This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

thanks: On academic leave from Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh PA 15260, USA

Manipulating Goldstone modes via the superradiant light in a bosonic lattice gas inside a cavity

Huan Wang MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter,Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi’an Jiaotong University, Xi’an 710049, China    Shuai Li MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter,Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi’an Jiaotong University, Xi’an 710049, China    Maksims Arzamasovs MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter,Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi’an Jiaotong University, Xi’an 710049, China    W. Vincent Liu Department of Physics and Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China    Bo Liu liubophy@gmail.com MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter,Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi’an Jiaotong University, Xi’an 710049, China
Abstract

We study the low-energy excitations of a bosonic lattice gas with cavity-mediated interactions. By performing two successive Hubbard-Stratonovich transformations, we derive an effective field theory to study the strongly-coupling regime. Taking into account the quantum fluctuation, we report the unusual effect of the superradiant cavity light induced density imbalance, which has been shown to have a negligible effect on the single particle excitation in the previous studies. Instead, we show that such negligible fluctuation of density imbalance dramatically changes the behavior of the low-energy excitation and results in a free switching between two types of Goldstone modes in its single particle excitation, i.e., type I and type II with odd and even power energy-momentum dispersion, respectively. Our proposal would open a new horizon for manipulating Goldstone modes from bridging the cavity light and strongly interacting quantum matters.

The mechanism of spontaneous symmetry breaking is crucial for understanding phase transitions and is also widely used to study the associated emergence of new particles and excitations Huang (1987). It is well known that when a continuous symmetry is spontaneously broken in nonrelativistic theories, there appear Nambu-Goldstone (NG) modes Nambu (1960); Goldstone (1961). The dispersion relations of which are either linear (type I) or quadratic (type II), where the numbers of distinct types of NG modes satisfy the Nielsen-Chadha inequality Nielsen and Chadha (1976). Thanks to recent experimental developments, the Goldstone modes have been studied in various condensed matter Bloch (1930); Chubukov et al. (1994); Podolsky and Sachdev (2012); Ye and Jiang (2007) and ultra-cold atomic systems  Ernst et al. (2010a); Papp et al. (2008); Steinhauer et al. (2002); Stenger et al. (1999); Stamper-Kurn et al. (1999); Kozuma et al. (1999); Yu et al. (2013); Pan et al. (2020).

A gas of bosonic atoms in an optical lattice has been reversibly tuned between superfluids (SF) and insulating ground states by varying the strength of the periodic potential Greiner et al. (2002); Stöferle et al. (2004). It provides an ideal platform to study the spontaneous symmetry breaking induced elementary excitations. Not only has the gapless Goldstone mode been found to exhaust all of the spectral weight in the weakly-interacting limit, but also the Higgs amplitude mode has been detected in the strongly-interacting regime near the transition between SF and Mott state at commensurate fillings Sachdev (2011); Endres et al. (2012); Pekker and Varma (2015).

Recently, a complimentary approach using ultracold atoms inside a cavity unveils the effect of cavity-mediated interactions, which results in the observation of a rich phase diagram with Mott insulator, superfluid, supersolid (SS) and charge-density-wave (CDW) phases Landig et al. (2016); Klinder et al. (2015). The low-energy excitations associated with above various symmetry-breaking phases have been investigated within the framework of mean-field approach, where new features, such as the softening of particle- and hole-like excitations, have been explored Dogra et al. (2016). The quantum fluctuation has not been taken into account within such mean-field calculations. However, it has been shown to play an important role in the strongly-interacting regime, leading to intriguing physical phenomena, such as the appearance of Higgs mode in the excitation spectrum of the Bose-Hubbard model Freericks and Monien (1994, 1996).

In this work, a systematic strong-coupling expansion method has been developed by performing two successive Hubbard-Stratonovich transformations Sengupta and Dupuis (2005) for the system of ultracold bosons in an optical lattice strongly coupled to a single mode of a high-finesse optical cavity Landig et al. (2016); Klinder et al. (2015). The effect of quantum fluctuations can thus been systematically explored in the strongly-interacting regime, which has not been studied previously Dogra et al. (2016); Chen et al. (2016). Interestingly, we find that the quantum fluctuations at the SS-to-CDW transition cause an unexpected effect of the modulation of density imbalance, neglected in the previous studies  Dogra et al. (2016). While being small, this modulation results in dramatic changes of the behavior of low-energy excitations. A free switching between the odd (type I) and even (type II) power energy-momentum dispersion NG modes can be achieved along the phase boundary. This prediction would pave a new way to manipulate NG modes in a cold atom based system.

Effective model Same as the ETH experiment Landig et al. (2016), here we consider a Bose-Einstein condensate (BEC), such as 87Rb atoms, subjected to an ultrahigh-finesse optical cavity, where three mutually orthogonal standing waves form a highly anisotropic 33D optical lattice VL(𝐫)=Vycos2(q0y)+V2D[cos2(q0x)+cos2(q0z)])V_{L}(\mathbf{r})=V_{y}\cos^{2}(q_{0}y)+V_{2D}[\cos^{2}(q_{0}x)+\cos^{2}(q_{0}z)]) with the lattice depth VyV2DV_{y}\gg V_{2D} and the wave vectors of laser fields denoted by q0q_{0}. The BEC is thus split into a stack of 22D layers, where the bosonic atoms are exposed to an additional potential Vc(𝐫)=η¯(a^+a^)cos(q0x)cos(q0z)(ΔcU0cos2(q0z))a^a^V_{c}(\mathbf{r})=\hbar\bar{\eta}(\hat{a}+\hat{a}^{{\dagger}})\cos(q_{0}x)\cos(q_{0}z)-\hbar(\Delta_{c}-U_{0}\cos^{2}(q_{0}z))\hat{a}\hat{a}^{{\dagger}} in the xzxz-plane formed by the coherent scattering between one free space lattice and one intracavity optical standing wave with the same wave-vector q0q_{0} Landig et al. (2016); Klinder et al. (2015). η¯\bar{\eta} is the two-photon Rabi frequency determining the scattering rate. a^\hat{a} and a^\hat{a}^{{\dagger}} are the annihilation and creation operators for the cavity photon, respectively. Δc=ωpωc\Delta_{c}=\omega_{p}-\omega_{c} describes the discrepancy between pumping light (lattice standing-wave) frequency ωp\omega_{p} and the cavity resonance frequency ωc\omega_{c}. U0U_{0} captures the maximum light shift per atom resulting from the effect of the dispersive shift of the cavity resonance frequency Landig et al. (2016).

Since the coherent scattering of light between the lattice and the cavity mode creates a dynamical checkerboard superlattice for the atoms, the effective Hamiltonian describing the atomic dynamics dressed by the cavity field can be expressed as

H\displaystyle H =\displaystyle= 𝐫,𝐫Tσσ(𝐫𝐫)ψσ(𝐫)ψσ(𝐫)𝐫,σμσnσ(𝐫)\displaystyle\sum_{\mathbf{r},\mathbf{r}^{\prime}}-\mathrm{T}_{\sigma\sigma^{\prime}}\left(\mathbf{r}-\mathbf{r}^{\prime}\right)\psi_{\sigma}^{\dagger}(\mathbf{r})\psi_{\sigma^{\prime}}\left(\mathbf{r}^{\prime}\right)-\sum_{\mathbf{r},\sigma}\mu_{\sigma}n_{\sigma}(\mathbf{r}) (1)
+\displaystyle+ U2𝐫,σnσ(𝐫)(nσ(𝐫)1)δc|α|2,\displaystyle\frac{U}{2}\sum_{\mathbf{r},\sigma}n_{\sigma}(\mathbf{r})(n_{\sigma}(\mathbf{r})-1)-\delta_{c}|\alpha|^{2},

where ψσ(𝐫)\psi_{\sigma}(\mathbf{r}) is the bosonic atom field. σ=e,o\sigma=e,o stands for even and odd sites, respectively, describing distinct sublattices of the checkerboard lattice. Here we choose the nearest neighbor two sites as one unit cell and 𝐫\mathbf{r} (𝐫\mathbf{r}^{\prime}) is the lattice index capturing the location of the unit cell. The expression of the hopping matrix Tσσ\mathrm{T}_{\sigma\sigma^{\prime}} is given in the supplementary material (SM). UU captures the strength of the repulsive interaction between bosonic atoms determined by the effective ss-wave scattering length, which can be tuned by means of the Feshbach resonance and lattice depth. nσ(𝐫)=ψσ(𝐫)ψσ(𝐫)n_{\sigma}(\mathbf{r})=\psi_{\sigma}^{\dagger}(\mathbf{r})\psi_{\sigma}(\mathbf{r}) is the density operator. The onsite energies μe=μη(α+α)\mu_{e}=\mu-\eta\left(\alpha^{*}+\alpha\right) and μo=μ+η(α+α)\mu_{o}=\mu+\eta\left(\alpha^{*}+\alpha\right) are introduced for even and odd sites, respectively, where μ\mu is the chemical potential and η\eta is the energy shift due to the two-photon Rabi process. δc=(Δcδ)\delta_{c}=\hbar(\Delta_{c}-\delta) is the energy detuning between the cavity and the pumping lights, where δ\delta is the dispersive shift of the cavity due to the BEC Landig et al. (2016). α\alpha is the mean value of the cavity field, which can be determined by the steady equation itα=<[α^,𝐇~]>iκα=0i\hbar\partial_{t}\alpha=<[\hat{\alpha},{\tilde{\mathbf{H}}}]>-i\kappa\alpha=0 with 𝐇~=𝐫,𝐫Tσσ(𝐫𝐫)ψσ(𝐫)ψσ(𝐫)μ𝐫,σnσ(𝐫)+U2𝐫,σnσ(𝐫)(nσ(𝐫)1)+η(a^+a^)𝐫(ne(𝐫)no(𝐫))(Δcδ)a^a^{\tilde{\mathbf{H}}}=-\sum_{\mathbf{r},\mathbf{r}^{\prime}}\mathrm{T}_{\sigma\sigma^{\prime}}\left(\mathbf{r}-\mathbf{r}^{\prime}\right)\psi_{\sigma}^{\dagger}(\mathbf{r})\psi_{\sigma^{\prime}}\left(\mathbf{r}^{\prime}\right)-\mu\sum_{\mathbf{r},\sigma}n_{\sigma}(\mathbf{r})+\frac{U}{2}\sum_{\mathbf{r},\sigma}n_{\sigma}(\mathbf{r})(n_{\sigma}(\mathbf{r})-1)+\eta(\hat{a}+\hat{a}^{{\dagger}})\sum_{\mathbf{r}}(n_{e}(\mathbf{r})-n_{o}(\mathbf{r}))-\hbar(\Delta_{c}-\delta)\hat{a}^{{\dagger}}\hat{a} in the regime of large decay rate κ\kappa Baumann et al. (2010) and leads to the following relation

α\displaystyle\alpha =η𝐫[<ne(𝐫)><no(𝐫)>]δc+iκ\displaystyle=\frac{\eta\sum_{\mathbf{r}}\left[<n_{e}(\mathbf{r})>-<n_{o}(\mathbf{r})>\right]}{\delta_{c}+i\kappa} (2)
|Δc|κ,|δ|Nη(neno)Δc\displaystyle\overset{\left|\Delta_{c}\right|\gg\kappa,\left|\delta\right|}{\approx}\frac{N\eta\left(\left\langle n_{e}\right\rangle-\left\langle n_{o}\right\rangle\right)}{\hbar\Delta_{c}}

where <ne(𝐫)><n_{e}(\mathbf{r})> and <no(𝐫)><n_{o}(\mathbf{r})> are the average density of bosonic atoms at even and odd sites, respectively. 2N2N is the total lattice site.

Refer to caption
Figure 1: (a) Zero temperature phase diagram as a function of the lattice depth V2DV_{2D} and Δc\Delta_{c}. There are four different phases as shown in the phase diagram, which consists of a superfluid (SF) phase, a Mott insulator (MI) state, a charge-density-wave (CDW)state and a supersolid (SS) phase. The dashed and solid line separate the two distinct region, where two different types of Goldstone modes (type-I and type-II) were found in its single particle excitation, respectively. (b) Evolution of the different order parameters as a function of the lattice depth V2DV_{2D} when Δc/2π=36\Delta_{c}/2\pi=-36MHz. ErE_{r} is the recoil energy. Other parameters are chosen as μ=0.42U\mu=0.42U, κ=2π×1.25\kappa=2\pi\times 1.25MHz, N=1×104N=1\times 10^{4}.

Path integral approach In the following, we develop a strong-coupling expansion of the model Hamiltonian in Eq. (1), which extends the treatment in Bose-Hubbard model Sengupta and Dupuis (2005), where both superfluid and Mott phases can be captured in the same time by this method. Through introducing the complex field ψσ\psi_{\sigma}, the thermodynamic properties of the system can be obtained from the partition function ZZ as a functional integral with the action S[ψσ,ψσ]=0β𝑑τ{σ,𝐫ψσ(𝐫)τψσ(𝐫)+H[ψ,ψ]}S\left[\psi_{\sigma}^{*},\psi_{\sigma}\right]=\int_{0}^{\beta}d\tau\left\{\sum_{\sigma,\mathbf{r}}\psi_{\sigma}^{*}(\mathbf{r})\partial_{\tau}\psi_{\sigma}(\mathbf{r})+H\left[\psi^{*},\psi\right]\right\}. Here, τ\tau is a imaginary time and β=1/kBT\beta=1/k_{B}T is inverse temperature. We then perform a Hubbard-Stratonovich transformation through introducing the auxiliary field ϕσ\phi_{\sigma} to decouple the intersite hopping in the action and obtain

Z=D[ψσ,ψσ,ϕσ,ϕσ]exp{0βdτ𝐫,𝐫ϕσ(𝐫)Tσσ1ϕσ(𝐫)\displaystyle Z=\int D\left[\psi_{\sigma}^{*},\psi_{\sigma},\phi_{\sigma}^{*},\phi_{\sigma}\right]\exp\{-\int_{0}^{\beta}d\tau\sum_{\mathbf{r},\mathbf{r}^{\prime}}\phi_{\sigma}^{*}(\mathbf{r})T_{\sigma\sigma^{\prime}}^{-1}\phi_{\sigma^{\prime}}(\mathbf{r^{\prime}})
+[σ,r0βdτϕσ(𝐫)ψσ(𝐫)+c.c]S0[ψσ,ψσ]}\displaystyle+[\sum_{\sigma,\mathrm{r}}\int_{0}^{\beta}d\tau\phi_{\sigma}^{*}(\mathbf{r})\psi_{\sigma}(\mathbf{r})+c.c]-S_{0}\left[\psi_{\sigma}^{*},\psi_{\sigma}\right]\}
=Z0D[ϕσ,ϕσ]e0β𝑑τ𝐫,𝐫ϕσ(𝐫)Tσσ1ϕσ(𝐫)\displaystyle=Z_{0}\int D\left[\phi_{\sigma}^{*},\phi_{\sigma}\right]e^{-\int_{0}^{\beta}d\tau\sum_{\mathbf{r},\mathbf{r}^{\prime}}\phi_{\sigma}^{*}(\mathbf{r})T_{\sigma\sigma^{\prime}}^{-1}\phi_{\sigma^{\prime}}(\mathbf{r^{\prime}})}
×exp[σ,r0βdτϕσ(𝐫)ψσ(𝐫)+c.c]0\displaystyle\times\langle\exp[\sum_{\sigma,\mathrm{r}}\int_{0}^{\beta}d\tau\phi_{\sigma}^{*}(\mathbf{r})\psi_{\sigma}(\mathbf{r})+c.c]\rangle_{0}
=Z0D[ϕσ,ϕσ]exp{0β𝑑τ𝐫,𝐫ϕσTσσ1ϕσ+W[ϕσ,ϕσ]},\displaystyle=Z_{0}\int D\left[\phi_{\sigma}^{*},\phi_{\sigma}\right]\exp\{-\int_{0}^{\beta}d\tau\sum_{\mathbf{r},\mathbf{r}^{\prime}}\phi_{\sigma}^{*}T_{\sigma\sigma^{\prime}}^{-1}\phi_{\sigma^{\prime}}+W\left[\phi_{\sigma}^{*},\phi_{\sigma}\right]\},
(3)

where Tσσ1T_{\sigma\sigma^{\prime}}^{-1} represents the inverse hopping matrix. S0S_{0} and Z0Z_{0} are the action and partition function in the limit of t=0t=0. 0\langle\cdots\rangle_{0} stands for averaging with S0S_{0}. W[ϕσ,ϕσ]=lnexp[σ,r0βdτϕσ(𝐫)ψσ(𝐫)+c.c.]0W\left[\phi_{\sigma}^{*},\phi_{\sigma}\right]=\ln\langle\exp[\sum_{\sigma,\mathrm{r}}\int_{0}^{\beta}d\tau\phi_{\sigma}^{*}(\mathbf{r})\psi_{\sigma}(\mathbf{r})+\mathrm{c.c.}]\rangle_{0} is the generation function linking to connected local Green’s functions GRcG^{Rc} through the relation [25] W[ϕ,ϕ]=R=1(1)R(R!)2σ1σRG{σi,σi}Rcϕσ1ϕσRϕσRϕσ1W\left[\phi^{*},\phi\right]=\sum_{R=1}^{\infty}\frac{(-1)^{R}}{(R!)^{2}}\sum^{\prime}_{\sigma_{1}\cdots\sigma_{R}^{\prime}}G_{\left\{\sigma_{i},\sigma_{i}^{\prime}\right\}}^{Rc}\phi_{\sigma_{1}}^{*}\cdots\phi_{\sigma_{R}}^{*}\phi_{\sigma_{R}^{\prime}}\cdots\phi_{\sigma_{1}^{\prime}}, where \sum^{\prime} means that all the fields share the same value of the site index and {σi,σi}σ1σR,σ1σR{\left\{\sigma_{i},\sigma_{i}^{\prime}\right\}}\equiv{\sigma_{1}\cdots\sigma_{R},\sigma_{1}^{\prime}\cdots\sigma^{\prime}_{R}}. After doing a power expansion of W[ϕ,ϕ]W\left[\phi^{*},\phi\right] to quartic order, we obtain that

S[ϕσ,ϕσ]\displaystyle S[\phi_{\sigma}^{*},\phi_{\sigma}] =\displaystyle= 0β𝑑τ𝐫,𝐫ϕσ(𝐫)Tσσ1(𝐫𝐫)ϕσ(𝐫)W[ϕσ,ϕσ]\displaystyle\int_{0}^{\beta}d\tau\sum_{\mathbf{r},\mathbf{r}^{\prime}}\phi_{\sigma}^{*}(\mathbf{r})T_{\sigma\sigma^{\prime}}^{-1}\left(\mathbf{r}-\mathbf{r}^{\prime}\right)\phi_{\sigma^{\prime}}\left(\mathbf{r}^{\prime}\right)-W\left[\phi_{\sigma}^{*},\phi_{\sigma}\right] (4)
=\displaystyle= 0β𝑑τ𝐫,𝐫ϕσ(𝐫)Tσσ1(𝐫𝐫)ϕσ(𝐫)\displaystyle\int_{0}^{\beta}d\tau\sum_{\mathbf{r},\mathbf{r}^{\prime}}\phi_{\sigma}^{*}(\mathbf{r})T_{\sigma\sigma^{\prime}}^{-1}\left(\mathbf{r}-\mathbf{r}^{\prime}\right)\phi_{\sigma^{\prime}}\left(\mathbf{r}^{\prime}\right)
+\displaystyle+ 𝑑τ1𝑑τ2𝐫Gσσ(𝐫,τ1τ2)ϕσ(𝐫,τ1)ϕσ(𝐫,τ2)\displaystyle\int d\tau_{1}d\tau_{2}\underset{\mathbf{r}}{\sum}G_{\sigma\sigma}(\mathbf{r,}\tau_{1}-\tau_{2}\mathbf{)}\phi_{\sigma}^{\ast}(\mathbf{r},\tau_{1})\phi_{\sigma}(\mathbf{r},\tau_{2})
\displaystyle- 12!Πα=14𝑑τα𝐫χσσ(𝐫,τ1,τ2,τ3,τ4)\displaystyle\frac{1}{2!}\int\underset{\alpha=1}{\overset{4}{\Pi}}d\tau_{\alpha}\underset{\mathbf{r}}{\sum}\chi_{\sigma\sigma^{\prime}}(\mathbf{r,}\tau_{1},\tau_{2},\tau_{3},\tau_{4})
×\displaystyle\times ϕσ(τ1)ϕσ(τ2)ϕσ(τ3)ϕσ(τ4)+O(ϕ6),\displaystyle\phi_{\sigma}^{\ast}(\tau_{1})\phi_{\sigma}(\tau_{2})\phi_{\sigma^{\prime}}^{\ast}(\tau_{3})\phi_{\sigma^{\prime}}(\tau_{4})+O(\phi^{6}),

where GG is the local Green’s function and χ\chi is the two-particle vertex in the local limit, i.e., t=0t=0 (see details in SM). However, starting from the above action, it is inconvenient to calculate physical quantities, such as the excitation spectrum or the momentum distribution. These difficulties can be circumvented through performing another Hubbard-Stratonovich transition to decouple the hopping term Sengupta and Dupuis (2005). It is shown that the auxiliary field of this transformation has the same correlation functions as the original boson field (see details in SM). Therefore, we can use the same notation for both fields. The partition function can thus be expressed as

Z=Z0D[ψσ,ψσ,ϕσ,ϕσ]exp{0βdτ𝐫,𝐫ψσTσσψσ\displaystyle Z=Z_{0}\int D\left[\psi_{\sigma}^{*},\psi_{\sigma},\phi_{\sigma}^{*},\phi_{\sigma}\right]\exp\{\int_{0}^{\beta}d\tau\sum_{\mathbf{r},\mathbf{r}^{\prime}}\psi_{\sigma}^{*}T_{\sigma\sigma^{\prime}}\psi_{\sigma^{\prime}}
[σ,r0βdτψσ(𝐫)ϕσ(𝐫)+c.c.]+W[ϕσ,ϕσ]},\displaystyle-[\sum_{\sigma,\mathrm{r}}\int_{0}^{\beta}d\tau\psi_{\sigma}^{*}(\mathbf{r})\phi_{\sigma}(\mathbf{r})+\mathrm{c.c.}]+W\left[\phi_{\sigma}^{*},\phi_{\sigma}\right]\}, (5)

Integrating out the ϕσ\phi_{\sigma} field in Eq. (5), the effective action can be obtained

S[ψσ,ψσ]=0β𝑑τ𝐫,rψσ(𝐫,τ)[Tσσ(𝐫𝐫)]ψσ(𝐫,τ)\displaystyle S[\psi_{\sigma}^{*},\psi_{\sigma}]=\int_{0}^{\beta}d\tau\sum_{\mathbf{r},r^{\prime}}\psi_{\sigma}^{*}(\mathbf{r},\tau)\left[-T_{\sigma\sigma^{\prime}}\left(\mathbf{r}-\mathbf{r}^{\prime}\right)\right]\psi_{\sigma^{\prime}}\left(\mathbf{r}^{\prime},\tau\right)
+0β𝑑τ1𝑑τ2𝐫ψσ(𝐫,τ1)[Gσσ1(τ1τ2)]ψσ(𝐫,τ2)\displaystyle+\int_{0}^{\beta}d\tau_{1}d\tau_{2}\sum_{\mathbf{r}}\psi_{\sigma}^{*}\left(\mathbf{r},\tau_{1}\right)\left[-G_{\sigma\sigma}^{-1}\left(\tau_{1}-\tau_{2}\right)\right]\psi_{\sigma}\left(\mathbf{r},\tau_{2}\right)
+12gσσ0β𝑑τ𝐫|ψσ(𝐫,τ)|2|ψσ(𝐫,τ)|2,\displaystyle+\frac{1}{2}g_{\sigma\sigma^{\prime}}\int_{0}^{\beta}d\tau\sum_{\mathbf{r}}\left|\psi_{\sigma}(\mathbf{r},\tau)\right|^{2}\left|\psi_{\sigma^{\prime}}(\mathbf{r},\tau)\right|^{2}, (6)

where gσσg_{\sigma\sigma^{\prime}} captures the amplitude of the boson-boson interaction determined by the local two-particle vertex in its static limit (see details in SM).

Refer to caption
Figure 2: Excitation spectra for the two lowest-energy excitations (a) when V2D/Er=9.1V_{2D}/E_{r}=9.1, Δc/2π=30.2\Delta_{c}/2\pi=-30.2MHz as indicated by ’\ast’ in Fig. 1(a), (b) when V2D/Er=9.14V_{2D}/E_{r}=9.14, Δc/2π=35\Delta_{c}/2\pi=-35MHz as labelled by ’\star’ in Fig. 1(a). Other parameters are the same as Fig. 1. (c) (d) Density of states (DOS) defined in the main text for type I and type II Goldstone modes, respectively.

Phase diagram under the saddle-point approximation Starting from the above effective action, we first perform a saddle-point approximation to determine the ground state of our proposed system. The saddle-point action derived from Eq. (6) can be expressed as

Ssaddle\displaystyle S_{saddle} =\displaystyle= G¯ee1|ψ¯e|2G¯oo1|ψ¯o|24tψ¯oψ¯e4tψ¯eψ¯o\displaystyle-\bar{G}_{ee}^{-1}{\left|{{{\bar{\psi}}_{e}}}\right|^{2}}-\bar{G}_{oo}^{-1}{\left|{{{\bar{\psi}}_{o}}}\right|^{2}}-4t{{\bar{\psi}}_{o}}^{*}{{\bar{\psi}}_{e}}-4t{{\bar{\psi}}_{e}}^{*}{{\bar{\psi}}_{o}} (7)
\displaystyle- 14χ¯eeG¯ee4|ψ¯e|414χ¯ooG¯oo4|ψ¯o|4,\displaystyle\frac{1}{4}\frac{{{{\bar{\chi}}_{ee}}}}{{\bar{G}_{ee}^{4}}}{\left|{{{\bar{\psi}}_{e}}}\right|^{4}}-\frac{1}{4}\frac{{{{\bar{\chi}}_{oo}}}}{{\bar{G}_{oo}^{4}}}{\left|{{{\bar{\psi}}_{o}}}\right|^{4}},

where G¯σσGσσ(iω=0)\bar{G}_{\sigma\sigma}\equiv G_{\sigma\sigma}(i\omega=0) and χ¯σσχσσ(iω=0)\bar{\chi}_{\sigma\sigma}\equiv\chi_{\sigma\sigma}(i\omega=0) with Gσσ(iω)G_{\sigma\sigma}(i\omega) and χσσ(iω)\chi_{\sigma\sigma}(i\omega) being Fourier transforms of the single-particle Green’s function and the two-particle vertex, respectively. The saddle-point value ψ¯σ\bar{\psi}_{\sigma} can be obtained from minimizing SsaddleS_{saddle} and we obtain

ns,e\displaystyle n_{s,e} =\displaystyle= G¯ee1+4tc1gee if G¯ee1+4tc1>0\displaystyle\frac{\bar{G}_{ee}^{-1}+4tc^{-1}}{g_{ee}}\text{ \ if }\bar{G}_{ee}^{-1}+4tc^{-1}>0
ns,e\displaystyle n_{s,e} =\displaystyle= 0 otherwisde,\displaystyle 0\text{ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ otherwisde,} (8)
ns,o\displaystyle n_{s,o} =\displaystyle= G¯oo1+4tcgoo if G¯oo1+4tc>0\displaystyle\frac{\bar{G}_{oo}^{-1}+4tc}{g_{oo}}\text{ \ \ \ \ \ \ if }\bar{G}_{oo}^{-1}+4tc>0
ns,o\displaystyle n_{s,o} =\displaystyle= 0 otherwise,\displaystyle 0\text{ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ otherwise}, (9)

where ns,o(e)=|ψ¯σ|2n_{s,o(e)}=|\bar{\psi}_{\sigma}|^{2} is the superfluid density of the pseudospin σ{\sigma} component and c=ψ¯e/ψ¯oc=\bar{\psi}_{e}/\bar{\psi}_{o}. By utilizing an iterative algorithm to solve a complete set of self-consistent equations (2), (8) and (9), superfluid order parameters ψ¯σ\bar{\psi}_{\sigma} for even and odd lattice sites and the mean value of cavity field α\alpha can be determined. As defined in Eq. (2), α\alpha characterizes the average imbalance between even and odd lattice sites, which can be used as the order parameter describing the CDW order.

We display the phase diagram as a function of the lattice depth V2DV_{2D} and detuning Δc\Delta_{c} in Fig. 1(a), to compare with the realistic experiments, such as the ETH experimental setup Landig et al. (2016). There are four different phases as shown in the phase diagram, which consists of a superfluid (SF) phase, a Mott insulator (MI) state, a charge-density-wave (CDW) state and a supersolid (SS) phase. The difference among these four phases can be captured by order parameters defined above, for example, as shown in Fig. 1(b). A SF phase is characterized by finite and equal superfluid order parameters and vanishing even-odd imbalance indicated by α=0\alpha=0. It is quite different in the SS phase, where a finite even-odd imbalance and nonzero superfluid order parameters are observed. In both MI and CDW states, superfluid order parameters vanish. However, the presence of a finite even-odd imbalance α0\alpha\neq 0 distinguishes between MI and CDW states. The obtained phase diagram is consistent with other mean-field calculations Dogra et al. (2016); Chen et al. (2016). However, the path integral approach constructed here can provide a systematic way beyond the mean-field approach for investigating the effect of high-order fluctuations. The unexpected results driven by the fluctuations will be unveiled below.

Refer to caption
Figure 3: The coefficients I2I_{2} and I4I_{4} in EGoldstone+E^{+}_{Goldstone} (Eq. 12) as a function of density imbalance modulation when varying the system along the phase boundary between SS and CDW as shown in Fig. 1(a). The dashed line separates the regions with type I and type II Goldstone modes, respectively. δnboundary\delta n_{boundary} and δnCDW\delta n_{CDW} describe the atom density imbalance between even and odd sites, when considering the system along the phase boundary and in CDW, respectively. Here δnCDW\delta n_{CDW} is fixed at δnCDW=2\delta n_{CDW}=2. Other parameters are chosen as the same in Fig. 1.

Manipulating Goldstone modes at the SS-CDW transition Since typically fluctuations will play a dominate role in determining physical properties at the critical region, to explore the unexpected results arising from the fluctuations, we construct the critical theory describing the phase transition region as shown in Fig. 1(a). By performing both a spatial and a temporal gradient expansion of the action in Eq. (6), as well as the cumulant expansion in powers of ψσ\psi_{\sigma} Sengupta and Dupuis (2005); Fisher et al. (1989); Faccioli and Salasnich (2018), the effective action can be rewritten as

S=0βdτd𝐫{[ψe(𝐫,τ)reψe(𝐫,τ)+ψo(𝐫,τ)reψo(𝐫,τ)ψo(𝐫,τ)4tψe(𝐫,τ)ψe(𝐫,τ)4tψo(𝐫,τ)]+[Ke1ψe(𝐫,τ)τψe(𝐫,τ)+Ko1ψo(𝐫,τ)τψo(𝐫,τ)]+[Ke2|τψe(𝐫,τ)|2+Ko2|τψo(𝐫,τ)|2]+[K3ψe(𝐫,τ)ψo(𝐫,τ)+K3ψo(𝐫,τ)ψe(𝐫,τ)]+gee2|ψe(𝐫,τ)|4+goo2|ψo(𝐫,τ)|4+geo2|ψe(𝐫,τ)|2|ψo(𝐫,τ)|2+goe2|ψo(𝐫,τ)|2|ψe(𝐫,τ)|2},\displaystyle\begin{aligned} S=&\int\nolimits_{0}^{\beta}d\tau\int d\mathbf{r\{}\left[\psi_{e}^{\ast}(\mathbf{r},\tau)r_{e}\psi_{e}(\mathbf{r},\tau)+\psi_{o}^{\ast}(\mathbf{r},\tau)r_{e}\psi_{o}(\mathbf{r},\tau)-\psi_{o}^{\ast}(\mathbf{r},\tau)4t\psi_{e}(\mathbf{r},\tau)-\psi_{e}^{\ast}(\mathbf{r},\tau)4t\psi_{o}(\mathbf{r},\tau)\right]\\ &+\left[K_{e1}\psi_{e}^{\ast}(\mathbf{r},\tau)\partial_{\tau}\psi_{e}(\mathbf{r},\tau)+K_{o1}\psi_{o}^{\ast}(\mathbf{r},\tau)\partial_{\tau}\psi_{o}(\mathbf{r},\tau)\right]+\left[K_{e2}\left|\partial_{\tau}\psi_{e}(\mathbf{r},\tau)\right|^{2}+K_{o2}\left|\partial_{\tau}\psi_{o}(\mathbf{r},\tau)\right|^{2}\right]\\ &+\left[K_{3}\nabla\psi_{e}^{\ast}(\mathbf{r},\tau)\nabla\psi_{o}(\mathbf{r},\tau)+K_{3}\nabla\psi_{o}^{\ast}(\mathbf{r},\tau)\nabla\psi_{e}(\mathbf{r},\tau)\right]+\frac{g_{ee}}{2}\left|\psi_{e}(\mathbf{r},\tau)\right|^{4}+\frac{g_{oo}}{2}\left|\psi_{o}(\mathbf{r},\tau)\right|^{4}\\ &+\frac{g_{eo}}{2}\left|\psi_{e}(\mathbf{r},\tau)\right|^{2}\left|\psi_{o}(\mathbf{r},\tau)\right|^{2}+\frac{g_{oe}}{2}\left|\psi_{o}(\mathbf{r},\tau)\right|^{2}\left|\psi_{e}(\mathbf{r},\tau)\right|^{2}\},\end{aligned} (10)

where re=Gee1(iω=0)r_{e}=-{G}_{ee}^{-1}(i\omega=0), ro=Goo1(iω=0)r_{o}=-{G}_{oo}^{-1}(i\omega=0), Ke1=Gee1(iω)(iω)|iω=0K_{e1}=\frac{\partial G_{ee}^{-1}\left(i\omega\right)}{\partial(i\omega)}|_{i\omega=0}, Ko1=Goo1(iω)(iω)|iω=0K_{o1}=\frac{\partial G_{oo}^{-1}\left(i\omega\right)}{\partial(i\omega)}|_{i\omega=0}. Ke(o)2K_{e(o)2} and K3K_{3} are the coefficients of the second-order temporal and spatial derivatives, respectively, which can be expressed in terms of the Green’s function (see SM for details).

Next, we introduce ησ(𝐫,τ)=ψσ(𝐫,τ)ψ¯σ\eta_{\sigma}(\mathbf{r},\tau)=\psi_{\sigma}(\mathbf{r},\tau)-\bar{\psi}_{\sigma} to describe the fluctuations. After expanding the action in Eq. (10) to the quadric order of fluctuation fields ησ\eta_{\sigma}, we get

S=12𝐤,ωη~(𝐤,iω)M(𝐤,iω)η~(𝐤,iω),\displaystyle S=\frac{1}{2}\underset{\mathbf{k},\omega}{\sum}\tilde{\eta}^{{\dagger}}({\mathbf{k},i\omega})M({\mathbf{k},i\omega})\tilde{\eta}({\mathbf{k},i\omega}), (11)

where η~=[ηe(𝐤,iω),ηe(𝐤,iω),ηo(𝐤,iω),\tilde{\eta}^{{\dagger}}=[\eta_{e}^{\ast}(\mathbf{k},i\omega),\eta_{e}(\mathbf{-k},-i\omega),\eta_{o}^{\ast}(\mathbf{k},i\omega), ηo(𝐤,iω)]\eta_{o}(\mathbf{-k},-i\omega)] and the matrix elements of MM can be expressed as

M11=reiωKe1+Ke2ω2+2geeψ¯e2+geo2ψ¯o2+goe2ψ¯o2,M22=re+iωKe1+Ke2ω2+2geeψ¯e2+geo2ψ¯o2+goe2ψ¯o2,M33=roiωKo1+Ko2ω2+2gooψ¯o2+geo2ψ¯e2+goe2ψ¯e2,M44=ro+iωKo1+Ko2ω2+2gooψ¯o2+geo2ψ¯e2+goe2ψ¯e2,M12=M21=geeψ¯e2,M34=M43=gooψ¯o2,M13=M24=M31=M42=4t+K3k2+geo2ψ¯eψ¯o+goe2ψ¯oψ¯e,M14=M23=M32=M41=geo2ψ¯eψ¯o+goe2ψ¯oψ¯e.\displaystyle\begin{split}&M_{11}=r_{e}-i\omega K_{e1}+K_{e2}\omega^{2}+2g_{ee}\bar{\psi}_{e}^{2}+\frac{g_{eo}}{2}\bar{\psi}_{o}^{2}+\frac{g_{oe}}{2}\bar{\psi}_{o}^{2},\\ &M_{22}=r_{e}+i\omega K_{e1}+K_{e2}\omega^{2}+2g_{ee}\bar{\psi}_{e}^{2}+\frac{g_{eo}}{2}\bar{\psi}_{o}^{2}+\frac{g_{oe}}{2}\bar{\psi}_{o}^{2},\\ &M_{33}=r_{o}-i\omega K_{o1}+K_{o2}\omega^{2}+2g_{oo}\bar{\psi}_{o}^{2}+\frac{g_{eo}}{2}\bar{\psi}_{e}^{2}+\frac{g_{oe}}{2}\bar{\psi}_{e}^{2},\\ &M_{44}=r_{o}+i\omega K_{o1}+K_{o2}\omega^{2}+2g_{oo}\bar{\psi}_{o}^{2}+\frac{g_{eo}}{2}\bar{\psi}_{e}^{2}+\frac{g_{oe}}{2}\bar{\psi}_{e}^{2},\\ &M_{12}=M_{21}=g_{ee}\bar{\psi}_{e}^{2},\quad M_{34}=M_{43}=g_{oo}\bar{\psi}_{o}^{2},\\ &M_{13}=M_{24}=M_{31}=M_{42}\\ &=-4t+K_{3}k^{2}+\frac{g_{eo}}{2}\bar{\psi}_{e}\bar{\psi}_{o}+\frac{g_{oe}}{2}\bar{\psi}_{o}\bar{\psi}_{e},\\ &M_{14}=M_{23}=M_{32}=M_{41}=\frac{g_{eo}}{2}\bar{\psi}_{e}\bar{\psi}_{o}+\frac{g_{oe}}{2}\bar{\psi}_{o}\bar{\psi}_{e}.\end{split}

Therefore, the single particle excitation spectrum at the critical region as shown in Fig. 1(a), can be obtained by solving the equation det[M(𝐤,iω)]=0det[M({\mathbf{k},i\omega})]=0.

Here we focus on the transition from SS to CDW. In SS phase, there are two superfluid order parameters ψ¯σns,σeiθσ\bar{\psi}_{\sigma}\equiv\sqrt{n_{s,\sigma}}e^{i\theta_{\sigma}} for even and odd lattice sites, where the amplitude and phase of the order parameter emerge as two independent degree of freedoms, instead of being conjugate to each other. The phase fluctuation leads to the Goldstone mode, while the amplitude fluctuation leads to the Higgs mode. When further considering the coupling between even and odd lattice sites (hopping term between them), the two Higgs modes arising from the amplitude fluctuation will couple to each other and split into two new Higgs modes (two higher modes obtained from det[M(𝐤,iω)]=0det[M({\mathbf{k},i\omega})]=0). While the two Goldstone modes resulting from the phase fluctuation will also couple to each other and split into one gapless Goldstone mode associated with the overall phase θo+θe\theta_{o}+\theta_{e} plus a gapped mode linking to the relative phase θoθe\theta_{o}-\theta_{e}.

At the transition from SS to CDW, we find the new feature of the lowest Goldstone mode excitation. Previous studies show that the slight modulation of density imbalance induced by the superradiant cavity light has a negligible effect on the single particle excitation spectrum Dogra et al. (2016). Here we firstly show that at the transition from SS to CDW, even such negligible modulation of density imbalance will result in a dramatic effect on the excitations. Distinct from the mean-field approach Dogra et al. (2016); Chen et al. (2016), such as employing the Gutzwiller ansatz, the critical theory constructed in Eq. (10) can unveil the dominate role of fluctuations. It is found that tuning the system along the phase boundary between SS and CDW as shown in Fig 1(a) can freely switch between two types of Goldstone modes in its single particle excitation, i.e., type I and type II with odd and even power energy-momentum dispersion (as shown in Fig. 2), respectively.

To further understand the underlying physics, we analytically solve the equation det[M(𝐤,iω)]=0det[M({\mathbf{k},i\omega})]=0 and find that in the long wave limit the lowest single particle excitation (positive branch) can be approximately expressed as (See details in SM)

EGoldstone+I2k+I4k2.\displaystyle E^{+}_{Goldstone}\simeq\sqrt{I_{2}}k+\sqrt{I_{4}}k^{2}. (12)

Therefore, the switching from type I to type II Goldstone modes can be achieved by changing the coefficients I2I_{2} and I4I_{4}. Around the transition from SS to CDW, it is shown that the quantum fluctuations make even the slight modulation of density imbalance play a dominant role in determining I2I_{2} and I4I_{4}. As shown in Fig. 3, the slight modulation of density imbalance leads to two distinct regions: (I) I20I_{2}\neq 0, (II) I2=0I_{2}=0 and I40I_{4}\neq 0, which corresponds type I and type II Goldstone modes, respectively. To distinguish these two different types of Goldstone modes, we calculate the density of states (DOS) for the lowest single particle excitation as N(E)=1N𝐤δ(EEGoldstone+)N(E)=\frac{1}{N}\sum_{\mathbf{k}}\delta(E-E^{+}_{Goldstone}), which is directly related to the Bragg spectroscopy signal Pippan et al. (2009). As shown in Fig. 2, with linear dispersion (type I), we find N(E)EN(E)\propto E when E0E\rightarrow 0. It is distinct from the quadratic dispersion (type II), where N(E) is a constant when E0E\rightarrow 0. The experimental advances in the momentum-resolved Bragg spectroscopy in optical lattices Ernst et al. (2010b) make the detection of this signal accessible.

Conclusion By performing two successive Hubbard-Stratonovich transformations, we have developed an effective field theory to study a bosonic lattice gas inside a cavity in the strongly interacting regime. Through taking into account the quantum fluctuations, we firstly find that the slight modulation of density imbalance, neglected in the previous studies, leads to dramatic changes of the behavior of low-energy excitations. The switching between type I and type II Goldstone modes can be driven along SS-CDW transition. Our findings would bridge the cavity light and strongly interacting quantum matters and may open up a new direction in this field.

Acknowledgement This work is supported by NSFC (Grant No. 12074305, 11774282, 11950410491), the National Key Research and Development Program of China (2018YFA0307600), Cyrus Tang Foundation Young Scholar Program and the Fundamental Research Funds for the Central Universities(H.W., S.L., M.A and B.L.) and by the AFOSR Grant No. FA9550-16-1-0006, the MURI-ARO Grant No. W911NF17-1-0323 through UC Santa Barbara, and the Shanghai Municipal Science and Technology Major Project through the Shanghai Research Center for Quantum Sciences (Grant No. 2019SHZDZX01) (W.V.L.). We also thank the HPC platform of Xi’An Jiaotong University, where our numerical calculations was performed.

References

  • Huang (1987) K. Huang, Statistical Machanics (John Wiley and Sons,New York, 1987).
  • Nambu (1960) Y. Nambu, Phys. Rev. 117, 648 (1960).
  • Goldstone (1961) J. Goldstone, Nuovo Cimento 19, 154 (1961).
  • Nielsen and Chadha (1976) H. B. Nielsen and S. Chadha, Nucl. Phys. B. 105, 445 (1976).
  • Bloch (1930) F. Bloch, Z. Phys. 61, 206 (1930).
  • Chubukov et al. (1994) A. V. Chubukov, S. Sachdev, and J. Ye, Phys. Rev. B. 49, 11919 (1994).
  • Podolsky and Sachdev (2012) D. Podolsky and S. Sachdev, Phys. Rev. B. 86, 054508 (2012).
  • Ye and Jiang (2007) J. Ye and L. Jiang, Phys. Rev. Lett. 98, 236802 (2007).
  • Ernst et al. (2010a) P. T. Ernst, S. Götze, J. S. Krauser, K. Pyka, D. S. Lühmann, D. Pfannkuche, and K. Sengstock, Nature. Phys. 6, 56 (2010a).
  • Papp et al. (2008) S. B. Papp, J. M. Pino, R. J. Wild, S. Ronen, C. E. Wieman, D. S. Jin, and E. A. Cornell, Phys. Rev. Lett. 101, 135301 (2008).
  • Steinhauer et al. (2002) J. Steinhauer, R. Ozeri, N. Katz, and N. Davidson, Phys. Rev. Lett. 88, 120407 (2002).
  • Stenger et al. (1999) J. Stenger, S. Inouye, A. P. Chikkatur, D. M. Stamper-Kurn, D. E. Pritchard, and W. Ketterle, Phys. Rev. Lett. 82, 4569 (1999).
  • Stamper-Kurn et al. (1999) D. M. Stamper-Kurn, A. P. Chikkatur, A. Görlitz, S. Inouye, S. Gupta, D. E. Pritchard, and W. Ketterle, Phys. Rev. Lett. 83, 2876 (1999).
  • Kozuma et al. (1999) M. Kozuma, L. Deng, E. W. Hagley, J. Wen, R. Lutwak, K. Helmerson, S. L. Rolston, and W. D. Phillips, Phys. Rev. Lett. 82, 871 (1999).
  • Yu et al. (2013) Y.-X. Yu, J. Ye, and W.-M. Liu, Scientific Reports 3, 3476 (2013).
  • Pan et al. (2020) J.-S. Pan, W. V. Liu, and X.-J. Liu, Phys. Rev. Lett. 125, 260402 (2020).
  • Greiner et al. (2002) M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Nature 415, 39 (2002).
  • Stöferle et al. (2004) T. Stöferle, H. Moritz, C. Schori, M. Köhl, and T. Esslinger, Phys. Rev. Lett. 92, 130403 (2004).
  • Sachdev (2011) S. Sachdev, Quantum Phase Transitions (Cambridge University Press, 2011).
  • Endres et al. (2012) M. Endres, T. Fukuhara, D. Pekker, M. Cheneau, P. Schauβ\beta, C. Gross, E. Demler, S. Kuhr, and I. Bloch, Nature 487, 454 (2012).
  • Pekker and Varma (2015) D. Pekker and C. M. Varma, Annu. Rev. Condens. Matter. Phys. 6, 269 (2015).
  • Landig et al. (2016) R. Landig, L. Hruby, N. Dogra, M. Landini, R. Mottl, T. Donner, and T. Esslinger, Nature 532, 476 (2016).
  • Klinder et al. (2015) J. Klinder, H. Keßler, M. R. Bakhtiari, M. Thorwart, and A. Hemmerich, Phys. Rev. Lett. 115, 230403 (2015).
  • Dogra et al. (2016) N. Dogra, F. Brennecke, S. D. Huber, and T. Donner, Phys. Rev. A. 94, 023632 (2016).
  • Freericks and Monien (1994) J. K. Freericks and H. Monien, Europhys. Lett. 26, 545 (1994).
  • Freericks and Monien (1996) J. K. Freericks and H. Monien, Phys. Rev. B. 53, 2691 (1996).
  • Sengupta and Dupuis (2005) K. Sengupta and N. Dupuis, Phys. Rev. A. 71, 033629 (2005).
  • Chen et al. (2016) Y. Chen, Z. H. Yu, and H. Zhai, Phys. Rev. A. 93, 041601 (2016).
  • Baumann et al. (2010) K. Baumann, C. Guerlin, F. Brennecke, and T. Esslinger, Nature 464, 1301 (2010).
  • Fisher et al. (1989) M. P. A. Fisher, P. B. Weichman, G. Grinstein, and D. S. Fisher, Phys. Rev. B 40, 546 (1989).
  • Faccioli and Salasnich (2018) M. Faccioli and L. Salasnich, Symmetry 10 (2018).
  • Pippan et al. (2009) P. Pippan, H. G. Evertz, and M. Hohenadler, Phys. Rev. A 80, 033612 (2009).
  • Ernst et al. (2010b) P. T. Ernst, S. Go¨\ddot{o}tze, J. S. Krauser, K. Pyka, D.-S. Lu¨\ddot{u}hmann, D. Pfannkuche, and K. Sengstock, Nature Physics 6, 56 (2010b).

Supplementary Material:
Manipulating Goldstone modes via the superradiant light in a bosonic lattice gas inside a cavity

S-1 Hopping term

The hopping term in Eq. (1) can be written as

Hhop\displaystyle H_{hop} =\displaystyle= 𝐫,𝐫Tσσ(𝐫𝐫)ψσ(𝐫)ψσ(𝐫)\displaystyle\underset{\mathbf{r},\mathbf{r}^{\prime}}{\sum}-T_{\sigma\sigma^{\prime}}(\mathbf{r}-\mathbf{r}^{\prime})\psi_{\sigma}^{{\dagger}}(\mathbf{r})\psi_{\sigma^{\prime}}(\mathbf{r^{\prime}}) (S1)
=\displaystyle= 𝐫ψσ(𝐫)T0ψσ(𝐫)+ψσ(𝐫)T1xψσ(𝐫+𝐞x)+ψσ(𝐫)T1xψσ(𝐫𝐞x)\displaystyle\underset{\mathbf{r}}{\sum}\psi_{\sigma}^{{\dagger}}(\mathbf{r})T_{0}\psi_{\sigma}(\mathbf{r})+\psi_{\sigma}^{{\dagger}}(\mathbf{r})T_{1x}\psi_{\sigma}(\mathbf{r+e}_{x})+\psi_{\sigma}^{{\dagger}}(\mathbf{r})T_{1x}^{\prime}\psi_{\sigma}(\mathbf{r-e}_{x})
+\displaystyle+ ψσ(𝐫)T1zψσ(𝐫+𝐞z)+ψσ(𝐫)T1zψσ(𝐫𝐞z)+ψσ(𝐫)T2ψσ(𝐫+𝐞x𝐞z)\displaystyle\psi_{\sigma}^{{\dagger}}(\mathbf{r})T_{1z}\psi_{\sigma}(\mathbf{r+e}_{z})+\psi_{\sigma}^{{\dagger}}(\mathbf{r})T_{1z}^{\prime}\psi_{\sigma}(\mathbf{r-e}_{z})+\psi_{\sigma}^{{\dagger}}(\mathbf{r})T_{2}\psi_{\sigma}(\mathbf{r+e}_{x}-\mathbf{e}_{z})
+\displaystyle+ ψσ(𝐫)T2ψσ(𝐫𝐞x+𝐞z),\displaystyle\psi_{\sigma}^{{\dagger}}(\mathbf{r})T_{2}^{\prime}\psi_{\sigma}(\mathbf{r-e}_{x}+\mathbf{e}_{z}),

where σ=e,o\sigma=e,o stands for even and odd sites, respectively. Tσσ\mathrm{T}_{\sigma\sigma^{\prime}} is the hopping matrix and 𝐫,𝐫\mathbf{r},\mathbf{r}^{\prime} label the location of until cell as shown in Fig. S1. The hopping matrices can be expressed as

T0\displaystyle T_{0} =\displaystyle= (0tt0),\displaystyle\left(\begin{array}[]{cc}0&t\\ t&0\end{array}\right), (S4)
T1x\displaystyle T_{1x} =\displaystyle= T1z=T2=(0t00),\displaystyle T_{1z}^{\prime}=T_{2}=\left(\begin{array}[]{cc}0&t\\ 0&0\end{array}\right), (S7)
T1x\displaystyle T_{1x}^{\prime} =\displaystyle= T1z=T2=(00t0),\displaystyle T_{1z}=T_{2}^{\prime}=\left(\begin{array}[]{cc}0&0\\ t&0\end{array}\right), (S10)
Refer to caption
Figure S1: Schematic picture of a two dimensional checkerboard lattice. Here A and B stand for two different sites in one unit cell(even and odd sites), 𝐞𝐱{\mathbf{e_{x}}} and 𝐞𝐳{\mathbf{e_{z}}} are the primitive unit vectors.

In the momentum space, the hopping term HhopH_{hop} can be written as

Hhop(𝐤)=𝐤[ψe(𝐤),ψo(𝐤)][0ϵeo(𝐤)ϵoe(𝐤)0][ψe(𝐤)ψo(𝐤)],H_{hop}(\mathbf{k})=\underset{\mathbf{k}}{\sum}\left[\psi_{e}^{{\dagger}}(\mathbf{k}),\psi_{o}^{{\dagger}}(\mathbf{k})\right]\left[\begin{array}[]{cc}0&\epsilon_{eo}(\mathbf{k})\\ \epsilon_{oe}(\mathbf{k})&0\end{array}\right]\left[\begin{array}[]{c}\psi_{e}(\mathbf{k})\\ \psi_{o}(\mathbf{k})\end{array}\right], (S11)

where aa is the lattice constant and the band dispersion ϵeo(𝐤)=t{1+eikx2a+eikz2a+eikx2aikz2a}\epsilon_{eo}(\mathbf{k})=-t\{1+e^{ik_{x}\sqrt{2}a}+e^{-ik_{z}\sqrt{2}a}+e^{ik_{x}\sqrt{2}a-ik_{z}\sqrt{2}a}\}, ϵoe(𝐤)=t{1+eikx2a+eikz2a+eikx2a+ikz2a}\epsilon_{oe}(\mathbf{k})=-t\{1+e^{-ik_{x}\sqrt{2}a}+e^{ik_{z}\sqrt{2}a}+e^{-ik_{x}\sqrt{2}a+ik_{z}\sqrt{2}a}\}.

S-2 Local single-particle and two-particle Green’s function

In the absence of hopping, i.e., t=0t=0, the local Hamiltonian can be defined from Eq.(1) as H0=U2𝐫,σnσ(𝐫)(nσ(𝐫)1)𝐫,σμσnσ(𝐫)δc|α|2H_{0}=\frac{U}{2}\underset{\mathbf{r},\sigma}{\sum}n_{\sigma}(\mathbf{r})(n_{\sigma}(\mathbf{r})-1)-\underset{\mathbf{r},\sigma}{\sum}\mu_{\sigma}n_{\sigma}(\mathbf{r})-\delta_{c}\left|\alpha\right|^{2} with the energy detuning δc\delta_{c}. Then, the local single-particle Green’s function can be calculated in the operator representation via the occupation number basis as

Gee(τ)=Tτψ^e(τ)ψe(0)=1Z0Tr[e(βτ)H0ψ^eeτH0ψe],G_{ee}(\tau)=-\left\langle T_{\tau}\hat{\psi}_{e}(\tau)\psi_{e}^{\dagger}(0)\right\rangle=-\frac{1}{Z_{0}}Tr\left[e^{-(\beta-\tau)H_{0}}\hat{\psi}_{e}e^{-\tau H_{0}}\psi_{e}^{\dagger}\right], (S12)

where Z0=TreβH0Z_{0}=Tre^{-\beta H_{0}} and |neno=(ψ^e)ne(ψ^o)none!no!|0|n_{e}n_{o}\rangle=\frac{\left(\hat{\psi}_{e}^{\dagger}\right)^{n_{e}}\left(\hat{\psi}_{o}^{\dagger}\right)^{n_{o}}}{\sqrt{n_{e}!n_{o}!}}|0\rangle is the eigenbasis of the local Hamiltonian H0H_{0} with eigenvalue εne,no=U2no(no1)+U2ne(ne1)μonoμeneδc|α|2\varepsilon_{n_{e},n_{o}}=\frac{U}{2}n_{o}(n_{o}-1)+\frac{U}{2}n_{e}(n_{e}-1)-\mu_{o}n_{o}-\mu_{e}n_{e}-\delta_{c}\left|\alpha\right|^{2}. After implementing the fourier transform, the above correlator can be expressed as

Gee(iω)=0β𝑑τeiωτGee(τ)=1Z0ne,no(ne+1)eβεne+1,noeβεne,noiω+εne,noεne+1,no,\displaystyle G_{ee}(i\omega)=\int_{0}^{\beta}d\tau e^{i\omega\tau}G_{ee}(\tau)=-\frac{1}{Z_{0}}\underset{n_{e},n_{o}}{\overset{\infty}{\sum}}(n_{e}+1)\frac{e^{-\beta\varepsilon_{n_{e}+1,n_{o}}}-e^{-\beta\varepsilon_{n_{e},n_{o}}}}{i\omega+\varepsilon_{n_{e},n_{o}}-\varepsilon_{n_{e}+1,n_{o}}}, (S13)

In the low temperature limit T0(βU1)T\rightarrow 0(\beta U\gg 1), the exponential term in Eq. (S13) selects out the ground state of local Hamiltonian and contributions of other states are suppressed. Therefore, for instance, GeeG_{ee} can be calculated as

Gee(iω)=n¯e+1iω+εn¯e,0εn¯e+1,0n¯eiω+εn¯e1,0εn¯e,0,G_{ee}(i\omega)=\frac{\bar{n}_{e}+1}{i\omega+\varepsilon_{\bar{n}_{e},0}-\varepsilon_{\bar{n}_{e}+1,0}}-\frac{\bar{n}_{e}}{i\omega+\varepsilon_{\bar{n}_{e}-1,0}-\varepsilon_{\bar{n}_{e},0}}, (S14)

where n¯e\bar{n}_{e} and n¯o\bar{n}_{o} can be determined through minimizing the ground state energy εn¯e,n¯o=minne,noεne,no\varepsilon_{\bar{n}_{e},\bar{n}_{o}}={\min}_{n_{e},n_{o}}\varepsilon_{n_{e},n_{o}}. In the same way, we can also obtain the local Green’s function GooG_{oo} as

Goo(iω)=n¯o+1iω+ε0,n¯oε0,n¯o+1n¯oiω+ε0,n¯o1ε0,n¯o,G_{oo}(i\omega)=\frac{\bar{n}_{o}+1}{i\omega+\varepsilon_{0,\bar{n}_{o}}-\varepsilon_{0,\bar{n}_{o}+1}}-\frac{\bar{n}_{o}}{i\omega+\varepsilon_{0,\bar{n}_{o}-1}-\varepsilon_{0,\bar{n}_{o}}}, (S15)

The two-particle Green’s function can be calculated in the similar way as

χσσ(τ1,τ2,τ3,0)\displaystyle\chi_{\sigma\sigma^{\prime}}(\tau_{1},\tau_{2},\tau_{3},0) =\displaystyle= ψσ(τ1)ψσ(τ2)ψσ(τ3)ψσ(0)0c\displaystyle\left\langle\psi_{\sigma}(\tau_{1})\psi_{\sigma}^{\ast}(\tau_{2})\psi_{\sigma^{\prime}}(\tau_{3})\psi_{\sigma^{\prime}}^{\ast}(0)\right\rangle_{0}^{c} (S16)
=\displaystyle= 1Z0Tr[eβH0Tτψσ(τ1)ψσ(τ2)ψσ(τ3)ψσ(0)],\displaystyle\frac{1}{Z_{0}}Tr\left[e^{-\beta H_{0}}\left\langle T_{\tau}\psi_{\sigma}(\tau_{1})\psi_{\sigma}^{\dagger}(\tau_{2})\psi_{\sigma^{\prime}}(\tau_{3})\psi_{\sigma^{\prime}}^{\dagger}(0)\right\rangle\right],

where σ=e,o\sigma=e,o. To calculate the parameter gσσg_{\sigma\sigma^{\prime}} in the static limit, we only consider the time average of χσσ\chi_{\sigma\sigma^{\prime}}. Then, the diagonal part can be calculated as

χ¯ee\displaystyle\bar{\chi}_{ee} =\displaystyle= 0β𝑑τ1𝑑τ2𝑑τ3χee(τ1,τ2,τ3,0)2β[Gee(iω=0)]2\displaystyle\int_{0}^{\beta}d\tau_{1}d\tau_{2}d\tau_{3}\chi_{ee}\left(\tau_{1},\tau_{2},\tau_{3},0\right)-2\beta[G_{ee}(i\omega=0)]^{2} (S17)
=\displaystyle= 4(n¯e+1)(n¯e+2)(εn¯e,0εn¯e+1,0)2(εn¯e,0εn¯e+2,0)+4n¯e(n¯e1)(εn¯e,0εn¯e1,0)2(εn¯e,0εn¯e2,0)\displaystyle\frac{-4(\bar{n}_{e}+1)(\bar{n}_{e}+2)}{\left(\varepsilon_{\bar{n}_{e},0}-\varepsilon_{\bar{n}_{e}+1,0}\right)^{2}\left(\varepsilon_{\bar{n}_{e},0}-\varepsilon_{\bar{n}_{e}+2,0}\right)}+\frac{-4\bar{n}_{e}(\bar{n}_{e}-1)}{\left(\varepsilon_{\bar{n}_{e},0}-\varepsilon_{\bar{n}_{e}-1,0}\right)^{2}\left(\varepsilon_{\bar{n}_{e},0}-\varepsilon_{\bar{n}_{e}-2,0}\right)}
+\displaystyle+ 4n¯e(n¯e+1)(εn¯e1,0εn¯e,0)2(εn¯e+1,0εn¯e,0)+4n¯e(n¯e+1)(εn¯e,0εn¯e+1,0)2(εn¯e,0εn¯e1,0)\displaystyle\frac{-4\bar{n}_{e}(\bar{n}_{e}+1)}{\left(\varepsilon_{\bar{n}_{e}-1,0}-\varepsilon_{\bar{n}_{e},0}\right)^{2}\left(\varepsilon_{\bar{n}_{e}+1,0}-\varepsilon_{\bar{n}_{e},0}\right)}+\frac{4\bar{n}_{e}(\bar{n}_{e}+1)}{\left(\varepsilon_{\bar{n}_{e},0}-\varepsilon_{\bar{n}_{e}+1,0}\right)^{2}\left(\varepsilon_{\bar{n}_{e},0}-\varepsilon_{\bar{n}_{e}-1,0}\right)}
+\displaystyle+ 4(n¯e+1)2(εn¯e,0εn¯e+1,0)3+4n¯e2(εn¯e1,0εn¯e,0)3,\displaystyle\frac{4(\bar{n}_{e}+1)^{2}}{\left(\varepsilon_{\bar{n}_{e},0}-\varepsilon_{\bar{n}_{e}+1,0}\right)^{3}}+\frac{-4\bar{n}_{e}^{2}}{\left(\varepsilon_{\bar{n}_{e}-1,0}-\varepsilon_{\bar{n}_{e},0}\right)^{3}},

with

χee(τ1,τ2,τ3,0)\displaystyle\chi_{ee}(\tau_{1},\tau_{2},\tau_{3},0) =\displaystyle= 1Z0ne=0eβεne,0{θ(τ1τ2)θ(τ2τ3)eτ1(εne,0εne+1,0)+τ2(εne+1,0εne,0)+τ3(εne,0εne+1,0)(ne+1)2\displaystyle\frac{1}{Z_{0}}\overset{\infty}{\underset{n_{e}=0}{\sum}}e^{-\beta\varepsilon_{n_{e},0}}\{\theta(\tau_{1}-\tau_{2})\theta(\tau_{2}-\tau_{3})e^{\tau_{1}(\varepsilon_{n_{e},0}-\varepsilon_{n_{e}+1,0})+\tau_{2}(\varepsilon_{n_{e}+1,0}-\varepsilon_{n_{e},0})+\tau_{3}(\varepsilon_{n_{e},0}-\varepsilon_{n_{e}+1,0})}(n_{e}+1)^{2}
+\displaystyle+ θ(τ1τ3)θ(τ3τ2)eτ1(εne,0εne+1,0)+τ2(εne+2,0εne+1,0)+τ3(εne+1,0εne+2,0)(ne+1)(ne+2)\displaystyle\theta(\tau_{1}-\tau_{3})\theta(\tau_{3}-\tau_{2})e^{\tau_{1}(\varepsilon_{n_{e},0}-\varepsilon_{n_{e}+1,0})+\tau_{2}(\varepsilon_{n_{e}+2,0}-\varepsilon_{n_{e}+1,0})+\tau_{3}(\varepsilon_{n_{e}+1,0}-\varepsilon_{n_{e}+2,0})}(n_{e}+1)(n_{e}+2)
+\displaystyle+ θ(τ3τ1)θ(τ1τ2)eτ1(εne+1,0εne+2,0)+τ2(εne+2,0εne+1,0)+τ3(εne,0εne+1,0)(ne+1)(ne+2)\displaystyle\theta(\tau_{3}-\tau_{1})\theta(\tau_{1}-\tau_{2})e^{\tau_{1}(\varepsilon_{n_{e}+1,0}-\varepsilon_{n_{e}+2,0})+\tau_{2}(\varepsilon_{n_{e}+2,0}-\varepsilon_{n_{e}+1,0})+\tau_{3}(\varepsilon_{n_{e},0}-\varepsilon_{n_{e}+1,0})}(n_{e}+1)(n_{e}+2)
+\displaystyle+ θ(τ2τ1)θ(τ1τ3)eτ1(εne1,0εne,0)+τ2(εne,0εne1,0)+τ3(εne,0εne+1,0)(ne+1)ne\displaystyle\theta(\tau_{2}-\tau_{1})\theta(\tau_{1}-\tau_{3})e^{\tau_{1}(\varepsilon_{n_{e}-1,0}-\varepsilon_{n_{e},0})+\tau_{2}(\varepsilon_{n_{e},0}-\varepsilon_{n_{e}-1,0})+\tau_{3}(\varepsilon_{n_{e},0}-\varepsilon_{n_{e}+1,0})}(n_{e}+1)n_{e}
+\displaystyle+ θ(τ2τ3)θ(τ3τ1)eτ1(εne,0εne+1,0)+τ2(εne,0εne1,0)+τ3(εne1,0εne,0)(ne+1)ne\displaystyle\theta(\tau_{2}-\tau_{3})\theta(\tau_{3}-\tau_{1})e^{\tau_{1}(\varepsilon_{n_{e},0}-\varepsilon_{n_{e}+1,0})+\tau_{2}(\varepsilon_{n_{e},0}-\varepsilon_{n_{e}-1,0})+\tau_{3}(\varepsilon_{n_{e}-1,0}-\varepsilon_{n_{e},0})}(n_{e}+1)n_{e}
+\displaystyle+ θ(τ3τ2)θ(τ2τ1)eτ1(εne,0εne+1,0)+τ2(εne+1,0εne,0)+τ3(εne,0εne+1,0)(ne+1)2}.\displaystyle\theta(\tau_{3}-\tau_{2})\theta(\tau_{2}-\tau_{1})e^{\tau_{1}(\varepsilon_{n_{e},0}-\varepsilon_{n_{e}+1,0})+\tau_{2}(\varepsilon_{n_{e}+1,0}-\varepsilon_{n_{e},0})+\tau_{3}(\varepsilon_{n_{e},0}-\varepsilon_{n_{e}+1,0})}(n_{e}+1)^{2}\}.

Similarly, other diagonal part can also be calculated as follows

χ¯oo\displaystyle\bar{\chi}_{oo} =\displaystyle= 0β𝑑τ1𝑑τ2𝑑τ3χoo(τ1,τ2,τ3,0)2β[Goo(iω=0)]2\displaystyle\int_{0}^{\beta}d\tau_{1}d\tau_{2}d\tau_{3}\chi_{oo}\left(\tau_{1},\tau_{2},\tau_{3},0\right)-2\beta[G_{oo}(i\omega=0)]^{2} (S18)
=\displaystyle= 4(n¯o+1)(n¯o+2)(ε0,n¯oε0,n¯o+1)2(ε0,n¯oε0,n¯o+2)+4n¯o(n¯o1)(ε0,n¯oε0,n¯o1)2(ε0,n¯oε0,n¯o2)\displaystyle\frac{-4(\bar{n}_{o}+1)(\bar{n}_{o}+2)}{\left(\varepsilon_{0,\bar{n}_{o}}-\varepsilon_{0,\bar{n}_{o}+1}\right)^{2}\left(\varepsilon_{0,\bar{n}_{o}}-\varepsilon_{0,\bar{n}_{o}+2}\right)}+\frac{-4\bar{n}_{o}(\bar{n}_{o}-1)}{\left(\varepsilon_{0,\bar{n}_{o}}-\varepsilon_{0,\bar{n}_{o}-1}\right)^{2}\left(\varepsilon_{0,\bar{n}_{o}}-\varepsilon_{0,\bar{n}_{o}-2}\right)}
+\displaystyle+ 4n¯o(n¯o+1)(ε0,n¯o1ε0,n¯o)2(ε0,n¯o+1ε0,n¯o)+4n¯o(n¯o+1)(ε0,n¯oε0,n¯o+1)2(ε0,n¯oε0,n¯o1)\displaystyle\frac{-4\bar{n}_{o}(\bar{n}_{o}+1)}{\left(\varepsilon_{0,\bar{n}_{o}-1}-\varepsilon_{0,\bar{n}_{o}}\right)^{2}\left(\varepsilon_{0,\bar{n}_{o}+1}-\varepsilon_{0,\bar{n}_{o}}\right)}+\frac{4\bar{n}_{o}(\bar{n}_{o}+1)}{\left(\varepsilon_{0,\bar{n}_{o}}-\varepsilon_{0,\bar{n}_{o}+1}\right)^{2}\left(\varepsilon_{0,\bar{n}_{o}}-\varepsilon_{0,\bar{n}_{o}-1}\right)}
+\displaystyle+ 4(n¯o+1)2(ε0,n¯oε0,n¯o+1)3+4n¯o2(ε0,n¯o1ε0,n¯o)3,\displaystyle\frac{4(\bar{n}_{o}+1)^{2}}{\left(\varepsilon_{0,\bar{n}_{o}}-\varepsilon_{0,\bar{n}_{o}+1}\right)^{3}}+\frac{-4\bar{n}_{o}^{2}}{\left(\varepsilon_{0,\bar{n}_{o}-1}-\varepsilon_{0,\bar{n}_{o}}\right)^{3}},

In the similar way, we can obtain the off-diagonal part in the static limit as

χ¯eo=n¯ef1+(n¯e+1)f2+n¯ef3+(n¯e+1)f4,\bar{\chi}_{eo}=\bar{n}_{e}f_{1}+(\bar{n}_{e}+1)f_{2}+\bar{n}_{e}f_{3}+(\bar{n}_{e}+1)f_{4}, (S19)

with

f1\displaystyle f_{1} =\displaystyle= {n¯o(εn¯e,n¯oεn¯e,n¯o1)2(εn¯e,n¯oεn¯e1,n¯o1)+n¯o(εn¯e,n¯oεn¯e1,n¯o)2(εn¯e,n¯oεn¯e1,n¯o1)\displaystyle\{\frac{-\bar{n}_{o}}{\left(\varepsilon_{\bar{n}_{e},\bar{n}_{o}}-\varepsilon_{\bar{n}_{e},\bar{n}_{o}-1}\right)^{2}\left(\varepsilon_{\bar{n}_{e},\bar{n}_{o}}-\varepsilon_{\bar{n}_{e}-1,\bar{n}_{o}-1}\right)}+\frac{-\bar{n}_{o}}{\left(\varepsilon_{\bar{n}_{e},\bar{n}_{o}}-\varepsilon_{\bar{n}_{e}-1,\bar{n}_{o}}\right)^{2}\left(\varepsilon_{\bar{n}_{e},\bar{n}_{o}}-\varepsilon_{\bar{n}_{e}-1,\bar{n}_{o}-1}\right)}
+n¯o(εn¯e,n¯oεn¯e,n¯o1)2(εn¯e,n¯oεn¯e1,n¯o)+n¯o(εn¯e,n¯oεn¯e1,n¯o)2(εn¯e,n¯oεn¯e,n¯o1)\displaystyle+\frac{\bar{n}_{o}}{\left(\varepsilon_{\bar{n}_{e},\bar{n}_{o}}-\varepsilon_{\bar{n}_{e},\bar{n}_{o}-1}\right)^{2}\left(\varepsilon_{\bar{n}_{e},\bar{n}_{o}}-\varepsilon_{\bar{n}_{e}-1,\bar{n}_{o}}\right)}+\frac{\bar{n}_{o}}{\left(\varepsilon_{\bar{n}_{e},\bar{n}_{o}}-\varepsilon_{\bar{n}_{e}-1,\bar{n}_{o}}\right)^{2}\left(\varepsilon_{\bar{n}_{e},\bar{n}_{o}}-\varepsilon_{\bar{n}_{e},\bar{n}_{o}-1}\right)}
+2n¯o(εn¯e,n¯oεn¯e1,n¯o)(εn¯e,n¯oεn¯e,n¯o1)(εn¯e,n¯oεn¯e1,n¯o1)}\displaystyle+\frac{-2\bar{n}_{o}}{\left(\varepsilon_{\bar{n}_{e},\bar{n}_{o}}-\varepsilon_{\bar{n}_{e}-1,\bar{n}_{o}}\right)\left(\varepsilon_{\bar{n}_{e},\bar{n}_{o}}-\varepsilon_{\bar{n}_{e},\bar{n}_{o}-1}\right)\left(\varepsilon_{\bar{n}_{e},\bar{n}_{o}}-\varepsilon_{\bar{n}_{e}-1,\bar{n}_{o}-1}\right)}\}
f2\displaystyle f_{2} =\displaystyle= {n¯o(εn¯e,n¯oεn¯e,n¯o1)2(εn¯e,n¯oεn¯e+1,n¯o1)+n¯o(εn¯e,n¯oεn¯e+1,n¯o)2(εn¯e,n¯oεn¯e+1,n¯o1)\displaystyle\{\frac{-\bar{n}_{o}}{\left(\varepsilon_{\bar{n}_{e},\bar{n}_{o}}-\varepsilon_{\bar{n}_{e},\bar{n}_{o}-1}\right)^{2}\left(\varepsilon_{\bar{n}_{e},\bar{n}_{o}}-\varepsilon_{\bar{n}_{e}+1,\bar{n}_{o}-1}\right)}+\frac{-\bar{n}_{o}}{\left(\varepsilon_{\bar{n}_{e},\bar{n}_{o}}-\varepsilon_{\bar{n}_{e}+1,\bar{n}_{o}}\right)^{2}\left(\varepsilon_{\bar{n}_{e},\bar{n}_{o}}-\varepsilon_{\bar{n}_{e}+1,\bar{n}_{o}-1}\right)}
+n¯o(εn¯e,n¯o1εn¯e,n¯o)2(εn¯e,n¯oεn¯e+1,n¯o)+n¯o(εn¯e,n¯oεn¯e+1,n¯o)2(εn¯e,n¯oεn¯e,n¯o1)\displaystyle+\frac{\bar{n}_{o}}{\left(\varepsilon_{\bar{n}_{e},\bar{n}_{o}-1}-\varepsilon_{\bar{n}_{e},\bar{n}_{o}}\right)^{2}\left(\varepsilon_{\bar{n}_{e},\bar{n}_{o}}-\varepsilon_{\bar{n}_{e}+1,\bar{n}_{o}}\right)}+\frac{\bar{n}_{o}}{\left(\varepsilon_{\bar{n}_{e},\bar{n}_{o}}-\varepsilon_{\bar{n}_{e}+1,\bar{n}_{o}}\right)^{2}\left(\varepsilon_{\bar{n}_{e},\bar{n}_{o}}-\varepsilon_{\bar{n}_{e},\bar{n}_{o}-1}\right)}
+2n¯o(εn¯e,n¯oεn¯e+1,n¯o)(εn¯e,n¯oεn¯e+1,n¯o1)(εn¯e,n¯oεn¯e,n¯o1)}\displaystyle+\frac{-2\bar{n}_{o}}{\left(\varepsilon_{\bar{n}_{e},\bar{n}_{o}}-\varepsilon_{\bar{n}_{e}+1,\bar{n}_{o}}\right)\left(\varepsilon_{\bar{n}_{e},\bar{n}_{o}}-\varepsilon_{\bar{n}_{e}+1,\bar{n}_{o}-1}\right)\left(\varepsilon_{\bar{n}_{e},\bar{n}_{o}}-\varepsilon_{\bar{n}_{e},\bar{n}_{o}-1}\right)}\}
f3\displaystyle f_{3} =\displaystyle= {(n¯o+1)(εn¯e,n¯oεn¯e1,n¯o)2(εn¯e,n¯oεn¯e1,n¯o+1)+(n¯o+1)(εn¯e,n¯oεn¯e1,n¯o)2(εn¯e,n¯oεn¯e,n¯o+1)\displaystyle\{\frac{-(\bar{n}_{o}+1)}{\left(\varepsilon_{\bar{n}_{e},\bar{n}_{o}}-\varepsilon_{\bar{n}_{e}-1,\bar{n}_{o}}\right)^{2}\left(\varepsilon_{\bar{n}_{e},\bar{n}_{o}}-\varepsilon_{\bar{n}_{e}-1,\bar{n}_{o}+1}\right)}+\frac{(\bar{n}_{o}+1)}{\left(\varepsilon_{\bar{n}_{e},\bar{n}_{o}}-\varepsilon_{\bar{n}_{e}-1,\bar{n}_{o}}\right)^{2}\left(\varepsilon_{\bar{n}_{e},\bar{n}_{o}}-\varepsilon_{\bar{n}_{e},\bar{n}_{o}+1}\right)}
+(n¯o+1)(εn¯e,n¯oεn¯e,n¯o+1)2(εn¯e,n¯oεn¯e1,n¯o)+(n¯o+1)(εn¯e,n¯oεn¯e,n¯o+1)2(εn¯e,n¯oεn¯e1,n¯o+1)\displaystyle+\frac{(\bar{n}_{o}+1)}{\left(\varepsilon_{\bar{n}_{e},\bar{n}_{o}}-\varepsilon_{\bar{n}_{e},\bar{n}_{o}+1}\right)^{2}\left(\varepsilon_{\bar{n}_{e},\bar{n}_{o}}-\varepsilon_{\bar{n}_{e}-1,\bar{n}_{o}}\right)}+\frac{-(\bar{n}_{o}+1)}{\left(\varepsilon_{\bar{n}_{e},\bar{n}_{o}}-\varepsilon_{\bar{n}_{e},\bar{n}_{o}+1}\right)^{2}\left(\varepsilon_{\bar{n}_{e},\bar{n}_{o}}-\varepsilon_{\bar{n}_{e}-1,\bar{n}_{o}+1}\right)}
+2(n¯o+1)(εn¯e,n¯oεn¯e1,n¯o)(εn¯e,n¯oεn¯e,n¯o+1)(εn¯e,n¯oεn¯e1,n¯o+1)}\displaystyle+\frac{-2(\bar{n}_{o}+1)}{\left(\varepsilon_{\bar{n}_{e},\bar{n}_{o}}-\varepsilon_{\bar{n}_{e}-1,\bar{n}_{o}}\right)\left(\varepsilon_{\bar{n}_{e},\bar{n}_{o}}-\varepsilon_{\bar{n}_{e},\bar{n}_{o}+1}\right)\left(\varepsilon_{\bar{n}_{e},\bar{n}_{o}}-\varepsilon_{\bar{n}_{e}-1,\bar{n}_{o}+1}\right)}\}
f4\displaystyle f_{4} =\displaystyle= {(n¯o+1)(εn¯e,n¯oεn¯e,n¯o+1)2(εn¯e,n¯oεn¯e+1,n¯o)+(n¯o+1)(εn¯e,n¯oεn¯e+1,n¯o)2(εn¯e,n¯oεn¯e,n¯o+1)\displaystyle\{\frac{(\bar{n}_{o}+1)}{\left(\varepsilon_{\bar{n}_{e},\bar{n}_{o}}-\varepsilon_{\bar{n}_{e},\bar{n}_{o}+1}\right)^{2}\left(\varepsilon_{\bar{n}_{e},\bar{n}_{o}}-\varepsilon_{\bar{n}_{e}+1,\bar{n}_{o}}\right)}+\frac{(\bar{n}_{o}+1)}{\left(\varepsilon_{\bar{n}_{e},\bar{n}_{o}}-\varepsilon_{\bar{n}_{e}+1,\bar{n}_{o}}\right)^{2}\left(\varepsilon_{\bar{n}_{e},\bar{n}_{o}}-\varepsilon_{\bar{n}_{e},\bar{n}_{o}+1}\right)}
+(n¯o+1)(εn¯e,n¯oεn¯e,n¯o+1)2(εn¯e,n¯oεn¯e+1,n¯o+1)+(n¯o+1)(εn¯e,n¯oεn¯e+1,n¯o)2(εn¯e,n¯oεn¯e+1,n¯o+1)\displaystyle+\frac{(\bar{n}_{o}+1)}{\left(\varepsilon_{\bar{n}_{e},\bar{n}_{o}}-\varepsilon_{\bar{n}_{e},\bar{n}_{o}+1}\right)^{2}\left(\varepsilon_{\bar{n}_{e},\bar{n}_{o}}-\varepsilon_{\bar{n}_{e}+1,\bar{n}_{o}+1}\right)}+\frac{-(\bar{n}_{o}+1)}{\left(\varepsilon_{\bar{n}_{e},\bar{n}_{o}}-\varepsilon_{\bar{n}_{e}+1,\bar{n}_{o}}\right)^{2}\left(\varepsilon_{\bar{n}_{e},\bar{n}_{o}}-\varepsilon_{\bar{n}_{e}+1,\bar{n}_{o}+1}\right)}
+2(n¯o+1)(εn¯e,n¯oεn¯e+1,n¯o)(εn¯e,n¯oεn¯e+1,n¯o+1)(εn¯e,n¯oεn¯e,n¯o+1)}.\displaystyle+\frac{-2(\bar{n}_{o}+1)}{\left(\varepsilon_{\bar{n}_{e},\bar{n}_{o}}-\varepsilon_{\bar{n}_{e}+1,\bar{n}_{o}}\right)\left(\varepsilon_{\bar{n}_{e},\bar{n}_{o}}-\varepsilon_{\bar{n}_{e}+1,\bar{n}_{o}+1}\right)\left(\varepsilon_{\bar{n}_{e},\bar{n}_{o}}-\varepsilon_{\bar{n}_{e},\bar{n}_{o}+1}\right)}\}.

Up to this point, we have obtained the two-point and four-point correlators from the local Hamiltonian. Then, gσσg_{\sigma\sigma^{\prime}} in Eq. (6) of the main text can be determined by the two-particle vertex in the static limit, which can be written as

gσσ=χ¯σσ(G¯σσG¯σσ)2+(G¯σσ)4δσσ,g_{\sigma\sigma^{\prime}}=\frac{-\bar{\chi}_{\sigma\sigma^{\prime}}}{(\bar{G}_{\sigma\sigma}\bar{G}_{\sigma^{\prime}\sigma^{\prime}})^{2}+(\bar{G}_{\sigma\sigma})^{4}\delta_{\sigma\sigma^{\prime}}}, (S20)

where G¯σσ=Gσσ(iω=0)\bar{G}_{\sigma\sigma}={G}_{\sigma\sigma}(i\omega=0).

S-3 Double Hubbard-Stronovich transformation

The connected correlators of the original boson fields ψσ\psi_{\sigma} can be obtained from the generating function

Z[J,J]=D[ψ,ψ]exp{ψσTσσψσS0[ψσ,ψσ]+[(J|ψ)+c.c]},Z[J^{\ast},J]=\int D[\psi^{\ast},\psi]\exp\left\{\psi_{\sigma}^{\ast}T_{\sigma\sigma^{\prime}}\psi_{\sigma^{\prime}}-S_{0}[\psi_{\sigma}^{\ast},\psi_{\sigma}]+[(J|\psi)+c.c]\right\}, (S21)

where J,JJ,J^{\ast} are external sources and (J|ψ)=σ,r0β𝑑τJσ(𝐫)ψσ(𝐫)(J|\psi)=\sum_{\sigma,\mathrm{r}}\int_{0}^{\beta}d\tau J_{\sigma}^{*}(\mathbf{r})\psi_{\sigma}(\mathbf{r}). Introducing the first Hubbard-Stratonovich transformation with auxiliary field ϕ\phi,

Z[J,J]=D[ψ,ψ;ϕ,ϕ]exp{ϕσTσσ1ϕσS0[ψσ,ψσ]+[(ϕ|ψ)+c.c]+[(J|ψ)+c.c]},Z[J^{\ast},J]=\int D[\psi^{\ast},\psi;\phi^{\ast},\phi]\exp\left\{-\phi_{\sigma}^{\ast}T_{\sigma\sigma^{\prime}}^{-1}\phi_{\sigma^{\prime}}-S_{0}[\psi_{\sigma}^{\ast},\psi_{\sigma}]+[(\phi|\psi)+c.c]+[(J|\psi)+c.c]\right\}, (S22)

After a shift ϕσϕσJσ,ϕσϕσJσ\phi_{\sigma}\longrightarrow\phi_{\sigma}-J_{\sigma},\phi_{\sigma}^{\ast}\longrightarrow\phi_{\sigma}^{\ast}-J_{\sigma}^{\ast}, we obtain

Z[J,J]=D[ψ,ψ;ϕ,ϕ]exp{(ϕσJσ)Tσσ1(ϕσJσ)S0[ψσ,ψσ]+[(ϕ|ψ)+c.c]},Z[J^{\ast},J]=\int D[\psi^{\ast},\psi;\phi^{\ast},\phi]\exp\left\{-\left(\phi_{\sigma}^{\ast}-J_{\sigma}^{\ast}\right)T_{\sigma\sigma^{\prime}}^{-1}\left(\phi_{\sigma^{\prime}}-J_{\sigma^{\prime}}\right)-S_{0}[\psi_{\sigma}^{\ast},\psi_{\sigma}]+[(\phi|\psi)+c.c]\right\}, (S23)

Integrating ψσ\psi_{\sigma} fields, we then obtain

Z[J,J]=Z0D[ϕ,ϕ]exp{(ϕσJσ)Tσσ1(ϕσJσ)+W[ϕσ,ϕσ]},Z[J^{\ast},J]=Z_{0}\int D[\phi^{\ast},\phi]\exp\left\{-\left(\phi_{\sigma}^{\ast}-J_{\sigma}^{\ast}\right)T_{\sigma\sigma^{\prime}}^{-1}\left(\phi_{\sigma^{\prime}}-J_{\sigma^{\prime}}\right)+W[\phi_{\sigma}^{\ast},\phi_{\sigma}]\right\}, (S24)

Next, applying the second Hubbard-Stratonovich transformation with auxiliary field ψ\psi^{\prime}, we obtain

Z[J,J]=Z0D[ϕ,ϕ;ψ,ψ]exp{ψσTσσψσ[(ψ|ϕJ)+c.c]+W[ϕσ,ϕσ]}=Z0D[ϕ,ϕ;ψ,ψ]exp{ψσTσσψσ[(ψ|ϕ)+c.c]+[(ψ|J)+c.c]+W[ϕσ,ϕσ]},\displaystyle\begin{split}Z[J^{\ast},J]&=Z_{0}\int D[\phi^{\ast},\phi;\psi^{\prime\ast},\psi^{\prime}]\exp\left\{\psi_{\sigma}^{\prime\ast}T_{\sigma\sigma^{\prime}}\psi_{\sigma}^{\prime}-[(\psi^{\prime}|\phi-J)+c.c]+W[\phi_{\sigma}^{\ast},\phi_{\sigma}]\right\}\\ &=Z_{0}\int D[\phi^{\ast},\phi;\psi^{\prime\ast},\psi^{\prime}]\exp\left\{\psi_{\sigma}^{\prime\ast}T_{\sigma\sigma^{\prime}}\psi_{\sigma}^{\prime}-[(\psi^{\prime}|\phi)+c.c]+[(\psi^{\prime}|J)+c.c]+W[\phi_{\sigma}^{\ast},\phi_{\sigma}]\right\},\end{split} (S25)

After integrating ϕσ\phi_{\sigma} fields, we get

Z[J,J]=Z0D[ψ,ψ]exp{ψσTσσψσ+W[ψσ,ψσ]+[(ψ|J)+c.c]}.Z[J^{\ast},J]=Z_{0}\int D[\psi^{\prime\ast},\psi^{\prime}]\exp\left\{\psi_{\sigma}^{\prime\ast}T_{\sigma\sigma^{\prime}}\psi_{\sigma}^{\prime}+W[\psi_{\sigma}^{\prime\ast},\psi_{\sigma}^{\prime}]+[(\psi^{\prime}|J)+c.c]\right\}. (S26)

From the above equation, we prove that Z[J,J]Z[J^{\ast},J] is also the generating function of ψσ\psi_{\sigma}^{\prime} field, which is equal to the generating function of orginal ψ\psi field. This proves that the connected correlators of ψσ\psi_{\sigma}^{\prime} are the same as that of ψσ\psi_{\sigma}. Therefore, ψσ\psi^{\prime}_{\sigma} is identified with the original boson field ψσ\psi_{\sigma}. We can thus use the same notation for both fields.

S-4 Coefficients of the effective action at the critical region

To obtain the effective action at the critical region, we first rewrite the action Eq.(6) in the main text in the momentum space as

Sk\displaystyle S_{k} =\displaystyle= 𝐤,ωψe(𝐤,iω)[Gee1(iω)]ψe(𝐤,iω)+ψo(𝐤,iω)[Goo1(iω)]ψo(𝐤,iω)\displaystyle\underset{\mathbf{k},\omega}{\sum}\psi_{e}^{\ast}(\mathbf{k,}i\omega)\left[-G_{ee}^{-1}(i\omega)\right]\psi_{e}(\mathbf{k,}i\omega)+\psi_{o}^{\ast}(\mathbf{k,}i\omega)\left[-G_{oo}^{-1}(i\omega)\right]\psi_{o}(\mathbf{k,}i\omega) (S27)
+\displaystyle+ ψe(𝐤,iω)ϵeo(𝐤)ψo(𝐤,iω)+ψo(𝐤,iω)ϵoe(𝐤)ψe(𝐤,iω)+12gee|ψe(𝐤,iω)|4\displaystyle\psi_{e}^{\ast}(\mathbf{k,}i\omega)\epsilon_{eo}(\mathbf{k})\psi_{o}(\mathbf{k,}i\omega)+\psi_{o}^{\ast}(\mathbf{k,}i\omega)\epsilon_{oe}(\mathbf{k})\psi_{e}(\mathbf{k,}i\omega)+\frac{1}{2}g_{ee}\left|\psi_{e}(\mathbf{k,}i\omega)\right|^{4}
+\displaystyle+ 12goo|ψo(𝐤,iω)|4+12geo|ψe(𝐤,iω)|2|ψo(𝐤,iω)|2+12goe|ψo(𝐤,iω)|2|ψe(𝐤,iω)|2,\displaystyle\frac{1}{2}g_{oo}\left|\psi_{o}(\mathbf{k,}i\omega)\right|^{4}+\frac{1}{2}g_{eo}\left|\psi_{e}(\mathbf{k,}i\omega)\right|^{2}\left|\psi_{o}(\mathbf{k,}i\omega)\right|^{2}+\frac{1}{2}g_{oe}\left|\psi_{o}(\mathbf{k,}i\omega)\right|^{2}\left|\psi_{e}(\mathbf{k,}i\omega)\right|^{2},

Next, we expand the inverse local single particle Green’s function Gσσ1(iω)G_{\sigma\sigma}^{-1}(i\omega) and dispersion ϵσσ(𝐤)\epsilon_{\sigma\sigma^{\prime}}(\mathbf{k}) to the quadratic order in 𝐤\mathbf{k} and ω\omega, respectively and obtain

Sk\displaystyle S_{k} =\displaystyle= 𝐤,ωreψe(𝐤,iω)ψe(𝐤,iω)+Ke1ψe(𝐤,iω)(iω)ψe(𝐤,iω)+Ke2(iω)ψe(𝐤,iω)(iω)ψe(𝐤,iω)\displaystyle\underset{\mathbf{k},\omega}{\sum}r_{e}\psi_{e}^{\ast}(\mathbf{k,}i\omega)\psi_{e}(\mathbf{k,}i\omega)+K_{e1}\psi_{e}^{\ast}(\mathbf{k,}i\omega)(-i\omega)\psi_{e}(\mathbf{k,}i\omega)+K_{e2}(i\omega)\psi_{e}^{\ast}(\mathbf{k,}i\omega)(-i\omega)\psi_{e}(\mathbf{k,}i\omega) (S28)
+\displaystyle+ roψo(𝐤,iω)ψo(𝐤,iω)+Ko1ψo(𝐤,iω)(iω)ψo(𝐤,iω)+Ko2(iω)ψo(𝐤,iω)(iω)ψo(𝐤,iω)\displaystyle r_{o}\psi_{o}^{\ast}(\mathbf{k,}i\omega)\psi_{o}(\mathbf{k,}i\omega)+K_{o1}\psi_{o}^{\ast}(\mathbf{k,}i\omega)(-i\omega)\psi_{o}(\mathbf{k,}i\omega)+K_{o2}(i\omega)\psi_{o}^{\ast}(\mathbf{k,}i\omega)(-i\omega)\psi_{o}(\mathbf{k,}i\omega)
+\displaystyle+ ψe(𝐤,iω)(4t)ψo(𝐤,iω)+K3(i𝐤)ψe(𝐤,iω)(i𝐤)ψo(𝐤,iω)\displaystyle\psi_{e}^{\ast}(\mathbf{k,}i\omega)(-4t)\psi_{o}(\mathbf{k,}i\omega)+K_{3}(-i\mathbf{k})\psi_{e}^{\ast}(\mathbf{k,}i\omega)(i\mathbf{k})\psi_{o}(\mathbf{k,}i\omega)
+\displaystyle+ ψo(𝐤,iω)(4t)ψe(𝐤,iω)+K3(i𝐤)ψo(𝐤,iω)(i𝐤)ψe(𝐤,iω)\displaystyle\psi_{o}^{\ast}(\mathbf{k,}i\omega)(-4t)\psi_{e}(\mathbf{k,}i\omega)+K_{3}(-i\mathbf{k})\psi_{o}^{\ast}(\mathbf{k,}i\omega)(i\mathbf{k})\psi_{e}(\mathbf{k,}i\omega)
+\displaystyle+ 12gee|ψe(𝐤,iω)|4+12goo|ψo(𝐤,iω)|4\displaystyle\frac{1}{2}g_{ee}\left|\psi_{e}(\mathbf{k,}i\omega)\right|^{4}+\frac{1}{2}g_{oo}\left|\psi_{o}(\mathbf{k,}i\omega)\right|^{4}
+\displaystyle+ 12geo|ψe(𝐤,iω)|2|ψo(𝐤,iω)|2+12goe|ψo(𝐤,iω)|2|ψe(𝐤,iω)|2,\displaystyle\frac{1}{2}g_{eo}\left|\psi_{e}(\mathbf{k,}i\omega)\right|^{2}\left|\psi_{o}(\mathbf{k,}i\omega)\right|^{2}+\frac{1}{2}g_{oe}\left|\psi_{o}(\mathbf{k,}i\omega)\right|^{2}\left|\psi_{e}(\mathbf{k,}i\omega)\right|^{2},

where re=(n¯e+1εn¯e,0εn¯e+1,0n¯eεn¯e1,0εn¯e,0)1r_{e}=-\left(\frac{\bar{n}_{e}+1}{\varepsilon_{\bar{n}_{e},0}-\varepsilon_{\bar{n}_{e}+1,0}}-\frac{\bar{n}_{e}}{\varepsilon_{\bar{n}_{e}-1,0}-\varepsilon_{\bar{n}_{e},0}}\right)^{-1}, ro=(n¯o+1ε0,n¯oε0,n¯o+1n¯oε0,n¯o1ε0,n¯o)1r_{o}=-\left(\frac{\bar{n}_{o}+1}{\varepsilon_{0,\bar{n}_{o}}-\varepsilon_{0,\bar{n}_{o}+1}}-\frac{\bar{n}_{o}}{\varepsilon_{0,\bar{n}_{o}-1}-\varepsilon_{0,\bar{n}_{o}}}\right)^{-1}, Ke1=μe2(n¯e2+n¯e1)U2+2μeU(μe+U)2K_{e1}=\frac{\mu_{e}^{2}-\left(\bar{n}_{e}^{2}+\bar{n}_{e}-1\right)U^{2}+2\mu_{e}U}{\left(\mu_{e}+U\right)^{2}}, Ko1=μo2(n¯o2+n¯o1)U2+2μoU(μo+U)2K_{o1}=\frac{\mu_{o}^{2}-\left(\bar{n}_{o}^{2}+\bar{n}_{o}-1\right)U^{2}+2\mu_{o}U}{\left(\mu_{o}+U\right)^{2}}, Ke2=n¯e(n¯e+1)U2(μe+U)3K_{e2}=\frac{\bar{n}_{e}(\bar{n}_{e}+1)U^{2}}{\left(\mu_{e}+U\right)^{3}}, Ko2=n¯o(n¯o+1)U2(μo+U)3K_{o2}=\frac{\bar{n}_{o}(\bar{n}_{o}+1)U^{2}}{\left(\mu_{o}+U\right)^{3}} and K3=2ta2K_{3}=2ta^{2}. Then, we can obtain the effective action Eq.(10) in the main text by transforming the action Eq.(S21) back to the real space.

S-5 the lowest single particle excitation

To find out the single particle excitation of the system, we analytically solve the equation det[M(𝐤,iω)]=0det[M(\mathbf{k},i\omega)]=0. Therefore, the single particle excitation spectrum E(𝐤)E(\mathbf{k}) can be determined through the following relation

(C9k4+C8k2+C7)E4+(C6k4+C5k2+C4)E2+(C3k4+C2k2+C1)=0,\left(C_{9}k^{4}+C_{8}k^{2}+C_{7}\right)E^{4}+\left(C_{6}k^{4}+C_{5}k^{2}+C_{4}\right)E^{2}+\left(C_{3}k^{4}+C_{2}k^{2}+C_{1}\right)=0, (S29)

where the coefficients are defined as C1=(4t)42×(4t)2[D1D2+D3D4]+[(D12D32)(D22D42)]C_{1}=\left(4t\right)^{4}-2\times\left(4t\right)^{2}\left[D_{1}D_{2}+D_{3}D_{4}\right]+\left[(D_{1}^{2}-D_{3}^{2})(D_{2}^{2}-D_{4}^{2})\right], C2=4×(4t)3K3+4×(4t)K3[D1D2+D3D4]C_{2}=-4\times(4t)^{3}K_{3}+4\times(4t)K_{3}\left[D_{1}D_{2}+D_{3}D_{4}\right], C3=6×(4t)2K322K32[D1D2+D3D4]C_{3}=6\times(4t)^{2}K_{3}^{2}-2K_{3}^{2}\left[D_{1}D_{2}+D_{3}D_{4}\right], C4=2×(4t)2[Ke2D2+Ko2D1Ke1Ko1]Ke12(D22D42)Ko12(D12D32)2Ke2[D1(D22D42)]2Ko2[D2(D12D32)]C_{4}=2\times(4t)^{2}\left[K_{e2}D_{2}+K_{o2}D_{1}-K_{e1}K_{o1}\right]-K_{e1}^{2}(D_{2}^{2}-D_{4}^{2})-K_{o1}^{2}(D_{1}^{2}-D_{3}^{2})-2K_{e2}\left[D_{1}(D_{2}^{2}-D_{4}^{2})\right]-2K_{o2}\left[D_{2}(D_{1}^{2}-D_{3}^{2})\right], C5=4×(4t)K3Ke2D2+4×(4t)K3Ko2D14×(4t)K3Ke1Ko1C_{5}=4\times(4t)K_{3}K_{e2}D_{2}+4\times(4t)K_{3}K_{o2}D_{1}-4\times(4t)K_{3}K_{e1}K_{o1}, C6=2K32Ke1Ko1+2K32Ke2D2+2K32Ko2D1C_{6}=-2K_{3}^{2}K_{e1}K_{o1}+2K_{3}^{2}K_{e2}D_{2}+2K_{3}^{2}K_{o2}D_{1}, C7=2×(4t)2Ke2Ko2+Ke12Ko12+2Ko12Ke2D1+2Ke12Ko2D2+4Ke2Ko2D1D2+Ke22(D22D42)+Ko22(D12D32)C_{7}=-2\times(4t)^{2}K_{e2}K_{o2}+K_{e1}^{2}K_{o1}^{2}+2K_{o1}^{2}K_{e2}D_{1}+2K_{e1}^{2}K_{o2}D_{2}+4K_{e2}K_{o2}D_{1}D_{2}+K_{e2}^{2}\left(D_{2}^{2}-D_{4}^{2}\right)+K_{o2}^{2}\left(D_{1}^{2}-D_{3}^{2}\right), C8=4×(4t)K3Ke2Ko2C_{8}=4\times(4t)K_{3}K_{e2}K_{o2}, and C9=2K32Ke2Ko2C_{9}=-2K_{3}^{2}K_{e2}K_{o2} with D1=re+2geens,e,D2=ro+2goons,oD_{1}=r_{e}+2g_{ee}n_{s,e},D_{2}=r_{o}+2g_{oo}n_{s,o}, D3=geens,eD_{3}=g_{ee}n_{s,e}, D4=goons,oD_{4}=g_{oo}n_{s,o}. By analytically solving the above equation and expanding the energy dispersion to the quartic order of the momentum, the lowest single particle excitation (positive branch) can be approximately determined in the long-wave limit as

EGoldstone+I2k+I4k2\displaystyle E^{+}_{Goldstone}\simeq\sqrt{I_{2}}k+\sqrt{I_{4}}k^{2} (S30)

where I2=C1C5C42C2C4I_{2}=\frac{C_{1}C_{5}}{C_{4}^{2}}-\frac{C_{2}}{C_{4}}, I4=C1C52C43+C2C5+C1C6C42C3C4I_{4}=-\frac{C_{1}C_{5}^{2}}{C_{4}^{3}}+\frac{C_{2}C_{5}+C_{1}C_{6}}{C_{4}^{2}}-\frac{C_{3}}{C_{4}}.