This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Magnetic field generation from bubble collisions during first-order phase transition

Jing Yang    Ligong Bian lgbycl@cqu.edu.cn Department of physics, Chongqing University, Chongqing 401331, China
Abstract

We study the magnetic fields generation from the cosmological first-order electroweak phase transition. We calculate the magnetic field induced by the variation of the Higgs phase for two bubbles and three bubbles collisions. Our study shows that electromagnetic currents in the collision direction produce the ring-like magnetic field in the intersect regions of colliding bubbles, which may seed the primordial magnetic field that are constrained by intergalatic field observations.

I Introduction

Though the existence of the cosmological magnetic fields has been established by observations, its origin is still a long-standing unsolved problem, which may generate during inflation Turner:1987bw , and electroweak phase transition Vachaspati:1991nm . The magnetic fields from the electroweak first-order phase transition (FOPT) may seed the Intergalactic Magnetic FieldsVachaspati:2001nb . Due to the phase transition in the Standard Model is a cross-over DOnofrio:2014rug , and the electroweak FOPT is a general prediction of many models beyond the Standard Model, e.g., the SM extended by dimensional-six operator (ΦΦ)3/Λ2(\Phi^{\dagger}\Phi)^{3}/\Lambda^{2} Grojean:2004xa ; Grojean:2006bp , singlet extension of the SM Profumo:2014opa ; Zhou:2019uzq ; Zhou:2020idp ; Alves:2018jsw ; Profumo:2007wc ; Espinosa:2011ax ; Jiang:2015cwa ; Xie:2020wzn ; Liu:2021jyc , two-Higgs-doublet models  Cline:2011mm ; Dorsch:2013wja ; Dorsch:2014qja ; Bernon:2017jgv ; Andersen:2017ika ; Kainulainen:2019kyp , George-Macheck model Zhou:2018zli , and Next-to minimal supuersymmetry model Bian:2017wfv ; Huber:2015znp . Therefore, measurements of Intergalactic Magnetic Fields may provide an additional way to probe physics beyond the Standard Model Durrer:2013pga ; Vachaspati:2016xji . For previous reviews on the primordial magnetic field, we refer to Ref. Grasso:2000wj ; Durrer:2013pga ; Yamazaki:2012pg . For the status of the observation of magnetic fields in the Galaxy, we refer to Ref. jlh .

A FOPT proceeds with bubble nucleations and collisions. In analogy with the Kibble and Vilenkin Kibble:1995aa , J.Ahonen and K.Enqvist Ahonen:1997wh studied the ring-like magnetic fields generation in collisions of bubbles of broken phase in an abelian Higgs model, and evaluated the root-mean-square magnetic field to be around 1021G10^{-21}G at the comoving scale of 10 Mpc today after including the turbulent enhancement. T. Stevens et al studied the magnetic field creation from the currents induced by the charged W fields when two bubble collide in Ref. Stevens:2007ep , and they further considered the wall thickness effects in Ref. Stevens:2009ty for two bubble collisons. Recently, they utilized the thermal erasure principle to solve the equation of motions (EOMs) of electromagnetic fields in the Non-Abelian Higgs model and found the strength of the magnetic field are comparable to those found in the Abelian Higgs model for two bubbles collision, see Ref. Stevens:2012zz . Different from previous studies, in this work, we take into account the effects of the bubble dynamics during the FOPT, i.e., the dynamics of the bubble walls in the intersecting regions of bubbles and other regions induced by the thermal frictions, see Ref. Ellis:2019oqb ; Cai:2020djd . We consider the magnetic field generation by bubble collisions during the electroweak FOPT. For concreteness and simplicity, we consider the magnetic field generation for two- and three- bubble collisions.

This work is organized as follows. In Sec.II, we consider the dynamics of general bubble collision. In Sec.III, we solve the EOMs for the W and Z fields, with which, we derive the electromagnetic current by solving the Higgs phase equation and obtain the formula for estimation of the magnetic field. With these preparations, in Sec. IV, we calculate the magnetic field of electroweak bubbles collision in ideal and revised situations by considering both equal and unequal bubbles collision. In Sec.V, we evaluate the root-mean-squared magnetic field at correlation length after taking into account hydromagnetic turbulent effect. At last, we conclude with Sec.VI.

II Bubbles collision dynamics

At the thin-wall limit, the Lagrangian as a function of the bubble size RR can be written asDarme:2017wvu :

L=4πσR21R˙2+4π3R3p,L=-4\pi\sigma R^{2}\sqrt{1-\dot{R}^{2}}+\frac{4\pi}{3}R^{3}p\;, (1)

where σ\sigma is the bubble wall tension and pp is the pressure acting on the bubble wall. The smallest bubble size of the case where bubbles would expand instead of collapsing after nucleating is R=2σ/pRcR=2\sigma/p\equiv R_{c}. The EOM to describe bubble growth is given by

R¨+21R˙2R=pσ(1R˙2)32.\ddot{R}+2\frac{1-\dot{R}^{2}}{R}=\frac{p}{\sigma}(1-\dot{R}^{2})^{\frac{3}{2}}\;. (2)

For an expanding bubble, the initial size must be larger than critical radius RcR_{c}. We can rewrite Eq. 2 in terms of Lorentz factor γ\gamma:

dγdR+2γR=pσ,\frac{d\gamma}{dR}+\frac{2\gamma}{R}=\frac{p}{\sigma}\;, (3)

where γ1/1R˙2\gamma\equiv 1/\sqrt{1-\dot{R}^{2}}. It can be solved analytically by giving an initial condition of γ\gamma and R.

When the bubbles are expanding in the plasma background, the friction force can be exerted by the surrounding plasma. In the case where the bubble wall is very relativistic, the leading-order friction is caused by the change of the effective mass during the 111\rightarrow 1 particle transmission and reflection in the vicinity of the bubble wall, which is independent of the Lorentz factor γ\gamma, and is estimated to be Bodeker:2009qy ,

ΔPLOΔm2T224.\Delta P_{LO}\approx\frac{\Delta m^{2}T^{2}}{24}. (4)

The next-to-leading order term arising from the particle splitting and transition radiation at the bubble wall is proportional to γ\gamma Bodeker:2017cim :

γΔPNLOg2ΔmVT3,\gamma\Delta P_{NLO}\approx g^{2}\Delta m_{V}T^{3}, (5)

where, the squared masses differences between true and false vacuum are given by

Δm2iciNiΔmi2,g2ΔmViVgi2NiΔmi,\Delta m^{2}\equiv\sum_{i}c_{i}N_{i}\Delta m_{i}^{2},\ \ \ \ g^{2}\Delta m_{V}\equiv\sum_{i\in V}g_{i}^{2}N_{i}\Delta m_{i}\;, (6)

where, the sum running over all gauge bosons with its masses changing across the wall, Δmi=mi,tmi,f\Delta m_{i}=m_{i,t}-m_{i,f}, ci=1(1/2)c_{i}=1(1/2) for bosons(fermions), NiN_{i} is the number of internal degrees of freedom of particles, and the gig_{i} are their gauge couplings. After these frictions are included, the total pressure can be written as,

pΔVΔPLOγΔPNLO,p\equiv\Delta V-\Delta P_{LO}-\gamma\Delta P_{NLO}\;, (7)

and Eq. 3 becomes Ellis:2019oqb

dγdR+2γR=ΔPNLOσ(γeqγ).\frac{d\gamma}{dR}+\frac{2\gamma}{R}=\frac{\Delta P_{NLO}}{\sigma}(\gamma_{eq}-\gamma). (8)

where γeq=(ΔVΔPLO)/(ΔPNLO)\gamma_{eq}=(\Delta V-\Delta P_{LO})/(\Delta P_{NLO}) and limRγ(R)=γeq\mathop{lim}\limits_{R\rightarrow\infty}\gamma(R)=\gamma_{eq} (We note that the equation is revised in Ref. Cai:2020djd with an additional correction for γ\gamma-dependent friction). We assume the Lorentz factor of the bubble wall γ=γeq\gamma=\gamma_{eq} when the bubble collisions take place. After the collisions, we have p0p\equiv 0 in the intersection region. Assuming Eqs. (3,8) still hold when p=0p=0 for the intersection regions of different bubbles, we get

dγdR+2γR=0,\frac{d\gamma}{dR}+\frac{2\gamma}{R}=0\;, (9)

with the solution being

γ=γeqRcol2R2,\gamma=\gamma_{eq}\frac{R_{col}^{2}}{R^{2}}\;, (10)

where RcolR_{col} is the radius of the bubble at the collision time tcolt_{col}. And the rest of the bubbles outside the intersection regions are still described by the Eq. 3 with p=ΔVΔPLOγΔPNLOp=\Delta V-\Delta P_{LO}-\gamma\Delta P_{NLO}, so bubbles still expand with a velocity where γ=γeq\gamma=\gamma_{eq}.

Refer to caption
Refer to caption
Figure 1: Left: The shape of the two bubbles after collision at time t=tmt^{\prime}=t_{m} is shown with thick lines, the points on the bubble wall along the collision axis reaches the maximum distance with RcolmW=10R_{col}m_{W}=10. The dotted lines are the case where γγeq\gamma\equiv\gamma_{eq} is always satisfied on the whole bubble walls. Right: The time dependence of the distance between bubble center and the point of bubble wall along the collision axis in the intersection region is shown in the right panel. The blue line represents the revised situation and the orange one describes the ideal situation.

At the time of tttcol=tmt^{\prime}\equiv t-t_{col}=t_{m}, the points on the bubble wall along the collision axis reach the maximum distance away from the bubble center, we show the shape of the bubble walls with solid lines in the left panel of Fig. 1 (which corresponds to the revised situation in the right panel). Where we introduce an angle to describe the position of the points on the wall, the distance between wall and bubble center is related to the angel down from the collision axis, i.e., ϕ\phi. The bubble wall with different ϕ\phi begins to intersect with the other bubble at different time. Therefore, the distance between the points on bubble walls in the intersection region and the bubble center depends on the angel (ϕ\phi) and the time after collision. The Eq. 9 applies until the moment when the points on the bubble wall with a angle ϕ\phi reach the maximum distance. Meanwhile, the bubble wall outside the intersection region still expand with a velocity γ=γeq\gamma=\gamma_{eq}. The dotted lines are plotted to describe the ideal case which is adopted to evaluate the magnetic field in the previous study of Ref. Stevens:2012zz . In the right panel, we plot the time evolution of bubble walls for revised situation and ideal situation.

III Magnetic field generation

In this section, we review the derivation of the magnetic field from EOMs of gauge bosons. The relevant Lagrangian of electroweak bosonic fields is

LEW=L1+L2V(ϕ),L_{EW}=L_{1}+L_{2}-V(\phi)\;, (11)

where,

L1\displaystyle L_{1} =\displaystyle= 14WμνiWiμν14BμνBμν,\displaystyle-\frac{1}{4}W_{\mu\nu}^{i}W^{i\mu\nu}-\frac{1}{4}B_{\mu\nu}B^{\mu\nu}\;,
Wμνi\displaystyle W_{\mu\nu}^{i} =\displaystyle= μWνiνWμigϵijkWμjWνk,\displaystyle\partial_{\mu}W_{\nu}^{i}-\partial_{\nu}W_{\mu}^{i}-g\epsilon_{ijk}W_{\mu}^{j}W_{\nu}^{k}\;,
Bμν\displaystyle B_{\mu\nu} =\displaystyle= μBννBμ,\displaystyle\partial_{\mu}B_{\nu}-\partial_{\nu}B_{\mu}\;, (12)

and

L2=|(iμg2τWμg2Bμ)Φ|2,L_{2}=|(i\partial_{\mu}-\frac{g}{2}\tau\cdot W_{\mu}-\frac{g^{\prime}}{2}B_{\mu})\Phi|^{2}\;, (13)

where τi\tau_{i} is the SU(2)SU(2) generator and V(Φ)V(\Phi) is the Higgs potential. Here, the Higgs potential V(ϕ)V(\phi) with proper barrier for quantum tunneling at finite temperature around 𝒪(102)\mathcal{O}(10^{2}) GeV can feasible an electroweak FOPT proceeding with bubble nucleations and collisions Grojean:2004xa , and therefore yields production of the magnetic fields Durrer:2013pga ; Kandus:2010nw ; Subramanian:2015lua . The physical ZZ and AμemA^{em}_{\mu} fields are

Aμem\displaystyle A^{em}_{\mu} =\displaystyle= 1g2+g2(gWμ3+gBμ),\displaystyle\frac{1}{\sqrt{g^{2}+g^{\prime 2}}}(g^{\prime}W^{3}_{\mu}+gB_{\mu})\;,
Zμ\displaystyle Z_{\mu} =\displaystyle= 1g2+g2(gWμ3gBμ),\displaystyle\frac{1}{\sqrt{g^{2}+g^{\prime 2}}}(gW^{3}_{\mu}-g^{\prime}B_{\mu})\;, (14)

and Higgs doublet takes the form of

Φ(x)=(0ρ(x)exp(iΘ(x))),\Phi(x)=\left(\begin{array}[]{ccc}0\\ \rho(x)exp(i\Theta(x))\end{array}\right)\;, (15)

where Θ(x)\Theta(x) is the phase of the Higgs field and ρ(x)\rho(x) is its magnitude. For this choice of gauge, the EOM for BB field is

2BννB+gρ(x)2ψν(x)=0,\partial^{2}B_{\nu}-\partial_{\nu}\partial\cdot B+g^{\prime}\rho(x)^{2}\psi_{\nu}(x)=0\;, (16)

where the ψν\psi_{\nu} is

ψν(x)νΘg2+g22Zν,\psi_{\nu}(x)\equiv\partial_{\nu}\Theta-\frac{\sqrt{g^{2}+g^{\prime 2}}}{2}Z_{\nu}\;, (17)

and satisfies

ν(ρ(x)2ψν(x))=0.\partial_{\nu}\left(\rho(x)^{2}\psi_{\nu}(x)\right)=0\;. (18)

For i=3i=3, gauge field WiW^{i} satisfies the following equation

2Wν3νW3gρ(x)2ψν(x)=jν3(x),\partial^{2}W^{3}_{\nu}-\partial_{\nu}\partial\cdot W^{3}-g\rho(x)^{2}\psi_{\nu}(x)=j^{3}_{\nu}(x)\;, (19)

and, for i=1,2i=1,2, we have

2WνiνWi+mW(x)2Wνi=jνi(x),\partial^{2}W^{i}_{\nu}-\partial_{\nu}\partial\cdot W^{i}+m_{W}(x)^{2}W^{i}_{\nu}=j^{i}_{\nu}(x)\;, (20)

where mW(x)2=g2ρ(x)2/2m_{W}(x)^{2}=g^{2}\rho(x)^{2}/2 and jνi(x)j^{i}_{\nu}(x) is,

jνi(x)\displaystyle j^{i}_{\nu}(x) \displaystyle\equiv gϵijk(WνkWj+2WjWνkWμjνWkμ)\displaystyle g\epsilon_{ijk}(W^{k}_{\nu}\partial\cdot W^{j}+2W^{j}\cdot\partial W^{k}_{\nu}-W^{j}_{\mu}\partial_{\nu}W^{k\mu}) (21)
g2ϵklmϵijkWμjWlμWνm.\displaystyle-g^{2}\epsilon_{klm}\epsilon_{ijk}W^{j}_{\mu}W^{l\mu}W^{m}_{\nu}\;.

The EOM for AemA^{em} casts the form of,

2AνemνAem=jνem(x),\partial^{2}A^{em}_{\nu}-\partial_{\nu}\partial\cdot A^{em}=j^{em}_{\nu}(x)\;,\\

with

jνem(x)=gg2+g2jν3(x).j^{em}_{\nu}(x)=\frac{g^{\prime}}{\sqrt{g^{2}+g^{\prime 2}}}j^{3}_{\nu}(x)\;. (22)

And, the EOM for the Z field is obtained as,

2ZννZρ(x)2g2+g2ψν(x)=ggjνem(x).\partial^{2}Z_{\nu}-\partial_{\nu}\partial\cdot Z-\rho(x)^{2}\sqrt{g^{2}+g^{\prime 2}}\psi_{\nu}(x)=\frac{g}{g^{\prime}}j^{em}_{\nu}(x)\;. (23)

Utilizing the thermal erasure Stevens:2012zz of Z=0\langle Z\rangle=0, and suppose ρ(x)=ρ0\rho(x)=\rho_{0}, which applies to the thin-wall limit for bubble collisions. Applying the ensemble averaging to Eq. (18,23), we get

jνem\displaystyle\langle j^{em}_{\nu}\rangle =\displaystyle= ggg2+g2ρ02×νΘ(x),\displaystyle-\frac{g^{\prime}}{g}\sqrt{g^{2}+g^{\prime 2}}\rho_{0}^{2}\times\partial_{\nu}\Theta(x)\;, (24)
2Θ(x)\displaystyle\partial^{2}\Theta(x) =\displaystyle= 0.\displaystyle 0\;. (25)

Consequently, the Eq. (III) recasts the form of the Maxwell equation,

2AννA\displaystyle\partial^{2}A_{\nu}-\partial_{\nu}\partial\cdot A =\displaystyle= jνem(x)\displaystyle j^{em}_{\nu}(x) (26)
=\displaystyle= ggg2+g2ρ02×νΘ(x).\displaystyle-\frac{g^{\prime}}{g}\sqrt{g^{2}+g^{\prime 2}}\rho_{0}^{2}\times\partial_{\nu}\Theta(x)\;.

Due to the magnetic field B=×Aem\vec{B}=\vec{\nabla}\times\vec{A}^{em}, we can calculate the strength of the magnetic field after obtaining the electromagnetic current through,

2B=×jem.\nabla^{2}\vec{B}=\vec{\nabla}\times\vec{j}^{em}\;. (27)

Eq. 24 suggests that when bubbles collide there would be a large gradient of the Higgs phase, and consequently a large electromagnetic current and create large magnetic field through Eq (26,27).

IV Magnetic field generation

In this section, we calculate magnetic field generated when two bubbles and three bubbles collide.

IV.1 Two Bubbles collision

The simplest case is that two bubbles nucleate simultaneously, one bubble locates at (t,x,y,z)=(0,0,0,vtcol)(t,x,y,z)=(0,0,0,vt_{col}), and the other one locates at the position of (t,x,y,z)=(0,0,0,vtcol)(t,x,y,z)=(0,0,0,-vt_{col}). We suppose they are expanding with a same velocity vv, and thus the collision time is tcolt_{col}. The system under study has a O(2)O(2) symmetry in the spatial coordinate, we therefore follow the analysis of Kibble and Vilenkin Kibble:1995aa and express the EOM in a coordinate (τ,z)(\tau,z) which has a O(1,2)O(1,2) symmetry when v=1v=1. To obtain the magnetic field generated by bubble wall collisions, we need to solve the equation of the Higgs field phase, i.e., Eq. 25. In (τ,z)(\tau,z) coordinate, it is

(v2+1τ+v2(1v2)t2τ3)Θτ+(1+v2(v21)t2τ2)2Θτ22Θz2=0,(\frac{v^{2}+1}{\tau}+\frac{v^{2}(1-v^{2})t^{2}}{\tau^{3}})\frac{\partial\Theta}{\partial\tau}+(1+\frac{v^{2}(v^{2}-1)t^{2}}{\tau^{2}})\frac{\partial^{2}\Theta}{\partial\tau^{2}}\\ -\frac{\partial^{2}\Theta}{\partial z^{2}}=0\;,\\ (28)

where τ=v2t2r2\tau=\sqrt{v^{2}t^{2}-r^{2}} with r2=x2+y2r^{2}=x^{2}+y^{2}. Assuming rvtr\ll vt, the equation recasts the form:

2τΘτ+v22Θτ22Θz2=0.\frac{2}{\tau}\frac{\partial\Theta}{\partial\tau}+v^{2}\frac{\partial^{2}\Theta}{\partial\tau^{2}}-\frac{\partial^{2}\Theta}{\partial z^{2}}=0\;. (29)

We consider the boundary conditions on Θ\Theta being given by

Θ(τ=tcol,z)=Θ0ϵ(z),τΘ(τ=tcol,z)=0,\Theta(\tau=t_{col},z)=\Theta_{0}\epsilon(z)\;,\ \frac{\partial}{\partial\tau}\Theta(\tau=t_{col},z)=0\;, (30)

with Θ0\Theta_{0} being a constant. Expressing Θ(x)\Theta(x) as a Fourier transform in z, above equation gives a τ\tau-depend ordinary differential equation, yielding,

Θ(τ,z)\displaystyle\Theta(\tau,z) =\displaystyle= 12πdkeikz(akτ2+v22v2K1(2+v22v2,ωkτv)\displaystyle\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}dke^{ikz}(a_{k}\tau^{\frac{-2+v^{2}}{2v^{2}}}K_{1}(\frac{-2+v^{2}}{2v^{2}},\frac{\omega_{k}\tau}{v}) (31)
+bkτ2+v22v2K2(2+v22v2,ωkτv)),\displaystyle+b_{k}\tau^{\frac{-2+v^{2}}{2v^{2}}}K_{2}(\frac{-2+v^{2}}{2v^{2}},\frac{\omega_{k}\tau}{v}))\;,

where ωk=k2+m2\omega_{k}=\sqrt{k^{2}+m^{2}}, aka_{k} and bkb_{k} are determined by the boundary conditions on Θ\Theta. When we take m0m\rightarrow 0, the solution configuration can be obtained. Then, the jνem(τ,z)j_{\nu}^{em}(\tau,z) takes the form

jνem(τ,z)=(jz(τ,z),xαj(τ,z)),j_{\nu}^{em}(\tau,z)=(j_{z}(\tau,z),x_{\alpha}j(\tau,z))\;, (32)

with

jz=ggg2+g2ρ02zΘ(τ,z),\displaystyle j_{z}=-\frac{g^{\prime}}{g}\sqrt{g^{2}+g^{\prime 2}}\rho_{0}^{2}\frac{\partial}{\partial z}\Theta(\tau,z)\;, (33)
j=ggg2+g2ρ021ττΘ(τ,z).\displaystyle j=-\frac{g^{\prime}}{g}\sqrt{g^{2}+g^{\prime 2}}\rho_{0}^{2}\frac{1}{\tau}\frac{\partial}{\partial\tau}\Theta(\tau,z)\;. (34)

and xα=(vt,x,y)x_{\alpha}=(vt,-x,-y). It is clearly that the electromagnetic field has the same form as the electromagnetic current,

Aνem(τ,z)=(az(τ,z),xαa(τ,z)).A_{\nu}^{em}(\tau,z)=(a_{z}(\tau,z),x_{\alpha}a(\tau,z))\;. (35)

Taking the axial gauge, and Maxwell’s equation becomes

2z2a(τ,z)=j(τ,z).-\frac{\partial^{2}}{\partial z^{2}}a(\tau,z)=j(\tau,z)\;. (36)

Applying the boundary conditions, namely, a(τ0,z)=0a(\tau_{0},z)=0, and za(τ=0,z)=0\partial_{z}a(\tau=0,z)=0, we otain

a(τ,z)=z𝑑zzj(τ,z′′)𝑑z′′.a(\tau,z)=-\int_{-\infty}^{z}dz^{\prime}\int_{-\infty}^{z^{\prime}}j(\tau,z^{\prime\prime})dz^{\prime\prime}\;. (37)

With which, and apply Eq. 27, we get the magnetic field,

Bz\displaystyle B^{z} =\displaystyle= 0,\displaystyle 0\;,
Bx\displaystyle B^{x} =\displaystyle= yzj(τ,z)𝑑z,\displaystyle-y\int_{-\infty}^{z}j(\tau,z^{\prime})dz^{\prime}\;,
By\displaystyle B^{y} =\displaystyle= xzj(τ,z)𝑑z.\displaystyle x\int_{-\infty}^{z}j(\tau,z^{\prime})dz^{\prime}\;. (38)

When v=1v=1, Eq 31 reduces to

Θ(τ,z)=Θ0τθ(T|z|)z+Θ0ϵ(z)θ(|z|T),\Theta(\tau,z)=\frac{\Theta_{0}}{\tau}\theta(T-|z|)z+\Theta_{0}\epsilon(z)\theta(|z|-T)\;, (39)

where T=τtcolT=\tau-t_{col}. Then, the jj takes the form,

j=ggg2+g2ρ02Θ0τ3θ(T|z|)z.j=\frac{g^{\prime}}{g}\sqrt{g^{2}+g^{\prime 2}}\rho_{0}^{2}\frac{\Theta_{0}}{\tau^{3}}\theta(T-|z|)z\;. (40)

Finally, we get

B=(y,x,0)rBϕ,\vec{B}=\frac{(-y,x,0)}{r}B^{\phi}\;, (41)

with

Bϕ=rggg2+g2ρ02Θ0τ3θ(T|z|)×|z|2T22.B^{\phi}=r\frac{g^{\prime}}{g}\sqrt{g^{2}+g^{\prime 2}}\rho_{0}^{2}\frac{\Theta_{0}}{\tau^{3}}\theta(T-|z|)\times\frac{|z|^{2}-T^{2}}{2}\;. (42)

With increase of the rr, τ\tau would decreases, we therefore expect a largest value of the current jj and further a largest magnetic field strength at the largest rr when two bubbles collide, which grows after the time of bubbles collision (tcolt_{col}). This reason leads to a ring-like distribution of the created magnetic field close to the walls of the collided bubbles.

Equal bubbles-Ideal situation: We first consider the two colliding bubbles are of equal sizes. In Fig. 2, we show the configuration of the Θ\Theta for v=0.5v=0.5 and v=1v=1 as a function of distance z along the axis of collision for different τmW\tau m_{W}. We find there are slightly difference between the cases of v=0.5v=0.5 and v=1v=1 for the same τmW\tau m_{W}. Thus the magnetic field strength from the bubble collisions for the two cases have the similar profile as shown in Fig. 3. At a distance rmW=1rm_{W}=1 and τmW=20,30,40\tau m_{W}=20,30,40 and 50, the magnitude of magnetic is nearly order of 0.01mW20.01m_{W}^{2}. It can be seen that near the center of the overlap region at z=r=0z=r=0,the magnetic field is much smaller than the region near τ=R\tau=R, and magnetic field has a tendency to drop at fixed rr when the overlap region becomes larger. Magnitude of the magnetic field in xyx-y plane is shown in Fig. 4. The figure shows that large magnitude of the magnetic field almost distributes near the edge of the overlap region, which indicates that the shape of the magnetic field produced by the electroweak bubble collisions is approximately a ring-like distribution. This feature confirms the discussions under Eq. 42.

Refer to caption
Refer to caption
Figure 2: Higgs phase Θ\Theta is shown as a function of the distance z for τmW=20,30,40,50\tau m_{W}=20,30,40,50, with Θ0=1\Theta_{0}=1. In the left panel, we plot the case of v=0.5,tcolmW=20v=0.5,t_{col}m_{W}=20. In the right panel, we consider the case of v=1,tcolmW=10v=1,t_{col}m_{W}=10.
Refer to caption
Refer to caption
Figure 3: Magnitude of the magnetic field calculated for two bubble collisions. The magnetic field is shown as a function of the distance z along the axis of collision at a distance rmW=1rm_{W}=1 from the axis of collision for τmW=20,30,40\tau m_{W}=20,30,40 and 50. Left: we consider the case v=0.5,tcolmW=20v=0.5,t_{col}m_{W}=20. Right: we consider the case v=1,tcolmW=10v=1,t_{col}m_{W}=10.
Refer to caption
Figure 4: Magnitude of the magnetic field calculated for two bubble collisions in the xyx-y plane for z=0z=0 at time tmW=30t\;m_{W}=30 in the case of v=1v=1 and tcolmW=10t_{col}\;m_{W}=10.

Unequal bubbles-Ideal situation: Then, we turn to the unequal bubbles collision situation, where the two bubbles nucleate at two different moments. For simplicity, we consider one bubble is nucleated at (t1,x1,y1,z1)=(0,0,0,d1)(t_{1},x_{1},y_{1},z_{1})=(0,0,0,-d_{1}) and the other one at (t2,x2,y2,z2)=(d1d2,0,0,d2)(t_{2},x_{2},y_{2},z_{2})=(d_{1}-d_{2},0,0,d_{2}) where d1>d2>0d_{1}>d_{2}>0. We consider the case where they expand at a velocity v1v\equiv 1 after nucleating, so they would collide at z=0,t=d1z=0,t=d_{1}. We find nucleation events has a space-like interval due to ΔxμΔxμ=(d1d2)2(d1+d2)2<0\Delta x^{\mu}\Delta x_{\mu}=(d_{1}-d_{2})^{2}-(d_{1}+d_{2})^{2}<0. Therefore, one can use an appropriate Lorentz boost to obtain a frame in which the two bubbles are nucleated simultaneously Kosowsky:1991ua . In the new frame after the boost, the coordinates (t′′,x′′,y′′,z′′)(t^{\prime\prime},x^{\prime\prime},y^{\prime\prime},z^{\prime\prime}) has form

t′′=γ(tΔvx),x′′=x,y′′=y,z′′=γ(zΔvt),t^{\prime\prime}=\gamma(t-\Delta v\cdot x),\ \ \ x^{\prime\prime}=x,\ \ \ y^{\prime\prime}=y,\ \ \ z^{\prime\prime}=\gamma(z-\Delta v\cdot t)\;, (43)

where Δv\Delta v is the velocity of the new frame relative to the old one. The condition that two bubbles nucleate simultaneously requires t1′′=t2′′t^{\prime\prime}_{1}=t^{\prime\prime}_{2}, so we get Δv=(d1d2)/(d1+d2)\Delta v=(d_{1}-d_{2})/(d_{1}+d_{2}).

Refer to caption
Refer to caption
Figure 5: Left: Bubble shapes for unequal bubbles collisions. Right: Magnetic field generated by unequal bubbles collision. The field is shown at time tmW(ttcol)mW=10,20,30,40t^{\prime}m_{W}\equiv(t-t_{col})m_{W}=10,20,30,40 after collision, in which we consider v=1v=1, tcolmW=20t_{col}m_{W}=20,rmW=1rm_{W}=1.

We take d1mW=2d2mW=20d_{1}m_{W}=2d_{2}m_{W}=20, and calculate the magnetic field in the new frame using Eq. 42. In order to get the final result, we perform a Lorentz transformation of magnetic field calculated above back to the old frame. Fig. 5 shows the bubbles shape for unequal bubbles collision where nucleations occurring at (t1,x1,y1,z1)=(0,0,0,2d)(t_{1},x_{1},y_{1},z_{1})=(0,0,0,-2d) and (t2,x2,y2,z2)=(d,0,0,d)(t_{2},x_{2},y_{2},z_{2})=(d,0,0,d) (see the left panel) and the produced magnetic field in the old frame (see the right panel). The Figure shows that magnetic fields for different times are peaked at points with different coordinate z, and shows an asymmetry between left side and right side of peaks since unequal bubbles collision breaks the O(1,2)O(1,2) and Z2Z_{2} symmetries in spacetime.

Equal bubbles-Revised situation: So far, we have calculated the magnetic field generated by two bubble collisions in an ideal case where the velocity of the whole bubble walls are unchanged after collision and the bubbles are perfect spherical shapes. While, in the realistic situation, the velocity of the intersecting bubble walls may change due to the bubble tension, which lead to a deviation of the bubble shapes, see Section. II for details. For a illustration, we suppose that the bubble velocity at the collision time is vcol=veq=0.99v_{col}=v_{eq}=0.99, and the radius of two bubbles at the collision time are both RcolmW=10R_{col}m_{W}=10. To solve the Eq. 29 by using the boundary conditions Eq. 30, we take an assumption that the solution of Θ\Theta is still nearly proportional to z in the intersection region as shown in Fig. 2. It is easily to find that z/τ0z/\tau_{0} is a solution to the Eq. 29 where τ0=t2r2\tau_{0}=\sqrt{t^{2}-r^{2}}. We can approximately take τcol=vcol2t2r2τ0\tau_{col}=\sqrt{v_{col}^{2}t^{2}-r^{2}}\approx\tau_{0} and the solution takes the form as

Θ(τ0,τ(t,r),z)=C1(τ(t,r))zτ0+C2.\ \Theta(\tau_{0},\tau(t,r),z)=C_{1}(\tau(t,r))*\frac{z}{\tau_{0}}+C_{2}\;. (44)

Then we use the boundary condition Eq. 30 and consider the constraint that in the region without intersection one has a constant phase ±Θ0\pm\Theta_{0}. We found the solution is

Θ(τ0,τ(t,r),z)=Θ0τ0θ(T(t,r)|z|)z+Θ0ϵ(z)θ(|z|T(t,r)),\Theta(\tau_{0},\tau(t,r),z)=\frac{\Theta_{0}}{\tau_{0}}\theta(T(t,r)-|z|)z+\Theta_{0}\epsilon(z)\theta(|z|-T(t,r))\;, (45)

where T(t,r)=τ(t,r)RcolT(t,r)=\tau(t,r)-R_{col} and τ(t,r)=R(t,r)2r2\tau(t,r)=\sqrt{R(t,r)^{2}-r^{2}} with R(t,r)R(t,r) being the distance between bubble wall and bubble center as a function of r=x2+y2r=\sqrt{x^{2}+y^{2}} and time (t) after collision.

Refer to caption
Figure 6: The magnetic field strength is shown as a function of the distance z along the axis of collision with rmW=1rm_{W}=1 where vcol=0.99,RcolmW=10v_{col}=0.99,R_{col}m_{W}=10. At the time ttcol=tmt-t_{col}=t_{m}, the points on bubble walls along the collision axis reaches the maximum distance with bubble center in the revised situation. Blue dashed and Green dashed lines indicate revised and ideal situations respectively.

To demonstrate the difference between the revised and ideal situations, in Fig. 6, we show the magnetic field as a function of distance z along the axis of collision with rmw=1rm_{w}=1. We consider the time ttcol=tmt-t_{col}=t_{m} when the points on bubble walls along the collision axis reaches the maximum distance with bubble center in the revised situation. The magnitude of magnetic field strength in the revised situation is nearly half of the magnitude in the ideal situation, and the distribution area of magnetic field in the revised situation is smaller than the ideal situation. The results are in accordance with the bubble shape after collision as shown in Fig. 1, the intersection area of bubbles in the revised situation is smaller than the ideal situation, the electromagnetic current distributes in a smaller area and therefore causes the smaller magnitude of the magnetic field strength.

IV.2 Three bubbles collision

Refer to captionRefer to caption

Figure 7: Left:overlap regions of three bubbles in the yzy-z plane at ttcol=0.1Rcolt-t_{col}=0.1R_{col}; Right:overlap regions of three bubbles in the yzy-z plane at ttcol=0.5Rcolt-t_{col}=0.5R_{col}.

In this section, we consider three equal size bubbles nucleate simultaneously. We consider they expand at a same velocity with γcol=γeq\gamma_{col}=\gamma_{eq} and then collide with each other at the same time. The simplest case is that one bubble nucleates at (t,x,y,z)=(0,0,0,Rcol)(t,x,y,z)=(0,0,0,-R_{col}) and other two nucleate at (0,0,0,Rcol)(0,0,0,R_{col}) and (0,0,3Rcol,0)(0,0,-\sqrt{3}R_{col},0) respectively. At first, there would be three regions where they overlap in pairs. After a period, three regions may overlap and there will be a region (at the center of three bubbles) bounded by the intersection of three bubbles. We show the overlap regions of three bubbles collision in Fig. 7. We can imagine that the magnetic field strength of the region IV can be represented by the superposition of the other three regions. For vcol=0.991v_{col}=0.99\approx 1, we take τ=τ0=t2r2\tau=\tau_{0}=\sqrt{t^{2}-r^{2}} for simplicity. We set the phases of the three bubbles as Θ1=0\Theta_{1}=0,Θ2=2π3\Theta_{2}=\frac{2\pi}{3} and Θ3=4π3\Theta_{3}=\frac{4\pi}{3}, we choose the center of region I to be the original point, the initial conditions can now be written in the following forms:
Region I:

Θ(τ=tcol,z)\displaystyle\Theta(\tau=t_{col},z) =\displaystyle= Θ1Θ22ϵ(z)+Θ1+Θ22,Θ(τ=tcol,z)=0,\displaystyle\frac{\Theta_{1}-\Theta_{2}}{2}\epsilon(z)+\frac{\Theta_{1}+\Theta_{2}}{2},\Theta^{\prime}(\tau=t_{col},z)=0\;,
τ\displaystyle\tau =\displaystyle= t2x2y2,\displaystyle\sqrt{t^{2}-x^{2}-y^{2}}\;, (46)

Region II:

Θ(τ=tcol,12(ztcol)32y)\displaystyle\Theta(\tau^{\prime}=t_{col},\frac{1}{2}(z-t_{col})-\frac{\sqrt{3}}{2}y) =\displaystyle= Θ3Θ22ϵ(12(ztcol)32y)\displaystyle\frac{\Theta_{3}-\Theta_{2}}{2}\epsilon(\frac{1}{2}(z-t_{col})-\frac{\sqrt{3}}{2}y)
+\displaystyle+ Θ2+Θ32,\displaystyle\frac{\Theta_{2}+\Theta_{3}}{2}\;,
Θ(τ=tcol,12(ztcol)32y)\displaystyle\Theta^{\prime}(\tau^{\prime}=t_{col},\frac{1}{2}(z-t_{col})-\frac{\sqrt{3}}{2}y) =\displaystyle= 0,\displaystyle 0\;,
τ=t2x2(32(z+tcol)+12y)2,\tau^{\prime}=\sqrt{t^{2}-x^{2}-(\frac{\sqrt{3}}{2}(z+t_{col})+\frac{1}{2}y)^{2}}\;, (47)

Region III:

Θ(τ′′=tcol,12(z+tcol)32y)\displaystyle\Theta(\tau^{\prime\prime}=t_{col},-\frac{1}{2}(z+t_{col})-\frac{\sqrt{3}}{2}y) =\displaystyle= Θ32πΘ12ϵ(12(z+tcol)32y)\displaystyle\frac{\Theta_{3}-2\pi-\Theta_{1}}{2}\epsilon(-\frac{1}{2}(z+t_{col})-\frac{\sqrt{3}}{2}y)
+\displaystyle+ Θ3+2π+Θ12,\displaystyle\frac{\Theta_{3}+2\pi+\Theta_{1}}{2}\;,
Θ(τ′′=tcol,12(z+tcol)32y)\displaystyle\Theta^{\prime}(\tau^{\prime\prime}=t_{col},-\frac{1}{2}(z+t_{col})-\frac{\sqrt{3}}{2}y) =\displaystyle= 0,\displaystyle 0\;,
τ′′=t2x2(32(ztcol)12y)2.\tau^{\prime\prime}=\sqrt{t^{2}-x^{2}-(\frac{\sqrt{3}}{2}(z-t_{col})-\frac{1}{2}y)^{2}}\;. (48)

And magnetic field of these three regions can be solved similarly, with:
Region I

Bx\displaystyle B^{x} =\displaystyle= yB1,\displaystyle-yB_{1}\;,
By\displaystyle B^{y} =\displaystyle= xB1,\displaystyle xB_{1}\;,
Bz\displaystyle B^{z} =\displaystyle= 0,\displaystyle 0\;, (49)

Region II

Bx\displaystyle B^{x} =\displaystyle= (y3z3tcol)B22,\displaystyle-(y-\sqrt{3}z-\sqrt{3}t_{col})\frac{B_{2}}{2}\;,
By\displaystyle B^{y} =\displaystyle= x2B2,\displaystyle\frac{x}{2}B_{2}\;,
Bz\displaystyle B^{z} =\displaystyle= 32xB2,\displaystyle-\frac{\sqrt{3}}{2}xB_{2}\;, (50)

Region III

Bx\displaystyle B^{x} =\displaystyle= (y+3z3tcol)B32,\displaystyle-(y+\sqrt{3}z-\sqrt{3}t_{col})\frac{B_{3}}{2}\;,
By\displaystyle B^{y} =\displaystyle= x2B3,\displaystyle\frac{x}{2}B_{3}\;,
Bz\displaystyle B^{z} =\displaystyle= 32xB3,\displaystyle\frac{\sqrt{3}}{2}xB_{3}\;, (51)

Region IV

Bx\displaystyle B^{x} =\displaystyle= yB1(y3z3tcol)B22,\displaystyle-yB_{1}-(y-\sqrt{3}z-\sqrt{3}t_{col})\frac{B_{2}}{2}\;,
\displaystyle- (y+3z3tcol)B32,\displaystyle(y+\sqrt{3}z-\sqrt{3}t_{col})\frac{B_{3}}{2}\;,
By\displaystyle B^{y} =\displaystyle= xB1+xB22+xB32,\displaystyle xB_{1}+x\frac{B_{2}}{2}+x\frac{B_{3}}{2}\;,
Bz\displaystyle B^{z} =\displaystyle= 32x(B3B2),\displaystyle\frac{\sqrt{3}}{2}x(B_{3}-B_{2})\;, (52)

where

B1=ggg2+g2ρ02Θ1Θ2τ2θ(τtcol|z|)|z|2(τtcol)22,\displaystyle B_{1}=\frac{g^{\prime}}{g}\sqrt{g^{2}+g^{\prime 2}}\rho_{0}^{2}\frac{\Theta_{1}-\Theta_{2}}{\tau^{2}}\theta(\tau-t_{col}-|z|)\frac{|z|^{2}-(\tau-t_{col})^{2}}{2}\;,
B2=ggg2+g2ρ02Θ3Θ2τ2θ(τtcol|12(ztcol)32y|)\displaystyle B_{2}=\frac{g^{\prime}}{g}\sqrt{g^{2}+g^{\prime 2}}\rho_{0}^{2}\frac{\Theta_{3}-\Theta_{2}}{\tau^{\prime 2}}\theta(\tau^{\prime}-t_{col}-|\frac{1}{2}(z-t_{col})-\frac{\sqrt{3}}{2}y|)
|12(ztcol)32y|2(τtcol)22,\displaystyle\frac{|\frac{1}{2}(z-t_{col})-\frac{\sqrt{3}}{2}y|^{2}-(\tau^{\prime}-t_{col})^{2}}{2}\;,
B3=ggg2+g2ρ02Θ3Θ12πτ′′2θ(τ′′tcol|12(z+tcol)+32y|)\displaystyle B_{3}=\frac{g^{\prime}}{g}\sqrt{g^{2}+g^{\prime 2}}\rho_{0}^{2}\frac{\Theta_{3}-\Theta_{1}-2\pi}{\tau^{\prime\prime 2}}\theta(\tau^{\prime\prime}-t_{col}-|\frac{1}{2}(z+t_{col})+\frac{\sqrt{3}}{2}y|)
|12(z+tcol)+32y|2(τ′′tcol)22.\displaystyle\frac{|\frac{1}{2}(z+t_{col})+\frac{\sqrt{3}}{2}y|^{2}-(\tau^{\prime\prime}-t_{col})^{2}}{2}\;.

Note that the solutions are only valid in the overlap region. After t>23tcolt>\frac{2}{\sqrt{3}}t_{col}, three regions may overlap with each other, and the magnetic field in Region IV is the superposition of the three regions.

Refer to caption
Refer to caption
Figure 8: Magnitude of the magnetic field (in the ideal situation) produced by three bubbles collisions for vcol=0.99,Rcolmw=tcolmW=10v_{col}=0.99,R_{col}m_{w}=t_{col}m_{W}=10. We show the field as a function of lattice numbers NyN_{y} and NzN_{z} on y and z axes respectively with lattice spacing a=0.1/mWa=0.1/m_{W}. Left panel: Magnitude of the magnetic field at x=0,ttcol=0.1Rcolx=0,t-t_{col}=0.1R_{col}. Right panel: Magnitude of the magnetic field at x=0,ttcol=tmx=0,t-t_{col}=t_{m}.
Refer to caption
Refer to caption
Figure 9: Left panel: The shape of three bubbles after collision at ttcol=tmt-t_{col}=t_{m} for vcol=0.99v_{col}=0.99,RcolmW=10R_{col}m_{W}=10. Right panel: Magnitude of the magnetic field produced by three bubbles collision. The magnetic field in the revised situation is shown as a function of lattice numbers NyN_{y} and NzN_{z} on y and z axes respectively with lattice spacing a=1/mWa=1/m_{W} at x=0,ttcol=tmx=0,t-t_{col}=t_{m}.

Three equal bubbles-ideal institution: For illustration, we show the strength of the magnetic field induced by three bubbles collision at ttcol=0.1Rcolt-t_{col}=0.1R_{col} and ttcol=tmt-t_{col}=t_{m} in yzy-z plane in Fig. 8. We can see that the magnetic field distributions of the three regions is separated as expected (see the left panel), where the peak of magnetic field strength is distributed on the symmetric axis of the overlap region. At a letter time of ttcol=tmt-t_{col}=t_{m}, the three regions would overlap and the magnetic field is continuously distributed (see the right panel). The magnitude of the magnetic field is nearly zerozero in the vicinity of the center of the overlap regions. And the strength of the magnetic field in region IV has the same order as other three regions.

Three equal bubbles-revised institution: While taking consideration of the real bubble collision situation, the overlap regions of three bubbles collision would be revised as shown in the Fig. 9. The bubbles shape and magnetic field generation of three bubbles collision are calculated at (x=0,ttcol=tm)(x=0,t-t_{col}=t_{m}) with vcol=0.99v_{col}=0.99 and RcolmW=10R_{col}m_{W}=10. In comparison with the ideal situation as shown in Fig. 8, the magnitude of the magnetic field strength in the revised situation is shown to be nearly half of the ideal situation, and the magnetic field distributes more continuously.

V Implication for observation

The comoving Hubble length at the electroweak phase transition temperature TT_{*} is given byKahniashvili:2012uj ,

λH=5.8×1010Mpc(100GeV/T)(100/g)1/6,\lambda_{H_{*}}=5.8\times 10^{-10}{\rm Mpc(100{\rm GeV}/T_{*})}(100/g_{*})^{1/6}\;, (53)

where gg_{*} is the number of relativistic degrees of freedom at the moment when the primordial magnetic field is generated. The comoving correlation length for a primordial magnetic field at the generation time can be evaluated to be

ξ=ΓλH.\xi_{\star}=\Gamma\lambda_{H_{*}}\;. (54)

Here, Γ\Gamma is the factor to account for bubble numbers inside one Hubble radius at the FOPT, and Γ0.01\Gamma\simeq 0.01 for the electroweak FOPT. For recent simulations, see Ref. Zhang:2019vsb ; Di:2020nny .

Refer to caption
Figure 10: Magetic field strength BrmsB_{rms} at the correlation length ξ\xi calculated for the two bubble collision of the Equal bubbles-Ideal situation (dashed lines) and Equal bubbles-Revised situation (solid lines). Cyan and Blue regions are plotted to consider the bounds set by blazars given in Ref.Biteau:2018tmv and Ref. Taylor:2011bn .

The physical magnetic field amplitudes scale with the expansion of the universe at the generation time as

B\displaystyle B_{*} =\displaystyle= (aa0)2B,\displaystyle(\frac{a_{*}}{a_{0}})^{2}B\;, (55)

with the time-temperate relation being,

aa0\displaystyle\frac{a_{*}}{a_{0}} \displaystyle\simeq 8×1016(100GeV/T)(100/g)1/3.\displaystyle 8\times 10^{-16}(100{\rm GeV}/T_{*})(100/g_{*})^{1/3}\;. (56)

The simulation of the evolution of hydromagnetic turbulence from the electroweak phase transition suggests that the root-mean-squared non-helical magnetic field amplitude and the correlation length satisfies the following relation Brandenburg:2017neh ,

Brms=B(ξξ)(β+1)/2,B_{rms}=B_{*}(\frac{\xi}{\xi_{*}})^{-(\beta+1)/2}\;, (57)

where β=1,2\beta=1,2 and 4 for non-helical case, with ξ\xi being the magnetic correlation length. For illustration, we show in Fig. 10 the bounds of blazars spectra on the magnetic field at variant correlation lengths, which depicts that the case of β=1\beta=1 case is allowed by the data. Where, we consider the Equal bubbles-Ideal situation and the Equal bubbles-Revised situation for two bubbles collision, the magnetic fields are generated at z=0z=0 with the largest rr at tt(=tm+tcol=t_{m}+t_{col}), where we have the r3Rcolr\sim 3R_{col}, where we have the ring-like distribution of the magnetic field. The magnetic field strength here is almost the same with the three bubbles collision situations. Primordial magnetic field suffer bounds from the Big-Bang Nucleosynthesis Kahniashvili:2010wm ; Kawasaki:2012va and the measurements of the spectrum and anisotropies of the cosmic microwave background Seshadri:2009sy ; Ade:2015cva ; Jedamzik:1999bm ; Barrow:1997mj ; Durrer:1999bk ; Trivedi:2010gi , these limits are not shown in the figure since they are not relevant for the parameter space under study in this work.

VI Discussions

We use the EOMs of gauge fields to get the magnetic field generated during bubble collisions at the electroweak FOPT. After obtaining the Higgs phases when bubbles collide, we calculate the magnetic field strength after obtaining the electromagnetic current, and apply the approach to the situations of two bubbles and three bubbles collisions, equal and unequal bubbles, ideal and revised situations. We found the electroweak bubble collisions produce the ring-like magnetic field even when we consider the revised situation with bubble walls deviating from the spherical shape. For that situation, we get a smaller magnetic field strength because the electromagnetic current distributed in a smaller area. The scaling law resulting from the hydromagnetic turbulence after the electroweak FOPT suggests that this kind of magnetic field under study can be probed by the observation of the Intergalactic Magnetic Fields. The magnetic field strength calculated here is comparable with the magnetic field generated from the bubble collisions simulation performed in Ref. Zhang:2019vsb ; Di:2020nny .

We note that, in the electroweak baryogenesis, the Chern-Simons connects the helicity of the magnetic fields produced during bubble collisions and the baryon asymmetry of the early Universe Copi:2008he ; Vachaspati:2001nb . Therefore, the observation of the helicity of the primordial magnetic fields may serve as a test of the electroweak baryogenesis. Ref. Ellis:2019tjf studied the primordial magnetic field from first-order phase transition in BLB-L model and the SM extended by dimensional-six operator (ΦΦ)3/Λ2(\Phi^{\dagger}\Phi)^{3}/\Lambda^{2}, with the physical implication that the observable gravitational waves and collider signatures would be complementary to the magnetic field observation from the first-order phase transitions. when the inverse cascade process are taken into account for helical magnetic fields  Cornwall:1997ms ; Giovannini:1997gp ; Ji:2001rx .

VII Acknowledgements

We thank Yi-Zen Chu, Francesc Ferrer, Jinlin Han, Marek Lewicki, Shao-Jiang Wang, Ke-Pan Xie, and Yiyang Zhang for useful communications and discussions. This work is supported by the National Natural Science Foundation of China under the grants Nos.12075041, 11605016, and 11947406, and Chongqing Natural Science Foundation (Grants No.cstc2020jcyj-msxmX0814), and the Fundamental Research Funds for the Central Universities of China (No. 2019CDXYWL0029).

References

  • [1] M. S. Turner and L. M. Widrow, Phys. Rev. D 37 (1988), 2743 doi:10.1103/PhysRevD.37.2743
  • [2] T. Vachaspati, Phys. Lett. B 265 (1991), 258-261 doi:10.1016/0370-2693(91)90051-Q
  • [3] C. Grojean, G. Servant and J. D. Wells, Phys. Rev. D 71, 036001 (2005) doi:10.1103/PhysRevD.71.036001 [arXiv:hep-ph/0407019 [hep-ph]].
  • [4] T. Vachaspati, Phys. Rev. Lett. 87, 251302 (2001) doi:10.1103/PhysRevLett.87.251302 [arXiv:astro-ph/0101261 [astro-ph]].
  • [5] M. D’Onofrio, K. Rummukainen and A. Tranberg, Phys. Rev. Lett. 113, no.14, 141602 (2014) doi:10.1103/PhysRevLett.113.141602 [arXiv:1404.3565 [hep-ph]].
  • [6] C. Grojean and G. Servant, Phys. Rev. D 75, 043507 (2007) doi:10.1103/PhysRevD.75.043507 [arXiv:hep-ph/0607107 [hep-ph]].
  • [7] S. Profumo, M. J. Ramsey-Musolf, C. L. Wainwright and P. Winslow, Phys. Rev. D 91, no.3, 035018 (2015) doi:10.1103/PhysRevD.91.035018 [arXiv:1407.5342 [hep-ph]].
  • [8] R. Zhou, L. Bian and H. K. Guo, Phys. Rev. D 101, no.9, 091903 (2020) doi:10.1103/PhysRevD.101.091903 [arXiv:1910.00234 [hep-ph]].
  • [9] L. Bian, H. K. Guo, Y. Wu and R. Zhou, Phys. Rev. D 101, no.3, 035011 (2020) doi:10.1103/PhysRevD.101.035011 [arXiv:1906.11664 [hep-ph]].
  • [10] A. Alves, T. Ghosh, H. K. Guo, K. Sinha and D. Vagie, JHEP 04, 052 (2019) doi:10.1007/JHEP04(2019)052 [arXiv:1812.09333 [hep-ph]].
  • [11] S. Profumo, M. J. Ramsey-Musolf and G. Shaughnessy, JHEP 08, 010 (2007) doi:10.1088/1126-6708/2007/08/010 [arXiv:0705.2425 [hep-ph]].
  • [12] J. R. Espinosa, T. Konstandin and F. Riva, Nucl. Phys. B 854, 592-630 (2012) doi:10.1016/j.nuclphysb.2011.09.010 [arXiv:1107.5441 [hep-ph]].
  • [13] M. Jiang, L. Bian, W. Huang and J. Shu, Phys. Rev. D 93, no.6, 065032 (2016) doi:10.1103/PhysRevD.93.065032 [arXiv:1502.07574 [hep-ph]].
  • [14] K. P. Xie, [arXiv:2011.04821 [hep-ph]].
  • [15] W. Liu and K. P. Xie, [arXiv:2101.10469 [hep-ph]].
  • [16] J. M. Cline, K. Kainulainen and M. Trott, JHEP 11, 089 (2011) doi:10.1007/JHEP11(2011)089 [arXiv:1107.3559 [hep-ph]].
  • [17] G. C. Dorsch, S. J. Huber and J. M. No, JHEP 10, 029 (2013) doi:10.1007/JHEP10(2013)029 [arXiv:1305.6610 [hep-ph]].
  • [18] G. C. Dorsch, S. J. Huber, K. Mimasu and J. M. No, Phys. Rev. Lett. 113, no.21, 211802 (2014) doi:10.1103/PhysRevLett.113.211802 [arXiv:1405.5537 [hep-ph]].
  • [19] J. Bernon, L. Bian and Y. Jiang, JHEP 05, 151 (2018) doi:10.1007/JHEP05(2018)151 [arXiv:1712.08430 [hep-ph]].
  • [20] J. O. Andersen, T. Gorda, A. Helset, L. Niemi, T. V. I. Tenkanen, A. Tranberg, A. Vuorinen and D. J. Weir, Phys. Rev. Lett. 121, no.19, 191802 (2018) doi:10.1103/PhysRevLett.121.191802 [arXiv:1711.09849 [hep-ph]].
  • [21] K. Kainulainen, V. Keus, L. Niemi, K. Rummukainen, T. V. I. Tenkanen and V. Vaskonen, JHEP 06, 075 (2019) doi:10.1007/JHEP06(2019)075 [arXiv:1904.01329 [hep-ph]].
  • [22] R. Zhou, W. Cheng, X. Deng, L. Bian and Y. Wu, JHEP 01, 216 (2019) doi:10.1007/JHEP01(2019)216 [arXiv:1812.06217 [hep-ph]].
  • [23] L. Bian, H. K. Guo and J. Shu, Chin. Phys. C 42, no.9, 093106 (2018) [erratum: Chin. Phys. C 43, no.12, 129101 (2019)] doi:10.1088/1674-1137/42/9/093106 [arXiv:1704.02488 [hep-ph]].
  • [24] S. J. Huber, T. Konstandin, G. Nardini and I. Rues, JCAP 03, 036 (2016) doi:10.1088/1475-7516/2016/03/036 [arXiv:1512.06357 [hep-ph]].
  • [25] D. Grasso and H. R. Rubinstein, Phys. Rept. 348, 163-266 (2001) doi:10.1016/S0370-1573(00)00110-1 [arXiv:astro-ph/0009061 [astro-ph]].
  • [26] R. Durrer and A. Neronov, Astron. Astrophys. Rev. 21, 62 (2013) doi:10.1007/s00159-013-0062-7 [arXiv:1303.7121 [astro-ph.CO]].
  • [27] T. Vachaspati, Phys. Rev. D 95, no.6, 063505 (2017) doi:10.1103/PhysRevD.95.063505 [arXiv:1606.06186 [astro-ph.CO]].
  • [28] D. G. Yamazaki, T. Kajino, G. J. Mathew and K. Ichiki, Phys. Rept. 517, 141-167 (2012) doi:10.1016/j.physrep.2012.02.005 [arXiv:1204.3669 [astro-ph.CO]].
  • [29] J.L. Han, Annual Review of Astronomy and Astrophysics 2017 55:1, 111-157 doi.org/10.1146/annurev-astro-091916-055221. Han J. L., Manchester R. N., van Straten W., Demorest P., 2018, ApJS, 234, 11. doi:10.3847/1538-4365/aa9c45 Xu J., Han J. L., 2019, MNRAS, 486, 4275. doi:10.1093/mnras/stz1060.
  • [30] T. W. B. Kibble and A. Vilenkin, Phys. Rev. D 52 (1995), 679-688 doi:10.1103/PhysRevD.52.679 [arXiv:hep-ph/9501266 [hep-ph]].
  • [31] J. Ahonen and K. Enqvist, Phys. Rev. D 57 (1998), 664-673 doi:10.1103/PhysRevD.57.664 [arXiv:hep-ph/9704334 [hep-ph]].
  • [32] T. Stevens, M. B. Johnson, L. S. Kisslinger, E. M. Henley, W. Y. P. Hwang and M. Burkardt, Phys. Rev. D 77, 023501 (2008) doi:10.1103/PhysRevD.77.023501 [arXiv:0707.1346 [astro-ph]].
  • [33] T. Stevens and M. B. Johnson, Phys. Rev. D 80, 083011 (2009) doi:10.1103/PhysRevD.80.083011 [arXiv:0903.2227 [astro-ph.CO]].
  • [34] T. Stevens, M. B. Johnson, L. S. Kisslinger and E. M. Henley, Phys. Rev. D 85 (2012), 063003 doi:10.1103/PhysRevD.85.063003
  • [35] J. Ellis, M. Fairbairn, M. Lewicki, V. Vaskonen and A. Wickens, JCAP 09, 019 (2019) doi:10.1088/1475-7516/2019/09/019 [arXiv:1907.04315 [astro-ph.CO]].
  • [36] A. Kandus, K. E. Kunze and C. G. Tsagas, Phys. Rept. 505, 1-58 (2011) doi:10.1016/j.physrep.2011.03.001 [arXiv:1007.3891 [astro-ph.CO]].
  • [37] K. Subramanian, Rept. Prog. Phys. 79, no.7, 076901 (2016) doi:10.1088/0034-4885/79/7/076901 [arXiv:1504.02311 [astro-ph.CO]].
  • [38] A. Kosowsky, M. S. Turner and R. Watkins, Phys. Rev. D 45 (1992), 4514-4535 doi:10.1103/PhysRevD.45.4514
  • [39] L. Darmé, J. Jaeckel and M. Lewicki, Phys. Rev. D 96 (2017) no.5, 056001 doi:10.1103/PhysRevD.96.056001 [arXiv:1704.06445 [hep-ph]].
  • [40] D. Bodeker and G. D. Moore, JCAP 05 (2009), 009 doi:10.1088/1475-7516/2009/05/009 [arXiv:0903.4099 [hep-ph]].
  • [41] D. Bodeker and G. D. Moore, JCAP 05 (2017), 025 doi:10.1088/1475-7516/2017/05/025 [arXiv:1703.08215 [hep-ph]].
  • [42] J. Ellis, M. Lewicki, J. M. No and V. Vaskonen, JCAP 06 (2019), 024 doi:10.1088/1475-7516/2019/06/024 [arXiv:1903.09642 [hep-ph]].
  • [43] R. G. Cai and S. J. Wang, [arXiv:2011.11451 [astro-ph.CO]].
  • [44] T. Kahniashvili, A. G. Tevzadze, A. Brandenburg and A. Neronov, Phys. Rev. D 87 (2013) no.8, 083007 doi:10.1103/PhysRevD.87.083007 [arXiv:1212.0596 [astro-ph.CO]].
  • [45] Y. Zhang, T. Vachaspati and F. Ferrer, Phys. Rev. D 100, no.8, 083006 (2019) doi:10.1103/PhysRevD.100.083006 [arXiv:1902.02751 [hep-ph]].
  • [46] Y. Di, J. Wang, R. Zhou, L. Bian, R. G. Cai and J. Liu, [arXiv:2012.15625 [astro-ph.CO]].
  • [47] M. Ackermann et al. [Fermi-LAT], Astrophys. J. Suppl. 237, no.2, 32 (2018) doi:10.3847/1538-4365/aacdf7 [arXiv:1804.08035 [astro-ph.HE]].
  • [48] A. M. Taylor, I. Vovk and A. Neronov, Astron. Astrophys. 529, A144 (2011) doi:10.1051/0004-6361/201116441 [arXiv:1101.0932 [astro-ph.HE]].
  • [49] T. Kahniashvili, A. G. Tevzadze, S. K. Sethi, K. Pandey and B. Ratra, Phys. Rev. D 82, 083005 (2010) doi:10.1103/PhysRevD.82.083005 [arXiv:1009.2094 [astro-ph.CO]].
  • [50] M. Kawasaki and M. Kusakabe, Phys. Rev. D 86, 063003 (2012) doi:10.1103/PhysRevD.86.063003 [arXiv:1204.6164 [astro-ph.CO]].
  • [51] A. Brandenburg, T. Kahniashvili, S. Mandal, A. Roper Pol, A. G. Tevzadze and T. Vachaspati, Phys. Rev. D 96 (2017) no.12, 123528 doi:10.1103/PhysRevD.96.123528 [arXiv:1711.03804 [astro-ph.CO]].
  • [52] T. Kahniashvili, A. G. Tevzadze, S. K. Sethi, K. Pandey and B. Ratra, Phys. Rev. D 82, 083005 (2010) doi:10.1103/PhysRevD.82.083005 [arXiv:1009.2094 [astro-ph.CO]].
  • [53] T. R. Seshadri and K. Subramanian, Phys. Rev. Lett. 103, 081303 (2009) doi:10.1103/PhysRevLett.103.081303 [arXiv:0902.4066 [astro-ph.CO]].
  • [54] P. A. R. Ade et al. [Planck], Astron. Astrophys. 594, A19 (2016) doi:10.1051/0004-6361/201525821 [arXiv:1502.01594 [astro-ph.CO]].
  • [55] K. Jedamzik, V. Katalinic and A. V. Olinto, Phys. Rev. Lett. 85, 700-703 (2000) doi:10.1103/PhysRevLett.85.700 [arXiv:astro-ph/9911100 [astro-ph]].
  • [56] J. D. Barrow, P. G. Ferreira and J. Silk, Phys. Rev. Lett. 78, 3610-3613 (1997) doi:10.1103/PhysRevLett.78.3610 [arXiv:astro-ph/9701063 [astro-ph]].
  • [57] R. Durrer, P. G. Ferreira and T. Kahniashvili, Phys. Rev. D 61, 043001 (2000) doi:10.1103/PhysRevD.61.043001 [arXiv:astro-ph/9911040 [astro-ph]].
  • [58] P. Trivedi, K. Subramanian and T. R. Seshadri, Phys. Rev. D 82, 123006 (2010) doi:10.1103/PhysRevD.82.123006 [arXiv:1009.2724 [astro-ph.CO]].
  • [59] C. J. Copi, F. Ferrer, T. Vachaspati and A. Achucarro, Phys. Rev. Lett. 101, 171302 (2008) doi:10.1103/PhysRevLett.101.171302 [arXiv:0801.3653 [astro-ph]].
  • [60] J. M. Cornwall, Phys. Rev. D 56, 6146-6154 (1997) doi:10.1103/PhysRevD.56.6146 [arXiv:hep-th/9704022 [hep-th]].
  • [61] M. Giovannini and M. E. Shaposhnikov, Phys. Rev. Lett. 80, 22-25 (1998) doi:10.1103/PhysRevLett.80.22 [arXiv:hep-ph/9708303 [hep-ph]].
  • [62] H. Ji, Phys. Rev. Lett. 83, 3198-3201 (1999) doi:10.1103/PhysRevLett.83.3198 [arXiv:astro-ph/0102321 [astro-ph]].

99