}(s)\|_{W^{-1,2}(D)}^{2} C(st𝑬η(𝚞n(r);z)L2(D)|g(r,z)1|m(dz)dr)2\displaystyle\leq C\Big{(}\int_{s}^{t}\int_{\boldsymbol{E}}\|\eta({\tt u}_{n}(r);z)\|_{L^{2}(D)}|g(r,z)-1|\,m({\rm d}z)\,{\rm d}r\Big{)}^{2}
C(1+supt[0,T]𝚞n(t)L2(D))2(st𝑬𝚑2(z)|g(r,z)1|m(dz)dr)2\displaystyle\leq C\Big{(}1+\sup_{t\in[0,T]}\|{\tt u}_{n}(t)\|_{L^{2}(D)}\Big{)}^{2}\Big{(}\int_{s}^{t}\int_{\boldsymbol{E}}{\tt h}_{2}(z)|g(r,z)-1|\,\,m({\rm d}z)\,{\rm d}r\Big{)}^{2}
C0TΦ2(s)dsstΦ2(r)dr.\displaystyle\leq C\int_{0}^{T}\Phi_{2}(s)\,{\rm d}s\int_{s}^{t}\Phi_{2}(r)\,{\rm d}r\,.

This shows that, again in view of Lemma (4.1),

0TJ4(t)W1,2(D)2drC.\int_{0}^{T}\|J_{4}(t)\|_{W^{-1,2}(D)}^{2}\,{\rm d}r\leq C.

A simple application of Fubini’s theorem reveals that there exists a constant C>0C>0 such that for any α(0,12)\alpha\in(0,\frac{1}{2})

0T0TstΦ2(r)|ts|1+2αdrdsdtC0TΦ2(r)dr.\displaystyle\int_{0}^{T}\int_{0}^{T}\int_{s}^{t}\frac{\Phi_{2}(r)}{|t-s|^{1+2\alpha}}\,{\rm d}r\,{\rm d}s\,{\rm d}t\leq C\int_{0}^{T}\Phi_{2}(r)\,{\rm d}r\,.

Thus, there exists a constant CαC_{\alpha}, independent of nn, such that

JiWα,2([0,T];W1,2(D))Cα.\displaystyle\|J_{i}\|_{W^{\alpha,2}([0,T];{W^{-1,2}(D)})}\leq C_{\alpha}\,.

This completes the proof. ∎

4.2. Existence proof: skeleton equation (2.8)

Thanks to Lemmas 3.10 and 4.4, we have the following lemma.

Lemma 4.5.

There exists a sub-sequence of {𝚞n}\{{\tt u}_{n}\}, still denoted by {𝚞n}\{{\tt u}_{n}\}, and ugL2([0,T];L2(D))u_{g}\in L^{2}([0,T];L^{2}(D)) such that

  • i)

    𝚞nug{\tt u}_{n}\rightarrow u_{g} in L2([0,T];L2(D))L^{2}([0,T];L^{2}(D)), and 𝚞n(s,x)ug(s,x){\tt u}_{n}(s,x)\rightarrow u_{g}(s,x) for a.e. (s,x)[0,T]×D(s,x)\in[0,T]\times D.

  • ii)

    Pn[𝚞nlog|𝚞n|]uglog|ug|P_{n}\left[{\tt u}_{n}\log\left|{\tt u}_{n}\right|\right]\rightarrow u_{g}\log|u_{g}| in Lr([0,T];W1,2(D))L^{r}([0,T];W^{-1,2}(D)) for r(1,2)r\in(1,2).

Again, in view of a-priori estimates in Lemma 4.4, the following weak convergence results hold.

{𝚞nuginL2([0,T];W01,2(D)),𝚞nuginL([0,T];L2(D)),Δ𝚞nΔuginL2([0,T];W1,2(D)).\displaystyle\begin{cases}{\tt u}_{n}\rightharpoonup u_{g}~{}\text{in}~{}L^{2}([0,T];W_{0}^{1,2}(D)),\\ {\tt u}_{n}\overset{*}{\rightharpoonup}u_{g}~{}\text{in}~{}L^{\infty}([0,T];L^{2}(D))\,,\\ \Delta{\tt u}_{n}\rightharpoonup\Delta u_{g}~{}\text{in}~{}L^{2}([0,T];W^{-1,2}(D))\,.\end{cases} (4.3)

One can easily get

supt[0,T]ug(t)L2(D)2C,0Tug(t)W01,2(D)2dtC.\displaystyle\underset{t\in[0,T]}{\sup}\,\|u_{g}(t)\|_{L^{2}(D)}^{2}\leq C\,,\quad\int_{0}^{T}\|u_{g}(t)\|_{W_{0}^{1,2}(D)}^{2}\,{\rm d}t\leq C\,. (4.4)
Lemma 4.6.

The following convergence holds in L([0,T];W1,2(D)):L^{\infty}([0,T];W^{-1,2}(D)):

0Pn(𝑬η(𝚞n;z)(g(s,z)1)m(dz))ds0𝑬η(ug;z)(g(s,z)1)m(dz)ds.\displaystyle\int_{0}^{\cdot}P_{n}\Big{(}\int_{\boldsymbol{E}}\eta({\tt u}_{n};z)(g(s,z)-1)m({\rm d}z)\Big{)}\,{\rm d}s\rightarrow\int_{0}^{\cdot}\int_{\boldsymbol{E}}\eta(u_{g};z)(g(s,z)-1)\,m({\rm d}z)\,{\rm d}s\,. (4.5)
Proof.

For any ε>0\varepsilon>0, define the set

An,ε:={t[0,T]:𝚞n(t)ug(t)L2(D)>ε}.A_{n,\varepsilon}:=\{t\in[0,T]:~{}\|{\tt u}_{n}(t)-u_{g}(t)\|_{L^{2}(D)}>\varepsilon\}.

Since 𝚞n{\tt u}_{n} strongly converges to ugu_{g} in L2([0,T];L2(D))L^{2}([0,T];L^{2}(D)), by Chebyshev inequality, we see that

limnλT(An,ε)limn1ε20T𝚞n(t)ug(t)L2(D)2dt=0.\lim_{n\rightarrow\infty}\lambda_{T}(A_{n,\varepsilon})\leq\lim_{n\rightarrow\infty}\frac{1}{\varepsilon^{2}}\int_{0}^{T}\|{\tt u}_{n}(t)-u_{g}(t)\|_{L^{2}(D)}^{2}\,{\rm d}t=0.

Thus, by part (b)(b) of Lemma 4.1, one has

lim supnsupgSNAn,ε𝑬𝚑1(z)|g(t,z)1|m(dz)dt<ε.\displaystyle\limsup_{n\rightarrow\infty}\sup_{g\in S_{N}}\int_{A_{n,\varepsilon}}\int_{\boldsymbol{E}}{\tt h}_{1}(z)|g(t,z)-1|\,m({\rm d}z)\,{\rm d}t<\varepsilon. (4.6)

Observe that, in view of (2.5) and the uniform estimates (4.2) and (4.4)

supt[0,T]0tPn(𝑬η(𝚞n;z)(g(s,z)1)m(dz))ds0t𝑬η(ug;z)(g(s,z)1)m(dz)dsW1,2(D)\displaystyle\sup_{t\in[0,T]}\Big{\|}\int_{0}^{t}P_{n}\Big{(}\int_{\boldsymbol{E}}\eta({\tt u}_{n};z)(g(s,z)-1)m({\rm d}z)\Big{)}\,{\rm d}s-\int_{0}^{t}\int_{\boldsymbol{E}}\eta(u_{g};z)(g(s,z)-1)\,m({\rm d}z)\,{\rm d}s\Big{\|}_{W^{-1,2}(D)}
20T𝑬𝚞nugL2(D)𝚑1(z)|g(s,z)1|m(dz)ds\displaystyle\leq 2\int_{0}^{T}\int_{\boldsymbol{E}}\|{\tt u}_{n}-u_{g}\|_{L^{2}(D)}{\tt h}_{1}(z)|g(s,z)-1|\,m({\rm d}z)\,{\rm d}s
CAn,ε𝑬𝚑1(z)|g(s,z)1|m(dz)ds+Cε0T𝑬𝚑1(z)|g(s,z)1|m(dz)dsC(N)ε,\displaystyle\leq C\int_{A_{n,\varepsilon}}\int_{\boldsymbol{E}}{\tt h}_{1}(z)|g(s,z)-1|\,m({\rm d}z)\,{\rm d}s+C\varepsilon\int_{0}^{T}\int_{\boldsymbol{E}}{\tt h}_{1}(z)|g(s,z)-1|\,m({\rm d}z)\,{\rm d}s\leq C(N)\varepsilon\,,

where in the last inequality, we have used part b)b) of Lemma 4.1 and the inequality (4.6). Since ε>0\varepsilon>0 is arbitrary, (4.5) holds as well. ∎

Remark 4.1.

The above proof yields the following convergence result: let xnxx_{n}\rightarrow x in L2([0,T];L2(D))L^{2}([0,T];L^{2}(D)) and 𝐡2L2(𝑬,m)\mathbf{h}\in\mathcal{H}_{2}\cap L^{2}(\boldsymbol{E},m). Then

limnsupkSN0T𝑬xn(s)x(s)L2(D)𝐡(z)|k(s,z)1|m(dz)ds=0.\lim_{n\rightarrow\infty}\sup_{\mathrm{k}\in S_{N}}\int_{0}^{T}\int_{\boldsymbol{E}}\|x_{n}(s)-x(s)\|_{L^{2}(D)}\mathbf{h}(z)|\mathrm{k}(s,z)-1|\,m({\rm d}z)\,{\rm d}s=0.

We use the convergence results in (4.3) and (4.5) together with Lemma 4.5, and pass to the limit as nn\rightarrow\infty in the equation satisfied by 𝚞n{\tt u}_{n} to see that ugL([0,T];L2(D))L2([0,T];W01,2(D))u_{g}\in L^{\infty}([0,T];L^{2}(D))\cap L^{2}([0,T];W_{0}^{1,2}(D)) satisfies the following equation in W1,2(D)W^{-1,2}(D):

ug(t)=u0+0tΔug(s)ds+0tug(s)log(|ug(s)|)ds+0t𝑬η(ug(s);z)(g(s,z)1)m(dz)ds.\displaystyle\displaystyle u_{g}(t)=u_{0}+\int_{0}^{t}\Delta{u_{g}(s)}\,{\rm d}s+\int_{0}^{t}u_{g}(s)\log(|u_{g}(s)|)\,{\rm d}s+\int_{0}^{t}\int_{\boldsymbol{E}}\eta(u_{g}(s);z)\,(g(s,z)-1)\,m({\rm d}z)\,{\rm d}s\,.

In other words, ugu_{g} is a solution of the skeleton equation (2.8). Note that, in view of Lemma 4.2, and the uniform estimate (4.4),

dugdtL2([0,T];W1,2(D))+L1([0,T];L2(D)).\displaystyle\frac{du_{g}}{{\rm d}t}\in L^{2}([0,T];W^{-1,2}(D))+L^{1}([0,T];L^{2}(D))\,.

This implies that ugC([0,T];L2(D))u_{g}\in C([0,T];L^{2}(D)).

4.3. Uniqueness proof: skeleton equation

Let u1u_{1} and u2u_{2} be two solutions of skeleton equation (2.8). Set 𝚞g:=u1u2{\tt u}_{g}:=u_{1}-u_{2}. Then, using chain-rule, we get

𝚞g(tτδ)L2(D)2+20tτδ𝚞g(s)W01,2(D)2ds=20tτδu1log(|u1|)u2log(|u2|),𝚞gds\displaystyle\|{\tt u}_{g}(t\wedge\tau_{\delta})\|_{L^{2}(D)}^{2}+2\int_{0}^{t\wedge\tau_{\delta}}\|{\tt u}_{g}(s)\|_{W_{0}^{1,2}(D)}^{2}\,{\rm d}s=2\int_{0}^{t\wedge\tau_{\delta}}\Big{\langle}u_{1}\log(|u_{1}|)-u_{2}\log(|u_{2}|),{\tt u}_{g}\Big{\rangle}\,{\rm d}s
+20tτδ|z|>0{η(u1;z)η(u2;z)}(g(s,z)1),𝚞gm(dz)ds4+5,\displaystyle\quad+2\int_{0}^{t\wedge\tau_{\delta}}\int_{|z|>0}\Big{\langle}\big{\{}\eta(u_{1};z)-\eta(u_{2};z)\big{\}}(g(s,z)-1),{\tt u}_{g}\Big{\rangle}\,m({\rm d}z)\,{\rm d}s\equiv\mathcal{B}_{4}+\mathcal{B}_{5}\,,

where τδ:=inf{t(0,T]:u1(t)u2(t)L2(D)>δ},δ(0,1)\tau_{\delta}:=\inf\{t\in(0,T]:\|u_{1}(t)-u_{2}(t)\|_{L^{2}(D)}>\delta\},~{}~{}\delta\in(0,1). Thanks to Cauchy-schwartz inequality and (2.5), we see that

520tτδ(𝑬𝚑1(z)|g(s,z)1|m(dz))𝚞g(s)L2(D)2ds.\displaystyle\mathcal{B}_{5}\leq 2\int_{0}^{t\wedge\tau_{\delta}}\Big{(}\int_{\boldsymbol{E}}{\tt h}_{1}(z)|g(s,z)-1|\,m({\rm d}z)\Big{)}\|{\tt u}_{g}(s)\|_{L^{2}(D)}^{2}\,{\rm d}s\,.

Thus, one can follow the same line of argument as invoked in the proof of [SZ22, Theorem 4.34.3] (see also subsection 3.5) together with Lemma 4.1 to conclude that 𝚞g(t)=0{\tt u}_{g}(t)=0 for all t[0,T]t\in[0,T]. In other words, equation (2.8) has a unique solution.

4.4. Proof of Theorem 2.2

In view of subsections 4.2 and 4.3, the deterministic skeleton equation (2.8) has a unique solution ugC([0,T];L2(D))L2([0,T];W01,2(D))u_{g}\in C([0,T];L^{2}(D))\cap L^{2}([0,T];W_{0}^{1,2}(D)). Moreover, following the same argument as invoked to achieve (4.2), one can prove the estimate (4.4).

5. Large Deviation Principle

This section provides the proof of Theorem 2.3. According to [LSZZ23, Theorem 4.4] and [MSZ21, Theorem 3.2] which is an adaptation of the original results given in [BM13, Theorems 2.3 and 2.4], to prove Theorem 2.3, it is sufficient to prove the following two conditions:

  1. LDP-1

    For any NN\in\mathbb{N}, let {φϵ:ϵ>0}𝒰~N\{\varphi_{\epsilon}:~{}\epsilon>0\}\subset\tilde{\mathcal{U}}_{N}. Then, for any δ>0\delta>0

    limϵ0{ρT(𝒢ϵ(ϵNϵ1φϵ),𝒢0(νTφϵ))>δ}=0,\displaystyle\underset{\epsilon\rightarrow 0}{\lim}\mathbb{P}\left\{\rho_{T}\left(\mathcal{G}^{\epsilon}(\epsilon N^{\epsilon^{-1}\,\varphi_{\epsilon}}),\mathcal{G}^{0}(\nu_{T}^{\varphi_{\epsilon}})\right)>\delta\right\}=0\,,

    where the metric ρT\rho_{T} is defined in (2.1).

  2. LDP-2

    For any given NN\in\mathbb{N}, let gn,gSNg_{n},g\in S_{N} be such that gngg_{n}\rightarrow g as nn\rightarrow\infty. Then

    𝒢0(νTgn)𝒢0(νTg).\displaystyle\mathcal{G}^{0}\big{(}\nu_{T}^{g_{n}}\big{)}\rightarrow\mathcal{G}^{0}\big{(}\nu_{T}^{g}\big{)}.

Before proving these conditions, we state a technical lemma the proof of which can be found in [BCD13, Lemma 3.11]. Let mT:=λTmm_{T}:=\lambda_{T}\otimes m. Define the space

2([0,T]×𝑬):={ 𝗁L2([0,T]×𝑬,mT) such that for all δ(0,) and for all E([0,T]×𝑬)\displaystyle\mathcal{H}_{2}([0,T]\times\boldsymbol{E}):=\Big{\{}\text{ $\mathsf{h}\in L^{2}([0,T]\times\boldsymbol{E},m_{T})$ such that for all $\delta\in(0,\infty)$ and for all $E\in\mathcal{B}([0,T]\times\boldsymbol{E})$}
with mT(E)<+Eexp(δ|𝗁(s,z)|)m(dz)ds<+}\displaystyle\text{with $m_{T}(E)<+\infty$, $\int_{E}\exp(\delta|\mathsf{h}(s,z)|)\,m({\rm d}z)\,{\rm d}s<+\infty$}\Big{\}}
Lemma 5.1.

Let 𝗁(,)2([0,T]×𝐄)\mathsf{h}(\cdot,\cdot)\in\mathcal{H}_{2}([0,T]\times\boldsymbol{E}). For fixed NN\in\mathbb{N}, let g,gnSNg,g_{n}\in S_{N} be such that gngg_{n}\rightarrow g as nn\rightarrow\infty. Then

limn0T𝑬𝗁(s,z)(gn(s,z)1)m(dz)ds=0T𝑬𝗁(s,z)(g(s,z)1)m(dz)ds.\displaystyle\underset{n\rightarrow\infty}{\lim}\int_{0}^{T}\int_{\boldsymbol{E}}\mathsf{h}(s,z)\left(g_{n}(s,z)-1\right)\,m({\rm d}z)\,{\rm d}s=\int_{0}^{T}\int_{\boldsymbol{E}}\mathsf{h}(s,z)(g(s,z)-1)\,m({\rm d}z)\,{\rm d}s.

5.1. Proof of the condition LDP-2

In this subsection, we prove condition LDP-2. To prove the condition it is enough to show that, for each fixed N>0N>0, if gngg_{n}\rightarrow g in SNS_{N} then vnugv_{n}\rightarrow u_{g} in C([0,T];L2(D))L2([0,T];W01,2(D))C([0,T];L^{2}(D))\cap L^{2}([0,T];W_{0}^{1,2}(D)), where vnv_{n} and ugu_{g} are the unique solution of (2.8) corresponding to gng_{n} and gg respectively.

To proceed further, we first derive a-priori estimate for vnv_{n}. One may follow the similar argument as done in the proof of Lemma 4.4 to find constants C1,N,C2,NC_{1,N},C_{2,N} and Cα,NC_{\alpha,N}, independent of nn, such that

{supn[sups[0,T]vn(s)L2(D)2+0Tvn(s)W01,2(D)2ds]C1,N,supn[vnWα,2([0,T];W1,2(D))]Cα,N,α(0,12).\displaystyle\begin{cases}\displaystyle\underset{n\in\mathbb{N}}{\sup}\,\bigg{[}\underset{s\in[0,T]}{\sup}\,\|v_{n}(s)\|_{L^{2}(D)}^{2}+\int_{0}^{T}\|v_{n}(s)\|_{W_{0}^{1,2}(D)}^{2}\,{\rm d}s\bigg{]}\leq C_{1,N}\,,\\ \underset{n\in\mathbb{N}}{\sup}\,\bigg{[}\|v_{n}\|_{W^{\alpha,2}([0,T];{W^{-1,2}(D)})}\bigg{]}\leq C_{\alpha,N}\,,~{}\alpha\in(0,\frac{1}{2})\,.\end{cases} (5.1)

Moreover, repeating the same argument as in subsection 4.2, we have the following: there exits a sub-sequence of {vn}\{v_{n}\}, still denoted by {vn}\{v_{n}\}, and 𝚟C([0,T];L2(D))L2([0,T];W01,2(D)){\tt v}\in C([0,T];L^{2}(D))\cap L^{2}([0,T];W_{0}^{1,2}(D)) such that

vn𝚟inL2([0,T];L2(D)),vn𝚟inL([0,T];L2(D)),\displaystyle v_{n}\rightarrow{\tt v}~{}\text{in}~{}~{}L^{2}([0,T];L^{2}(D)),\quad v_{n}\overset{*}{\rightharpoonup}{\tt v}~{}\text{in}~{}L^{\infty}([0,T];L^{2}(D))\,, (5.2)
vnlog(|vn|)𝚟log(|𝚟|)inLr([0,T];W1,2(D))forr(1,2),\displaystyle v_{n}\log(|v_{n}|)\rightarrow{\tt v}\log(|{\tt v}|)~{}\text{in}~{}L^{r}([0,T];W^{-1,2}(D))~{}\text{for}~{}r\in(1,2)\,,
ΔvnΔ𝚟inL2([0,T];W1,2(D)),vn𝚟inL2([0,T];W01,2(D)).\displaystyle\Delta v_{n}\rightharpoonup\Delta{\tt v}~{}\text{in}~{}L^{2}([0,T];W^{-1,2}(D)),\quad v_{n}\rightharpoonup{\tt v}~{}\text{in}~{}L^{2}([0,T];W^{1,2}_{0}(D))\,.

We now prove that the limit function 𝚟{\tt v} is indeed a solution of (2.8). Regarding the control term, we have the following lemma.

Lemma 5.2.

For any ϕW01,2(D)\phi\in W_{0}^{1,2}(D), there holds

limn0T𝑬η(vn(t);z),ϕ(gn(t,z)1)m(dz)dt=0T𝑬η(𝚟;z),ϕ(g(t,z)1)m(dz)dt.\displaystyle\lim_{n\rightarrow\infty}\int_{0}^{T}\int_{\boldsymbol{E}}\langle\eta(v_{n}(t);z),\phi\rangle(g_{n}(t,z)-1)\,m({\rm d}z)\,{\rm d}t=\int_{0}^{T}\int_{\boldsymbol{E}}\langle\eta({\tt v};z),\phi\rangle(g(t,z)-1)\,m({\rm d}z)\,{\rm d}t\,.
Proof.

By re-writing, we see that, for any ϕW01,2(D)\phi\in W_{0}^{1,2}(D)

0T𝑬η(vn(t);z),ϕ(gn(t,z)1)m(dz)dt\displaystyle\int_{0}^{T}\int_{\boldsymbol{E}}\langle\eta(v_{n}(t);z),\phi\rangle(g_{n}(t,z)-1)\,m({\rm d}z)\,{\rm d}t
=0T𝑬(η(vn(t);z)η(𝚟(t);z)),ϕ(gn(t,z)1)m(dz)dt\displaystyle=\int_{0}^{T}\int_{\boldsymbol{E}}\langle\big{(}\eta(v_{n}(t);z)-\eta({\tt v}(t);z)\big{)},\phi\rangle(g_{n}(t,z)-1)\,m({\rm d}z)\,{\rm d}t
+0T𝑬η(𝚟(t);z),ϕ(gn(t,z)g(t,z))m(dz)dt+0T𝑬η(𝚟;z),ϕ(g(t,z)1)m(dz)dt\displaystyle\quad+\int_{0}^{T}\int_{\boldsymbol{E}}\langle\eta({\tt v}(t);z),\phi\rangle\big{(}g_{n}(t,z)-g(t,z)\big{)}\,m({\rm d}z)\,{\rm d}t+\int_{0}^{T}\int_{\boldsymbol{E}}\langle\eta({\tt v};z),\phi\rangle(g(t,z)-1)\,m({\rm d}z)\,{\rm d}t
𝒥n,1+𝒥n,2+0T𝑬η(𝚟;z),ϕ(g(t,z)1)m(dz)dt.\displaystyle\equiv\mathcal{J}_{n,1}+\mathcal{J}_{n,2}+\int_{0}^{T}\int_{\boldsymbol{E}}\langle\eta({\tt v};z),\phi\rangle(g(t,z)-1)\,m({\rm d}z)\,{\rm d}t\,.

To prove the lemma, we need to show that

𝒥n,1,𝒥n,20as n .\mathcal{J}_{n,1},\mathcal{J}_{n,2}\rightarrow 0~{}~{}~{}~{}\text{as $n\rightarrow\infty$ }.

Following the proof of (4.5), it is easy to check that

𝒥n,10as n .\mathcal{J}_{n,1}\rightarrow 0~{}~{}~{}~{}\text{as $n\rightarrow\infty$ }.

For 𝒥n,2\mathcal{J}_{n,2} we proceed as follows. Let 𝗁(t,z):=η(𝚟(t);z),ϕ\mathsf{h}(t,z):=\langle\eta({\tt v}(t);z),\phi\rangle. In view of (2.6), Remark 2.2 and the fact that 𝚟L([0,T];L2(D)){\tt v}\in L^{\infty}([0,T];L^{2}(D)), one can easily check that 𝗁(,)2([0,T]×𝑬)\mathsf{h}(\cdot,\cdot)\in\mathcal{H}_{2}([0,T]\times\boldsymbol{E}). Hence an application of Lemma 5.1 yields that

𝒥n,20as n .\mathcal{J}_{n,2}\rightarrow 0~{}~{}~{}~{}\text{as $n\rightarrow\infty$ }.

This completes the proof. ∎

In view of (5.2) and Lemma 5.2, one can pass to the limit in the equation satisfied by vnv_{n} and conclude that 𝚟{\tt v} is indeed a solution of (2.8). Moreover, thanks to the uniqueness of the solution of the skeleton equation, we get that 𝚟=ug{\tt v}=u_{g}. To complete proof of condition LDP-2, we need to show that vnugv_{n}\rightarrow u_{g} in C([0,T];L2(D))L2([0,T];W01,2(D))C([0,T];L^{2}(D))\cap L^{2}([0,T];W_{0}^{1,2}(D)). Applying chain-rule and Poincaré inequality for the equation satisfied by vnugv_{n}-u_{g}, we get

ddtvn(t)ug(t)L2(D)2+2vn(t)ug(t)W01,2(D)2\displaystyle\frac{{\rm d}}{{\rm d}t}\left\|v_{n}(t)-u_{g}(t)\right\|_{L^{2}(D)}^{2}+2\left\|v_{n}(t)-u_{g}(t)\right\|_{W_{0}^{1,2}(D)}^{2}
=2vn(t)log|vn(t)|ug(t)log|ug(t)|,vn(t)ug(t)\displaystyle\quad=2\,\bigg{\langle}{v}_{n}(t)\log\left|{v}_{n}(t)\right|-u_{g}(t)\log\left|u_{g}(t)\right|,{v}_{n}(t)-u_{g}(t)\bigg{\rangle}
+2𝑬(η(vn(t);z)(gn(t,z)1)η(ug(t);z)(g(t,z)1))m(dz),vn(t)ug(t).\displaystyle\quad+2\,\bigg{\langle}\int_{\boldsymbol{E}}\big{(}\eta({v}_{n}(t);z)\,(g_{n}(t,z)-1)-\eta(u_{g}(t);z)\,(g(t,z)-1)\big{)}m({\rm d}z),{v}_{n}(t)-u_{g}(t)\bigg{\rangle}\,.

We use Lemma 3.1, the monotone property of the logarithmic function, and the uniform bound (5.1) to have

ddtvn(t)ug(t)L2(D)2+vn(t)ug(t)W01,2(D)2Ψ(t)vn(t)ug(t)L2(D)2+1,n(t),\displaystyle\frac{{\rm d}}{{\rm d}t}\left\|v_{n}(t)-u_{g}(t)\right\|_{L^{2}(D)}^{2}+\left\|v_{n}(t)-u_{g}(t)\right\|_{W_{0}^{1,2}(D)}^{2}\leq\Psi(t)\left\|v_{n}(t)-u_{g}(t)\right\|_{L^{2}(D)}^{2}+\mathcal{I}_{1,n}(t)\,,

where

Ψ(t)=C+𝑬𝚑1(z)|g(t,z)1|m(dz),\displaystyle\Psi(t)=C+\int_{\boldsymbol{E}}{\tt h}_{1}(z)|g(t,z)-1|\,m({\rm d}z)\,,
1,n(t)=2𝑬η(vn(t);z)((gn(t,z)1)(g(t,z)1)),vn(t)ug(t)m(dz).\displaystyle\mathcal{I}_{1,n}(t)=2\int_{\boldsymbol{E}}\bigg{\langle}\eta(v_{n}(t);z)\,\big{(}(g_{n}(t,z)-1)-(g(t,z)-1)\big{)},{v}_{n}(t)-u_{g}(t)\bigg{\rangle}\,m({\rm d}z)\,.

Hence, by Gronwall’s lemma and (a)-Lemma 4.1, we have

supt[0,T]vn(t)ug(t)L2(D)2+0Tvn(t)ug(t)W01,2(D)2dt\displaystyle\sup_{t\in[0,T]}\|v_{n}(t)-u_{g}(t)\|_{L^{2}(D)}^{2}+\int_{0}^{T}\left\|v_{n}(t)-u_{g}(t)\right\|_{W_{0}^{1,2}(D)}^{2}\,{\rm d}t
exp(0TΨ(s)ds)0T|1,n(s)|dsC(N)0T|1,n(s)|ds.\displaystyle\leq\exp\Big{(}\int_{0}^{T}\Psi(s)\,{\rm d}s\Big{)}\int_{0}^{T}|\mathcal{I}_{1,n}(s)|\,{\rm d}s\leq C(N)\int_{0}^{T}|\mathcal{I}_{1,n}(s)|\,{\rm d}s\,.

Thus, we need to show that

𝒜n(T):=0T|1,n(s)|ds0asn.\displaystyle\mathcal{A}_{n}(T):=\int_{0}^{T}|\mathcal{I}_{1,n}(s)|\,{\rm d}s\rightarrow 0~{}\text{as}~{}n\rightarrow\infty\,. (5.3)

Thanks to Cauchy-Schwartz inequality, the assumption (2.6) and the moment estimate (5.1), we see that

𝒜n(T)\displaystyle\mathcal{A}_{n}(T) C0T𝑬𝚑2(z){|gn(t,z)1|+|g(t,z)1|}vn(t)ug(t)L2(D)m(dz)dt\displaystyle\leq C\int_{0}^{T}\int_{\boldsymbol{E}}{\tt h}_{2}(z)\big{\{}|g_{n}(t,z)-1|+|g(t,z)-1|\big{\}}\|{v}_{n}(t)-u_{g}(t)\|_{L^{2}(D)}\,m({\rm d}z)\,{\rm d}t
CsupkSN0T𝑬vn(t)ug(t)L2(D)𝚑2(z)|k(t,z)1|m(dz)dt.\displaystyle\leq C\sup_{\mathrm{k}\in S_{N}}\int_{0}^{T}\int_{\boldsymbol{E}}\|{v}_{n}(t)-u_{g}(t)\|_{L^{2}(D)}{\tt h}_{2}(z)|\mathrm{k}(t,z)-1|\,m({\rm d}z)\,{\rm d}t\,.

Hence by Remark 4.1, we conclude that the assertion (5.3) holds true. In other words, vnugv_{n}\rightarrow u_{g} in C([0,T];L2(D))L2([0,T];W01,2(D))C([0,T];L^{2}(D))\cap L^{2}([0,T];W_{0}^{1,2}(D)). This completes the proof of condition LDP-2.

5.2. Proof of condition LDP-1

In this subsection, we prove condition LDP-1. To proceed further, we need a certain generalization of the Girsanov theorem. For ϵ>0\epsilon>0, let φϵ𝒜~\varphi_{\epsilon}\in\tilde{\mathcal{A}}. Set Ψϵ=1φϵ\Psi_{\epsilon}=\frac{1}{\varphi_{\epsilon}}. Then Ψϵ𝒜~\Psi_{\epsilon}\in\tilde{\mathcal{A}}. According to [JS87, Theorem III.3.24] ( see also [BPZ23, Theorem 6.16.1]), the process {tϵ(Ψϵ):t[0,T]}\{\mathcal{M}_{t}^{\epsilon}(\Psi_{\epsilon}):~{}t\in[0,T]\} defined by

tϵ(Ψϵ):=exp{\displaystyle\mathcal{M}_{t}^{\epsilon}(\Psi_{\epsilon}):=\exp\bigg{\{} (0,t]×𝑬×[0,ϵ1φϵ(s,z)]log(Ψϵ(s,z))N(ds,dz,dr)\displaystyle\int_{(0,t]\times\boldsymbol{E}\times[0,\epsilon^{-1}\varphi_{\epsilon}(s,z)]}\log\big{(}\Psi_{\epsilon}(s,z)\big{)}N({\rm d}s,{\rm d}z,{\rm d}r)
+(0,t]×𝑬×[0,ϵ1φϵ(s,z)](Ψϵ(s,z)+1)m(dz)dsdr)}\displaystyle+\int_{(0,t]\times\boldsymbol{E}\times[0,\epsilon^{-1}\varphi_{\epsilon}(s,z)]}\big{(}-\Psi_{\epsilon}(s,z)+1\big{)}\,m({\rm d}z)\,{\rm d}s\,{\rm d}r)\bigg{\}}

is a martingale on (Ω,,,𝔽)(\Omega,\mathcal{F},\mathbb{P},\mathbb{F}). Define a new probability measure on (Ω,)(\Omega,\mathcal{F}) as

(A)=ATϵ(Ψϵ)𝑑,A.\mathbb{Q}(A)=\int_{A}\mathcal{M}_{T}^{\epsilon}(\Psi_{\epsilon})\,d\mathbb{P},~{}~{}~{}A\in\mathcal{F}.

Then the followings hold.

  • a)

    \mathbb{P} and \mathbb{Q} are mutually absolutely continuous.

  • b)

    Law of ϵNϵ1φϵ\epsilon N^{\epsilon^{-1}\varphi_{\epsilon}} under \mathbb{Q} and law of ϵNϵ1\epsilon N^{\epsilon^{-1}} under \mathbb{P} are equal on 𝙼T{\tt M}_{T}.

We recall the uϵ=𝒢ϵ(ϵNϵ1)u_{\epsilon}=\mathcal{G}^{\epsilon}(\epsilon N^{\epsilon^{-1}}) is the unique strong solution of (2.7) on the probability space (Ω,,,𝔽)(\Omega,\mathcal{F},\mathbb{P},\mathbb{F}). Define

u~ϵ:=𝒢ϵ(ϵNϵ1φϵ).\tilde{u}_{\epsilon}:=\mathcal{G}^{\epsilon}\big{(}\epsilon N^{\epsilon^{-1}\varphi_{\epsilon}}\big{)}.

It follows that u~ϵ\tilde{u}_{\epsilon}, on the probability space (Ω,,,𝔽)(\Omega,\mathcal{F},\mathbb{P},\mathbb{F}), is the unique solution of the following controlled stochastic differential equation: for (t,x)(0,T]×D(t,x)\in(0,T]\times D,

du~ϵ(t,x)Δu~ϵdt\displaystyle d\tilde{u}_{\epsilon}(t,x)-\Delta\tilde{u}_{\epsilon}\,{\rm d}t =u~ϵlog|u~ϵ|dt+ϵ𝑬η(u~ϵ;z)(Nϵ1φϵ(dz,dt)ϵ1m(dz)dt),\displaystyle=\tilde{u}_{\epsilon}\log|\tilde{u}_{\epsilon}|\,{\rm d}t+\epsilon\int_{\boldsymbol{E}}\eta(\tilde{u}_{\epsilon};z)\Big{(}N^{\epsilon^{-1}{\varphi}_{\epsilon}}({\rm d}z,{\rm d}t)-\epsilon^{-1}\,m({\rm d}z)\,{\rm d}t\Big{)}\,, (5.4)
u~ϵ(0,x)\displaystyle\tilde{u}_{\epsilon}(0,x) =u0(x).\displaystyle=u_{0}(x)\,.

We will use the following version of equation (5.4):

du~ϵ(t,x)Δu~ϵdt\displaystyle d\tilde{u}_{\epsilon}(t,x)-\Delta\tilde{u}_{\epsilon}\,{\rm d}t =u~ϵlog|u~ϵ|dt+ϵ𝑬η(u~ϵ;z)N~ϵ1φϵ(dz,dt)+𝑬η(u~ϵ;z)(φϵ(t,z)1)m(dz)dt,\displaystyle=\tilde{u}_{\epsilon}\log|\tilde{u}_{\epsilon}|\,{\rm d}t+\epsilon\int_{\boldsymbol{E}}\eta(\tilde{u}_{\epsilon};z)\widetilde{N}^{\epsilon^{-1}{\varphi}_{\epsilon}}({\rm d}z,{\rm d}t)+\int_{\boldsymbol{E}}\eta(\tilde{u}_{\epsilon};z)\,(\varphi_{\epsilon}(t,z)-1)\,m({\rm d}z)\,{\rm d}t\,, (5.5)
u~ϵ(0,x)\displaystyle\tilde{u}_{\epsilon}(0,x) =u0(x).\displaystyle=u_{0}(x)\,.

We first derive a-priori estimate for u~ϵ\tilde{u}_{\epsilon}.

Lemma 5.3.

There exist ϵ0(0,1)\epsilon_{0}\in(0,1), and a constant C~N>0\tilde{C}_{N}>0 such that

sup0<ϵ<ϵ0𝔼[sups[0,T]u~ϵ(s)L2(D)2+0Tu~ϵ(s)W01,2(D)2ds]C~N.\displaystyle\sup_{0<\epsilon<\epsilon_{0}}\mathbb{E}\bigg{[}\underset{s\in[0,T]}{\sup}\,\|\tilde{u}_{\epsilon}(s)\|_{L^{2}(D)}^{2}+\int_{0}^{T}\|\tilde{u}_{\epsilon}(s)\|_{W_{0}^{1,2}(D)}^{2}\,{\rm d}s\bigg{]}\leq\tilde{C}_{N}\,. (5.6)
Proof.

For any t0t\geq 0 and A(𝑬)A\in\mathcal{B}(\boldsymbol{E}), define

Ntφ(A):=N((0,t]×A).N_{t}^{\varphi}(A):=N((0,t]\times A).

Then for any s0s\geq 0, Nt+sφ()Nsφ()N_{t+s}^{\varphi}(\cdot)-N_{s}^{\varphi}(\cdot) is a time-homogeneous Poisson random measure with respect to the filtration ts:=t+s,t0\mathcal{F}_{t}^{s}:=\mathcal{F}_{t+s},~{}t\geq 0. Moreover, Nt+sφ()Nsφ()N_{t+s}^{\varphi}(\cdot)-N_{s}^{\varphi}(\cdot) and Ntφ()N_{t}^{\varphi}(\cdot) have the same distribution. Thus, in view of proof of [SZ22, Step 22,Theorem 5.45.4], to prove the a-priori estimate (5.6), we need to derive the following a-priori estimate: for any p2p\geq 2, there exists a constant C=C(p,θ,N,u0L2(D))C=C(p,\theta,N,\|u_{0}\|_{L^{2}(D)}) such that

sup0<ϵ<ϵ0𝔼[supt[0,Tp]u~ϵ(t)L2(D)p+0Tpu~ϵ(s)L2(D)p2u~ϵ(s)W01,2(D)2ds]C(p,θ,N,u0L2(D)),\displaystyle\sup_{0<\epsilon<\epsilon_{0}}\mathbb{E}\Big{[}\sup_{t\in[0,T_{p}]}\|\tilde{u}_{\epsilon}(t)\|_{L^{2}(D)}^{p}+\int_{0}^{T_{p}}\|\tilde{u}_{\epsilon}(s)\|_{L^{2}(D)}^{p-2}\|\tilde{u}_{\epsilon}(s)\|_{W_{0}^{1,2}(D)}^{2}\,{\rm d}s\Big{]}\leq C(p,\theta,N,\|u_{0}\|_{L^{2}(D)})\,, (5.7)

where TpT_{p} is defined in Lemma 3.8. To prove (5.7), we follow the similar argument as used in Lemma 3.8. We apply Ito^\hat{o}-Lévy formula to the functional xxL2(D)p,p2x\mapsto\|x\|_{L^{2}(D)}^{p},~{}p\geq 2 on u~ϵ\tilde{u}_{\epsilon} and use Taylor’s formula together with the logarithmic Sobolev inequality to have

u~ϵ(t)L2(D)p+p20tu~ϵ(s)L2(D)p2u~ϵ(s)W01,2(D)2ds\displaystyle\|\tilde{u}_{\epsilon}(t)\|_{L^{2}(D)}^{p}+\frac{p}{2}\int_{0}^{t}\|\tilde{u}_{\epsilon}(s)\|_{L^{2}(D)}^{p-2}\|\tilde{u}_{\epsilon}(s)\|_{W_{0}^{1,2}(D)}^{2}\,{\rm d}s
u0L2(D)p+C0tu~ϵ(s)L2(D)pds+0tu~ϵ(s)L2(D)plog(u~ϵ(s)L2(D)p)ds\displaystyle\leq\|u_{0}\|_{L^{2}(D)}^{p}+C\int_{0}^{t}\|\tilde{u}_{\epsilon}(s)\|_{L^{2}(D)}^{p}\,{\rm d}s+\int_{0}^{t}\|\tilde{u}_{\epsilon}(s)\|_{L^{2}(D)}^{p}\log(\|\tilde{u}_{\epsilon}(s)\|_{L^{2}(D)}^{p})\,{\rm d}s
+Cpϵ20t𝑬{u~ϵ(s)L2(D)p2η(u~ϵ(s);z)L2(D)2+η(u~ϵ(s);z)L2(D)p}Nϵ1φϵ(dz,ds)\displaystyle\quad+C_{p}\epsilon^{2}\int_{0}^{t}\int_{\boldsymbol{E}}\Big{\{}\|\tilde{u}_{\epsilon}(s)\|_{L^{2}(D)}^{p-2}\|\eta(\tilde{u}_{\epsilon}(s);z)\|_{L^{2}(D)}^{2}+\|\eta(\tilde{u}_{\epsilon}(s);z)\|_{L^{2}(D)}^{p}\Big{\}}N^{\epsilon^{-1}{\varphi}_{\epsilon}}({\rm d}z,{\rm d}s)
+ϵpsupr[0,t]|0r𝑬u~ϵ(s)L2(D)p2η(u~ϵ(s);z),u~ϵ(s)N~ϵ1φϵ(dz,ds)|\displaystyle\qquad+\epsilon\,p\sup_{r\in[0,t]}\Big{|}\int_{0}^{r}\int_{\boldsymbol{E}}\|\tilde{u}_{\epsilon}(s)\|_{L^{2}(D)}^{p-2}\langle\eta(\tilde{u}_{\epsilon}(s);z),\tilde{u}_{\epsilon}(s)\rangle\widetilde{N}^{\epsilon^{-1}{\varphi}_{\epsilon}}({\rm d}z,{\rm d}s)\Big{|}
+p0t𝑬u~ϵ(s)L2(D)p2η(u~ϵ(s);z),u~ϵ(s)(φϵ(s,z)1)m(dz)dsi=16i(t).\displaystyle\qquad\quad+p\int_{0}^{t}\int_{\boldsymbol{E}}\|\tilde{u}_{\epsilon}(s)\|_{L^{2}(D)}^{p-2}\langle\eta(\tilde{u}_{\epsilon}(s);z),\tilde{u}_{\epsilon}(s)\rangle(\varphi_{\epsilon}(s,z)-1)\,m({\rm d}z)\,{\rm d}s\equiv\sum_{i=1}^{6}\mathcal{R}_{i}(t)\,. (5.8)

In view of Cauchy-Schwartz inequality, the growth condition (2.6) and Young’s inequality, we have

6(t)\displaystyle\mathcal{R}_{6}(t) C0tu~ϵ(s)L2(D)p2(1+u~ϵ(s)L2(D)2)Ψ2,ϵ(s)ds\displaystyle\leq C\int_{0}^{t}\|\tilde{u}_{\epsilon}(s)\|_{L^{2}(D)}^{p-2}\big{(}1+\|\tilde{u}_{\epsilon}(s)\|_{L^{2}(D)}^{2}\big{)}\Psi_{2,\epsilon}(s)\,{\rm d}s
C0tΨ2,ϵ(s)ds+C0tΨ2,ϵ(s)u~ϵ(s)L2(D)2ds,\displaystyle\leq C\int_{0}^{t}\Psi_{2,\epsilon}(s)\,{\rm d}s+C\int_{0}^{t}\Psi_{2,\epsilon}(s)\|\tilde{u}_{\epsilon}(s)\|_{L^{2}(D)}^{2}\,{\rm d}s\,, (5.9)

where Ψ2,ϵ(s)\Psi_{2,\epsilon}(s) is given by

Ψ2,ε(s):=𝑬𝚑2(z)|φϵ(s,z)1|m(dz).\Psi_{2,\varepsilon}(s):=\int_{\boldsymbol{E}}{\tt h}_{2}(z)|\varphi_{\epsilon}(s,z)-1|\,m({\rm d}z)\,.

Using (5.9) in (5.8), and then applying log-Gronwall’s inequality in Lemma 3.7 along with Lemma 4.1, we have, after taking expectation

𝔼[sups[0,tτ¯R]u~ϵ(s)L2(D)p+p20tτ¯Ru~ϵ(s)L2(D)p2u~ϵ(s)W01,2(D)2ds]\displaystyle\mathbb{E}\Big{[}\sup_{s\in[0,t\wedge\bar{\tau}_{R}]}\|\tilde{u}_{\epsilon}(s)\|_{L^{2}(D)}^{p}+\frac{p}{2}\int_{0}^{t\wedge\bar{\tau}_{R}}\|\tilde{u}_{\epsilon}(s)\|_{L^{2}(D)}^{p-2}\|\tilde{u}_{\epsilon}(s)\|_{W_{0}^{1,2}(D)}^{2}\,{\rm d}s\Big{]}
𝔼[(1+M¯(tτ¯R))eTpexp{CeTp0t(1+Ψ2,ϵ(s))ds}]\displaystyle\leq\mathbb{E}\Big{[}(1+\bar{M}(t\wedge\bar{\tau}_{R}))^{e^{T_{p}}}\exp\Big{\{}Ce^{T_{p}}\int_{0}^{t}\big{(}1+\Psi_{2,\epsilon}(s)\big{)}\,{\rm d}s\Big{\}}\Big{]}
C(N,p,θ)𝔼[(1+M¯(tτ¯R))pp1+θ],\displaystyle\leq C(N,p,\theta)\mathbb{E}\Big{[}\big{(}1+\bar{M}(t\wedge\bar{\tau}_{R})\big{)}^{\frac{p}{p-1+\theta}}\Big{]}\,, (5.10)

where

M¯(t):\displaystyle\bar{M}(t): =u0L2(D)p+C0tΨ2,ϵ(s)ds+4(t)+5(t),\displaystyle=\|u_{0}\|_{L^{2}(D)}^{p}+C\int_{0}^{t}\Psi_{2,\epsilon}(s)\,{\rm d}s+\mathcal{R}_{4}(t)+\mathcal{R}_{5}(t)\,,
τ¯R:\displaystyle\bar{\tau}_{R}: =inf{t>0:u~ϵ(t)L2(D)>R}Tp.\displaystyle=\inf\Big{\{}t>0:\|\tilde{u}_{\epsilon}(t)\|_{L^{2}(D)}>R\Big{\}}\wedge T_{p}\,.

Observe that

𝔼[(1+M¯(tτ¯R))pp1+θ]\displaystyle\mathbb{E}\Big{[}\big{(}1+\bar{M}(t\wedge\bar{\tau}_{R})\big{)}^{\frac{p}{p-1+\theta}}\Big{]}
C(p,θ){1+u0L2(D)p2p1+θ+(C1,1N)pp1+θ}\displaystyle\leq C(p,\theta)\Big{\{}1+\|u_{0}\|_{L^{2}(D)}^{\frac{p^{2}}{p-1+\theta}}+(C_{1,1}^{N})^{\frac{p}{p-1+\theta}}\Big{\}}
+C(p,θ)ϵpp1+θ𝔼[supr[0,tτ¯R]|0r𝑬u~ϵ(s)L2(D)p2η(u~ϵ(s);z),u~ϵ(s)N~ϵ1φϵ(dz,ds)|pp1+θ]\displaystyle+C(p,\theta)\,\epsilon^{\frac{p}{p-1+\theta}}\,\mathbb{E}\Bigg{[}\underset{r\in[0,t\wedge\bar{\tau}_{R}]}{\sup}\left|\int_{0}^{r}\int_{\boldsymbol{E}}\|\tilde{u}_{\epsilon}(s)\|_{L^{2}(D)}^{p-2}\langle\eta(\tilde{u}_{\epsilon}(s);z),\tilde{u}_{\epsilon}(s)\rangle\,\widetilde{N}^{\epsilon^{-1}\varphi_{\epsilon}}({\rm d}z,{\rm d}s)\right|^{\frac{p}{p-1+\theta}}\Bigg{]}
+C(p,θ)ϵ2pp1+θ𝔼[(0tτ¯R𝑬u~ϵ(s)L2(D)p2η(u~ϵ(s);z)L2(D)2Nϵ1φϵ(dz,ds))pp1+θ]\displaystyle+C(p,\theta)\,\epsilon^{\frac{2p}{p-1+\theta}}\,\mathbb{E}\Bigg{[}\bigg{(}\int_{0}^{t\wedge\bar{\tau}_{R}}\int_{\boldsymbol{E}}\|\tilde{u}_{\epsilon}(s)\|_{L^{2}(D)}^{p-2}\|\eta(\tilde{u}_{\epsilon}(s);z)\|_{L^{2}(D)}^{2}\,N^{\epsilon^{-1}\varphi_{\epsilon}}({\rm d}z,{\rm d}s)\bigg{)}^{\frac{p}{p-1+\theta}}\Bigg{]}
+C(p,θ)ϵ2pp1+θ𝔼[(0tτ¯R𝑬η(u~ϵ(s);z)L2(D)pNϵ1φϵ(dz,ds))pp1+θ]i=710i.\displaystyle\quad+C(p,\theta)\,\epsilon^{\frac{2p}{p-1+\theta}}\,\mathbb{E}\Bigg{[}\bigg{(}\int_{0}^{t\wedge\bar{\tau}_{R}}\int_{\boldsymbol{E}}\|\eta(\tilde{u}_{\epsilon}(s);z)\|_{L^{2}(D)}^{p}\,N^{\epsilon^{-1}\varphi_{\epsilon}}({\rm d}z,{\rm d}s)\bigg{)}^{\frac{p}{p-1+\theta}}\Bigg{]}\equiv\sum_{i=7}^{10}\mathcal{R}_{i}\,. (5.11)

In view of Burkholder-Davis-Gundy inequality, [ZBL19, Corollary 2.42.4], and the Young’s inequality

abϵ𝚜aP+c(P,Q)ϵ𝚜(p1)θbQ,with 1P+1Q=1 for P=p1+θp1 and 1<𝚜<pp1+θ ,ab\leq\epsilon^{-{\tt s}}a^{P}+c(P,Q)\epsilon^{\frac{{\tt s}(p-1)}{\theta}}b^{Q},~{}~{}\text{with $\frac{1}{P}+\frac{1}{Q}=1$ for $P=\frac{p-1+\theta}{p-1}$ and $1<{\tt s}<\frac{p}{p-1+\theta}$ },

one can proceed with a similar calculation as done for the estimation of 𝒦2\mathcal{K}_{2} to have

8\displaystyle\mathcal{R}_{8} ϵ𝔼[sups[0,tτ¯R]u~ϵ(s)L2(D)p]+Cϵ𝔼[0tτ¯R𝑬η(u~ϵ(s);z)L2(D)pθφϵ(s,z)m(dz)ds]\displaystyle\leq\epsilon\mathbb{E}\Big{[}\sup_{s\in[0,t\wedge\bar{\tau}_{R}]}\|\tilde{u}_{\epsilon}(s)\|_{L^{2}(D)}^{p}\Big{]}+C\,\epsilon\,\mathbb{E}\Big{[}\int_{0}^{t\wedge\bar{\tau}_{R}}\int_{\boldsymbol{E}}\|\eta(\tilde{u}_{\epsilon}(s);z)\|_{L^{2}(D)}^{\frac{p}{\theta}}\varphi_{\epsilon}(s,z)\,m({\rm d}z)\,{\rm d}s\Big{]}
+Cϵ𝔼[(0tτ¯R𝑬η(u~ϵ(s);z)L2(D)2φϵ(s,z)m(dz)ds)p2θ]i=138,i.\displaystyle+C\epsilon\,\mathbb{E}\Big{[}\Big{(}\int_{0}^{t\wedge\bar{\tau}_{R}}\int_{\boldsymbol{E}}\|\eta(\tilde{u}_{\epsilon}(s);z)\|_{L^{2}(D)}^{2}\,\varphi_{\epsilon}(s,z)\,m({\rm d}z)\,{\rm d}s\Big{)}^{\frac{p}{2\theta}}\Big{]}\equiv\sum_{i=1}^{3}\mathcal{R}_{8,i}\,.

Thanks to the assumption (2.6), Lemma (4.1) and the fact that 0𝚑210\leq{\tt h}_{2}\leq 1, we have

8,2\displaystyle\mathcal{R}_{8,2} Cϵ𝔼[0tτ¯R𝑬(1+u~ϵ(s)L2(D)p)|𝚑2(z)|2(φϵ(s,z)+1)m(dz)ds]\displaystyle\leq C\,\epsilon\,\mathbb{E}\Big{[}\int_{0}^{t\wedge\bar{\tau}_{R}}\int_{\boldsymbol{E}}\big{(}1+\|\tilde{u}_{\epsilon}(s)\|_{L^{2}(D)}^{p}\big{)}|{\tt h}_{2}(z)|^{2}\big{(}\varphi_{\epsilon}(s,z)+1\big{)}\,m({\rm d}z)\,{\rm d}s\Big{]}
Cϵ𝔼[(1+sups[0,tτ¯R]u~ϵ(s)L2(D)p)0tτ¯R𝑬|𝚑2(z)|2(φϵ(s,z)+1)m(dz)ds]\displaystyle\leq C\,\epsilon\,\mathbb{E}\Big{[}\big{(}1+\sup_{s\in[0,t\wedge\bar{\tau}_{R}]}\|\tilde{u}_{\epsilon}(s)\|_{L^{2}(D)}^{p}\big{)}\int_{0}^{t\wedge\bar{\tau}_{R}}\int_{\boldsymbol{E}}|{\tt h}_{2}(z)|^{2}\big{(}\varphi_{\epsilon}(s,z)+1\big{)}\,m({\rm d}z)\,{\rm d}s\Big{]}
C(N,ϵ)+Cϵ𝔼[sups[0,tτ¯R]u~ϵ(s)L2(D)p],\displaystyle\leq C(N,\epsilon)+C\,\epsilon\,\mathbb{E}\Big{[}\sup_{s\in[0,t\wedge\bar{\tau}_{R}]}\|\tilde{u}_{\epsilon}(s)\|_{L^{2}(D)}^{p}\Big{]}\,,
8,3\displaystyle\mathcal{R}_{8,3} Cϵ𝔼[(1+sups[0,tτ¯R]u~ϵ(s)L2(D)p)(0tτ¯R𝑬|𝚑2(z)|2(φϵ(s,z)+1)m(dz)ds)p2θ]\displaystyle\leq C\,\epsilon\,\mathbb{E}\Big{[}\big{(}1+\sup_{s\in[0,t\wedge\bar{\tau}_{R}]}\|\tilde{u}_{\epsilon}(s)\|_{L^{2}(D)}^{p}\big{)}\Big{(}\int_{0}^{t\wedge\bar{\tau}_{R}}\int_{\boldsymbol{E}}|{\tt h}_{2}(z)|^{2}\big{(}\varphi_{\epsilon}(s,z)+1\big{)}\,m({\rm d}z)\,{\rm d}s\Big{)}^{\frac{p}{2\theta}}\Big{]}
C(N,p,θ,T)+C(N,p,θ,T)ϵ𝔼[sups[0,tτ¯R]u~ϵ(s)L2(D)p].\displaystyle\leq C(N,p,\theta,T)+C(N,p,\theta,T)\,\epsilon\,\mathbb{E}\Big{[}\sup_{s\in[0,t\wedge\bar{\tau}_{R}]}\|\tilde{u}_{\epsilon}(s)\|_{L^{2}(D)}^{p}\Big{]}\,.

Hence, we have

8Cϵ{1+𝔼[sups[0,tτ¯R]u~ϵ(s)L2(D)p]}.\displaystyle\mathcal{R}_{8}\leq C\,\epsilon\,\Big{\{}1+\mathbb{E}\Big{[}\sup_{s\in[0,t\wedge\bar{\tau}_{R}]}\|\tilde{u}_{\epsilon}(s)\|_{L^{2}(D)}^{p}\Big{]}\Big{\}}\,. (5.12)

Again, using [ZBL19, Corollary 2.42.4], Young’s inequality, the assumption (2.6), Lemma (4.1) and the fact that 0𝚑210\leq{\tt h}_{2}\leq 1, one can easily deduce that

9+10Cϵ{1+𝔼[sups[0,tτ¯R]u~ϵ(s)L2(D)p]}.\displaystyle\mathcal{R}_{9}+\mathcal{R}_{10}\leq C\,\epsilon\,\Big{\{}1+\mathbb{E}\Big{[}\sup_{s\in[0,t\wedge\bar{\tau}_{R}]}\|\tilde{u}_{\epsilon}(s)\|_{L^{2}(D)}^{p}\Big{]}\Big{\}}\,. (5.13)

Combining (5.12), (5.13) in (5.11) and (5.10), we conclude the following: there exist ϵ0(0,1)\epsilon_{0}\in(0,1) and a constant C=C(p,θ,N,T,u0L2(D))C=C(p,\theta,N,T,\|u_{0}\|_{L^{2}(D)}) such that for all 0<ϵ<ϵ00<\epsilon<\epsilon_{0},

𝔼[sups[0,tτ¯R]u~ϵ(s)L2(D)p+p20tτ¯Ru~ϵ(s)L2(D)p2u~ϵ(s)W01,2(D)2ds]C(p,θ,N,T,u0L2(D)).\mathbb{E}\Big{[}\sup_{s\in[0,t\wedge\bar{\tau}_{R}]}\|\tilde{u}_{\epsilon}(s)\|_{L^{2}(D)}^{p}+\frac{p}{2}\int_{0}^{t\wedge\bar{\tau}_{R}}\|\tilde{u}_{\epsilon}(s)\|_{L^{2}(D)}^{p-2}\|\tilde{u}_{\epsilon}(s)\|_{W_{0}^{1,2}(D)}^{2}\,{\rm d}s\Big{]}\leq C(p,\theta,N,T,\|u_{0}\|_{L^{2}(D)}).

This completes the proof. ∎

5.2.1. Proof of condition LDP-1

For any NN\in\mathbb{N}, let {φϵ:ϵ(0,ϵ0)}𝒰~N\{\varphi_{\epsilon}:~{}\epsilon\in(0,\epsilon_{0})\}\subset\tilde{\mathcal{U}}_{N}. For any R,L>0R,L>0 and δ(0,1)\delta\in(0,1), we define

τRϵ\displaystyle\tau_{R}^{\epsilon} :=inf{t>0:u~ϵ(t)L2(D)>R},τLϵ:=inf{t>0:0tu~ϵ(s)W01,2(D)2ds>L},\displaystyle:=\inf\left\{t>0:\|\tilde{u}_{\epsilon}(t)\|_{L^{2}(D)}>R\right\},\quad\tau_{L}^{\epsilon}:=\inf\left\{t>0:\int_{0}^{t}\|\tilde{u}_{\epsilon}(s)\|_{W_{0}^{1,2}(D)}^{2}\,{\rm d}s>L\right\},
τδϵ\displaystyle\tau_{\delta}^{\epsilon} :=inf{t>0:u~ϵ(t)uφϵ(t)L2(D)>δ},τϵ:=τRϵτLϵτδϵT,\displaystyle:=\inf\{t>0:\|\tilde{u}_{\epsilon}(t)-u_{\varphi_{\epsilon}}(t)\|_{L^{2}(D)}>\delta\},\quad\tau^{\epsilon}:=\tau_{R}^{\epsilon}\wedge\tau_{L}^{\epsilon}\wedge\tau_{\delta}^{\epsilon}\wedge T\,,

where u~ϵ\tilde{u}_{\epsilon} resp. uφϵu_{\varphi_{\epsilon}} is the unique solution of (5.5) resp. (2.8) with gg replaced by φϵ\varphi_{\epsilon}. Note that, since φϵ𝒰~N\varphi_{\epsilon}\in\widetilde{\mathcal{U}}_{N}, by (2.9) there exists a constant CNC_{N}, independent of ϵ\epsilon, such that \mathbb{P}-a.s.,

supϵ(0,ϵ0){sups[0,T]uφϵ(s)L2(D)2+0Tuφϵ(s)W01,2(D)2ds}CN.\displaystyle\sup_{\epsilon\in(0,\epsilon_{0})}\Bigg{\{}\sup_{s\in[0,T]}\|u_{\varphi_{\epsilon}}(s)\|_{L^{2}(D)}^{2}+\int_{0}^{T}\|u_{\varphi_{\epsilon}}(s)\|_{W_{0}^{1,2}(D)}^{2}\,{\rm d}s\Bigg{\}}\leq C_{N}\,. (5.14)

Observe that, in view of (5.6) and Markov’s inequality, one has for any fixed TTT_{*}\leq T

supϵ(0,ϵ0)(τRϵT)1R2supϵ(0,ϵ0)𝔼[u~ε(TτRϵ)L2(D)2]C~NR20as R\displaystyle\sup_{\epsilon\in(0,\epsilon_{0})}\mathbb{P}\Big{(}\tau_{R}^{\epsilon}\leq T_{*}\Big{)}\leq\frac{1}{R^{2}}\sup_{\epsilon\in(0,\epsilon_{0})}\mathbb{E}\Big{[}\|\tilde{u}_{\varepsilon}(T_{*}\wedge\tau_{R}^{\epsilon})\|_{L^{2}(D)}^{2}\Big{]}\leq\frac{\tilde{C}_{N}}{R^{2}}\rightarrow 0~{}~{}\text{as $R\rightarrow\infty$} (5.15)
supϵ(0,ϵ0)(τLϵT)1Lsupϵ(0,ϵ0)𝔼[0Tu~ϵ(s)W01,2(D)2ds]C~NL0as L.\displaystyle\sup_{\epsilon\in(0,\epsilon_{0})}\mathbb{P}\Big{(}\tau_{L}^{\epsilon}\leq T_{*}\Big{)}\leq\frac{1}{L}\sup_{\epsilon\in(0,\epsilon_{0})}\mathbb{E}\Big{[}\int_{0}^{T}\|\tilde{u}_{\epsilon}(s)\|_{W_{0}^{1,2}(D)}^{2}\,{\rm d}s\Big{]}\leq\frac{\tilde{C}_{N}}{L}\rightarrow 0~{}~{}\text{as $L\rightarrow\infty$}\,.

By applying Ito^\hat{o}-Lévy formula to the functional yyL2(D)2y\mapsto\|y\|_{L^{2}(D)}^{2} on v~ε:=u~ϵuφϵ\tilde{v}_{\varepsilon}:=\tilde{u}_{\epsilon}-u_{\varphi_{\epsilon}}, we get

v~ϵ(tτϵ)L2(D)2+20tτϵv~ϵ(s)W01,2(D)2ds\displaystyle\|\tilde{v}_{\epsilon}(t\wedge\tau^{\epsilon})\|_{L^{2}(D)}^{2}+2\int_{0}^{t\wedge\tau^{\epsilon}}\|\tilde{v}_{\epsilon}(s)\|_{W_{0}^{1,2}(D)}^{2}\,{\rm d}s
=20tτϵu~ϵ(s)log|u~ϵ(s)|uφϵ(s)log|uφϵ(s)|,u~ϵ(s)uφϵ(s)ds\displaystyle=2\int_{0}^{t\wedge\tau^{\epsilon}}\big{\langle}\tilde{u}_{\epsilon}(s)\log|\tilde{u}_{\epsilon}(s)|-u_{\varphi_{\epsilon}}(s)\log|u_{\varphi_{\epsilon}}(s)|,\tilde{u}_{\epsilon}(s)-u_{\varphi_{\epsilon}}(s)\big{\rangle}\,{\rm d}s
+20tτϵ𝑬η(u~ϵ(s);z)η(uφϵ(s);z),v~ϵ(s)(φϵ(s,z)1)m(dz)ds\displaystyle+2\int_{0}^{t\wedge\tau^{\epsilon}}\int_{\boldsymbol{E}}\big{\langle}\eta(\tilde{u}_{\epsilon}(s);z)-\eta(u_{\varphi_{\epsilon}}(s);z),\tilde{v}_{\epsilon}(s)\big{\rangle}(\varphi_{\epsilon}(s,z)-1)\,m({\rm d}z)\,{\rm d}s
+2ϵ0tτϵ𝑬η(u~ϵ(s);z),v~ϵ(s)(Nϵ1φϵ(dz,ds)ϵ1φϵm(dz)ds)\displaystyle+2\,\epsilon\int_{0}^{t\wedge\tau^{\epsilon}}\int_{\boldsymbol{E}}\big{\langle}\eta(\tilde{u}_{\epsilon}(s);z),\tilde{v}_{\epsilon}(s)\big{\rangle}\big{(}N^{\epsilon^{-1}\,\varphi_{\epsilon}}({\rm d}z,{\rm d}s)-\epsilon^{-1}\varphi_{\epsilon}\,m({\rm d}z)\,{\rm d}s\big{)}
+ϵ20tτϵ𝑬η(u~ϵ(s);z)L2(D)2Nϵ1φϵ(dz,ds)i=14𝒯iϵ(t).\displaystyle+\epsilon^{2}\int_{0}^{t\wedge\tau^{\epsilon}}\int_{\boldsymbol{E}}\|\eta(\tilde{u}_{\epsilon}(s);z)\|_{L^{2}(D)}^{2}N^{\epsilon^{-1}\,\varphi_{\epsilon}}({\rm d}z,{\rm d}s)\equiv\sum_{i=1}^{4}\mathcal{T}_{i}^{\epsilon}(t)\,. (5.16)

We use Lemma 3.1, uniform estimate (5.14) and the definition of τϵ\tau^{\epsilon} to get

𝒯1ϵ(t)\displaystyle\mathcal{T}_{1}^{\epsilon}(t)\leq 0tτϵv~ϵ(s)W01,2(D)2ds+R2(1α)(1α)e0tv~ϵ(sτϵ)L2(D)2αds+C0tv~ϵ(sτϵ)L2(D)2ds.\displaystyle\int_{0}^{t\wedge\tau^{\epsilon}}\|\tilde{v}_{\epsilon}(s)\|_{W_{0}^{1,2}(D)}^{2}\,{\rm d}s+\frac{R^{2(1-\alpha)}}{(1-\alpha)e}\int_{0}^{t}\|\tilde{v}_{\epsilon}(s\wedge\tau^{\epsilon})\|_{L^{2}(D)}^{2\alpha}\,{\rm d}s+C\int_{0}^{t}\|\tilde{v}_{\epsilon}(s\wedge\tau^{\epsilon})\|_{L^{2}(D)}^{2}\,{\rm d}s\,.

In view of Cauchy-Schwartz-inequality, one has

𝒯2ϵ(t)\displaystyle\mathcal{T}_{2}^{\epsilon}(t)\leq C0tτϵΨ1,ϵ(s)v~ϵ(s)L2(D)2dsC0tΨ1,ϵ(s)v~ϵ(sτϵ)L2(D)2ds,\displaystyle C\int_{0}^{t\wedge\tau^{\epsilon}}\Psi_{1,\epsilon}(s)\|\tilde{v}_{\epsilon}(s)\|_{L^{2}(D)}^{2}{\rm d}s\leq C\int_{0}^{t}\Psi_{1,\epsilon}(s)\|\tilde{v}_{\epsilon}(s\wedge\tau^{\epsilon})\|_{L^{2}(D)}^{2}{\rm d}s\,,

where Ψ1,ϵ(s)\Psi_{1,\epsilon}(s) is given by

Ψ1,ε(s):=𝑬𝚑1(z)|φϵ(s,z)1|m(dz).\Psi_{1,\varepsilon}(s):=\int_{\boldsymbol{E}}{\tt h}_{1}(z)|\varphi_{\epsilon}(s,z)-1|\,m({\rm d}z)\,.

Combining all the above inequalities in (5.16), and then using Lemma 3.6, we get, for all tTt\leq T

sups[0,t]v~ϵ(sτϵ)L2(D)2\displaystyle\underset{s\in[0,t]}{\sup}\|\tilde{v}_{\epsilon}(s\wedge\tau^{\epsilon})\|_{L^{2}(D)}^{2} {(sups[0,T]|𝒯3ϵ(s)|+sups[0,T]|𝒯4ϵ(s)|)1α×exp((1α)0t(1+Ψ1,ϵ(s))ds)\displaystyle\leq\Bigg{\{}\left(\underset{s\in[0,T]}{\sup}|\mathcal{T}_{3}^{\epsilon}(s)|+\underset{s\in[0,T]}{\sup}|\mathcal{T}_{4}^{\epsilon}(s)|\right)^{1-\alpha}\times\exp\left((1-\alpha)\int_{0}^{t}(1+\Psi_{1,\epsilon}(s))\,{\rm d}s\right)
+R2(1α)e0texp((1α)st(1+Ψ1,ϵ(r))dr)ds}11α\displaystyle\qquad\qquad+\frac{R^{2(1-\alpha)}}{e}\int_{0}^{t}\exp\left((1-\alpha)\int_{s}^{t}(1+\Psi_{1,\epsilon}(r))\,{\rm d}r\right)\,{\rm d}s\Bigg{\}}^{\frac{1}{1-\alpha}}
2α1α{(sups[0,T]|𝒯3ϵ(s)|+sups[0,T]|𝒯4ϵ(s)|)×exp(0t(1+Ψ1,ε(s))ds)}\displaystyle\quad\leq 2^{\frac{\alpha}{1-\alpha}}\Bigg{\{}\left(\underset{s\in[0,T]}{\sup}|\mathcal{T}_{3}^{\epsilon}(s)|+\underset{s\in[0,T]}{\sup}|\mathcal{T}_{4}^{\epsilon}(s)|\right)\times\exp\left(\int_{0}^{t}(1+\Psi_{1,\varepsilon}(s))\,{\rm d}s\right)\Bigg{\}}
+2α1α{R2(1α)e0texp((1α)st(1+Ψ1,ϵ(r))dr)ds}11α\displaystyle\qquad+2^{\frac{\alpha}{1-\alpha}}\Bigg{\{}\frac{R^{2(1-\alpha)}}{e}\int_{0}^{t}\exp\left((1-\alpha)\int_{s}^{t}(1+\Psi_{1,\epsilon}(r))\,{\rm d}r\right)\,{\rm d}s\Bigg{\}}^{\frac{1}{1-\alpha}}
2α1α(sups[0,T]|𝒯3ϵ(s)|+sups[0,T]|𝒯4ϵ(s)|)𝑯1+𝑯2,\displaystyle\leq 2^{\frac{\alpha}{1-\alpha}}\left(\underset{s\in[0,T]}{\sup}|\mathcal{T}_{3}^{\epsilon}(s)|+\underset{s\in[0,T]}{\sup}|\mathcal{T}_{4}^{\epsilon}(s)|\right)\boldsymbol{H}_{1}+\boldsymbol{H}_{2}\,, (5.17)

where 𝑯1\boldsymbol{H}_{1} and 𝑯2\boldsymbol{H}_{2} are given by

𝑯1:\displaystyle\boldsymbol{H}_{1}: =exp(0t(1+Ψ1,ε(s))ds),\displaystyle=\exp\left(\int_{0}^{t}(1+\Psi_{1,\varepsilon}(s))\,{\rm d}s\right)\,,
𝑯2:\displaystyle\boldsymbol{H}_{2}: =2α1α{R2(1α)e0texp((1α)st(1+Ψ1,ϵ(r))dr)ds}11α.\displaystyle=2^{\frac{\alpha}{1-\alpha}}\Bigg{\{}\frac{R^{2(1-\alpha)}}{e}\int_{0}^{t}\exp\left((1-\alpha)\int_{s}^{t}(1+\Psi_{1,\epsilon}(r))\,{\rm d}r\right)\,{\rm d}s\Bigg{\}}^{\frac{1}{1-\alpha}}\,.

Since φϵ𝒰~N\varphi_{\epsilon}\in\widetilde{\mathcal{U}}_{N}, by Lemma 4.1, we have \mathbb{P}-a.s.,

𝑯1exp(t+C1,1N),𝑯2(t2αe)11αR2exp(T+C1,1N).\displaystyle\boldsymbol{H}_{1}\leq\exp\Big{(}t+C_{1,1}^{N}\Big{)},\quad\boldsymbol{H}_{2}\leq\Big{(}\frac{t2^{\alpha}}{e}\Big{)}^{\frac{1}{1-\alpha}}R^{2}\exp\Big{(}T+C_{1,1}^{N}\Big{)}\,. (5.18)

Taking expectation in both sides of (5.17) and using (5.18), we get for tTt\leq T

𝔼[sups[0,t]v~ϵ(sτϵ)L2(D)2]\displaystyle\mathbb{E}\Big{[}\underset{s\in[0,t]}{\sup}\|\tilde{v}_{\epsilon}(s\wedge\tau^{\epsilon})\|_{L^{2}(D)}^{2}\Big{]}
2α1αexp(t+C1,1N)𝔼[sups[0,T]|𝒯3ϵ(s)|+sups[0,T]|𝒯4ϵ(s)|]+(t2αe)11αR2exp(T+C1,1N).\displaystyle\quad\leq 2^{\frac{\alpha}{1-\alpha}}\exp\Big{(}t+C_{1,1}^{N}\Big{)}\mathbb{E}\Big{[}\underset{s\in[0,T]}{\sup}|\mathcal{T}_{3}^{\epsilon}(s)|+\underset{s\in[0,T]}{\sup}|\mathcal{T}_{4}^{\epsilon}(s)|\Big{]}+\Big{(}\frac{t2^{\alpha}}{e}\Big{)}^{\frac{1}{1-\alpha}}R^{2}\exp\Big{(}T+C_{1,1}^{N}\Big{)}\,. (5.19)

Again, in view of Lemma 4.1, we observe that

𝔼[sups[0,T]|𝒯4ϵ(s)|]\displaystyle\mathbb{E}\Big{[}\underset{s\in[0,T]}{\sup}|\mathcal{T}_{4}^{\epsilon}(s)|\Big{]} 2ϵ2𝔼[(1+supt[0,T]u~ϵ(t)L2(D)2)0T𝑬|𝚑2(z)|2(φϵ+1)m(dz)ds]\displaystyle\leq 2\,\epsilon^{2}\,\mathbb{E}\Bigg{[}\Big{(}1+\sup_{t\in[0,T]}\|\tilde{u}_{\epsilon}(t)\|_{L^{2}(D)}^{2}\Big{)}\int_{0}^{T}\int_{\boldsymbol{E}}|{\tt h}_{2}(z)|^{2}(\varphi_{\epsilon}+1)\,m({\rm d}z)\,{\rm d}s\Bigg{]}
2ϵ2C0,2N(1+𝔼[supt[0,T]u~ϵ(t)L2(D)2]).\displaystyle\leq 2\,\epsilon^{2}\,C_{0,2}^{N}\Big{(}1+\mathbb{E}\Big{[}\sup_{t\in[0,T]}\|\tilde{u}_{\epsilon}(t)\|_{L^{2}(D)}^{2}\Big{]}\Big{)}\,. (5.20)

Moreover, the BDG inequality, Cauchy-Schwartz and Young’s inequalities implies that

𝔼[sups[0,T]|𝒯3ϵ(s)|]\displaystyle\mathbb{E}\Big{[}\underset{s\in[0,T]}{\sup}|\mathcal{T}_{3}^{\epsilon}(s)|\Big{]} Cϵ𝔼[(0T𝑬η(u~ϵ(s);z)L2(D)2v~ϵ(s)L2(D)2Nε1φϵ(dz,ds))12]\displaystyle\leq C\,\epsilon\,\mathbb{E}\Big{[}\Big{(}\int_{0}^{T}\int_{\boldsymbol{E}}\|\eta(\tilde{u}_{\epsilon}(s);z)\|_{L^{2}(D)}^{2}\|\tilde{v}_{\epsilon}(s)\|_{L^{2}(D)}^{2}N^{\varepsilon^{-1}\varphi_{\epsilon}}({\rm d}z,{\rm d}s)\Big{)}^{\frac{1}{2}}\Big{]}
Cϵ12𝔼[0T𝑬|𝚑2(z)|2(1+u~ϵ(s)L2(D)2)φϵ(s,z)m(dz)ds]\displaystyle\leq C\,\epsilon^{\frac{1}{2}}\,\mathbb{E}\left[\int_{0}^{T}\int_{\boldsymbol{E}}|{\tt h}_{2}(z)|^{2}\big{(}1+\|\tilde{u}_{\epsilon}(s)\|_{L^{2}(D)}^{2}\big{)}\varphi_{\epsilon}(s,z)\,m({\rm d}z)\,{\rm d}s\right]
+12ϵ12𝔼[sups[0,t]v~ϵ(sτϵ)L2(D)2]\displaystyle\quad+\frac{1}{2}\epsilon^{\frac{1}{2}}\,\mathbb{E}\left[\underset{s\in[0,t]}{\sup}\|\tilde{v}_{\epsilon}(s\wedge\tau^{\epsilon})\|_{L^{2}(D)}^{2}\right]
12ϵ12𝔼[sups[0,t]v~ϵ(sτϵ)L2(D)2]+Cϵ12C0,2N(1+𝔼[u~ϵ(s)L2(D)2]),\displaystyle\leq\frac{1}{2}\,\epsilon^{\frac{1}{2}}\,\mathbb{E}\left[\underset{s\in[0,t]}{\sup}\|\tilde{v}_{\epsilon}(s\wedge\tau^{\epsilon})\|_{L^{2}(D)}^{2}\right]+C\,\epsilon^{\frac{1}{2}}\,C_{0,2}^{N}\Bigg{(}1+\mathbb{E}\Big{[}\|\tilde{u}_{\epsilon}(s)\|_{L^{2}(D)}^{2}\Big{]}\Bigg{)}\,, (5.21)

where in the last inequality, we have used Lemma 4.1 as φϵ𝒰~N\varphi_{\epsilon}\in\widetilde{\mathcal{U}}_{N}. We use (5.20) and (5.21) in the inequality (5.19) together with the uniform estimates (5.6) and (5.14) to obtain

𝔼[sups[0,t]v~ϵ(sτϵ)L2(D)2]C(N,α)ϵ12+(t2αe)11αR2exp(T+C1,1N),tT.\displaystyle\mathbb{E}\Big{[}\sup_{s\in[0,t]}\|\tilde{v}_{\epsilon}(s\wedge\tau^{\epsilon})\|_{L^{2}(D)}^{2}\Big{]}\leq C(N,\alpha)\epsilon^{\frac{1}{2}}+\Big{(}\frac{t2^{\alpha}}{e}\Big{)}^{\frac{1}{1-\alpha}}R^{2}\exp\Big{(}T+C_{1,1}^{N}\Big{)},\quad\forall~{}t\leq T\,. (5.22)

By using (5.22) in (5.16), we have

𝔼[0tτϵv~ϵ(s)W01,2(D)2ds]C1(N,α)ϵ12+C(R,T,N)(t2αe)11α+CTR2(1α)(1α)e,tT.\displaystyle\mathbb{E}\Big{[}\int_{0}^{t\wedge\tau^{\epsilon}}\|\tilde{v}_{\epsilon}(s)\|_{W_{0}^{1,2}(D)}^{2}\,{\rm d}s\Big{]}\leq C_{1}(N,\alpha)\epsilon^{\frac{1}{2}}+C(R,T,N)\Big{(}\frac{t2^{\alpha}}{e}\Big{)}^{\frac{1}{1-\alpha}}+CT\frac{R^{2(1-\alpha)}}{(1-\alpha)e},\quad\forall~{}t\leq T\,.

Thus, we have

lim supϵ0{𝔼[sups[0,t]v~ϵ(sτϵ)L2(D)2]+𝔼[0tτϵv~ϵ(s)W01,2(D)2ds]}\displaystyle\underset{\epsilon\rightarrow 0}{\limsup}\Bigg{\{}\mathbb{E}\Big{[}\sup_{s\in[0,t]}\|\tilde{v}_{\epsilon}(s\wedge\tau^{\epsilon})\|_{L^{2}(D)}^{2}\Big{]}+\mathbb{E}\Big{[}\int_{0}^{t\wedge\tau^{\epsilon}}\|\tilde{v}_{\epsilon}(s)\|_{W_{0}^{1,2}(D)}^{2}\,{\rm d}s\Big{]}\Bigg{\}}
C(R,T,N)(t2αe)11α+CTR2(1α)(1α)e,tT.\displaystyle\leq C(R,T,N)\Big{(}\frac{t2^{\alpha}}{e}\Big{)}^{\frac{1}{1-\alpha}}+CT\frac{R^{2(1-\alpha)}}{(1-\alpha)e},\quad\forall~{}t\leq T\,. (5.23)

Setting T:=e216TTT^{*}:=\frac{e^{2}}{16T}\wedge T and then letting α1\alpha\rightarrow 1 in (5.23), we obtain

limϵ0{𝔼[v~ϵ(tτϵ)L2(D)2]+𝔼[0tτϵv~ϵ(s)W01,2(D)2ds]}=0, 0tT.\displaystyle\underset{\epsilon\rightarrow 0}{\lim}\Bigg{\{}\mathbb{E}\left[\|\tilde{v}_{\epsilon}(t\wedge\tau^{\epsilon})\|_{L^{2}(D)}^{2}\right]+\mathbb{E}\Big{[}\int_{0}^{t\wedge\tau^{\epsilon}}\|\tilde{v}_{\epsilon}(s)\|_{W_{0}^{1,2}(D)}^{2}\,{\rm d}s\Big{]}\Bigg{\}}=0,\quad\forall\,0\leq t\leq T^{*}\,. (5.24)

By the definition of τϵ\tau^{\epsilon} along with Chebyshev’s inequality, (5.15) and (5.24), we see that

(ρT2(u~ε,uφϵ)>2δ2)\displaystyle\mathbb{P}\Big{(}\rho_{T^{*}}^{2}(\tilde{u}_{\varepsilon},u_{\varphi_{\epsilon}})>2\delta^{2}\Big{)}
[supt[0,T]v~ϵ(t)L2(D)>δ]+[0Tv~ϵ(s)W01,2(D)2ds>δ2]\displaystyle\leq\mathbb{P}\Big{[}\underset{t\in[0,T^{*}]}{\sup}\|\tilde{v}_{\epsilon}(t)\|_{L^{2}(D)}>\delta\Big{]}+\mathbb{P}\Big{[}\int_{0}^{T^{*}}\|\tilde{v}_{\epsilon}(s)\|_{W_{0}^{1,2}(D)}^{2}\,{\rm d}s>\delta^{2}\Big{]}
1δ2{𝔼[v~ϵ(Tτϵ)L2(D)2]+𝔼[0Tτϵv~ϵ(s)W01,2(D)2ds]}\displaystyle\leq\frac{1}{\delta^{2}}\Bigg{\{}\mathbb{E}\left[\|\tilde{v}_{\epsilon}(T^{*}\wedge\tau^{\epsilon})\|_{L^{2}(D)}^{2}\right]+\mathbb{E}\Big{[}\int_{0}^{T^{*}\wedge\tau^{\epsilon}}\|\tilde{v}_{\epsilon}(s)\|_{W_{0}^{1,2}(D)}^{2}\,{\rm d}s\Big{]}\Bigg{\}}
+2supϵ(0,ϵ0)(τRϵT)+2supϵ(0,ϵ0)(τLϵT)0as ϵ0.\displaystyle\qquad+2\underset{\epsilon\in(0,\epsilon_{0})}{\sup}\mathbb{P}\left(\tau_{R}^{\epsilon}\leq T^{*}\right)+2\underset{\epsilon\in(0,\epsilon_{0})}{\sup}\mathbb{P}\left(\tau_{L}^{\epsilon}\leq T^{*}\right)\longrightarrow 0~{}~{}\text{as $\epsilon\rightarrow 0$}\,.

In other words, the condition LDP-1 holds true on the interval [0,T][0,T^{*}]. Again by considering the equations satisfied by u~ϵ\tilde{u}_{\epsilon} and uφϵu_{\varphi_{\epsilon}} on the interval [T,T][T^{*},T] with the initial values u~ϵ(T)\tilde{u}_{\epsilon}(T^{*}) and uφϵ(T)u_{\varphi_{\epsilon}}(T^{*}) respectively, and noting the fact that u~ϵ(T)uφϵ(T)0\|\tilde{u}_{\epsilon}(T^{*})-u_{\varphi_{\epsilon}}(T^{*})\|\overset{\mathbb{P}}{\rightarrow}0 as ϵ0\epsilon\rightarrow 0, one can use the same argument as above to conclude that

(ρT,2TT(u~ϵ,uφϵ)2>2δ2)0,as ϵ0.\displaystyle\mathbb{P}\Big{(}\rho_{T^{*},2T^{*}\wedge T}(\tilde{u}_{\epsilon},u_{\varphi_{\epsilon}})^{2}>2\delta^{2}\Big{)}\rightarrow 0,\quad\text{as $\epsilon\rightarrow 0$}\,.

Similarly, for n2n\geq 2

(ρ(n1)T,nTT(u~ϵ,uφϵ)2>2δ2)0,as ϵ0.\displaystyle\mathbb{P}\Big{(}\rho_{(n-1)T^{*},nT^{*}\wedge T}(\tilde{u}_{\epsilon},u_{\varphi_{\epsilon}})^{2}>2\delta^{2}\Big{)}\rightarrow 0,\quad\text{as $\epsilon\rightarrow 0$}\,.

Since there exists some n>0n>0 such that nTTnT^{*}\geq T, we arrive at assertion that

(ρT(u~ϵ,uφϵ)2>δ)0,as ϵ0.\displaystyle\mathbb{P}\Big{(}\rho_{T}(\tilde{u}_{\epsilon},u_{\varphi_{\epsilon}})^{2}>\delta\Big{)}\rightarrow 0,\quad\text{as $\epsilon\rightarrow 0$}\,.

This completes the proof of condition LDP-1.

6. Declarations

The authors would like to make the following declaration statements.

  • Funding: The first author acknowledges the financial support by CSIR (09/086(1440)/2020-EMR-I), India.

  • Ethical Approval: This declaration is “not applicable”.

  • Availability of data and materials: No data sets were generated during the current study and therefore data sharing is not applicable to this article.

  • Conflict of interest: The authors have not disclosed any competing interests.

References

  • [AC17] M. Alfaro and R. Carles. Superexponential growth or decay in the heat equation with a logarithmic nonlinearity. Dyn. Partial Differ. Equ., 14(4):343–358, 2017.
  • [BBM76] I. Bialynicki-Birula and J. Mycielski. Nonlinear wave mechanics. Annals of Physics, 100(1-2):62–93, 1976.
  • [BCD13] A. Budhiraja, J. Chen, and P. Dupuis. Large deviations for stochastic partial differential equations driven by a Poisson random measure. Stochastic Process. Appl., 123(2):523–560, 2013.
  • [BD00] A. Budhiraja and P. Dupuis. A variational representation for positive functionals of infinite dimensional Brownian motion. Probab. Math. Statist., 20(1, Acta Univ. Wratislav. No. 2246):39–61, 2000.
  • [BDM08] A. Budhiraja, P. Dupuis, and V. Maroulas. Large deviations for infinite dimensional stochastic dynamical systems. Ann. Probab., 36(4):1390–1420, 2008.
  • [BDM11] A. Budhiraja, P. Dupuis, and V. Maroulas. Variational representations for continuous time processes. Ann. Inst. Henri Poincaré Probab. Stat., 47(3):725–747, 2011.
  • [BGJ17] Z. a. Brzeźniak, B. Goldys, and T. Jegaraj. Large deviations and transitions between equilibria for stochastic Landau-Lifshitz-Gilbert equation. Arch. Ration. Mech. Anal., 226(2):497–558, 2017.
  • [BH09] Z. a. Brzeźniak and E. Hausenblas. Maximal regularity for stochastic convolutions driven by Lévy processes. Probab. Theory Related Fields, 145(3-4):615–637, 2009.
  • [Bil99] P. Billingsley. Convergence of probability measures. Wiley Series in Probability and Statistics: Probability and Statistics. John Wiley & Sons, Inc., New York, second edition, 1999. A Wiley-Interscience Publication.
  • [BM13] Z. a. Brzeźniak and E. Motyl. Existence of a martingale solution of the stochastic Navier-Stokes equations in unbounded 2D and 3D domains. J. Differential Equations, 254(4):1627–1685, 2013.
  • [BPZ23] Z. a. Brzeźniak, X. Peng, and J. Zhai. Well-posedness and large deviations for 2D stochastic Navier-Stokes equations with jumps. J. Eur. Math. Soc. (JEMS), 25(8):3093–3176, 2023.
  • [CLL15] H. Chen, P. Luo, and G. Liu. Global solution and blow-up of a semilinear heat equation with logarithmic nonlinearity. J. Math. Anal. Appl., 422(1):84–98, 2015.
  • [CR04] S. Cerrai and M. Röckner. Large deviations for stochastic reaction-diffusion systems with multiplicative noise and non-Lipschitz reaction term. Ann. Probab., 32(1B):1100–1139, 2004.
  • [CT15] H. Chen and S. Tian. Initial boundary value problem for a class of semilinear pseudo-parabolic equations with logarithmic nonlinearity. J. Differential Equations, 258(12):4424–4442, 2015.
  • [DKZ19] R. C. Dalang, D. Khoshnevisan, and T. Zhang. Global solutions to stochastic reaction-diffusion equations with super-linear drift and multiplicative noise. Ann. Probab., 47(1):519–559, 2019.
  • [Don18] Y. Dong. Jump stochastic differential equations with non-Lipschitz and superlinearly growing coefficients. Stochastics, 90(5):782–806, 2018.
  • [DPZ14] G. Da Prato and J. Zabczyk. Stochastic equations in infinite dimensions, volume 152 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, second edition, 2014.
  • [DS89] J.-D. Deuschel and D. W. Stroock. Large deviations, volume 137 of Pure and Applied Mathematics. Academic Press, Inc., Boston, MA, 1989.
  • [EK05] L. Edelstein-Keshet. Mathematical models in biology. SIAM, 2005.
  • [FG95] F. Flandoli and D. Gatarek. Martingale and stationary solutions for stochastic Navier-Stokes equations. Probab. Theory Related Fields, 102(3):367–391, 1995.
  • [FG23] B. Fehrman and B. Gess. Non-equilibrium large deviations and parabolic-hyperbolic PDE with irregular drift. Invent. Math., 234(2):573–636, 2023.
  • [FZ05] S. Fang and T. Zhang. A study of a class of stochastic differential equations with non-Lipschitzian coefficients. Probab. Theory Related Fields, 132(3):356–390, 2005.
  • [GK82] I. Gyöngy and N. V. Krylov. On stochastics equations with respect to semimartingales. II. Itô formula in Banach spaces. Stochastics, 6(3-4):153–173, 1981/82.
  • [HLL21] W. Hong, S. Li, and W. Liu. Freidlin-Wentzell type large deviation principle for multiscale locally monotone SPDEs. SIAM J. Math. Anal., 53(6):6517–6561, 2021.
  • [IW81] N. Ikeda and S. Watanabe. Stochastic differential equations and diffusion processes, volume 24 of North-Holland Mathematical Library. North-Holland Publishing Co., Amsterdam-New York; Kodansha, Ltd., Tokyo, 1981.
  • [JS87] J. Jacod and A. N. Shiryaev. Limit theorems for stochastic processes, volume 288 of Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1987.
  • [JYC16] S. Ji, J. Yin, and Y. Cao. Instability of positive periodic solutions for semilinear pseudo-parabolic equations with logarithmic nonlinearity. J. Differential Equations, 261(10):5446–5464, 2016.
  • [KAV23] R. KAVIN. Large deviation principle for pseudo-monotone evolutionary equation. 2023.
  • [KM24] R. Kavin and A. K. Majee. Stochastic evolutionary pp-Laplace equation: Large deviation principles and transportation cost inequality. J. Math. Anal. Appl., 536(1):Paper No. 128163, 2024.
  • [Liu10] W. Liu. Large deviations for stochastic evolution equations with small multiplicative noise. Appl. Math. Optim., 61(1):27–56, 2010.
  • [LLX20] S. Li, W. Liu, and Y. Xie. Small time asymptotics for SPDEs with locally monotone coefficients. Discrete Contin. Dyn. Syst. Ser. B, 25(12):4801–4822, 2020.
  • [LSZZ23] W. Liu, Y. Song, J. Zhai, and T. Zhang. Large and moderate deviation principles for McKean-Vlasov SDEs with jumps. Potential Anal., 59(3):1141–1190, 2023.
  • [M+23] A. K. Majee et al. Nonlinear spde driven by levy noise: Well-posedness, optimal control and invariant measure. arXiv preprint arXiv:2306.04303, 2023.
  • [Maj20] A. K. Majee. Stochastic optimal control of a evolutionary pp-Laplace equation with multiplicative Lévy noise. ESAIM Control Optim. Calc. Var., 26:Paper No. 100, 22, 2020.
  • [Maj23] A. K. Majee. Stochastic optimal control of a doubly nonlinear PDE driven by multiplicative Lévy noise. Appl. Math. Optim., 87(1):Paper No. 7, 39, 2023.
  • [Mét88] M. Métivier. Stochastic partial differential equations in infinite dimensional spaces. Springer, 1988.
  • [Mot13] E. Motyl. Stochastic Navier-Stokes equations driven by Lévy noise in unbounded 3D domains. Potential Anal., 38(3):863–912, 2013.
  • [MPF91] D. S. Mitrinović, J. E. Pečarić, and A. M. Fink. Inequalities involving functions and their integrals and derivatives, volume 53 of Mathematics and its Applications (East European Series). Kluwer Academic Publishers Group, Dordrecht, 1991.
  • [MSZ21] A. Matoussi, W. Sabbagh, and T. Zhang. Large deviation principles of obstacle problems for quasilinear stochastic PDEs. Appl. Math. Optim., 83(2):849–879, 2021.
  • [MZ21] J. Ma and R.-r. Zhang. Large deviations for 2D primitive equations driven by multiplicative Lévy noises. Acta Math. Appl. Sin. Engl. Ser., 37(4):773–799, 2021.
  • [Ond04] M. Ondreját. Uniqueness for stochastic evolution equations in Banach spaces. Dissertationes Math. (Rozprawy Mat.), 426:63, 2004.
  • [Par05] K. R. Parthasarathy. Probability measures on metric spaces, volume 352. American Mathematical Soc., 2005.
  • [PR07] C. Prévôt and M. Röckner. A concise course on stochastic partial differential equations, volume 1905 of Lecture Notes in Mathematics. Springer, Berlin, 2007.
  • [PSZ22] T. Pan, S. Shang, and T. Zhang. Large deviations of stochastic heat equations with logarithmic nonlinearity. arXiv preprint arXiv:2207.02385, 2022.
  • [PZ07] S. Peszat and J. Zabczyk. Stochastic partial differential equations with Lévy noise, volume 113 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 2007. An evolution equation approach.
  • [Ros69] G. Rosen. Dilatation covariance and exact solutions in local relativistic field theories. Physical Review, 183(5):1186, 1969.
  • [RZ12] M. Röckner and T. Zhang. Stochastic 3D tamed Navier-Stokes equations: existence, uniqueness and small time large deviation principles. J. Differential Equations, 252(1):716–744, 2012.
  • [Sit05] R. Situ. Theory of stochastic differential equations with jumps and applications. Mathematical and Analytical Techniques with Applications to Engineering. Springer, New York, 2005. Mathematical and analytical techniques with applications to engineering.
  • [Sko56] A. V. Skorohod. Limit theorems for stochastic processes. Teor. Veroyatnost. i Primenen., 1:289–319, 1956.
  • [Str84] D. W. Stroock. An introduction to the theory of large deviations. Universitext. Springer-Verlag, New York, 1984.
  • [SZ22] S. Shang and T. Zhang. Stochastic heat equations with logarithmic nonlinearity. J. Differential Equations, 313:85–121, 2022.
  • [Var66] S. R. S. Varadhan. Asymptotic probabilities and differential equations. Comm. Pure Appl. Math., 19:261–286, 1966.
  • [Var84] S. R. S. Varadhan. Large deviations and applications, volume 46 of CBMS-NSF Regional Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1984.
  • [vdVW23] A. W. van der Vaart and J. A. Wellner. Weak convergence and empirical processes—with applications to statistics. Springer Series in Statistics. Springer, Cham, second edition, [2023] ©2023.
  • [WHL+12] L. Wang, B. Hu, B. Li, et al. Logarithmic divergent thermal conductivity in two-dimensional nonlinear lattices. Physical Review E, 86(4):040101, 2012.
  • [WRD12] W. Wang, A. J. Roberts, and J. Duan. Large deviations and approximations for slow-fast stochastic reaction-diffusion equations. J. Differential Equations, 253(12):3501–3522, 2012.
  • [WWJ2r] Z. J. Wu Weina and Z. Jiahui. Large deviations for locally monotone spdes driven by Lévy noise. arXiv preprint arXiv:2401.11385v1, 202r.
  • [WZ23] R. Wang and B. Zhang. A large deviation principle for the stochastic generalized Ginzburg-Landau equation driven by jump noise. Acta Math. Sci. Ser. B (Engl. Ed.), 43(2):505–530, 2023.
  • [WZ24] W. Wu and J. Zhai. Large deviations for stochastic generalized porous media equations driven by Lévy noise. SIAM J. Math. Anal., 56(1):1–42, 2024.
  • [XZ18] J. Xiong and J. Zhai. Large deviations for locally monotone stochastic partial differential equations driven by Lévy noise. Bernoulli, 24(4A):2842–2874, 2018.
  • [XZ19] F. Xi and C. Zhu. Jump type stochastic differential equations with non-Lipschitz coefficients: non-confluence, Feller and strong Feller properties, and exponential ergodicity. J. Differential Equations, 266(8):4668–4711, 2019.
  • [YZZ15] X. Yang, J. Zhai, and T. Zhang. Large deviations for SPDEs of jump type. Stoch. Dyn., 15(4):1550026, 30, 2015.
  • [ZBL19] J. Zhu, Z. a. Brzeźniak, and W. Liu. Maximal inequalities and exponential estimates for stochastic convolutions driven by Lévy-type processes in Banach spaces with application to stochastic quasi-geostrophic equations. SIAM J. Math. Anal., 51(3):2121–2167, 2019.
  • [Zha14] H. Zhao. Yamada–watanabe theorem for stochastic evolution equation driven by poisson random measure. ISRN Probab. Statist., pages art. 982190, 7 pp., 2014.
  • [Zlo19] K. G. Zloshchastiev. Temperature-driven dynamics of quantum liquids: Logarithmic nonlinearity, phase structure and rising force. International Journal of Modern Physics B, 33(17):1950184, 2019.
  • [ZZ15] J. Zhai and T. Zhang. Large deviations for 2-D stochastic Navier-Stokes equations driven by multiplicative Lévy noises. Bernoulli, 21(4):2351–2392, 2015.