This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

MAC Wiretap Channels with Confidential and Open Messages: Improved Achievable Region and Low-complexity Precoder Design

Hao Xu, Member, IEEE0, Kai-Kit Wong, Fellow, IEEE0, and Giuseppe Caire, Fellow, IEEE0 This work was supported by the European Union’s Horizon 2020 Research and Innovation Programme under Marie Skłodowska-Curie Grant No. 101024636 and the Alexander von Humboldt Foundation. H. Xu and K.-K. Wong are with the Department of Electronic and Electrical Engineering, University College London, London WC1E 7JE, UK (e-mail: hao.xu@ucl.ac.uk; kai-kit.wong@ucl.ac.uk). G. Caire is with the Faculty of Electrical Engineering and Computer Science at the Technical University of Berlin, 10587 Berlin, Germany (e-mail: caire@tu-berlin.de).
Abstract

This paper investigates the achievable region and precoder design for multiple access wiretap (MAC-WT) channels, where each user transmits both secret and open (i.e., non-confidential) messages. All these messages are intended for the legitimate receiver (or Bob for brevity) and the eavesdropper (Eve) is interested only in the secret messages of all users. By allowing users with zero secret message rate to act as conventional MAC channel users with no wiretapping, we show that the achievable region of the discrete memoryless (DM) MAC-WT channel given in [1] can be enlarged. In [1], the achievability was proven by considering the two-user case, making it possible to prove a key auxiliary lemma by directly using the Fourier-Motzkin elimination procedure. However, this approach does not generalize to the case with any number of users. In this paper, we provide a new region that generally enlarges that in [1] and provide general achievability proof.

I Introduction

To meet the tremendous demand for wireless communications, the future mobile systems will incorporate many different network topologies and large numbers of devices that may access and leave at any time, making it difficult to generate and manage cryptographic keys. In addition, advances in quantum computing make systems based on classical computational cryptography intrinsically insecure. Hence, the conventional cryptographic encryption methods, which rely on secret keys and assumptions of limited computational ability at eavesdroppers (Eves), are no longer sufficient to guarantee secrecy in the future mobile networks. To address these issues, advanced signal processing techniques developed for embedding security directly in the physical layer have emerged and triggered considerable research interest in recent years [2, 3]. Different from the cryptographic encryption methods employed in the application layer, physical layer security techniques exploit the random propagation properties of radio channels and advanced signal processing techniques to prevent Eves from wiretapping. Furthermore, physical layer security guarantees privacy in an information theoretic sense, i.e., without relying on Eves’ limited computational limitations. Ever since the early seminal works [4, 5, 6, 7], the research of wiretap channels or physical layer security has evolved into various network topologies over the past decades, e.g., multiple access (MAC) wiretap channels [8, 9, 10, 11, 12, 13, 14, 15, 1], broadcast channels [16, 17, 18, 19, 20], interference channels [21, 22, 23, 24, 25, 26], relay-aided channels [27, 28, 29, 30, 31, 32, 33], etc. This paper mainly studies the physical layer security problem for MAC wiretap (MAC-WT) channels. Hence, we introduce MAC-WT related works in the following.

We begin the review from works that studied MAC-WT systems with two transmitters [8, 9, 10, 11, 12]. Reference [8] considered a discrete memoryless (DM) MAC-WT channel with a weaker Eve which has access to a degraded version of the main channel, and developed an outer bound for the secrecy capacity region. In [9], one user wishes to communicate confidential messages to a common receiver while the other one is permitted to eavesdrop. Upper (converse) and lower (achievable) bounds for this communication situation were investigated. A similar system was considered in [10] where, differently, each user attempts to transmit both common and confidential information to the destination, and sees the other user as an Eve. Reference [11] extended the work in [9] and [10] to a fading cognitive MAC channel. In [12], the MAC-WT system with a DM main channel and different wiretapping scenarios was studied.

In [1] and [13, 14, 15], the more general MAC-WT channel with any number of users was investigated. Specifically, [13] provided achievable rate regions for a Gaussian single-input single-output (SISO) MAC-WT channel with a weaker Eve under different secrecy constraints. The work was then extended by [14] to a non-degraded MAC-WT channel where, besides confidential information, each user has also an open (i.e., non-confidential) message intended for Bob. An achievable rate region for both secret and open message rates was provided in [14]. However, as we showed in [1] and [15], there is a problem with the coding scheme in [14], because of which rate tuples that are actually non-achievable are mistakenly claimed to be achievable. In this sense, [1] and [15] provide a general achievable rate region for the MAC-WT scenario with confidential and open messages while [14] does not. Note that in contrast to the works which considered only confidential information, by simultaneously transmitting secret and open messages, the spectral efficiency of the system can be greatly increased [1], [15].

Based on the information-theoretic results, many references have studied the resource allocation problems for MAC-WT channels [14, 34, 35, 36, 1]. The sum secrecy rate of a Gaussian SISO MAC-WT channel was maximized by power control in [14], and it was shown that in the optimal case, only a subset of the strong users will transmit using the maximum power while the other users will keep inactive. [34] and [35] maximized the sum secrecy rate of a single-input multi-output (SIMO) device-to-device (D2D) underlaid network. However, it was assumed in these two papers that both Bob and Eve adopted independent decoding, i.e., treating interference from the other users as independent additive noise. Notice that designing a system under the assumption that Eve uses a suboptimal detection scheme may be risky, since the system secrecy may break down if Eve actually applies an enhanced receiver. Reference [36] considered the sum secrecy rate maximization problem of a Gaussian multiple-input multiple-output (MIMO) MAC-WT system, where both Bob and Eve applied the optimal joint decoding scheme. However, a special power constraint was set to the signal vector covariance matrices, which limited the secrecy performance of the network. In [1], the general power constraint was considered and it was shown that the system secrecy performance could be greatly improved compared with [36].

In this paper, we continue the study of the information-theoretic secrecy problem for a general MAC-WT channel in [1]. To make full use of the channel resources, besides the confidential message, each user also has an open message for Bob. Eve aims to wiretap the confidential information of all users. The main contributions of this paper are summarized below.

\bullet In [1], we provided an achievable region for the DM MAC-WT channel in [1, Lemma 11] and proved the achievability by considering a simple two-user case. Though the general proof can be developed by following similar steps, the key auxiliary result [1, Lemma 77] does not appear to be directly extended to the case with arbitrary number of users KK. An extension of [1, Lemma 77] (see Theorem 1 in this paper) is also of great importance for the general achievability proof in this paper. To prove Theorem 1, we first give the general form of [1, Lemma 77] with any KK in Lemma 1. For a simple system with a few users, this lemma can be proven by directly using the Fourier-Motzkin procedure [37, Appendix D]. However, as KK grows, this direct proof becomes unmanageable due to the excessively large number of inequalities. We proved the K=3K=3 case by direct elimination in note [38], which shows how the number of inequalities quickly explodes with KK. Besides the extremely high complexity, another disadvantage of the direct elimination strategy is that it works only if the number of users is given. Obviously, this makes the strategy inappropriate for the proof of Lemma 1 since it is a general result for any KK. In Appendix A, we circumvent this problem and provide a general proof of Lemma 1. Then, using Lemma 1, the general proof of Theorem 1 follows.

\bullet In [1], ‘garbage’ messages were introduced to all users to ensure perfect secrecy. This is important if a user’s secrecy rate is positive. However, when a user has zero secrecy rate, two options are possible: 1) still introducing ‘garbage’ messages such that Eve cannot decode all of its information; 2) acting as a conventional MAC channel user with no wiretapping and just transmitting its open message. We show in this paper that there is a trade-off between these two options, i.e., both of them have advantages and disadvantages. Using the first option, the user’s signal is noise and non-decodable for Eve and thus helps reduce Eve’s wiretapping capability. But as we will show, this option introduces many more constraints in determining the corresponding achievable region. With the second option, since it is possible for Eve to decode the user’s open message and then cancel it from the received signal, Eve may have a stronger wiretapping capability. However, this option causes fewer constraints to the user’s open message rate, which is of course good for determining the achievable region. In this paper, we consider all possible cases and provide in Theorem 2 an achievable region for the DM MAC-WT channel, which improves that given in [1, Lemma 11]. Note that different from [1] which proved the achievability for a simple two-user case, we provide the general proof of Theorem 2 for arbitrary KK. Considering a special case where all users have only confidential information, we get directly from Theorem 2 an achievable region for the classical DM MAC-WT channel with no open messages. The achievable region for such a channel has already been studied in [8] and [13]. But we show in Lemma 4 that our result improves these provided by [8] and [13].

Notations: we use calligraphic capital letters to denote sets, |||\cdot| to denote the cardinality of a set, “ \setminus ” to represent the set subtraction operation, and 𝒳1×𝒳2{\cal X}_{1}\times{\cal X}_{2} for the Cartesian product of the sets 𝒳1{\cal X}_{1} and 𝒳2{\cal X}_{2}. We use line over a calligraphic letter to indicate it is the complement of a set, e.g., S¯=𝒦𝒮{\overline{S}}={\cal K}\setminus{\cal S} if 𝒮𝒦{\cal S}\subseteq{\cal K}. We use calligraphic subscript to denote the set of elements whose indexes take values from the subscript set, e.g., 𝒳𝒦={𝒳k,k𝒦}{\cal X}_{\cal K}=\{{\cal X}_{k},\forall k\in{\cal K}\}, X𝒦={Xk,k𝒦}X_{\cal K}=\{X_{k},\forall k\in{\cal K}\}, 𝑿𝒦={𝑿k,k𝒦}\bm{X}_{\cal K}=\{\bm{X}_{k},\forall k\in{\cal K}\}, etc. \mathbb{N} is the set of natural numbers, and \mathbb{R} and \mathbb{C} are the real and complex spaces, respectively. Boldface upper (lower) case letters are used to denote matrices (vectors). A similar convention but with boldface upper-case letters is used for random vectors. 𝑰B{\bm{I}}_{B} stands for the B×BB\times B dimensional identity matrix and 𝟎\bm{0} denotes the all-zero vector or matrix. Superscript ()H(\cdot)^{H} denotes the conjugated-transpose operation, 𝔼[]{\mathbb{E}}\left[\cdot\right] denotes the expectation operation, and []+max(,0)[\cdot]^{+}\triangleq\max(\cdot,0). The logarithm function log\log is base 22.

II DM MAC-WT Channel

In this section, we introduce the general DM MAC-WT channel model and define metrics based on which coding schemes can be designed to guarantee perfect secrecy. Then, we provide an extension of [1, Lemma 77], which plays quite an important role for the achievability proof.

II-A DM MAC-WT Channel Model

Refer to caption
Figure 1: Block diagram of a DM MAC-WT channel.

As shown in Fig. 1, we consider a DM MAC-WT channel with KK users, a legitimate receiver (or Bob for brevity), and an eavesdropper (Eve). Let 𝒦={1,,K}{\cal K}=\{1,\cdots,K\} denote the set of all users. The DM MAC-WT system can then be denoted by (𝒳𝒦,p(y,z|x𝒦),𝒴,𝒵)\left({\cal X}_{\cal K},p(y,z|x_{\cal K}),{\cal Y},{\cal Z}\right) (in short p(y,z|x𝒦)p(y,z|x_{\cal K})), where 𝒳k{\cal X}_{k}, 𝒴\cal Y, and 𝒵\cal Z are finite alphabets, xk𝒳kx_{k}\in{\cal X}_{k} is the channel inputs from user kk, and y𝒴y\in{\cal Y} and z𝒵z\in{\cal Z} are respectively channel outputs at Bob and Eve. For brevity, we use the short-hand notation p(xk)p(x_{k}) to indicate PXk(xk)P_{X_{k}}(x_{k}). Analogous short-hand notations are clear from the context.

Each user k𝒦k\in{\cal K} transmits a secret message MksM_{k}^{\text{s}} and an open message MkoM_{k}^{\text{o}} to Bob. Eve attempts to overhear all the secret messages but is not interested in the open messages. User kk encodes its information into a codeword XknX_{k}^{n}, and then transmits it over the channel with transition probability p(y,z|x𝒦)p(y,z|x_{\cal K}). Upon receiving the sequence YnY^{n}, Bob decodes the messages of all users. To avoid leakage of confidential information to Eve, the secret messages of all users, i.e., Mks,k𝒦M_{k}^{\text{s}},k\in{\cal K}, should be protected. Let RksR_{k}^{\text{s}} and RkoR_{k}^{\text{o}} denote the rate of user kk’s secret and open messages. Then, a (2nR1s,2nR1o,,2nRKs,2nRKo,n)\left(2^{nR_{1}^{\text{s}}},2^{nR_{1}^{\text{o}}},\cdots,2^{nR_{K}^{\text{s}}},2^{nR_{K}^{\text{o}}},n\right) secrecy code for the considered DM MAC-WT channel consists of

  • Secret and open message sets: ks=[1:2nRks]{\cal M}_{k}^{\text{s}}=\left[1:2^{nR_{k}^{\text{s}}}\right] and ko=[1:2nRko],k𝒦{\cal M}_{k}^{\text{o}}\!=\!\left[1:2^{nR_{k}^{\text{o}}}\right],\forall k\!\in\!{\cal K}. Messages MksM_{k}^{\text{s}} and MkoM_{k}^{\text{o}} are uniformly distributed over the corresponding sets ks{\cal M}_{k}^{\text{s}} and ko{\cal M}_{k}^{\text{o}}.

  • KK randomized encoders: the encoder of user kk maps the message pair (mks,mko)ks×ko(m_{k}^{\text{s}},m_{k}^{\text{o}})\in{\cal M}_{k}^{\text{s}}\times{\cal M}_{k}^{\text{o}} to a codeword xknx_{k}^{n}.

  • A decoder at Bob which maps the received noisy sequence yny^{n} to the message estimate (m^ks,m^ko)ks×ko,k𝒦\left({\hat{m}}_{k}^{\text{s}},{\hat{m}}_{k}^{\text{o}}\right)\in{\cal M}_{k}^{\text{s}}\times{\cal M}_{k}^{\text{o}},\forall k\in{\cal K}.

To ensure that all messages can be perfectly decoded at Bob and all confidential information can be perfectly protected from Eve, we define two metrics, i.e., the average probability of error

Pe=Pr{(M^𝒦s,M^𝒦o)(M𝒦s,M𝒦o)},P_{\text{e}}={\text{Pr}}\left\{\left({\hat{M}}_{\cal K}^{\text{s}},{\hat{M}}_{\cal K}^{\text{o}}\right)\neq\left(M_{\cal K}^{\text{s}},M_{\cal K}^{\text{o}}\right)\right\}, (1)

for Bob and the information leakage rate for Eve. For the MAC-WT channel, a widely used information leakage rate is 1nI(M𝒦s;Zn)\frac{1}{n}I(M_{\cal K}^{\text{s}};Z^{n}) and it is required that this rate vanishes as nn goes to infinity [1, 8, 13, 14]. In this paper, we use a different leakage rate, based on which perfect secrecy can be realized and the achievable rate region in existing literatures can be improved.

We divide the user set 𝒦{\cal K} into two parts, i.e., 𝒦𝒦{\cal K}^{\prime}\subseteq{\cal K} with Rks0,k𝒦R_{k}^{\text{s}}\geq 0,\forall k\in{\cal K}^{\prime}, and 𝒦¯=𝒦𝒦{\overline{{\cal K}^{\prime}}}={\cal K}\setminus{\cal K}^{\prime} with Rks=0,k𝒦¯R_{k}^{\text{s}}=0,\forall k\in{\overline{{\cal K}^{\prime}}}. Here we do not require Rks>0R_{k}^{\text{s}}>0 if k𝒦k\in{\cal K}^{\prime} such that users in 𝒦¯{\overline{{\cal K}^{\prime}}} can also be reclassified to 𝒦{\cal K}^{\prime}. To protect the confidential information of users in 𝒦{\cal K}^{\prime}, the coding scheme has to at least ensure that Eve cannot directly decode their messages using the normal MAC decoding scheme even if Eve has codebooks of all users. As for user k𝒦¯k\in{\overline{{\cal K}^{\prime}}}, since Rks=0R_{k}^{\text{s}}=0, there is no such requirement and it is thus possible for Eve to get its open message MkoM_{k}^{\text{o}}. For a given 𝒦𝒦{\cal K}^{\prime}\subseteq{\cal K}, since Rks=0,k𝒦¯R_{k}^{\text{s}}=0,\forall k\in{\overline{{\cal K}^{\prime}}} and it is possible that Eve gets Mko,k𝒦¯M_{k}^{\text{o}},\forall k\in{\overline{{\cal K}^{\prime}}}, we have

1nI(M𝒦s;Zn)\displaystyle\frac{1}{n}I(M_{\cal K}^{\text{s}};Z^{n}) =1nI(M𝒦s;Zn)\displaystyle=\frac{1}{n}I(M_{{\cal K}^{\prime}}^{\text{s}};Z^{n})
1nI(M𝒦s;M𝒦¯o,Zn)\displaystyle\leq\frac{1}{n}I(M_{{\cal K}^{\prime}}^{\text{s}};M_{\overline{{\cal K}^{\prime}}}^{\text{o}},Z^{n})
=1nI(M𝒦s;Zn|M𝒦¯o),\displaystyle=\frac{1}{n}I(M_{{\cal K}^{\prime}}^{\text{s}};Z^{n}|M_{\overline{{\cal K}^{\prime}}}^{\text{o}}), (2)

where the last step holds since the messages of all users are independent. If 1nI(M𝒦s;Zn)\frac{1}{n}I(M_{\cal K}^{\text{s}};Z^{n}) is used to evaluate the secrecy level, a hidden assumption is that Eve cannot decode the messages of all users, including Mko,k𝒦¯M_{k}^{\text{o}},\forall k\in{\overline{{\cal K}^{\prime}}}, since otherwise due to (II-A), Eve may be able to extract the confidential information from (M𝒦¯o,Zn)(M_{\overline{{\cal K}^{\prime}}}^{\text{o}},Z^{n}) even if 1nI(M𝒦s;Zn)0\frac{1}{n}I(M_{{\cal K}^{\prime}}^{\text{s}};Z^{n})\rightarrow 0. Hence, we argue that the secrecy requirement based solely on 1nI(M𝒦s;Zn)\frac{1}{n}I(M_{\cal K}^{\text{s}};Z^{n}) implicitly forces any achievable coding scheme to prevent Eve to decode the open messages of users in 𝒦¯{\overline{{\cal K}^{\prime}}}. This requirement may be too restrictive and thus may limit the achievable region. As an alternative, we propose to use

RE,𝒦=1nI(M𝒦s;Zn|M𝒦¯o),R_{{\text{E}},{\cal K}^{\prime}}=\frac{1}{n}I(M_{{\cal K}^{\prime}}^{\text{s}};Z^{n}|M_{\overline{{\cal K}^{\prime}}}^{\text{o}}), (3)

to evaluate the system’s secrecy level. For perfect secrecy, we require RE,𝒦0R_{{\text{E}},{\cal K}^{\prime}}\rightarrow 0 and take the union over all possible choices of 𝒦{\cal K}^{\prime}. Obviously, by using (3), it is no longer necessary to design codes that prevent Eve from decoding Mko,k𝒦¯M_{k}^{\text{o}},\forall k\in{\overline{{\cal K}^{\prime}}}.

Note that here we are not saying 1nI(M𝒦s;Zn)\frac{1}{n}I(M_{\cal K}^{\text{s}};Z^{n}) is always a bad metric in designing the codes and determining the achievable region. Actually, as we will show later, by preventing Eve from decoding Mko,k𝒦¯M_{k}^{\text{o}},\forall k\in{\overline{{\cal K}^{\prime}}}, the signal of users in 𝒦¯{\overline{{\cal K}^{\prime}}} performs as noise to Eve, and may thus limit its wiretapping capability. What we want to emphasize is that more possibilities should be taken into account. In this paper, we use (3) to evaluate the secrecy level for all possible 𝒦𝒦{\cal K}^{\prime}\subseteq{\cal K}. As stated above, users in 𝒦¯{\overline{{\cal K}^{\prime}}} can be reclassified to 𝒦{\cal K}^{\prime}. If 𝒦=𝒦{\cal K}^{\prime}={\cal K}, i.e., 𝒦¯=ϕ{\overline{{\cal K}^{\prime}}}=\phi, it is obvious that (II-A) holds with equality, indicating that the case using metric 1nI(M𝒦s;Zn)\frac{1}{n}I(M_{\cal K}^{\text{s}};Z^{n}) is also considered.

With the metrics defined in (1) and (3), a rate tuple (R1s,R1o,,RKs,RKo)(R_{1}^{\text{s}},R_{1}^{\text{o}},\cdots,R_{K}^{\text{s}},R_{K}^{\text{o}}) is said to be achievable if for any δ>0\delta>0, there exist a subset 𝒦𝒦{\cal K}^{\prime}\subseteq{\cal K} and a sequence of (2nR1s,2nR1o,,2nRKs,2nRKo,n)\left(2^{nR_{1}^{\text{s}}},2^{nR_{1}^{\text{o}}},\cdots,2^{nR_{K}^{\text{s}}},2^{nR_{K}^{\text{o}}},n\right) codes such that Rks=0,k𝒦¯R_{k}^{\text{s}}=0,\forall k\in{\overline{{\cal K}^{\prime}}} and

limnPeδ,\displaystyle\lim_{n\rightarrow\infty}P_{\text{e}}\leq\delta,
limnRE,𝒦δ.\displaystyle\lim_{n\rightarrow\infty}R_{{\text{E}},{\cal K}^{\prime}}\leq\delta. (4)

II-B Extension of [1, Lemma 77]

In wiretap channels, to protect or hide the confidential information, ‘garbage’ messages are usually introduced to the users [1, 15, 37]. We also do so in this paper. It is thus important to study the existence condition of the ‘garbage’ message rate (see a two-user example in [1, Lemma 77]). With the condition satisfied, ‘garbage’ messages can be introduced at a feasible rate and perfect secrecy can be proven. We give the condition for the considered DM MAC-WT channel in the following theorem, which plays quite an important role for the achievability proof in this paper.

Theorem 1.

Let (X𝒦,Y,Z)k=1Kp(xk)p(y,z|x𝒦)(X_{\cal K},Y,Z)\sim\prod_{k=1}^{K}p(x_{k})p(y,z|x_{\cal K}). For any 𝒦𝒦{\cal K}^{\prime}\subseteq{\cal K}, if I(X𝒮;Y|X𝒮¯,X𝒦¯)I(X𝒮;Z|X𝒦¯),𝒮𝒦I(X_{\cal S};Y|X_{\overline{\cal S}},X_{\overline{{\cal K}^{\prime}}})\geq I(X_{\cal S};Z|X_{\overline{{\cal K}^{\prime}}}),\forall{\cal S}\subseteq{\cal K}^{\prime}, then, for any rate tuple (R1s,R1o,,RKs,RKo)(R_{1}^{\text{s}},R_{1}^{\text{o}},\cdots,R_{K}^{\text{s}},R_{K}^{\text{o}}) satisfying

{Rks=0,k𝒦¯,k𝒮Rks+k𝒮𝒮Rko+k𝒯RkoI(X𝒮,X𝒯;Y|X𝒮¯,X𝒯¯)I(X𝒮;Z|X𝒦¯),𝒮𝒦,𝒮𝒮,𝒯𝒦¯,\left\{\!\!\!\begin{array}[]{ll}R_{k}^{\text{s}}=0,~\forall~k\in{\overline{{\cal K}^{\prime}}},\\ \sum\limits_{k\in\cal S}R_{k}^{\text{s}}+\sum\limits_{k\in{\cal S}\setminus{\cal S}^{\prime}}R_{k}^{\text{o}}+\sum\limits_{k\in{\cal T}}R_{k}^{\text{o}}\leq I(X_{\cal S},X_{\cal T};Y|X_{\overline{\cal S}},X_{\overline{\cal T}})-I(X_{{\cal S}^{\prime}};Z|X_{\overline{{\cal K}^{\prime}}}),\\ \quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\forall~{\cal S}\subseteq{\cal K}^{\prime},~{\cal S}^{\prime}\subseteq{\cal S},~{\cal T}\subseteq{\overline{{\cal K}^{\prime}}},\end{array}\right. (5)

there exist Rkg,k𝒦R_{k}^{\text{g}},\forall k\in{\cal K}^{\prime} such that

{Rkg0,k𝒦,k𝒮(Rks+Rko+Rkg)+k𝒯RkoI(X𝒮,X𝒯;Y|X𝒮¯,X𝒯¯),𝒮𝒦,𝒯𝒦¯,k𝒮(Rko+Rkg)I(X𝒮;Z|X𝒦¯),𝒮𝒦,\left\{\!\!\!\begin{array}[]{ll}R_{k}^{\text{g}}\geq 0,~\forall~k\in{\cal K}^{\prime},\\ \sum\limits_{k\in{\cal S}}(R_{k}^{\text{s}}+R_{k}^{\text{o}}+R_{k}^{\text{g}})+\sum\limits_{k\in{\cal T}}R_{k}^{\text{o}}\leq I(X_{\cal S},X_{\cal T};Y|X_{\overline{\cal S}},X_{\overline{\cal T}}),~\forall~{\cal S}\subseteq{\cal K}^{\prime},~{\cal T}\subseteq{\overline{{\cal K}^{\prime}}},\\ \sum\limits_{k\in{\cal S}}(R_{k}^{\text{o}}+R_{k}^{\text{g}})\geq I(X_{\cal S};Z|X_{\overline{{\cal K}^{\prime}}}),~\forall~{\cal S}\subseteq{\cal K}^{\prime},\end{array}\right. (6)

where 𝒦¯=𝒦𝒦{\overline{{\cal K}^{\prime}}}={\cal K}\setminus{\cal K}^{\prime}, S¯=𝒦𝒮{\overline{S}}={\cal K}^{\prime}\setminus{\cal S}, 𝒯¯=𝒦¯𝒯{\overline{\cal T}}={\overline{{\cal K}^{\prime}}}\setminus{\cal T}, and RkgR_{k}^{\text{g}} is the rate of the ‘garbage’ message added by user kk to protect its confidential information

Proof: We give in the following Lemma 1, which is a special case of Theorem 1 for 𝒦=𝒦{\cal K}^{\prime}={\cal K} and directly extends [1, Lemma 77] to the case with any KK. Lemma 1 is proven in Appendix A. Then, using this lemma, Theorem 1 is proven in Appendix B. \Box

In contrast to [1, Lemma 77], which considers only two users and can thus be easily proven, Theorem 1 not only extends the result to the general case with any KK, but also gives the existence conditions of Rkg,k𝒦R_{k}^{\text{g}},\forall k\in{\cal K}^{\prime} for all possible subsets 𝒦𝒦{\cal K}^{\prime}\subseteq{\cal K}, which is quite important for the achievability proof in this paper. To apply the coding scheme provided in the next section, it is also necessary to know how to find the feasible Rkg,k𝒦R_{k}^{\text{g}},\forall k\in{\cal K}^{\prime}. We show that this is easy. For a given 𝒦𝒦{\cal K}^{\prime}\subseteq{\cal K} and any rate tuple (R1s,R1o,,RKs,RKo)(R_{1}^{\text{s}},R_{1}^{\text{o}},\cdots,R_{K}^{\text{s}},R_{K}^{\text{o}}) satisfying (5), the linear inequalities in (6) define a polytope as a feasible region of Rkg,k𝒦R_{k}^{\text{g}},\forall k\in{\cal K}^{\prime}, which should be non-empty since otherwise the region defined by (5) is empty. Then, we may apply Dantzig’s simplex algorithm to obtain Rkg,k𝒦R_{k}^{\text{g}},\forall k\in{\cal K}^{\prime} [39].

For the case 𝒦=𝒦{\cal K}^{\prime}={\cal K}, the basic result obtained from Theorem 1 is collected in the following lemma.

Lemma 1.

Let (X𝒦,Y,Z)k=1Kp(xk)p(y,z|x𝒦)(X_{\cal K},Y,Z)\sim\prod_{k=1}^{K}p(x_{k})p(y,z|x_{\cal K}). If I(X𝒮;Y|X𝒮¯)I(X𝒮;Z),𝒮𝒦I(X_{\cal S};Y|X_{\overline{\cal S}})\geq I(X_{\cal S};Z),\forall{\cal S}\subseteq{\cal K}, for any rate tuple (R1s,R1o,,RKs,RKo)(R_{1}^{\text{s}},R_{1}^{\text{o}},\cdots,R_{K}^{\text{s}},R_{K}^{\text{o}}) satisfying

k𝒮Rks+k𝒮𝒮RkoI(X𝒮;Y|X𝒮¯)I(X𝒮;Z),𝒮𝒦,𝒮𝒮,\displaystyle\sum_{k\in\cal S}R_{k}^{\text{s}}+\sum_{k\in{\cal S}\setminus{\cal S}^{\prime}}R_{k}^{\text{o}}\leq I(X_{\cal S};Y|X_{\overline{\cal S}})-I(X_{{\cal S}^{\prime}};Z),~\forall~{\cal S}\subseteq{\cal K},~{\cal S}^{\prime}\subseteq{\cal S}, (7)

there exist Rkg,k𝒦R_{k}^{\text{g}},\forall k\in{\cal K} such that

{Rkg0,k𝒦,k𝒮(Rks+Rko+Rkg)I(X𝒮;Y|X𝒮¯),𝒮𝒦,k𝒮(Rko+Rkg)I(X𝒮;Z),𝒮𝒦,\left\{\!\!\!\begin{array}[]{ll}R_{k}^{\text{g}}\geq 0,~\forall~k\in{\cal K},\\ \sum\limits_{k\in{\cal S}}(R_{k}^{\text{s}}+R_{k}^{\text{o}}+R_{k}^{\text{g}})\leq I(X_{\cal S};Y|X_{\overline{\cal S}}),~\forall~{\cal S}\subseteq{\cal K},\\ \sum\limits_{k\in{\cal S}}(R_{k}^{\text{o}}+R_{k}^{\text{g}})\geq I(X_{\cal S};Z),~\forall~{\cal S}\subseteq{\cal K},\end{array}\right. (8)

where S¯=𝒦𝒮{\overline{S}}={\cal K}\setminus{\cal S}.

Proof: See Appendix A. \Box

Remark 1.

As already remarked before, Lemma 1 is a direct extension of [1, Lemma 77] from a two-user case to the general KK. For the simple system with a small KK, e.g., K=1K=1 or K=2K=2, as stated in [1], Lemma 1 can be proven by eliminating RkgR_{k}^{\text{g}} in (8) using the Fourier-Motzkin procedure [37, Appendix D] and showing that (7) is the projection of (8) onto the hyperplane {Rkg=0,k𝒦}\{R_{k}^{\text{g}}=0,\forall k\in{\cal K}\}. However, when KK increases, the number of inequalities resulted in the elimination procedure grows very quickly (doubly exponentially), making it quite difficult or even impractical to prove this lemma by following this brute-force way. Besides the great complexity, another problem is that the strategy works only if KK is given. Obviously, this makes the strategy inappropriate for the proof of Lemma 1 since it is a general result for any KK.

In note [38], we consider a system with K=3K=3 and prove Lemma 1 by eliminating R1gR_{1}^{\text{g}}, R2gR_{2}^{\text{g}}, and R3gR_{3}^{\text{g}} one by one. From (8) we first get 44 upper bounds and 55 lower bounds on R1gR_{1}^{\text{g}}. By pairing up these lower and upper bounds, we get 2020 inequalities, based on which 88 upper bounds and 77 lower bounds on R2gR_{2}^{\text{g}} are obtained. We then eliminate R2gR_{2}^{\text{g}} and get 5656 inequalities, in which most of them are redundant. Neglecting the redundant terms, we further get 99 upper bounds and 77 lower bounds on R3gR_{3}^{\text{g}}, and 6363 inequalities by pairing them up. Neglecting the redundant terms, we show that the inequalities left construct (7). This unpublished note is mentioned here and made public in [38] to illustrate how difficult the brute-force Fourier-Motzkin elimination is, even in the simple case of 33 users.

III Improved Achievable Region of the DM MAC-WT Channel

As stated in the introduction part, the information-theoretic secrecy problem for a MAC-WT channel with both secret and open messages has been studied by [14] and [1]. However, it was shown in [1] that there is a problem with the coding scheme in [14], because of which rate tuples that are non-achievable are mistakenly claimed to be achievable. As a correction, [1] provided an achievable region in [1, Lemma 11] and its proof for the two-user case. In this section, we show that the achievable region provided in [1, Lemma 11] can be further improved and give the general proof for any KK. Using the result, we also show that a new achievable secrecy rate region can be obtained for the conventional MAC-WT channel with only secret messages, which improves the regions given in the existing literature.

III-A Motivations of Improving [1, Lemma 11]

Here we explain why it is possible to improve [1, Lemma 11]. For convenience, we rewrite [1, Lemma 11] below.

Lemma 2.

[1, Lemma 11] Let (X𝒦,Y,Z)k=1Kp(xk)p(y,z|x𝒦)(X_{\cal K},Y,Z)\sim\prod_{k=1}^{K}p(x_{k})p(y,z|x_{\cal K}). Then, any rate tuple (R1s,R1o,(R_{1}^{\text{s}},R_{1}^{\text{o}}, ,RKs,RKo)\cdots,R_{K}^{\text{s}},R_{K}^{\text{o}}) satisfying

k𝒮Rks+k𝒮𝒮Rko[I(X𝒮;Y|X𝒮¯)I(X𝒮;Z)]+,𝒮𝒦,𝒮𝒮,\displaystyle\sum_{k\in\cal S}R_{k}^{\text{s}}+\sum_{k\in{\cal S}\setminus{\cal S}^{\prime}}R_{k}^{\text{o}}\leq\left[I(X_{\cal S};Y|X_{\overline{\cal S}})-I(X_{{\cal S}^{\prime}};Z)\right]^{+},~\forall~{\cal S}\subseteq{\cal K},~{\cal S}^{\prime}\subseteq{\cal S}, (9)

is achievable. Let (X𝒦){\mathscr{R}}(X_{\cal K}) denote the set of rate tuples satisfying (9). Then, the convex hull of the union of (X𝒦){\mathscr{R}}(X_{\cal K}) over all k=1Kp(xk)\prod_{k=1}^{K}p(x_{k}) is an achievable rate region of the DM MAC-WT channel.

In Subsection III-B, we give Theorem 2, which improves the region in Lemma 2, and provide the general proof for any KK in Appendix C. Now we consider two special cases of Lemma 2 and provide some observations that evidence the fact that the region of Lemma 2 can be improved.

First, consider the case with Rko=0,k𝒦R_{k}^{\text{o}}=0,\forall k\in{\cal K}. Then, (9) becomes

k𝒮Rks[I(X𝒮;Y|X𝒮¯)I(X𝒮;Z)]+,𝒮𝒦,𝒮𝒮,\sum_{k\in\cal S}R_{k}^{\text{s}}\leq\left[I(X_{\cal S};Y|X_{\overline{\cal S}})-I(X_{{\cal S}^{\prime}};Z)\right]^{+},~\forall~{\cal S}\subseteq{\cal K},~{\cal S}^{\prime}\subseteq{\cal S}, (10)

which can be further simplified as (11) since for any 𝒮𝒦{\cal S}\subseteq{\cal K}, it is obvious that I(X𝒮;Z)I(X𝒮;Z),𝒮𝒮I(X_{\cal S};Z)\geq I(X_{{\cal S}^{\prime}};Z),\forall{\cal S}^{\prime}\subseteq{\cal S}. We give an achievable secrecy rate region in the following lemma.

Lemma 3.

Assume that Rko=0,k𝒦R_{k}^{\text{o}}=0,\forall k\in{\cal K} and (X𝒦,Y,Z)k=1Kp(xk)p(y,z|x𝒦)(X_{\cal K},Y,Z)\sim\prod_{k=1}^{K}p(x_{k})p(y,z|x_{\cal K}). Any rate tuple (R1s,,RKs)(R_{1}^{\text{s}},\cdots,R_{K}^{\text{s}}) satisfying

k𝒮Rks[I(X𝒮;Y|X𝒮¯)I(X𝒮;Z)]+,𝒮𝒦,\sum_{k\in\cal S}R_{k}^{\text{s}}\leq\left[I(X_{\cal S};Y|X_{\overline{\cal S}})-I(X_{\cal S};Z)\right]^{+},~\forall~{\cal S}\subseteq{\cal K}, (11)

is achievable. Let s(X𝒦){\mathscr{R}}^{\text{s}}(X_{\cal K}) denote the set of rate tuples satisfying (11). Then, the convex hull of the union of s(X𝒦){\mathscr{R}}^{\text{s}}(X_{\cal K}) over all k=1Kp(xk)\prod_{k=1}^{K}p(x_{k}) is an achievable secrecy rate region of the DM MAC-WT channel with only secret messages.

Similar achievable secrecy rate regions for Gaussian MAC-WT channels can be found in [13, Theorem 11] (with two users), [8, Theorem 22] (with a weaker Eve which has access to a degraded version of the main channel), and also [14, Theorem 11] (by letting all open message rates be 0). Notice that we have shown in [1, Remark 11 and Appendix G] that [14, Theorem 11], which bounds the secret and open message rates is in general incorrect. We show in Lemma 4 in Subsection III-B that the region provided in Lemma 3 can be enlarged. The results in [13], [8], and [14] can thus also be improved.

Next we consider another special case with Rks=0,k𝒦R_{k}^{\text{s}}=0,\forall k\in{\cal K}, i.e., each user has only an open message for Bob. Intuitively, we hope to get from Lemma 2 the capacity region of the standard MAC channel with KK users and no wiretapping. Unfortunately, we show that it is not the case. With Rks=0,k𝒦R_{k}^{\text{s}}=0,\forall k\in{\cal K}, (9) becomes

k𝒮𝒮Rko[I(X𝒮;Y|X𝒮¯)I(X𝒮;Z)]+,𝒮𝒦,𝒮𝒮,\sum_{k\in{\cal S}\setminus{\cal S}^{\prime}}R_{k}^{\text{o}}\leq\left[I(X_{\cal S};Y|X_{\overline{\cal S}})-I(X_{{\cal S}^{\prime}};Z)\right]^{+},~\forall~{\cal S}\subseteq{\cal K},~{\cal S}^{\prime}\subseteq{\cal S}, (12)

which can be divided into two parts as follows

k𝒮RkoI(X𝒮;Y|X𝒮¯),𝒮𝒦,\displaystyle\sum_{k\in{\cal S}}R_{k}^{\text{o}}\leq I(X_{\cal S};Y|X_{\overline{\cal S}}),~\forall~{\cal S}\subseteq{\cal K}, (13a)
k𝒮𝒮Rko[I(X𝒮;Y|X𝒮¯)I(X𝒮;Z)]+,𝒮𝒦,𝒮𝒮,𝒮ϕ.\displaystyle\sum_{k\in{\cal S}\setminus{\cal S}^{\prime}}R_{k}^{\text{o}}\leq\left[I(X_{\cal S};Y|X_{\overline{\cal S}})-I(X_{{\cal S}^{\prime}};Z)\right]^{+},~\forall~{\cal S}\subseteq{\cal K},~{\cal S}^{\prime}\subseteq{\cal S},~{{\cal S}^{\prime}}\neq\phi. (13b)

Obviously, (13a) over all k=1Kp(xk)\prod_{k=1}^{K}p(x_{k}) constructs the capacity region of a conventional MAC channel with no wiretapping. However, due to (13b), the region becomes smaller, indicating that the achievability results given in Lemma 2 do not handle ‘well’ the case where all (or some) users do not have confidential information. This is because in [1], the coding scheme introduces ‘garbage’ messages to all users and ensures k𝒮(Rko+Rkg)I(X𝒮;Z),𝒮𝒦\sum_{k\in{\cal S}}(R_{k}^{\text{o}}+R_{k}^{\text{g}})\geq I(X_{\cal S};Z),\forall{\cal S}\subseteq{\cal K} to hide the confidential information. This is important if Rks>0R_{k}^{\text{s}}>0. But if Rks=0R_{k}^{\text{s}}=0, i.e., user kk has no confidential information, this may be unnecessary or even have a negative effect in determining the achievable region. We will give the more detailed explanations in Subsection III-B.

III-B Improved Achievable Region

By allowing users with zero secret message rate to act as conventional MAC channel users with no wiretapping, we obtain a better achievable region in the following Theorem 2. We show later that this theorem not only improves Lemma 2, by considering the special cases with only secret or open messages as we have done in Subsection III-A, it also improves Lemma 3 and yields the standard MAC capacity region as a byproduct in a natural immediate way.

Theorem 2.

Let (X𝒦,Y,Z)k=1Kp(xk)p(y,z|x𝒦)(X_{\cal K},Y,Z)\sim\prod_{k=1}^{K}p(x_{k})p(y,z|x_{\cal K}). For each given 𝒦𝒦{\cal K}^{\prime}\subseteq{\cal K}, any rate tuple (R1s,R1o,,RKs,RKo)(R_{1}^{\text{s}},R_{1}^{\text{o}},\cdots,R_{K}^{\text{s}},R_{K}^{\text{o}}) satisfying

{Rks=0,k𝒦¯,k𝒮Rks+k𝒮𝒮Rko+k𝒯Rko[I(X𝒮,X𝒯;Y|X𝒮¯,X𝒯¯)I(X𝒮;Z|X𝒦¯)]+,𝒮𝒦,𝒮𝒮,𝒯𝒦¯,\left\{\begin{array}[]{ll}R_{k}^{\text{s}}=0,~\forall~k\in{\overline{{\cal K}^{\prime}}},\\ \sum\limits_{k\in\cal S}R_{k}^{\text{s}}+\sum\limits_{k\in{\cal S}\setminus{\cal S}^{\prime}}R_{k}^{\text{o}}+\sum\limits_{k\in{\cal T}}R_{k}^{\text{o}}\leq\left[I(X_{\cal S},X_{\cal T};Y|X_{\overline{\cal S}},X_{\overline{\cal T}})-I(X_{{\cal S}^{\prime}};Z|X_{\overline{{\cal K}^{\prime}}})\right]^{+},\\ \quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\forall~{\cal S}\subseteq{\cal K}^{\prime},~{\cal S}^{\prime}\subseteq{\cal S},~{\cal T}\subseteq{\overline{{\cal K}^{\prime}}},\end{array}\right. (14)

is achievable, where 𝒮¯\overline{\cal S}, 𝒯¯\overline{\cal T}, and 𝒦¯\overline{{\cal K}^{\prime}} are defined as in (6). Let (X𝒦,𝒦){\mathscr{R}}(X_{\cal K},{\cal K}^{\prime}) denote the set of rate tuples satisfying (14). Then, the convex hull of the union of (X𝒦,𝒦){\mathscr{R}}(X_{\cal K},{\cal K}^{\prime}) over all k=1Kp(xk)\prod_{k=1}^{K}p(x_{k}) and 𝒦𝒦{\cal K}^{\prime}\subseteq{\cal K} is an achievable rate region of the DM MAC-WT channel.

Proof: See Appendix C. \Box

Obviously, Lemma 2 is a special case of Theorem 2 with 𝒦=𝒦{\cal K}^{\prime}={\cal K}.

Remark 2.

Note that the partition of 𝒦{\cal K} into 𝒦{\cal K}^{\prime} and 𝒦¯{\overline{{\cal K}^{\prime}}} is very important since it considers a trade-off, which influences the size of the achievable region. To clarify this, we talk about a specific user jj in 𝒦{\cal K}, and assume that all the other users 𝒦{j}{\cal K}\setminus\{j\} are in 𝒦{\cal K}^{\prime} for convenience. If Rjs>0R_{j}^{\text{s}}>0, it is obvious from the achievability proof in Appendix C that jj should be included in 𝒦{\cal K}^{\prime} such that its confidential information can be perfectly protected by the open and introduced ‘garbage’ messages. Differently, if Rjs=0R_{j}^{\text{s}}=0, there are two cases for jj, i.e., j𝒦j\in{\cal K}^{\prime} and j𝒦¯j\in{\overline{{\cal K}^{\prime}}}. We show that both these two cases have advantages and disadvantages in determining the corresponding achievable regions. For clarity, we only give some brief explanations in this remark. The more detailed analysis is provide in Appendix G.

In the first case with j𝒦j\in{\cal K}^{\prime}, 𝒦=𝒦{\cal K}^{\prime}={\cal K} and 𝒦¯=ϕ{\overline{{\cal K}^{\prime}}}=\phi. We ensure

k𝒮(Rko+Rkg)I(X𝒮;Z),𝒮𝒦,\sum_{k\in{\cal S}}(R_{k}^{\text{o}}+R_{k}^{\text{g}})\geq I(X_{\cal S};Z),~\forall~{\cal S}\subseteq{\cal K}, (15)

such that the information leakage rate vanishes, i.e.,

limn1nI(M𝒦s;Zn)δ.\lim_{n\rightarrow\infty}\frac{1}{n}I(M_{\cal K}^{\text{s}};Z^{n})\leq\delta. (16)

In the second case with j𝒦¯j\in{\overline{{\cal K}^{\prime}}}, 𝒦=𝒦{j}{\cal K}^{\prime}={\cal K}\setminus\{j\} and 𝒦¯={j}{\overline{{\cal K}^{\prime}}}=\{j\}. We ensure

k𝒮(Rko+Rkg)I(X𝒮;Z|Xj),𝒮𝒦{j},\sum_{k\in{\cal S}}(R_{k}^{\text{o}}+R_{k}^{\text{g}})\geq I(X_{\cal S};Z|X_{j}),~\forall~{\cal S}\subseteq{\cal K}\setminus\{j\}, (17)

such that

limn1nI(M𝒦{j}s;Zn|Mjo)δ.\lim_{n\rightarrow\infty}\frac{1}{n}I(M_{{\cal K}\setminus\{j\}}^{\text{s}};Z^{n}|M_{j}^{\text{o}})\leq\delta. (18)

Note that (15) considers the combination of all users, while (17) does not take user jj into account. Hence, it is not possible for Eve to decode the open message MjoM_{j}^{\text{o}} in the first case, but is possible in the second case. This explains why we consider tighter lower bounds (with XjX_{j} as a known condition) in (17) and a stronger condition on the leakage rate in (18). As shown in (145), the tighter lower bounds in (17) cause tighter upper bounds to the rate sums in (X𝒦,𝒦{j}){\mathscr{R}}(X_{\cal K},{\cal K}\setminus\{j\}). This shows the advantage of case one and disadvantage of case two.

On the other hand, since (15) considers one more user jj, it includes 2K12^{K-1} more inequalities than (17). Specifically, (15) sets lower bounds to k𝒮(Rko+Rkg)+Rjo+Rjg,𝒮𝒦{j}\sum_{k\in{\cal S}}(R_{k}^{\text{o}}+R_{k}^{\text{g}})+R_{j}^{\text{o}}+R_{j}^{\text{g}},\forall{\cal S}\subseteq{\cal K}\setminus\{j\} while (17) does not. Then, it is known from the Fourier-Motzkin procedure given in Appendix A and also shown in (140) that we get many more inequalities, i.e., more constraints on the sum rates, in region (X𝒦,𝒦){\mathscr{R}}(X_{\cal K},{\cal K}) (with Rjs=0R_{j}^{\text{s}}=0) compared with (X𝒦,𝒦{j}){\mathscr{R}}(X_{\cal K},{\cal K}\setminus\{j\}). In this sense, case two performs better than case one. Therefore, when Rjs=0R_{j}^{\text{s}}=0, there is a trade-off between cases j𝒦j\in{\cal K}^{\prime} and j𝒦¯j\in{\overline{{\cal K}^{\prime}}}. Since Theorem 2 considers all possible partitions of 𝒦{\cal K}, it improves the results of Lemma 2.

As done for Lemma 2, we also consider two special cases with Rko=0,k𝒦R_{k}^{\text{o}}=0,\forall k\in{\cal K} and Rks=0,k𝒦R_{k}^{\text{s}}=0,\forall k\in{\cal K} for Theorem 2. First, if Rko=0,k𝒦R_{k}^{\text{o}}=0,\forall k\in{\cal K}, (14) becomes

{Rks=0,k𝒦¯,k𝒮Rks[I(X𝒮,X𝒯;Y|X𝒮¯,X𝒯¯)I(X𝒮;Z|X𝒦¯)]+,𝒮𝒦,𝒮𝒮,𝒯𝒦¯,\left\{\begin{array}[]{ll}R_{k}^{\text{s}}=0,~\forall~k\in{\overline{{\cal K}^{\prime}}},\\ \sum\limits_{k\in\cal S}R_{k}^{\text{s}}\leq\left[I(X_{\cal S},X_{\cal T};Y|X_{\overline{\cal S}},X_{\overline{\cal T}})-I(X_{{\cal S}^{\prime}};Z|X_{\overline{{\cal K}^{\prime}}})\right]^{+},~\forall~{\cal S}\subseteq{\cal K}^{\prime},~{\cal S}^{\prime}\subseteq{\cal S},~{\cal T}\subseteq{\overline{{\cal K}^{\prime}}},\end{array}\right. (19)

which can be simplified as (21) since for any 𝒮𝒦{\cal S}\subseteq{\cal K}^{\prime},

I(X𝒮;Y|X𝒮¯,X𝒦¯)I(X𝒮,X𝒯;Y|X𝒮¯,X𝒯¯),\displaystyle I(X_{\cal S};Y|X_{\overline{\cal S}},X_{\overline{{\cal K}^{\prime}}})\leq I(X_{\cal S},X_{\cal T};Y|X_{\overline{\cal S}},X_{\overline{\cal T}}),
I(X𝒮;Z|X𝒦¯)I(X𝒮;Z|X𝒦¯),𝒮𝒮,𝒯𝒦¯.\displaystyle I(X_{\cal S};Z|X_{\overline{{\cal K}^{\prime}}})\geq I(X_{{\cal S}^{\prime}};Z|X_{\overline{{\cal K}^{\prime}}}),~\forall~{\cal S}^{\prime}\subseteq{\cal S},~{\cal T}\subseteq{\overline{{\cal K}^{\prime}}}. (20)

We provide another achievable region for the DM MAC-WT channel with only confidential information in the following lemma and show that it improves the region given in Lemma 3.

Lemma 4.

Assume that Rko=0,k𝒦R_{k}^{\text{o}}=0,\forall k\in{\cal K} and (X𝒦,Y,Z)k=1Kp(xk)p(y,z|x𝒦)(X_{\cal K},Y,Z)\sim\prod_{k=1}^{K}p(x_{k})p(y,z|x_{\cal K}). For each given 𝒦𝒦{\cal K}^{\prime}\subseteq{\cal K}, any secrecy rate tuple (R1s,,RKs)(R_{1}^{\text{s}},\cdots,R_{K}^{\text{s}}) satisfying

{Rks=0,k𝒦¯,k𝒮Rks[I(X𝒮;Y|X𝒮¯,X𝒦¯)I(X𝒮;Z|X𝒦¯)]+,𝒮𝒦,\left\{\!\!\!\begin{array}[]{ll}R_{k}^{\text{s}}=0,~\forall~k\in{\overline{{\cal K}^{\prime}}},\\ \sum\limits_{k\in\cal S}R_{k}^{\text{s}}\leq\left[I(X_{\cal S};Y|X_{\overline{\cal S}},X_{\overline{{\cal K}^{\prime}}})-I(X_{\cal S};Z|X_{\overline{{\cal K}^{\prime}}})\right]^{+},~\forall~{\cal S}\subseteq{\cal K}^{\prime},\end{array}\right. (21)

is achievable. Let s(X𝒦,𝒦){\mathscr{R}}^{\text{s}}(X_{\cal K},{\cal K}^{\prime}) denote the set of rate tuples satisfying (21). Then, the convex hull of the union of s(X𝒦,𝒦){\mathscr{R}}^{\text{s}}(X_{\cal K},{\cal K}^{\prime}) over all k=1Kp(xk)\prod_{k=1}^{K}p(x_{k}) and 𝒦𝒦{\cal K}^{\prime}\subseteq{\cal K} is an achievable secrecy rate region of the DM MAC-WT channel with only secret messages.

It can be easily found by setting 𝒦=𝒦{\cal K}^{\prime}={\cal K} that the achievable region given in Lemma 3 is contained in that provided by Lemma 4. In this sense, Lemma 4 not only improves the result in Lemma 3, but also those in [13, 8], and [14]. We further show this by giving a specific example with two users in Appendix H.

On the other hand, if Rks=0,k𝒦R_{k}^{\text{s}}=0,\forall k\in{\cal K}, for a given 𝒦𝒦{\cal K}^{\prime}\subseteq{\cal K}, (14) can be rewritten as

k𝒮𝒮Rko+k𝒯Rko\displaystyle\sum_{k\in{\cal S}\setminus{\cal S}^{\prime}}\!R_{k}^{\text{o}}\!+\!\sum_{k\in{\cal T}}R_{k}^{\text{o}} [I(X𝒮,X𝒯;Y|X𝒮¯,X𝒯¯)I(X𝒮;Z|X𝒦¯)]+,𝒮𝒦,𝒮𝒮,𝒯𝒦¯.\displaystyle\!\leq\!\left[I(X_{\cal S},X_{\cal T};Y|X_{\overline{\cal S}},X_{\overline{\cal T}})\!-\!I(X_{{\cal S}^{\prime}};Z|X_{\overline{{\cal K}^{\prime}}})\right]^{+}\!\!,\forall{\cal S}\subseteq{\cal K}^{\prime},{\cal S}^{\prime}\subseteq{\cal S},{\cal T}\subseteq{\overline{{\cal K}^{\prime}}}. (22)

If 𝒦=ϕ{\cal K}^{\prime}=\phi, we have 𝒦¯=𝒦{\overline{{\cal K}^{\prime}}}={\cal K} and 𝒮=𝒮=ϕ{\cal S}={\cal S}^{\prime}=\phi. (22) in this case becomes

k𝒯RkoI(X𝒯;Y|X𝒯¯),𝒯𝒦,\displaystyle\sum\limits_{k\in{\cal T}}R_{k}^{\text{o}}\leq I(X_{\cal T};Y|X_{\overline{\cal T}}),~\forall~{\cal T}\subseteq{\cal K}, (23)

which over all possible distributions k=1Kp(xk)\prod_{k=1}^{K}p(x_{k}) constructs the capacity region of a conventional MAC channel with KK users and no wiretapping. If 𝒦ϕ{\cal K}^{\prime}\neq\phi, (22) can be divided into two parts

k𝒮Rko+k𝒯Rko\displaystyle\sum_{k\in{\cal S}}R_{k}^{\text{o}}+\sum_{k\in{\cal T}}R_{k}^{\text{o}} I(X𝒮,X𝒯;Y|X𝒮¯,X𝒯¯),𝒮𝒦,𝒯𝒦¯,\displaystyle\leq I(X_{\cal S},X_{\cal T};Y|X_{\overline{\cal S}},X_{\overline{\cal T}}),~\forall~{\cal S}\subseteq{\cal K}^{\prime},~{\cal T}\subseteq{\overline{{\cal K}^{\prime}}}, (24a)
k𝒮𝒮Rko+k𝒯Rko\displaystyle\sum_{k\in{\cal S}\setminus{\cal S}^{\prime}}\!\!\!\!R_{k}^{\text{o}}\!+\!\sum_{k\in{\cal T}}\!\!R_{k}^{\text{o}} [I(X𝒮,X𝒯;Y|X𝒮¯,X𝒯¯)I(X𝒮;Z|X𝒦¯)]+,𝒮𝒦,𝒮𝒮,𝒮ϕ,𝒯𝒦¯.\displaystyle\!\leq\!\left[I(X_{\cal S},X_{\cal T};Y|X_{\overline{\cal S}},X_{\overline{\cal T}})\!-\!I(X_{{\cal S}^{\prime}};Z|X_{\overline{{\cal K}^{\prime}}})\right]^{+}\!\!,\forall{\cal S}\subseteq{\cal K}^{\prime},{\cal S}^{\prime}\subseteq{\cal S},{{\cal S}^{\prime}}\neq\phi,{\cal T}\subseteq{\overline{{\cal K}^{\prime}}}. (24b)

It is obvious that (24a) is equivalent to (23). However, due to (24b), for any 𝒦ϕ{\cal K}^{\prime}\neq\phi, the open message rate region jointly defined by (24a) and (24b) is included in that defined by (23). Hence, when Rks=0,k𝒦R_{k}^{\text{s}}=0,\forall k\in{\cal K}, instead of taking into account (22) for all 𝒦𝒦{\cal K}^{\prime}\subseteq{\cal K}, the region union of (X𝒦,𝒦){\mathscr{R}}(X_{\cal K},{\cal K}^{\prime}) over all 𝒦𝒦{\cal K}^{\prime}\subseteq{\cal K} can be easily characterized by (23). In this sense, the open message rate region defined by (12) is improved.

Since this paper considers MAC-WT channels, we are especially concerned about the maximum achievable sum secrecy rate of the system. In addition, since all users have open messages intended for Bob, then, an interesting question is if all users encode their confidential messages at the maximum sum secrecy rate, what is the maximum sum rate at which they could encode their open messages. We give the answer in the following Theorem.

Theorem 3.

For the considered DM MAC-WT channel, with a particular input distribution k=1Kp(xk)\prod_{k=1}^{K}p(x_{k}), the maximum achievable sum secrecy rate k𝒦Rks\sum_{k\in{\cal K}}R_{k}^{\text{s}} is

Rs(X𝒦)=max𝒦𝒦{[I(X𝒦;Y|X𝒦¯)I(X𝒦;Z|X𝒦¯)]+}.R^{\text{s}}(X_{\cal K})=\mathop{\max}\limits_{{\cal K}^{\prime}\subseteq{\cal K}}\left\{\left[I(X_{{\cal K}^{\prime}};Y|X_{\overline{{\cal K}^{\prime}}})-I(X_{{\cal K}^{\prime}};Z|X_{\overline{{\cal K}^{\prime}}})\right]^{+}\right\}. (25)

Let 𝒦{\cal K}^{\prime*} denote the subset in 𝒦{\cal K} which achieves (25) and 𝒦¯=𝒦𝒦{\overline{{\cal K}^{\prime*}}}={\cal K}\setminus{\cal K}^{\prime*}. If Rs(X𝒦)>0R^{\text{s}}(X_{\cal K})>0 and all users transmit their confidential messages at sum rate Rs(X𝒦)R^{\text{s}}(X_{\cal K}) 111Here we assume Rs(X𝒦)>0R^{\text{s}}(X_{\cal K})>0 since otherwise we have Rks=0,k𝒦R_{k}^{\text{s}}=0,\forall k\in{\cal K}, i.e., the system reduces to a conventional MAC channel with only open messages., the maximum achievable sum rate at which users in 𝒦{\cal K} could send their open messages is given by

Ro(X𝒦)=I(X𝒦¯;Y)+I(X𝒦;Z|X𝒦¯).R^{\text{o}}(X_{\cal K})=I(X_{\overline{{\cal K}^{\prime*}}};Y)+I(X_{{\cal K}^{\prime*}};Z|X_{\overline{{\cal K}^{\prime*}}}). (26)

Proof: See Appendix I. \Box

Theorem 3 shows that the channel can support a non-trivial additional open sum rate even if the coding scheme is designed to maximize the sum secrecy rate.

IV Conclusions

In this paper, we studied the information-theoretic secrecy of MAC-WT channels where each user had both secret and open messages for the intended receiver. We provided new achievable regions that enlarge previously known results and gave the general proof for any number of users.

Appendix A Proof of Lemma 1

As stated in Remark 1, it is impossible to prove Lemma 1 by directly using the Fourier-Motzkin procedure to eliminate all RkgR_{k}^{\text{g}} in (8), not only because of its huge complexity but also due to the fact that the elimination strategy works only if KK is given. Hence, we adopt mathematical induction in the following to prove Lemma 1.

We first consider the base case with K=1K=1. By eliminating R1gR_{1}^{\text{g}} in (8) using the Fourier-Motzkin procedure [37, Appendix D], it can be easily proven that (7) is the projection of (8) onto the hyperplane {R1g=0}\{R_{1}^{\text{g}}=0\}. Lemma 1 can thus be proven for this simple case.

Next, we consider the induction step. Assume that for any given positive integer KK, (7) is the projection of (8) onto the hyperplane {Rkg=0,k𝒦}\{R_{k}^{\text{g}}=0,\forall k\in{\cal K}\}. Then, by this assumption, it is possible to obtain (7) by eliminating the variables Rkg,k𝒦R_{k}^{\text{g}},\forall k\in{\cal K} using the Fourier-Motzkin procedure. For convenience, in the following we refer to this assumption as the induction assumption. Under the induction assumption, we shall prove that the statement of Lemma 1 holds for K+1K+1 users. With K+1K+1 users, (7) and (8) become

k𝒮Rks+k𝒮𝒮RkoI(X𝒮;Y|X𝒮¯)I(X𝒮;Z),𝒮𝒦{K+1},𝒮𝒮,\displaystyle\sum_{k\in\cal S}R_{k}^{\text{s}}+\sum_{k\in{\cal S}\setminus{\cal S}^{\prime}}R_{k}^{\text{o}}\leq I(X_{\cal S};Y|X_{\overline{\cal S}})-I(X_{{\cal S}^{\prime}};Z),~\forall~{\cal S}\subseteq{\cal K}\cup\{K+1\},~{\cal S}^{\prime}\subseteq\cal S, (27)

and

{Rkg0,k𝒦{K+1},k𝒮(Rks+Rko+Rkg)I(X𝒮;Y|X𝒮¯),𝒮𝒦{K+1},k𝒮(Rko+Rkg)I(X𝒮;Z),𝒮𝒦{K+1}.\left\{\begin{array}[]{ll}R_{k}^{\text{g}}\geq 0,~\forall~k\in{\cal K}\cup\{K+1\},\\ \sum\limits_{k\in{\cal S}}(R_{k}^{\text{s}}+R_{k}^{\text{o}}+R_{k}^{\text{g}})\leq I(X_{\cal S};Y|X_{\overline{\cal S}}),~\forall~{\cal S}\subseteq{\cal K}\cup\{K+1\},\\ \sum\limits_{k\in{\cal S}}(R_{k}^{\text{o}}+R_{k}^{\text{g}})\geq I(X_{\cal S};Z),~\forall~{\cal S}\subseteq{\cal K}\cup\{K+1\}.\end{array}\right. (28)

We need to show that (27) is the projection of (28) onto the hyperplane {Rkg=0,k𝒦{K+1}}\{R_{k}^{\text{g}}=0,\forall k\in{\cal K}\cup\{K+1\}\}, i.e., (27) can be obtained by eliminating Rkg,k𝒦R_{k}^{\text{g}},\forall k\in{\cal K} as well as RK+1gR_{K+1}^{\text{g}} in (28). For this purpose, by separating user K+1K+1 from users in set 𝒦{\cal K}, we rewrite (27) equivalently as

k𝒮Rks+k𝒮𝒮RkoI(X𝒮;Y|X𝒮¯,XK+1)I(X𝒮;Z),𝒮𝒦,𝒮𝒮,\displaystyle\sum_{k\in\cal S}R_{k}^{\text{s}}+\sum_{k\in{\cal S}\setminus{\cal S}^{\prime}}R_{k}^{\text{o}}\leq I(X_{\cal S};Y|X_{\overline{\cal S}},X_{K+1})-I(X_{{\cal S}^{\prime}};Z),~\forall~{\cal S}\subseteq{\cal K},~{\cal S}^{\prime}\subseteq\cal S, (29a)
k𝒮Rks+RK+1s+k𝒮𝒮Rko+RK+1oI(X𝒮,XK+1;Y|X𝒮¯)I(X𝒮;Z),𝒮𝒦,𝒮𝒮,\displaystyle\sum_{k\in\cal S}R_{k}^{\text{s}}\!+\!R_{K+1}^{\text{s}}\!+\!\sum_{k\in{\cal S}\setminus{\cal S}^{\prime}}R_{k}^{\text{o}}\!+\!R_{K+1}^{\text{o}}\!\leq\!I(X_{\cal S},X_{K+1};Y|X_{\overline{\cal S}})\!-\!I(X_{{\cal S}^{\prime}};Z),\forall{\cal S}\subseteq{\cal K},{\cal S}^{\prime}\subseteq\cal S, (29b)
k𝒮Rks+RK+1s+k𝒮𝒮RkoI(X𝒮,XK+1;Y|X𝒮¯)I(X𝒮,XK+1;Z),𝒮𝒦,𝒮𝒮,\displaystyle\sum_{k\in\cal S}R_{k}^{\text{s}}\!+\!R_{K+1}^{\text{s}}\!+\!\sum_{k\in{\cal S}\setminus{\cal S}^{\prime}}\!R_{k}^{\text{o}}\leq I(X_{\cal S},X_{K+1};Y|X_{\overline{\cal S}})\!-\!I(X_{{\cal S}^{\prime}},X_{K+1};Z),\forall{\cal S}\subseteq{\cal K},~{\cal S}^{\prime}\subseteq\cal S, (29c)

and (28) as

Rkg0,k𝒦,\displaystyle R_{k}^{\text{g}}\geq 0,~\forall~k\in{\cal K}, (30a)
k𝒮(Rks+Rko+Rkg)I(X𝒮;Y|X𝒮¯,XK+1),𝒮𝒦,\displaystyle\sum\limits_{k\in{\cal S}}(R_{k}^{\text{s}}+R_{k}^{\text{o}}+R_{k}^{\text{g}})\leq I(X_{\cal S};Y|X_{\overline{\cal S}},X_{K+1}),~\forall~{\cal S}\subseteq{\cal K}, (30b)
k𝒮(Rko+Rkg)I(X𝒮;Z),𝒮𝒦,\displaystyle\sum\limits_{k\in{\cal S}}(R_{k}^{\text{o}}+R_{k}^{\text{g}})\geq I(X_{\cal S};Z),~\forall~{\cal S}\subseteq{\cal K}, (30c)
k𝒮(Rks+Rko+Rkg)I(X𝒮,XK+1;Y|X𝒮¯)(RK+1s+RK+1o+RK+1g),𝒮𝒦,𝒮ϕ,\displaystyle\sum\limits_{k\in{\cal S}}(R_{k}^{\text{s}}\!+\!R_{k}^{\text{o}}\!+\!R_{k}^{\text{g}})\leq I(X_{\cal S},X_{K+1};Y|X_{\overline{\cal S}})\!-\!(R_{K+1}^{\text{s}}\!+\!R_{K+1}^{\text{o}}\!+\!R_{K+1}^{\text{g}}),~\forall~{\cal S}\subseteq{\cal K},~{\cal S}\neq\phi, (30d)
k𝒮(Rko+Rkg)I(X𝒮,XK+1;Z)(RK+1o+RK+1g),𝒮𝒦,𝒮ϕ,\displaystyle\sum\limits_{k\in{\cal S}}(R_{k}^{\text{o}}+R_{k}^{\text{g}})\geq I(X_{\cal S},X_{K+1};Z)-(R_{K+1}^{\text{o}}+R_{K+1}^{\text{g}}),~\forall~{\cal S}\subseteq{\cal K},~{\cal S}\neq\phi, (30e)
RK+1g0,\displaystyle R_{K+1}^{\text{g}}\geq 0, (30f)
RK+1s+RK+1o+RK+1gI(XK+1;Y|X𝒦),\displaystyle R_{K+1}^{\text{s}}+R_{K+1}^{\text{o}}+R_{K+1}^{\text{g}}\leq I(X_{K+1};Y|X_{{\cal K}}), (30g)
RK+1o+RK+1gI(XK+1;Z).\displaystyle R_{K+1}^{\text{o}}+R_{K+1}^{\text{g}}\geq I(X_{K+1};Z). (30h)

Note that in (30d) and (30e) we let 𝒮ϕ{\cal S}\neq\phi since otherwise they will reduce to (30g) and (30h), which do not contain Rkg,k𝒦R_{k}^{\text{g}},\forall k\in{\cal K}. In the following, we eliminate first Rkg,k𝒦R_{k}^{\text{g}},\forall k\in{\cal K} and then RK+1gR_{K+1}^{\text{g}} in (30).

A-A Elimination of Rkg,k𝒦R_{k}^{\text{g}},\forall k\in{\cal K}

To eliminate Rkg,k𝒦R_{k}^{\text{g}},\forall k\in{\cal K} in (30), we focus on (30a\sim (30e) since only these inequalities contain Rkg,k𝒦R_{k}^{\text{g}},\forall k\in{\cal K} while (30f\sim (30h) do not. Since there are KK different RkgR_{k}^{\text{g}}, as stated above, it is impractical to eliminate RkgR_{k}^{\text{g}} one by one. Hence, instead of eliminating Rkg,k𝒦R_{k}^{\text{g}},\forall k\in{\cal K} directly from (30a\sim (30e), we divide these inequalities into 44 categories, which together consider all possible upper and lower bound pairs on Rkg,k𝒦R_{k}^{\text{g}},\forall k\in{\cal K}, and eliminate Rkg,k𝒦R_{k}^{\text{g}},\forall k\in{\cal K} in each category using the induction assumption.

A-A1 Category 11

We include inequalities (30a), (30b), and (30c) in Category 11, and rewrite them as follows for clarity

{Rkg0,k𝒦,k𝒮(Rks+Rko+Rkg)I(X𝒮;Y|X𝒮¯,XK+1),𝒮𝒦,k𝒮(Rko+Rkg)I(X𝒮;Z),𝒮𝒦.\left\{\begin{array}[]{ll}R_{k}^{\text{g}}\geq 0,~\forall~k\in{\cal K},\\ \sum\limits_{k\in{\cal S}}(R_{k}^{\text{s}}+R_{k}^{\text{o}}+R_{k}^{\text{g}})\leq I(X_{\cal S};Y|X_{\overline{\cal S}},X_{K+1}),~\forall~{\cal S}\subseteq{\cal K},\\ \sum\limits_{k\in{\cal S}}(R_{k}^{\text{o}}+R_{k}^{\text{g}})\geq I(X_{\cal S};Z),\forall{\cal S}\subseteq{\cal K}.\end{array}\right. (31)

Obviously, (31) has a similar formulation as (8). Hence, from the induction assumption it is known that the projection of (31) onto the hyperplane {Rkg=0,k𝒦}\{R_{k}^{\text{g}}=0,\forall k\in{\cal K}\} is

k𝒮Rks+k𝒮𝒮RkoI(X𝒮;Y|X𝒮¯,XK+1)I(X𝒮;Z),𝒮𝒦,𝒮𝒮,\displaystyle\sum_{k\in\cal S}R_{k}^{\text{s}}+\sum_{k\in{\cal S}\setminus{\cal S}^{\prime}}R_{k}^{\text{o}}\leq I(X_{\cal S};Y|X_{\overline{\cal S}},X_{K+1})-I(X_{{\cal S}^{\prime}};Z),~\forall~{\cal S}\subseteq{\cal K},~{\cal S}^{\prime}\subseteq\cal S, (32)

which is the same as (29a).

A-A2 Category 22

In this category we include inequalities (30a), (30d), and (30c), and rewrite them as

{Rkg0,k𝒦,k𝒮(Rks+Rko+Rkg)I(X𝒮,XK+1;Y|X𝒮¯)(RK+1s+RK+1o+RK+1g),𝒮𝒦,𝒮ϕ,k𝒮(Rko+Rkg)I(X𝒮;Z),𝒮𝒦.\left\{\!\!\!\begin{array}[]{ll}R_{k}^{\text{g}}\geq 0,~\forall~k\in{\cal K},\\ \sum\limits_{k\in{\cal S}}(R_{k}^{\text{s}}\!+\!R_{k}^{\text{o}}\!+\!R_{k}^{\text{g}})\leq I(X_{\cal S},X_{K+1};Y|X_{\overline{\cal S}})\!-\!(R_{K+1}^{\text{s}}\!+\!R_{K+1}^{\text{o}}\!+\!R_{K+1}^{\text{g}}),~\forall{\cal S}\subseteq{\cal K},{\cal S}\neq\phi,\\ \sum\limits_{k\in{\cal S}}(R_{k}^{\text{o}}+R_{k}^{\text{g}})\geq I(X_{\cal S};Z),~\forall~{\cal S}\subseteq{\cal K}.\end{array}\right. (33)

Note that though we let 𝒮ϕ{\cal S}\neq\phi in (30d), (33) still has a similar expression as (8). It can be easily checked that if 𝒮=ϕ{\cal S}=\phi, the second inequality of (8) gives 000\leq 0, which can be omitted. Hence, we may also let 𝒮ϕ{\cal S}\neq\phi in (8) without changing its formulation. The induction assumption can thus be used to eliminate Rkg,k𝒦R_{k}^{\text{g}},\forall k\in{\cal K} in (33) and obtain

k𝒮Rks+k𝒮𝒮RkoI(X𝒮,XK+1;Y|X𝒮¯)(RK+1s+RK+1o+RK+1g)I(X𝒮;Z),\displaystyle\sum_{k\in\cal S}R_{k}^{\text{s}}+\sum_{k\in{\cal S}\setminus{\cal S}^{\prime}}R_{k}^{\text{o}}\leq I(X_{\cal S},X_{K+1};Y|X_{\overline{\cal S}})-(R_{K+1}^{\text{s}}+R_{K+1}^{\text{o}}+R_{K+1}^{\text{g}})-I(X_{{\cal S}^{\prime}};Z),
𝒮𝒦,𝒮ϕ,𝒮𝒮,\displaystyle\quad\quad\quad\quad\quad\quad\quad\quad\;\forall~{\cal S}\subseteq{\cal K},~{\cal S}\neq\phi,~{\cal S}^{\prime}\subseteq\cal S, (34)

which contains RK+1gR_{K+1}^{\text{g}} and thus has to be considered in the next step of eliminating RK+1gR_{K+1}^{\text{g}}.

A-A3 Category 33

In Category 33 we include (30a), (30d), and (30e), and rewrite them as follows

{Rkg0,k𝒦,k𝒮(Rks+Rko+Rkg)I(X𝒮,XK+1;Y|X𝒮¯)(RK+1s+RK+1o+RK+1g),𝒮𝒦,𝒮ϕ,k𝒮(Rko+Rkg)I(X𝒮,XK+1;Z)(RK+1o+RK+1g),𝒮𝒦,𝒮ϕ.\left\{\!\!\!\begin{array}[]{ll}R_{k}^{\text{g}}\geq 0,~\forall~k\in{\cal K},\\ \sum\limits_{k\in{\cal S}}(R_{k}^{\text{s}}\!+\!R_{k}^{\text{o}}\!+\!R_{k}^{\text{g}})\leq I(X_{\cal S},X_{K+1};Y|X_{\overline{\cal S}})\!-\!(R_{K+1}^{\text{s}}\!+\!R_{K+1}^{\text{o}}\!+\!R_{K+1}^{\text{g}}),~\forall~{\cal S}\subseteq{\cal K},{\cal S}\neq\phi,\\ \sum\limits_{k\in{\cal S}}(R_{k}^{\text{o}}+R_{k}^{\text{g}})\geq I(X_{\cal S},X_{K+1};Z)-(R_{K+1}^{\text{o}}+R_{K+1}^{\text{g}}),~\forall~{\cal S}\subseteq{\cal K},~{\cal S}\neq\phi.\end{array}\right. (35)

Using the induction assumption to eliminate Rkg,k𝒦R_{k}^{\text{g}},\forall k\in{\cal K}, we have

k𝒮Rks+k𝒮𝒮Rko\displaystyle\sum_{k\in\cal S}R_{k}^{\text{s}}+\sum_{k\in{\cal S}\setminus{\cal S}^{\prime}}R_{k}^{\text{o}}
\displaystyle\leq I(X𝒮,XK+1;Y|X𝒮¯)(RK+1s+RK+1o+RK+1g)[I(X𝒮,XK+1;Z)(RK+1o+RK+1g)],\displaystyle I(X_{\cal S},X_{K+1};Y|X_{\overline{\cal S}})-(R_{K+1}^{\text{s}}+R_{K+1}^{\text{o}}+R_{K+1}^{\text{g}})-\left[I(X_{{\cal S}^{\prime}},X_{K+1};Z)-(R_{K+1}^{\text{o}}+R_{K+1}^{\text{g}})\right],
=\displaystyle= I(X𝒮,XK+1;Y|X𝒮¯)I(X𝒮,XK+1;Z)RK+1s,𝒮𝒦,𝒮ϕ,𝒮𝒮,𝒮ϕ.\displaystyle I(X_{\cal S},X_{K+1};Y|X_{\overline{\cal S}})-I(X_{{\cal S}^{\prime}},X_{K+1};Z)-R_{K+1}^{\text{s}},~\forall~{\cal S}\subseteq{\cal K},~{\cal S}\neq\phi,~{\cal S}^{\prime}\subseteq{\cal S},~{\cal S}^{\prime}\neq\phi. (36)

By comparing (A-A3) with (29c), it is known that (A-A3) consists of partial inequalities in (29c) with 𝒮𝒦,𝒮ϕ,𝒮𝒮,𝒮ϕ{\cal S}\subseteq{\cal K},~{\cal S}\neq\phi,~{\cal S}^{\prime}\subseteq{\cal S},~{\cal S}^{\prime}\neq\phi.

A-A4 Category 44

We include inequalities (30a), (30b), and (30e) in Category 44, and rewrite them as follows

{Rkg0,k𝒦,k𝒮(Rks+Rko+Rkg)I(X𝒮;Y|X𝒮¯,XK+1),𝒮𝒦,k𝒮(Rko+Rkg)I(X𝒮,XK+1;Z)(RK+1o+RK+1g),𝒮𝒦,𝒮ϕ.\left\{\begin{array}[]{ll}R_{k}^{\text{g}}\geq 0,~\forall~k\in{\cal K},\\ \sum\limits_{k\in{\cal S}}(R_{k}^{\text{s}}+R_{k}^{\text{o}}+R_{k}^{\text{g}})\leq I(X_{\cal S};Y|X_{\overline{\cal S}},X_{K+1}),\forall{\cal S}\subseteq{\cal K},\\ \sum\limits_{k\in{\cal S}}(R_{k}^{\text{o}}+R_{k}^{\text{g}})\geq I(X_{\cal S},X_{K+1};Z)-(R_{K+1}^{\text{o}}+R_{K+1}^{\text{g}}),~\forall~{\cal S}\subseteq{\cal K},~{\cal S}\neq\phi.\end{array}\right. (37)

The following projection of (37) can then be obtained from the induction assumption

k𝒮Rks+k𝒮𝒮RkoI(X𝒮;Y|X𝒮¯,XK+1)I(X𝒮,XK+1;Z)+RK+1o+RK+1g,\displaystyle\sum_{k\in\cal S}R_{k}^{\text{s}}+\sum_{k\in{\cal S}\setminus{\cal S}^{\prime}}R_{k}^{\text{o}}\leq I(X_{\cal S};Y|X_{\overline{\cal S}},X_{K+1})-I(X_{{\cal S}^{\prime}},X_{K+1};Z)+R_{K+1}^{\text{o}}+R_{K+1}^{\text{g}},
𝒮𝒦,𝒮ϕ,𝒮𝒮,𝒮ϕ,\displaystyle\quad\quad\quad\quad\quad\quad\quad\quad\;\forall~{\cal S}\subseteq{\cal K},~{\cal S}\neq\phi,~{\cal S}^{\prime}\subseteq{\cal S},~{\cal S}^{\prime}\neq\phi, (38)

which also contains RK+1gR_{K+1}^{\text{g}} and has to be considered in the next step of eliminating RK+1gR_{K+1}^{\text{g}}.

Combining (30f\sim (30h), (32), (A-A2), (A-A3), and (A-A4), we get a projection of (30) onto the hyperplane {Rkg=0,k𝒦}\{R_{k}^{\text{g}}=0,\forall k\in{\cal K}\}. To further get a projection of (30) onto the hyperplane {Rkg=0,k𝒦{K+1}}\{R_{k}^{\text{g}}=0,\forall k\in{\cal K}\cup\{K+1\}\}, we have to eliminate RK+1gR_{K+1}^{\text{g}}.

A-B Elimination of RK+1gR_{K+1}^{\text{g}}

From (30g) and (A-A2), we get the following upper bounds on RK+1gR_{K+1}^{\text{g}}

RK+1g\displaystyle R_{K+1}^{\text{g}} I(XK+1;Y|X𝒦)(RK+1s+RK+1o),\displaystyle\leq I(X_{K+1};Y|X_{{\cal K}})-(R_{K+1}^{\text{s}}+R_{K+1}^{\text{o}}), (39a)
RK+1g\displaystyle R_{K+1}^{\text{g}} I(X𝒮,XK+1;Y|X𝒮¯)I(X𝒮;Z)(k𝒮Rks+k𝒮𝒮Rko+RK+1s+RK+1o),\displaystyle\leq I(X_{\cal S},X_{K+1};Y|X_{\overline{\cal S}})-I(X_{{\cal S}^{\prime}};Z)-\Big{(}\sum_{k\in\cal S}R_{k}^{\text{s}}+\sum_{k\in{\cal S}\setminus{\cal S}^{\prime}}R_{k}^{\text{o}}+R_{K+1}^{\text{s}}+R_{K+1}^{\text{o}}\Big{)},
𝒮𝒦,𝒮ϕ,𝒮𝒮.\displaystyle\;\forall~{\cal S}\subseteq{\cal K},~{\cal S}\neq\phi,~{\cal S}^{\prime}\subseteq\cal S. (39b)

Moreover, the following lower bounds on RK+1gR_{K+1}^{\text{g}} can be obtained from (30f), (30h), and (A-A4)

RK+1g\displaystyle R_{K+1}^{\text{g}} 0,\displaystyle\geq 0, (40a)
RK+1g\displaystyle R_{K+1}^{\text{g}} I(XK+1;Z)RK+1o,\displaystyle\geq I(X_{K+1};Z)-R_{K+1}^{\text{o}}, (40b)
RK+1g\displaystyle R_{K+1}^{\text{g}} I(X𝒮;Y|X𝒮¯,XK+1)+I(X𝒮,XK+1;Z)+k𝒮Rks+k𝒮𝒮RkoRK+1o,\displaystyle\geq-I(X_{\cal S};Y|X_{\overline{\cal S}},X_{K+1})+I(X_{{\cal S}^{\prime}},X_{K+1};Z)+\sum_{k\in\cal S}R_{k}^{\text{s}}+\sum_{k\in{\cal S}\setminus{\cal S}^{\prime}}R_{k}^{\text{o}}-R_{K+1}^{\text{o}},
𝒮𝒦,𝒮ϕ,𝒮𝒮,𝒮ϕ.\displaystyle\;\forall~{\cal S}\subseteq{\cal K},~{\cal S}\neq\phi,~{\cal S}^{\prime}\subseteq{\cal S},~{\cal S}^{\prime}\neq\phi. (40c)

Comparing these upper and lower bounds, we can eliminate RK+1gR_{K+1}^{\text{g}}.

Firstly, we compare (39) with (40a), and get

RK+1s+RK+1oI(XK+1;Y|X𝒦),\displaystyle R_{K+1}^{\text{s}}+R_{K+1}^{\text{o}}\leq I(X_{K+1};Y|X_{{\cal K}}), (41a)
k𝒮Rks+k𝒮𝒮Rko+RK+1s+RK+1oI(X𝒮,XK+1;Y|X𝒮¯)I(X𝒮;Z),\displaystyle\sum_{k\in\cal S}R_{k}^{\text{s}}+\sum_{k\in{\cal S}\setminus{\cal S}^{\prime}}R_{k}^{\text{o}}+R_{K+1}^{\text{s}}+R_{K+1}^{\text{o}}\leq I(X_{\cal S},X_{K+1};Y|X_{\overline{\cal S}})-I(X_{{\cal S}^{\prime}};Z),
𝒮𝒦,𝒮ϕ,𝒮𝒮.\displaystyle\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\;\forall~{\cal S}\subseteq{\cal K},~{\cal S}\neq\phi,~{\cal S}^{\prime}\subseteq\cal S. (41b)

Obviously, inequalities (41a) and (41b) can be integrated into one formula as follows

k𝒮Rks+k𝒮𝒮Rko+RK+1s+RK+1oI(X𝒮,XK+1;Y|X𝒮¯)I(X𝒮;Z),𝒮𝒦,𝒮𝒮,\displaystyle\sum_{k\in\cal S}R_{k}^{\text{s}}\!+\!\sum_{k\in{\cal S}\setminus{\cal S}^{\prime}}R_{k}^{\text{o}}\!+\!R_{K+1}^{\text{s}}\!+\!R_{K+1}^{\text{o}}\leq I(X_{\cal S},X_{K+1};Y|X_{\overline{\cal S}})\!-\!I(X_{{\cal S}^{\prime}};Z),\forall{\cal S}\subseteq{\cal K},{{\cal S}^{\prime}}\subseteq\cal S, (42)

which is the same as (29b).

Secondly, we compare (39) with (40b), and get

RK+1sI(XK+1;Y|X𝒦)I(XK+1;Z),\displaystyle R_{K+1}^{\text{s}}\leq I(X_{K+1};Y|X_{{\cal K}})-I(X_{K+1};Z), (43a)
k𝒮Rks+k𝒮𝒮Rko+RK+1sI(X𝒮,XK+1;Y|X𝒮¯)I(X𝒮;Z)I(XK+1;Z),\displaystyle\sum_{k\in\cal S}R_{k}^{\text{s}}+\sum_{k\in{\cal S}\setminus{\cal S}^{\prime}}R_{k}^{\text{o}}+R_{K+1}^{\text{s}}\leq I(X_{\cal S},X_{K+1};Y|X_{\overline{\cal S}})-I(X_{{\cal S}^{\prime}};Z)-I(X_{K+1};Z),
𝒮𝒦,𝒮ϕ,𝒮𝒮.\displaystyle\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\forall~{\cal S}\subseteq{\cal K},~{\cal S}\neq\phi,~{\cal S}^{\prime}\subseteq\cal S. (43b)

By considering different 𝒮{\cal S}^{\prime}, i.e., 𝒮=ϕ{\cal S}^{\prime}=\phi and 𝒮ϕ{\cal S}^{\prime}\neq\phi, we may divide (43b) into two formulas as below

k𝒮(Rks+Rko)+RK+1sI(X𝒮,XK+1;Y|X𝒮¯)I(XK+1;Z),𝒮𝒦,𝒮ϕ,𝒮=ϕ,\displaystyle\sum_{k\in\cal S}(R_{k}^{\text{s}}+R_{k}^{\text{o}})+R_{K+1}^{\text{s}}\leq I(X_{\cal S},X_{K+1};Y|X_{\overline{\cal S}})-I(X_{K+1};Z),\forall{\cal S}\subseteq{\cal K},{\cal S}\neq\phi,{\cal S}^{\prime}=\phi, (44a)
k𝒮Rks+k𝒮𝒮Rko+RK+1sI(X𝒮,XK+1;Y|X𝒮¯)I(X𝒮;Z)I(XK+1;Z),\displaystyle\sum_{k\in\cal S}R_{k}^{\text{s}}+\sum_{k\in{\cal S}\setminus{\cal S}^{\prime}}R_{k}^{\text{o}}+R_{K+1}^{\text{s}}\leq I(X_{\cal S},X_{K+1};Y|X_{\overline{\cal S}})-I(X_{{\cal S}^{\prime}};Z)-I(X_{K+1};Z),
𝒮𝒦,𝒮ϕ,𝒮𝒮,𝒮ϕ.\displaystyle\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\forall~{\cal S}\subseteq{\cal K},~{\cal S}\neq\phi,~{\cal S}^{\prime}\subseteq{\cal S},~{\cal S}^{\prime}\neq\phi. (44b)

From (A-A3), (43a), and (44a), it can be found that these inequalities can be integrated into one formula as follows

k𝒮Rks+k𝒮𝒮Rko+RK+1sI(X𝒮,XK+1;Y|X𝒮¯)I(X𝒮,XK+1;Z),𝒮𝒦,𝒮𝒮,\displaystyle\sum_{k\in\cal S}R_{k}^{\text{s}}\!+\!\sum_{k\in{\cal S}\setminus{\cal S}^{\prime}}R_{k}^{\text{o}}\!+\!R_{K+1}^{\text{s}}\!\leq\!I(X_{\cal S},X_{K+1};Y|X_{\overline{\cal S}})\!-\!I(X_{{\cal S}^{\prime}},X_{K+1};Z),~\forall~{\cal S}\subseteq{\cal K},{\cal S}^{\prime}\subseteq\cal S, (45)

which is the same as (29c). Combining (32), (42), and (45), it is known that (29) or (27) has already been obtained. All the other inequalities resulted from the elimination procedure should be redundant if Lemma 1 is true. Hence, we have to prove that (44b) is redundant. Since XK+1X_{K+1} is independent of X𝒮X_{{\cal S}^{\prime}}, (A-A3) can be rewritten and relaxed as follows

k𝒮Rks+k𝒮𝒮Rko+RK+1sI(X𝒮,XK+1;Y|X𝒮¯)I(X𝒮,XK+1;Z)\displaystyle\sum_{k\in\cal S}R_{k}^{\text{s}}+\sum_{k\in{\cal S}\setminus{\cal S}^{\prime}}R_{k}^{\text{o}}+R_{K+1}^{\text{s}}\leq I(X_{\cal S},X_{K+1};Y|X_{\overline{\cal S}})-I(X_{{\cal S}^{\prime}},X_{K+1};Z)
I(X𝒮,XK+1;Y|X𝒮¯)I(X𝒮;Z)I(XK+1;Z),𝒮𝒦,𝒮ϕ,𝒮𝒮,𝒮ϕ,\displaystyle\leq I(X_{\cal S},X_{K+1};Y|X_{\overline{\cal S}})-I(X_{{\cal S}^{\prime}};Z)-I(X_{K+1};Z),~\forall~{\cal S}\subseteq{\cal K},~{\cal S}\neq\phi,~{\cal S}^{\prime}\subseteq{\cal S},~{\cal S}^{\prime}\neq\phi, (46)

where the second inequality is the upper bound in (44b). Since (A-A3) has been included in (45), (44b) is thus redundant.

Finally, we compare (39) with (40c), which results in

k𝒮Rks+k𝒮𝒮Rko+RK+1sI(X𝒮;Y|X𝒮¯,XK+1)+I(XK+1;Y|X𝒦)I(X𝒮,XK+1;Z),\displaystyle\sum_{k\in\cal S}R_{k}^{\text{s}}+\sum_{k\in{\cal S}\setminus{\cal S}^{\prime}}R_{k}^{\text{o}}+R_{K+1}^{\text{s}}\leq I(X_{\cal S};Y|X_{\overline{\cal S}},X_{K+1})+I(X_{K+1};Y|X_{{\cal K}})-I(X_{{\cal S}^{\prime}},X_{K+1};Z),
𝒮𝒦,𝒮ϕ,𝒮𝒮,𝒮ϕ,\displaystyle\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\forall~{\cal S}\subseteq{\cal K},~{\cal S}\neq\phi,~{\cal S}^{\prime}\subseteq{\cal S},~{\cal S}^{\prime}\neq\phi,\vskip 5.0pt (47a)
k𝒮Rks+k𝒮𝒮Rko+k𝒮1Rks+k𝒮1𝒮1Rko+RK+1sI(X𝒮;Y|X𝒮¯,XK+1)I(X𝒮,XK+1;Z)\displaystyle\sum_{k\in\cal S}R_{k}^{\text{s}}\!+\!\sum_{k\in{\cal S}\setminus{\cal S}^{\prime}}\!R_{k}^{\text{o}}\!+\!\sum_{k\in{\cal S}_{1}}R_{k}^{\text{s}}\!+\!\sum_{k\in{\cal S}_{1}\setminus{\cal S}_{1}^{\prime}}\!R_{k}^{\text{o}}\!+\!R_{K+1}^{\text{s}}\leq I(X_{\cal S};Y|X_{\overline{\cal S}},X_{K+1})-I(X_{{\cal S}^{\prime}},X_{K+1};Z)
+I(X𝒮1,XK+1;Y|X𝒮1¯)I(X𝒮1;Z),𝒮,𝒮1𝒦,𝒮,𝒮1ϕ,𝒮𝒮,𝒮ϕ,𝒮1𝒮1.\displaystyle+I(X_{{\cal S}_{1}},X_{K+1};Y|X_{\overline{{\cal S}_{1}}})-I(X_{{\cal S}_{1}^{\prime}};Z),\forall{\cal S},{\cal S}_{1}\subseteq{\cal K},{\cal S},{\cal S}_{1}\neq\phi,{\cal S}^{\prime}\subseteq{\cal S},{\cal S}^{\prime}\neq\phi,{\cal S}_{1}^{\prime}\subseteq{\cal S}_{1}. (47b)

Note that when comparing (39b) with (40c), which gives (47b), we replace notations 𝒮{\cal S} and 𝒮{\cal S}^{\prime} in (39b) with 𝒮1{\cal S}_{1} and 𝒮1{\cal S}_{1}^{\prime}, respectively, to avoid ambiguity. As stated after after (45), (47a) and (47b) should be redundant if Lemma 1 is true. We prove the redundancy in the following.

We first prove that (47a) is redundant. Since Xk,k𝒦{K+1}X_{k},\forall k\in{\cal K}\cup\{K+1\} are independent of each other and 𝒮¯𝒦{\overline{\cal S}}\subseteq{\cal K}, we have

I(X𝒮,XK+1;Y|X𝒮¯)I(X𝒮,XK+1;Z)=I(X𝒮;Y|X𝒮¯)+I(XK+1;Y|X𝒦)I(X𝒮,XK+1;Z)\displaystyle I(X_{\cal S},X_{K+1};Y|X_{\overline{\cal S}})\!-\!I(X_{{\cal S}^{\prime}},X_{K+1};Z)\!=\!I(X_{\cal S};Y|X_{\overline{\cal S}})\!+\!I(X_{K+1};Y|X_{{\cal K}})\!-\!I(X_{{\cal S}^{\prime}},X_{K+1};Z)
I(X𝒮;Y|X𝒮¯,XK+1)+I(XK+1;Y|X𝒦)I(X𝒮,XK+1;Z),𝒮𝒦,𝒮ϕ,𝒮𝒮,𝒮ϕ.\displaystyle\leq\!I(X_{\cal S};Y|X_{\overline{\cal S}},X_{K\!+\!1})\!+\!I(X_{K\!+\!1};Y|X_{{\cal K}})\!-\!I(X_{{\cal S}^{\prime}},X_{K\!+\!1};Z),\forall{\cal S}\!\subseteq\!{\cal K},{\cal S}\!\neq\!\phi,{{\cal S}^{\prime}}\!\subseteq\!{\cal S},{\cal S}^{\prime}\!\neq\!\phi. (48)

By replacing the corresponding terms in (A-B) with (A-B), the redundancy of (47a) can be similarly proven as that of (44b). Since the redundancy proof of (47b) is not as easy as that of (44b) or (47a), for the sake of clarity, we give the proof in the following separate subsection.

A-C Redundancy Proof of (47b)

To prove that (47b) is redundant, we first rewrite its left-hand side term as follows

k𝒮Rks+k𝒮𝒮RkoTerma+k𝒮1Rks+k𝒮1𝒮1Rko+RK+1sTermb,\underbrace{\sum_{k\in\cal S}R_{k}^{\text{s}}+\sum_{k\in{\cal S}\setminus{\cal S}^{\prime}}R_{k}^{\text{o}}}_{{\text{Term}}~a}+\underbrace{\sum_{k\in{\cal S}_{1}}R_{k}^{\text{s}}+\sum_{k\in{\cal S}_{1}\setminus{\cal S}_{1}^{\prime}}R_{k}^{\text{o}}+R_{K+1}^{\text{s}}}_{{\text{Term}}~b}, (49)

which is divided into two parts, i.e., Term aa and Term bb. In the following, we exchange the secret message rates RksR_{k}^{\text{s}} and open message rates RkoR_{k}^{\text{o}} in Term aa and Term bb, and obtain Term aa^{\prime} as well as Term bb^{\prime}. When performing this operation, the following criteria have to be met.

  • Criterion 11. Term bb^{\prime} contains as many secret message rates RksR_{k}^{\text{s}} as possible;

  • Criterion 22. Term aa^{\prime} contains as many open message rates RkoR_{k}^{\text{o}} as possible;

  • Criterion 33. Criterion 11 has a higher priority than Criterion 22;

  • Criterion 44. For any kk, there could be only one RksR_{k}^{\text{s}} or RkoR_{k}^{\text{o}} in Term aa^{\prime} or Term bb^{\prime};

  • Criterion 55. For any kk, if RksR_{k}^{\text{s}} is not in Term aa^{\prime} or Term bb^{\prime}, RkoR_{k}^{\text{o}} cannot be in this term.

Refer to caption
Figure 2: Sets 𝒮{\cal S}, 𝒮{\cal S}^{\prime}, 𝒮1{\cal S}_{1}, 𝒮1{\cal S}_{1}^{\prime}, and their divisions.
Refer to caption
Figure 3: Sets 𝒰{\cal U}, 𝒰{\cal U}^{\prime}, 𝒰1{\cal U}_{1}, 𝒰1{\cal U}_{1}^{\prime} obtained from 𝒮{\cal S}, 𝒮{\cal S}^{\prime}, 𝒮1{\cal S}_{1}, 𝒮1{\cal S}_{1}^{\prime} based on Criteria 151\sim 5.

For ease of understanding, we give an example system with 𝒦={1,2,3,4}{\cal K}=\{1,2,3,4\}, 𝒮={1,3,4}{\cal S}=\{1,3,4\}, 𝒮={4}{\cal S}^{\prime}=\{4\}, 𝒮1={1,2,4}{\cal S}_{1}=\{1,2,4\}, and 𝒮1=ϕ{\cal S}_{1}^{\prime}=\phi. In this case, (49) takes on form

R1s+R1o+R3s+R3o+R4sTerma+R1s+R1o+R2s+R2o+R4s+R4o+R5sTermb.\underbrace{R_{1}^{\text{s}}+R_{1}^{\text{o}}+R_{3}^{\text{s}}+R_{3}^{\text{o}}+R_{4}^{\text{s}}}_{{\text{Term}}~a}+\underbrace{R_{1}^{\text{s}}+R_{1}^{\text{o}}+R_{2}^{\text{s}}+R_{2}^{\text{o}}+R_{4}^{\text{s}}+R_{4}^{\text{o}}+R_{5}^{\text{s}}}_{{\text{Term}}~b}. (50)

Since R3sR_{3}^{\text{s}} is not included in Term bb, according to Criterion 11 and Criterion 33, R3sR_{3}^{\text{s}} should be moved into Term bb. Note that R3oR_{3}^{\text{o}} has also to be moved into Term bb since otherwise Criterion 55 is violated. Since both Term aa and Term bb contain R4sR_{4}^{\text{s}}, while only Term bb contains R4oR_{4}^{\text{o}}, according to Criterion 22, R4oR_{4}^{\text{o}} should be moved into Term aa. Note that we may not move the R1oR_{1}^{\text{o}} in Term bb into Term aa since otherwise Criterion 44 is violated, and may not move R2oR_{2}^{\text{o}} into Term aa since otherwise Criterion 55 is violated. With these operations, (50) becomes

R1s+R1o+R4s+R4oTerma+R1s+R1o+R2s+R2o+R3s+R3o+R4s+R5sTermb.\underbrace{R_{1}^{\text{s}}+R_{1}^{\text{o}}+R_{4}^{\text{s}}+R_{4}^{\text{o}}}_{{\text{Term}}~a^{\prime}}+\underbrace{R_{1}^{\text{s}}+R_{1}^{\text{o}}+R_{2}^{\text{s}}+R_{2}^{\text{o}}+R_{3}^{\text{s}}+R_{3}^{\text{o}}+R_{4}^{\text{s}}+R_{5}^{\text{s}}}_{{\text{Term}}~b^{\prime}}. (51)

In the following, we describe these operations mathematically and prove the redundancy of (47b). For convenience, we give an example of sets 𝒮{\cal S}, 𝒮{\cal S}^{\prime}, 𝒮1{\cal S}_{1}, 𝒮1{\cal S}_{1}^{\prime}, and their divisions in Fig. 3. Let Δ¯{\overline{\Delta}} denote the set of user indexes which are in both 𝒮\cal S and 𝒮1{\cal S}_{1}, and Δ\Delta denote the set of indexes which are in 𝒮\cal S but not in 𝒮1{\cal S}_{1}, i.e.,

Δ¯\displaystyle{\overline{\Delta}} =𝒮𝒮1,\displaystyle={\cal S}\cap{\cal S}_{1},
Δ\displaystyle\Delta =𝒮𝒮1.\displaystyle={\cal S}-{\cal S}_{1}. (52)

Let Δ1\Delta_{1} denote the intersection of 𝒮{\cal S}^{\prime} and Δ\Delta, and Δ2\Delta_{2} denote the set of user indexes which are in 𝒮Δ¯{\cal S}^{\prime}\cap{\overline{\Delta}} but not in 𝒮1Δ¯{\cal S}_{1}^{\prime}\cap{\overline{\Delta}}, i.e.,

Δ1\displaystyle\Delta_{1} =𝒮Δ,\displaystyle={\cal S}^{\prime}\cap\Delta,
Δ2\displaystyle\Delta_{2} =𝒮Δ¯𝒮1Δ¯.\displaystyle={\cal S}^{\prime}\cap{\overline{\Delta}}-{\cal S}_{1}^{\prime}\cap{\overline{\Delta}}. (53)

With the operations described above, let 𝒰{\cal U}, 𝒰{\cal U}^{\prime}, 𝒰1{\cal U}_{1}, and 𝒰1{\cal U}_{1}^{\prime}, which respectively correspond to 𝒮{\cal S}, 𝒮{\cal S}^{\prime}, 𝒮1{\cal S}_{1}, and 𝒮1{\cal S}_{1}^{\prime} in (49), denote the user indexes in Term aa^{\prime} and Term bb^{\prime}. Then, according to Criterion 11,

𝒰\displaystyle{\cal U} =𝒮Δ,\displaystyle={\cal S}\setminus\Delta,
𝒰1\displaystyle{\cal U}_{1} =𝒮1Δ.\displaystyle={\cal S}_{1}\cup\Delta. (54)

The complementary sets of 𝒰{\cal U} and 𝒰1{\cal U}_{1} are

𝒰¯\displaystyle{\overline{\cal U}} =𝒦(𝒮Δ)=(𝒦𝒮)Δ=𝒮¯Δ,\displaystyle={\cal K}\setminus({\cal S}\setminus\Delta)=({\cal K}\setminus{\cal S})\cup\Delta={\overline{\cal S}}\cup\Delta,
𝒰1¯\displaystyle{\overline{{\cal U}_{1}}} =𝒦(𝒮1Δ)=(𝒦𝒮1)Δ=𝒮1¯Δ.\displaystyle={\cal K}\setminus({\cal S}_{1}\cup\Delta)=({\cal K}\setminus{\cal S}_{1})\setminus\Delta={\overline{{\cal S}_{1}}}\setminus\Delta. (55)

Moreover, according to Criterion 22, Criterion 44, and Criterion 55, we have

𝒰\displaystyle{\cal U}^{\prime} =𝒮(Δ1Δ2),\displaystyle={\cal S}^{\prime}\setminus(\Delta_{1}\cup\Delta_{2}),
𝒰1\displaystyle{\cal U}_{1}^{\prime} =𝒮1(Δ1Δ2).\displaystyle={\cal S}_{1}^{\prime}\cup(\Delta_{1}\cup\Delta_{2}). (56)

Fig. 3 depicts the sets 𝒰{\cal U}, 𝒰{\cal U}^{\prime}, 𝒰1{\cal U}_{1}, 𝒰1{\cal U}_{1}^{\prime} obtained from 𝒮{\cal S}, 𝒮{\cal S}^{\prime}, 𝒮1{\cal S}_{1}, 𝒮1{\cal S}_{1}^{\prime} in Fig. 3. We thus have

k𝒮Rks+k𝒮𝒮RkoTerma+k𝒮1Rks+k𝒮1𝒮1Rko+RK+1sTermb\displaystyle\underbrace{\sum_{k\in\cal S}R_{k}^{\text{s}}+\sum_{k\in{\cal S}\setminus{\cal S}^{\prime}}R_{k}^{\text{o}}}_{{\text{Term}}~a}+\underbrace{\sum_{k\in{\cal S}_{1}}R_{k}^{\text{s}}+\sum_{k\in{\cal S}_{1}\setminus{\cal S}_{1}^{\prime}}R_{k}^{\text{o}}+R_{K+1}^{\text{s}}}_{{\text{Term}}~b}
=\displaystyle= k𝒰Rks+k𝒰𝒰RkoTerma+k𝒰1Rks+k𝒰1𝒰1Rko+RK+1sTermb\displaystyle\underbrace{\sum_{k\in\cal U}R_{k}^{\text{s}}+\sum_{k\in{\cal U}\setminus{\cal U}^{\prime}}R_{k}^{\text{o}}}_{{\text{Term}}~a^{\prime}}+\underbrace{\sum_{k\in{\cal U}_{1}}R_{k}^{\text{s}}+\sum_{k\in{\cal U}_{1}\setminus{\cal U}_{1}^{\prime}}R_{k}^{\text{o}}+R_{K+1}^{\text{s}}}_{{\text{Term}}~b^{\prime}}
\displaystyle\leq I(X𝒰;Y|X𝒰¯,XK+1)I(X𝒰;Z)+I(X𝒰1,XK+1;Y|X𝒰1¯)I(X𝒰1,XK+1;Z)\displaystyle I(X_{\cal U};Y|X_{\overline{\cal U}},X_{K+1})-I(X_{{\cal U}^{\prime}};Z)+I(X_{{\cal U}_{1}},X_{K+1};Y|X_{\overline{{\cal U}_{1}}})-I(X_{{\cal U}_{1}^{\prime}},X_{K+1};Z)
=\displaystyle= I(X𝒮XΔ;Y|X𝒮¯,XΔ,XK+1)I(X𝒮XΔ1Δ2;Z)\displaystyle I(X_{\cal S}\setminus X_{\Delta};Y|X_{\overline{\cal S}},X_{\Delta},X_{K+1})-I(X_{{\cal S}^{\prime}}\setminus X_{\Delta_{1}\cup\Delta_{2}};Z)
+\displaystyle+ I(X𝒮1,XΔ,XK+1;Y|X𝒮1¯XΔ)I(X𝒮1,XΔ1,XΔ2,XK+1;Z),\displaystyle I(X_{{\cal S}_{1}},X_{\Delta},X_{K+1};Y|X_{\overline{{\cal S}_{1}}}\setminus X_{\Delta})-I(X_{{\cal S}_{1}^{\prime}},X_{\Delta_{1}},X_{\Delta_{2}},X_{K+1};Z),
𝒮,𝒮1𝒦,𝒮,𝒮1ϕ,𝒮𝒮,𝒮ϕ,𝒮1𝒮1,\displaystyle\forall~{\cal S},~{\cal S}_{1}\subseteq{\cal K},~{\cal S},~{\cal S}_{1}\neq\phi,~{\cal S}^{\prime}\subseteq{\cal S},~{\cal S}^{\prime}\neq\phi,~{\cal S}_{1}^{\prime}\subseteq{\cal S}_{1}, (57)

where the inequality results from (32) and (45). On the other hand, based on the definitions of Δ\Delta, Δ1\Delta_{1}, and Δ2\Delta_{2}, and the chain rule of mutual information, (47b) can be rewritten as follows

k𝒮Rks+k𝒮𝒮Rko+k𝒮1Rks+k𝒮1𝒮1Rko+RK+1s\displaystyle\sum_{k\in\cal S}R_{k}^{\text{s}}+\sum_{k\in{\cal S}\setminus{\cal S}^{\prime}}R_{k}^{\text{o}}+\sum_{k\in{\cal S}_{1}}R_{k}^{\text{s}}+\sum_{k\in{\cal S}_{1}\setminus{\cal S}_{1}^{\prime}}R_{k}^{\text{o}}+R_{K+1}^{\text{s}}
\displaystyle\leq I(X𝒮;Y|X𝒮¯,XK+1)I(X𝒮,XK+1;Z)+I(X𝒮1,XK+1;Y|X𝒮1¯)I(X𝒮1;Z)\displaystyle I(X_{\cal S};Y|X_{\overline{\cal S}},X_{K+1})-I(X_{{\cal S}^{\prime}},X_{K+1};Z)+I(X_{{\cal S}_{1}},X_{K+1};Y|X_{\overline{{\cal S}_{1}}})-I(X_{{\cal S}_{1}^{\prime}};Z)
=\displaystyle= I(X𝒮XΔ,XΔ;Y|X𝒮¯,XK+1)I(X𝒮XΔ1Δ2,XΔ1Δ2,XK+1;Z)\displaystyle I(X_{\cal S}\setminus X_{\Delta},X_{\Delta};Y|X_{\overline{\cal S}},X_{K+1})-I(X_{{\cal S}^{\prime}}\setminus X_{\Delta_{1}\cup\Delta_{2}},X_{\Delta_{1}\cup\Delta_{2}},X_{K+1};Z)
+\displaystyle+ I(X𝒮1,XK+1;Y|X𝒮1¯)I(X𝒮1;Z)\displaystyle I(X_{{\cal S}_{1}},X_{K+1};Y|X_{\overline{{\cal S}_{1}}})-I(X_{{\cal S}_{1}^{\prime}};Z)
=\displaystyle= I(X𝒮XΔ;Y|X𝒮¯,XΔ,XK+1)+I(XΔ;Y|X𝒮¯,XK+1)I(X𝒮XΔ1Δ2;Z)\displaystyle I(X_{\cal S}\setminus X_{\Delta};Y|X_{\overline{\cal S}},X_{\Delta},X_{K+1})+I(X_{\Delta};Y|X_{\overline{\cal S}},X_{K+1})-I(X_{{\cal S}^{\prime}}\setminus X_{\Delta_{1}\cup\Delta_{2}};Z)
\displaystyle- I(XΔ1,XΔ2,XK+1;Z|X𝒮XΔ1Δ2)+I(X𝒮1,XK+1;Y|X𝒮1¯)I(X𝒮1;Z),\displaystyle I(X_{\Delta_{1}},X_{\Delta_{2}},X_{K+1};Z|X_{{\cal S}^{\prime}}\setminus X_{\Delta_{1}\cup\Delta_{2}})+I(X_{{\cal S}_{1}},X_{K+1};Y|X_{\overline{{\cal S}_{1}}})-I(X_{{\cal S}_{1}^{\prime}};Z),
𝒮,𝒮1𝒦,𝒮,𝒮1ϕ,𝒮𝒮,𝒮ϕ,𝒮1𝒮1.\displaystyle\forall~{\cal S},~{\cal S}_{1}\subseteq{\cal K},~{\cal S},~{\cal S}_{1}\neq\phi,~{\cal S}^{\prime}\subseteq{\cal S},~{\cal S}^{\prime}\neq\phi,~{\cal S}_{1}^{\prime}\subseteq{\cal S}_{1}. (58)

In the following, we show that the upper bound in (A-C) is no larger and is thus tighter than that in (A-C). Then, (A-C) is redundant. Neglecting the common terms I(X𝒮XΔ;Y|X𝒮¯,XΔ,XK+1)I(X_{\cal S}\setminus X_{\Delta};Y|X_{\overline{\cal S}},X_{\Delta},X_{K+1}) and I(X𝒮XΔ1Δ2;Z)I(X_{{\cal S}^{\prime}}\setminus X_{\Delta_{1}\cup\Delta_{2}};Z) in (A-C) and (A-C), we prove

I(X𝒮1,XΔ,XK+1;Y|X𝒮1¯XΔ)I(XΔ;Y|X𝒮¯,XK+1)+I(X𝒮1,XK+1;Y|X𝒮1¯),\displaystyle I(X_{{\cal S}_{1}},X_{\Delta},X_{K+1};Y|X_{\overline{{\cal S}_{1}}}\setminus X_{\Delta})\leq I(X_{\Delta};Y|X_{\overline{\cal S}},X_{K+1})+I(X_{{\cal S}_{1}},X_{K+1};Y|X_{\overline{{\cal S}_{1}}}), (59)

and

I(X𝒮1,XΔ1,XΔ2,XK+1;Z)I(XΔ1,XΔ2,XK+1;Z|X𝒮XΔ1Δ2)+I(X𝒮1;Z).\displaystyle I(X_{{\cal S}_{1}^{\prime}},X_{\Delta_{1}},X_{\Delta_{2}},X_{K+1};Z)\geq I(X_{\Delta_{1}},X_{\Delta_{2}},X_{K+1};Z|X_{{\cal S}^{\prime}}\setminus X_{\Delta_{1}\cup\Delta_{2}})+I(X_{{\cal S}_{1}^{\prime}};Z). (60)

From the definitions of Δ¯\overline{\Delta} and Δ\Delta in (A-C), it is known that ΔΔ¯=ϕ\Delta\cap{\overline{\Delta}}=\phi and 𝒮=ΔΔ¯{\cal S}=\Delta\cup{\overline{\Delta}}. Hence,

𝒮¯=𝒦𝒮=(𝒦Δ¯)Δ.\displaystyle{\overline{\cal S}}={\cal K}\setminus{\cal S}=({\cal K}\setminus{\overline{\Delta}})\setminus\Delta. (61)

Moreover, since Δ¯𝒮1{\overline{\Delta}}\subseteq{\cal S}_{1},

𝒮1¯=𝒦𝒮1𝒦Δ¯.\displaystyle{\overline{{\cal S}_{1}}}={\cal K}\setminus{\cal S}_{1}\subseteq{\cal K}\setminus{\overline{\Delta}}. (62)

Based on (61) and (62), we have

𝒮1¯Δ(𝒦Δ¯)Δ=𝒮¯.\displaystyle{\overline{{\cal S}_{1}}}\setminus\Delta\subseteq({\cal K}\setminus{\overline{\Delta}})\setminus\Delta={\overline{\cal S}}. (63)

Using the chain rule of mutual information, (63), and the fact that Xk,k𝒦{K+1}X_{k},\forall k\in{\cal K}\cup\{K+1\} are independent of each other, we have

I(X𝒮1,XΔ,XK+1;Y|X𝒮1¯XΔ)\displaystyle I(X_{{\cal S}_{1}},X_{\Delta},X_{K+1};Y|X_{\overline{{\cal S}_{1}}}\setminus X_{\Delta}) =I(XΔ;Y|X𝒮1¯XΔ)+I(X𝒮1,XK+1;Y|X𝒮1¯)\displaystyle=I(X_{\Delta};Y|X_{\overline{{\cal S}_{1}}}\setminus X_{\Delta})+I(X_{{\cal S}_{1}},X_{K+1};Y|X_{\overline{{\cal S}_{1}}})
I(XΔ;Y|X𝒮¯,XK+1)+I(X𝒮1,XK+1;Y|X𝒮1¯).\displaystyle\leq I(X_{\Delta};Y|X_{\overline{\cal S}},X_{K+1})+I(X_{{\cal S}_{1}},X_{K+1};Y|X_{\overline{{\cal S}_{1}}}). (64)

The inequation (59) is thus true. On the other hand, since 𝒮=ΔΔ¯{\cal S}=\Delta\cup{\overline{\Delta}}, ΔΔ¯=ϕ\Delta\cap{\overline{\Delta}}=\phi, and 𝒮𝒮{\cal S}^{\prime}\subseteq{\cal S}, as shown in Fig. 3, 𝒮{\cal S}^{\prime} can be divided into two disjoint parts as follows

𝒮=(𝒮Δ)(𝒮Δ¯)=Δ1(𝒮Δ¯),\displaystyle{\cal S}^{\prime}=({\cal S}^{\prime}\cap\Delta)\cup({\cal S}^{\prime}\cap{\overline{\Delta}})=\Delta_{1}\cup({\cal S}^{\prime}\cap{\overline{\Delta}}), (65)

where we used the definition of Δ1\Delta_{1} in (A-C). Hence,

𝒮Δ¯=𝒮Δ1.{\cal S}^{\prime}\cap{\overline{\Delta}}={\cal S}^{\prime}\setminus\Delta_{1}. (66)

Let Δ3\Delta_{3} denote the set of user indexes which are in 𝒮1{\cal S}_{1} but not in 𝒮\cal S, and Δ4\Delta_{4} denote the intersection of 𝒮1{\cal S}_{1}^{\prime} and Δ3\Delta_{3}, i.e.,

Δ3\displaystyle\Delta_{3} =𝒮1𝒮=𝒮1Δ¯,\displaystyle={\cal S}_{1}-{\cal S}={\cal S}_{1}\setminus{\overline{\Delta}},
Δ4\displaystyle\Delta_{4} =𝒮1Δ3.\displaystyle={\cal S}_{1}^{\prime}\cap\Delta_{3}. (67)

It can then be similarly proven as (66) that

𝒮1Δ¯=𝒮1Δ4,{\cal S}_{1}^{\prime}\cap{\overline{\Delta}}={\cal S}_{1}^{\prime}\setminus\Delta_{4}, (68)

which can also be found from Fig. 3. From (66), (68), and the definition of Δ2\Delta_{2} in (A-C), 𝒮{\cal S}^{\prime} in (65) can be further divided into three disjoint parts as follows

𝒮\displaystyle{\cal S}^{\prime} =Δ1(𝒮Δ¯)=Δ1Δ2[(𝒮Δ¯)(𝒮1Δ¯)]\displaystyle=\Delta_{1}\cup({\cal S}^{\prime}\cap{\overline{\Delta}})~=\Delta_{1}\cup\Delta_{2}\cup\left[({\cal S}^{\prime}\cap{\overline{\Delta}})\cap({\cal S}_{1}^{\prime}\cap{\overline{\Delta}})\right]
=Δ1Δ2[(𝒮Δ1)(𝒮1Δ4)]=Δ1Δ2(𝒮𝒮1),\displaystyle=\Delta_{1}\cup\Delta_{2}\cup\left[({\cal S}^{\prime}\setminus\Delta_{1})\cap({\cal S}_{1}^{\prime}\setminus\Delta_{4})\right]~=\Delta_{1}\cup\Delta_{2}\cup({\cal S}^{\prime}\cap{\cal S}_{1}^{\prime}), (69)

where the last step holds since Δ1Δ4=ϕ\Delta_{1}\cap\Delta_{4}=\phi. Accordingly, we have

𝒮(Δ1Δ2)=𝒮𝒮1𝒮1.\displaystyle{\cal S}^{\prime}\setminus(\Delta_{1}\cup\Delta_{2})={\cal S}^{\prime}\cap{\cal S}_{1}^{\prime}\subseteq{\cal S}_{1}^{\prime}. (70)

Then, using the chain rule of mutual information, (70), and the fact that Xk,k𝒦{K+1}X_{k},\forall k\in{\cal K}\cup\{K+1\} are independent of each other, we have

I(X𝒮1,XΔ1,XΔ2,XK+1;Z)\displaystyle I(X_{{\cal S}_{1}^{\prime}},X_{\Delta_{1}},X_{\Delta_{2}},X_{K+1};Z) =I(XΔ1,XΔ2,XK+1;Z|X𝒮1)+I(X𝒮1;Z)\displaystyle=I(X_{\Delta_{1}},X_{\Delta_{2}},X_{K+1};Z|X_{{\cal S}_{1}^{\prime}})+I(X_{{\cal S}_{1}^{\prime}};Z)
I(XΔ1,XΔ2,XK+1;Z|X𝒮XΔ1Δ2)+I(X𝒮1;Z),\displaystyle\geq I(X_{\Delta_{1}},X_{\Delta_{2}},X_{K+1};Z|X_{{\cal S}^{\prime}}\setminus X_{\Delta_{1}\cup\Delta_{2}})+I(X_{{\cal S}_{1}^{\prime}};Z), (71)

i.e., (60) is true. Combining (A-C), (A-C), (A-C), and (A-C), it is known that (47b) is redundant.

So far we have shown that (27) (or (29)) can be obtained by eliminating Rkg,k𝒦{K+1}R_{k}^{\text{g}},\forall k\in{\cal K}\cup\{K+1\} in (28) (or (30)), and all the other inequalities resulted from the elimination procedure, i.e., (44b), (47a), and (47b), are redundant. As a result, (27) is the projection of (28) onto the hyperplane {Rkg=0,k𝒦{K+1}}\{R_{k}^{\text{g}}=0,\forall k\in{\cal K}\cup\{K+1\}\}. Lemma 1 is thus proven.

Appendix B Proof of Theorem 1

Since 𝒦¯{\overline{{\cal K}^{\prime}}} has 2|𝒦¯|2^{\left|{\overline{{\cal K}^{\prime}}}\right|} subsets, we may divide the inequality system (6) into 2|𝒦¯|2^{\left|{\overline{{\cal K}^{\prime}}}\right|} subsystems with each one corresponding to a subset 𝒯𝒦¯{\cal T}\subseteq{\overline{{\cal K}^{\prime}}}. For any 𝒯𝒦¯{\cal T}\subseteq{\overline{{\cal K}^{\prime}}}, the inequality subsystem is

{Rkg0,k𝒦,k𝒮(Rks+Rko+Rkg)+k𝒯RkoI(X𝒮,X𝒯;Y|X𝒮¯,X𝒯¯),𝒮𝒦,k𝒮(Rko+Rkg)I(X𝒮;Z|X𝒦¯),𝒮𝒦.\left\{\begin{array}[]{ll}R_{k}^{\text{g}}\geq 0,~\forall~k\in{\cal K}^{\prime},\\ \sum\limits_{k\in{\cal S}}(R_{k}^{\text{s}}+R_{k}^{\text{o}}+R_{k}^{\text{g}})+\sum\limits_{k\in{\cal T}}R_{k}^{\text{o}}\leq I(X_{\cal S},X_{\cal T};Y|X_{\overline{\cal S}},X_{\overline{\cal T}}),~\forall~{\cal S}\subseteq{\cal K}^{\prime},\\ \sum\limits_{k\in{\cal S}}(R_{k}^{\text{o}}+R_{k}^{\text{g}})\geq I(X_{\cal S};Z|X_{\overline{{\cal K}^{\prime}}}),~\forall~{\cal S}\subseteq{\cal K}^{\prime}.\end{array}\right. (72)

It is obvious that eliminating Rkg,k𝒦R_{k}^{\text{g}},\forall k\in{\cal K}^{\prime} in (6) is equivalent to eliminating Rkg,k𝒦R_{k}^{\text{g}},\forall k\in{\cal K}^{\prime} in (72) for all 𝒯𝒦¯{\cal T}\subseteq{\overline{{\cal K}^{\prime}}}. Due to the assumption I(X𝒮;Y|X𝒮¯,X𝒦¯)I(X𝒮;Z|X𝒦¯),𝒮𝒦I(X_{\cal S};Y|X_{\overline{\cal S}},X_{\overline{{\cal K}^{\prime}}})\geq I(X_{\cal S};Z|X_{\overline{{\cal K}^{\prime}}}),\forall{\cal S}\subseteq{\cal K}^{\prime} made in Theorem 1, for a given 𝒯𝒦¯{\cal T}\subseteq{\overline{{\cal K}^{\prime}}}, we have

I(X𝒮,X𝒯;Y|X𝒮¯,X𝒯¯)I(X𝒮;Y|X𝒮¯,X𝒦¯)I(X𝒮;Z|X𝒦¯),𝒮𝒦.\displaystyle I(X_{\cal S},X_{\cal T};Y|X_{\overline{\cal S}},X_{\overline{\cal T}})\geq I(X_{\cal S};Y|X_{\overline{\cal S}},X_{\overline{{\cal K}^{\prime}}})~\geq I(X_{\cal S};Z|X_{\overline{{\cal K}^{\prime}}}),~\forall~{\cal S}\subseteq{\cal K}^{\prime}. (73)

Then, by replacing I(X𝒮;Y|X𝒮¯)I(X_{\cal S};Y|X_{\overline{\cal S}}) in (8) with I(X𝒮,X𝒯;Y|X𝒮¯,X𝒯¯)k𝒯RkoI(X_{\cal S},X_{\cal T};Y|X_{\overline{\cal S}},X_{\overline{\cal T}})-\sum_{k\in{\cal T}}R_{k}^{\text{o}} and I(X𝒮;Z)I(X_{\cal S};Z) with I(X𝒮;Z|X𝒦¯)I(X_{\cal S};Z|X_{\overline{{\cal K}^{\prime}}}), we can eliminate Rkg,k𝒦R_{k}^{\text{g}},\forall k\in{\cal K}^{\prime} in (72) based on Lemma 1 and get

k𝒮Rks+k𝒮𝒮RkoI(X𝒮,X𝒯;Y|X𝒮¯,X𝒯¯)k𝒯RkoI(X𝒮;Z|X𝒦¯),𝒮𝒦,𝒮𝒮.\displaystyle\sum_{k\in\cal S}R_{k}^{\text{s}}\!+\!\sum_{k\in{\cal S}\setminus{\cal S}^{\prime}}R_{k}^{\text{o}}\!\leq\!I(X_{\cal S},X_{\cal T};Y|X_{\overline{\cal S}},X_{\overline{\cal T}})\!-\!\sum_{k\in{\cal T}}R_{k}^{\text{o}}\!-\!I(X_{{\cal S}^{\prime}};Z|X_{\overline{{\cal K}^{\prime}}}),\forall{\cal S}\subseteq{\cal K}^{\prime},{\cal S}^{\prime}\subseteq{\cal S}. (74)

Combining the inequalities (74) for all 𝒯𝒦¯{\cal T}\subseteq{\overline{{\cal K}^{\prime}}}, (5) can be obtained, and Theorem 1 is thus proven.

Appendix C Proof of Theorem 2

We start the proof from a special case with 𝒦=ϕ{\cal K}^{\prime}=\phi, i.e., 𝒦¯=𝒦{\overline{{\cal K}^{\prime}}}={\cal K}. In this case, (14) becomes

{Rks=0,k𝒦,k𝒯RkoI(X𝒯;Y|X𝒯¯),𝒯𝒦,\left\{\begin{array}[]{ll}R_{k}^{\text{s}}=0,~\forall~k\in{\cal K},\\ \sum_{k\in{\cal T}}R_{k}^{\text{o}}\leq I(X_{\cal T};Y|X_{\overline{\cal T}}),~\forall~{\cal T}\subseteq{\cal K},\end{array}\right. (75)

indicating that the region (X𝒦,ϕ){\mathscr{R}}(X_{\cal K},\phi) is included in the capacity region of a conventional MAC channel with no wiretapping, the achievability proof of which is well known.

Next, we show that for any 𝒦ϕ{\cal K}^{\prime}\neq\phi, i.e., 𝒦¯𝒦{\overline{{\cal K}^{\prime}}}\subsetneqq{\cal K}, there exists a (2nR1s,2nR1o,,2nRKs,2nRKo,n)\left(2^{nR_{1}^{\text{s}}},2^{nR_{1}^{\text{o}}},\cdots,2^{nR_{K}^{\text{s}}},2^{nR_{K}^{\text{o}}},n\right) code such that any rate tuple inside region (X𝒦,𝒦){\mathscr{R}}(X_{\cal K},{\cal K}^{\prime}) is achievable. This, together with the standard time-sharing over coding strategies, suffices to prove the theorem. Without loss of generality (w.l.o.g.), we always assume

I(X𝒮;Y|X𝒮¯)>0,𝒮𝒦,𝒮ϕ,I(X_{\cal S};Y|X_{\overline{\cal S}})>0,~\forall~{\cal S}\subseteq{\cal K},~{\cal S}\neq\phi, (76)

since otherwise users in 𝒮{\cal S} cannot communicate with Bob. Moreover, for convenience, we assume

I(X𝒮,X𝒯;Y|X𝒮¯,X𝒯¯)I(X𝒮;Z|X𝒦¯)>0,𝒮𝒦,𝒮𝒮,𝒯𝒦¯,𝒮ϕ.\displaystyle I(X_{\cal S},X_{\cal T};Y|X_{\overline{\cal S}},X_{\overline{\cal T}})-I(X_{{\cal S}^{\prime}};Z|X_{\overline{{\cal K}^{\prime}}})>0,~\forall~{\cal S}\subseteq{\cal K}^{\prime},~{\cal S}^{\prime}\subseteq{\cal S},~{\cal T}\subseteq{\overline{{\cal K}^{\prime}}},~{\cal S}\neq\phi. (77)

If (77) is not satisfied, we show later that Theorem 2 could be proven by simply modifying the following proof steps. Since Xk,k𝒦X_{k},\forall k\in{\cal K} are independent of each other, using the chain rule and non-negativity of mutual information, it is known that

I(X𝒮;Y|X𝒮¯,X𝒦¯)I(X𝒮,X𝒯;Y|X𝒮¯,X𝒯¯),\displaystyle I(X_{\cal S};Y|X_{\overline{\cal S}},X_{\overline{{\cal K}^{\prime}}})\leq I(X_{\cal S},X_{\cal T};Y|X_{\overline{\cal S}},X_{\overline{\cal T}}),
I(X𝒮;Z|X𝒦¯)I(X𝒮;Z|X𝒦¯),𝒮𝒦,𝒮𝒮,𝒯𝒦¯.\displaystyle I(X_{\cal S};Z|X_{\overline{{\cal K}^{\prime}}})\geq I(X_{{\cal S}^{\prime}};Z|X_{\overline{{\cal K}^{\prime}}}),~\forall~{\cal S}\subseteq{\cal K}^{\prime},~{\cal S}^{\prime}\subseteq{\cal S},~{\cal T}\subseteq{\overline{{\cal K}^{\prime}}}. (78)

Hence, (77) can be simplified as

I(X𝒮;Y|X𝒮¯,X𝒦¯)I(X𝒮;Z|X𝒦¯)>0,𝒮𝒦,𝒮ϕ.I(X_{\cal S};Y|X_{\overline{\cal S}},X_{\overline{{\cal K}^{\prime}}})-I(X_{\cal S};Z|X_{\overline{{\cal K}^{\prime}}})>0,~\forall~{\cal S}\subseteq{\cal K}^{\prime},~{\cal S}\neq\phi. (79)

With (79), Theorem 1 can be applied for the achievability proof in the following.

C-A Proof of Theorem 2 When Assumption (77) is True

If assumption (77) or (79) is true, the rate tuples inside region (X𝒦,𝒦){\mathscr{R}}(X_{\cal K},{\cal K}^{\prime}) satisfy

{Rks=0,k𝒦¯,k𝒮Rks+k𝒮𝒮Rko+k𝒯Rko<I(X𝒮,X𝒯;Y|X𝒮¯,X𝒯¯)I(X𝒮;Z|X𝒦¯)ϵ,𝒮𝒦,𝒮𝒮,𝒯𝒦¯,𝒮𝒯ϕ,\left\{\begin{array}[]{ll}R_{k}^{\text{s}}=0,~\forall~k\in{\overline{{\cal K}^{\prime}}},\\ \sum\limits_{k\in\cal S}R_{k}^{\text{s}}+\sum\limits_{k\in{\cal S}\setminus{\cal S}^{\prime}}R_{k}^{\text{o}}+\sum\limits_{k\in{\cal T}}R_{k}^{\text{o}}&<I(X_{\cal S},X_{\cal T};Y|X_{\overline{\cal S}},X_{\overline{\cal T}})-I(X_{{\cal S}^{\prime}};Z|X_{\overline{{\cal K}^{\prime}}})-\epsilon,\\ &\forall~{\cal S}\subseteq{\cal K}^{\prime},~{\cal S}^{\prime}\subseteq{\cal S},~{\cal T}\subseteq{\overline{{\cal K}^{\prime}}},~{\cal S}\cup{\cal T}\neq\phi,\end{array}\right. (80)

where ϵ\epsilon is an arbitrarily small positive number. Using Theorem 1, it is known that for any rate tuple (R1s,R1o,,RKs,RKo)\left(R_{1}^{\text{s}},R_{1}^{\text{o}},\cdots,R_{K}^{\text{s}},R_{K}^{\text{o}}\right) satisfying (80), there exist Rkg,k𝒦R_{k}^{\text{g}},\forall k\in{\cal K}^{\prime} such that

{Rkg0,k𝒦,k𝒮(Rks+Rko+Rkg)+k𝒯Rko<I(X𝒮,X𝒯;Y|X𝒮¯,X𝒯¯)ϵ,𝒮𝒦,𝒯𝒦¯,𝒮𝒯ϕ,k𝒮(Rko+Rkg)>I(X𝒮;Z|X𝒦¯),𝒮𝒦,𝒮ϕ,\left\{\!\!\begin{array}[]{ll}R_{k}^{\text{g}}\geq 0,~\forall~k\in{\cal K}^{\prime},\\ \sum\limits_{k\in{\cal S}}(R_{k}^{\text{s}}\!+\!R_{k}^{\text{o}}\!+\!R_{k}^{\text{g}})\!+\!\sum\limits_{k\in{\cal T}}R_{k}^{\text{o}}\!<\!I(X_{\cal S},X_{\cal T};Y|X_{\overline{\cal S}},X_{\overline{\cal T}})\!-\!\epsilon,\forall{\cal S}\!\subseteq\!{\cal K}^{\prime},{\cal T}\!\subseteq\!{\overline{{\cal K}^{\prime}}},{\cal S}\cup{\cal T}\!\neq\!\phi,\\ \sum\limits_{k\in{\cal S}}(R_{k}^{\text{o}}+R_{k}^{\text{g}})>I(X_{\cal S};Z|X_{\overline{{\cal K}^{\prime}}}),~\forall~{\cal S}\subseteq{\cal K}^{\prime},~{\cal S}\neq\phi,\end{array}\right. (81)

and Rkg,k𝒦R_{k}^{\text{g}},\forall k\in{\cal K}^{\prime} can be found by applying Dantzig’s simplex algorithm [39].

In (81), we introduce a ‘garbage’ message to each user in 𝒦{\cal K}^{\prime} to interfere with the decoding of Eve, i.e., besides the secret and open messages, each user k𝒦k\in{\cal K}^{\prime} also has to transmit a ‘garbage’ message at rate RkgR_{k}^{\text{g}} though it is not necessary for Bob. The rate of ‘garbage’ messages Rkg,k𝒦R_{k}^{\text{g}},\forall k\in{\cal K}^{\prime} satisfies (81), which is the key point for proving Theorem 2. In particular, the second inequation of (81) ensures that the messages (even after adding ‘garbage’ messages) of all users can be perfectly decoded at Bob. With the third inequation in (81), on one hand, Eve obviously cannot decode the messages (including all secret, open, and garbage messages) of users in 𝒦{\cal K}^{\prime} using the normal MAC decoding scheme. On the other hand, we show that Eve cannot extract any confidential information.

In the following, we prove Theorem 2 by first providing a random coding scheme, and then showing that (II-A) can be satisfied, i.e., all users can communicate with Bob with arbitrarily small probability of error, while the confidential information leaked to Eve tends to zero.

C-A1 Coding Scheme

For a given rate tuple (R1s,R1o,,RKs,RKo)\left(R_{1}^{\text{s}},R_{1}^{\text{o}},\cdots,R_{K}^{\text{s}},R_{K}^{\text{o}}\right) inside region (X𝒦,𝒦){\mathscr{R}}(X_{\cal K},{\cal K}^{\prime}), choose Rkg,k𝒦R_{k}^{\text{g}},\forall k\in{\cal K}^{\prime} satisfying (81). Assume w.l.o.g. that 2nRks2^{nR_{k}^{\text{s}}}, 2n(Rko+Rkg)2^{n(R_{k}^{\text{o}}+R_{k}^{\text{g}})}, 2nRkg,k𝒦2^{nR_{k}^{\text{g}}},\forall k\in{\cal K}^{\prime}, and 2nRko,k𝒦¯2^{nR_{k}^{\text{o}}},\forall k\in{\overline{{\cal K}^{\prime}}}, are integers. Denote

k,mks,mko=[(mks1)2n(Rko+Rkg)+(mko1)2nRkg+1:(mks1)2n(Rko+Rkg)+mko2nRkg],\displaystyle{\cal L}_{k,m_{k}^{\text{s}},m_{k}^{\text{o}}}=\left[(m_{k}^{\text{s}}-1)2^{n(R_{k}^{\text{o}}+R_{k}^{\text{g}})}+(m_{k}^{\text{o}}-1)2^{nR_{k}^{\text{g}}}+1:(m_{k}^{\text{s}}-1)2^{n(R_{k}^{\text{o}}+R_{k}^{\text{g}})}+m_{k}^{\text{o}}2^{nR_{k}^{\text{g}}}\right],
k𝒦,mksks,mkoko,\displaystyle\quad\quad\quad\quad\forall~k\in{\cal K}^{\prime},~m_{k}^{\text{s}}\in{\cal M}_{k}^{\text{s}},~m_{k}^{\text{o}}\in{\cal M}_{k}^{\text{o}},
k,mks=[(mks1)2n(Rko+Rkg)+1:mks2n(Rko+Rkg)],k𝒦,mksks,\displaystyle{\cal L}_{k,m_{k}^{\text{s}}}=\left[(m_{k}^{\text{s}}-1)2^{n(R_{k}^{\text{o}}+R_{k}^{\text{g}})}+1:m_{k}^{\text{s}}2^{n(R_{k}^{\text{o}}+R_{k}^{\text{g}})}\right],~\forall~k\in{\cal K}^{\prime},~m_{k}^{\text{s}}\in{\cal M}_{k}^{\text{s}},
k={k,mks,mksks}=[1:2n(Rks+Rko+Rkg)],k𝒦.\displaystyle{\cal L}_{k}=\left\{{\cal L}_{k,m_{k}^{\text{s}}},\forall m_{k}^{\text{s}}\in{\cal M}_{k}^{\text{s}}\right\}~=\left[1:2^{n(R_{k}^{\text{s}}+R_{k}^{\text{o}}+R_{k}^{\text{g}})}\right],~\forall~k\in{\cal K}^{\prime}. (82)

Then, a coding scheme is provided below.

Refer to caption
Figure 4: A division of subcodebook 𝒞k(mks){\cal C}_{k}(m_{k}^{\text{s}}) of user k𝒦k\in{\cal K}^{\prime}.
Refer to caption
Figure 5: Codebook 𝒞k{\cal C}_{k} of user k𝒦k\in{\cal K}^{\prime}, where Rk=Rks+Rko+RkgR_{k}=R_{k}^{\text{s}}+R_{k}^{\text{o}}+R_{k}^{\text{g}}.

Codebook generation. For each message pair (mks,mko)ks×ko(m_{k}^{\text{s}},m_{k}^{\text{o}})\in{\cal M}_{k}^{\text{s}}\times{\cal M}_{k}^{\text{o}} of user k𝒦k\in{\cal K}^{\prime}, generate a sub-subcodebook 𝒞k(mks,mko){\cal C}_{k}(m_{k}^{\text{s}},m_{k}^{\text{o}}) by randomly and independently generating 2nRkg2^{nR_{k}^{\text{g}}} sequences xkn(lk),lkk,mks,mkox_{k}^{n}(l_{k}),\forall l_{k}\in{\cal L}_{k,m_{k}^{\text{s}},m_{k}^{\text{o}}}, each according to i=1np(xki)\prod_{i=1}^{n}p(x_{ki}). For a given secret message mksm_{k}^{\text{s}}, the sub-subcodebooks for all open messages constitute subcodebook 𝒞k(mks){\cal C}_{k}(m_{k}^{\text{s}}), i.e., 𝒞k(mks)={𝒞k(mks,mko),mkoko}{\cal C}_{k}(m_{k}^{\text{s}})=\left\{{\cal C}_{k}(m_{k}^{\text{s}},m_{k}^{\text{o}}),\forall m_{k}^{\text{o}}\in{\cal M}_{k}^{\text{o}}\right\}. Fig. 4 gives an example of subcodebook 𝒞k(mks){\cal C}_{k}(m_{k}^{\text{s}}). Then, as shown in Fig. 5, these subcodebooks constitute the codebook of user kk, i.e., 𝒞k={𝒞k(mks),mksks}{\cal C}_{k}=\left\{{\cal C}_{k}(m_{k}^{\text{s}}),\forall m_{k}^{\text{s}}\in{\cal M}_{k}^{\text{s}}\right\}. For each user kk in 𝒦¯{\overline{{\cal K}^{\prime}}}, we apply the random coding scheme used in the conventional MAC channel with no wiretapping. In particular, generate its codebook 𝒞k{\cal C}_{k} by randomly and independently generating 2nRko2^{nR_{k}^{\text{o}}} sequences xkn(mko),mkokox_{k}^{n}(m_{k}^{\text{o}}),\forall m_{k}^{\text{o}}\in{\cal M}_{k}^{\text{o}}, each according to i=1np(xki)\prod_{i=1}^{n}p(x_{ki}). The codebooks of all users are then revealed to all transmitters and receivers, including Eve.

Encoding. To send message pair (mks,mko)ks×ko(m_{k}^{\text{s}},m_{k}^{\text{o}})\in{\cal M}_{k}^{\text{s}}\times{\cal M}_{k}^{\text{o}}, encoder k𝒦k\in{\cal K}^{\prime} uniformly chooses a codeword (with index lkl_{k}) from 𝒞k(mks,mko){\cal C}_{k}(m_{k}^{\text{s}},m_{k}^{\text{o}}) and then transmits xkn(lk)x_{k}^{n}(l_{k}). To send message mkokom_{k}^{\text{o}}\in{\cal M}_{k}^{\text{o}}, encoder k𝒦¯k\in{\overline{{\cal K}^{\prime}}} transmits xkn(mko)x_{k}^{n}(m_{k}^{\text{o}}).

Decoding. The decoder at Bob uses joint typicality decoding to find an estimate of the messages and declares that ({m^ks,m^ko,k𝒦},{m^ko,k𝒦¯})(\{{\hat{m}}_{k}^{\text{s}},{\hat{m}}_{k}^{\text{o}},\forall k\in{\cal K}^{\prime}\},\{{\hat{m}}_{k}^{\text{o}},\forall k\in{\overline{{\cal K}^{\prime}}}\}) is sent if it is the unique message tuple such that ({xkn(lk),k𝒦},{xkn(m^ko),k𝒦¯},yn)𝒯ϵ(n)(X𝒦,Y)(\{x_{k}^{n}(l_{k}),\forall k\in{\cal K}^{\prime}\},\{x_{k}^{n}({\hat{m}}_{k}^{\text{o}}),\forall k\in{\overline{{\cal K}^{\prime}}}\},y^{n})\in{\cal T}_{\epsilon}^{(n)}(X_{\cal K},Y), for some lkl_{k} such that xkn(lk)𝒞k(m^ks,m^ko),k𝒦x_{k}^{n}(l_{k})\in{\cal C}_{k}({\hat{m}}_{k}^{\text{s}},{\hat{m}}_{k}^{\text{o}}),\forall k\in{\cal K}^{\prime}.

C-A2 Analysis of the Probability of Error

Since

k𝒮(Rks+Rko+Rkg)+k𝒯Rko<I(X𝒮,X𝒯;Y|X𝒮¯,X𝒯¯)ϵ,𝒮𝒦,𝒯𝒦¯,𝒮𝒯ϕ,\displaystyle\sum\limits_{k\in{\cal S}}(R_{k}^{\text{s}}\!+\!R_{k}^{\text{o}}\!+\!R_{k}^{\text{g}})\!+\!\sum\limits_{k\in{\cal T}}R_{k}^{\text{o}}<I(X_{\cal S},X_{\cal T};Y|X_{\overline{\cal S}},X_{\overline{\cal T}})\!-\!\epsilon,\forall{\cal S}\subseteq{\cal K}^{\prime},{\cal T}\subseteq{\overline{{\cal K}^{\prime}}},{\cal S}\cup{\cal T}\neq\phi, (83)

it can be proven by using the law of large numbers (LLN) and the packing lemma that the probability of error averaged over the random codebook and encoding tends to zero as nn\rightarrow\infty. The proof follows exactly the same steps used in [37, Subsection 4.5.1]. Hence, limnPeδ\lim_{n\rightarrow\infty}P_{\text{e}}\leq\delta.

C-A3 Analysis of the Information Leakage Rate

Based on the coding scheme provided above, it is known that for a given codebook 𝒞k{\cal C}_{k} of user k𝒦k\in{\cal K}^{\prime}, the secret message MksM_{k}^{\text{s}} is a function of the codeword index LkL_{k}. As for user k𝒦¯k\in{\overline{{\cal K}^{\prime}}}, its open message MkoM_{k}^{\text{o}} is the index of its codeword XknX_{k}^{n}. Note that the messages of all users are independent. Hence, we have

I(M𝒦s;Zn|M𝒦¯o)\displaystyle I(M_{{\cal K}^{\prime}}^{\text{s}};Z^{n}|M_{\overline{{\cal K}^{\prime}}}^{\text{o}}) =H(M𝒦s|M𝒦¯o)H(M𝒦s|M𝒦¯o,Zn)\displaystyle=H(M_{{\cal K}^{\prime}}^{\text{s}}|M_{\overline{{\cal K}^{\prime}}}^{\text{o}})-H(M_{{\cal K}^{\prime}}^{\text{s}}|M_{\overline{{\cal K}^{\prime}}}^{\text{o}},Z^{n})
=k𝒦H(Mks)H(M𝒦s,L𝒦|M𝒦¯o,Zn)+H(L𝒦|M𝒦s,M𝒦¯o,Zn)\displaystyle=\sum\limits_{k\in{\cal K}^{\prime}}H(M_{k}^{\text{s}})-H(M_{{\cal K}^{\prime}}^{\text{s}},L_{{\cal K}^{\prime}}|M_{\overline{{\cal K}^{\prime}}}^{\text{o}},Z^{n})+H(L_{{\cal K}^{\prime}}|M_{{\cal K}^{\prime}}^{\text{s}},M_{\overline{{\cal K}^{\prime}}}^{\text{o}},Z^{n})
=k𝒦nRksH(L𝒦|M𝒦¯o,Zn)+H(L𝒦|M𝒦s,M𝒦¯o,Zn)\displaystyle=\sum\limits_{k\in{\cal K}^{\prime}}nR_{k}^{\text{s}}-H(L_{{\cal K}^{\prime}}|M_{\overline{{\cal K}^{\prime}}}^{\text{o}},Z^{n})+H(L_{{\cal K}^{\prime}}|M_{{\cal K}^{\prime}}^{\text{s}},M_{\overline{{\cal K}^{\prime}}}^{\text{o}},Z^{n})
=k𝒦nRksH(L𝒦|X𝒦¯n,Zn)+H(L𝒦|M𝒦s,X𝒦¯n,Zn).\displaystyle=\sum\limits_{k\in{\cal K}^{\prime}}nR_{k}^{\text{s}}-H(L_{{\cal K}^{\prime}}|X_{\overline{{\cal K}^{\prime}}}^{n},Z^{n})+H(L_{{\cal K}^{\prime}}|M_{{\cal K}^{\prime}}^{\text{s}},X_{\overline{{\cal K}^{\prime}}}^{n},Z^{n}). (84)

To measure the information leakage rate, we separately evaluate entropies H(L𝒦|X𝒦¯n,Zn)H(L_{{\cal K}^{\prime}}|X_{\overline{{\cal K}^{\prime}}}^{n},Z^{n}) and H(L𝒦|M𝒦s,X𝒦¯n,Zn)H(L_{{\cal K}^{\prime}}|M_{{\cal K}^{\prime}}^{\text{s}},X_{\overline{{\cal K}^{\prime}}}^{n},Z^{n}). First, H(L𝒦|X𝒦¯n,Zn)H(L_{{\cal K}^{\prime}}|X_{\overline{{\cal K}^{\prime}}}^{n},Z^{n}) can be transformed to

H(L𝒦|X𝒦¯n,Zn)=H(L𝒦|X𝒦¯n)I(L𝒦;Zn|X𝒦¯n)=(a)H(L𝒦)I(L𝒦,X𝒦n;Zn|X𝒦¯n)\displaystyle H(L_{{\cal K}^{\prime}}|X_{\overline{{\cal K}^{\prime}}}^{n},Z^{n})=H(L_{{\cal K}^{\prime}}|X_{\overline{{\cal K}^{\prime}}}^{n})-I(L_{{\cal K}^{\prime}};Z^{n}|X_{\overline{{\cal K}^{\prime}}}^{n})\overset{(a)}{=}H(L_{{\cal K}^{\prime}})-I(L_{{\cal K}^{\prime}},X_{{\cal K}^{\prime}}^{n};Z^{n}|X_{\overline{{\cal K}^{\prime}}}^{n})
=(b)k𝒦n(Rks+Rko+Rkg)I(X𝒦n;Zn|X𝒦¯n)=(c)k𝒦n(Rks+Rko+Rkg)nI(X𝒦;Z|X𝒦¯),\displaystyle\overset{(b)}{=}\sum\limits_{k\in{\cal K}^{\prime}}n(R_{k}^{\text{s}}\!+\!R_{k}^{\text{o}}\!+\!R_{k}^{\text{g}})\!-\!I(X_{{\cal K}^{\prime}}^{n};Z^{n}|X_{\overline{{\cal K}^{\prime}}}^{n})~\overset{(c)}{=}\sum\limits_{k\in{\cal K}^{\prime}}n(R_{k}^{\text{s}}\!+\!R_{k}^{\text{o}}\!+\!R_{k}^{\text{g}})\!-\!nI(X_{{\cal K}^{\prime}};Z|X_{\overline{{\cal K}^{\prime}}}), (85)

where (a)(a) holds since the messages and encoding of different users are independent and for any k𝒦k\in{\cal K}^{\prime}, LkL_{k} is the index of the codeword XknX_{k}^{n}, (b)(b) holds since L𝒦X𝒦nZnL_{{\cal K}^{\prime}}\rightarrow X_{{\cal K}^{\prime}}^{n}\rightarrow Z^{n} forms a Markov chain, and (c)(c) follows since p(x𝒦n,zn|x𝒦¯n)=i=1np(x𝒦i,zi|x𝒦¯i)p(x_{{\cal K}^{\prime}}^{n},z^{n}|x_{\overline{{\cal K}^{\prime}}}^{n})=\prod_{i=1}^{n}p(x_{{\cal K}^{\prime}i},z_{i}|x_{{\overline{{\cal K}^{\prime}}}i}). Then, we provide an upper bound to 1nH(L𝒦|M𝒦s,X𝒦¯n,Zn)\frac{1}{n}H(L_{{\cal K}^{\prime}}|M_{{\cal K}^{\prime}}^{\text{s}},X_{\overline{{\cal K}^{\prime}}}^{n},Z^{n}) in the following theorem.

Lemma 5.

Using the coding scheme provided above, we have the following inequation

limn1nH(L𝒦|M𝒦s,X𝒦¯n,Zn)k𝒦(Rko+Rkg)I(X𝒦;Z|X𝒦¯)+δ.\displaystyle\lim_{n\rightarrow\infty}\frac{1}{n}H(L_{{\cal K}^{\prime}}|M_{{\cal K}^{\prime}}^{\text{s}},X_{\overline{{\cal K}^{\prime}}}^{n},Z^{n})\leq\sum\limits_{k\in{\cal K}^{\prime}}(R_{k}^{\text{o}}+R_{k}^{\text{g}})-I(X_{{\cal K}^{\prime}};Z|X_{\overline{{\cal K}^{\prime}}})+\delta. (86)

Proof: See Appendix D. \Box

Combining (C-A3), (C-A3), and (86), we have

limnRE,𝒦=limn1nI(M𝒦s;Zn|M𝒦¯o)δ.\lim_{n\rightarrow\infty}R_{{\text{E}},{\cal K}^{\prime}}=\lim_{n\rightarrow\infty}\frac{1}{n}I(M_{{\cal K}^{\prime}}^{\text{s}};Z^{n}|M_{\overline{{\cal K}^{\prime}}}^{\text{o}})\leq\delta. (87)

Lemma 2 is thus proven if assumption (77) is true.

C-B Proof of Theorem 2 When Assumption (77) is not True

If (77) is not true, i.e., there exist 𝒮𝒦{\cal S}\subseteq{\cal K}^{\prime}, 𝒮ϕ{\cal S}\neq\phi, 𝒮𝒮{\cal S}^{\prime}\subseteq{\cal S}, 𝒮ϕ{\cal S}^{\prime}\neq\phi, and 𝒯𝒦¯{\cal T}\subseteq{\overline{{\cal K}^{\prime}}} such that

I(X𝒮,X𝒯;Y|X𝒮¯,X𝒯¯)I(X𝒮;Z|X𝒦¯)0.I(X_{\cal S},X_{\cal T};Y|X_{\overline{\cal S}},X_{\overline{\cal T}})-I(X_{{\cal S}^{\prime}};Z|X_{\overline{{\cal K}^{\prime}}})\leq 0. (88)

From (C), it is known that (88) ensures

I(X𝒮;Y|X𝒮¯,X𝒦¯)I(X𝒮;Z|X𝒦¯)0.I(X_{\cal S};Y|X_{\overline{\cal S}},X_{\overline{{\cal K}^{\prime}}})-I(X_{\cal S};Z|X_{\overline{{\cal K}^{\prime}}})\leq 0. (89)

With (89), there exist two possible cases, i.e.,

I(X𝒦;Y|X𝒦¯)I(X𝒦;Z|X𝒦¯)0,I(X_{{\cal K}^{\prime}};Y|X_{\overline{{\cal K}^{\prime}}})-I(X_{{\cal K}^{\prime}};Z|X_{\overline{{\cal K}^{\prime}}})\leq 0, (90)

and

I(X𝒦;Y|X𝒦¯)I(X𝒦;Z|X𝒦¯)>0.I(X_{{\cal K}^{\prime}};Y|X_{\overline{{\cal K}^{\prime}}})-I(X_{{\cal K}^{\prime}};Z|X_{\overline{{\cal K}^{\prime}}})>0. (91)

In the following, we prove that Theorem 2 is true when either (90) or (91) holds.

In the first case, i.e., when (90) holds, we have Rks=0,k𝒦R_{k}^{\text{s}}=0,\forall k\in{\cal K}. (14) thus becomes

{Rks=0,k𝒦,k𝒮𝒮Rko+k𝒯Rko[I(X𝒮,X𝒯;Y|X𝒮¯,X𝒯¯)I(X𝒮;Z|X𝒦¯)]+,𝒮𝒦,𝒮𝒮,𝒯𝒦¯.\left\{\begin{array}[]{ll}R_{k}^{\text{s}}=0,~\forall~k\in{\cal K},\\ \sum\limits_{k\in{\cal S}\setminus{\cal S}^{\prime}}R_{k}^{\text{o}}+\sum\limits_{k\in{\cal T}}R_{k}^{\text{o}}&\leq\left[I(X_{\cal S},X_{\cal T};Y|X_{\overline{\cal S}},X_{\overline{\cal T}})-I(X_{{\cal S}^{\prime}};Z|X_{\overline{{\cal K}^{\prime}}})\right]^{+},\\ &\forall~{\cal S}\subseteq{\cal K}^{\prime},~{\cal S}^{\prime}\subseteq{\cal S},~{\cal T}\subseteq{\overline{{\cal K}^{\prime}}}.\end{array}\right. (92)

By always letting 𝒮=ϕ{\cal S}^{\prime}=\phi in (92), we get

{Rks=0,k𝒦,k𝒮Rko+k𝒯RkoI(X𝒮,X𝒯;Y|X𝒮¯,X𝒯¯),𝒮𝒦,𝒯𝒦¯.\left\{\begin{array}[]{ll}R_{k}^{\text{s}}=0,~\forall~k\in{\cal K},\\ \sum\limits_{k\in{\cal S}}R_{k}^{\text{o}}+\sum\limits_{k\in{\cal T}}R_{k}^{\text{o}}\leq I(X_{\cal S},X_{\cal T};Y|X_{\overline{\cal S}},X_{\overline{\cal T}}),~\forall~{\cal S}\subseteq{\cal K}^{\prime},~{\cal T}\subseteq{\overline{{\cal K}^{\prime}}}.\end{array}\right. (93)

Since (93) considers only partial inequalities in (92), the region defined by (92) is included in that defined by (93). Moreover, (93) also shows that due to (90), the region (X𝒦,𝒦){\mathscr{R}}(X_{\cal K},{\cal K}^{\prime}) is included in the capacity region of a conventional MAC channel with no wiretapping and its achievability proof is well known and is thus omitted here.

In the second case, i.e., when (91) holds, due to (89), there must exist at least one subset 𝒦0𝒦{\cal K}_{0}\subsetneqq{\cal K}^{\prime} such that

I(X𝒦0;Y|X𝒦𝒦0,X𝒦¯)I(X𝒦0;Z|X𝒦¯)0,I(X_{{\cal K}_{0}};Y|X_{{\cal K}^{\prime}\setminus{\cal K}_{0}},X_{\overline{{\cal K}^{\prime}}})-I(X_{{\cal K}_{0}};Z|X_{\overline{{\cal K}^{\prime}}})\leq 0, (94)

and

I(X𝒦0𝒮;Y|X𝒦(𝒦0𝒮),X𝒦¯)I(X𝒦0𝒮;Z|X𝒦¯)>0,𝒮𝒦𝒦0,𝒮ϕ.\displaystyle I(X_{{\cal K}_{0}\cup{\cal S}};Y|X_{{\cal K}^{\prime}\setminus({\cal K}_{0}\cup{\cal S})},X_{\overline{{\cal K}^{\prime}}})-I(X_{{\cal K}_{0}\cup{\cal S}};Z|X_{\overline{{\cal K}^{\prime}}})>0,~\forall~{\cal S}\subseteq{\cal K}^{\prime}\setminus{\cal K}_{0},~{\cal S}\neq\phi. (95)

The inequalities (94) and (95) indicate that 𝒦0{\cal K}_{0} is the largest set in 𝒦{\cal K}^{\prime} which includes all users in 𝒦0{\cal K}_{0} and ensures (94). Adding any other users in 𝒦𝒦0{\cal K}^{\prime}\setminus{\cal K}_{0} to 𝒦0{\cal K}_{0} results in (95). Note that if there are multiple subsets in 𝒦{\cal K}^{\prime} making (94) and (95) hold, we let 𝒦0{\cal K}_{0} be any of them. Let

𝒦′′\displaystyle{\cal K}^{\prime\prime} =𝒦𝒦0=𝒦(𝒦¯𝒦0),\displaystyle={\cal K}^{\prime}\setminus{\cal K}_{0}={\cal K}\setminus({\overline{{\cal K}^{\prime}}}\cup{\cal K}_{0}),
𝒦′′¯\displaystyle{\overline{{\cal K}^{\prime\prime}}} =𝒦𝒦′′=𝒦¯𝒦0.\displaystyle={\cal K}\setminus{\cal K}^{\prime\prime}={\overline{{\cal K}^{\prime}}}\cup{\cal K}_{0}. (96)

Then, we give the following lemma.

Lemma 6.

Let (X𝒦,Y,Z)k=1Kp(xk)p(y,z|x𝒦)(X_{\cal K},Y,Z)\sim\prod_{k=1}^{K}p(x_{k})p(y,z|x_{\cal K}). With 𝒦0{\cal K}_{0}, 𝒦′′{\cal K}^{\prime\prime}, and 𝒦′′¯{\overline{{\cal K}^{\prime\prime}}} defined above, we have

I(X𝒮,X𝒯;Y|X𝒮¯,X𝒯¯)I(X𝒮;Z|X𝒦′′¯)>0,𝒮𝒦′′,𝒮𝒮,𝒯𝒦′′¯,𝒮𝒯ϕ,\displaystyle I(X_{\cal S},X_{\cal T};Y|X_{\overline{\cal S}},X_{\overline{\cal T}})\!-\!I(X_{{\cal S}^{\prime}};Z|X_{\overline{{\cal K}^{\prime\prime}}})\!>\!0,~\forall~{\cal S}\subseteq{\cal K}^{\prime\prime},{\cal S}^{\prime}\subseteq{\cal S},{\cal T}\subseteq{\overline{{\cal K}^{\prime\prime}}},{\cal S}\cup{\cal T}\neq\phi, (97)

where 𝒮¯=𝒦′′𝒮{\overline{\cal S}}={\cal K}^{\prime\prime}\setminus{\cal S} and 𝒯¯=𝒦′′¯𝒯{\overline{\cal T}}={\overline{{\cal K}^{\prime\prime}}}\setminus{\cal T}. In addition, if a rate tuple (R1s,R1o,,RKs,RKo)(R_{1}^{\text{s}},R_{1}^{\text{o}},\cdots,R_{K}^{\text{s}},R_{K}^{\text{o}}) is in region (X𝒦,𝒦){\mathscr{R}}(X_{\cal K},{\cal K}^{\prime}) defined by Theorem 2 and has (94) as well as (95) met, then, it is also in region (X𝒦,𝒦′′){\mathscr{R}}(X_{\cal K},{\cal K}^{\prime\prime}), i.e., it satisfies

{Rks=0,k𝒦′′¯,k𝒮Rks+k𝒮𝒮Rko+k𝒯RkoI(X𝒮,X𝒯;Y|X𝒮¯,X𝒯¯)I(X𝒮;Z|X𝒦′′¯),𝒮𝒦′′,𝒮𝒮,𝒯𝒦′′¯.\left\{\begin{array}[]{ll}R_{k}^{\text{s}}=0,~\forall~k\in{\overline{{\cal K}^{\prime\prime}}},\\ \sum\limits_{k\in\cal S}R_{k}^{\text{s}}+\sum\limits_{k\in{\cal S}\setminus{\cal S}^{\prime}}R_{k}^{\text{o}}+\sum\limits_{k\in{\cal T}}R_{k}^{\text{o}}&\leq I(X_{\cal S},X_{\cal T};Y|X_{\overline{\cal S}},X_{\overline{\cal T}})-I(X_{{\cal S}^{\prime}};Z|X_{\overline{{\cal K}^{\prime\prime}}}),\\ &\forall~{\cal S}\subseteq{\cal K}^{\prime\prime},~{\cal S}^{\prime}\subseteq{\cal S},~{\cal T}\subseteq{\overline{{\cal K}^{\prime\prime}}}.\end{array}\right. (98)

Proof: See Appendix F. \Box

Based on Lemma 6 it is known that if a rate tuple (R1s,R1o,,RKs,RKo)(R_{1}^{\text{s}},R_{1}^{\text{o}},\cdots,R_{K}^{\text{s}},R_{K}^{\text{o}}) is inside region (X𝒦,𝒦){\mathscr{R}}(X_{\cal K},{\cal K}^{\prime}) and has (94) and (95) met, it is also inside region (X𝒦,𝒦′′){\mathscr{R}}(X_{\cal K},{\cal K}^{\prime\prime}) and thus satisfies

{Rks=0,k𝒦′′¯,k𝒮Rks+k𝒮𝒮Rko+k𝒯Rko<I(X𝒮,X𝒯;Y|X𝒮¯,X𝒯¯)I(X𝒮;Z|X𝒦′′¯)ε,𝒮𝒦′′,𝒮𝒮,𝒯𝒦′′¯,𝒮𝒯ϕ.\left\{\begin{array}[]{ll}R_{k}^{\text{s}}=0,~\forall~k\in{\overline{{\cal K}^{\prime\prime}}},\\ \sum\limits_{k\in\cal S}R_{k}^{\text{s}}+\sum\limits_{k\in{\cal S}\setminus{\cal S}^{\prime}}R_{k}^{\text{o}}+\sum\limits_{k\in{\cal T}}R_{k}^{\text{o}}&<I(X_{\cal S},X_{\cal T};Y|X_{\overline{\cal S}},X_{\overline{\cal T}})-I(X_{{\cal S}^{\prime}};Z|X_{\overline{{\cal K}^{\prime\prime}}})-\varepsilon,\\ &\forall~{\cal S}\subseteq{\cal K}^{\prime\prime},~{\cal S}^{\prime}\subseteq{\cal S},~{\cal T}\subseteq{\overline{{\cal K}^{\prime\prime}}},~{\cal S}\cup{\cal T}\neq\phi.\end{array}\right. (99)

Moreover, thanks to (97), for any rate tuple inside (X𝒦,𝒦′′){\mathscr{R}}(X_{\cal K},{\cal K}^{\prime\prime}), Theorem 1 and Dantzig’s simplex algorithm can be applied to get Rkg,k𝒦′′R_{k}^{\text{g}},\forall k\in{\cal K}^{\prime\prime} such that

{Rkg0,k𝒦′′,k𝒮(Rks+Rko+Rkg)+k𝒯Rko<I(X𝒮,X𝒯;Y|X𝒮¯,X𝒯¯)ϵ,𝒮𝒦′′,𝒯𝒦′′¯,𝒮𝒯ϕ,k𝒮(Rko+Rkg)>I(X𝒮;Z|X𝒦′′¯),𝒮𝒦′′,𝒮ϕ.\left\{\!\!\!\begin{array}[]{ll}R_{k}^{\text{g}}\geq 0,~\forall~k\in{\cal K}^{\prime\prime},\\ \sum\limits_{k\in{\cal S}}(R_{k}^{\text{s}}\!+\!R_{k}^{\text{o}}\!+\!R_{k}^{\text{g}})\!+\!\sum\limits_{k\in{\cal T}}R_{k}^{\text{o}}\!<\!I(X_{\cal S},X_{\cal T};Y|X_{\overline{\cal S}},X_{\overline{\cal T}})\!-\!\epsilon,\forall{\cal S}\!\subseteq\!{\cal K}^{\prime\prime},{\cal T}\!\subseteq\!{\overline{{\cal K}^{\prime\prime}}},{\cal S}\cup{\cal T}\!\neq\!\phi,\\ \sum\limits_{k\in{\cal S}}(R_{k}^{\text{o}}+R_{k}^{\text{g}})>I(X_{\cal S};Z|X_{\overline{{\cal K}^{\prime\prime}}}),~\forall~{\cal S}\subseteq{\cal K}^{\prime\prime},~{\cal S}\neq\phi.\end{array}\right. (100)

The techniques provided in the previous Subsection C-A can then be applied to prove the achievability of the rate tuple. The proof in this and the previous subsections, together with the standard time-sharing over coding strategies, suffices to prove Theorem 2.

Appendix D Proof of Lemma 5

For given nn-th order product distribution on 𝒳1n××𝒳Kn×𝒵n{\cal X}^{n}_{1}\times\cdots\times{\cal X}^{n}_{K}\times{\cal Z}^{n}, recall the definition of conditional ϵ\epsilon-typical sets

𝒯ϵ(n)(X𝒮|x𝒮¯n,x𝒦¯n,zn)\displaystyle{\cal T}_{\epsilon}^{(n)}(X_{\cal S}|x_{\overline{\cal S}}^{n},x_{\overline{{\cal K}^{\prime}}}^{n},z^{n}) ={x𝒮n|(x𝒮n,x𝒮¯n,x𝒦¯n,zn)𝒯ϵ(n)(X𝒮,X𝒮¯,X𝒦¯,Z),x𝒮nk𝒦𝒳kn},\displaystyle=\left\{x_{\cal S}^{n}|(x_{\cal S}^{n},x_{\overline{\cal S}}^{n},x_{\overline{{\cal K}^{\prime}}}^{n},z^{n})\in{\cal T}_{\epsilon}^{(n)}(X_{\cal S},X_{\overline{\cal S}},X_{\overline{{\cal K}^{\prime}}},Z),~\forall~x_{\cal S}^{n}\in\prod_{k\in{\cal K}^{\prime}}{\cal X}_{k}^{n}\right\},
𝒮𝒦,(x𝒮¯n,x𝒦¯n,zn)𝒯ϵ(n)(X𝒮¯,X𝒦¯,Z).\displaystyle\;\;\forall~{\cal S}\subseteq{\cal K}^{\prime},~(x_{\overline{\cal S}}^{n},x_{\overline{{\cal K}^{\prime}}}^{n},z^{n})\in{\cal T}_{\epsilon}^{(n)}(X_{\overline{\cal S}},X_{\overline{{\cal K}^{\prime}}},Z). (101)

Before proving Lemma 5, we first define some auxiliary functions. For given codeword set x𝒦¯nx_{\overline{{\cal K}^{\prime}}}^{n} and received signal znz^{n} at the eavesdropper, assume that they are jointly typical, i.e., (x𝒦¯n,zn)𝒯ϵ(n)(X𝒦¯,Z)(x_{\overline{{\cal K}^{\prime}}}^{n},z^{n})\in{\cal T}_{\epsilon}^{(n)}(X_{\overline{{\cal K}^{\prime}}},Z), and define functions

𝒟(m𝒦s|x𝒦¯n,zn)={l𝒦|(xkn(lk),k𝒦)𝒯ϵ(n)(X𝒦|x𝒦¯n,zn),l𝒦k𝒦k,mks},{\cal D}(m_{{\cal K}^{\prime}}^{\text{s}}|x_{\overline{{\cal K}^{\prime}}}^{n},z^{n})=\left\{l_{{\cal K}^{\prime}}|\left(x_{k}^{n}(l_{k}),\forall k\in{\cal K}^{\prime}\right)\in{\cal T}_{\epsilon}^{(n)}(X_{{\cal K}^{\prime}}|x_{\overline{{\cal K}^{\prime}}}^{n},z^{n}),~\forall~l_{{\cal K}^{\prime}}\in\prod_{k\in{\cal K}^{\prime}}{\cal L}_{k,m_{k}^{\text{s}}}\right\}, (102)

and

Q(m𝒦s|x𝒦¯n,zn)=|𝒟(m𝒦s|x𝒦¯n,zn)|.Q(m_{{\cal K}^{\prime}}^{\text{s}}|x_{\overline{{\cal K}^{\prime}}}^{n},z^{n})=\left|{\cal D}(m_{{\cal K}^{\prime}}^{\text{s}}|x_{\overline{{\cal K}^{\prime}}}^{n},z^{n})\right|. (103)

Obviously, 𝒟(m𝒦s|x𝒦¯n,zn){\cal D}(m_{{\cal K}^{\prime}}^{\text{s}}|x_{\overline{{\cal K}^{\prime}}}^{n},z^{n}) records all possible index sets l𝒦k𝒦k,mksl_{{\cal K}^{\prime}}\in\prod_{k\in{\cal K}^{\prime}}{\cal L}_{k,m_{k}^{\text{s}}} with each one ensuring that xkn(lk),k𝒦x_{k}^{n}(l_{k}),\forall k\in{\cal K}^{\prime} and (x𝒦¯n,zn)(x_{\overline{{\cal K}^{\prime}}}^{n},z^{n}) are jointly typical, and Q(m𝒦s|x𝒦¯n,zn)Q(m_{{\cal K}^{\prime}}^{\text{s}}|x_{\overline{{\cal K}^{\prime}}}^{n},z^{n}) denotes the number of these index sets. By introducing an indicator variable

O(l𝒦|x𝒦¯n,zn)={1,if{xkn(lk),k𝒦}𝒯ϵ(n)(X𝒦|x𝒦¯n,zn),0,otherwise,O^{\prime}(l_{{\cal K}^{\prime}}|x_{\overline{{\cal K}^{\prime}}}^{n},z^{n})\!=\!\left\{\!\!\!\begin{array}[]{ll}1,&\!\!\!{\text{if}}~\left\{x_{k}^{n}(l_{k}),\forall k\in{\cal K}^{\prime}\right\}\!\in{\cal T}_{\epsilon}^{(n)}(X_{{\cal K}^{\prime}}|x_{\overline{{\cal K}^{\prime}}}^{n},z^{n}),\\ 0,&\!\!\!{\text{otherwise}},\\ \end{array}\right.\!\!\!\! (104)

where l𝒦k𝒦k,mksl_{{\cal K}^{\prime}}\in\prod_{k\in{\cal K}^{\prime}}{\cal L}_{k,m_{k}^{\text{s}}}, Q(m𝒦s|x𝒦¯n,zn)Q(m_{{\cal K}^{\prime}}^{\text{s}}|x_{\overline{{\cal K}^{\prime}}}^{n},z^{n}) can also be represented as

Q(m𝒦s|x𝒦¯n,zn)=l𝒦k𝒦k,mksO(l𝒦|x𝒦¯n,zn).Q(m_{{\cal K}^{\prime}}^{\text{s}}|x_{\overline{{\cal K}^{\prime}}}^{n},z^{n})=\sum_{l_{{\cal K}^{\prime}}\in\prod_{k\in{\cal K}^{\prime}}{\cal L}_{k,m_{k}^{\text{s}}}}O^{\prime}(l_{{\cal K}^{\prime}}|x_{\overline{{\cal K}^{\prime}}}^{n},z^{n}). (105)

Using the above definitions, we give in the following theorem upper bounds to the expectation and variance of Q(m𝒦s|x𝒦¯n,zn)Q(m_{{\cal K}^{\prime}}^{\text{s}}|x_{\overline{{\cal K}^{\prime}}}^{n},z^{n}).

Theorem 4.

For any (x𝒦¯n,zn)𝒯ϵ(n)(X𝒦¯,Z)(x_{\overline{{\cal K}^{\prime}}}^{n},z^{n})\in{\cal T}_{\epsilon}^{(n)}(X_{\overline{{\cal K}^{\prime}}},Z), the expectation and variance of Q(m𝒦s|x𝒦¯n,zn)Q(m_{{\cal K}^{\prime}}^{\text{s}}|x_{\overline{{\cal K}^{\prime}}}^{n},z^{n}) can be bounded as

𝔼[Q(m𝒦s|x𝒦¯n,zn)]\displaystyle{\mathbb{E}}\left[Q(m_{{\cal K}^{\prime}}^{\text{s}}|x_{\overline{{\cal K}^{\prime}}}^{n},z^{n})\right] 2n[Ω𝒦+(K+1)ϵ],\displaystyle\leq 2^{n\left[\varOmega_{{\cal K}^{\prime}}+(K+1)\epsilon\right]}, (106)
Var[Q(m𝒦s|x𝒦¯n,zn)]\displaystyle{\text{Var}}\left[Q(m_{{\cal K}^{\prime}}^{\text{s}}|x_{\overline{{\cal K}^{\prime}}}^{n},z^{n})\right] 𝒮𝒦2n[2Ω𝒦Ω𝒮¯+2(K+1)ϵ],\displaystyle\leq\sum\limits_{{\cal S}\subsetneqq{\cal K}^{\prime}}2^{n\left[2\varOmega_{{\cal K}^{\prime}}-\varOmega_{\overline{\cal S}}+2(K+1)\epsilon\right]}, (107)

where

Ω𝒮\displaystyle\varOmega_{\cal S} =k𝒮n(Rko+Rkg)I(X𝒮;Z|X𝒦¯),\displaystyle=\sum\limits_{k\in{\cal S}}n(R_{k}^{\text{o}}+R_{k}^{\text{g}})-I(X_{\cal S};Z|X_{\overline{{\cal K}^{\prime}}}),
Ω𝒮¯\displaystyle\varOmega_{\overline{\cal S}} =k𝒮¯n(Rko+Rkg)I(X𝒮¯;Z|X𝒦¯),𝒮𝒦,𝒮ϕ.\displaystyle=\sum\limits_{k\in{\overline{\cal S}}}n(R_{k}^{\text{o}}+R_{k}^{\text{g}})-I(X_{\overline{\cal S}};Z|X_{\overline{{\cal K}^{\prime}}}),~\forall~{\cal S}\subseteq{\cal K}^{\prime},~{\cal S}\neq\phi. (108)

Proof: See Appendix E. \Box

Define event

(m𝒦s|x𝒦¯n,zn)={Q(m𝒦s|x𝒦¯n,zn)2n[Ω𝒦+(K+1)ϵ]+1}.{\cal E}(m_{{\cal K}^{\prime}}^{\text{s}}|x_{\overline{{\cal K}^{\prime}}}^{n},z^{n})=\left\{Q(m_{{\cal K}^{\prime}}^{\text{s}}|x_{\overline{{\cal K}^{\prime}}}^{n},z^{n})\geq 2^{n\left[\varOmega_{{\cal K}^{\prime}}+(K+1)\epsilon\right]+1}\right\}. (109)

We have

Pr{(m𝒦s|x𝒦¯n,zn)}\displaystyle{\text{Pr}}\left\{{\cal E}(m_{{\cal K}^{\prime}}^{\text{s}}|x_{\overline{{\cal K}^{\prime}}}^{n},z^{n})\right\} =Pr{Q(m𝒦s|x𝒦¯n,zn)2n[Ω𝒦+(K+1)ϵ]+1}\displaystyle={\text{Pr}}\left\{Q(m_{{\cal K}^{\prime}}^{\text{s}}|x_{\overline{{\cal K}^{\prime}}}^{n},z^{n})\geq 2^{n\left[\varOmega_{{\cal K}^{\prime}}+(K+1)\epsilon\right]+1}\right\}
Pr{Q(m𝒦s|x𝒦¯n,zn)𝔼[Q(m𝒦s|x𝒦¯n,zn)]+2n[Ω𝒦+(K+1)ϵ]}\displaystyle\leq{\text{Pr}}\left\{Q(m_{{\cal K}^{\prime}}^{\text{s}}|x_{\overline{{\cal K}^{\prime}}}^{n},z^{n})\geq{\mathbb{E}}\left[Q(m_{{\cal K}^{\prime}}^{\text{s}}|x_{\overline{{\cal K}^{\prime}}}^{n},z^{n})\right]+2^{n\left[\varOmega_{{\cal K}^{\prime}}+(K+1)\epsilon\right]}\right\}
Pr{|Q(m𝒦s|x𝒦¯n,zn)𝔼[Q(m𝒦s|x𝒦¯n,zn)]|2n[Ω𝒦+(K+1)ϵ]}\displaystyle\leq{\text{Pr}}\left\{\left|Q(m_{{\cal K}^{\prime}}^{\text{s}}|x_{\overline{{\cal K}^{\prime}}}^{n},z^{n})\!-\!{\mathbb{E}}\left[Q(m_{{\cal K}^{\prime}}^{\text{s}}|x_{\overline{{\cal K}^{\prime}}}^{n},z^{n})\right]\right|\!\geq\!2^{n\left[\varOmega_{{\cal K}^{\prime}}+(K+1)\epsilon\right]}\right\}
(a)Var[Q(m𝒦s|x𝒦¯n,zn)]22n[Ω𝒦+(K+1)ϵ](b)𝒮𝒦2nΩ𝒮¯,\displaystyle\overset{(a)}{\leq}\frac{{\text{Var}}\left[Q(m_{{\cal K}^{\prime}}^{\text{s}}|x_{\overline{{\cal K}^{\prime}}}^{n},z^{n})\right]}{2^{2n\left[\varOmega_{{\cal K}^{\prime}}+(K+1)\epsilon\right]}}\overset{(b)}{\leq}\sum\limits_{{\cal S}\subsetneqq{\cal K}^{\prime}}2^{-n\varOmega_{\overline{\cal S}}}, (110)

where step (a)(a) follows by applying the Chebyshev inequality, and (b)(b) follows by (107). Due to (81), we have Ω𝒮¯>0,𝒮𝒦\varOmega_{\overline{\cal S}}>0,\forall{\cal S}\subsetneqq{\cal K}^{\prime}. Then, it is obvious that Pr{(m𝒦s|x𝒦¯n,zn)}0{\text{Pr}}\left\{{\cal E}(m_{{\cal K}^{\prime}}^{\text{s}}|x_{\overline{{\cal K}^{\prime}}}^{n},z^{n})\right\}\rightarrow 0 as nn\rightarrow\infty. For any (x𝒦¯n,zn)𝒯ϵ(n)(X𝒦¯,Z)(x_{\overline{{\cal K}^{\prime}}}^{n},z^{n})\in{\cal T}_{\epsilon}^{(n)}(X_{\overline{{\cal K}^{\prime}}},Z), define indicator variable

O(m𝒦s|x𝒦¯n,zn)={1,if(m𝒦s|x𝒦¯n,zn)occurs,0,otherwise.O(m_{{\cal K}^{\prime}}^{\text{s}}|x_{\overline{{\cal K}^{\prime}}}^{n},z^{n})\!=\!\left\{\!\!\!\begin{array}[]{ll}1,&\!\!{\text{if}}~{\cal E}(m_{{\cal K}^{\prime}}^{\text{s}}|x_{\overline{{\cal K}^{\prime}}}^{n},z^{n})~{\text{occurs}},\\ 0,&\!\!{\text{otherwise}}.\\ \end{array}\right. (111)

Then, Pr{O(m𝒦s|x𝒦¯n,zn)=1}0{\text{Pr}}\left\{O(m_{{\cal K}^{\prime}}^{\text{s}}|x_{\overline{{\cal K}^{\prime}}}^{n},z^{n})=1\right\}\rightarrow 0 as nn\rightarrow\infty.

Since there are 2n(Rko+Rkg)2^{n(R_{k}^{\text{o}}+R_{k}^{\text{g}})} codewords in each subcodebook 𝒞k(mks),k𝒦{\cal C}_{k}(m_{k}^{\text{s}}),\forall k\in\cal K, we have

H(L𝒦s|m𝒦s,x𝒦¯n,zn)H(L𝒦s)=k𝒦H(Lks)\displaystyle H(L_{{\cal K}^{\prime}}^{\text{s}}|m_{{\cal K}^{\prime}}^{\text{s}},x_{\overline{{\cal K}^{\prime}}}^{n},z^{n})\leq H(L_{{\cal K}^{\prime}}^{\text{s}})=\sum_{k\in{\cal K}^{\prime}}H(L_{k}^{\text{s}})
=k𝒦n(Rko+Rkg),(m𝒦s,x𝒦¯n,zn)k𝒦ks×j𝒦¯𝒳jn×𝒵n,\displaystyle=\sum_{k\in{\cal K}^{\prime}}n(R_{k}^{\text{o}}+R_{k}^{\text{g}}),~\forall~(m_{{\cal K}^{\prime}}^{\text{s}},x_{\overline{{\cal K}^{\prime}}}^{n},z^{n})\in\prod_{k\in{\cal K}^{\prime}}{\cal M}_{k}^{\text{s}}\times\prod_{j\in{\overline{{\cal K}^{\prime}}}}{\cal X}_{j}^{n}\times{\cal Z}^{n}, (112)

and

H(L𝒦s|m𝒦s,X𝒦¯n,Zn)\displaystyle H(L_{{\cal K}^{\prime}}^{\text{s}}|m_{{\cal K}^{\prime}}^{\text{s}},X_{\overline{{\cal K}^{\prime}}}^{n},Z^{n}) =(x𝒦¯n,zn)k𝒦¯𝒳kn×𝒵np(x𝒦¯n,zn)H(L𝒦s|m𝒦s,x𝒦¯n,zn)\displaystyle=\sum_{(x_{\overline{{\cal K}^{\prime}}}^{n},z^{n})\in\prod_{k\in{\overline{{\cal K}^{\prime}}}}{\cal X}_{k}^{n}\times{\cal Z}^{n}}p(x_{\overline{{\cal K}^{\prime}}}^{n},z^{n})H(L_{{\cal K}^{\prime}}^{\text{s}}|m_{{\cal K}^{\prime}}^{\text{s}},x_{\overline{{\cal K}^{\prime}}}^{n},z^{n})
k𝒦n(Rko+Rkg),m𝒦sk𝒦ks.\displaystyle\leq\sum_{k\in{\cal K}^{\prime}}n(R_{k}^{\text{o}}+R_{k}^{\text{g}}),~\forall~m_{{\cal K}^{\prime}}^{\text{s}}\in\prod_{k\in{\cal K}^{\prime}}{\cal M}_{k}^{\text{s}}. (113)

Moreover, based on the definitions of Q(m𝒦s|x𝒦¯n,zn)Q(m_{{\cal K}^{\prime}}^{\text{s}}|x_{\overline{{\cal K}^{\prime}}}^{n},z^{n}) and O(m𝒦s|x𝒦¯n,zn)O(m_{{\cal K}^{\prime}}^{\text{s}}|x_{\overline{{\cal K}^{\prime}}}^{n},z^{n}) in (103) and (111),

H(L𝒦s|m𝒦s,x𝒦¯n,zn,O(m𝒦s|x𝒦¯n,zn)=0)log(Q(m𝒦s|x𝒦¯n,zn))\displaystyle H(L_{{\cal K}^{\prime}}^{\text{s}}|m_{{\cal K}^{\prime}}^{\text{s}},x_{\overline{{\cal K}^{\prime}}}^{n},z^{n},O(m_{{\cal K}^{\prime}}^{\text{s}}|x_{\overline{{\cal K}^{\prime}}}^{n},z^{n})=0)\leq\log(Q(m_{{\cal K}^{\prime}}^{\text{s}}|x_{\overline{{\cal K}^{\prime}}}^{n},z^{n}))
n[Ω𝒦+(K+1)ϵ]+1,m𝒦sk𝒦ks,(x𝒦¯n,zn)𝒯ϵ(n)(X𝒦¯,Z),\displaystyle\leq n\left[\varOmega_{{\cal K}^{\prime}}+(K+1)\epsilon\right]+1,~\forall~m_{{\cal K}^{\prime}}^{\text{s}}\in\prod_{k\in{\cal K}^{\prime}}{\cal M}_{k}^{\text{s}},~(x_{\overline{{\cal K}^{\prime}}}^{n},z^{n})\in{\cal T}_{\epsilon}^{(n)}(X_{\overline{{\cal K}^{\prime}}},Z), (114)

where the last step holds since when O(m𝒦s|x𝒦¯n,zn)=0O(m_{{\cal K}^{\prime}}^{\text{s}}|x_{\overline{{\cal K}^{\prime}}}^{n},z^{n})=0, Q(m𝒦s|x𝒦¯n,zn)<2n[Ω𝒦+(K+1)ϵ]+1Q(m_{{\cal K}^{\prime}}^{\text{s}}|x_{\overline{{\cal K}^{\prime}}}^{n},z^{n})<2^{n\left[\varOmega_{{\cal K}^{\prime}}+(K+1)\epsilon\right]+1}. Then, a tighter upper bound on H(L𝒦|m𝒦s,X𝒦¯n,Zn)H(L_{{\cal K}^{\prime}}|m_{{\cal K}^{\prime}}^{\text{s}},X_{\overline{{\cal K}^{\prime}}}^{n},Z^{n}) (in contrast to (D)) can be obtained as

H(L𝒦|m𝒦s,X𝒦¯n,Zn)\displaystyle H(L_{{\cal K}^{\prime}}|m_{{\cal K}^{\prime}}^{\text{s}},X_{\overline{{\cal K}^{\prime}}}^{n},Z^{n})
=\displaystyle= Pr{(X𝒦¯n,Zn)𝒯ϵ(n)(X𝒦¯,Z)}H(L𝒦|m𝒦s,X𝒦¯n,Zn,(X𝒦¯n,Zn)𝒯ϵ(n)(X𝒦¯,Z))\displaystyle{\text{Pr}}\left\{(X_{\overline{{\cal K}^{\prime}}}^{n},Z^{n})\in{\cal T}_{\epsilon}^{(n)}(X_{\overline{{\cal K}^{\prime}}},Z)\right\}H(L_{{\cal K}^{\prime}}|m_{{\cal K}^{\prime}}^{\text{s}},X_{\overline{{\cal K}^{\prime}}}^{n},Z^{n},(X_{\overline{{\cal K}^{\prime}}}^{n},Z^{n})\in{\cal T}_{\epsilon}^{(n)}(X_{\overline{{\cal K}^{\prime}}},Z))
+\displaystyle+ Pr{(X𝒦¯n,Zn)𝒯ϵ(n)(X𝒦¯,Z)}H(L𝒦|m𝒦s,X𝒦¯n,Zn,(X𝒦¯n,Zn)𝒯ϵ(n)(X𝒦¯,Z))\displaystyle{\text{Pr}}\left\{(X_{\overline{{\cal K}^{\prime}}}^{n},Z^{n})\notin{\cal T}_{\epsilon}^{(n)}(X_{\overline{{\cal K}^{\prime}}},Z)\right\}H(L_{{\cal K}^{\prime}}|m_{{\cal K}^{\prime}}^{\text{s}},X_{\overline{{\cal K}^{\prime}}}^{n},Z^{n},(X_{\overline{{\cal K}^{\prime}}}^{n},Z^{n})\notin{\cal T}_{\epsilon}^{(n)}(X_{\overline{{\cal K}^{\prime}}},Z))
(a)\displaystyle\overset{(a)}{\leq} (x𝒦¯n,zn)𝒯ϵ(n)(X𝒦¯,Z)p(x𝒦¯n,zn)H(L𝒦|m𝒦s,x𝒦¯n,zn)+nα1\displaystyle\sum_{(x_{\overline{{\cal K}^{\prime}}}^{n},z^{n})\in{\cal T}_{\epsilon}^{(n)}(X_{\overline{{\cal K}^{\prime}}},Z)}p(x_{\overline{{\cal K}^{\prime}}}^{n},z^{n})H(L_{{\cal K}^{\prime}}|m_{{\cal K}^{\prime}}^{\text{s}},x_{\overline{{\cal K}^{\prime}}}^{n},z^{n})+n\alpha_{1}
=\displaystyle= (x𝒦¯n,zn)𝒯ϵ(n)(X𝒦¯,Z)p(x𝒦¯n,zn){Pr{O(m𝒦s|x𝒦¯n,zn)=1}H(L𝒦|m𝒦s,x𝒦¯n,zn,O(m𝒦s|x𝒦¯n,zn)=1)\displaystyle\sum_{(x_{\overline{{\cal K}^{\prime}}}^{n},z^{n})\in{\cal T}_{\epsilon}^{(n)}(X_{\overline{{\cal K}^{\prime}}},Z)}\!\!\!p(x_{\overline{{\cal K}^{\prime}}}^{n},z^{n})\!\left\{{\text{Pr}}\left\{O(m_{{\cal K}^{\prime}}^{\text{s}}|x_{\overline{{\cal K}^{\prime}}}^{n},z^{n})\!=\!1\right\}H(L_{{\cal K}^{\prime}}|m_{{\cal K}^{\prime}}^{\text{s}},x_{\overline{{\cal K}^{\prime}}}^{n},z^{n},O(m_{{\cal K}^{\prime}}^{\text{s}}|x_{\overline{{\cal K}^{\prime}}}^{n},z^{n})\!=\!1)\right.
+\displaystyle+ Pr{O(m𝒦s|x𝒦¯n,zn)=0}H(L𝒦|m𝒦s,x𝒦¯n,zn,O(m𝒦s|x𝒦¯n,zn)=0)}+nα1\displaystyle\left.{\text{Pr}}\left\{O(m_{{\cal K}^{\prime}}^{\text{s}}|x_{\overline{{\cal K}^{\prime}}}^{n},z^{n})=0\right\}H(L_{{\cal K}^{\prime}}|m_{{\cal K}^{\prime}}^{\text{s}},x_{\overline{{\cal K}^{\prime}}}^{n},z^{n},O(m_{{\cal K}^{\prime}}^{\text{s}}|x_{\overline{{\cal K}^{\prime}}}^{n},z^{n})=0)\right\}+n\alpha_{1}
(b)\displaystyle\overset{(b)}{\leq} (x𝒦¯n,zn)𝒯ϵ(n)(X𝒦¯,Z)p(x𝒦¯n,zn){α2H(L𝒦|m𝒦s,x𝒦¯n,zn)\displaystyle\sum_{(x_{\overline{{\cal K}^{\prime}}}^{n},z^{n})\in{\cal T}_{\epsilon}^{(n)}(X_{\overline{{\cal K}^{\prime}}},Z)}p(x_{\overline{{\cal K}^{\prime}}}^{n},z^{n})\big{\{}\alpha_{2}H(L_{{\cal K}^{\prime}}|m_{{\cal K}^{\prime}}^{\text{s}},x_{\overline{{\cal K}^{\prime}}}^{n},z^{n})
+\displaystyle+ H(L𝒦|m𝒦s,x𝒦¯n,zn,O(m𝒦s|x𝒦¯n,zn)=0)}+nα1\displaystyle H(L_{{\cal K}^{\prime}}|m_{{\cal K}^{\prime}}^{\text{s}},x_{\overline{{\cal K}^{\prime}}}^{n},z^{n},O(m_{{\cal K}^{\prime}}^{\text{s}}|x_{\overline{{\cal K}^{\prime}}}^{n},z^{n})=0)\big{\}}+n\alpha_{1}
(c)\displaystyle\overset{(c)}{\leq} n[Ω𝒦+(K+1)ϵ+1n+α2k𝒦(Rko+Rkg)+α1](d)n(Ω𝒦+δ),m𝒦sk𝒦ks,\displaystyle n\left[\varOmega_{{\cal K}^{\prime}}\!+\!(K\!+\!1)\epsilon\!+\!\frac{1}{n}\!+\!\alpha_{2}\sum_{k\in{\cal K}^{\prime}}(R_{k}^{\text{o}}+R_{k}^{\text{g}})\!+\!\alpha_{1}\right]\overset{(d)}{\leq}n(\varOmega_{{\cal K}^{\prime}}\!+\!\delta),~\forall~m_{{\cal K}^{\prime}}^{\text{s}}\in\prod_{k\in{\cal K}^{\prime}}{\cal M}_{k}^{\text{s}}, (115)

where (a) follows from using (D), (b) holds due to the fact that conditioning reduces entropy and Pr{O(m𝒦s|x𝒦¯n,zn)=0}1{\text{Pr}}\left\{O(m_{{\cal K}^{\prime}}^{\text{s}}|x_{\overline{{\cal K}^{\prime}}}^{n},z^{n})=0\right\}\leq 1, (c) follows from using (D) and (D), and

α1=Pr{(X𝒦¯n,Zn)𝒯ϵ(n)(X𝒦¯,Z)}k𝒦(Rko+Rkg),\displaystyle\alpha_{1}={\text{Pr}}\left\{(X_{\overline{{\cal K}^{\prime}}}^{n},Z^{n})\notin{\cal T}_{\epsilon}^{(n)}(X_{\overline{{\cal K}^{\prime}}},Z)\right\}\sum_{k\in{\cal K}^{\prime}}(R_{k}^{\text{o}}+R_{k}^{\text{g}}),
α2=max{Pr{O(m𝒦s|x𝒦¯n,zn)=1},(x𝒦¯n,zn)𝒯ϵ(n)(X𝒦¯,Z)}.\displaystyle\alpha_{2}=\max\left\{{\text{Pr}}\left\{O(m_{{\cal K}^{\prime}}^{\text{s}}|x_{\overline{{\cal K}^{\prime}}}^{n},z^{n})=1\right\},~\forall~(x_{\overline{{\cal K}^{\prime}}}^{n},z^{n})\in{\cal T}_{\epsilon}^{(n)}(X_{\overline{{\cal K}^{\prime}}},Z)\right\}. (116)

Note that by the LLN, Pr{(X𝒦¯n,Zn)𝒯ϵ(n)(X𝒦¯,Z)}0{\text{Pr}}\left\{(X_{\overline{{\cal K}^{\prime}}}^{n},Z^{n})\notin{\cal T}_{\epsilon}^{(n)}(X_{\overline{{\cal K}^{\prime}}},Z)\right\}\rightarrow 0 as nn\rightarrow\infty. Hence, α10\alpha_{1}\rightarrow 0 as nn\rightarrow\infty. In addition, since Pr{O(m𝒦s|x𝒦¯n,zn)=1}0,(x𝒦¯n,zn)𝒯ϵ(n)(X𝒦¯,Z){\text{Pr}}\left\{O(m_{{\cal K}^{\prime}}^{\text{s}}|x_{\overline{{\cal K}^{\prime}}}^{n},z^{n})=1\right\}\rightarrow 0,\forall(x_{\overline{{\cal K}^{\prime}}}^{n},z^{n})\in{\cal T}_{\epsilon}^{(n)}(X_{\overline{{\cal K}^{\prime}}},Z) as nn\rightarrow\infty, α20\alpha_{2}\rightarrow 0 as nn\rightarrow\infty. (K+1)ϵ+1n+α2k𝒦(Rko+Rkg)+α1(K+1)\epsilon+\frac{1}{n}+\alpha_{2}\sum_{k\in{\cal K}^{\prime}}(R_{k}^{\text{o}}+R_{k}^{\text{g}})+\alpha_{1} in (c) of (D) can thus be arbitrarily small as nn\rightarrow\infty, making the last step of (D) hold. Hence,

limn1nH(L𝒦|M𝒦s,X𝒦¯n,Zn)\displaystyle\lim_{n\rightarrow\infty}\frac{1}{n}H(L_{{\cal K}^{\prime}}|M_{{\cal K}^{\prime}}^{\text{s}},X_{\overline{{\cal K}^{\prime}}}^{n},Z^{n}) =limnm𝒦sk𝒦ks1n2nk𝒦RksH(L𝒦|m𝒦s,X𝒦¯n,Zn)\displaystyle=\lim_{n\rightarrow\infty}\sum_{m_{{\cal K}^{\prime}}^{\text{s}}\in\prod_{k\in{\cal K}^{\prime}}{\cal M}_{k}^{\text{s}}}\frac{1}{n}2^{-n\sum_{k\in{\cal K}^{\prime}}R_{k}^{\text{s}}}H(L_{{\cal K}^{\prime}}|m_{{\cal K}^{\prime}}^{\text{s}},X_{\overline{{\cal K}^{\prime}}}^{n},Z^{n})
Ω𝒦+δ.\displaystyle\leq\varOmega_{{\cal K}^{\prime}}+\delta. (117)

Lemma 5 is thus proven.

Appendix E Proof of Theorem 4

Using the conditional typicality lemma, for sufficiently large nn, we have

|𝒯ϵ(n)(X𝒮|x𝒮¯n,x𝒦¯n,zn)|2n[H(X𝒮|X𝒮¯,X𝒦¯,Z)+ϵ],𝒮𝒦,(x𝒮¯n,x𝒦¯n,zn)𝒯ϵ(n)(X𝒮¯,X𝒦¯,Z).|{\cal T}_{\epsilon}^{(n)}(X_{\cal S}|x_{\overline{\cal S}}^{n},x_{\overline{{\cal K}^{\prime}}}^{n},z^{n})|\!\leq\!2^{n\left[H(X_{\cal S}|X_{\overline{\cal S}},X_{\overline{{\cal K}^{\prime}}},Z)+\epsilon\right]},\forall{\cal S}\!\subseteq\!{\cal K}^{\prime},(x_{\overline{\cal S}}^{n},x_{\overline{{\cal K}^{\prime}}}^{n},z^{n})\!\in\!{\cal T}_{\epsilon}^{(n)}(X_{\overline{\cal S}},X_{\overline{{\cal K}^{\prime}}},Z). (118)

Denote

p𝒮=Pr{X𝒮n𝒯ϵ(n)(X𝒮|x𝒮¯n,x𝒦¯n,zn)},𝒮𝒦,(x𝒮¯n,x𝒦¯n,zn)𝒯ϵ(n)(X𝒮¯,X𝒦¯,Z).p_{\cal S}={\text{Pr}}\left\{X_{\cal S}^{n}\in{\cal T}_{\epsilon}^{(n)}(X_{\cal S}|x_{\overline{\cal S}}^{n},x_{\overline{{\cal K}^{\prime}}}^{n},z^{n})\right\},~\forall~{\cal S}\subseteq{\cal K}^{\prime},~(x_{\overline{\cal S}}^{n},x_{\overline{{\cal K}^{\prime}}}^{n},z^{n})\in{\cal T}_{\epsilon}^{(n)}(X_{\overline{\cal S}},X_{\overline{{\cal K}^{\prime}}},Z). (119)

Since Xk,k𝒦X_{k},\forall k\in{\cal K} are independent, p𝒮p_{\cal S} can be upper bounded by

p𝒮\displaystyle p_{\cal S} =x𝒮n𝒯ϵ(n)(X𝒮|x𝒮¯n,x𝒦¯n,zn)k𝒮p(xkn)2n[H(X𝒮|X𝒮¯,X𝒦¯,Z)+ϵ]k𝒮2n[H(Xk)ϵ]\displaystyle=\sum_{x_{\cal S}^{n}\in{\cal T}_{\epsilon}^{(n)}(X_{\cal S}|x_{\overline{\cal S}}^{n},x_{\overline{{\cal K}^{\prime}}}^{n},z^{n})}\prod_{k\in{\cal S}}p(x_{k}^{n})~\leq 2^{n\left[H(X_{\cal S}|X_{\overline{\cal S}},X_{\overline{{\cal K}^{\prime}}},Z)+\epsilon\right]}\prod_{k\in{\cal S}}2^{-n\left[H(X_{k})-\epsilon\right]}
=2n[H(X𝒮|X𝒮¯,X𝒦¯,Z)+ϵ]k𝒮2n[H(Xk|X𝒮¯,X𝒦¯)ϵ]=2n[I(X𝒮;Z|X𝒮¯,X𝒦¯)(|𝒮|+1)ϵ]\displaystyle=2^{n\left[H(X_{\cal S}|X_{\overline{\cal S}},X_{\overline{{\cal K}^{\prime}}},Z)+\epsilon\right]}\prod_{k\in{\cal S}}2^{-n\left[H(X_{k}|X_{\overline{\cal S}},X_{\overline{{\cal K}^{\prime}}})-\epsilon\right]}~=2^{-n\left[I(X_{\cal S};Z|X_{\overline{\cal S}},X_{\overline{{\cal K}^{\prime}}})-(|{\cal S}|+1)\epsilon\right]}
2n[I(X𝒮;Z|X𝒮¯,X𝒦¯)(K+1)ϵ],𝒮𝒦,(x𝒮¯n,x𝒦¯n,zn)𝒯ϵ(n)(X𝒮¯,X𝒦¯,Z).\displaystyle\leq 2^{-n\left[I(X_{\cal S};Z|X_{\overline{\cal S}},X_{\overline{{\cal K}^{\prime}}})-(K+1)\epsilon\right]},~\forall~{\cal S}\subseteq{\cal K}^{\prime},~(x_{\overline{\cal S}}^{n},x_{\overline{{\cal K}^{\prime}}}^{n},z^{n})\in{\cal T}_{\epsilon}^{(n)}(X_{\overline{\cal S}},X_{\overline{{\cal K}^{\prime}}},Z). (120)

For the special 𝒮=𝒦{\cal S}={\cal K}^{\prime} case, if (x𝒦¯n,zn)𝒯ϵ(n)(X𝒦¯,Z)(x_{\overline{{\cal K}^{\prime}}}^{n},z^{n})\in{\cal T}_{\epsilon}^{(n)}(X_{\overline{{\cal K}^{\prime}}},Z), (E) becomes

p𝒦=Pr{X𝒦n𝒯ϵ(n)(X𝒦|x𝒦¯n,zn)}2n[I(X𝒦;Z|X𝒦¯)(K+1)ϵ].\displaystyle p_{{\cal K}^{\prime}}={\text{Pr}}\left\{X_{{\cal K}^{\prime}}^{n}\in{\cal T}_{\epsilon}^{(n)}(X_{{\cal K}^{\prime}}|x_{\overline{{\cal K}^{\prime}}}^{n},z^{n})\right\}~\leq 2^{-n\left[I(X_{{\cal K}^{\prime}};Z|X_{\overline{{\cal K}^{\prime}}})-(K+1)\epsilon\right]}. (121)

Then, using O(l𝒦|x𝒦¯n,zn)O^{\prime}(l_{{\cal K}^{\prime}}|x_{\overline{{\cal K}^{\prime}}}^{n},z^{n}) defined in (104), we have

𝔼[Q(m𝒦s|x𝒦¯n,zn)]=\displaystyle{\mathbb{E}}\left[Q(m_{{\cal K}^{\prime}}^{\text{s}}|x_{\overline{{\cal K}^{\prime}}}^{n},z^{n})\right]= l𝒦k𝒦k,mks𝔼[O(l𝒦|x𝒦¯n,zn)]=l𝒦k𝒦k,mksp𝒦\displaystyle\sum_{l_{{\cal K}^{\prime}}\in\prod_{k\in{\cal K}^{\prime}}{\cal L}_{k,m_{k}^{\text{s}}}}{\mathbb{E}}\left[O^{\prime}(l_{{\cal K}^{\prime}}|x_{\overline{{\cal K}^{\prime}}}^{n},z^{n})\right]~=\sum_{l_{{\cal K}^{\prime}}\in\prod_{k\in{\cal K}^{\prime}}{\cal L}_{k,m_{k}^{\text{s}}}}p_{{\cal K}^{\prime}}
=\displaystyle= |k𝒦k,mks|p𝒦=2k𝒦n(Rko+Rkg)p𝒦2n[Ω𝒦+(K+1)ϵ],\displaystyle\left|\prod_{k\in{\cal K}^{\prime}}{\cal L}_{k,m_{k}^{\text{s}}}\right|p_{{\cal K}^{\prime}}~=2^{\sum_{k\in{\cal K}^{\prime}}n(R_{k}^{\text{o}}+R_{k}^{\text{g}})}p_{{\cal K}^{\prime}}~\leq 2^{n\left[\varOmega_{{\cal K}^{\prime}}+(K+1)\epsilon\right]}, (122)

and

𝔼[(Q(m𝒦s|x𝒦¯n,zn))2]=𝔼[(l𝒦k𝒦k,mksO(l𝒦|x𝒦¯n,zn))2]\displaystyle{\mathbb{E}}\left[(Q(m_{{\cal K}^{\prime}}^{\text{s}}|x_{\overline{{\cal K}^{\prime}}}^{n},z^{n}))^{2}\right]={\mathbb{E}}\left[\left(\sum_{l_{{\cal K}^{\prime}}\in\prod_{k\in{\cal K}^{\prime}}{\cal L}_{k,m_{k}^{\text{s}}}}O^{\prime}(l_{{\cal K}^{\prime}}|x_{\overline{{\cal K}^{\prime}}}^{n},z^{n})\right)^{2}\right]
=𝔼[(l𝒦k𝒦k,mksO(l𝒦|x𝒦¯n,zn))×(l^𝒦k𝒦k,mksO(l^𝒦|x𝒦¯n,zn))]\displaystyle={\mathbb{E}}\left[\left(\sum_{l_{{\cal K}^{\prime}}\in\prod_{k\in{\cal K}^{\prime}}{\cal L}_{k,m_{k}^{\text{s}}}}O^{\prime}(l_{{\cal K}^{\prime}}|x_{\overline{{\cal K}^{\prime}}}^{n},z^{n})\right)\times\left(\sum_{{\hat{l}}_{{\cal K}^{\prime}}\in\prod_{k\in{\cal K}^{\prime}}{\cal L}_{k,m_{k}^{\text{s}}}}O^{\prime}({\hat{l}}_{{\cal K}^{\prime}}|x_{\overline{{\cal K}^{\prime}}}^{n},z^{n})\right)\right]
=l𝒦k𝒦k,mks𝔼[O(l𝒦|x𝒦¯n,zn)×(l^𝒦k𝒦k,mksO(l^𝒦|x𝒦¯n,zn))]\displaystyle=\sum_{l_{{\cal K}^{\prime}}\in\prod_{k\in{\cal K}^{\prime}}{\cal L}_{k,m_{k}^{\text{s}}}}{\mathbb{E}}\left[O^{\prime}(l_{{\cal K}^{\prime}}|x_{\overline{{\cal K}^{\prime}}}^{n},z^{n})\times\left(\sum_{{\hat{l}}_{{\cal K}^{\prime}}\in\prod_{k\in{\cal K}^{\prime}}{\cal L}_{k,m_{k}^{\text{s}}}}O^{\prime}({\hat{l}}_{{\cal K}^{\prime}}|x_{\overline{{\cal K}^{\prime}}}^{n},z^{n})\right)\right]
=l𝒦k𝒦k,mksPr{O(l𝒦|x𝒦¯n,zn)=1}{l^𝒦k𝒦k,mksPr{O(l^𝒦|x𝒦¯n,zn)=1|O(l𝒦|x𝒦¯n,zn)=1}}\displaystyle=\sum_{l_{{\cal K}^{\prime}}\in\prod_{k\in{\cal K}^{\prime}}{\cal L}_{k,m_{k}^{\text{s}}}}\!\!\!\!\!{\text{Pr}}\left\{O^{\prime}(l_{{\cal K}^{\prime}}|x_{\overline{{\cal K}^{\prime}}}^{n},z^{n})\!=\!1\right\}\!\left\{\sum_{{\hat{l}}_{{\cal K}^{\prime}}\in\prod_{k\in{\cal K}^{\prime}}{\cal L}_{k,m_{k}^{\text{s}}}}\!\!\!\!\!{\text{Pr}}\left\{\!O^{\prime}({\hat{l}}_{{\cal K}^{\prime}}|x_{\overline{{\cal K}^{\prime}}}^{n},z^{n})\!=\!1|O^{\prime}(l_{{\cal K}^{\prime}}|x_{\overline{{\cal K}^{\prime}}}^{n},z^{n})\!=\!1\!\right\}\!\!\right\}
=l𝒦k𝒦k,mksPr{(xkn(lk),k𝒦)𝒯ϵ(n)(X𝒦|x𝒦¯n,zn)}×\displaystyle=\sum_{l_{{\cal K}^{\prime}}\in\prod_{k\in{\cal K}^{\prime}}{\cal L}_{k,m_{k}^{\text{s}}}}{\text{Pr}}\left\{\left(x_{k}^{n}(l_{k}),\forall k\in{\cal K}^{\prime}\right)\in{\cal T}_{\epsilon}^{(n)}(X_{{\cal K}^{\prime}}|x_{\overline{{\cal K}^{\prime}}}^{n},z^{n})\right\}\times
{1+𝒮𝒦,𝒮ϕl^𝒮k𝒮k,mks,l^klk,k𝒮Pr{(xkn(l^k),k𝒮)𝒯ϵ(n)(X𝒮|x𝒮¯n,x𝒦¯n,zn)}}\displaystyle\Bigg{\{}1+\sum\limits_{{\cal S}\subseteq{\cal K}^{\prime},~{\cal S}\neq\phi}~\sum_{{\hat{l}}_{\cal S}\in\prod_{k\in{\cal S}}{\cal L}_{k,m_{k}^{\text{s}}},~{\hat{l}}_{k}\neq l_{k},~\forall k\in{\cal S}}{\text{Pr}}\left\{\left(x_{k}^{n}({\hat{l}}_{k}),\forall k\in{\cal S}\right)\in{\cal T}_{\epsilon}^{(n)}(X_{\cal S}|x_{\overline{\cal S}}^{n},x_{\overline{{\cal K}^{\prime}}}^{n},z^{n})\right\}\Bigg{\}}
=2k𝒦n(Rko+Rkg)p𝒦[1+𝒮𝒦,𝒮ϕk𝒮(2n(Rko+Rkg)1)p𝒮]\displaystyle=2^{\sum_{k\in{\cal K}^{\prime}}n(R_{k}^{\text{o}}+R_{k}^{\text{g}})}p_{{\cal K}^{\prime}}\left[1+\sum\limits_{{\cal S}\subseteq{\cal K}^{\prime},~{\cal S}\neq\phi}~\prod\limits_{k\in{\cal S}}(2^{n(R_{k}^{\text{o}}+R_{k}^{\text{g}})}-1)p_{\cal S}\right]
2k𝒦n(Rko+Rkg)p𝒦[1+𝒮𝒦,𝒮ϕ2k𝒮n(Rko+Rkg)p𝒮]\displaystyle\leq 2^{\sum_{k\in{\cal K}^{\prime}}n(R_{k}^{\text{o}}+R_{k}^{\text{g}})}p_{{\cal K}^{\prime}}\left[1+\sum\limits_{{\cal S}\subseteq{\cal K}^{\prime},~{\cal S}\neq\phi}~2^{\sum_{k\in{\cal S}}n(R_{k}^{\text{o}}+R_{k}^{\text{g}})}p_{\cal S}\right]
=2k𝒦n(Rko+Rkg)p𝒦[1+𝒮𝒦,𝒮ϕ2k𝒮n(Rko+Rkg)p𝒮+2k𝒦n(Rko+Rkg)p𝒦]\displaystyle=2^{\sum_{k\in{\cal K}^{\prime}}n(R_{k}^{\text{o}}+R_{k}^{\text{g}})}p_{{\cal K}^{\prime}}\left[1+\sum\limits_{{\cal S}\subsetneqq{\cal K}^{\prime},~{\cal S}\neq\phi}~2^{\sum_{k\in{\cal S}}n(R_{k}^{\text{o}}+R_{k}^{\text{g}})}p_{\cal S}+2^{\sum_{k\in{\cal K}^{\prime}}n(R_{k}^{\text{o}}+R_{k}^{\text{g}})}p_{{\cal K}^{\prime}}\right]
2n[Ω𝒦+(K+1)ϵ]+𝒮𝒦,𝒮ϕ2n[2Ω𝒦Ω𝒮¯+2(K+1)ϵ]+{𝔼[Q(m𝒦s|x𝒦¯n,zn)]}2,\displaystyle\leq 2^{n\left[\varOmega_{{\cal K}^{\prime}}+(K+1)\epsilon\right]}+\sum\limits_{{\cal S}\subsetneqq{\cal K}^{\prime},~{\cal S}\neq\phi}2^{n\left[2\varOmega_{{\cal K}^{\prime}}-\varOmega_{\overline{\cal S}}+2(K+1)\epsilon\right]}+\left\{{\mathbb{E}}[Q(m_{{\cal K}^{\prime}}^{\text{s}}|x_{\overline{{\cal K}^{\prime}}}^{n},z^{n})]\right\}^{2}, (123)

where the last step follows from (E) and using (E) as well as (121) to get

2k𝒦n(Rko+Rkg)p𝒦2k𝒮n(Rko+Rkg)p𝒮2n[Ω𝒦+(K+1)ϵ]2n[k𝒮(Rko+Rkg)I(X𝒮;Z|X𝒮¯,X𝒦¯)+(K+1)ϵ]\displaystyle 2^{\sum_{k\in{\cal K}^{\prime}}n(R_{k}^{\text{o}}+R_{k}^{\text{g}})}p_{{\cal K}^{\prime}}2^{\sum_{k\in{\cal S}}n(R_{k}^{\text{o}}+R_{k}^{\text{g}})}p_{\cal S}\leq 2^{n\left[\varOmega_{{\cal K}^{\prime}}+(K+1)\epsilon\right]}2^{n\left[\sum_{k\in{\cal S}}(R_{k}^{\text{o}}+R_{k}^{\text{g}})-I(X_{\cal S};Z|X_{\overline{\cal S}},X_{\overline{{\cal K}^{\prime}}})+(K+1)\epsilon\right]}
=2n[Ω𝒦+(K+1)ϵ]2n[k𝒦(Rko+Rkg)I(X𝒦;Z|X𝒦¯)k𝒮¯(Rko+Rkg)+I(X𝒮¯;Z|X𝒦¯)+(K+1)ϵ]\displaystyle=2^{n\left[\varOmega_{{\cal K}^{\prime}}+(K+1)\epsilon\right]}2^{n\left[\sum_{k\in{\cal K}^{\prime}}(R_{k}^{\text{o}}+R_{k}^{\text{g}})-I(X_{{\cal K}^{\prime}};Z|X_{\overline{{\cal K}^{\prime}}})-\sum_{k\in{\overline{\cal S}}}(R_{k}^{\text{o}}+R_{k}^{\text{g}})+I(X_{\overline{\cal S}};Z|X_{\overline{{\cal K}^{\prime}}})+(K+1)\epsilon\right]}
=2n[2Ω𝒦Ω𝒮¯+2(K+1)ϵ],𝒮𝒦,𝒮ϕ.\displaystyle=2^{n\left[2\varOmega_{{\cal K}^{\prime}}-\varOmega_{\overline{\cal S}}+2(K+1)\epsilon\right]},~\forall~{\cal S}\subsetneqq{\cal K}^{\prime},~{\cal S}\neq\phi. (124)

According to (E) and (E),

Var[Q(m𝒦s|x𝒦¯n,zn)]=𝔼[(Q(m𝒦s|x𝒦¯n,zn))2]{𝔼[Q(m𝒦s|x𝒦¯n,zn)]}2\displaystyle{\text{Var}}\left[Q(m_{{\cal K}^{\prime}}^{\text{s}}|x_{\overline{{\cal K}^{\prime}}}^{n},z^{n})\right]={\mathbb{E}}\left[(Q(m_{{\cal K}^{\prime}}^{\text{s}}|x_{\overline{{\cal K}^{\prime}}}^{n},z^{n}))^{2}\right]-\left\{{\mathbb{E}}[Q(m_{{\cal K}^{\prime}}^{\text{s}}|x_{\overline{{\cal K}^{\prime}}}^{n},z^{n})]\right\}^{2}
2n[Ω𝒦+(K+1)ϵ]+𝒮𝒦,𝒮ϕ2n[2Ω𝒦Ω𝒮¯+2(K+1)ϵ]𝒮𝒦2n[2Ω𝒦Ω𝒮¯+2(K+1)ϵ].\displaystyle\leq 2^{n\left[\varOmega_{{\cal K}^{\prime}}+(K+1)\epsilon\right]}+\sum\limits_{{\cal S}\subsetneqq{\cal K}^{\prime},~{\cal S}\neq\phi}2^{n\left[2\varOmega_{{\cal K}^{\prime}}-\varOmega_{\overline{\cal S}}+2(K+1)\epsilon\right]}~\leq\sum\limits_{{\cal S}\subsetneqq{\cal K}^{\prime}}2^{n\left[2\varOmega_{{\cal K}^{\prime}}-\varOmega_{\overline{\cal S}}+2(K+1)\epsilon\right]}. (125)

Theorem 4 is thus proven.

Appendix F Proof of Lemma 6

We first prove (97). Using the definitions of 𝒦′′{\cal K}^{\prime\prime} and 𝒦′′¯{\overline{{\cal K}^{\prime\prime}}} given in (C-B) and the chain rule of mutual information, the inequality (95) can be rewritten as

I(X𝒦0𝒮;Y|X𝒦(𝒦0𝒮),X𝒦¯)I(X𝒦0𝒮;Z|X𝒦¯)\displaystyle I(X_{{\cal K}_{0}\cup{\cal S}};Y|X_{{\cal K}^{\prime}\setminus({\cal K}_{0}\cup{\cal S})},X_{\overline{{\cal K}^{\prime}}})-I(X_{{\cal K}_{0}\cup{\cal S}};Z|X_{\overline{{\cal K}^{\prime}}})
=\displaystyle= I(X𝒦0,X𝒮;Y|X𝒮¯,X𝒦¯)I(X𝒦0,X𝒮;Z|X𝒦¯)\displaystyle I(X_{{\cal K}_{0}},X_{\cal S};Y|X_{\overline{\cal S}},X_{\overline{{\cal K}^{\prime}}})-I(X_{{\cal K}_{0}},X_{\cal S};Z|X_{\overline{{\cal K}^{\prime}}})
=\displaystyle= I(X𝒦0;Y|X𝒦′′,X𝒦¯)I(X𝒦0;Z|X𝒦¯)+I(X𝒮;Y|X𝒮¯,X𝒦¯)I(X𝒮;Z|X𝒦¯𝒦0)\displaystyle I(X_{{\cal K}_{0}};Y|X_{{\cal K}^{\prime\prime}},X_{\overline{{\cal K}^{\prime}}})-I(X_{{\cal K}_{0}};Z|X_{\overline{{\cal K}^{\prime}}})+I(X_{\cal S};Y|X_{\overline{\cal S}},X_{\overline{{\cal K}^{\prime}}})-I(X_{\cal S};Z|X_{{\overline{{\cal K}^{\prime}}}\cup{\cal K}_{0}})
=\displaystyle= I(X𝒦0;Y|X𝒦𝒦0,X𝒦¯)I(X𝒦0;Z|X𝒦¯)+I(X𝒮;Y|X𝒮¯,X𝒦¯)I(X𝒮;Z|X𝒦′′¯)\displaystyle I(X_{{\cal K}_{0}};Y|X_{{\cal K}^{\prime}\setminus{\cal K}_{0}},X_{\overline{{\cal K}^{\prime}}})-I(X_{{\cal K}_{0}};Z|X_{\overline{{\cal K}^{\prime}}})+I(X_{\cal S};Y|X_{\overline{\cal S}},X_{\overline{{\cal K}^{\prime}}})-I(X_{\cal S};Z|X_{\overline{{\cal K}^{\prime\prime}}})
>\displaystyle> 0,𝒮𝒦′′,𝒮ϕ.\displaystyle 0,~\forall~{\cal S}\subseteq{\cal K}^{\prime\prime},~{\cal S}\neq\phi. (126)

Due to (94), it is clear from (F) that

I(X𝒮;Y|X𝒮¯,X𝒦¯)I(X𝒮;Z|X𝒦′′¯)>0,𝒮𝒦′′,𝒮ϕ,I(X_{\cal S};Y|X_{\overline{\cal S}},X_{\overline{{\cal K}^{\prime}}})-I(X_{\cal S};Z|X_{\overline{{\cal K}^{\prime\prime}}})>0,~\forall~{\cal S}\subseteq{\cal K}^{\prime\prime},~{\cal S}\neq\phi, (127)

based on which we get

I(X𝒮,X𝒯;Y|X𝒮¯,X𝒯¯)I(X𝒮;Z|X𝒦′′¯)I(X𝒮;Y|X𝒮¯,X𝒦′′¯)I(X𝒮;Z|X𝒦′′¯)\displaystyle I(X_{\cal S},X_{\cal T};Y|X_{\overline{\cal S}},X_{\overline{\cal T}})-I(X_{{\cal S}^{\prime}};Z|X_{\overline{{\cal K}^{\prime\prime}}})\geq I(X_{\cal S};Y|X_{\overline{\cal S}},X_{\overline{{\cal K}^{\prime\prime}}})-I(X_{\cal S};Z|X_{\overline{{\cal K}^{\prime\prime}}})
I(X𝒮;Y|X𝒮¯,X𝒦¯)I(X𝒮;Z|X𝒦′′¯)>0,𝒮𝒦′′,𝒮ϕ,𝒮𝒮,𝒯𝒦′′¯.\displaystyle\geq I(X_{\cal S};Y|X_{\overline{\cal S}},X_{\overline{{\cal K}^{\prime}}})-I(X_{\cal S};Z|X_{\overline{{\cal K}^{\prime\prime}}})~>0,~\forall~{\cal S}\subseteq{\cal K}^{\prime\prime},~{\cal S}\neq\phi,~{\cal S}^{\prime}\subseteq{\cal S},~{\cal T}\subseteq{\overline{{\cal K}^{\prime\prime}}}. (128)

(F) shows that (97) is true when 𝒮ϕ{\cal S}\neq\phi. If 𝒮=ϕ{\cal S}=\phi, (97) becomes

I(X𝒯;Y|X𝒦′′,X𝒯¯)>0,𝒯𝒦′′¯,𝒯ϕ,I(X_{\cal T};Y|X_{{\cal K}^{\prime\prime}},X_{\overline{\cal T}})>0,~\forall~{\cal T}\subseteq{\overline{{\cal K}^{\prime\prime}}},~{\cal T}\neq\phi, (129)

which is also true due to assumption (76). Combining (F) and (129), we get (97).

Next, we show that for any rate tuple in region (X𝒦,𝒦){\mathscr{R}}(X_{\cal K},{\cal K}^{\prime}) defined by Theorem 2, if (94) and (95) can be satisfied, it is also in region (X𝒦,𝒦′′){\mathscr{R}}(X_{\cal K},{\cal K}^{\prime\prime}).

If (R1s,R1o,,RKs,RKo)(R_{1}^{\text{s}},R_{1}^{\text{o}},\cdots,R_{K}^{\text{s}},R_{K}^{\text{o}}) is in region (X𝒦,𝒦){\mathscr{R}}(X_{\cal K},{\cal K}^{\prime}) and satisfies (94), we have

Rks=0,k𝒦′′¯.R_{k}^{\text{s}}=0,~\forall~k\in{\overline{{\cal K}^{\prime\prime}}}. (130)

To prove that this rate tuple is also in region (X𝒦,𝒦′′){\mathscr{R}}(X_{\cal K},{\cal K}^{\prime\prime}), we need to further verify the upper bounds on k𝒮Rks+k𝒮𝒮Rko+k𝒯Rko\sum_{k\in\cal S}R_{k}^{\text{s}}+\sum_{k\in{\cal S}\setminus{\cal S}^{\prime}}R_{k}^{\text{o}}+\sum_{k\in{\cal T}}R_{k}^{\text{o}} for all possible set choices given in (98). To that end, we separately prove

k𝒮Rks+k𝒮𝒮Rko+k𝒯Rko\displaystyle\sum\limits_{k\in\cal S}R_{k}^{\text{s}}+\sum\limits_{k\in{\cal S}\setminus{\cal S}^{\prime}}R_{k}^{\text{o}}+\sum\limits_{k\in{\cal T}}R_{k}^{\text{o}} I(X𝒮,X𝒯;Y|X𝒮¯,X𝒦¯𝒯,X𝒦0)I(X𝒮;Z|X𝒦′′¯),\displaystyle\leq I(X_{\cal S},X_{\cal T};Y|X_{\overline{\cal S}},X_{{\overline{{\cal K}^{\prime}}}\setminus{\cal T}},X_{{\cal K}_{0}})-I(X_{{\cal S}^{\prime}};Z|X_{\overline{{\cal K}^{\prime\prime}}}),
𝒮𝒦′′,𝒮𝒮,𝒯𝒦¯,\displaystyle~\forall~{\cal S}\subseteq{\cal K}^{\prime\prime},~{\cal S}^{\prime}\subseteq{\cal S},~{\cal T}\subseteq{\overline{{\cal K}^{\prime}}}, (131)

and

k𝒮Rks+k𝒮𝒮Rko+k𝒯Rko\displaystyle\sum\limits_{k\in\cal S}R_{k}^{\text{s}}+\sum\limits_{k\in{\cal S}\setminus{\cal S}^{\prime}}R_{k}^{\text{o}}+\sum\limits_{k\in{\cal T}}R_{k}^{\text{o}} I(X𝒮,X𝒯;Y|X𝒮¯,X𝒦′′¯𝒯)I(X𝒮;Z|X𝒦′′¯),\displaystyle\leq I(X_{\cal S},X_{\cal T};Y|X_{\overline{\cal S}},X_{{\overline{{\cal K}^{\prime\prime}}}\setminus{\cal T}})-I(X_{{\cal S}^{\prime}};Z|X_{\overline{{\cal K}^{\prime\prime}}}),
𝒮𝒦′′,𝒮𝒮,𝒯𝒦′′¯,𝒯𝒦0ϕ.\displaystyle~\forall~{\cal S}\subseteq{\cal K}^{\prime\prime},~{\cal S}^{\prime}\subseteq{\cal S},~{\cal T}\subseteq{\overline{{\cal K}^{\prime\prime}}},~{\cal T}\cap{\cal K}_{0}\neq\phi. (132)

Note that 𝒯{\cal T} in (F) and (F) belongs to different sets. To avoid ambiguity, instead of using 𝒯¯\overline{\cal T}, we use its definition directly in (F) and (F).

We first prove (F). Using (130), the left-hand side term of (F) can be rewritten as

k𝒮Rks+k𝒮𝒮Rko+k𝒯Rko=k𝒮Rks+k𝒦0Rks+k𝒮𝒮Rko+k𝒯Rko\displaystyle\sum_{k\in\cal S}R_{k}^{\text{s}}+\sum_{k\in{\cal S}\setminus{\cal S}^{\prime}}R_{k}^{\text{o}}+\sum_{k\in{\cal T}}R_{k}^{\text{o}}=\sum_{k\in\cal S}R_{k}^{\text{s}}+\sum_{k\in{\cal K}_{0}}R_{k}^{\text{s}}+\sum_{k\in{\cal S}\setminus{\cal S}^{\prime}}R_{k}^{\text{o}}+\sum_{k\in{\cal T}}R_{k}^{\text{o}}
=k𝒮𝒦0Rks+k𝒮𝒦0(𝒮𝒦0)Rko+k𝒯Rko\displaystyle=\sum_{k\in{\cal S}\cup{\cal K}_{0}}R_{k}^{\text{s}}+\sum_{k\in{\cal S}\cup{\cal K}_{0}\setminus({\cal S}^{\prime}\cup{\cal K}_{0})}R_{k}^{\text{o}}+\sum_{k\in{\cal T}}R_{k}^{\text{o}}
(a)I(X𝒮𝒦0,X𝒯;Y|X𝒦(𝒮𝒦0),X𝒦¯𝒯)I(X𝒮𝒦0;Z|X𝒦¯)\displaystyle\overset{(a)}{\leq}I(X_{{\cal S}\cup{\cal K}_{0}},X_{\cal T};Y|X_{{\cal K}^{\prime}\setminus({\cal S}\cup{\cal K}_{0})},X_{{\overline{{\cal K}^{\prime}}}\setminus{\cal T}})-I(X_{{\cal S}^{\prime}\cup{\cal K}_{0}};Z|X_{\overline{{\cal K}^{\prime}}})
=I(X𝒦0;Y|X𝒦𝒦0,X𝒦¯)I(X𝒦0;Z|X𝒦¯)\displaystyle=I(X_{{\cal K}_{0}};Y|X_{{\cal K}^{\prime}\setminus{\cal K}_{0}},X_{\overline{{\cal K}^{\prime}}})-I(X_{{\cal K}_{0}};Z|X_{\overline{{\cal K}^{\prime}}})
+I(X𝒮,X𝒯;Y|X𝒦(𝒮𝒦0),X𝒦¯𝒯)I(X𝒮;Z|X𝒦¯,X𝒦0)\displaystyle+I(X_{\cal S},X_{\cal T};Y|X_{{\cal K}^{\prime}\setminus({\cal S}\cup{\cal K}_{0})},X_{{\overline{{\cal K}^{\prime}}}\setminus{\cal T}})-I(X_{{\cal S}^{\prime}};Z|X_{\overline{{\cal K}^{\prime}}},X_{{\cal K}_{0}})
(b)I(X𝒮,X𝒯;Y|X𝒦(𝒮𝒦0),X𝒦¯𝒯)I(X𝒮;Z|X𝒦¯,X𝒦0)\displaystyle\overset{(b)}{\leq}I(X_{\cal S},X_{\cal T};Y|X_{{\cal K}^{\prime}\setminus({\cal S}\cup{\cal K}_{0})},X_{{\overline{{\cal K}^{\prime}}}\setminus{\cal T}})-I(X_{{\cal S}^{\prime}};Z|X_{\overline{{\cal K}^{\prime}}},X_{{\cal K}_{0}})
=(c)I(X𝒮,X𝒯;Y|X𝒮¯,X𝒦¯𝒯)I(X𝒮;Z|X𝒦′′¯)\displaystyle\overset{(c)}{=}I(X_{\cal S},X_{\cal T};Y|X_{\overline{\cal S}},X_{{\overline{{\cal K}^{\prime}}}\setminus{\cal T}})-I(X_{{\cal S}^{\prime}};Z|X_{\overline{{\cal K}^{\prime\prime}}})
(d)I(X𝒮,X𝒯;Y|X𝒮¯,X𝒦¯𝒯,X𝒦0)I(X𝒮;Z|X𝒦′′¯),𝒮𝒦′′,𝒮𝒮,𝒯𝒦¯,\displaystyle\overset{(d)}{\leq}I(X_{\cal S},X_{\cal T};Y|X_{\overline{\cal S}},X_{{\overline{{\cal K}^{\prime}}}\setminus{\cal T}},X_{{\cal K}_{0}})-I(X_{{\cal S}^{\prime}};Z|X_{\overline{{\cal K}^{\prime\prime}}}),~\forall~{\cal S}\subseteq{\cal K}^{\prime\prime},~{\cal S}^{\prime}\subseteq{\cal S},~{\cal T}\subseteq{\overline{{\cal K}^{\prime}}}, (133)

where (a)(a) holds since (R1s,R1o,,RKs,RKo)(R_{1}^{\text{s}},R_{1}^{\text{o}},\cdots,R_{K}^{\text{s}},R_{K}^{\text{o}}) is in region (X𝒦,𝒦){\mathscr{R}}(X_{\cal K},{\cal K}^{\prime}) and thus satisfies (14), (b)(b) follows from using (94), (c)(c) is true since 𝒮¯=𝒦′′𝒮=𝒦(𝒮𝒦0){\overline{\cal S}}={\cal K}^{\prime\prime}\setminus{\cal S}={\cal K}^{\prime}\setminus({\cal S}\cup{\cal K}_{0}) and 𝒦′′¯=𝒦¯𝒦0{\overline{{\cal K}^{\prime\prime}}}={\overline{{\cal K}^{\prime}}}\cup{\cal K}_{0}, and (d)(d) holds due to the fact that Xk,k𝒦X_{k},\forall k\in{\cal K} are independent of each other. (F) is thus proven.

Next we prove (F). If 𝒯𝒦′′¯{\cal T}\subseteq{\overline{{\cal K}^{\prime\prime}}} and 𝒯𝒦0ϕ{\cal T}\cap{\cal K}_{0}\neq\phi, 𝒯{\cal T} can be divided into two disjoint subsets, 𝒯1{\cal T}_{1} and 𝒯2{\cal T}_{2}, with 𝒯1𝒦¯{\cal T}_{1}\subseteq{\overline{{\cal K}^{\prime}}} and 𝒯2𝒦0{\cal T}_{2}\subseteq{\cal K}_{0}. As defined in (94), 𝒦0𝒦{\cal K}_{0}\subsetneqq{\cal K}^{\prime}. Hence, 𝒯2𝒦{\cal T}_{2}\subseteq{\cal K}^{\prime}. Since the rate tuple (R1s,R1o,,RKs,RKo)(R_{1}^{\text{s}},R_{1}^{\text{o}},\cdots,R_{K}^{\text{s}},R_{K}^{\text{o}}) is in region (X𝒦,𝒦){\mathscr{R}}(X_{\cal K},{\cal K}^{\prime}) and thus satisfies (14). By setting 𝒮=𝒯2{\cal S}={\cal T}_{2}, 𝒮=ϕ{\cal S}^{\prime}=\phi, and 𝒯=ϕ{\cal T}=\phi in (14), and using (130), we have

k𝒯2Rko=k𝒯2Rks+k𝒯2RkoI(X𝒯2;Y|X𝒦𝒯2,X𝒦¯)=I(X𝒯2;Y|X𝒦′′,X𝒦¯,X𝒦0𝒯2).\displaystyle\sum_{k\in{\cal T}_{2}}R_{k}^{\text{o}}=\sum_{k\in{\cal T}_{2}}R_{k}^{\text{s}}+\sum_{k\in{\cal T}_{2}}R_{k}^{\text{o}}~\leq I(X_{{\cal T}_{2}};Y|X_{{\cal K}^{\prime}\setminus{\cal T}_{2}},X_{\overline{{\cal K}^{\prime}}})~=I(X_{{\cal T}_{2}};Y|X_{{\cal K}^{\prime\prime}},X_{\overline{{\cal K}^{\prime}}},X_{{\cal K}_{0}\setminus{\cal T}_{2}}). (134)

Then,

k𝒮Rks+k𝒮𝒮Rko+k𝒯Rko=k𝒮Rks+k𝒮𝒮Rko+k𝒯1Rko+k𝒯2Rko\displaystyle\sum_{k\in\cal S}R_{k}^{\text{s}}+\sum_{k\in{\cal S}\setminus{\cal S}^{\prime}}R_{k}^{\text{o}}+\sum_{k\in{\cal T}}R_{k}^{\text{o}}=\sum_{k\in\cal S}R_{k}^{\text{s}}+\sum_{k\in{\cal S}\setminus{\cal S}^{\prime}}R_{k}^{\text{o}}+\sum_{k\in{\cal T}_{1}}R_{k}^{\text{o}}+\sum_{k\in{\cal T}_{2}}R_{k}^{\text{o}}
\displaystyle\leq I(X𝒮,X𝒯1;Y|X𝒮¯,X𝒦¯𝒯1)I(X𝒮;Z|X𝒦′′¯)+I(X𝒯2;Y|X𝒦′′,X𝒦¯,X𝒦0𝒯2)\displaystyle I(X_{\cal S},X_{{\cal T}_{1}};Y|X_{\overline{\cal S}},X_{{\overline{{\cal K}^{\prime}}}\setminus{\cal T}_{1}})-I(X_{{\cal S}^{\prime}};Z|X_{\overline{{\cal K}^{\prime\prime}}})+I(X_{{\cal T}_{2}};Y|X_{{\cal K}^{\prime\prime}},X_{\overline{{\cal K}^{\prime}}},X_{{\cal K}_{0}\setminus{\cal T}_{2}})
\displaystyle\leq I(X𝒮,X𝒯1;Y|X𝒮¯,X𝒦¯𝒯1,X𝒦0𝒯2)I(X𝒮;Z|X𝒦′′¯)+I(X𝒯2;Y|X𝒦′′,X𝒦¯,X𝒦0𝒯2)\displaystyle I(X_{\cal S},X_{{\cal T}_{1}};Y|X_{\overline{\cal S}},X_{{\overline{{\cal K}^{\prime}}}\setminus{\cal T}_{1}},X_{{\cal K}_{0}\setminus{\cal T}_{2}})-I(X_{{\cal S}^{\prime}};Z|X_{\overline{{\cal K}^{\prime\prime}}})+I(X_{{\cal T}_{2}};Y|X_{{\cal K}^{\prime\prime}},X_{\overline{{\cal K}^{\prime}}},X_{{\cal K}_{0}\setminus{\cal T}_{2}})
=\displaystyle= I(X𝒮,X𝒯1,X𝒯2;Y|X𝒮¯,X𝒦¯𝒯1,X𝒦0𝒯2)I(X𝒮;Z|X𝒦′′¯)\displaystyle I(X_{\cal S},X_{{\cal T}_{1}},X_{{\cal T}_{2}};Y|X_{\overline{\cal S}},X_{{\overline{{\cal K}^{\prime}}}\setminus{\cal T}_{1}},X_{{\cal K}_{0}\setminus{\cal T}_{2}})-I(X_{{\cal S}^{\prime}};Z|X_{\overline{{\cal K}^{\prime\prime}}})
=\displaystyle= I(X𝒮,X𝒯;Y|X𝒮¯,X𝒦′′¯𝒯)I(X𝒮;Z|X𝒦′′¯),𝒮𝒦′′,𝒮𝒮,𝒯𝒦′′¯,𝒯𝒦0ϕ,\displaystyle I(X_{\cal S},X_{{\cal T}};Y|X_{\overline{\cal S}},X_{{\overline{{\cal K}^{\prime\prime}}}\setminus{\cal T}})-I(X_{{\cal S}^{\prime}};Z|X_{\overline{{\cal K}^{\prime\prime}}}),~\forall{\cal S}\subseteq{\cal K}^{\prime\prime},{\cal S}^{\prime}\subseteq{\cal S},{\cal T}\subseteq{\overline{{\cal K}^{\prime\prime}}},{\cal T}\cap{\cal K}_{0}\neq\phi, (135)

where the first inequality follows from using (F) and (134). Note that here we use (c)(c) in (F) instead of (d)(d). (F) is thus proven. Combining (130), (F), and (F), it is known that (R1s,R1o,,RKs,RKo)(R_{1}^{\text{s}},R_{1}^{\text{o}},\cdots,R_{K}^{\text{s}},R_{K}^{\text{o}}) satisfies (98) and is thus also in (X𝒦,𝒦′′){\mathscr{R}}(X_{\cal K},{\cal K}^{\prime\prime}). Lemma 6 is then proven.

Appendix G

In this appendix, we consider a specific user jj in 𝒦{\cal K} and show that if Rjs=0R_{j}^{\text{s}}=0, there is a trade-off in terms of the resulted achievable regions between cases j𝒦j\in{\cal K}^{\prime} and j𝒦¯j\in{\overline{{\cal K}^{\prime}}}. For convenience, assume that all the other users 𝒦{j}{\cal K}\setminus\{j\} are in 𝒦{\cal K}^{\prime}.

In the first case with j𝒦j\in{\cal K}^{\prime}, 𝒦=𝒦{\cal K}^{\prime}={\cal K} and 𝒦¯=ϕ{\overline{{\cal K}^{\prime}}}=\phi. For convenience, assume

I(X𝒮;Y|X𝒮¯)I(X𝒮;Z),𝒮𝒦,I(X_{\cal S};Y|X_{\overline{\cal S}})\geq I(X_{\cal S};Z),~\forall~{\cal S}\subseteq{\cal K}, (136)

which guarantees

I(X𝒮;Y|X𝒮¯)I(X𝒮;Z),𝒮𝒦,𝒮𝒮.I(X_{\cal S};Y|X_{\overline{\cal S}})\geq I(X_{{\cal S}^{\prime}};Z),~\forall~{\cal S}\subseteq{\cal K},~{\cal S}^{\prime}\subseteq{\cal S}. (137)

Then, it is known from Lemma 1 that for any rate tuple (R1s,R1o,,RKs,RKo)(R_{1}^{\text{s}},R_{1}^{\text{o}},\cdots,R_{K}^{\text{s}},R_{K}^{\text{o}}) satisfying

{Rjs=0,k𝒮Rks+k𝒮𝒮RkoI(X𝒮;Y|X𝒮¯)I(X𝒮;Z),𝒮𝒦,𝒮𝒮,\left\{\begin{array}[]{ll}R_{j}^{\text{s}}=0,\\ \sum\limits_{k\in\cal S}R_{k}^{\text{s}}+\sum\limits_{k\in{\cal S}\setminus{\cal S}^{\prime}}R_{k}^{\text{o}}\leq I(X_{\cal S};Y|X_{\overline{\cal S}})-I(X_{{\cal S}^{\prime}};Z),~\forall~{\cal S}\subseteq{\cal K},~{\cal S}^{\prime}\subseteq{\cal S},\end{array}\right. (138)

there exist Rkg,k𝒦R_{k}^{\text{g}},\forall k\in{\cal K} such that

{Rjs=0,Rkg0,k𝒦,k𝒮(Rks+Rko+Rkg)I(X𝒮;Y|X𝒮¯),𝒮𝒦,k𝒮(Rko+Rkg)I(X𝒮;Z),𝒮𝒦.\left\{\begin{array}[]{ll}R_{j}^{\text{s}}=0,\\ R_{k}^{\text{g}}\geq 0,~\forall~k\in{\cal K},\\ \sum\limits_{k\in{\cal S}}(R_{k}^{\text{s}}+R_{k}^{\text{o}}+R_{k}^{\text{g}})\leq I(X_{\cal S};Y|X_{\overline{\cal S}}),~\forall~{\cal S}\subseteq{\cal K},\\ \sum\limits_{k\in{\cal S}}(R_{k}^{\text{o}}+R_{k}^{\text{g}})\geq I(X_{\cal S};Z),~\forall~{\cal S}\subseteq{\cal K}.\end{array}\right. (139)

As shown in Theorem 2, (138) actually constructs the achievable region (X𝒦,𝒦){\mathscr{R}}(X_{\cal K},{\cal K}) (with Rjs=0R_{j}^{\text{s}}=0). Note that due to k𝒮(Rko+Rkg)I(X𝒮;Z),𝒮𝒦\sum_{k\in{\cal S}}(R_{k}^{\text{o}}+R_{k}^{\text{g}})\geq I(X_{\cal S};Z),\forall{\cal S}\subseteq{\cal K}, which considers the combination of all users, including user jj, Eve cannot decode the open message MjoM_{j}^{\text{o}}. Hence, in the achievability proof of (138), we use metric 1nI(M𝒦s;Zn)\frac{1}{n}I(M_{\cal K}^{\text{s}};Z^{n}) and hope it vanishes as nn\rightarrow\infty.

In (138), there are three cases on whether jj belongs to 𝒮{\cal S} and 𝒮{\cal S}^{\prime} or not, i.e., 1) j𝒮j\notin{\cal S}, 2) j𝒮j\in{\cal S} and j𝒮j\notin{\cal S}^{\prime}, 3) j𝒮j\in{\cal S} and j𝒮j\in{\cal S}^{\prime}. Note that here we mean 𝒮{\cal S} and 𝒮{\cal S}^{\prime} in (138), which may be different from those in somewhere else, e.g., those in (140). By considering these cases separately, the inequalities in (138) can be divided into three parts as follows

k𝒮Rks+k𝒮𝒮RkoI(X𝒮;Y|X𝒮¯,Xj)I(X𝒮;Z),𝒮𝒦{j},𝒮𝒮,\displaystyle\sum\limits_{k\in\cal S}R_{k}^{\text{s}}+\sum\limits_{k\in{\cal S}\setminus{\cal S}^{\prime}}R_{k}^{\text{o}}\leq I(X_{\cal S};Y|X_{\overline{\cal S}},X_{j})-I(X_{{\cal S}^{\prime}};Z),~\forall~{\cal S}\subseteq{\cal K}\setminus\{j\},~{\cal S}^{\prime}\subseteq{\cal S}, (140a)
k𝒮Rks+k𝒮𝒮Rko+RjoI(X𝒮,Xj;Y|X𝒮¯)I(X𝒮;Z),𝒮𝒦{j},𝒮𝒮,\displaystyle\sum\limits_{k\in\cal S}R_{k}^{\text{s}}+\sum\limits_{k\in{\cal S}\setminus{\cal S}^{\prime}}R_{k}^{\text{o}}+R_{j}^{\text{o}}\leq I(X_{\cal S},X_{j};Y|X_{\overline{\cal S}})-I(X_{{\cal S}^{\prime}};Z),~\forall~{\cal S}\subseteq{\cal K}\setminus\{j\},~{\cal S}^{\prime}\subseteq{\cal S},~ (140b)
k𝒮Rks+k𝒮𝒮RkoI(X𝒮,Xj;Y|X𝒮¯)I(X𝒮,Xj;Z),𝒮𝒦{j},𝒮𝒮.\displaystyle\sum\limits_{k\in\cal S}R_{k}^{\text{s}}+\sum\limits_{k\in{\cal S}\setminus{\cal S}^{\prime}}R_{k}^{\text{o}}\leq I(X_{\cal S},X_{j};Y|X_{\overline{\cal S}})-I(X_{{\cal S}^{\prime}},X_{j};Z),~\forall~{\cal S}\subseteq{\cal K}\setminus\{j\},~{\cal S}^{\prime}\subseteq{\cal S}. (140c)

(140a) and (140c) show that for each choice of 𝒮𝒦{j}{\cal S}\subseteq{\cal K}\setminus\{j\} and 𝒮𝒮{\cal S}^{\prime}\subseteq{\cal S}, there are two bounds on k𝒮Rks+k𝒮𝒮Rko\sum_{k\in\cal S}R_{k}^{\text{s}}+\sum_{k\in{\cal S}\setminus{\cal S}^{\prime}}R_{k}^{\text{o}}. We show in the following that compared with the j𝒦¯j\in{\overline{{\cal K}^{\prime}}} case, (140)(\ref{FM_project2}) sets looser but more upper bounds to the rates.

Now we consider the second case with j𝒦¯j\in{\overline{{\cal K}^{\prime}}}. In this case, 𝒦=𝒦{j}{\cal K}^{\prime}={\cal K}\setminus\{j\} and 𝒦¯={j}{\overline{{\cal K}^{\prime}}}=\{j\}. Again for convenience, assume

I(X𝒮;Y|X𝒮¯,Xj)I(X𝒮;Z|Xj),𝒮𝒦{j},I(X_{\cal S};Y|X_{\overline{\cal S}},X_{j})\geq I(X_{\cal S};Z|X_{j}),~\forall~{\cal S}\subseteq{\cal K}\setminus\{j\}, (141)

which guarantees

I(X𝒮,X𝒯;Y|X𝒮¯,X𝒯¯)I(X𝒮;Z|Xj),𝒮𝒦{j},𝒮𝒮,𝒯{j}.\displaystyle I(X_{\cal S},X_{\cal T};Y|X_{\overline{\cal S}},X_{\overline{\cal T}})\geq I(X_{{\cal S}^{\prime}};Z|X_{j}),~\forall~{\cal S}\subseteq{\cal K}\setminus\{j\},~{\cal S}^{\prime}\subseteq{\cal S},~{\cal T}\subseteq\{j\}. (142)

It is known from Theorem 1 that for any rate tuple (R1s,R1o,,RKs,RKo)(R_{1}^{\text{s}},R_{1}^{\text{o}},\cdots,R_{K}^{\text{s}},R_{K}^{\text{o}}) satisfying

{Rjs=0,k𝒮Rks+k𝒮𝒮Rko+k𝒯RkoI(X𝒮,X𝒯;Y|X𝒮¯,X𝒯¯)I(X𝒮;Z|Xj),𝒮𝒦{j},𝒮𝒮,𝒯{j},\left\{\begin{array}[]{ll}R_{j}^{\text{s}}=0,\\ \sum\limits_{k\in\cal S}R_{k}^{\text{s}}+\sum\limits_{k\in{\cal S}\setminus{\cal S}^{\prime}}R_{k}^{\text{o}}+\sum\limits_{k\in{\cal T}}R_{k}^{\text{o}}&\leq I(X_{\cal S},X_{\cal T};Y|X_{\overline{\cal S}},X_{\overline{\cal T}})-I(X_{{\cal S}^{\prime}};Z|X_{j}),\\ &\forall~{\cal S}\subseteq{\cal K}\setminus\{j\},~{\cal S}^{\prime}\subseteq{\cal S},~{\cal T}\subseteq\{j\},\end{array}\right. (143)

there exist Rkg,k𝒦{j}R_{k}^{\text{g}},\forall k\in{\cal K}\setminus\{j\} such that

{Rjs=0,Rkg0,k𝒦{j},k𝒮(Rks+Rko+Rkg)+k𝒯RkoI(X𝒮,X𝒯;Y|X𝒮¯,X𝒯¯),𝒮𝒦{j},𝒯{j},k𝒮(Rko+Rkg)I(X𝒮;Z|Xj),𝒮𝒦{j}.\left\{\begin{array}[]{ll}R_{j}^{\text{s}}=0,\\ R_{k}^{\text{g}}\geq 0,~\forall~k\in{\cal K}\setminus\{j\},\\ \sum\limits_{k\in{\cal S}}(R_{k}^{\text{s}}+R_{k}^{\text{o}}+R_{k}^{\text{g}})+\sum\limits_{k\in{\cal T}}R_{k}^{\text{o}}\leq I(X_{\cal S},X_{\cal T};Y|X_{\overline{\cal S}},X_{\overline{\cal T}}),~\forall~{\cal S}\subseteq{\cal K}\setminus\{j\},~{\cal T}\subseteq\{j\},\\ \sum\limits_{k\in{\cal S}}(R_{k}^{\text{o}}+R_{k}^{\text{g}})\geq I(X_{\cal S};Z|X_{j}),~\forall~{\cal S}\subseteq{\cal K}\setminus\{j\}.\end{array}\right. (144)

It is obvious from Theorem 2 that (143) constructs the achievable region (X𝒦,𝒦{j}){\mathscr{R}}(X_{\cal K},{\cal K}\setminus\{j\}). Different from the first case, (144) ensures k𝒮(Rko+Rkg)I(X𝒮;Z|Xj),𝒮𝒦{j}\sum_{k\in{\cal S}}(R_{k}^{\text{o}}+R_{k}^{\text{g}})\geq I(X_{\cal S};Z|X_{j}),\forall{\cal S}\subseteq{\cal K}\setminus\{j\}, which does not take user jj into account. It is thus possible for Eve to decode MjoM_{j}^{\text{o}}. Hence, XjX_{j} is treated as a known information in (143) and (144), and the worse metric 1nI(M𝒦{j}s;Zn|Mjo)\frac{1}{n}I(M_{{\cal K}\setminus\{j\}}^{\text{s}};Z^{n}|M_{j}^{\text{o}}) ( in contrast to 1nI(M𝒦{j}s;Zn)\frac{1}{n}I(M_{{\cal K}\setminus\{j\}}^{\text{s}};Z^{n})) has to be used for the achievability proof of (143).

In (143), there are two cases on whether jj is in 𝒯{\cal T} or not, i.e., 1) j𝒯j\notin{\cal T}, 2) j𝒯j\in{\cal T}. Considering these cases separately, the inequalities in (143) can be divided into two classes as follows

k𝒮Rks+k𝒮𝒮RkoI(X𝒮;Y|X𝒮¯,Xj)I(X𝒮;Z|Xj),𝒮𝒦{j},𝒮𝒮,\displaystyle\sum\limits_{k\in\cal S}R_{k}^{\text{s}}+\sum\limits_{k\in{\cal S}\setminus{\cal S}^{\prime}}R_{k}^{\text{o}}\leq I(X_{\cal S};Y|X_{\overline{\cal S}},X_{j})-I(X_{{\cal S}^{\prime}};Z|X_{j}),~\forall{\cal S}\subseteq{\cal K}\setminus\{j\},{\cal S}^{\prime}\subseteq{\cal S}, (145a)
k𝒮Rks+k𝒮𝒮Rko+RjoI(X𝒮,Xj;Y|X𝒮¯)I(X𝒮;Z|Xj),𝒮𝒦{j},𝒮𝒮.\displaystyle\sum\limits_{k\in\cal S}R_{k}^{\text{s}}+\sum\limits_{k\in{\cal S}\setminus{\cal S}^{\prime}}R_{k}^{\text{o}}+R_{j}^{\text{o}}\leq I(X_{\cal S},X_{j};Y|X_{\overline{\cal S}})-I(X_{{\cal S}^{\prime}};Z|X_{j}),\forall{\cal S}\subseteq{\cal K}\setminus\{j\},{\cal S}^{\prime}\subseteq{\cal S}. (145b)

By comparing (145a) with (140a) it can be found that they set upper bounds to the same rate sums, but due to the known information XjX_{j}, (145a) gives tighter bounds in contrast to (140a). Similar observations can also be made by comparing (145b) with (140b). In this sense, adding jj to 𝒦¯{\overline{{\cal K}^{\prime}}} shrinks the achievable region. However, as we can also see, by including user jj in 𝒦{\cal K}^{\prime}, (140) gives many more upper bounds on the rate sums than (145), i.e., (140c), which is obviously a disadvantage in determining the achievable region.

In conclusion, when Rjs=0R_{j}^{\text{s}}=0, there is a trade-off between j𝒦j\in{\cal K}^{\prime} and j𝒦¯j\in{\overline{{\cal K}^{\prime}}} in determining the achievable regions. To get a better region, all possible cases have to be taken into account.

Appendix H

In this appendix, we consider a special case with K=2K=2 and Rko=0,k𝒦R_{k}^{\text{o}}=0,\forall k\in{\cal K}, and show that the achievable secrecy rate region provided in Lemma 3 is part of that provided in Lemma 4.

For a given joint distribution k=1Kp(xk)\prod_{k=1}^{K}p(x_{k}), assume that I(X𝒮;Y|X𝒮¯)I(X𝒮;Z|X𝒦¯)0,𝒦𝒦,𝒮𝒦I(X_{\cal S};Y|X_{\overline{\cal S}})-I(X_{\cal S};Z|X_{\overline{{\cal K}^{\prime}}})\geq 0,\forall{\cal K}^{\prime}\subseteq{\cal K},{\cal S}\subseteq{\cal K}^{\prime}, for convenience. When 𝒦={1,2}{\cal K}^{\prime}=\{1,2\}, the inequation systems (11) and (21) can be written in detail as

{R1sI(X1;Y|X2)I(X1;Z),R2sI(X2;Y|X1)I(X2;Z),R1s+R2sI(X1,X2;Y)I(X1,X2;Z),\displaystyle\left\{\begin{array}[]{ll}R_{1}^{\text{s}}\leq I(X_{1};Y|X_{2})-I(X_{1};Z),\\ R_{2}^{\text{s}}\leq I(X_{2};Y|X_{1})-I(X_{2};Z),\\ R_{1}^{\text{s}}+R_{2}^{\text{s}}\leq I(X_{1},X_{2};Y)-I(X_{1},X_{2};Z),\end{array}\right. (149)

which constructs regions s(X𝒦){\mathscr{R}}^{\text{s}}(X_{\cal K}) and s(X𝒦,{1,2}){\mathscr{R}}^{\text{s}}(X_{\cal K},\{1,2\}). When 𝒦{\cal K}^{\prime} is {1}\{1\} or {2}\{2\}, (21) can be rewritten as

{R2s=0,R1sI(X1;Y|X2)I(X1;Z|X2),\displaystyle\left\{\begin{array}[]{ll}R_{2}^{\text{s}}=0,\\ R_{1}^{\text{s}}\leq I(X_{1};Y|X_{2})-I(X_{1};Z|X_{2}),\end{array}\right. (152)

and

{R1s=0,R2sI(X2;Y|X1)I(X2;Z|X1),\displaystyle\left\{\begin{array}[]{ll}R_{1}^{\text{s}}=0,\\ R_{2}^{\text{s}}\leq I(X_{2};Y|X_{1})-I(X_{2};Z|X_{1}),\end{array}\right. (155)

which respectively construct regions s(X𝒦,{1}){\mathscr{R}}^{\text{s}}(X_{\cal K},\{1\}) and s(X𝒦,{2}){\mathscr{R}}^{\text{s}}(X_{\cal K},\{2\}). The region s(X𝒦,𝒦){\mathscr{R}}^{\text{s}}(X_{\cal K},{\cal K}^{\prime}) over all 𝒦{\cal K}^{\prime} is then s(X𝒦,{1,2})s(X𝒦,{1})s(X𝒦,{2}){\mathscr{R}}^{\text{s}}(X_{\cal K},\{1,2\})\cup{\mathscr{R}}^{\text{s}}(X_{\cal K},\{1\})\cup{\mathscr{R}}^{\text{s}}(X_{\cal K},\{2\}).

Refer to caption
Figure 6: Achievable secrecy rate regions provided by Lemma 3 and Lemma 4 for a given distribution k=1Kp(xk)\prod_{k=1}^{K}p(x_{k}) when K=2K=2 and (H) holds.
Refer to caption
Figure 7: Achievable secrecy rate regions provided by Lemma 3 and Lemma 4 for a given distribution k=1Kp(xk)\prod_{k=1}^{K}p(x_{k}) when K=2K=2 and (H) holds.

If

I(X1,X2;Y)I(X1,X2;Z)\displaystyle I(X_{1},X_{2};Y)-I(X_{1},X_{2};Z)
\displaystyle\geq max{I(X1;Y|X2)I(X1;Z|X2),I(X2;Y|X1)I(X2;Z|X1)},\displaystyle\max\left\{I(X_{1};Y|X_{2})-I(X_{1};Z|X_{2}),I(X_{2};Y|X_{1})-I(X_{2};Z|X_{1})\right\}, (156)

it is obvious that the regions s(X𝒦,{1}){\mathscr{R}}^{\text{s}}(X_{\cal K},\{1\}) and s(X𝒦,{2}){\mathscr{R}}^{\text{s}}(X_{\cal K},\{2\}) are included in s(X𝒦,{1,2}){\mathscr{R}}^{\text{s}}(X_{\cal K},\{1,2\}). Hence, as shown by Fig. 7,

s(X𝒦)=s(X𝒦,{1,2})s(X𝒦,{1})s(X𝒦,{2}).{\mathscr{R}}^{\text{s}}(X_{\cal K})={\mathscr{R}}^{\text{s}}(X_{\cal K},\{1,2\})\cup{\mathscr{R}}^{\text{s}}(X_{\cal K},\{1\})\cup{\mathscr{R}}^{\text{s}}(X_{\cal K},\{2\}). (157)

If

I(X1,X2;Y)I(X1,X2;Z)\displaystyle I(X_{1},X_{2};Y)-I(X_{1},X_{2};Z)
<\displaystyle< min{I(X1;Y|X2)I(X1;Z|X2),I(X2;Y|X1)I(X2;Z|X1)},\displaystyle\min\left\{I(X_{1};Y|X_{2})-I(X_{1};Z|X_{2}),I(X_{2};Y|X_{1})-I(X_{2};Z|X_{1})\right\}, (158)

it can be seen from Fig. 7 that there exit points in s(X𝒦,{1}){\mathscr{R}}^{\text{s}}(X_{\cal K},\{1\}) and s(X𝒦,{2}){\mathscr{R}}^{\text{s}}(X_{\cal K},\{2\}) which are not included in s(X𝒦,{1,2}){\mathscr{R}}^{\text{s}}(X_{\cal K},\{1,2\}). Hence,

s(X𝒦)s(X𝒦,{1,2})s(X𝒦,{1})s(X𝒦,{2}).{\mathscr{R}}^{\text{s}}(X_{\cal K})\subsetneqq{\mathscr{R}}^{\text{s}}(X_{\cal K},\{1,2\})\cup{\mathscr{R}}^{\text{s}}(X_{\cal K},\{1\})\cup{\mathscr{R}}^{\text{s}}(X_{\cal K},\{2\}). (159)

It can be similarly proven that (159) still holds, if the value of I(X1,X2;Y)I(X1,X2;Z)I(X_{1},X_{2};Y)-I(X_{1},X_{2};Z) is between those of I(X1;Y|X2)I(X1;Z|X2)I(X_{1};Y|X_{2})-I(X_{1};Z|X_{2}) and I(X2;Y|X1)I(X2;Z|X1)I(X_{2};Y|X_{1})-I(X_{2};Z|X_{1}). Note that the achievable regions provided by Lemma 3 and Lemma 4 are respectively the unions of s(X𝒦){\mathscr{R}}^{\text{s}}(X_{\cal K}) and s(X𝒦,{1,2})s(X𝒦,{1})s(X𝒦,{2}){\mathscr{R}}^{\text{s}}(X_{\cal K},\{1,2\})\cup{\mathscr{R}}^{\text{s}}(X_{\cal K},\{1\})\cup{\mathscr{R}}^{\text{s}}(X_{\cal K},\{2\}) over all k=1Kp(xk)\prod_{k=1}^{K}p(x_{k}). Hence, the achievable region provided by Lemma 3 is contained in that provided by Lemma 4. In this sense, Lemma 4 not only improves the result of Lemma 3, but also that of [13, Theorem 11] and [8, Theorem 22].

Appendix I Proof of Theorem 3

If Rko=0,k𝒦R_{k}^{\text{o}}=0,\forall k\in{\cal K}, for a given 𝒦𝒦{\cal K}^{\prime}\subseteq{\cal K}, (14) becomes (21), which can be divided into

{Rks=0,k𝒦¯,k𝒮Rks[I(X𝒮;Y|X𝒮¯,X𝒦¯)I(X𝒮;Z|X𝒦¯)]+,𝒮𝒦,\left\{\begin{array}[]{ll}R_{k}^{\text{s}}=0,~\forall~k\in{\overline{{\cal K}^{\prime}}},\\ \sum\limits_{k\in\cal S}R_{k}^{\text{s}}\leq\left[I(X_{\cal S};Y|X_{\overline{\cal S}},X_{\overline{{\cal K}^{\prime}}})-I(X_{\cal S};Z|X_{\overline{{\cal K}^{\prime}}})\right]^{+},~\forall~{\cal S}\subsetneqq{\cal K}^{\prime},\end{array}\right. (160)

and

k𝒦Rks[I(X𝒦;Y|X𝒦¯)I(X𝒦;Z|X𝒦¯)]+.\sum\limits_{k\in{\cal K}^{\prime}}R_{k}^{\text{s}}\leq\left[I(X_{{\cal K}^{\prime}};Y|X_{\overline{{\cal K}^{\prime}}})-I(X_{{\cal K}^{\prime}};Z|X_{\overline{{\cal K}^{\prime}}})\right]^{+}. (161)

As stated in Lemma 4, (160) and (161) jointly define an achievable secrecy rate region s(X𝒦,𝒦){\mathscr{R}}^{\text{s}}(X_{\cal K},{\cal K}^{\prime}), and (161) shows that for any secrecy rate tuple in this region, the sum rate k𝒦Rks\sum_{k\in{\cal K}^{\prime}}R_{k}^{\text{s}} is no larger than [I(X𝒦;Y|X𝒦¯)I(X𝒦;Z|X𝒦¯)]+\left[I(X_{{\cal K}^{\prime}};Y|X_{\overline{{\cal K}^{\prime}}})-I(X_{{\cal K}^{\prime}};Z|X_{\overline{{\cal K}^{\prime}}})\right]^{+}. We now show that this upper bound is achievable. To that end, we only need to prove that the inequality (161) is not redundant, i.e., any linear combination of inequalities in (160) does not generate (161) or a tighter upper bound to k𝒦Rks\sum_{k\in{\cal K}^{\prime}}R_{k}^{\text{s}}. In [1, Appendix E], we have provided the proof for the case with 𝒦=𝒦{\cal K}^{\prime}={\cal K}. When 𝒦𝒦{\cal K}^{\prime}\subsetneqq{\cal K}, we could complete the proof by following similar steps. We omit the details here for brevity. Note that for a given 𝒦𝒦{\cal K}^{\prime}\subseteq{\cal K}, we have Rks=0,k𝒦¯R_{k}^{\text{s}}=0,~\forall~k\in{\overline{{\cal K}^{\prime}}}. Hence, the achievable upper bound on k𝒦Rks\sum_{k\in{\cal K}}R_{k}^{\text{s}} given by (160) and (161) is [I(X𝒦;Y|X𝒦¯)I(X𝒦;Z|X𝒦¯)]+\left[I(X_{{\cal K}^{\prime}};Y|X_{\overline{{\cal K}^{\prime}}})-I(X_{{\cal K}^{\prime}};Z|X_{\overline{{\cal K}^{\prime}}})\right]^{+}. Then, considering all possible 𝒦𝒦{\cal K}^{\prime}\subseteq{\cal K}, the maximum achievable sum secrecy rate k𝒦Rks\sum_{k\in{\cal K}}R_{k}^{\text{s}} is

Rs(X𝒦)=max𝒦𝒦{[I(X𝒦;Y|X𝒦¯)I(X𝒦;Z|X𝒦¯)]+}.R^{\text{s}}(X_{\cal K})=\mathop{\max}\limits_{{\cal K}^{\prime}\subseteq{\cal K}}\left\{\left[I(X_{{\cal K}^{\prime}};Y|X_{\overline{{\cal K}^{\prime}}})-I(X_{{\cal K}^{\prime}};Z|X_{\overline{{\cal K}^{\prime}}})\right]^{+}\right\}. (162)

Let 𝒦{\cal K}^{\prime*} denote the subset in 𝒦{\cal K} which achieves (162) and assume

I(X𝒦;Y|X𝒦¯)I(X𝒦;Z|X𝒦¯)>0,I(X_{{\cal K}^{\prime*}};Y|X_{\overline{{\cal K}^{\prime*}}})-I(X_{{\cal K}^{\prime*}};Z|X_{\overline{{\cal K}^{\prime*}}})>0, (163)

since otherwise we have Rks=0,k𝒦R_{k}^{\text{s}}=0,\forall k\in{\cal K}, i.e., the system reduces to a conventional MAC channel with only open messages. Before proving the second part of Theorem 3, i.e., (26), we first show that with 𝒦{\cal K}^{\prime*} defined above, we have

I(X𝒮;Y|X𝒮¯,X𝒦¯)I(X𝒮;Z|X𝒦¯)0,𝒮𝒦.I(X_{\cal S};Y|X_{\overline{\cal S}},X_{\overline{{\cal K}^{\prime*}}})-I(X_{\cal S};Z|X_{\overline{{\cal K}^{\prime*}}})\geq 0,~\forall~{\cal S}\subsetneqq{\cal K}^{\prime*}. (164)

(164) can be proven by reductio ad absurdum. If (164) is not true, then there exist subsets in 𝒦{\cal K}^{\prime*} such that the corresponding inequalities in (164) do not hold. W.l.o.g., we assume that there exists only one subset 𝒮0{\cal S}_{0} in 𝒦{\cal K}^{\prime*} such that

I(X𝒮0;Y|X𝒮0¯,X𝒦¯)I(X𝒮0;Z|X𝒦¯)<0.I(X_{{\cal S}_{0}};Y|X_{\overline{{\cal S}_{0}}},X_{\overline{{\cal K}^{\prime*}}})-I(X_{{\cal S}_{0}};Z|X_{\overline{{\cal K}^{\prime*}}})<0. (165)

Using the chain rule of mutual information and the fact that Xk,k𝒦X_{k},\forall k\in{\cal K} are independent of each other, the left-hand side term of (163) is upper bounded by

I(X𝒦;Y|X𝒦¯)I(X𝒦;Z|X𝒦¯)=I(X𝒦𝒮0,X𝒮0;Y|X𝒦¯)I(X𝒦𝒮0,X𝒮0;Z|X𝒦¯)\displaystyle I(X_{{\cal K}^{\prime*}};Y|X_{\overline{{\cal K}^{\prime*}}})-I(X_{{\cal K}^{\prime*}};Z|X_{\overline{{\cal K}^{\prime*}}})=I(X_{{\cal K}^{\prime*}\setminus{\cal S}_{0}},X_{{\cal S}_{0}};Y|X_{\overline{{\cal K}^{\prime*}}})-I(X_{{\cal K}^{\prime*}\setminus{\cal S}_{0}},X_{{\cal S}_{0}};Z|X_{\overline{{\cal K}^{\prime*}}})
=I(X𝒦𝒮0;Y|X𝒮0,X𝒦¯)I(X𝒦𝒮0;Z|X𝒦¯)+I(X𝒮0;Y|X𝒦¯)I(X𝒮0;Z|X𝒦𝒮0,X𝒦¯)\displaystyle=I(X_{{\cal K}^{\prime*}\setminus{\cal S}_{0}};Y|X_{{\cal S}_{0}},X_{\overline{{\cal K}^{\prime*}}})-I(X_{{\cal K}^{\prime*}\setminus{\cal S}_{0}};Z|X_{\overline{{\cal K}^{\prime*}}})+I(X_{{\cal S}_{0}};Y|X_{\overline{{\cal K}^{\prime*}}})-I(X_{{\cal S}_{0}};Z|X_{{\cal K}^{\prime*}\setminus{\cal S}_{0}},X_{\overline{{\cal K}^{\prime*}}})
I(X𝒦𝒮0;Y|X𝒮0,X𝒦¯)I(X𝒦𝒮0;Z|X𝒦¯)+I(X𝒮0;Y|X𝒮0¯,X𝒦¯)I(X𝒮0;Z|X𝒦¯)\displaystyle\leq I(X_{{\cal K}^{\prime*}\setminus{\cal S}_{0}};Y|X_{{\cal S}_{0}},X_{\overline{{\cal K}^{\prime*}}})-I(X_{{\cal K}^{\prime*}\setminus{\cal S}_{0}};Z|X_{\overline{{\cal K}^{\prime*}}})+I(X_{{\cal S}_{0}};Y|X_{\overline{{\cal S}_{0}}},X_{\overline{{\cal K}^{\prime*}}})-I(X_{{\cal S}_{0}};Z|X_{\overline{{\cal K}^{\prime*}}})
<I(X𝒦𝒮0;Y|X𝒮0,X𝒦¯)I(X𝒦𝒮0;Z|X𝒦¯),\displaystyle<I(X_{{\cal K}^{\prime*}\setminus{\cal S}_{0}};Y|X_{{\cal S}_{0}},X_{\overline{{\cal K}^{\prime*}}})-I(X_{{\cal K}^{\prime*}\setminus{\cal S}_{0}};Z|X_{\overline{{\cal K}^{\prime*}}}), (166)

where the last step holds due to (165). Then, 𝒦=𝒦𝒮0{\cal K}^{\prime}={\cal K}^{\prime*}\setminus{\cal S}_{0} and 𝒦¯=𝒦¯𝒮0{\overline{{\cal K}^{\prime}}}={\overline{{\cal K}^{\prime*}}}\cup{\cal S}_{0} result in a larger value in (162) than 𝒦{\cal K}^{\prime*}, i.e., Rs(X𝒦)R^{\text{s}}(X_{\cal K}) can be increased. This is contradicted to the assumption that 𝒦{\cal K}^{\prime*} achieves (162). When there are more subsets in 𝒦{\cal K}^{\prime*} such that the inequalities in (164) do not hold, we may prove by following similar steps that Rs(X𝒦)R^{\text{s}}(X_{\cal K}) can be further increased. As a result, if 𝒦𝒦{\cal K}^{\prime*}\subseteq{\cal K} achieves (162) and (163) is true, we have (164).

Now we show that if users in 𝒦{\cal K}^{\prime*} transmit their confidential messages at sum rate Rs(X𝒦)R^{\text{s}}(X_{\cal K}), the maximum achievable sum rate at which users in 𝒦{\cal K} could send their open messages is given by (26). We divide the users in 𝒦{\cal K} into two classes, i.e., 𝒦{\cal K}^{\prime*} and 𝒦¯{\overline{{\cal K}^{\prime*}}}, and consider their maximum sum open message rate separately below.

First, if ({Rks,Rko,k𝒦},{Rks=0,k𝒦¯},{Rko,k𝒦¯})(\{R_{k}^{\text{s}},R_{k}^{\text{o}},\forall k\in{\cal K}^{\prime*}\},\{R_{k}^{\text{s}}=0,\forall k\in{\overline{{\cal K}^{\prime*}}}\},\{R_{k}^{\text{o}},\forall k\in{\overline{{\cal K}^{\prime*}}}\}) is a rate tuple in region (X𝒦,𝒦){\mathscr{R}}(X_{\cal K},{\cal K}^{\prime*}) defined by Theorem 2 and k𝒦Rks=Rs(X𝒦)\sum_{k\in{\cal K}^{\prime*}}R_{k}^{\text{s}}=R^{\text{s}}(X_{\cal K}), which is assumed to be positive, by setting 𝒮=𝒦{\cal S}={\cal K}^{\prime*}, 𝒮=ϕ{\cal S}^{\prime}=\phi, and 𝒯=ϕ{\cal T}=\phi in (14), we get

k𝒦RkoI(X𝒦;Y|X𝒦¯)Rs(X𝒦)=I(X𝒦;Z|X𝒦¯),\displaystyle\sum_{k\in{\cal K}^{\prime*}}R_{k}^{\text{o}}\leq I(X_{{\cal K}^{\prime*}};Y|X_{\overline{{\cal K}^{\prime*}}})-R^{\text{s}}(X_{\cal K})~=I(X_{{\cal K}^{\prime*}};Z|X_{\overline{{\cal K}^{\prime*}}}), (167)

indicating that the sum rate at which users in 𝒦{\cal K}^{\prime*} can encode their open messages is no larger than I(X𝒦;Z|X𝒦¯)I(X_{{\cal K}^{\prime*}};Z|X_{\overline{{\cal K}^{\prime*}}}). Then, we prove that this rate is achievable. Since the rate tuple is in region (X𝒦,𝒦){\mathscr{R}}(X_{\cal K},{\cal K}^{\prime*}), with inequalities (163) and (164), we could use Theorem 1 and find Rkg,k𝒦R_{k}^{\text{g}},\forall k\in{\cal K}^{\prime*} such that

{Rkg0,k𝒦,k𝒮(Rks+Rko+Rkg)+k𝒯RkoI(X𝒮,X𝒯;Y|X𝒮¯,X𝒯¯),𝒮𝒦,𝒯𝒦¯,k𝒮(Rko+Rkg)I(X𝒮;Z|X𝒦¯),𝒮𝒦.\left\{\begin{array}[]{ll}R_{k}^{\text{g}}\geq 0,~\forall~k\in{\cal K}^{\prime*},\\ \sum\limits_{k\in{\cal S}}(R_{k}^{\text{s}}+R_{k}^{\text{o}}+R_{k}^{\text{g}})+\sum\limits_{k\in{\cal T}}R_{k}^{\text{o}}\leq I(X_{\cal S},X_{\cal T};Y|X_{\overline{\cal S}},X_{\overline{\cal T}}),~\forall~{\cal S}\subseteq{\cal K}^{\prime*},~{\cal T}\subseteq{\overline{{\cal K}^{\prime*}}},\\ \sum\limits_{k\in{\cal S}}(R_{k}^{\text{o}}+R_{k}^{\text{g}})\geq I(X_{\cal S};Z|X_{\overline{{\cal K}^{\prime*}}}),~\forall~{\cal S}\subseteq{\cal K}^{\prime*}.\end{array}\right. (168)

It is obvious from (168) that if k𝒦Rko<I(X𝒦;Z|X𝒦¯)\sum_{k\in{\cal K}^{\prime*}}R_{k}^{\text{o}}<I(X_{{\cal K}^{\prime*}};Z|X_{\overline{{\cal K}^{\prime*}}}), we can always split partial rate in RkgR_{k}^{\text{g}} to RkoR_{k}^{\text{o}}, and get R^kg{\hat{R}}_{k}^{\text{g}} as well as R^ko{\hat{R}}_{k}^{\text{o}}, such that

R^kg\displaystyle{\hat{R}}_{k}^{\text{g}} 0,k𝒦,\displaystyle\geq 0,~\forall~k\in{\cal K}^{\prime*},
R^ko+R^kg\displaystyle{\hat{R}}_{k}^{\text{o}}+{\hat{R}}_{k}^{\text{g}} =Rko+Rkg,k𝒦,\displaystyle=R_{k}^{\text{o}}+R_{k}^{\text{g}},~\forall~k\in{\cal K}^{\prime*}, (169)

and

k𝒦R^ko=I(X𝒦;Z|X𝒦¯).\sum_{k\in{\cal K}^{\prime*}}{\hat{R}}_{k}^{\text{o}}=I(X_{{\cal K}^{\prime*}};Z|X_{\overline{{\cal K}^{\prime*}}}). (170)

With (I), it can be easily verified that rate tuple ({Rks,R^ko,R^kg,k𝒦},{Rks=0,k𝒦¯},{Rko,k𝒦¯})(\{R_{k}^{\text{s}},{\hat{R}}_{k}^{\text{o}},{\hat{R}}_{k}^{\text{g}},\forall k\in{\cal K}^{\prime*}\},\{R_{k}^{\text{s}}=0,\forall k\in{\overline{{\cal K}^{\prime*}}}\},\{R_{k}^{\text{o}},\forall k\in{\overline{{\cal K}^{\prime*}}}\}) is in the region defined by (168). Since the region (X𝒦,𝒦){\mathscr{R}}(X_{\cal K},{\cal K}^{\prime*}) can be obtained by projecting (168) onto hyperplane {Rkg=0,k𝒦}\{R_{k}^{\text{g}}=0,\forall k\in{\cal K}^{\prime*}\}, then, according to the characteristics of Fourier-Motzkin elimination [37, Appendix D], we know that rate tuple ({Rks,R^ko,k𝒦},{Rks=0,k𝒦¯},{Rko,k𝒦¯})(\{R_{k}^{\text{s}},{\hat{R}}_{k}^{\text{o}},\forall k\in{\cal K}^{\prime*}\},\{R_{k}^{\text{s}}=0,\forall k\in{\overline{{\cal K}^{\prime*}}}\},\{R_{k}^{\text{o}},\forall k\in{\overline{{\cal K}^{\prime*}}}\}) is in region (X𝒦,𝒦){\mathscr{R}}(X_{\cal K},{\cal K}^{\prime*}). Due to (170), with this rate tuple, users in 𝒦{\cal K}^{\prime*} could send their open messages at sum rate I(X𝒦;Z|X𝒦¯)I(X_{{\cal K}^{\prime*}};Z|X_{\overline{{\cal K}^{\prime*}}}).

On the other hand, from the perspective of Bob, we are considering a MAC channel with KK users. Then, it is known from [37] that with a particular input distribution k=1Kp(xk)\prod_{k=1}^{K}p(x_{k}), an achievable sum rate users in 𝒦¯{\overline{{\cal K}^{\prime*}}} could send their open messages is I(X𝒦¯;Y)I(X_{\overline{{\cal K}^{\prime*}}};Y), which could be achieved by letting Bob jointly decode these users’ messages first (before decoding the messages of users in 𝒦{\cal K}^{\prime*}). Hence, the maximum achievable sum rate at which users in 𝒦¯{\overline{{\cal K}^{\prime*}}} could send their open messages is no less than I(X𝒦¯;Y)I(X_{\overline{{\cal K}^{\prime*}}};Y). In addition, if k𝒦Rks=Rs(X𝒦)\sum_{k\in{\cal K}^{\prime*}}R_{k}^{\text{s}}=R^{\text{s}}(X_{\cal K}), no matter users in 𝒦{\cal K}^{\prime*} transmit open messages or not, the coding scheme provided in Appendix C shows that a ‘garbage’ message at rate RkgR_{k}^{\text{g}} has to be introduced to each user k𝒦k\in{\cal K}^{\prime*}, and

k𝒦(Rko+Rkg)I(X𝒦;Z|X𝒦¯),\sum_{k\in{\cal K}^{\prime*}}\left(R_{k}^{\text{o}}+R_{k}^{\text{g}}\right)\geq I(X_{{\cal K}^{\prime*}};Z|X_{\overline{{\cal K}^{\prime*}}}), (171)

has to be guaranteed. Considering that the maximum achievable sum rate of the MAC link (between all users and Bob) is I(X𝒦;Y)=I(X𝒦,X𝒦¯;Y)I(X_{\cal K};Y)=I(X_{{\cal K}^{\prime*}},X_{\overline{{\cal K}^{\prime*}}};Y), we have

k𝒦¯Rko\displaystyle\sum_{k\in{\overline{{\cal K}^{\prime*}}}}R_{k}^{\text{o}} I(X𝒦,X𝒦¯;Y)k𝒦(Rks+Rko+Rkg)\displaystyle\leq I(X_{{\cal K}^{\prime*}},X_{\overline{{\cal K}^{\prime*}}};Y)-\sum_{k\in{\cal K}^{\prime*}}\left(R_{k}^{\text{s}}+R_{k}^{\text{o}}+R_{k}^{\text{g}}\right)
I(X𝒦,X𝒦¯;Y)Rs(X𝒦)I(X𝒦;Z|X𝒦¯)=I(X𝒦¯;Y).\displaystyle\leq I(X_{{\cal K}^{\prime*}},X_{\overline{{\cal K}^{\prime*}}};Y)-R^{\text{s}}(X_{\cal K})-I(X_{{\cal K}^{\prime*}};Z|X_{\overline{{\cal K}^{\prime*}}})~=I(X_{\overline{{\cal K}^{\prime*}}};Y). (172)

Therefore, the maximum sum open message rate of users in 𝒦¯{\overline{{\cal K}^{\prime*}}} is I(X𝒦¯;Y)I(X_{\overline{{\cal K}^{\prime*}}};Y).

Accordingly, the maximum achievable sum rate at which users in 𝒦=𝒦𝒦¯{\cal K}={\cal K}^{\prime*}\cup{\overline{{\cal K}^{\prime*}}} could send their open messages is given by (26). Theorem 3 is thus proven.

References

  • [1] H. Xu, T. Yang, K.-K. Wong, and G. Caire, “Achievable regions and precoder designs for the multiple access wiretap channels with confidential and open messages,” IEEE J. Sel. Areas Commun., vol. 40, no. 5, pp. 1407–1427, May 2022.
  • [2] N. Yang, L. Wang, G. Geraci, M. Elkashlan, J. Yuan, and M. Di Renzo, “Safeguarding 5G wireless communication networks using physical layer security,” IEEE Commun. Mag., vol. 53, no. 4, pp. 20–27, Apr. 2015.
  • [3] X. Chen, D. W. K. Ng, W. H. Gerstacker, and H.-H. Chen, “A survey on multiple-antenna techniques for physical layer security,” IEEE Commun. Surveys Tuts., vol. 19, no. 2, pp. 1027–1053, 2nd Quart., 2017.
  • [4] C. E. Shannon, “Communication theory of secrecy systems,” Bell Sys. Tech. J., vol. 28, no. 4, pp. 656–715, Oct. 1949.
  • [5] A. D. Wyner, “The wire-tap channel,” Bell Sys. Tech. J., vol. 54, no. 8, pp. 1355–1387, Oct. 1975.
  • [6] S. Leung-Yan-Cheong and M. Hellman, “The gaussian wire-tap channel,” IEEE Trans. Inf. Theory, vol. 24, no. 4, pp. 451–456, July 1978.
  • [7] I. Csiszár and J. Körner, “Broadcast channels with confidential messages,” IEEE Trans. Inf. Theory, vol. 24, no. 3, pp. 339–348, May 1978.
  • [8] E. Ekrem and S. Ulukus, “On the secrecy of multiple access wiretap channel,” in Proc. 46th Allerton Conf. Commun., Contr., Comput., Illinois, USA, Sep. 2008, pp. 1014–1021.
  • [9] R. Liu, I. Maric, R. D. Yates, and P. Spasojevic, “The discrete memoryless multiple access channel with confidential messages,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Seattle, WA, USA, July 2006, pp. 957–961.
  • [10] Y. Liang and H. V. Poor, “Multiple-access channels with confidential messages,” IEEE Trans. Inf. Theory, vol. 54, no. 3, pp. 976–1002, Mar. 2008.
  • [11] R. Liu, Y. Liang, and H. V. Poor, “Fading cognitive multiple-access channels with confidential messages,” IEEE Trans. Inf. Theory, vol. 57, no. 8, pp. 4992–5005, Aug. 2011.
  • [12] M. Nafea and A. Yener, “Generalizing multiple access wiretap and wiretap II channel models: Achievable rates and cost of strong secrecy,” IEEE Trans. Inf. Theory, vol. 65, no. 8, pp. 5125–5143, Aug. 2019.
  • [13] E. Tekin and A. Yener, “The gaussian multiple access wire-tap channel,” IEEE Trans. Inf. Theory, vol. 54, no. 12, pp. 5747–5755, Dec. 2008.
  • [14] ——, “The general gaussian multiple-access and two-way wiretap channels: Achievable rates and cooperative jamming,” IEEE Trans. Inf. Theory, vol. 54, no. 6, pp. 2735–2751, June 2008.
  • [15] H. Xu, G. Caire, and C. Pan, “An achievable region for the multiple access wiretap channels with confidential and open messages,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Los Angeles, CA, USA, Jun. 2020, pp. 949–954.
  • [16] E. Ekrem and S. Ulukus, “The secrecy capacity region of the gaussian MIMO multi-receiver wiretap channel,” IEEE Trans. Inf. Theory, vol. 57, no. 4, pp. 2083–2114, Apr. 2011.
  • [17] R. Liu, T. Liu, H. V. Poor, and S. Shamai, “Multiple-input multiple-output gaussian broadcast channels with confidential messages,” IEEE Trans. Inf. Theory, vol. 56, no. 9, pp. 4215–4227, Sep. 2010.
  • [18] H. D. Ly, T. Liu, and Y. Liang, “Multiple-input multiple-output gaussian broadcast channels with common and confidential messages,” IEEE Trans. Inf. Theory, vol. 56, no. 11, pp. 5477–5487, Nov. 2010.
  • [19] S. A. A. Fakoorian and A. L. Swindlehurst, “On the optimality of linear precoding for secrecy in the MIMO broadcast channel,” IEEE J. Sel. Areas Commun., vol. 31, no. 9, pp. 1701–1713, Sep. 2013.
  • [20] X. Yu, D. Xu, Y. Sun, D. W. K. Ng, and R. Schober, “Robust and secure wireless communications via intelligent reflecting surfaces,” IEEE J. Sel. Areas Commun., vol. 38, no. 11, pp. 2637–2652, Nov. 2020.
  • [21] R. Liu, I. Maric, P. Spasojevic, and R. D. Yates, “Discrete memoryless interference and broadcast channels with confidential messages: Secrecy rate regions,” IEEE Trans. Inf. Theory, vol. 54, no. 6, pp. 2493–2507, May 2008.
  • [22] O. O. Koyluoglu, H. El Gamal, L. Lai, and H. V. Poor, “On the secure degrees of freedom in the K{K}-user gaussian interference channel,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Toronto, ON, Canada, July 2008, pp. 384–388.
  • [23] X. Tang, R. Liu, P. Spasojević, and H. V. Poor, “Interference assisted secret communication,” IEEE Trans. Inf. Theory, vol. 57, no. 5, pp. 3153–3167, May 2011.
  • [24] O. O. Koyluoglu and H. El Gamal, “Cooperative encoding for secrecy in interference channels,” IEEE Trans. Inf. Theory, vol. 57, no. 9, pp. 5682–5694, Sep. 2011.
  • [25] A. Kalantari, S. Maleki, G. Zheng, S. Chatzinotas, and B. Ottersten, “Joint power control in wiretap interference channels,” IEEE Trans. Wireless Commun., vol. 14, no. 7, pp. 3810–3823, July 2015.
  • [26] D. Park, “Weighted sum rate maximization of MIMO broadcast and interference channels with confidential messages,” IEEE Trans. Wireless Commun., vol. 15, no. 3, pp. 1742–1753, Mar. 2016.
  • [27] Y. Oohama, “Coding for relay channels with confidential messages,” in Proc. IEEE Inf. Theory Workshop (ITW), Cairns, QLD, Australia, Sep. 2001, pp. 87–89.
  • [28] L. Lai and H. El Gamal, “The relay-eavesdropper channel: Cooperation for secrecy,” IEEE Trans. Inf. Theory, vol. 54, no. 9, pp. 4005–4019, Sep. 2008.
  • [29] L. Dong, Z. Han, A. P. Petropulu, and H. V. Poor, “Improving wireless physical layer security via cooperating relays,” IEEE Trans. Sig. Process., vol. 58, no. 3, pp. 1875–1888, Mar. 2010.
  • [30] Y. Zou, X. Wang, and W. Shen, “Optimal relay selection for physical-layer security in cooperative wireless networks,” IEEE J. Sel. Areas Commun., vol. 31, no. 10, pp. 2099–2111, Oct. 2013.
  • [31] B. Dai and Z. Ma, “Multiple-access relay wiretap channel,” IEEE Trans. Inf. Forensics Security, vol. 10, no. 9, pp. 1835–1849, May 2015.
  • [32] X. Chen, C. Zhong, C. Yuen, and H.-H. Chen, “Multi-antenna relay aided wireless physical layer security,” IEEE Commun. Mag., vol. 53, no. 12, pp. 40–46, Dec. 2015.
  • [33] C. Liu, N. Yang, R. Malaney, and J. Yuan, “Artificial-noise-aided transmission in multi-antenna relay wiretap channels with spatially random eavesdroppers,” IEEE Trans. Wireless Commun., vol. 15, no. 11, pp. 7444–7456, Nov. 2016.
  • [34] H. Xu, C. Pan, W. Xu, M. Chen, and W. Heng, “Improving wireless physical layer security via D2D communication,” in Proc. IEEE GLOBECOM, Abu Dhabi, UAE, Dec. 2018, pp. 1–7.
  • [35] H. Xu, G. Caire, W. Xu, and M. Chen, “Weighted sum secrecy rate maximization for D2D underlaid cellular networks,” IEEE Trans. Commun., vol. 68, no. 1, pp. 349–362, Jan. 2020.
  • [36] H. Lee, C. Song, J. Moon, and I. Lee, “Precoder designs for MIMO gaussian multiple access wiretap channels,” IEEE Trans. Veh. Tech., vol. 66, no. 9, pp. 8563–8568, Sep. 2017.
  • [37] A. El Gamal and Y.-H. Kim, Network information theory. Cambridge University Press, 2011.
  • [38] H. Xu, K.-K. Wong, and G. Caire, “A note on fourier-motzkin elimination with three eliminating variables,” ReaearchGate, DOI: 10.13140/RG.2.2.11816.65288, pp. 1–26, Jul. 2022.
  • [39] S. I. Gass, Linear programming: methods and applications. Courier Corporation, 2003.
  • [40] Y. Sun, P. Babu, and D. P. Palomar, “Majorization-minimization algorithms in signal processing, communications, and machine learning,” IEEE Trans. Sig. Process., vol. 65, no. 3, pp. 794–816, Feb. 2017.
  • [41] Y. Jeon, S.-H. Park, C. Song, J. Moon, S. Maeng, and I. Lee, “Joint designs of fronthaul compression and precoding for full-duplex cloud radio access networks,” IEEE Wireless Commun. Lett., vol. 5, no. 6, pp. 632–635, Dec. 2016.
  • [42] P. Parada and R. Blahut, “Secrecy capacity of SIMO and slow fading channels,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Adelaide, SA, Australia, Sep. 2005, pp. 2152–2155.
  • [43] A. Khisti and G. W. Wornell, “Secure transmission with multiple antennas I: the MISOME wiretap channel,” IEEE Trans. Inf. Theory, vol. 56, no. 7, pp. 3088–3104, July 2010.
  • [44] S. Shafiee, N. Liu, and S. Ulukus, “Towards the secrecy capacity of the gaussian MIMO wiretap channel: The 2-2-1 channel,” IEEE Trans. Inf. Theory, vol. 55, no. 9, pp. 4033–4039, Sep. 2009.
  • [45] M. Vaezi, W. Shin, and H. V. Poor, “Optimal beamforming for Gaussian MIMO wiretap channels with two transmit antennas,” IEEE Trans. Wireless Commun., vol. 16, no. 10, pp. 6726–6735, Oct. 2017.
  • [46] M. Vaezi, W. Shin, H. V. Poor, and J. Lee, “MIMO Gaussian wiretap channels with two transmit antennas: Optimal precoding and power allocation,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Aachen, Germany, June 2017, pp. 1708–1712.
  • [47] A. Khisti and G. W. Wornell, “Secure transmission with multiple antennas-Part II: The MIMOME wiretap channel,” IEEE Trans. Inf. Theory, vol. 56, no. 11, pp. 5515–5532, Nov. 2010.
  • [48] S. A. A. Fakoorian and A. L. Swindlehurst, “Optimal power allocation for gsvd-based beamforming in the mimo gaussian wiretap channel,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Cambridge, MA, USA, July, 2012, pp. 2321–2325.
  • [49] X. Zhang, Y. Qi, and M. Vaezi, “A rotation-based method for precoding in Gaussian MIMOME channels,” IEEE Trans. Commun., vol. 69, no. 2, pp. 1189–1200, Feb. 2021.
  • [50] Y.-H. Au-Yeung, “A note on some theorems on simultaneous diagonalization of two hermitian matrices,” in Mathematical Proceedings of the Cambridge Philosophical Society, vol. 70, no. 3. Cambridge University Press, 1971, pp. 383–386.
  • [51] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press, 2004.
  • [52] R. Hunger, Floating Point Operations in Matrix-vector Calculus. Munich University of Technology, Inst. for Circuit Theory and Signal Processing, 2005.
  • [53] E. U. T. R. Access, “Further advancements for E-UTRA physical layer aspects,” 3GPP TR 36.814, Tech. Rep., 2010.