This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Mass spectra and strong decays of charmed and charmed-strange mesons

Ru-Hui Ni1, Qi Li2, Xian-Hui Zhong1,3 111E-mail: zhongxh@hunnu.edu.cn 1) Department of Physics, Hunan Normal University, and Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Changsha 410081, China 2) School of Science, Tianjin Chengjian University, Tianjin 300000, China 3) Synergetic Innovation Center for Quantum Effects and Applications (SICQEA), Hunan Normal University, Changsha 410081, China
Abstract

A semi-relativistic potential model is adopted to calculate the mass spectra of charmed and charmed-strange meson states up to the 2D2D excitations. The strong decay properties are further analyzed with a chiral quark model by using the numerical wave functions obtained from the potential model. By using the strong decay amplitudes extracted from the chiral quark model, we also systematically study the coupled-channel effects on the bare masses of the 1P1P-wave states, since the masses of Ds0(2317)D^{*}_{s0}(2317) and Ds1(2460)D_{s1}(2460) cannot be explained with bare 1P1P-wave states within the potential model. Based on our good descriptions of the mass and decay properties for the low-lying well-established states, we give a quark model classification for the high mass resonances observed in recent years. In the DD-meson family, D0(2550)D_{0}(2550) can be classified as the radially excited state D(21S0)D(2^{1}S_{0}); D3(2750)D_{3}^{*}(2750) and D2(2740)D_{2}(2740) can be classified as the second orbital excitations D(13D3)D(1^{3}D_{3}) and D(1D2)D(1D^{\prime}_{2}), respectively; DJ(3000)D_{J}^{*}(3000) may be a candidate of D(13F4)D(1^{3}F_{4}) or D(23P2)D(2^{3}P_{2}); while DJ(3000)D_{J}(3000) may favor the high mass mixed state D(2P1)D(2P^{\prime}_{1}); however, there still exist puzzles for understanding the natures of D1(2600)D_{1}^{*}(2600) and D1(2760)D_{1}^{*}(2760), whose decay properties cannot be well explained with either pure D(23S1)D(2^{3}S_{1}) and D(13D1)D(1^{3}D_{1}) states or their mixing. In the DsD_{s}-meson family, Ds3(2860)D_{s3}^{*}(2860) favors the Ds(13D3)D_{s}(1^{3}D_{3}) assignment; Ds1(2700)D_{s1}^{*}(2700) and Ds1(2860)D_{s1}^{*}(2860) may favor the mixed states |(SD)1L|(SD)_{1}\rangle_{L} and |(SD)1H|(SD)_{1}\rangle_{H} via the 23S12^{3}S_{1}-13D11^{3}D_{1} mixing, respectively; DsJ(3040)D_{sJ}(3040) may favor Ds(2P1)D_{s}(2P_{1}) or Ds(2P1)D_{s}(2P_{1}^{\prime}), or corresponds to a structure contributed by both Ds(2P1)D_{s}(2P_{1}) and Ds(2P1)D_{s}(2P_{1}^{\prime}); the newly observed resonance Ds0(2590)+D_{s0}(2590)^{+} as an assignment of Ds(21S0)D_{s}(2^{1}S_{0}), by including coupled-channel effects the mass of Ds(21S0)D_{s}(2^{1}S_{0}) is close to the observed value, however, the width cannot be well understood in the present study. Many missing excited DD- and DsD_{s}-meson states have a relatively narrow width, they are most likely to be observed in their dominant decay channels in future experiments.

I Introduction

In the past 15 years, significant progress has been achieved in the observations of the DD and DsD_{s} meson spectra. More and more higher excitations have been found in experiments. In the DD-meson family, several new signals D(2550)0D(2550)^{0}, D(2600)0,+D^{*}(2600)^{0,+}, D(2750)0D(2750)^{0} and D(2760)0,+D^{*}(2760)^{0,+} were observed for the first time by the BaBar collaboration in 2010 BaBar:2010zpy , and were confirmed by the LHCb collaboration with slightly different masses in 2013 LHCb:2013jjb . The decay angular distributions show that both D(2550)D(2550) and D(2750)D(2750) should have an unnatural spin parity, while both D(2600)D^{*}(2600) and D(2760)D^{*}(2760) favor a natural spin parity. Furthermore, the LHCb collaboration observed two new higher DD-meson excitations, DJ(3000)D^{*}_{J}(3000) and DJ(3000)D_{J}(3000), with natural and unnatural parities, respectively LHCb:2013jjb . In 2015, LHCb observed a new state D1(2760)0D^{*}_{1}(2760)^{0} with spin-parity numbers JP=1J^{P}=1^{-} in the D+πD^{+}\pi^{-} channel by analyzing the BD+KπB^{-}\to D^{+}K^{-}\pi^{-} decay LHCb:2015eqv . In 2016, LHCb also observed a new state D2(3000)D^{*}_{2}(3000) with JP=2+J^{P}=2^{+} in the D+πD^{+}\pi^{-} channel by analyzing the BD+ππB^{-}\to D^{+}\pi^{-}\pi^{-} decay Aaij:2016fma . The resonance parameters of D2(3000)D^{*}_{2}(3000) are inconsistent with the previously observed resonance DJ(3000)D^{*}_{J}(3000) in Ref. LHCb:2013jjb . In 2019, a four-body amplitude analysis of the BD+ππB^{-}\to D^{*+}\pi^{-}\pi^{-} decay is performed by the LHCb collaboration Aaij:2019sqk . The spin-parity numbers for D(2550)D(2550), D(2600)D^{*}(2600), D(2750)D(2750) and D(2760)D^{*}(2760) were systematically determined to be JP=0J^{P}=0^{-}, 11^{-}, 22^{-} and 33^{-}, respectively. The determined spin parity numbers for D(2600)D^{*}(2600) and D(2760)D^{*}(2760) are consistent with the determinations in the previous experiments Aaij:2016fma ; Aaij:2015sqa . In the Review of Particle Physics (RPP), D(2550)D(2550), D(2600)D^{*}(2600), D(2750)D(2750) and D(2760)D^{*}(2760) are labeled as D0(2550)D_{0}(2550), D1(2600)D^{*}_{1}(2600), D2(2740)D_{2}(2740) and D3(2750)D^{*}_{3}(2750), respectively, by the particle data group (PDG) Zyla:2020zbs .

In the DsD_{s}-meson sector, two new resonances/structures DsJ(2700)+D_{sJ}(2700)^{+} and DsJ(2860)+D_{sJ}(2860)^{+} observed in the DKDK channel by BaBar in 2006 BaBar:2006gme . The DsJ(2700)+D_{sJ}(2700)^{+} was confirmed by Belle one year later Belle:2007hht , and its spin-parity numbers were determined to be JP=1J^{P}=1^{-}. In 2009, BaBar observed the decays Ds1(2700)+DKD_{s1}^{*}(2700)^{+}\to D^{*}K and DsJ(2860)+DKD_{sJ}^{*}(2860)^{+}\to D^{*}K, and measured their branching fractions relative to the DKDK final state BaBar:2009rro . Meanwhile, a new broad higher DsD_{s}-meson excitation DsJ(3040)+D_{sJ}(3040)^{+} was also reported by BaBar. In 2012, the existence of Ds1(2700)+D_{s1}^{*}(2700)^{+} and DsJ(2860)+D_{sJ}(2860)^{+} was further confirmed by using the pppp collision data at LHCb LHCb:2012uts . In 2014, by an analysis of Bs0D¯0Kπ+B_{s}^{0}\rightarrow\bar{D}^{0}K^{-}\pi^{+} decays, the LHCb collaboration found two resonances Ds1(2860)D_{s1}^{*}(2860)^{-} with JP=1J^{P}=1^{-} and Ds3(2860)D_{s3}^{*}(2860)^{-} with JP=3J^{P}=3^{-} in the D¯0K\bar{D}^{0}K^{-} final state LHCb:2014ott ; LHCb:2014ioa , which indicates that the DsJ(2860)D_{sJ}(2860) structure previously observed by BaBar BaBar:2009rro ; BaBar:2006gme and LHCb LHCb:2012uts consists of at least these two resonances. In 2016, the Ds3(2860)+D_{s3}^{*}(2860)^{+} resonance was observed in the D+Ks0D^{*+}K^{0}_{s} channel by LHCb Aaij:2016utb , its resonance parameters and spin-parity numbers are consistent with the determinations for Ds3(2860)D_{s3}^{*}(2860)^{-} in Refs. LHCb:2014ott ; LHCb:2014ioa . Furthermore, LHCb also found weak evidence of DsJ(3040)+D_{sJ}(3040)^{+} consistent with an unnatural parity assignment Aaij:2016utb . Very recently, the LHCb collaboration observed a new excited DsD_{s} meson Ds0(2590)+D_{s0}(2590)^{+} with JP=0J^{P}=0^{-} in B0DD+K+πB^{0}\rightarrow D^{-}D^{+}K^{+}\pi^{-} decays LHCb:2020gnv . More experimental information about the excited charmed and charmed-strange mesons is collected in Table 1.

The experimental progress provides us good opportunities to establish an abundant DD and DsD_{s}-meson spectrum up to the higher orbital and radial excitations. In theory, to understand the nature of the charmed and charmed-strange mesons, especially the newly observed states, and to establish the charmed and charmed-strange meson spectra, in the recent years a lot of studies have been carried out within various phenomenological models from several aspects, such as the mass spectrum Ebert:2009ua ; Liu:2013maa ; Liu:2015lka ; Liu:2015uya ; Liu:2016efm ; Badalian:2011tb ; Allosh:2021biq ; Patel:2021aas ; Chen:2018nnr ; Zhou:2014ytp ; Chen:2009zt ; Zhang:2009nu ; Godfrey:2015dva ; Song:2015nia ; Song:2015fha ; Gandhi:2019lta ; Sun:2013qca ; Ferretti:2015rsa ; Segovia:2015dia ; Li:2010vx ; Lu:2014zua ; Kher:2017wsq ; Eshraim:2014eka ; Shah:2014caa ; Yu:2020khh , strong decays Godfrey:2015dva ; Song:2015nia ; Song:2015fha ; Gandhi:2019lta ; Sun:2013qca ; Ferretti:2015rsa ; Segovia:2015dia ; Li:2010vx ; Lu:2014zua ; Kher:2017wsq ; Eshraim:2014eka ; Shah:2014caa ; Zhong:2008kd ; Xiao:2014ura ; Zhong:2009sk ; Zhong:2010vq ; Sun:2009tg ; Sun:2010pg ; Wang:2021orp ; Song:2014mha ; Colangelo:2012xi ; Colangelo:2010te ; Yu:2016mez ; Wang:2010ydc ; Wang:2013tka ; Yu:2014dda ; Wang:2014jua ; Wang:2016hkf ; Chen:2015lpa ; Chen:2011rr ; Zhao:2016mxc ; Tian:2017okw ; Li:2017sww ; Li:2009qu ; Godfrey:2013aaa ; Godfrey:2014fga ; Gandhi:2020vap ; Gupta:2018zlg ; Wang:2016enc ; Zhang:2016dom ; Li:2017zng ; Tan:2018lao ; Wang:2018psi ; Yu:2020khh , etc., some previous works can be found in Refs. Godfrey:1985xj ; Zeng:1994vj ; Gupta:1994mw ; Lahde:1999ih ; DiPierro:2001dwf ; Godfrey:2005ww ; Close:2005se ; Close:2006gr ; Vijande:2006hj ; Zhang:2006yj ; Li:2007px ; Wei:2006wa . Furthermore, spectroscopic calculations on the lattice are making steady progress Mohler:2011ke ; Moir:2013ub ; Kalinowski:2015bwa ; Cichy:2016bci . In the DD-meson family, the D0(2300)D_{0}(2300), D1(2420)D_{1}(2420), D1(2430)D_{1}(2430) and D2(2460)D_{2}(2460) resonances listed in RPP Zyla:2020zbs are usually considered to be the 1P1P states, apart from a few disputes about D0(2300)D_{0}(2300) and D1(2430)D_{1}(2430) in recent works Gayer:2021xzv ; Albaladejo:2016lbb ; Du:2017zvv ; Du:2020pui . The newly observed resonance D0(2550)D_{0}(2550) may be classified as the radially excited (2S2S) state D(21S0)D(2^{1}S_{0}) Kher:2017wsq ; Badalian:2011tb ; Liu:2015uya ; Yu:2014dda ; Chen:2011rr ; Gupta:2018zlg ; Wang:2010ydc ; Wang:2013tka ; Song:2015fha ; Godfrey:2015dva ; Lu:2014zua , although the width is underestimated in some works Li:2010vx ; Ferretti:2015rsa ; Zhong:2010vq ; DiPierro:2001dwf ; Sun:2010pg . The D1(2600)D_{1}^{*}(2600) may favor the the 2S2S state D(23S1)D(2^{3}S_{1}) Ferretti:2015rsa ; Kher:2017wsq ; Badalian:2011tb ; Liu:2016efm ; Liu:2015uya ; Ebert:2009ua ; Gupta:2018zlg ; Yu:2014dda ; Chen:2015lpa ; Wang:2010ydc ; Wang:2013tka ; Song:2015fha ; Godfrey:2015dva ; Lu:2014zua , or a mixture via the 23S113D12^{3}S_{1}-1^{3}D_{1} mixing Li:2017sww ; Chen:2011rr ; Yu:2020khh ; Zhong:2010vq ; Xiao:2014ura ; Sun:2010pg ; Li:2010vx ; Chen:2015lpa . The D3(2750)D^{*}_{3}(2750) resonance can be assigned to the 1D1D state D(13D3)D(1^{3}D_{3}), while D2(2740)D_{2}(2740) may correspond to a 1D1D mixed state with JP=2J^{P}=2^{-} Badalian:2011tb ; Liu:2016efm ; Liu:2015uya ; Liu:2015lka ; Zhong:2010vq ; Xiao:2014ura ; Wang:2010ydc ; Wang:2013tka ; Song:2015fha ; Godfrey:2015dva ; Lu:2014zua ; Wang:2016enc ; Li:2010vx ; Gandhi:2019lta ; Kher:2017wsq ; Yu:2016mez ; Yu:2014dda ; Gupta:2018zlg . The D1(2760)0D^{*}_{1}(2760)^{0} resonance is a good candidate for the 1D1D state D(13D1)D(1^{3}D_{1}) Godfrey:2015dva , while a few components of D(23S1)D(2^{3}S_{1}) may exist via the 23S113D12^{3}S_{1}-1^{3}D_{1} mixing. The quark model classification of DJ(3000)D_{J}(3000) and DJ(3000)D_{J}^{*}(3000) is still controversial in the literature. The unnatural parity state DJ(3000)D_{J}(3000) is explained with the 3S3S state D(31S0)D(3^{1}S_{0}) Chen:2018nnr ; Godfrey:2015dva ; Lu:2014zua ; Song:2015fha , 2P2P states with JP=1+J^{P}=1^{+} Yu:2014dda ; Xiao:2014ura ; Sun:2013qca ; Gupta:2018zlg ; Li:2017zng , or 1F1F states with JP=3+J^{P}=3^{+} Liu:2016efm ; Liu:2015lka ; Liu:2015uya ; while the natural parity state DJ(3000)D_{J}^{*}(3000) is explained with D(33S1)D(3^{3}S_{1}) Chen:2018nnr ; Song:2015fha , D(23P0)D(2^{3}P_{0}) Gupta:2018zlg ; Sun:2013qca , D(23P2)D(2^{3}P_{2}) Gandhi:2019lta ; Liu:2013maa ; Liu:2015uya ; Liu:2016efm , D(13F4)D(1^{3}F_{4}) Yu:2014dda ; Godfrey:2015dva ; Xiao:2014ura , or D(13F2)D(1^{3}F_{2}) Yu:2014dda , and so on.

On the other hand, in the DsD_{s}-meson family, it is not controversial to classify the Ds1(2536)D_{s1}(2536) and Ds2(2573)D_{s2}(2573) resonances as 1P1P states Ds(1P1)D_{s}(1P_{1}^{\prime}) (high mass mixed state) and Ds(13P2)D_{s}(1^{3}P_{2}), respectively, however, the other two 1P1P states Ds(13P0)D_{s}(1^{3}P_{0}) and Ds(1P1)D_{s}(1P_{1}) (low mass mixed state) classified in the quark model are not well established. Considering the positive parity resonances Ds0(2317)D_{s0}(2317) and Ds1(2460)D_{s1}(2460) first reported by BaBar BaBar:2003oey and CLEO CLEO:2003ggt as the Ds(13P0)D_{s}(1^{3}P_{0}) and Ds(1P1)D_{s}(1P_{1}) assignments, one finds their masses are too low to be comparable with the theoretical expectations. Some studies suggest that Ds0(2317)D_{s0}(2317) and Ds1(2460)D_{s1}(2460) are the mixtures of bare 1P1P cs¯c\bar{s} core and D()KD^{(*)}K component Ortega:2016mms ; Yang:2021tvc . The new resonance Ds0(2590)+D_{s0}(2590)^{+} with JP=0J^{P}=0^{-} is suggested to be a strong candidate of the radial excitation Ds(21S0)D_{s}(2^{1}S_{0}) by the collaboration LHCb:2020gnv , however, its measured mass and width are inconsistent with the recent theoretical predictions in Ref. Wang:2021orp . The Ds1(2700)+D_{s1}^{*}(2700)^{+} and Ds1(2860)+D_{s1}^{*}(2860)^{+} resonances may be identified as the Ds(23S1)D_{s}(2^{3}S_{1}) and Ds(13D1)D_{s}(1^{3}D_{1}), respectively Ferretti:2015rsa ; Badalian:2011tb ; Liu:2016efm ; Liu:2015uya ; Ebert:2009ua ; Wang:2014jua ; Zhou:2014ytp ; Song:2014mha ; Segovia:2015dia ; Chen:2009zt ; Zhang:2009nu ; Godfrey:2015dva , or their mixtures Li:2017sww ; Li:2010vx ; Li:2007px ; Close:2006gr ; Zhong:2009sk ; Chen:2011rr ; Song:2015nia . The Ds3(2860)+D_{s3}^{*}(2860)^{+} resonance can be classified as the 1D1D state Ds(13D3)D_{s}(1^{3}D_{3}) Liu:2015uya ; Ferretti:2015rsa ; Kher:2017wsq ; Chen:2009zt ; Badalian:2011tb ; Liu:2016efm ; Liu:2015lka ; Wang:2014jua ; Godfrey:2014fga ; Zhou:2014ytp ; Wang:2016hkf ; Wang:2016enc ; Song:2014mha ; Segovia:2015dia ; Godfrey:2015dva ; Xiao:2014ura . It should be mentioned that there still exist puzzles for the DsJD_{sJ} structures around 2.86 GeV, it may be contributed by all of the 1D1D-wave states with JP=1,2,3J^{P}=1^{-},2^{-},3^{-}  Segovia:2015dia ; Gandhi:2020vap ; Zhong:2009sk . The higher resonance DsJ(3040)+D_{sJ}(3040)^{+} may be a candidate for the 2P2P states with JP=1+J^{P}=1^{+} Ferretti:2015rsa ; Badalian:2011tb ; Kher:2017wsq ; Segovia:2015dia ; Chen:2009zt ; Liu:2016efm ; Liu:2015uya ; Ebert:2009ua ; Li:2010vx ; Song:2015nia ; Sun:2009tg ; Zhong:2009sk ; Li:2017zng ; Godfrey:2015dva ; Xiao:2014ura . More information about the status of the charmed and charmed-strange meson study can be found in the recent review work Chen:2016spr .

The recent LHCb experiments LHCb:2013jjb ; LHCb:2015eqv ; Aaij:2016fma ; Aaij:2019sqk ; Aaij:2015sqa ; LHCb:2014ott ; LHCb:2014ioa ; LHCb:2012uts ; Aaij:2016utb ; LHCb:2020gnv have demonstrated the capability of both discovering the DD and DsD_{s} mesons and determining their properties. Thus, more and more progress in the observations of the excited DD- and DsD_{s}-meson states will be achieved in forthcoming LHCb experiments. Stimulated by the recent progress in experiments, we have systematically analyzed the strong decay properties of the excited DD- and DsD_{s}-meson states within a chiral quark model in Refs. Zhong:2008kd ; Zhong:2009sk ; Zhong:2010vq ; Xiao:2014ura , where the wave functions for the excited meson states are adopted the simple harmonic oscillator (SHO) forms, while their masses are referred to the quark model predictions in the literature. To deepen our study and more reliably understand the DD and DsD_{s}-meson spectrum, in this work we carry out a combined analysis of both mass spectrum and strong decays. First, we calculate the mass spectrum within a semi-relativistic potential model, where the relativistic effects from the light quarks can be reasonably included. With this model the masses for the observed DD and DsD_{s}-meson states can be described successfully. Then, by using the available wave functions and masses from the potential model, we calculate the OZI-allowed two-body strong decays of the excited DD and DsD_{s} mesons with the chiral quark model. This model has been successfully applied to describe the strong decays of the heavy-light mesons and baryons li:2021hss ; Xiao:2020oif ; Wang:2019uaj ; Wang:2018fjm ; Xiao:2020gjo ; Wang:2020gkn ; Xiao:2018pwe ; Xiao:2014ura ; Zhong:2010vq ; Zhong:2008kd ; Zhong:2009sk ; Liu:2012sj ; Zhong:2007gp ; Xiao:2013xi ; Nagahiro:2016nsx ; Yao:2018jmc ; Wang:2017kfr ; Xiao:2017udy ; Wang:2017hej ; Liu:2019wdr . Based on our good descriptions of the mass and decay properties for the well-established states, we give our quark model classifications of the newly observed resonances/structures. Finally, according to our assignments for the newly observed resonances, we attempt to predict the properties of the missing resonances, which may be useful for future investigations in experiments.

Table 1: The newly observed excited charmed and charmed-strange meson states in recent 15 years. The “N” and “UN” stand for the natural parity and unnatural parity, respectively.
Resonance       Mass (MeV)       Width (MeV)       Observed channel       JPJ^{P}       Ref.   Time
     D(2550)0D(2550)^{0}    2539.4±11.32539.4\pm 11.3    130±25130\pm 25    D+πD^{*+}\pi^{-}    UN    BaBar BaBar:2010zpy      2010
     DJ(2580)0D_{J}(2580)^{0}    2579.5±8.92579.5\pm 8.9    177.5±63.8177.5\pm 63.8    D+πD^{*+}\pi^{-}    UN    LHCb LHCb:2013jjb      2013
     D0(2550)0D_{0}(2550)^{0}    2518±92518\pm 9    199±22199\pm 22    D+πD^{*+}\pi^{-}    00^{-}    LHCb Aaij:2019sqk      2019
     D(2600)0D^{*}(2600)^{0}    2608.7±4.92608.7\pm 4.9    93±1993\pm 19    D+πD^{+}\pi^{-},D+πD^{*+}\pi^{-}    N    BaBar BaBar:2010zpy      2010
     D(2600)+D^{*}(2600)^{+}    2621.3±7.92621.3\pm 7.9    93.093.0    D0π+D^{0}\pi^{+}    N    BaBar BaBar:2010zpy      2010
     DJ(2650)0D_{J}^{*}(2650)^{0}    2649.2±7.02649.2\pm 7.0    140.2±35.7140.2\pm 35.7    D+πD^{*+}\pi^{-}    N    LHCb LHCb:2013jjb      2013
     D1(2680)0D_{1}^{*}(2680)^{0}    2681.1±23.62681.1\pm 23.6    186.7±25.3186.7\pm 25.3    D+πD^{+}\pi^{-}    11^{-}    LHCb Aaij:2016fma      2016
     D1(2600)0D_{1}^{*}(2600)^{0}    2641.9±6.32641.9\pm 6.3    149±24149\pm 24    D+πD^{*+}\pi^{-}    11^{-}    LHCb Aaij:2019sqk      2019
     D(2750)0D(2750)^{0}    2752.4±4.42752.4\pm 4.4    71±1771\pm 17    D+πD^{*+}\pi^{-}    UN    BaBar BaBar:2010zpy      2010
     DJ(2740)0D_{J}(2740)^{0}    2737.0±14.72737.0\pm 14.7    73.2±38.473.2\pm 38.4    D+πD^{*+}\pi^{-}    UN    LHCb LHCb:2013jjb      2013
     D2(2740)0D_{2}(2740)^{0}    2751±102751\pm 10    102±32102\pm 32    D+πD^{*+}\pi^{-}    22^{-}    LHCb Aaij:2019sqk      2019
     D(2760)0D^{*}(2760)^{0}    2763.3±4.62763.3\pm 4.6    60.9±8.760.9\pm 8.7    D+πD^{+}\pi^{-}    ?    BaBar BaBar:2010zpy      2010
     D(2760)+D^{*}(2760)^{+}    2769.7±5.32769.7\pm 5.3    60.960.9    D0π+D^{0}\pi^{+}    ?    BaBar BaBar:2010zpy      2010
     DJ(2760)0D_{J}^{*}(2760)^{0}    2760.1±4.82760.1\pm 4.8    74.4±22.574.4\pm 22.5    D+πD^{+}\pi^{-},D+πD^{*+}\pi^{-}    N    LHCbLHCb:2013jjb      2013
     DJ(2760)+D_{J}^{*}(2760)^{+}    2771.7±5.52771.7\pm 5.5    66.7±17.166.7\pm 17.1    D0π+D^{0}\pi^{+}    N    LHCb LHCb:2013jjb      2013
     D3(2760)D_{3}^{*}(2760)^{-}    2798±152798\pm 15    105±47105\pm 47    D¯0π\bar{D}^{0}\pi^{-}    33^{-}    LHCb Aaij:2015sqa      2015
     D3(2760)0D_{3}^{*}(2760)^{0}    2775.5±13.72775.5\pm 13.7    95.3±50.695.3\pm 50.6    D+πD^{+}\pi^{-}    33^{-}    LHCb Aaij:2016fma      2016
     D3(2750)0D_{3}^{*}(2750)^{0}    2753±102753\pm 10    66±2466\pm 24    D+πD^{*+}\pi^{-}    33^{-}    LHCb Aaij:2019sqk      2019
     D1(2760)0D_{1}^{*}(2760)^{0}    2781±352781\pm 35    177±59177\pm 59    D+πD^{+}\pi^{-}    11^{-}    LHCb LHCb:2015eqv      2015
     DJ(3000)0D_{J}(3000)^{0}    2971.8±8.72971.8\pm 8.7    188.1±44.8188.1\pm 44.8    D+πD^{*+}\pi^{-}    UN    LHCb LHCb:2013jjb      2013
     DJ(3000)0D_{J}^{*}(3000)^{0}    3008.0±4.03008.0\pm 4.0    110.5±11.5110.5\pm 11.5    D+πD^{+}\pi^{-}    ?    LHCb LHCb:2013jjb      2013
     DJ(3000)+D_{J}^{*}(3000)^{+}    3008.1(fixed)3008.1(fixed)    110.5(fixed)110.5(fixed)    D0π+D^{0}\pi^{+}    ?    LHCb LHCb:2013jjb      2013
     D2(3000)0D_{2}^{*}(3000)^{0}    3214±983214\pm 98    186±135186\pm 135    D+πD^{+}\pi^{-}    2+2^{+}    LHCb Aaij:2016fma      2016
     Ds0(2590)+D_{s0}(2590)^{+}    2591±132591\pm 13    89±2889\pm 28    DK+D^{-}K^{+}    00^{-}    LHCb LHCb:2020gnv      2020
     DsJ(2700)+D_{sJ}(2700)^{+}    2688±72688\pm 7    112±43112\pm 43    DKDK    ?    BaBar BaBar:2006gme      2006
     Ds1(2700)+D_{s1}^{*}(2700)^{+}    270819+202708_{-19}^{+20}    10854+59108_{-54}^{+59}    D0K+D^{0}K^{+}    11^{-}    Belle Belle:2007hht      2007
     Ds1(2700)+D_{s1}^{*}(2700)^{+}    27109+142710_{-9}^{+14}    14959+46149_{-59}^{+46}    DK,DKDK,D^{*}K    N    BaBar BaBar:2009rro      2009
     Ds1(2700)+D_{s1}^{*}(2700)^{+}    2709.2±6.42709.2\pm 6.4    115.8±19.4115.8\pm 19.4    DKDK    ?    LHCb LHCb:2012uts      2012
     Ds1(2700)+D_{s1}^{*}(2700)^{+}    26997+142699^{+14}_{-7}    12719+24127^{+24}_{-19}    D0K+D^{0}K^{+}    11^{-}    BaBar Lees:2014abp      2014
     Ds1(2700)+D_{s1}^{*}(2700)^{+}    2732.3±10.12732.3\pm 10.1    136±43136\pm 43    D0K+D^{*0}K^{+}    11^{-}    LHCb Aaij:2016utb      2016
     DsJ(2860)+D_{sJ}(2860)^{+}    2856.6±6.52856.6\pm 6.5    47±1747\pm 17    DKDK    ?    BaBar BaBar:2006gme      2006
     DsJ(2860)+D_{sJ}^{*}(2860)^{+}    28624+72862_{-4}^{+7}    48±948\pm 9    DK,DKDK,D^{*}K     N    BaBar BaBar:2009rro      2009
     DsJ(2860)+D_{sJ}^{*}(2860)^{+}    2866.1±7.32866.1\pm 7.3    69.9±9.869.9\pm 9.8    DKDK     ?    LHCb LHCb:2012uts      2012
     Ds1(2860)+D_{s1}^{*}(2860)^{+}    2859.0±27.02859.0\pm 27.0    159±80159\pm 80    ...     11^{-}    LHCb LHCb:2014ott ; LHCb:2014ioa      2014
     Ds3(2860)+D_{s3}^{*}(2860)^{+}    2860.5±7.02860.5\pm 7.0    53.0±10.053.0\pm 10.0    ...     33^{-}    LHCb LHCb:2014ott ; LHCb:2014ioa      2014
     Ds3(2860)+D_{s3}^{*}(2860)^{+}    2867.1±6.22867.1\pm 6.2    50±2450\pm 24    D0K+D^{*0}K^{+}     33^{-}    LHCb Aaij:2016utb      2016
     DsJ(3040)+D_{sJ}(3040)^{+}    30449+313044^{+31}_{-9}    239.0±60.0239.0\pm 60.0    D0K+D^{*0}K^{+}     ?    BaBar BaBar:2009rro      2009

This work is organized as follows. In Sec. II, the mass spectra for the charmed and charmed-strange mesons are calculated within a semi-relativistic quark model. In Sec. III, the strong decays are estimated within the chiral quark model. In Sec. IV, some discussions based on our numerical results are carried out. Finally, a summary is given in Sec. V.

II mass spectrum

II.1 model

In Ref. li:2021hss , we adopt a nonrelativistic linear potential model to calculate the BB- and BsB_{s}-meson mass spectrum. It is found that the masses for the BB- and BsB_{s}-meson states can be reasonably described within the nonrelativistic quark model li:2021hss , however, the effective harmonic oscillator parameters, βeff\beta_{eff}, which are obtained by equating the root-mean-square radius of the harmonic oscillator wavefunction for the specified (n,l)(n,l) quantum numbers to the root-mean-square radius of the wavefunctions, are notably smaller than those from the relativized quark model Godfrey:2015dva . To consistently include the relativistic effects on the wavefunctions, the nonrelativistic Hamiltonian H=𝐩2/(2μ)+m1+m2+V(r)H=\mathbf{p}^{2}/(2\mu)+m_{1}+m_{2}+V(r) is replaced with the relativistic one

H=𝐩2+m12+𝐩2+m22+V(r),H=\sqrt{\mathbf{p}^{2}+m_{1}^{2}}+\sqrt{\mathbf{p}^{2}+m_{2}^{2}}+V(r), (1)

where 𝐩=𝐩1=𝐩2\mathbf{p}=\mathbf{p}_{1}=-\mathbf{p}_{2} is the quark momentum in the center-of-mass system, rr is the distance between two quarks; m1m_{1} and m2m_{2} are the masses of light and heavy quarks, respectively; and the reduced mass μ=m1m2/(m1+m2)\mu=m_{1}m_{2}/(m_{1}+m_{2}).

The effective potential V(r)V(r) includes the spin-independent part V0(r)V_{0}(r) and spin-dependent part Vsd(r)V_{sd}(r). The spin-independent part V0(r)V_{0}(r) is adopted the standard Cornell form Eichten:1978tg

V0(r)=43αs(r)r+br+C0,\displaystyle V_{0}(r)=-\frac{4}{3}\frac{\alpha_{s}(r)}{r}+br+C_{0}, (2)

which includes the color Coulomb interaction and linear confinement, and zero point energy C0C_{0}. The spin-dependent part Vsd(r)V_{sd}(r) is adopted the widely used form Godfrey:1985xj ; Swanson:2005 ; Godfrey:2004ya

Vsd(r)=HSS+HT+HLS,\displaystyle V_{sd}(r)=H_{SS}+H_{T}+H_{LS}, (3)

where

HSS=32παs(r)σ3eσ2r29πm~1m2𝐒𝟏𝐒𝟐\displaystyle H_{SS}=\frac{32\pi\alpha_{s}(r)\cdot\sigma^{3}e^{-\sigma^{2}r^{2}}}{9\sqrt{\pi}\tilde{m}_{1}m_{2}}\mathbf{S_{1}}\cdot\mathbf{S_{2}} (4)

is the spin-spin contact hyperfine potential. The tensor potential HTH_{T} is adopted as

HT=43αs(r)m~1m21r3(3𝐒1𝐫𝐒2𝐫r2𝐒1𝐒2).\displaystyle H_{T}=\frac{4}{3}\frac{\alpha_{s}(r)}{\tilde{m}_{1}m_{2}}\frac{1}{r^{3}}\left(\frac{3\mathbf{S}_{1}\cdot\mathbf{r}\mathbf{S}_{2}\cdot\mathbf{r}}{r^{2}}-\mathbf{S}_{1}\cdot\mathbf{S}_{2}\right). (5)

The spin-orbit interaction HLSH_{LS} can be decomposed into symmetric part HsymH_{sym} and antisymmetric part HantiH_{anti}:

HLS=Hsym+Hanti,\displaystyle H_{LS}=H_{sym}+H_{anti}, (6)

with

Hsym=𝐒+𝐋2[(12m~12+12m22)(4αs(r)3r3br)+8αs(r)3m~1m2r3],\displaystyle H_{sym}=\frac{\mathbf{S_{+}\cdot L}}{2}\left[\left(\frac{1}{2\tilde{m}_{1}^{2}}+\frac{1}{2m_{2}^{2}}\right)\left(\frac{4\alpha_{s}(r)}{3r^{3}}-\frac{b}{r}\right)+\frac{8\alpha_{s}(r)}{3\tilde{m}_{1}m_{2}r^{3}}\right], (7)
Hanti=𝐒𝐋2(12m~1212m22)(4αs(r)3r3br).\displaystyle H_{anti}=\frac{\mathbf{S_{-}\cdot L}}{2}\left(\frac{1}{2\tilde{m}_{1}^{2}}-\frac{1}{2m_{2}^{2}}\right)\left(\frac{4\alpha_{s}(r)}{3r^{3}}-\frac{b}{r}\right).\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (8)

In these equations, 𝐋\mathbf{L} is the relative orbital angular momentum of the qq¯q\bar{q} system; 𝐒1\mathbf{S}_{1} and 𝐒2\mathbf{S}_{2} are the spins of the light and heavy quarks, respectively, and 𝐒±𝐒1±𝐒2\mathbf{S}_{\pm}\equiv\mathbf{S}_{1}\pm\mathbf{S}_{2}. The running coupling constant αs(r)\alpha_{s}(r) in the coordinate space is adopted a parameterized form as suggested in Ref. Godfrey:1985xj

αs(r)=iαi2π0γirex2𝑑x.\alpha_{s}(r)=\sum_{i}\alpha_{i}\frac{2}{\sqrt{\pi}}\int_{0}^{\gamma_{i}r}e^{-x^{2}}dx. (9)

The parameters αi\alpha_{i} and γi\gamma_{i} are free parameters which can be fitted to make the behavior of the running coupling constant at short distance be consistent with the coupling constant in momentum space predicted by QCD. In this work we take α1=0.30\alpha_{1}=0.30, α2=0.15\alpha_{2}=0.15, α3=0.20\alpha_{3}=0.20, γ1=12\gamma_{1}=\frac{1}{2}, γ2=102\gamma_{2}=\frac{\sqrt{10}}{2}, γ3=10002\gamma_{3}=\frac{\sqrt{1000}}{2}, which are the same as those adopted in Refs. Godfrey:1985xj , except that the parameter α1\alpha_{1} is slightly adjusted to better describe the mass spectrum. It should be mentioned that in the spin-dependent potentials we have replaced the light quark mass m1m_{1} with m~1\tilde{m}_{1} to include some relativistic corrections to the potentials as suggested in Ref. Liu:2013maa . The parameter set { bb, σ\sigma, m1m_{1}, m~1\tilde{m}_{1}, m2m_{2}, C0C_{0}} in the above potentials is determined by fitting the mass spectrum.

For the heavy-light meson system, the antisymmetric part of the spin-orbit potential, HantiH_{anti}, can cause a configuration mixing between spin triplet n3LJn^{3}L_{J} and spin singlet n1LJn^{1}L_{J} defined in the LL-SS coupling scheme. Thus, the physical states nLJnL_{J} and nLJnL^{\prime}_{J} are expressed as

(nLJnLJ)=(cosθnLsinθnLsinθnLcosθnL)(n1LJn3LJ).\left(\begin{array}[]{c}nL_{J}\\ nL^{\prime}_{J}\\ \end{array}\right)=\left(\begin{array}[]{cc}\cos\theta_{nL}&\sin\theta_{nL}\\ -\sin\theta_{nL}&\cos\theta_{nL}\\ \end{array}\right)\left(\begin{array}[]{c}n^{1}L_{J}\\ n^{3}L_{J}\\ \end{array}\right). (10)

where J=L=1,2,3J=L=1,2,3\cdots, and the θnL\theta_{nL} is the mixing angle. In this work nLJnL^{\prime}_{J} corresponds to the higher mass mixed state as often adopted in the literature. The mixing angle θnL\theta_{nL} is perturbatively determined with the non-diagonal matrix element n1LJ|Hanti|n3LJ\langle n^{1}L_{J}|H_{anti}|n^{3}L_{J}\rangle. It should be mentioned that the coupled-channel effects can cause a configuration mixing as well, we neglect these effects on the the mixing angle in our calculations.

II.2 numerical method

In this work we use the Gaussian expansion method Hiyama:2003cu to solve the radial Schrodinger equation for a meson system with quantum numbers LMLM of the orbital angular momentum and its zz component,

(HE)ψLM(r)=0.\begin{split}(H-E)\psi_{LM}(r)=0.\end{split} (11)

The spatial wave function ψLM(r)\psi_{LM}(r) is expanded with a set of Gaussian basis functions,

ψLM(r)=m=1mmaxCmϕmL(r)YLM(𝐫^).\psi_{LM}(r)=\sum_{m=1}^{m_{max}}C_{m}\phi_{mL}(r)Y_{LM}(\hat{\mathbf{r}}). (12)

The Gaussian function ϕmL(r)\phi_{mL}(r) with given range parameters is writhen as

ϕmL(r)=(2L+2(2vm)L+32π(2L+1)!!)12rLevmr2.\phi_{mL}(r)=\left(\frac{2^{L+2}(2v_{m})^{L+\frac{3}{2}}}{\sqrt{\pi}(2L+1)!!}\right)^{\frac{1}{2}}r^{L}e^{-v_{m}r^{2}}. (13)

Transforming ϕmL(r)\phi_{mL}(r) to the momentum space, one has

ϕmL(p)=(i)L(2vm32π(2L+1)!!)12(pvm)Lep24vm.\phi_{mL}(p)=(-i)^{L}\left(\frac{\sqrt{2}v_{m}^{-\frac{3}{2}}}{\sqrt{\pi}(2L+1)!!}\right)^{\frac{1}{2}}\left(\frac{p}{\sqrt{v_{m}}}\right)^{L}e^{-\frac{p^{2}}{4v_{m}}}. (14)

The size parameters vmv_{m} are set to be a geometric progression form Hiyama:2003cu

vm=1rm2,rm=r1am1(m=1mmax).\begin{split}v_{m}=&\frac{1}{r_{m}^{2}},\\ r_{m}=&r_{1}a^{m-1}\ \ (m=1-m_{max}).\end{split} (15)

There are three parameters {r1,a,mmax}\{r_{1},a,m_{max}\}. These parameters, the eigenenergy EE, and the expansion coefficients {Cm}\{C_{m}\} can be determined with the Rayleigh-Ritz variational principle by solving the generalized eigenvalue problem

m(HmmENmm)Cm=0(m=1mmax),\begin{split}\sum_{m^{\prime}}(H_{mm^{\prime}}-EN_{mm^{\prime}})C_{m^{\prime}}=0\ \ (m=1-m_{max}),\end{split} (16)

where Hmm=ϕmL|H|ϕmLH_{mm^{\prime}}=\langle\phi_{mL}|H|\phi_{m^{\prime}L}\rangle and Nnn=ϕmL|1|ϕmLN_{nn^{\prime}}=\langle\phi_{mL}|1|\phi_{m^{\prime}L}\rangle.

II.3 parameters

The model parameters adopted in this work are listed in Table 2. The parameter set {bb, σ\sigma, m1m_{1}, m~1\tilde{m}_{1}, m2m_{2}, C0C_{0}, α1\alpha_{1}} for the DD-meson spectrum is determined by fitting the masses of the well established states D(1865)0D(1865)^{0}, D(2007)0D^{*}(2007)^{0}, D1(2420)0D_{1}(2420)^{0}, D1(2430)0D_{1}(2430)^{0}, D2(2460)0D_{2}(2460)^{0} and D3(2750)0D_{3}(2750)^{0}. While for the DsD_{s}-meson sector, the parameter set is determined by fitting the masses of the well established states Ds(1969)D_{s}(1969), Ds(2112)D^{*}_{s}(2112), Ds1(2536)D_{s1}(2536) and Ds2(2573)D_{s2}(2573) together with the newly observed state Ds3(2860)D^{*}_{s3}(2860). In the present work, the slope parameter bb and the running coupling constant α1\alpha_{1} for the DD-meson spectrum are set to be the same as those for the DsD_{s}-meson spectrum, considering that they may be independent on a specific quark flavor. It should be pointed out that the zero-point-energy parameter C0C_{0} is taken to be zero for the cc¯c\bar{c}, bb¯b\bar{b}, bc¯b\bar{c} heavy quarkonium systems in the literature  Deng:2016ktl ; Deng:2016stx ; Li:2019tbn ; Li:2019qsg . For these heavy quarkonium systems, the zero point energy can be absorbed into the constituent quark masses because it only affects the heavy quark masses slightly. However, if the zero point energy is absorbed into the meson systems containing light quarks, it can significantly change the light constituent quark masses, which play an important role in the spin-dependent potentials. Thus, to obtain a good description of both the masses and the hyperfine/fine splittings for the meson systems containing light quarks, a zero-point-energy parameter C0C_{0} is usually adopted in the calculations. The slope parameter of the linear potential b=0.18b=0.18 GeV2 determined in the present work is consistent with that of the relativized quark model Godfrey:1985xj , while is slightly larger than b0.120.14b\simeq 0.12-0.14 GeV2 adopted in the non-relativistic quark model Deng:2016ktl ; Deng:2016stx ; Li:2019tbn ; Li:2019qsg .

It should be mentioned that we cannot obtained stable solutions for some states due to the singular behavior of 1/r31/r^{3} in the spin-dependent potentials. To overcome the singular behavior, following the method of our previous works Deng:2016ktl ; Deng:2016stx ; Li:2019tbn ; Li:2019qsg ; Li:2020xzs , we introduce a cutoff distance rcr_{c} in the calculation. Within a small range r(0,rc)r\in(0,r_{c}), we let 1/r3=1/rc31/r^{3}=1/r_{c}^{3}. By introducing the cutoff distance rcr_{c}, we can nonperturbatively include the corrections from these spin-dependent potentials containing 1/r31/r^{3} to both the mass and wave function of a meson state, which are crucial for our predicting the decay properties. It is found that the mass of the 13P01^{3}P_{0} state is more sensitive to the cutoff distance rcr_{c} due to its relatively larger factor 𝐒+𝐋\langle\mathbf{S_{+}\cdot L}\rangle than the other excited meson states. Thus, the cutoff parameters rcr_{c} for the DD- and DsD_{s}-meson spectra are determined by fitting the masses of the D(13P0)D(1^{3}P_{0}) and Ds(13P0)D_{s}(1^{3}P_{0}). Note that when the other parameters are well determined, the masses of these 13P01^{3}P_{0} states can be reliably worked out with the perturbation method li:2021hss without introducing the cutoff distance rcr_{c}, although the wave functions obtain no corrections from the spin-dependent potentials containing 1/r31/r^{3}. We obtain the masses M=2313M=2313 and 24092409 MeV for D(13P0)D(1^{3}P_{0}) and Ds(13P0)D_{s}(1^{3}P_{0}), respectively. These masses calculated with the perturbation method are comparable with the predictions in Refs. Zeng:1994vj ; Lahde:1999ih . By fitting the masses 23132313 and 24092409 MeV of the D(13P0)D(1^{3}P_{0}) and Ds(13P0)D_{s}(1^{3}P_{0}) states obtained with the perturbation method, we determine the cutoff distance parameters to be rc=0.327r_{c}=0.327 and 0.3110.311 fm for the DD- and DsD_{s}-meson spectra, respectively.

Table 2: Potential model parameters.
mcm_{c} (GeV) mu,dm_{u,d} (GeV) m~u,d\tilde{m}_{u,d} (GeV) msm_{s} (GeV) m~s\tilde{m}_{s} (GeV)
DD 1.701.70 0.400.40 0.620.62 ... ...
DsD_{s} 1.701.70 ... ... 0.500.50 0.700.70
α1\alpha_{1} b(GeV2)b~{}(\textrm{GeV}^{2}) σ\sigma (GeV) C0C_{0} (MeV) rcr_{c} (fm)
DD 0.300.30 0.180.18 1.021.02 493.0-493.0 0.3270.327
DsD_{s} 0.300.30 0.180.18 1.111.11 452.1-452.1 0.3110.311
Table 3: Our predicted charmed meson masses (MeV) compared with the data and some other quark model predictions. The mixing angles of the DLDLD_{L}-D^{\prime}_{L} states defined in Eq.(10) in this work are determined to be θ1P=34.0\theta_{1P}=-34.0^{\circ}, θ2P=23.5\theta_{2P}=-23.5^{\circ}, θ1D=40.2\theta_{1D}=-40.2^{\circ}, θ2D=40.2\theta_{2D}=-40.2^{\circ}, θ1F=41.0\theta_{1F}=-41.0^{\circ}.
    State JPJ^{P}~{}~{}~{}~{}     Ours     Exp Zyla:2020zbs     GM Godfrey:2015dva     EFG Ebert:2009ua     ZVR Zeng:1994vj      LJM Li:2010vx     LNR Lahde:1999ih
11S0~{}1^{1}S_{0} 0~{}0^{-} 1865~{}1865 1865~{}1865 1877~{}1877 1871~{}1871 1850~{}1850 1867~{}1867 1874~{}1874
13S1~{}1^{3}S_{1} 1~{}1^{-} 2008~{}2008 2008~{}2008 2041~{}2041 2010~{}2010 2020~{}2020 2010~{}2010 2006~{}2006
21S0~{}2^{1}S_{0} 0~{}0^{-} 2547~{}2547 2564±20~{}2564\pm 20 2581~{}2581 2581~{}2581 2500~{}2500 2555~{}2555 2540~{}2540
23S1~{}2^{3}S_{1} 1~{}1^{-} 2636~{}2636 2627±10~{}2627\pm 10 2643~{}2643 2632~{}2632 2620~{}2620 2636~{}2636 2601~{}2601
31S0~{}3^{1}S_{0} 0~{}0^{-} 3029~{}3029 ~{}... 3068~{}3068 3062~{}3062 2980~{}2980 ~{}... 2904~{}2904
33S1~{}3^{3}S_{1} 1~{}1^{-} 3093~{}3093 ~{}... 3110~{}3110 3096~{}3096 3070~{}3070 ~{}... 2947~{}2947
13P0~{}1^{3}P_{0} 0+~{}0^{+} 2313~{}2313 2349/2300~{}2349/2300 2399~{}2399 2406~{}2406 2270~{}2270 2252~{}2252 2341~{}2341
1P~{}1P 1+~{}1^{+} 2424~{}2424 2412±9~{}2412\pm 9 2456~{}2456 2426~{}2426 2400~{}2400 2402~{}2402 2389~{}2389
1P~{}1P^{\prime} 1+~{}1^{+} 2453~{}2453 2422~{}2422 2467~{}2467 2469~{}2469 2410~{}2410 2417~{}2417 2407~{}2407
13P2~{}1^{3}P_{2} 2+~{}2^{+} 2475~{}2475 2461~{}2461 2502~{}2502 2460~{}2460 2460~{}2460 2466~{}2466 2477~{}2477
23P0~{}2^{3}P_{0} 0+~{}0^{+} 2849~{}2849 ~{}... 2931~{}2931 2919~{}2919 2780~{}2780 2752~{}2752 2758~{}2758
2P~{}2P 1+~{}1^{+} 2900~{}2900 ~{}... 2924~{}2924 2932~{}2932 2890~{}2890 2886~{}2886 2792~{}2792
2P~{}2P^{\prime} 1+~{}1^{+} 2936~{}2936 ~{}... 2961~{}2961 3021~{}3021 2890~{}2890 2926~{}2926 2802~{}2802
23P2~{}2^{3}P_{2} 2+~{}2^{+} 2955~{}2955 ~{}... 2957~{}2957 3012~{}3012 2940~{}2940 2971~{}2971 2860~{}2860
13D1~{}1^{3}D_{1} 1~{}1^{-} 2754~{}2754 ~{}... 2817~{}2817 2788~{}2788 2710~{}2710 2740~{}2740 2750~{}2750
1D~{}1D 2~{}2^{-} 2755~{}2755 ~{}... 2816~{}2816 2806~{}2806 2740~{}2740 2693~{}2693 2689~{}2689
1D~{}1D^{\prime} 2~{}2^{-} 2827~{}2827 2747±6~{}2747\pm 6 2845~{}2845 2850~{}2850 2760~{}2760 2789~{}2789 2727~{}2727
13D3~{}1^{3}D_{3} 3~{}3^{-} 2782~{}2782 2763.1±3.2~{}2763.1\pm 3.2 2833~{}2833 2863~{}2863 2780~{}2780 2719~{}2719 2688~{}2688
23D1~{}2^{3}D_{1} 1~{}1^{-} 3143~{}3143 ~{}... 3231~{}3231 3228~{}3228 3130~{}3130 3168~{}3168 3052~{}3052
2D~{}2D 2~{}2^{-} 3168~{}3168 ~{}... 3212~{}3212 3307~{}3307 3160~{}3160 3145~{}3145 2997~{}2997
2D~{}2D^{\prime} 2~{}2^{-} 3221~{}3221 ~{}... 3248~{}3248 3359~{}3359 3170~{}3170 3215~{}3215 3029~{}3029
23D3~{}2^{3}D_{3} 3~{}3^{-} 3202~{}3202 ~{}... 3226~{}3226 3335~{}3335 3190~{}3190 3170~{}3170 2999~{}2999
13F2~{}1^{3}F_{2} 2+~{}2^{+} 3096~{}3096 ~{}... 3132~{}3132 3090~{}3090 3000~{}3000 ~{}... ~{}...
1F~{}1F 3+~{}3^{+} 3022~{}3022 ~{}... 3108~{}3108 3129~{}3129 3010~{}3010 ~{}... ~{}...
1F~{}1F^{\prime} 3+~{}3^{+} 3129~{}3129 ~{}... 3143~{}3143 3145~{}3145 3030~{}3030 ~{}... ~{}...
13F4~{}1^{3}F_{4} 4+~{}4^{+} 3034~{}3034 ~{}... 3113~{}3113 3187~{}3187 3030~{}3030 ~{}... ~{}...
Table 4: Our predicted charmed-strange meson masses (MeV) compared with the data and some other quark model predictions. The mixing angles of the DsLDsLD_{sL}-D^{\prime}_{sL} states defined in Eq.(10) in this work are determined to be θ1P=36.8\theta_{1P}=-36.8^{\circ}, θ2P=21.0\theta_{2P}=-21.0^{\circ}, θ1D=40.7\theta_{1D}=-40.7^{\circ}, θ2D=41.3\theta_{2D}=-41.3^{\circ}, θ1F=40.7\theta_{1F}=-40.7^{\circ}.
    State JPJ^{P}~{}~{}~{}~{}     Ours     Exp Zyla:2020zbs     GM Godfrey:2015dva     EFG Ebert:2009ua     ZVR Zeng:1994vj      LJM Li:2010vx     LNR Lahde:1999ih
11S0~{}1^{1}S_{0} 0~{}0^{-} 1969~{}1969 1969~{}1969 1979~{}1979 1969~{}1969 1940~{}1940 1969~{}1969 1975~{}1975
13S1~{}1^{3}S_{1} 1~{}1^{-} 2112~{}2112 2112~{}2112 2129~{}2129 2111~{}2111 2130~{}2130 2107~{}2107 2108~{}2108
21S0~{}2^{1}S_{0} 0~{}0^{-} 2649~{}2649 ~{}... 2673~{}2673 2688~{}2688 2610~{}2610 2640~{}2640 2659~{}2659
23S1~{}2^{3}S_{1} 1~{}1^{-} 2737~{}2737 2714±5~{}2714\pm 5 2732~{}2732 2731~{}2731 2730~{}2730 2714~{}2714 2722~{}2722
31S0~{}3^{1}S_{0} 0~{}0^{-} 3126~{}3126 ~{}... 3154~{}3154 3219~{}3219 3090~{}3090 ~{}... 3044~{}3044
33S1~{}3^{3}S_{1} 1~{}1^{-} 3191~{}3191 ~{}... 3193~{}3193 3242~{}3242 3190~{}3190 ~{}... 3087~{}3087
13P0~{}1^{3}P_{0} 0+~{}0^{+} 2409~{}2409 2317~{}2317 2484~{}2484 2509~{}2509 2380~{}2380 2344~{}2344 2455~{}2455
1P~{}1P 1+~{}1^{+} 2528~{}2528 2459~{}2459 2549~{}2549 2536~{}2536 2510~{}2510 2488~{}2488 2502~{}2502
1P~{}1P^{\prime} 1+~{}1^{+} 2545~{}2545 2535~{}2535 2556~{}2556 2574~{}2574 2520~{}2520 2510~{}2510 2522~{}2522
13P2~{}1^{3}P_{2} 2+~{}2^{+} 2575~{}2575 2569~{}2569 2592~{}2592 2571~{}2571 2580~{}2580 2559~{}2559 2586~{}2586
23P0~{}2^{3}P_{0} 0+~{}0^{+} 2940~{}2940 ~{}... 3005~{}3005 3054~{}3054 2900~{}2900 2830~{}2830 2901~{}2901
2P~{}2P 1+~{}1^{+} 3002~{}3002 ~{}... 3018~{}3018 3067~{}3067 3000~{}3000 2958~{}2958 2928~{}2928
2P~{}2P^{\prime} 1+~{}1^{+} 3026~{}3026 ~{}... 3038~{}3038 3154~{}3154 3010~{}3010 2995~{}2995 2942~{}2942
23P2~{}2^{3}P_{2} 2+~{}2^{+} 3053~{}3053 ~{}... 3048~{}3048 3142~{}3142 3060~{}3060 3040~{}3040 2988~{}2988
13D1~{}1^{3}D_{1} 1~{}1^{-} 2843~{}2843 2859±27~{}2859\pm 27 2899~{}2899 2913~{}2913 2820~{}2820 2804~{}2804 2845~{}2845
1D~{}1D 2~{}2^{-} 2857~{}2857 ~{}... 2900~{}2900 2931~{}2931 2860~{}2860 2788~{}2788 2838~{}2838
1D~{}1D^{\prime} 2~{}2^{-} 2911~{}2911 ~{}... 2926~{}2926 2961~{}2961 2880~{}2880 2849~{}2849 2856~{}2856
13D3~{}1^{3}D_{3} 3~{}3^{-} 2882~{}2882 2860±7~{}2860\pm 7 2917~{}2917 2971~{}2971 2900~{}2900 2811~{}2811 2857~{}2857
23D1~{}2^{3}D_{1} 1~{}1^{-} 3233~{}3233 ~{}... 3306~{}3306 3383~{}3383 3250~{}3250 3217~{}3217 3172~{}3172
2D~{}2D 2~{}2^{-} 3267~{}3267 ~{}... 3298~{}3298 3403~{}3403 3280~{}3280 3217~{}3217 3144~{}3144
2D~{}2D^{\prime} 2~{}2^{-} 3306~{}3306 ~{}... 3323~{}3323 3456~{}3456 3290~{}3290 3260~{}3260 3167~{}3167
23D3~{}2^{3}D_{3} 3~{}3^{-} 3299~{}3299 ~{}... 3311~{}3311 3469~{}3469 3310~{}3310 3240~{}3240 3157~{}3157
13F2~{}1^{3}F_{2} 2+~{}2^{+} 3176~{}3176 ~{}... 3208~{}3208 3230~{}3230 3120~{}3120 ~{}... ~{}...
1F~{}1F 3+~{}3^{+} 3123~{}3123 ~{}... 3186~{}3186 3254~{}3254 3130~{}3130 ~{}... ~{}...
1F~{}1F^{\prime} 3+~{}3^{+} 3205~{}3205 ~{}... 3218~{}3218 3266~{}3266 3150~{}3150 ~{}... ~{}...
13F4~{}1^{3}F_{4} 4+~{}4^{+} 3134~{}3134 ~{}... 3190~{}3190 3300~{}3300 3160~{}3160 ~{}... ~{}...
Figure 1: Predicted charmed meson mass spectrum compared with the observations.
Figure 2: Predicted charmed-strange meson mass spectrum compared with the observations.

II.4 results

With the determined model parameters listed in Table 2, by solving the radial Schrödinger equation with the Gaussian expansion method Hiyama:2003cu we obtain the masses of the DD and DsD_{s} meson states, which are listed in Table 3 and Table 4, respectively. For comparison, some other model predictions in Refs. Zyla:2020zbs ; Godfrey:2015dva ; Ebert:2009ua ; Zeng:1994vj ; Li:2010vx ; Lahde:1999ih and the data from RPP Zyla:2020zbs are listed in the same table as well. Furthermore, for clarity, the spectra are also shown in Figs. 1 and 2. It is shown that the masses for the well-established states together with the newly observed states can be reasonably described within the semi-relativistic quark model. Our results are also in good agreement with other quark model predictions, although there are some model dependencies in the predicted masses for the higher 2D2D- and 1F1F-wave states.

To compare the meson wave functions obtained in the present work with those obtained with the relativized quark model Godfrey:2015dva , we also extract the effective harmonic oscillator parameters βeff\beta_{eff} of the harmonic oscillator wave functions by equating the rms radius of the harmonic oscillator wave function for the specified (n,l)(n,l) quantum numbers to the rms radius of the wave functions calculated from our potential model. Our obtained βeff\beta_{eff} parameters together those from the relativized quark model Godfrey:2015dva are given in Table 5. It is found that the βeff\beta_{eff} parameters of the harmonic oscillator wave functions estimated in this work are consistent with those determined with the relativized quark model Godfrey:2015dva .

Table 5: Predicted effective harmonic oscillator parameters βeff\beta_{eff} (GeV) of the harmonic oscillator wave functions for the charmed and charmed-strange meson states. For comparison, the values predicted from the relativized quark model are also listed.
D¯\underline{~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}D~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}} Ds¯\underline{~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}D_{s}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}}
  State Ours GM Godfrey:2015dva Ours GM Godfrey:2015dva
 11S01^{1}S_{0}~{}  0.597  0.601  0.616  0.651
 13S11^{3}S_{1}~{}  0.499  0.516  0.514  0.562
 21S02^{1}S_{0}~{}  0.451  0.450  0.461  0.475
 23S12^{3}S_{1}~{}  0.424  0.434  0.432  0.458
 31S03^{1}S_{0}~{}  0.403  0.407  0.409  0.424
 33S13^{3}S_{1}~{}  0.390  0.399  0.395  0.415
 13P01^{3}P_{0}~{}  0.538  0.516  0.549  0.542
 1P1P~{}  0.459,0.460  0.475, 0.482  0.468,0.469  0.498, 0.505
 1P1P^{\prime}~{}  0.459,0.460  0.475, 0.482  0.468,0.469  0.498, 0.505
 13P21^{3}P_{2}~{}  0.421  0.437  0.431  0.464
 23P02^{3}P_{0}~{}  0.427  0.431  0.436  0.444
 2P2P~{}  0.405,0.414  0.417, 0.419  0.413,0.420  0.433, 0.434
 2P2P^{\prime}~{}  0.405,0.414  0.417, 0.419  0.413,0.420  0.433, 0.434
 23P22^{3}P_{2}~{}  0.391  0.402  0.398  0.420
 13D11^{3}D_{1}~{}  0.473  0.456  0.478  0.469
 1D1D~{}  0.416,0.420  0.428, 0.433  0.424,0.428  0.444, 0.448
 1D1D^{\prime}~{}  0.416,0.420  0.428, 0.433  0.424,0.428  0.444, 0.448
 13D31^{3}D_{3}~{}  0.397  0.407  0.405  0.426
 23D12^{3}D_{1}~{}  0.419  0.410  0.425  0.419
 2D2D~{}  0.390,0.391  0.396, 0.399  0.396,0.398  0.408, 0.410
 2D2D^{\prime}~{}  0.390,0.391  0.396, 0.399  0.396,0.398  0.408, 0.410
 23D32^{3}D_{3}~{}  0.374  0.385  0.381  0.400
 13F21^{3}F_{2}~{}  0.422  0.423  0.426  0.432
 1F1F~{}  0.396,0.398  0.404, 0.407  0.402,0.404  0.417, 0.419
 1F1F^{\prime}~{}  0.396,0.398  0.404, 0.407  0.402,0.404  0.417, 0.419
 13F41^{3}F_{4}~{}  0.388  0.390  0.394  0.405

III STRONG DECAY

III.1 model

In this work, the Okubo-Zweig-Iizuka (OZI)-allowed two-body strong decays of the excited DD and DsD_{s} meson states are calculated within a chiral quark model. The details of this model can be found in Refs. Zhong:2008kd ; Zhong:2007gp ; Zhong:2009sk ; Xiao:2014ura . In the chiral quark model Manohar:1983md , the low-energy quark-pseudo-scalar-meson interactions in the SU(3) flavor basis are described by the effective Lagrangian Li:1994cy ; Li:1997gda ; Zhao:2002id

Pqq\displaystyle{\cal L}_{Pqq} =\displaystyle= j1fmψ¯jγμjγ5jψjμϕm,.\displaystyle\sum_{j}\frac{1}{f_{m}}\bar{\psi}_{j}\gamma^{j}_{\mu}\gamma^{j}_{5}\psi_{j}\partial^{\mu}\phi_{m},. (17)

While the quark-vector-meson interactions in the SU(3) flavor basis are described by the effective Lagrangian Zhao:1998fn ; Zhao:2000tb ; Zhao:2001jw

Vqq\displaystyle{\cal L}_{Vqq} =\displaystyle= jψ¯j(aγμj+ib2mjσμνqν)Vμψj.\displaystyle\sum_{j}\bar{\psi}_{j}(a\gamma^{j}_{\mu}+\frac{ib}{2m_{j}}\sigma_{\mu\nu}q^{\nu})V^{\mu}\psi_{j}. (18)

In the above effective Lagrangians, ψj\psi_{j} represents the jjth quark field in the hadron, ϕm\phi_{m} is the pseudoscalar meson field, fmf_{m} is the pseudoscalar meson decay constant, and VμV^{\mu} represents the vector meson field. Parameters aa and bb denote the vector and tensor coupling strength, respectively.

To match the nonrelativistic wave functions of the heavy-light mesons, we should adopt the nonrelativistic form of the Lagrangians in the calculations. The nonrelativistic form of Eq. (17) is given by Li:1994cy ; Li:1997gda ; Zhao:2002id

Hm=j(A𝝈jq+ωm2μq𝝈jpj)Ijφm,\displaystyle H_{m}=\sum_{j}\left(A\mbox{\boldmath$\sigma$\unboldmath}_{j}\cdot\textbf{q}+\frac{\omega_{m}}{2\mu_{q}}\mbox{\boldmath$\sigma$\unboldmath}_{j}\cdot\textbf{p}_{j}\right)I_{j}\varphi_{m}, (19)

in the center-of-mass system of the initial hadron, where we have defined A(1+ωmEf+Mf)A\equiv-(1+\frac{\omega_{m}}{E_{f}+M_{f}}). On the other hand, from Eq. (18), the nonrelativistic transition operators for the emission of a transversely and longitudinally polarized vector meson are derived by Zhao:1998fn ; Zhao:2000tb ; Zhao:2001jw

HmT=j[ib2mq𝝈j(𝐪×ϵ)+a2μq𝐩jϵ]Ijφm,\displaystyle H_{m}^{T}=\sum_{j}\left[i\frac{b^{\prime}}{2m_{q}}\mbox{\boldmath$\sigma$\unboldmath}_{j}\cdot(\mathbf{q}\times\mathbf{\epsilon})+\frac{a}{2\mu_{q}}\mathbf{p}_{j}\cdot\mathbf{\epsilon}\right]I_{j}\varphi_{m}, (20)

and

HmL=jaMv|𝐪|Ijφm.\displaystyle H_{m}^{L}=\sum_{j}\frac{aM_{v}}{|\mathbf{q}|}I_{j}\varphi_{m}\ . (21)

In the above equations, q is the three-vector momentum of the final state pseudoscalar/vector meson; ωm\omega_{m} is the energy of final state pseudoscalar meson; pj\textbf{p}_{j} is the internal momentum operator of the jjth quark in the heavy-light meson rest frame; 𝝈j\mbox{\boldmath$\sigma$\unboldmath}_{j} is the spin operator for the jjth quark of the heavy-light system; and μq\mu_{q} is a reduced mass given by 1/μq=1/mj+1/mj1/\mu_{q}=1/m_{j}+1/m^{\prime}_{j} with mjm_{j} and mjm^{\prime}_{j} for the masses of the jjth quark in the initial and final mesons, respectively. EfE_{f} and MfM_{f} represent the energy and mass of the final state heavy hadron, MvM_{v} is the mass of the emitted vector meson. The plane wave part of the emitted light meson is φm=eiqrj\varphi_{m}=e^{-i\textbf{q}\cdot\textbf{r}_{j}}, and IjI_{j} is the flavor operator defined for the transitions in the SU(3) flavor space Li:1997gda ; Zhao:2002id ; Zhao:1998fn ; Zhao:2000tb ; Zhao:2001jw . The parameter bb^{\prime} in Eq. (20) is defined as bbab^{\prime}\equiv b-a. The chiral quark model has been successfully applied to describe the strong decays of the heavy-light mesons and baryons li:2021hss ; Xiao:2020oif ; Wang:2019uaj ; Wang:2018fjm ; Xiao:2020gjo ; Wang:2020gkn ; Xiao:2018pwe ; Xiao:2014ura ; Zhong:2010vq ; Zhong:2008kd ; Zhong:2009sk ; Liu:2012sj ; Zhong:2007gp ; Xiao:2013xi ; Nagahiro:2016nsx ; Yao:2018jmc ; Wang:2017kfr ; Xiao:2017udy ; Wang:2017hej ; Liu:2019wdr . It should be mentioned that the nonrelativistic form of quark-pseudoscalar-meson interactions expressed in Eq. (19) is similar to that of the pseudoscalar emission model DiPierro:2001dwf ; Godfrey:1985xj ; Koniuk:1979vy ; Capstick:2000qj ; Goity:1998jr , except that the factors A(1+ωmEf+Mf)A\equiv-(1+\frac{\omega_{m}}{E_{f}+M_{f}}) and hωm2μqh\equiv\frac{\omega_{m}}{2\mu_{q}} in this work have an explicit dependence on the energies of final hadrons.

For a light pseudoscalar meson emission in heavy-light meson strong decays, the partial decay width can be calculated with

ΓP=(δfm)2(Ef+Mf)𝒒4πMi(2Ji+1)Jiz,JfzJiz,Jfz2,\Gamma_{P}=\left(\frac{\delta}{f_{m}}\right)^{2}\frac{(E_{f}+M_{f})\mid\bm{q}\mid}{4\pi M_{i}(2J_{i}+1)}\sum_{J_{iz},J_{fz}}\mid\mathcal{M}_{J_{iz},J_{fz}}\mid^{2}, (22)

where Jiz,Jfz\mathcal{M}_{J_{iz},J_{fz}} is the transition amplitude, and JizJ_{iz} and JfzJ_{fz} stand for the third components of the total angular momenta of the initial and final heavy-light mesons, respectively. δ\delta as a global parameter accounts for the strength of the quark-meson couplings. Here, we take the same value as that determined in Refs.Xiao:2014ura ; Zhong:2007gp ; Zhong:2008kd , i.e., δ=0.557\delta=0.557. While, for a light vector meson emission in heavy-light meson strong decays, the partial decay width can be calculated with

ΓV=(Ef+Mf)𝒒4πMi(2Ji+1)Jiz,JfzJiz,Jfz2.\Gamma_{V}=\frac{(E_{f}+M_{f})\mid\bm{q}\mid}{4\pi M_{i}(2J_{i}+1)}\sum_{J_{iz},J_{fz}}\mid\mathcal{M}_{J_{iz},J_{fz}}\mid^{2}. (23)

To be consistent with the parameters of the mass calculations within the potential model, the masses of the component quarks are adopted as mc=1.7m_{c}=1.7 GeV, mu/d=0.4m_{u/d}=0.4 GeV and ms=0.50m_{s}=0.50 GeV. The decay constants for π\pi, KK and η\eta mesons are taken as fπ=132f_{\pi}=132 MeV, fK=fη=160f_{K}=f_{\eta}=160 MeV, respectively. For the quark-vector-meson coupling strength which still suffers relatively large uncertainties, we adopt the values extracted from vector meson photoproduction, i.e. a3a\simeq-3 and b5b^{\prime}\simeq 5 Zhao:1998fn ; Zhao:2000tb ; Zhao:2001jw . The masses of the mesons used in the calculations are adopted from RPP Zyla:2020zbs if there are observations, otherwise, the meson masses are adopted our predictions.

IV Discussion

Table 6: Partial decay widths (MeV) and their branching fractions for the SS-wave charmed mesons.
State   Channel   Γi\Gamma_{i}   Br (%)   Γexp\Gamma_{exp} Zyla:2020zbs
D(13S1)D(1^{3}S_{1}) D0π0D^{0}\pi^{0} 48.048.0  keV 100100 <2.1<2.1  MeV
as D(2007)0D^{*}(2007)^{0} Total 48.0\mathbf{48.0}  keV 𝟏𝟎𝟎\mathbf{100} <2.1\mathbf{<2.1}  MeV
D(13S1)D(1^{3}S_{1}) D0π+D^{0}\pi^{+} 68.768.7  keV 69.269.2 56.5±1.256.5\pm 1.2  keV
as D(2010)+D^{*}(2010)^{+} D+π0D^{+}\pi^{0} 30.630.6  keV 30.830.8 25.6±0.625.6\pm 0.6  keV
Total 99.3\mathbf{99.3}  keV 𝟏𝟎𝟎\mathbf{100} 83.4±1.8\mathbf{83.4\pm 1.8}  keV
D(21S0)D(2^{1}S_{0}) DπD^{*}\pi 39.239.2 43.943.9 ...
as D0(2550)D_{0}(2550) D0(2300)πD_{0}^{*}(2300)\pi 50.050.0 56.156.1 ...
Total 89.2\mathbf{89.2} 𝟏𝟎𝟎\mathbf{100} 𝟏𝟑𝟓±𝟏𝟕\mathbf{135\pm 17}
D(23S1)D(2^{3}S_{1}) DπD\pi 19.319.3 47.247.2 ...
as D1(2600)D_{1}^{*}(2600) DsKD_{s}K 0.50.5 1.21.2 ...
DηD\eta 0.20.2 0.50.5 ...
DπD^{*}\pi 0.60.6 1.51.5 ...
DsKD_{s}^{*}K 0.10.1 0.20.2 ...
DηD^{*}\eta 0.50.5 1.21.2 ...
D2(2460)πD_{2}^{*}(2460)\pi 0.030.03 0.070.07 ...
D1(2430)πD_{1}(2430)\pi 16.816.8 41.141.1 ...
D1(2420)πD_{1}(2420)\pi 2.92.9 7.17.1 ...
Total 40.9\mathbf{40.9} 𝟏𝟎𝟎\mathbf{100} 𝟏𝟑𝟗±𝟑𝟏\mathbf{139\pm 31}
D(31S0)D(3^{1}S_{0}) DπD^{*}\pi 84.284.2 20.520.5 ...
30293029 DsKD_{s}^{*}K 20.020.0 4.94.9 ...
DηD^{*}\eta 9.59.5 2.32.3 ...
DηD^{*}\eta^{\prime} 0.40.4 0.10.1 ....
D(23S1)(2627)πD(2^{3}S_{1})(2627)\pi 22.522.5 5.55.5 ...
D0(2300)πD_{0}^{*}(2300)\pi 120.1120.1 29.229.2 ...
Ds(13P0)(2409)KD_{s}(1^{3}P_{0})(2409)K 19.519.5 4.74.7 ...
D0(2300)ηD_{0}^{*}(2300)\eta 12.312.3 3.03.0 ...
D2(2460)πD_{2}^{*}(2460)\pi 97.597.5 23.723.7 ...
D2(2460)ηD_{2}^{*}(2460)\eta 0.030.03 7×1037\times 10^{-3} ...
DρD\rho 1.41.4 0.30.3 ...
DωD\omega 0.40.4 0.10.1 ...
DsKD_{s}K^{*} 0.30.3 0.070.07 ...
DρD^{*}\rho 17.617.6 4.34.3 ...
DωD^{*}\omega 5.65.6 1.41.4 ...
DsKD_{s}^{*}K^{*} 0.40.4 0.10.1 ...
Total 411.7\mathbf{411.7} 𝟏𝟎𝟎\mathbf{100} ...
D(33S1)D(3^{3}S_{1}) DπD\pi 12.712.7 6.16.1 ...
30933093 DsKD_{s}K 1.81.8 0.90.9 ...
DηD\eta 0.40.4 0.20.2 ...
DηD\eta^{\prime} 5×1035\times 10^{-3} 2×1032\times 10^{-3} ...
D0(2550)πD_{0}(2550)\pi 3.33.3 1.61.6 ...
DπD^{*}\pi 6.76.7 3.23.2 ...
DsKD_{s}^{*}K 3.63.6 1.71.7 ...
DηD^{*}\eta 1.91.9 0.90.9 ...
DηD^{*}\eta^{\prime} 0.50.5 0.20.2 ...
D(23S1)(2627)πD(2^{3}S_{1})(2627)\pi 1.71.7 0.80.8 ...
D1(2430)πD_{1}(2430)\pi 64.264.2 30.730.7 ...
Ds(1P1)(2528)KD_{s}(1P_{1})(2528)K 6.56.5 3.13.1 ...
D1(2430)ηD_{1}(2430)\eta 4.04.0 1.91.9 ...
D(2P1)(2900)πD(2P_{1})(2900)\pi 23.223.2 11.111.1 ...
D1(2420)πD_{1}(2420)\pi 9.49.4 4.54.5 ...
Ds1(2535)KD_{s1}(2535)K 0.40.4 0.20.2 ...
D1(2420)ηD_{1}(2420)\eta 0.60.6 0.30.3 ...
D(2P1)(2936)πD(2P^{\prime}_{1})(2936)\pi 3.43.4 1.61.6 ...
D2(2460)πD_{2}^{*}(2460)\pi 0.070.07 0.030.03 ...
Ds2(2573)KD_{s2}^{*}(2573)K 0.010.01 5×1035\times 10^{-3} ...
D2(2460)ηD_{2}^{*}(2460)\eta 0.10.1 0.050.05 ...
DρD\rho 41.341.3 19.719.7 ...
DωD\omega 12.912.9 6.26.2 ...
DsKD_{s}K^{*} 8.18.1 3.93.9 ...
DρD^{*}\rho 2.12.1 1.01.0 ...
DωD^{*}\omega 0.60.6 0.30.3 ...
DsKD_{s}^{*}K^{*} 0.010.01 5×1035\times 10^{-3} ...
Total 209.4\mathbf{209.4} 𝟏𝟎𝟎\mathbf{100} ...
Table 7: Partial decay widths and their branching fractions for the SS-wave charmed-strange mesons.
State   Channel   Γi\Gamma_{i} (MeV)   Br (%)   Γexp\Gamma_{exp} (MeV) Zyla:2020zbs
Ds(21S0)D_{s}(2^{1}S_{0}) DKD^{*}K 37.137.1 100100 ...
26492649 Total 37.1\mathbf{37.1} 𝟏𝟎𝟎\mathbf{100} ...
Ds(23S1)D_{s}(2^{3}S_{1}) DKDK 4.84.8 41.041.0 ...
as Ds1(2700)D_{s_{1}}^{*}(2700) DsηD_{s}\eta 0.10.1 0.90.9 ...
DKD^{*}K 6.46.4 54.754.7 ...
DsηD_{s}^{*}\eta 0.40.4 3.43.4 ...
Total 11.7\mathbf{11.7} 𝟏𝟎𝟎\mathbf{100} 𝟏𝟐𝟎±𝟏𝟏\mathbf{120\pm 11}
Ds(31S0)D_{s}(3^{1}S_{0}) DKD^{*}K 1.51.5 0.90.9 ...
31263126 DsηD_{s}^{*}\eta 12.212.2 7.27.2 ...
DsηD_{s}^{*}\eta^{\prime} 0.40.4 0.20.2 ...
D(23S1)(2627)KD(2^{3}S_{1})(2627)K 1.51.5 0.90.9 ...
D0(2300)KD_{0}^{*}(2300)K 93.593.5 55.555.5 ...
Ds(13P0)(2409)ηD_{s}(1^{3}P_{0})(2409)\eta 15.215.2 9.09.0 ...
D2(2460)KD_{2}^{*}(2460)K 27.127.1 16.116.1 ...
DKDK^{*} 0.60.6 0.40.4 ...
DsϕD_{s}\phi 0.010.01 0.0060.006 ...
DKD^{*}K^{*} 17.917.9 10.610.6 ...
Total 169.9\mathbf{169.9} 𝟏𝟎𝟎\mathbf{100} ...
Ds(33S1)D_{s}(3^{3}S_{1}) DKDK 6.36.3 5.15.1 ...
31913191 DsηD_{s}\eta 0.50.5 0.40.4 ...
DsηD_{s}\eta^{\prime} 9×1059\times 10^{-5} 4×1054\times 10^{-5} ...
DKD^{*}K 10.010.0 8.18.1 ...
DsηD_{s}^{*}\eta 2.62.6 2.12.1 ...
DsηD_{s}^{*}\eta^{\prime} 0.50.5 0.40.4 ...
D0(2550)KD_{0}(2550)K 0.20.2 0.20.2 ...
D(23S1)(2627)KD(2^{3}S_{1})(2627)K 7.07.0 5.75.7 ...
D1(2430)KD_{1}(2430)K 47.947.9 39.039.0 ...
Ds(1P1)(2528)ηD_{s}(1P_{1})(2528)\eta 5.25.2 4.24.2 ...
D1(2420)KD_{1}(2420)K 3.63.6 2.92.9 ...
Ds1(2535)ηD_{s1}(2535)\eta 0.40.4 0.30.3 ...
D2(2460)KD_{2}^{*}(2460)K 2.32.3 1.91.9 ...
Ds2(2573)ηD_{s2}^{*}(2573)\eta 0.050.05 0.040.04 ...
DKDK^{*} 31.531.5 25.625.6 ...
DsϕD_{s}\phi 4.14.1 3.33.3 ...
DKD^{*}K^{*} 0.70.7 0.60.6 ...
DsϕD_{s}^{*}\phi 9×1039\times 10^{-3} 7×1037\times 10^{-3} ...
Total 122.9\mathbf{122.9} 𝟏𝟎𝟎\mathbf{100} ...

IV.1 1S1S-wave vector states

In the DD and DsD_{s} families, the ground vector (13S11^{3}S_{1}) charmed and charmed-strange states, DD^{*} and DsD_{s}^{*}, are well established. The strong decay transition DsDKD_{s}^{*}\to DK is kinematic forbidden. The charged state D(2010)+D^{*}(2010)^{+} can decay into both the D+π0D^{+}\pi^{0} and D0π+D^{0}\pi^{+} final states. While the decays of the neutral D(2007)0D^{*}(2007)^{0} are governed by the D0π0D^{0}\pi^{0} channel, however, the D(2007)0D+πD^{*}(2007)^{0}\to D^{+}\pi^{-} is kinematic forbidden. With the numerical wavefunctions determined from the potential model, the strong decays of D(2007)0D^{*}(2007)^{0} and D(2010)+D^{*}(2010)^{+} are calculated within the chiral quark model. As shown in Table 6, our predicted decay partial width of Γ[D(2007)0D0π0]48\Gamma[D^{*}(2007)^{0}\to D^{0}\pi^{0}]\simeq 48 keV is consistent with the observation. While for D(2010)+D^{*}(2010)^{+}, the predicted width of Γ99\Gamma\simeq 99 keV and the partial width ratio

R=Γ(D0π+)Γ(D+π0)2.25R=\frac{\Gamma(D^{0}\pi^{+})}{\Gamma(D^{+}\pi^{0})}\simeq 2.25 (24)

are in remarkable agreement with the experimental data Γexp=83.4±1.8\Gamma_{exp}=83.4\pm 1.8 keV and Rexp=2.21R_{exp}=2.21, respectively Zyla:2020zbs .

IV.2 2S2S-wave states

IV.2.1 21S02^{1}S_{0}

Figure 3: The determination of the physical mass for the Ds(21S0)D_{s}(2^{1}S_{0}) state. The mass shift function ΔM(M)\Delta M(M) and liner function MMAM-M_{A} are shown by the thick and thin lines, respectively. MAM_{A} stands for the bare mass of Ds(21S0)D_{s}(2^{1}S_{0}), and the physical mass MphyM_{phy} of the dressed Ds(21S0)D_{s}(2^{1}S_{0}) state as a solution of the coupled-channel equation Eq.(81) is located at the intersection point of two solid lines.

In the DD-meson family, our predicted mass for the D(21S0)D(2^{1}S_{0}) state is M=2547M=2547 MeV, which is comparable with the predictions in the literature Zeng:1994vj ; Lahde:1999ih ; Ebert:2009ua ; Liu:2013maa ; Liu:2015lka ; Liu:2015uya ; Liu:2016efm ; Badalian:2011tb ; Allosh:2021biq ; Patel:2021aas ; Chen:2018nnr ; Godfrey:2015dva ; Song:2015fha ; Gandhi:2019lta ; Sun:2013qca ; Ferretti:2015rsa ; Li:2010vx ; Lu:2014zua ; Kher:2017wsq . The D(21S0)D(2^{1}S_{0}) may dominantly decay into the DπD^{*}\pi and D0(2300)πD_{0}(2300)\pi channels with a width of Γ89\Gamma\simeq 89 MeV. The partial width ratio between DπD^{*}\pi and D0(2300)πD_{0}(2300)\pi is predicted to be

R=Γ[Dπ]Γ[D0(2300)π]0.78.R=\frac{\Gamma[D^{*}\pi]}{\Gamma[D_{0}(2300)\pi]}\simeq 0.78. (25)

Our predicted width of D(21S0)D(2^{1}S_{0}) with the chiral quark model is close to the predictions within the P03{}^{3}P_{0} models Chen:2011rr ; Yu:2014dda ; Song:2015fha ; Godfrey:2015dva ; Lu:2014zua , however, in these works the predicted decay rate into the D0(2300)πD_{0}(2300)\pi channel is tiny.

The D0(2550)D_{0}(2550) listed in RPP Zyla:2020zbs may be classified as the radially excited state 21S02^{1}S_{0} in the DD-meson family. Its average measured mass and width are Mexp=2549±19M_{exp}=2549\pm 19 MeV and Γexp=165±24\Gamma_{exp}=165\pm 24 MeV, respectively Zyla:2020zbs . This state was first observed by the BaBar collaboration in the D+πD^{*+}\pi^{-} channel in 2010 BaBar:2010zpy , and was confirmed by the LHCb collaboration with significance by using pppp collision data LHCb:2013jjb ; Aaij:2019sqk . As the assignment of D(21S0)D(2^{1}S_{0}), the mass of D0(2550)D_{0}(2550) is consistent with various quark model predictions Kher:2017wsq ; Badalian:2011tb ; Liu:2015uya ; Song:2015fha ; Godfrey:2015dva ; Lu:2014zua . In Refs. Zhong:2008kd ; Zhong:2010vq ; Xiao:2014ura we have studied the strong decays of the D0(2550)D_{0}(2550) as the 21S02^{1}S_{0} state by using the SHO wave function, the obtained width, Γ2070\Gamma\simeq 20-70 MeV, is too narrow to be comparable with the data. In the present work, with the genuine wave function determined by the potential model our predicted decay width of D(21S0)D(2^{1}S_{0}),

Γ89MeV,\Gamma\simeq 89\ \ \ \mathrm{MeV}, (26)

is close to the data Γexp=130±25\Gamma_{exp}=130\pm 25 MeV measured by BaBar BaBar:2010zpy . The D0(2550)D_{0}(2550) is also explained as the D(21S0)D(2^{1}S_{0}) state based on the strong decay analyses in the literature Yu:2014dda ; Chen:2011rr ; Gupta:2018zlg ; Wang:2010ydc ; Wang:2013tka ; Song:2015fha ; Godfrey:2015dva ; Lu:2014zua . According to our chiral quark model predictions, the D0(2550)D_{0}(2550) has large decay rate (56%\sim 56\%) into the D0(2300)πD_{0}(2300)\pi channel. Thus, to better understand the nature of the D0(2550)D_{0}(2550) state and to test various model predictions, further observations of the missing D0(2300)πD_{0}(2300)\pi channel are needed in future experiments.

In the charmed-strange sector, our predicted mass for the Ds(21S0)D_{s}(2^{1}S_{0}) state is M=2649M=2649 MeV, which is comparable with the predictions in the literature Zeng:1994vj ; Lahde:1999ih ; Ebert:2009ua ; Liu:2013maa ; Liu:2015lka ; Liu:2015uya ; Liu:2016efm ; Badalian:2011tb ; Allosh:2021biq ; Patel:2021aas ; Chen:2018nnr ; Godfrey:2015dva ; Song:2015nia ; Ferretti:2015rsa ; Segovia:2015dia ; Li:2010vx ; Kher:2017wsq . The DKD^{*}K decay channel is the only OZI-allowed two body strong channel for Ds(21S0)D_{s}(2^{1}S_{0}). With the Ds(21S0)D_{s}(2^{1}S_{0}) wave function obtained from our potential model calculations, its width is predicted to be

Γ37MeV.\Gamma\simeq 37\ \ \ \mathrm{MeV}. (27)

The Ds(21S0)D_{s}(2^{1}S_{0}) state is also predicted to be a narrow state with a width of 10s MeV in the literature  Godfrey:2015dva ; Song:2015nia ; Colangelo:2012xi ; Wang:2012wk ; Zhong:2008kd ; Xiao:2014ura .

Recently, the LHCb collaboration observed a new excited Ds+D_{s}^{+} state, Ds0(2590)+D_{s0}(2590)^{+}, in the D+K+πD^{+}K^{+}\pi^{-} invariant mass spectrum of the B0D+D+K+πB^{0}\to D^{+}D^{+}K^{+}\pi^{-} decay LHCb:2020gnv . Its mass, width and the spin parity numbers are measured to be Mexp=2591±6±7M_{exp}=2591\pm 6\pm 7 MeV, Γexp=89±16±12\Gamma_{exp}=89\pm 16\pm 12 MeV and JP=0J^{P}=0^{-}, respectively. The Ds0(2590)+D_{s0}(2590)^{+} is suggested to be a candidate of the missing Ds(21S0)D_{s}(2^{1}S_{0}) state LHCb:2020gnv . However, considering Ds0(2590)+D_{s0}(2590)^{+} as the Ds(21S0)D_{s}(2^{1}S_{0}) state, it is found the observed mass is about 6060 MeV lower than most potential model predictions.

The coupling of the Ds(21S0)D_{s}(2^{1}S_{0}) cs¯c\bar{s} core to the two hadron final states was considered within the P03{}^{3}P_{0} model in the literature Xie:2021dwe ; Ortega:2021fem . It is found that when taking into account the DKD^{*}K loop correction to the bare cs¯c\bar{s} state, the physical mass will be close to that of Ds0(2590)+D_{s0}(2590)^{+}. In this work, we also estimate the mass shift of Ds(21S0)D_{s}(2^{1}S_{0}) by including the DKD^{*}K coupled-channel interaction within our chiral quark model. The details about the coupled-channel quark model are given in Appendix. A. The mass shift of Ds(21S0)D_{s}(2^{1}S_{0}) is shown in Fig. 3. Our result shows that the coupled-channel interaction induces a mass shift of 68\sim 68 MeV. The bare mass M=2649M=2649 MeV of Ds(21S0)D_{s}(2^{1}S_{0}) will be shifted to the physical mass Mphy=2581M_{phy}=2581 MeV, which is consistent with the measured mass of Ds0(2590)+D_{s0}(2590)^{+}. Our coupled-channel calculation within the chiral quark model are consistent with that in Refs. Xie:2021dwe ; Ortega:2021fem .

Assigning the newly observed resonance Ds0(2590)+D_{s0}(2590)^{+} to the Ds(21S0)D_{s}(2^{1}S_{0}) state, the higher mass problem can be overcome by taking into account the DKD^{*}K loop correction, however, the width of Ds0(2590)+D_{s0}(2590)^{+} cannot be well understood within our chiral quark model. Adopting the observed mass M=2591M=2591 MeV, our predicted width,

Γ19MeV,\Gamma\simeq 19\ \ \ \mathrm{MeV}, (28)

is about a factor of 55 smaller than the center value of the data Γexp=89\Gamma_{exp}=89 MeV. Our predicted width is consistent with the recent predictions with the relativistic wave functions obtained by solving the full Salpeter equation Wang:2021orp and the P03{}^{3}P_{0} model Xie:2021dwe . To establish the Ds(21S0)D_{s}(2^{1}S_{0}) state and uncover the nature of the Ds0(2590)+D_{s0}(2590)^{+}, more observations are needed in future experiments.

IV.2.2 23S12^{3}S_{1}

In the DD-meson family, our predicted mass for the D(23S1)D(2^{3}S_{1}) state is M=2636M=2636 MeV, which is comparable with the predictions in the literature Zeng:1994vj ; Lahde:1999ih ; Ebert:2009ua ; Liu:2013maa ; Liu:2015lka ; Liu:2015uya ; Liu:2016efm ; Badalian:2011tb ; Allosh:2021biq ; Patel:2021aas ; Chen:2018nnr ; Godfrey:2015dva ; Song:2015fha ; Gandhi:2019lta ; Sun:2013qca ; Ferretti:2015rsa ; Li:2010vx ; Lu:2014zua ; Kher:2017wsq . According to our chiral quark model predictions, the D(23S1)D(2^{3}S_{1}) may be a narrow state with a width of

Γ41MeV,\Gamma\simeq 41\ \ \ \mathrm{MeV}, (29)

and dominantly decays into DπD\pi and D1(2430)πD_{1}(2430)\pi channels with branching fractions about 47%47\% and 41%41\%, respectively. However, the decay rate into the DπD^{*}\pi channel is tiny (2%\sim 2\%). In Refs. Song:2015fha ; Godfrey:2015dva ; Lu:2014zua ; Li:2017sww ; Chen:2015lpa , the D(23S1)D(2^{3}S_{1}) is predicted to be a broader state with a width of Γ60200\Gamma\simeq 60-200 MeV. Combined with our previous study Zhong:2010vq , we find that the strong decay properties of D(23S1)D(2^{3}S_{1}) are very sensitive to the details of the wave function due to the nodal effects.

From the point of view of mass, the D1(2600)D_{1}^{*}(2600) resonance listed in RPP Zyla:2020zbs may be a candidate of the D(23S1)D(2^{3}S_{1}) state. This resoancne was first observed by BaBar in the DπD\pi and DπD^{*}\pi decay channels in 2010 BaBar:2010zpy . The measured mass and width are Mexp=2609±4M_{exp}=2609\pm 4 MeV and Γexp=96±6±13\Gamma_{exp}=96\pm 6\pm 13 MeV, respectively, and the measured partial width ratio between DπD\pi and DπD^{*}\pi is R=Γ(Dπ)/Γ(Dπ)=0.32±0.11R=\Gamma(D\pi)/\Gamma(D^{*}\pi)=0.32\pm 0.11. In 2013, in the D+πD^{*+}\pi^{-} final state the LHCb collaboration observed a similar resonance DJ(2650)0D_{J}^{*}(2650)^{0} with a mass of Mexp=2649±7M_{exp}=2649\pm 7 MeV and a width of Γexp=140.2±35.7\Gamma_{exp}=140.2\pm 35.7 MeV LHCb:2013jjb . In 2016, LHCb collaboration carried out an amplitude analysis of the BD+ππB^{-}\to D^{+}\pi^{-}\pi^{-} decays, they extracted a JP=1J^{P}=1^{-} resonance D1(2680)D_{1}^{*}(2680) with mass and width of Mexp=2681±23.6M_{exp}=2681\pm 23.6 MeV and Γexp=186.7±25.3\Gamma_{exp}=186.7\pm 25.3 MeV Aaij:2016fma . Recently, from the BD+ππB^{-}\to D^{*+}\pi^{-}\pi^{-} decays, the LHCb collaboration also extracted a JP=1J^{P}=1^{-} resonance D1(2600)0D_{1}^{*}(2600)^{0} with mass and width of Mexp=2641.9±6.3M_{exp}=2641.9\pm 6.3 MeV and Γexp=149±24\Gamma_{exp}=149\pm 24 MeV Aaij:2019sqk . The resonances observed in different experiments might be the same state, which is denoted by D1(2600)D_{1}^{*}(2600) in RPP Zyla:2020zbs , although there are some differences in the observations of different experiments.

Considering D1(2600)D_{1}^{*}(2600) as the D(23S1)D(2^{3}S_{1}) assignment, the strong decay properties have been analyzed in the literature. The strong decay analyses in Refs. Ferretti:2015rsa ; Kher:2017wsq ; Gupta:2018zlg ; Yu:2014dda ; Chen:2015lpa ; Wang:2010ydc ; Wang:2013tka ; Song:2015fha ; Godfrey:2015dva ; Lu:2014zua support this assignment. However, with the D(23S1)D(2^{3}S_{1}) assignment our predicted width Γ41\Gamma\simeq 41 MeV is too small to be comparable with the average measured value Γexp=141±23\Gamma_{exp}=141\pm 23 MeV. To well explain the decay properties, the D1(2600)D_{1}^{*}(2600) is also suggested to be a mixed state via the 23S113D12^{3}S_{1}-1^{3}D_{1} mixing in the literature  Li:2017sww ; Chen:2011rr ; Yu:2020khh ; Zhong:2010vq ; Xiao:2014ura ; Sun:2010pg ; Li:2010vx ; Chen:2015lpa . In Ref. Colangelo:2012xi , the study within effective Lagrangian method indicates that it is impossible to explain the ratio R=Γ(Dπ)/Γ(Dπ)=0.32±0.11R=\Gamma(D\pi)/\Gamma(D^{*}\pi)=0.32\pm 0.11 BaBar:2010zpy measured by BaBar with a pure D(23S1)D(2^{3}S_{1}) state.

In the charmed-strange sector, our predicted mass for the Ds(23S1)D_{s}(2^{3}S_{1}) state is M=2737M=2737 MeV, which is comparable with the predictions in the literature Zeng:1994vj ; Lahde:1999ih ; Ebert:2009ua ; Liu:2013maa ; Liu:2015lka ; Liu:2015uya ; Liu:2016efm ; Badalian:2011tb ; Allosh:2021biq ; Patel:2021aas ; Chen:2018nnr ; Godfrey:2015dva ; Song:2015nia ; Ferretti:2015rsa ; Segovia:2015dia ; Li:2010vx ; Kher:2017wsq . According to our chiral quark model predictions, the Ds(23S1)D_{s}(2^{3}S_{1}) may be a narrow state with a width of

Γ12MeV,\Gamma\simeq 12\ \ \ \mathrm{MeV}, (30)

and mainly decays into the DKDK and DKD^{*}K final states. Our predictions are consistent with those predicted with a P03{}^{3}P_{0} model Zhang:2006yj . However, in other works Godfrey:2015dva ; Close:2005se ; Chen:2015lpa ; Song:2015nia the Ds(23S1)D_{s}(2^{3}S_{1}) is predicted to be a relatively broad state with a width of Γ100200\Gamma\simeq 100\sim 200 MeV.

From the point of view of mass, the Ds1(2700)D_{s1}^{*}(2700) resonance listed in RPP Zyla:2020zbs can be assigned to the Ds(23S1)D_{s}(2^{3}S_{1}) state. The Ds1(2700)D_{s1}^{*}(2700) was first observed in the DKDK final state by the BaBar collaboration in 2006 BaBar:2006gme , and one year later its quantum numbers JP=1J^{P}=1^{-} were determined by the Belle collaboration Belle:2007hht . The average measured mass and width are Mexp=2714±5M_{exp}=2714\pm 5 MeV and Γexp=122±10\Gamma_{exp}=122\pm 10 MeV, respectively Zyla:2020zbs . More experimental information about Ds1(2700)D_{s1}^{*}(2700) is collected in Table 1. Some phenomenological analyses in the literature Ferretti:2015rsa ; Badalian:2011tb ; Liu:2016efm ; Liu:2015uya ; Ebert:2009ua ; Wang:2014jua ; Zhou:2014ytp ; Song:2014mha ; Segovia:2015dia ; Chen:2009zt ; Zhang:2009nu ; Godfrey:2015dva support Ds1(2700)D_{s1}^{*}(2700) as the Ds(23S1)D_{s}(2^{3}S_{1}) assignment. However, considering Ds1(2700)D_{s1}^{*}(2700) as Ds(23S1)D_{s}(2^{3}S_{1}), the measured width Γexp=122±10\Gamma_{exp}=122\pm 10 MeV and ratio Γ(DK)/Γ(DK)=0.91±0.25\Gamma(D^{*}K)/\Gamma(DK)=0.91\pm 0.25 cannot be explained within our chiral quark model. To well explain the observations, the Ds1(2700)D_{s1}^{*}(2700) is also suggested to be a mixed state via the 23S113D12^{3}S_{1}-1^{3}D_{1} mixing in the literature Li:2017sww ; Li:2010vx ; Li:2007px ; Close:2006gr ; Zhong:2009sk ; Chen:2011rr ; Song:2015nia . The 23S113D12^{3}S_{1}-1^{3}D_{1} mixing in the DD- and DsD_{s}-meson families will be further discussed later.

IV.3 3S3S-wave states

IV.3.1 31S03^{1}S_{0}

In the DD-meson family, the mass for the second radial excitation D(31S0)D(3^{1}S_{0}) is predicted to be M=3029M=3029 MeV within our potential model calculations. The mass gap between D(31S0)D(3^{1}S_{0}) and D(21S0)D(2^{1}S_{0}) is estimated to be ΔM480\Delta M\simeq 480 MeV. Our predictions are consistent with those in Refs. Godfrey:2015dva ; Ebert:2009ua ; Zeng:1994vj . The D(31S0)D(3^{1}S_{0}) may be a broad state with a width of

Γ410MeV,\Gamma\simeq 410\ \ \ \mathrm{MeV}, (31)

and dominantly decays into the D0(2300)πD_{0}^{*}(2300)\pi (29%), D2(2460)πD_{2}^{*}(2460)\pi (24%) and DπD^{*}\pi (21%) final states. More details can be seen in Table 6. It should be mentioned that there exist large model dependencies in the decay properties predicted in the literature.

In Refs. Lu:2014zua ; Song:2015fha , the authors suggested that the unnatural parity state DJ(3000)D_{J}(3000) observed in the DπD^{*}\pi final state by the LHCb collaboration LHCb:2013jjb might be explained with D(31S0)D(3^{1}S_{0}) according to their strong decay analysis within the P03{}^{3}P_{0} model. However, our predicted width of D(31S0)D(3^{1}S_{0}) is too broad to be comparable with the measured width Γexp=188.1±44.8\Gamma_{exp}=188.1\pm 44.8 MeV, although the predicted mass is consistent with the data. To establish the D(31S0)D(3^{1}S_{0}), more observations of the other main decay channels, such as D0(2300)πD_{0}^{*}(2300)\pi and D2(2460)πD_{2}^{*}(2460)\pi, are needed in future experiments.

In the DsD_{s}-meson family, the mass for the second radial excitation Ds(31S0)D_{s}(3^{1}S_{0}) is predicted to be M=3126M=3126 MeV within our potential model calculations, which is about 100 MeV larger than that of the charmed partner D(31S0)D(3^{1}S_{0}). Our prediction is consistent with that of the relativized quark model Godfrey:2015dva . From Table 7, one sees that the Ds(31S0)D_{s}(3^{1}S_{0}) state may have a width of

Γ170MeV,\Gamma\simeq 170\ \ \ \mathrm{MeV}, (32)

and dominantly decays into the D0(2300)KD_{0}^{*}(2300)K and D2(2460)KD_{2}^{*}(2460)K final states. The main decay mode D2(2460)KD_{2}^{*}(2460)K predicted within our chiral quark model are consistent with that predicted within the P03{}^{3}P_{0} model Godfrey:2015dva , however, our predicted width is about a factor of 2.2 larger than that within the P03{}^{3}P_{0} model Godfrey:2015dva . To look for the missing Ds(31S0)D_{s}(3^{1}S_{0}) state, the D2(2460)KD_{2}^{*}(2460)K final state is worth to observing in future experiments.

IV.3.2 33S13^{3}S_{1}

Figure 4: Total width and partial widths of the main decay channels for D(33S1)D(3^{3}S_{1}) and Ds(33S1)D_{s}(3^{3}S_{1}) as the functions of their masses.

In the DD-meson family, the mass for the second radial excitation D(33S1)D(3^{3}S_{1}) is predicted to be M=3093M=3093 MeV within our potential model calculations, which is consistent with the predictions in Refs. Godfrey:2015dva ; Ebert:2009ua ; Zeng:1994vj . The mass splitting between D(33S1)D(3^{3}S_{1}) and D(31S0)D(3^{1}S_{0}) is estimated to be ΔM64\Delta M\simeq 64 MeV. From Table 6, it is seen that the D(33S1)D(3^{3}S_{1}) may be a broad state with a width of

Γ210MeV,\Gamma\simeq 210\ \ \ \mathrm{MeV}, (33)

and has large decay rates into DπD\pi and DπD^{*}\pi channels. To see the dependence of the decay properties of D(33S1)D(3^{3}S_{1}) on its mass, the partial widths of the main decay channels together with the total width as functions of the mass are also plotted in Fig. 4. It is found that the partial and total decay widths increase smoothly with the mass. With a mass uncertainty of 5050 MeV, the total width of D(33S1)D(3^{3}S_{1}) varies in the range 160320\sim 160-320 MeV.

In Ref. Song:2015fha , the authors suggested that the natural parity state DJ(3000)D_{J}^{*}(3000) observed in the DπD\pi final state by the LHCb collaboration LHCb:2013jjb may be explained with D(33S1)D(3^{3}S_{1}) according to their mass and strong decay analysis. However, our predicted mass and width of D(33S1)D(3^{3}S_{1}), M=3093M=3093 MeV and Γ210\Gamma\simeq 210 MeV, are notably larger than the data Mexp=3008.1±4.0M_{exp}=3008.1\pm 4.0 MeV and Γexp=110.5±11.5\Gamma_{exp}=110.5\pm 11.5 MeV measured by LHCb LHCb:2013jjb . Furthermore, the predicted decay rates into the DπD\pi channel is tiny, which is inconsistent with the fact that DJ(3000)D_{J}^{*}(3000) was first observed in the DπD\pi final state. To establish the D(33S1)D(3^{3}S_{1}), more observations of the other decay channels, such as D1(2430)πD_{1}(2430)\pi and DρD\rho, are needed in future experiments.

In the DsD_{s}-meson sector, the mass for the second radial excitation Ds(33S1)D_{s}(3^{3}S_{1}) is predicted to be M=3191M=3191 MeV within our potential model calculations, which is consistent with the predictions in Refs. Godfrey:2015dva ; Zeng:1994vj . The mass splitting between Ds(33S1)D_{s}(3^{3}S_{1}) and Ds(31S0)D_{s}(3^{1}S_{0}) is estimated to be ΔM65\Delta M\simeq 65 MeV, which is nearly equal to that for the charmed sector. The strong decay properties of Ds(33S1)D_{s}(3^{3}S_{1}) have been shown in Table 7, it is seen that Ds(33S1)D_{s}(3^{3}S_{1}) may be a relatively narrow state with a width of

Γ120MeV,\Gamma\simeq 120\ \ \ \mathrm{MeV}, (34)

and mainly decays into D1(2430)KD_{1}(2430)K and DKDK^{*} channels. The dependence of the decay properties of Ds(33S1)D_{s}(3^{3}S_{1}) on its mass is also shown in Fig. 4. It is found that the partial and total decay widths increase smoothly with the mass. With a mass uncertainty of 5050 MeV, the total width of Ds(33S1)D_{s}(3^{3}S_{1}) varies in the range 100180\sim 100-180 MeV. Our predicted decay properties are comparable with those of P03{}^{3}P_{0} model in Refs. Godfrey:2015dva ; Song:2015nia . It should be mentioned that for the higher excited states, the predicted decay properties have large model dependencies.

IV.4 1P1P-wave states

Table 8: Partial decay widths and their branching fractions for the 1P1P-wave charmed mesons. The decay widths in square brackets are the results for the mixed states D(1P1)D(1P_{1}) and D(1P1)D(1P^{\prime}_{1}) predicted with the mixing angle θ1P=(55±5)\theta_{1P}=-(55\pm 5)^{\circ} in the heavy quark symmetry limit.
State Channel     Γi\Gamma_{i} (MeV)   Br (% ) Γexp\Gamma_{exp} (MeV) Zyla:2020zbs
D(13P0)D(1^{3}P_{0}) DπD\pi 538.0538.0 100100 ...
as D0(2300)D_{0}^{*}(2300) Total 538.0\mathbf{538.0} 𝟏𝟎𝟎\mathbf{100} 𝟐𝟐𝟗±𝟏𝟔\mathbf{229\pm 16}
D(13P2)D(1^{3}P_{2}) DπD\pi 26.026.0 63.063.0 ...
as D2(2460)D_{2}^{*}(2460) DηD\eta 0.050.05 0.10.1 ...
DπD^{*}\pi 15.315.3 36.936.9 ...
Total 41.3\mathbf{41.3} 𝟏𝟎𝟎\mathbf{100} 47.3±0.8\mathbf{47.3\pm 0.8}
D(1P1)D(1P_{1}) DπD^{*}\pi 214.5[241.0±1.0]214.5~{}[241.0\pm 1.0] 100100 ...
as D1(2430)D_{1}(2430) Total 214.5[241.0±1.0]\mathbf{214.5~{}[241.0\pm 1.0]} 𝟏𝟎𝟎\mathbf{100} 𝟑𝟏𝟒±𝟐𝟗\mathbf{314\pm 29}
D(1P1)D(1P^{\prime}_{1}) DπD^{*}\pi 42.5[16.8±1.0]42.5~{}[16.8\pm 1.0] 100100 ...
as D1(2420)D_{1}(2420) Total 42.5[16.8±1.0]\mathbf{42.5~{}[16.8\pm 1.0]} 𝟏𝟎𝟎\mathbf{100} 31.3±1.9\mathbf{31.3\pm 1.9}
Table 9: Partial decay widths and their branching fractions for the 1P1P-wave charmed-strange mesons. The decay widths in square brackets are the results for the mixed states Ds(1P1)D_{s}(1P_{1}) and Ds(1P1)D_{s}(1P^{\prime}_{1}) predicted with the mixing angle θ1P=(55±5)\theta_{1P}=-(55\pm 5)^{\circ} in the heavy quark symmetry limit.
State Channel     Γi\Gamma_{i} (MeV)  Br (%)   Γexp\Gamma_{exp} (MeV) Zyla:2020zbs
Ds(13P0)D_{s}(1^{3}P_{0}) DKDK 437.5437.5 100100 ...
24092409 Total 437.5\mathbf{437.5} 𝟏𝟎𝟎\mathbf{100} \mathbf{...}
Ds(13P2)D_{s}(1^{3}P_{2}) DKDK 11.711.7 88.088.0 ...
as Ds2(2573)D_{s2}^{*}(2573) DsηD_{s}\eta 0.10.1 0.80.8 ...
DKD^{*}K 1.51.5 11.211.2 ...
Total 13.3\mathbf{13.3} 𝟏𝟎𝟎\mathbf{100} 16.9±0.7\mathbf{16.9\pm 0.7}
Ds(1P1)D_{s}(1P_{1}) DKD^{*}K 192.2[210.7±1.0]192.2~{}[210.7\pm 1.0] 100100 ...
25282528 Total 192.2[210.7±1.0]\mathbf{192.2~{}[210.7\pm 1.0]} 𝟏𝟎𝟎\mathbf{100} \mathbf{...}
Ds(1P1)D_{s}(1P^{\prime}_{1}) DKD^{*}K 22.2[1.4±1.0]22.2~{}[1.4\pm 1.0] 100100 ...
as Ds1(2536)D_{s1}(2536) Total 22.2[1.4±1.0]\mathbf{22.2~{}[1.4\pm 1.0]} 𝟏𝟎𝟎\mathbf{100} 0.92±0.05\mathbf{0.92\pm 0.05}
Figure 5: The determinations of the physical masses for the 1P1P-wave charmed and charmed-strange meson states. The mass shift function ΔM(M)\Delta M(M) and liner function MMAM-M_{A} are shown by the thick and thin lines, respectively. MAM_{A} stands for the bare mass of the 1P1P-wave states, and the physical mass MphyM_{phy} of a dressed 1P1P-wave state as a solution of the coupled-channel equation Eq.(81) is located at the intersection point of two solid lines.
Figure 6: Decay widths of D(s)(1P1)D_{(s)}(1P_{1}) and D(s)(1P1)D_{(s)}(1P^{\prime}_{1}) as functions of the mixing angle θ1P\theta_{1P}. In the vertical direction, the shaded region represents the possible range of the mixing angle θ1P(55±5)\theta_{1P}\simeq-(55\pm 5)^{\circ} extracted in the heavy quark symmetry limit.

IV.4.1 13P01^{3}P_{0}

The broad D0(2300)D_{0}^{*}(2300) resonance listed in RPP Zyla:2020zbs is generally considered to be the D(13P0)D(1^{3}P_{0}) state in DD-meson family. The neutral state D0(2300)0D_{0}^{*}(2300)^{0} with JP=0+J^{P}=0^{+} was first observed in the D+πD^{+}\pi^{-} channel by the Belle collaboration in 2003 Belle:2003nsh , and was confirmed by the BaBar collaboration in 2009 BaBar:2009pnd . The charged state D0(2300)+D_{0}^{*}(2300)^{+} was also established in the D¯0π+\bar{D}^{0}\pi^{+} channel by the FOCUS collaboration in 2003 FOCUS:2003gru , and was confirmed by the LHCb collaboration in 2015 Aaij:2015sqa . In experiments, only the DπD\pi channel is observed since the other OZI-allowed two-body strong channels are forbidden. The average measured mass and width of D0(2300)D_{0}^{*}(2300) from RPP are Mexp=2343±10M_{exp}=2343\pm 10 MeV and Γexp=229±16\Gamma_{exp}=229\pm 16 MeV, respectively Zyla:2020zbs , which are consistent with the quark model expectations Close:2005se ; Tan:2018lao ; Zhong:2008kd ; Godfrey:2005ww ; DiPierro:2001dwf ; Goity:1998jr ; Song:2015nia ; Ebert:2009ua ; Lu:2014zua .

Our predicted mass of D(13P0)D(1^{3}P_{0}) is M=2313M=2313 MeV. Taking into account the DπD\pi loop correction to bare mass of the D(13P0)D(1^{3}P_{0}) cs¯c\bar{s} core, from Fig. 5 it is seen that the physical mass is reduced to Mphy=2253M_{phy}=2253 MeV, there is a mass shift of ΔM60\Delta M\simeq 60 MeV compared with the bare mass. The physical mass of the dressed D(13P0)D(1^{3}P_{0}) state is about 90 MeV lower than the PDG average mass Mexp=2343±10M_{exp}=2343\pm 10 MeV Zyla:2020zbs , however, is close to measured value 2300\sim 2300 MeV from Belle and BaBar experiments Belle:2003nsh ; BaBar:2009pnd .

Taking the measured mass Mexp=2343M_{exp}=2343 MeV and the wave function extracted from the potential model, we predict that the D0(2300)D_{0}^{*}(2300) is a broad state with a width of Γ540\Gamma\simeq 540 MeV, which is about a factor of 2.3 larger than the average data Γexp=229±16\Gamma_{exp}=229\pm 16 MeV from RPP Zyla:2020zbs . It should be mentioned that the mass of D0(2300)D_{0}^{*}(2300) measured from different collaborations is quite different, while the measured width also bears large uncertainties. In some recent works, the D0(2300)D_{0}(2300) resonance was suggested to be a two-pole structure in chiral dynamics Albaladejo:2016lbb ; Du:2017zvv ; Du:2020pui . The recent Lattice calculations of the DπD\pi scattering amplitudes obtain a complex D0D_{0}^{*} state resonance pole with a mass M2200M\simeq 2200 MeV and a width Γ400\Gamma\simeq 400 MeV Gayer:2021xzv . The mass and width are in contrast to the currently reported experimental results. To better understand the nature of D0(2300)D_{0}^{*}(2300), more accurate measurements are needed to be carried out in future experiments.

In the DsD_{s}-meson sector, our predicted mass of Ds(13P0)D_{s}(1^{3}P_{0}) is M=2409M=2409 MeV, which is comparable with the predictions in the Refs. Godfrey:2015dva ; Ebert:2009ua ; Lahde:1999ih . The mass of Ds(13P0)D_{s}(1^{3}P_{0}) state is about 100 MeV overestimated by the potential model if considering Ds0(2317)D_{s0}^{*}(2317) as the Ds(13P0)D_{s}(1^{3}P_{0}) state. The mass calculated with lattice QCD also is significantly higher than than of Ds0(2317)D_{s0}^{*}(2317) Moir:2013ub . In Ref. Segovia:2015dia , the study indicates that including the one-loop corrections of the OGE potential the mass of Ds(13P0)D_{s}(1^{3}P_{0}) will be reduced by about 130 MeV. Then, the mass of Ds(13P0)D_{s}(1^{3}P_{0}), M2279M\simeq 2279 MeV, is close to the that of Ds0(2317)D_{s0}^{*}(2317). The study of DKDK scattering in full lattice QCD supports the interpretation of the Ds0(2317)D_{s0}^{*}(2317) as a DKDK molecule Liu:2012zya . Recently, Zhi Yang et al. studied the positive parity DsD_{s} resonant states within the Hamiltonian effective field theory by combining it with the quark model, they found that Ds0(2317)D_{s0}^{*}(2317) may consist of the Ds(13P0)D_{s}(1^{3}P_{0}) state, but at the same time couple to the DKDK channel Yang:2021tvc .

In this work, we also estimate the mass shift of Ds(13P0)D_{s}(1^{3}P_{0}) by including the DKDK coupled-channel interaction within our chiral quark model. The mass shift is determined in Fig. 5. From the figure, we can see a cusp singularity in the mass shift curve of Ds(13P0)D_{s}(1^{3}P_{0}), this is a typical SS-wave mass shift, the formation mechanism was discussed in Ref. Isgur:1998kr . Our result shows that the large SS-wave coupling to DKDK channel of Ds(13P0)D_{s}(1^{3}P_{0}) induces a mass shift of about ΔM100\Delta M\simeq 100 MeV. The the physical mass of the dressed Ds(13P0)D_{s}(1^{3}P_{0}) state is estimated to be Mphy=2309M_{phy}=2309 MeV, which is very close to the measured mass of Ds0(2317)D_{s0}^{*}(2317). Our coupled-channel analysis within the chiral quark model is consistent with that in Refs. Segovia:2015dia ; Ortega:2016mms ; Yang:2021tvc . Since the mass of Ds0(2317)D_{s0}^{*}(2317) is below the mass threshold of the DKDK channel, its extremely narrow width can be understood in theory.

IV.4.2 13P21^{3}P_{2}

The D2(2460)D_{2}^{*}(2460) resonance is assigned as the 13P21^{3}P_{2} state of the DD-meson family. Our theoretical mass M=2475M=2475 MeV and width Γ41.3\Gamma\simeq 41.3 MeV are in good agreement with the average measured values Mexp=2461.1±0.7M_{exp}=2461.1\pm 0.7 MeV and Γ47.3±0.8\Gamma\simeq 47.3\pm 0.8 MeV from RPP Zyla:2020zbs . The D2(2460)D_{2}^{*}(2460) dominantly decays into the DπD\pi and DπD^{*}\pi channels. The partial width ratio between DπD\pi and DπD^{*}\pi is predicted to be

R=Γ(Dπ)Γ(Dπ)1.70,R=\frac{\Gamma(D\pi)}{\Gamma(D^{*}\pi)}\simeq 1.70, (35)

which is also in good agreement with the data R=1.52±0.14R=1.52\pm 0.14 Zyla:2020zbs . The decay properties predicted in this work are consistent with our previous predictions with the SHO wave functions Zhong:2008kd and other predictions in the P03{}^{3}P_{0} models Close:2005se ; Godfrey:2005ww , and the PCAC and low energy theorem Zhang:2016dom .

The coupled-channel effects on the mass shift of D(13P2)D(1^{3}P_{2}) are also studied. The results are shown in From Fig. 5. One can seen that the mass shift (i.e., ΔM5\Delta M\simeq 5 MeV) is tiny when including the DπD\pi and DπD^{*}\pi loop corrections. There are two main reasons for the negligibly small coupled-channel contribution: (i) the mass of D(13P2)D(1^{3}P_{2}) is far from the DπD\pi and DπD^{*}\pi thresholds; (ii) D(13P2)D(1^{3}P_{2}) couples to DπD\pi and DπD^{*}\pi channels via a weak DD-wave coupling.

In the DsD_{s}-meson family, the 13P21^{3}P_{2} state has been well established in experiments. The narrow resonance Ds2(2573)D_{s2}^{*}(2573) listed in RPP Zyla:2020zbs should belong to the Ds(13P2)D_{s}(1^{3}P_{2}) state. Our theoretical mass M=2575M=2575 MeV and width Γ13.3\Gamma\simeq 13.3 MeV can well reproduce the average measured values Mexp=2569M_{exp}=2569 MeV and Γ16.9±0.7\Gamma\simeq 16.9\pm 0.7 MeV from RPP Zyla:2020zbs . The Ds2(2573)D_{s2}^{*}(2573) mainly decays into the DKDK channel, while the decay rate into DKD^{*}K channel is sizeable. Our predicted partial width ratio between DKD^{*}K and DKDK,

R=Γ(DK)Γ(DK)0.13,\displaystyle R=\frac{\Gamma(D^{*}K)}{\Gamma(DK)}\simeq 0.13, (36)

is also consistent with the data Rexp<0.33R_{exp}<0.33 Zyla:2020zbs . The decay properties predicted with the genuine wave function from our potential model calculations in this work are consistent with our previous predictions with the SHO wave functions Zhong:2008kd , and other predictions by using the P03{}^{3}P_{0} models Close:2005se ; Godfrey:2005ww and the PCAC and low energy theorem Zhang:2016dom .

Finally, we also study the coupled-channel effects on the mass of the bare Ds(13P2)D_{s}(1^{3}P_{2}) state. From the strong decay analysis we know that Ds(13P2)D_{s}(1^{3}P_{2}) mainly decays into DKDK and DKD^{*}K channels. Considering the Ds(13P2)D_{s}(1^{3}P_{2}) cs¯c\bar{s} core coupling to these channels, a tiny mass shift ΔM=2\Delta M=2 MeV can be seen in Fig. 5. The tiny couple-channel effects on Ds(13P2)D_{s}(1^{3}P_{2}) are mainly due to a weak DD-wave coupling to DKDK and DKD^{*}K channels. Our conclusion is consistent with that of the recent study Yang:2021tvc .

IV.4.3 1P11P_{1} and 1P11P^{\prime}_{1}

In the 1P1P-wave states, the two JP=1+J^{P}=1^{+} states 11P11^{1}P_{1} and 13P11^{3}P_{1} should be mixed with each other by the antisymmetric part of the spin-orbit potential. The physical states 1P11P_{1} and 1P11P^{\prime}_{1} states are expressed as

(1P11P1)=(cosθ1Psinθ1Psinθ1Pcosθ1P)(11P113P1).\left(\begin{array}[]{c}1P_{1}\\ 1P^{\prime}_{1}\\ \end{array}\right)=\left(\begin{array}[]{cc}\cos\theta_{1P}&\sin\theta_{1P}\\ -\sin\theta_{1P}&\cos\theta_{1P}\\ \end{array}\right)\left(\begin{array}[]{c}1^{1}P_{1}\\ 1^{3}P_{1}\\ \end{array}\right). (37)

In this work, the 1P11P_{1} and 1P11P^{\prime}_{1} correspond to the low-mass and high-mass mixed states, respectively.

In the DD-meson family, the masses for the two mixed states D(1P1)D(1P_{1}) and D(1P1)D(1P^{\prime}_{1}) are determined to be M=2424M=2424 MeV and 24532453 MeV, respectively. The mass splitting between D(1P1)D(1P_{1}) and D(1P1)D(1P^{\prime}_{1}) is estimated to be ΔM30\Delta M\simeq 30 MeV, which is close to the prediction in Ref. Ebert:2009ua . The mixing angle θ1P=34.0\theta_{1P}=-34.0^{\circ} determined in this work is similar to the determinations in Refs. Lu:2014zua ; Godfrey:2015dva , however, is about a factor of 1.6\sim 1.6 smaller than the value θ1P=54.7\theta_{1P}=-54.7^{\circ} extracted in the heavy quark limit. The low mass state D(1P1)D(1P_{1}) should be a broad state with a width of about several hundred MeV, while the high mass state D(1P1)D(1P_{1}^{\prime}) is a narrow state with a width of about several tens MeV. The DπD^{*}\pi channel is the only OZI-allowed two-body strong decay channel of D(1P1)D(1P_{1}) and D(1P1)D(1P^{\prime}_{1}).

The D1(2430)D_{1}(2430) and D1(2420)D_{1}(2420) resonances listed in RPP Zyla:2020zbs can be assigned to the 1P1P-wave mixed state D(1P1)D(1P_{1}) and D(1P1)D(1P^{\prime}_{1}), respectively. For the broad resonance D1(2430)D_{1}(2430), its average measured mass and width are Mexp=2412±9M_{exp}=2412\pm 9 MeV and Γexp=314±29\Gamma_{exp}=314\pm 29 MeV, respectively Zyla:2020zbs . While for the narrow resonance D1(2420)D_{1}(2420), its average measured mass and width are Mexp=2422.1±0.8M_{exp}=2422.1\pm 0.8 MeV and Γexp=31.3±1.9\Gamma_{exp}=31.3\pm 1.9 MeV, respectively Zyla:2020zbs . The average mass splitting from the measurements, ΔMexp10\Delta M_{exp}\simeq 10 MeV, is smaller than our potential model prediction ΔM30\Delta M\simeq 30 MeV.

Taking the physical masses and predicted mixing angle θ1P=34\theta_{1P}=-34^{\circ} for D(1P1)D(1P_{1}) and D(1P1)D(1P^{\prime}_{1}), we calculate the strong decay properties, our results are listed in Table 8. It is seen that our predicted decay width of D1(2420)D_{1}(2420) are in good agreement with the data, however, the predicted width of D1(2430)D_{1}(2430) is slightly smaller than the lower limit of the measured width Γexp=314±29\Gamma_{exp}=314\pm 29 MeV. With the mixing angle θ1P=54.7\theta_{1P}=-54.7^{\circ} extracted in the heavy quark limit, the theoretical width of D1(2430)D_{1}(2430), Γ240\Gamma\simeq 240 MeV, is more close to the data. The predicted width of D1(2420)D_{1}(2420), Γ17\Gamma\simeq 17 MeV, is slightly smaller than the PDG average value Γexp=31.3±1.9\Gamma_{exp}=31.3\pm 1.9 MeV, however, is in good agreement with the measurements, 20\sim 20 MeV, from Belle, BESIII, CDF, CLEO listed by PDG Zyla:2020zbs . In Fig. 6, we show the dependence of the decay widths of the D1(2430)D_{1}(2430) and D1(2420)D_{1}(2420) resonances on the mixing angle. It is found that the decay widths are sensitive to the mixing angle. Taking the mixing angle around value extracted in the heavy quark limit, i.e. θ1P=(55±5)\theta_{1P}=-(55\pm 5)^{\circ}, the predicted decay properties of the D1(2430)D_{1}(2430) and D1(2420)D_{1}(2420) resonances are consistent with the measurements.

The coupled-channel effects on the masses of the two 1+1^{+} states D(1P1)D(1P_{1}) and D(1P1)D(1P^{\prime}_{1}) are further studied. Our results are shown in Fig 5. It is seen that including the DπD^{*}\pi loop correction, the mass shifts of D(1P1)D(1P_{1}) and D(1P1)D(1P^{\prime}_{1}) are predicted to be ΔM12\Delta M\simeq 12 and 55 MeV, respectively. There are only small corrections of the coupled-channel effects to the masses of D(1P1)D(1P_{1}) and D(1P1)D(1P^{\prime}_{1}), because their masses are far from the DπD^{*}\pi threshold.

In the DsD_{s}-meson family, the masses for the two mixed states Ds(1P1)D_{s}(1P_{1}) and Ds(1P1)D_{s}(1P^{\prime}_{1}) are estimated to be M=2528M=2528 MeV and M=2545M=2545 MeV, respectively. Their masses is very close to the mass threshold of DKD^{*}K. The mass splitting between Ds(1P1)D_{s}(1P_{1}) and Ds(1P1)D_{s}(1P^{\prime}_{1}) is estimated to be ΔM17\Delta M\simeq 17 MeV, which is close to the predictions in Refs. Zeng:1994vj ; Lahde:1999ih . The mixing angle θ1P=36.8\theta_{1P}=-36.8^{\circ} is almost the same as that of the charmed sector, and is consistent with the determinations in Ref. Godfrey:2015dva . Adopting this mixing angle, masses, and wave functions determined from our potential model calculations, we study the two-body OZI-allowed strong decays, our results are listed in Table 9. It is found that the low mass state Ds(1P1)D_{s}(1P_{1}) may be a broad state with a width of Γ192\Gamma\simeq 192 MeV, while the high mass state Ds(1P1)D_{s}(1P^{\prime}_{1}) may be a narrow state with a width of Γ22\Gamma\simeq 22 MeV. The DKD^{*}K channel is the only OZI-allowed two-body strong decay channel of Ds(1P1)D_{s}(1P_{1}) and Ds(1P1)D_{s}(1P^{\prime}_{1}).

The Ds1(2536)D_{s1}(2536) resonance can be assigned to the high mass state Ds(1P1)D_{s}(1P^{\prime}_{1}). When the mixing angle θ1P=36.8\theta_{1P}=-36.8^{\circ} predicted by our potential model is taken into account, the width of Ds1(2536)D_{s1}(2536) is Γ22\Gamma\simeq 22 MeV, which is significantly larger than Γexp0.92±0.05\Gamma_{exp}\simeq 0.92\pm 0.05 MeV. From Fig. 6, one can find that the decay width of Ds1(2536)D_{s1}(2536) is very sensitive to the mixing angle. Taking the mixing angle around value extracted in the heavy quark limit, i.e. θ1P=(55±5)\theta_{1P}=-(55\pm 5)^{\circ}, we find that the theoretical width Γ=1.4±1.0\Gamma=1.4\pm 1.0 MeV is consistent with the measured width of Γexp=0.92±0.05\Gamma_{exp}=0.92\pm 0.05 MeV. Our recent analysis of B1(5721)B_{1}(5721) and Bs1(5830)B_{s1}(5830) also shows that as the 1P1P-wave mixed states their mixing angle more favors θ1P=(55±5)\theta_{1P}=-(55\pm 5)^{\circ} li:2021hss . Thus, for the heavy-light mesons, the mixing angle of the 1P1P-wave states seems to be close to the value θ1P=54.7\theta_{1P}=-54.7^{\circ} extracted in the heavy quark limit. It should be mentioned that it is still a puzzle for the mixing between the P11{}^{1}P_{1} and P13{}^{3}P_{1} states, which cannot be well understood within the various potential models.

The simple potential model overestimates the mass of the low-mass Ds(1P1)D_{s}(1P_{1}) state if considering Ds1(2460)D_{s1}(2460) as a candidate of it. The mass calculated with lattice QCD also is significantly higher than that of Ds1(2460)D_{s1}(2460) Moir:2013ub . The coupled-channel effects may play an important role because of the closeness behavior for the bare cs¯c\bar{s} and DKD^{*}K threshold. Recently, Zhi Yang et al. studied these effects within the Hamiltonian effective field theory by combining it with the quark model Yang:2021tvc . They found that the Ds1(2460)D_{s1}(2460) resonance may consist of the Ds(1P1)D_{s}(1P_{1}) state, but at the same time couples to the DKD^{*}K channel Yang:2021tvc . In the present work, including the DKD^{*}K loop we also study the coupled-channel effects on the mass shifts of the two 1+1^{+} DsD_{s} states. Our results are shown in Fig. 5. It is found that there is a 40\sim 40 MeV correction to the bare mass of Ds(1P1)D_{s}(1P_{1}) due to a strong SS-wave DKD^{*}K interaction. The physical mass of the dressed Ds(1P1)D_{s}(1P_{1}) is reduced to Mphy=2488M_{phy}=2488 MeV, which is close to the measured mass of Ds1(2460)D_{s1}(2460). It should be mentioned that coupled-channel effects on Ds1(2536)D_{s1}(2536) are negligibly small due to its weak coupling with the DKD^{*}K channel. Our coupled-channel analysis within the chiral quark model is consistent with that in Ref. Yang:2021tvc . Since the mass of Ds1(2460)D_{s1}(2460) is below the DKD^{*}K threshold, it becomes an extremely narrow state.

IV.5 2P2P-wave states

Table 10: Partial decay widths and their branching fractions for the 2P2P-wave charmed mesons.
D(23P0)[2849]¯\underline{~{}~{}~{}~{}~{}~{}D(2^{3}P_{0})[2849]~{}~{}~{}~{}~{}~{}} D(23P2)[2955]¯\underline{~{}~{}~{}~{}~{}~{}D(2^{3}P_{2})[2955]~{}~{}~{}~{}~{}~{}} D(2P1)[2900]¯\underline{~{}~{}~{}~{}~{}~{}D(2P_{1})[2900]~{}~{}~{}~{}~{}~{}} D(2P1)[2936]¯\underline{~{}~{}~{}~{}~{}~{}D(2P^{\prime}_{1})[2936]~{}~{}~{}~{}~{}~{}}
Channel Γi\Gamma_{i} (MeV) Br (%) Γi\Gamma_{i} (MeV) Br (%) Γi\Gamma_{i} (MeV) Br (%) Γi\Gamma_{i} (MeV) Br (%)
DπD\pi 609.8 56.6 52.0 26.9
DsKD_{s}K 190.8 17.7 6.0 3.1
DηD\eta 82.8 7.7 2.9 1.5
DηD\eta^{\prime} 17.8 1.7 0.03 0.02
DπD^{*}\pi 23.7 12.3 199.5 31.4 77.2 32.0
DsKD_{s}^{*}K 1.0 0.5 53.6 8.4 21.3 8.8
DηD^{*}\eta 0.5 0.3 27.6 4.3 10.6 4.4
D0(2550)πD_{0}(2550)\pi 151.0 14.0 7.5 3.9
D(23S1)(2627)πD(2^{3}S_{1})(2627)\pi 5.9 3.1 88.9 14.0 45.6 18.9
D0(2300)πD_{0}^{*}(2300)\pi 22.8 3.6 2.0 0.8
Ds(13P0)(2409)KD_{s}(1^{3}P_{0})(2409)K 6×1046\times 10^{-4} 2×1042\times 10^{-4}
D0(2300)ηD_{0}^{*}(2300)\eta 0.7 0.1 1×1051\times 10^{-5} 4×1064\times 10^{-6}
D2(2460)πD_{2}^{*}(2460)\pi 9.4 4.9 21.5 3.4 23.6 9.8
D1(2430)πD_{1}(2430)\pi 2.5 0.2 4.1 2.1 3.2 0.5 11.3 4.7
D1(2420)πD_{1}(2420)\pi 14.7 1.4 6.4 3.3 2.2 0.3 1.8 0.7
DρD\rho 14.6 7.5 138.4 21.8 4.7 1.9
DωD\omega 4.3 2.2 44.4 7.0 1.7 0.7
DsKD_{s}K^{*} 0.4 0.2 25.6 4.0 5.1 2.1
DρD^{*}\rho 6.5 0.6 41.4 21.4 5.0 0.8 28.7 11.9
DωD^{*}\omega 2.3 0.2 13.3 6.9 1.4 0.2 7.7 3.2
Total 1078.2\mathbf{1078.2} 𝟏𝟎𝟎\mathbf{100} 193.4\mathbf{193.4} 𝟏𝟎𝟎\mathbf{100} 634.8\mathbf{634.8} 𝟏𝟎𝟎\mathbf{100} 241.3\mathbf{241.3} 𝟏𝟎𝟎\mathbf{100}
Table 11: Partial decay widths and their branching fractions for the 2P2P-wave charmed-strange mesons.
Ds(23P0)[2940]¯\underline{~{}~{}~{}~{}~{}~{}D_{s}(2^{3}P_{0})[2940]~{}~{}~{}~{}~{}~{}} Ds(23P2)[3053]¯\underline{~{}~{}~{}~{}~{}~{}D_{s}(2^{3}P_{2})[3053]~{}~{}~{}~{}~{}~{}} Ds(2P1)[3002]¯\underline{~{}~{}~{}~{}~{}~{}D_{s}(2P_{1})[3002]~{}~{}~{}~{}~{}~{}} Ds(2P1)[3026]¯\underline{~{}~{}~{}~{}~{}~{}D_{s}(2P^{\prime}_{1})[3026]~{}~{}~{}~{}~{}~{}}
Channel Γi\Gamma_{i} (MeV) Br (%) Γi\Gamma_{i} (MeV) Br (%) Γi\Gamma_{i} (MeV) Br (%) Γi\Gamma_{i} (MeV) Br (%)
   DKDK 549.8 78.3 30.9 29.8
   DsηD_{s}\eta 117.4 16.7 3.0 2.9
   DsηD_{s}\eta^{\prime} 18.0 2.6 0.03 0.03
   DKD^{*}K 9.1 8.8 176.5 44.4 77.4 56.7
   DsηD_{s}^{*}\eta 0.4 0.4 36.7 9.2 16.6 12.2
   D0(2300)KD_{0}^{*}(2300)K 18.7 4.7 0.2 0.1
   Ds(13P0)(2409)ηD_{s}(1^{3}P_{0})(2409)\eta 0.6 0.2 4×1034\times 10^{-3} 3×1033\times 10^{-3}
   D2(2460)KD_{2}^{*}(2460)K 2.0 1.9 11.6 2.9 4.0 2.9
   D1(2430)KD_{1}(2430)K 0.5 0.07 6.7 6.5 0.6 0.2 4.4 3.2
   D1(2420)KD_{1}(2420)K 3.9 0.6 2.1 2.0 1.1 0.3 7.8 5.7
   DKDK^{*} 10.2 9.8 137.9 34.7 5.2 3.8
   DsϕD_{s}\phi 0.09 0.09 11.2 2.8 2.5 1.8
   DKD^{*}K^{*} 13.0 1.9 39.4 38.0 2.5 0.6 18.5 13.5
   Total 702.6\mathbf{702.6} 𝟏𝟎𝟎\mathbf{100} 103.8\mathbf{103.8} 𝟏𝟎𝟎\mathbf{100} 397.4\mathbf{397.4} 𝟏𝟎𝟎\mathbf{100} 136.6\mathbf{136.6} 𝟏𝟎𝟎\mathbf{100}
Table 12: Partial and total decay widths (MeV) of DJ(3000)D_{J}^{*}(3000) as the 23P22^{3}P_{2} state.
DπD\pi DsKD_{s}K DηD\eta DηD\eta^{\prime} D0(2550)πD_{0}(2550)\pi
67.767.7 8.98.9 4.24.2 0.10.1 13.113.1
DπD^{*}\pi DsKD_{s}^{*}K DηD^{*}\eta D(23S1)(2627)πD(2^{3}S_{1})(2627)\pi D2(2460)πD_{2}^{*}(2460)\pi
34.934.9 2.12.1 1.01.0 12.612.6 17.517.5
D1(2430)πD_{1}(2430)\pi D1(2420)πD_{1}(2420)\pi DρD\rho DωD\omega DsKD_{s}K^{*}
5.15.1 10.210.2 23.223.2 7.17.1 1.41.4
DρD^{*}\rho DωD^{*}\omega Total
47.947.9 15.515.5 272.5\mathbf{272.5}
Figure 7: Total decay widths and the main partial decay widths for D(2P1)D(2P^{\prime}_{1}), Ds(2P1)D_{s}(2P^{\prime}_{1}), D(23P2)D(2^{3}P_{2}) and Ds(23P2)D_{s}(2^{3}P_{2}) as functions of their masses.

IV.5.1 23P02^{3}P_{0}

In the DD-meson family, our predicted mass for the D(23P0)D(2^{3}P_{0}) state, M=2849M=2849 MeV, is comparable with the predictions in Refs. Liu:2015uya ; Liu:2016efm ; Ebert:2009ua ; Song:2015fha , however, is about 100 MeV larger than the predictions in Refs. Zeng:1994vj ; Li:2010vx ; Lahde:1999ih . The mass gap between D(23P0)D(2^{3}P_{0}) and D(13P0)D(1^{3}P_{0}) is estimated to be ΔM540\Delta M\simeq 540 MeV, which is consistent with those predicted in Refs. Godfrey:2015dva ; Ebert:2009ua ; Zeng:1994vj . The D(23P0)D(2^{3}P_{0}) may be a very broad state with a width of

Γ1080MeV,\Gamma\simeq 1080\ \ \ \mathrm{MeV}, (38)

and dominantly decays into the DπD\pi, DsKD_{s}K and D0(2550)πD_{0}(2550)\pi final states. More details of the decay properties can be seen in Table 10. In Refs. Xiao:2014ura ; Lu:2014zua , the D(23P0)D(2^{3}P_{0}) is also predicted to be a very broad state with a width of Γ600800\Gamma\simeq 600-800 MeV, although the predicted partial widths show some model dependencies.

In Ref. Sun:2013qca , the authors suggested that the natural parity state DJ(3000)D_{J}^{*}(3000) observed in the DπD\pi final state by the LHCb collaboration LHCb:2013jjb may be explained with D(23P0)D(2^{3}P_{0}) according to their mass and strong decay analysis. However, both our predicted mass and width of D(23P0)D(2^{3}P_{0}), M=2849M=2849 MeV and Γ1080\Gamma\simeq 1080 MeV, are inconsistent with the data Mexp=3008.1±4.0M_{exp}=3008.1\pm 4.0 MeV and Γexp=110.5±11.5\Gamma_{exp}=110.5\pm 11.5 MeV LHCb:2013jjb . According to our prediction, the D(23P0)D(2^{3}P_{0}) may be difficult to be established in experiments due to its rather broad width.

In the DsD_{s}-meson sector, our predicted mass for the Ds(23P0)D_{s}(2^{3}P_{0}), M=2940M=2940 MeV, is comparable with the predictions in Refs. Liu:2016efm ; Zeng:1994vj ; Lahde:1999ih . Our predicted strong decay properties have been shown in Table 11. It is found that the Ds(23P0)D_{s}(2^{3}P_{0}) may be a broad state with a width of

Γ700MeV,\Gamma\simeq 700\ \ \ \mathrm{MeV}, (39)

and dominantly decays into the DKDK and DsηD_{s}\eta final states. The width predicted in the present work is notably than our previous prediction Γ150200\Gamma\simeq 150-200 MeV with a SHO wave function Xiao:2014ura , which indicates that the decay properties of Ds(23P0)D_{s}(2^{3}P_{0}) are very sensitive to the details of its wave function adopted in the calculations.

It should be mentioned that there are strong model dependencies in the strong decay predictions. For example, within the P03{}^{3}P_{0} model the D(23P0)D(2^{3}P_{0}) and Ds(23P0)D_{s}(2^{3}P_{0}) states may be relatively narrow states with a width of 100200\sim 100-200 MeV Godfrey:2015dva .

IV.5.2 23P22^{3}P_{2}

In the DD-meson family, our predicted mass of D(23P2)D(2^{3}P_{2}) is M=2955M=2955 MeV, which is consistent with the predictions in Refs. Li:2010vx ; Liu:2015uya ; Liu:2016efm ; Godfrey:2015dva ; Zeng:1994vj . Our predicted strong decay properties have been shown in Table 10. We find that the D(23P2)D(2^{3}P_{2}) state is a relatively narrow state with a width of

Γ190MeV,\Gamma\simeq 190\ \ \ \mathrm{MeV}, (40)

and dominantly decays into the DπD\pi and DρD^{*}\rho final states with branching fractions 26.9%26.9\% and 21.4%21.4\%, respectively. There are some differences between the predictions in this work and those obtained with the SHO wave function in our previous work Xiao:2014ura , where the decay rate into DπD\pi is tiny. It indicates that the decay properties are sensitive to the details of the wave function of D(23P2)D(2^{3}P_{2}). Furthermore, to see the dependence of the decay properties of D(23P2)D(2^{3}P_{2}) on its mass, we also plot the main partial widths and the total width as functions of the mass in Fig. 7. It is found that the partial and total decay widths increase smoothly with the mass. With a mass uncertainty of 5050 MeV, the total width of D(23P2)D(2^{3}P_{2}) varies in the range of 140260\sim 140-260 MeV. The decay properties predicted within various models show large model dependencies. Within the P03{}^{3}P_{0} model the width of D(23P2)D(2^{3}P_{2}) is predicted to be in the range of Γ15120\Gamma\simeq 15-120 MeV Godfrey:2015dva ; Sun:2013qca ; Song:2015fha .

From the point of view of mass, the DJ(3000)D_{J}^{*}(3000) resonance with a natural parity observed by the LHCb collaboration in 2013 LHCb:2013jjb might be a candidate of the D(23P2)D(2^{3}P_{2}) state. Our predicted mass M=2955M=2955 MeV of D(23P2)D(2^{3}P_{2}) is close to the measured value Mexp=3008.1±4.0M_{exp}=3008.1\pm 4.0 MeV of DJ(3000)D_{J}^{*}(3000). Taking DJ(3000)D_{J}^{*}(3000) as the D(23P2)D(2^{3}P_{2}) state, we further study its strong decay properties, our results are listed in Table 12. It is found that DJ(3000)D_{J}^{*}(3000) should dominantly decay into the DπD\pi channel with a branching fraction of 25%25\%, which is consistent with the observations. However, our predicted width,

Γ270MeV,\Gamma\simeq 270\ \ \ \mathrm{MeV}, (41)

is notably larger than the data Γexp=110.5±11.5\Gamma_{exp}=110.5\pm 11.5 MeV measured by LHCb LHCb:2013jjb . The DJ(3000)D_{J}^{*}(3000) as the D(23P2)D(2^{3}P_{2}) assignment is suggested in Refs. Gandhi:2019lta ; Liu:2013maa ; Liu:2015uya ; Liu:2016efm . If DJ(3000)D_{J}^{*}(3000) corresponds to D(23P2)D(2^{3}P_{2}) indeed, it may have a large decay rate into the DπD\pi channel as well, the partial width ratio between DπD^{*}\pi and DπD\pi is predicted to be

R=Γ(Dπ)Γ(Dπ)0.52,R=\frac{\Gamma(D^{*}\pi)}{\Gamma(D\pi)}\simeq 0.52, (42)

which may be useful to test the nature of DJ(3000)D_{J}^{*}(3000).

In the DsD_{s}-meson sector, the mass of Ds(23P2)D_{s}(2^{3}P_{2}) is predicted to be M=3053M=3053 MeV, which is comparable with the predictions in Refs. Godfrey:2015dva ; Ebert:2009ua ; Li:2010vx . Our predicted strong decay properties have been shown in Table 11. It is found that the Ds(23P2)D_{s}(2^{3}P_{2}) may be a relatively narrow state with a width of

Γ100MeV,\Gamma\simeq 100\ \ \ \mathrm{MeV}, (43)

and dominantly decays into the DKD^{*}K^{*} and DKDK final states with branching fractions 38%\sim 38\% and 30%\sim 30\% respectively. There may be a sizeable decay rate (10%\sim 10\%) into the DKDK^{*} channel as well. The DKDK, DKDK^{*} and DKD^{*}K^{*} are also predicted to be the main decay channels in the other works Godfrey:2015dva ; Ferretti:2015rsa , although the predicted partial width ratios are very different with each other. There are some differences between the predictions in this work and those obtained with the SHO wave function in our previous work Xiao:2014ura , where the decay rate into DKDK is tiny. To see the dependence of the decay properties of Ds(23P2)D_{s}(2^{3}P_{2}) on its mass, we also plot the main partial widths and the total width as functions of the mass in Fig. 7. It is found that the partial and total decay widths increase smoothly with the mass. With a mass uncertainty of 5050 MeV, the total width of Ds(23P2)D_{s}(2^{3}P_{2}) varies in the range of 70140\sim 70-140 MeV. It should be mentioned that the typical mass gap between Ds(23P2)D_{s}(2^{3}P_{2}) and D(23P2)D(2^{3}P_{2}) is around 100 MeV. If DJ(3000)D_{J}^{*}(3000) corresponds to D(23P2)D(2^{3}P_{2}) indeed, the mass of Ds(23P2)D_{s}(2^{3}P_{2}) is most likely to be 3100\sim 3100 MeV. Searching for the missing Ds(23P2)D_{s}(2^{3}P_{2}) may be helpful to understand the nature of DJ(3000)D_{J}^{*}(3000). To establish the missing Ds(23P2)D_{s}(2^{3}P_{2}) state, the main decay channels, such as DKDK^{*} and DKDK, are worth to observing in future experiments.

IV.5.3 2P12P_{1} and 2P12P^{\prime}_{1}

The physical states 2P12P_{1} and 2P12P^{\prime}_{1} are mixed states between states 21P12^{1}P_{1} and 23P12^{3}P_{1} via the following mixing scheme:

(2P12P1)=(cosθ2Psinθ2Psinθ2Pcosθ2P)(21P123P1).\left(\begin{array}[]{c}2P_{1}\\ 2P^{\prime}_{1}\\ \end{array}\right)=\left(\begin{array}[]{cc}\cos\theta_{2P}&\sin\theta_{2P}\\ -\sin\theta_{2P}&\cos\theta_{2P}\\ \end{array}\right)\left(\begin{array}[]{c}2^{1}P_{1}\\ 2^{3}P_{1}\\ \end{array}\right). (44)

In this work, the 2P12P_{1} and 2P12P^{\prime}_{1} correspond to the low-mass and high-mass mixed states, respectively.

In the DD-meson family, the masses for the two mixed states D(2P1)D(2P_{1}) and D(2P1)D(2P^{\prime}_{1}) are determined to be M=2900M=2900 MeV and M=2936M=2936 MeV, respectively. The mass splitting between D(2P1)D(2P_{1}) and D(2P1)D(2P^{\prime}_{1}) is estimated to be ΔM36\Delta M\simeq 36 MeV, which is close to the predictions in Refs. Li:2010vx ; Godfrey:2015dva . The mixing angle θ2P=23.5\theta_{2P}=-23.5^{\circ} determined in this work is similar to the determinations in Refs. Lu:2014zua ; Godfrey:2015dva . Our predicted strong decay properties have been shown in Table 10. The low mass state D(2P1)D(2P_{1}) should be a broad state with a width of about Γ600\Gamma\sim 600 MeV, while the high mass state D(2P1)D(2P_{1}^{\prime}) is a relatively narrow state with a width of

Γ240MeV.\Gamma\simeq 240\ \ \ \mathrm{MeV}. (45)

Both D(2P1)D(2P_{1}) and D(2P1)D(2P^{\prime}_{1}) have large decay rates into the DπD^{*}\pi, DηD^{*}\eta, DsKD_{s}^{*}K, and D(23S1)πD(2^{3}S_{1})\pi channels. To see the dependence of the decay properties of D(2P1)D(2P_{1}^{\prime}) on its mass, we also plot the main partial widths and the total width as functions of the mass in Fig. 7. It is found that the partial and total decay widths increase smoothly with the mass. With a mass uncertainty of 5050 MeV, the total width of D(2P1)D(2P_{1}^{\prime}) varies in the range 200300\sim 200-300 MeV. It should be mentioned that the predicted decay properties strongly depend on the approaches adopted in the literature Xiao:2014ura ; Lu:2014zua ; Godfrey:2015dva ; Song:2015fha .

It is interesting to find that the DJ(3000)0D_{J}(3000)^{0} resonance observed in the D+πD^{*+}\pi^{-} channel at LHCb LHCb:2013jjb might be a good candidate of the high mass mixed state D(2P1)D(2P^{\prime}_{1}). With this assignment, both our predicted mass and width are consistent with the data Mexp=2972±9M_{exp}=2972\pm 9 MeV and Γexp=188±45\Gamma_{exp}=188\pm 45 MeV LHCb:2013jjb . The D(2P1)D(2P^{\prime}_{1}) mainly decays into DπD^{*}\pi and D(23S1)πD(2^{3}S_{1})\pi channels, which can naturedly explain why DJ(3000)0D_{J}(3000)^{0} is first observed in the D+πD^{*+}\pi^{-} channel. It should be mentioned that in our previous work the study with the SHO wave function shows that DJ(3000)0D_{J}(3000)^{0} may favor the low mass mixed state D(2P1)D(2P_{1}) Xiao:2014ura . However, in the present work, with this assignment both our predicted mass and width are inconsistent with the observations. To further clarify the nature of DJ(3000)0D_{J}(3000)^{0}, the other decay modes, such as DηD^{*}\eta, DsKD_{s}^{*}K, and D(23S1)πD(2^{3}S_{1})\pi, are worth to observing in future experiments.

In the DsD_{s}-meson sector, the masses of the two mixed states Ds(2P1)D_{s}(2P_{1}) and Ds(2P1)D_{s}(2P^{\prime}_{1}) are predicted to be M=3002M=3002 MeV and M=3026M=3026 MeV, respectively. The mass splitting between Ds(2P1)D_{s}(2P_{1}) and Ds(2P1)D_{s}(2P^{\prime}_{1}) is estimated to be ΔM24\Delta M\simeq 24 MeV, which is consistent with that of Ref. Godfrey:2015dva . The mixing angle θ2P=21.0\theta_{2P}=-21.0^{\circ} is similar to that for the charmed sector. Our predicted strong decay properties have been shown in Table 11. It is seen that the low mass state Ds(2P1)D_{s}(2P_{1}) should be a broad state with a width of

Γ400MeV,\Gamma\simeq 400\ \ \ \mathrm{MeV}, (46)

and dominantly decays into DKD^{*}K, DKDK^{*}, and DsηD^{*}_{s}\eta channels. While the high mass state Ds(1P1)D_{s}(1P_{1}^{\prime}) is a relatively narrow state with a width of

Γ140MeV,\Gamma\simeq 140\ \ \ \mathrm{MeV}, (47)

and dominantly decays into DKD^{*}K and DsηD^{*}_{s}\eta channels. Finally, it should mentioned that if the DJ(3000)0D_{J}(3000)^{0} corresponds to the high mass mixed state D(2P1)D(2P^{\prime}_{1}), by combining the typical mass splitting ΔM100\Delta M\simeq 100 MeV between the charmed and charmed-strange mesons, as its flavor partner, the mass of Ds(2P1)D_{s}(2P^{\prime}_{1}) is estimated to be M=3072M=3072 MeV, while the low mass state Ds(2P1)D_{s}(2P_{1}) may have a mass around M=3050M=3050 MeV. To see the dependence of the decay properties of Ds(2P1)D_{s}(2P_{1}^{\prime}) on its mass, we also plot the main partial widths and the total width as functions of the mass in Fig. 7. It is found that the partial and total decay widths increase smoothly with the mass. With a mass uncertainty of 5050 MeV, the total width of Ds(2P1)D_{s}(2P_{1}^{\prime}) varies in the range 120180\sim 120-180 MeV.

In 2009, the DsJ(3040)+D_{sJ}(3040)^{+} resonance with mass M=3044±85+30M=3044\pm 8^{+30}_{-5} MeV and width Γ=239±3542+46\Gamma=239\pm 35^{+46}_{-42} MeV was observed in the DKD^{*}K channel by the BaBar collaboration BaBar:2009rro . The DsJ(3040)+D_{sJ}(3040)^{+} may be favor the 2P2P mixed states in the DsD_{s}-meson family Godfrey:2015dva ; Sun:2009tg ; Chen:2009zt ; Xiao:2014ura ; Song:2015nia ; Colangelo:2010te ; Li:2017zng . Comparing our predicted mass and decay properties with the data, we find that the DsJ(3040)D_{sJ}(3040) seems to more favor the low mass state Ds(2P1)D_{s}(2P_{1}), however, the assignment of the Ds(2P1)D_{s}(2P_{1}^{\prime}) cannot be excluded due to the large uncertainties of the data. The partial width ratio between DKD^{*}K and DKDK^{*} can be used to test the nature of DsJ(3040)+D_{sJ}(3040)^{+}. For the Ds(2P1)D_{s}(2P_{1}) assignment, the partial width ratio is predicted to be

R=Γ(DK)Γ(DK)1.28,R=\frac{\Gamma(D^{*}K)}{\Gamma(DK^{*})}\simeq 1.28, (48)

which is different from the value R14.9R\simeq 14.9 for the Ds(2P1)D_{s}(2P^{\prime}_{1}) assignment. It should be emphasized that the DsJ(3040)+D_{sJ}(3040)^{+} observed in the DKD^{*}K channel may be contributed by both Ds(2P1)D_{s}(2P_{1}) and Ds(2P1)D_{s}(2P^{\prime}_{1}), since these two states have similar masses and dominantly decay into DKD^{*}K channel with a large branching fraction of (4060)%\sim(40-60)\%. To establish the Ds(2P1)D_{s}(2P_{1}) and Ds(2P1)D_{s}(2P^{\prime}_{1}) states and uncover the nature of DsJ(3040)+D_{sJ}(3040)^{+}, more accurate observations in these dominant channels, such as DKD^{*}K, DsηD^{*}_{s}\eta and DKDK^{*}, are needed in future experiments.

IV.6 1D1D-wave states

Table 13: Partial decay widths and their branching fractions for the 1D1D-wave charmed mesons.
D(13D1)[2754]¯\underline{~{}~{}~{}~{}~{}~{}D(1^{3}D_{1})[2754]~{}~{}~{}~{}~{}~{}} D(13D3)asD3(2750)¯\underline{~{}~{}~{}~{}~{}~{}D(1^{3}D_{3})~{}as~{}D_{3}^{*}(2750)~{}~{}~{}~{}~{}~{}} D(1D2)[2755]¯\underline{~{}~{}~{}~{}~{}~{}D(1D_{2})[2755]~{}~{}~{}~{}~{}~{}} D(1D2)asD2(2740)¯\underline{~{}~{}~{}~{}~{}~{}D(1D^{\prime}_{2})~{}as~{}D_{2}(2740)~{}~{}~{}~{}~{}~{}}
Channel Γi\Gamma_{i} (MeV) Br (%) Γi\Gamma_{i} (MeV) Br (%) Γi\Gamma_{i} (MeV) Br (%) Γi\Gamma_{i} (MeV) Br (%)
DπD\pi 138.9 29.9 18.5 39.3
DsKD_{s}K 33.3 7.2 1.0 2.1
DηD\eta 18.3 3.9 0.8 1.7
DπD^{*}\pi 45.1 9.7 17.5 37.2 91.6 35.4 30.4 53.0
DsKD_{s}^{*}K 6.8 1.5 0.3 0.6 17.5 6.8 0.9 1.6
DηD^{*}\eta 4.7 1.0 0.2 0.4 12.0 4.6 0.8 1.4
D0(2550)πD_{0}(2550)\pi 0.01 2×1032\times 10^{-3} 5×1045\times 10^{-4} 1×1031\times 10^{-3}
D(23S1)(2627)πD(2^{3}S_{1})(2627)\pi 3×1073\times 10^{-7} 6×1076\times 10^{-7}
D0(2300)πD_{0}^{*}(2300)\pi 0.02 8×1038\times 10^{-3} 8.1 14.1
D2(2460)πD_{2}^{*}(2460)\pi 1.4 0.3 3.3 7.0 117.1 45.3 4.4 7.7
D1(2430)πD_{1}(2430)\pi 26.4 5.7 5.0 10.6 0.5 0.2 0.1 0.2
D1(2420)πD_{1}(2420)\pi 189.6 40.6 0.03 0.06 0.2 0.08 5.2 9.1
DρD\rho 0.2 0.04 0.4 0.8 15.2 5.9 5.8 10.1
DωD\omega 0.04 9×1039\times 10^{-3} 0.09 0.2 4.3 1.7 1.7 3.0
Total 464.7\mathbf{464.7} 𝟏𝟎𝟎\mathbf{100} 47.1\mathbf{47.1} 𝟏𝟎𝟎\mathbf{100} 258.4\mathbf{258.4} 𝟏𝟎𝟎\mathbf{100} 57.4\mathbf{57.4} 𝟏𝟎𝟎\mathbf{100}
Table 14: Partial decay widths and their branching fractions for the 1D1D-wave charmed-strange mesons.
Ds(13D1)asDs1(2860)¯\underline{~{}~{}~{}~{}~{}~{}D_{s}(1^{3}D_{1})~{}as~{}D_{s1}^{*}(2860)~{}~{}~{}~{}~{}~{}} Ds(13D3)asDs3(2860)¯\underline{~{}~{}~{}~{}~{}~{}D_{s}(1^{3}D_{3})~{}as~{}D_{s3}^{*}(2860)~{}~{}~{}~{}~{}~{}} Ds(1D2)[2857]¯\underline{~{}~{}~{}~{}~{}~{}D_{s}(1D_{2})[2857]~{}~{}~{}~{}~{}~{}} Ds(1D2)[2911]¯\underline{~{}~{}~{}~{}~{}~{}D_{s}(1D^{\prime}_{2})[2911]~{}~{}~{}~{}~{}~{}}
Channel Γi\Gamma_{i} (MeV) Br (%) Γi\Gamma_{i} (MeV) Br (%) Γi\Gamma_{i} (MeV) Br (%) Γi\Gamma_{i} (MeV) Br (%)
   DKDK 132.4 63.7 11.8 54.4
   DsηD_{s}\eta 25.3 12.2 0.8 3.7
   DKD^{*}K 43.7 21.0 8.6 39.6 107.1 81.5 28.4 64.5
   DsηD_{s}^{*}\eta 6.4 3.1 0.3 1.4 10.5 8.0 1.8 4.1
   D0(2300)KD_{0}^{*}(2300)K 6×1036\times 10^{-3} 5×1035\times 10^{-3} 3.2 7.3
   DKDK^{*} 0.1 0.05 0.2 0.9 13.8 10.5 10.6 24.1
   Total 207.9\mathbf{207.9} 𝟏𝟎𝟎\mathbf{100} 21.7\mathbf{21.7} 𝟏𝟎𝟎\mathbf{100} 131.4\mathbf{131.4} 𝟏𝟎𝟎\mathbf{100} 44.0\mathbf{44.0} 𝟏𝟎𝟎\mathbf{100}

IV.6.1 13D11^{3}D_{1}

In the DD-meson family, our predicted mass of D(13D1)D(1^{3}D_{1}), M=2754M=2754 MeV, is consistent with that predicted in Refs. Ebert:2009ua ; Li:2010vx ; Lahde:1999ih ; Song:2015fha . From Table 13, it is found that the D(13D1)D(1^{3}D_{1}) may be a broad state with a width of

Γ460MeV,\Gamma\simeq 460\ \ \ \mathrm{MeV}, (49)

and dominantly decays into the D1(2420)πD_{1}(2420)\pi and DπD\pi channels with branching fractions 41%\sim 41\% and 30%\sim 30\%, respectively. Furthermore, the decay rates into DsKD_{s}K, DπD^{*}\pi and D1(2430)πD_{1}(2430)\pi are also notable, their branching fractions can reach up to 8%\sim 8\%. In the literature, the D(13D1)D(1^{3}D_{1}) state is also predicted to be a broad state with a width of Γ300550\Gamma\simeq 300\sim 550 MeV Zhong:2010vq ; Lu:2014zua ; Chen:2015lpa ; Close:2005se ; Song:2015fha .

In 2015, the LHCb collaboration observed a JP=1J^{P}=1^{-} resonance D1(2760)D_{1}^{*}(2760) in the D+πD^{+}\pi^{-} channel by using the BD+KπB^{-}\to D^{+}K^{-}\pi^{-} process LHCb:2015eqv . The resonance mass and width are determined to be M=2781±31M=2781\pm 31 MeV and Γ=177±53\Gamma=177\pm 53 MeV, respectively. From the point of view of the mass, JPJ^{P} numbers and decay modes, the D1(2760)D_{1}^{*}(2760) favors the D(13D1)D(1^{3}D_{1}) assignment, however, our predicted width is about two times larger than the measured one. The 23S113D12^{3}S_{1}-1^{3}D_{1} mixing may overcome this problem, which will be further discussed later.

In the DsD_{s}-meson sector, the mass of Ds(13D1)D_{s}(1^{3}D_{1}) is predicted to be M=2843M=2843 MeV, which is comparable with the predictions in Refs. Song:2015nia ; Godfrey:2015dva ; Zeng:1994vj ; Lahde:1999ih . Our predicted strong decay properties have been shown in Table 14. It is found that the Ds(13D1)D_{s}(1^{3}D_{1}) may have a medium width of

Γ210MeV,\Gamma\simeq 210\ \ \ \mathrm{MeV}, (50)

and mainly decays into DKDK, DKD^{*}K and DsηD_{s}\eta channels with branching fractions 64%64\%, 21%21\% and 12%12\%, respectively. Our predicted strong decay properties are in good agreement with the predictions with the P03{}^{3}P_{0} model in Refs. Song:2015nia ; Song:2014mha ; Godfrey:2015dva .

In 2014, the LHCb collaboration observed a new JP=1J^{P}=1^{-} resonance Ds1(2860)D_{s1}^{*}(2860) in the D¯0K\bar{D}^{0}K^{-} final state by using the Bs0D¯0Kπ+B_{s}^{0}\to\bar{D}^{0}K^{-}\pi^{+} process LHCb:2014ott . Its measured mass and width are M=2859±12±24M=2859\pm 12\pm 24 MeV and Γ=159±23±77\Gamma=159\pm 23\pm 77 MeV, respectively. From the point of view of the mass, JPJ^{P} numbers, decay modes and width, the Ds1(2860)D_{s1}^{*}(2860) favors the Ds(13D1)D_{s}(1^{3}D_{1}) assignment. It should be mentioned that the possibility of the Ds1(2860)D_{s1}^{*}(2860) resonance as a mixed state between 23S12^{3}S_{1} and 13D11^{3}D_{1} cannot be excluded, which will be further discussed later.

IV.6.2 13D31^{3}D_{3}

In the DD-meson family, the mass of D(13D3)D(1^{3}D_{3}) is predicted to be M=2782M=2782 MeV, which is consistent with that predicted in Refs. Godfrey:2015dva ; Zeng:1994vj ; Song:2015fha . From Table 13, it is found that the D(13D3)D(1^{3}D_{3}) state is narrow state with a width of Γ47\Gamma\simeq 47 MeV, and dominantly decays into the DπD\pi and DπD^{*}\pi final states. The partial width ratio between DπD\pi and DπD^{*}\pi channels is predicted to be

R=Γ(Dπ)Γ(Dπ)1.1.R=\frac{\Gamma(D\pi)}{\Gamma(D^{*}\pi)}\simeq 1.1. (51)

Our predicted width and dominant decay modes for D(13D3)D(1^{3}D_{3}) are consistent with the predictions in the literature Wang:2016enc ; Godfrey:2015dva ; Chen:2015lpa ; Yu:2016mez ; Yu:2014dda ; Li:2010vx , while our predicted partial ratio R=Γ(Dπ)/Γ(Dπ)1.1R=\Gamma(D\pi)/\Gamma(D^{*}\pi)\simeq 1.1 is similar to the predictions in Refs. Godfrey:2015dva ; Chen:2015lpa ; Li:2010vx ; Lu:2014zua ; Song:2015fha .

The D3(2750)D_{3}^{*}(2750) resonance listed in RPP Zyla:2020zbs favors the assignment of D(13D3)D(1^{3}D_{3}). This resonance was first observed in the DπD\pi and/or DπD^{*}\pi channels by the BaBar collaboration in 2010 BaBar:2010zpy , and confirmed by the LHCb collaboration by using the pppp collision processes LHCb:2013jjb and BB decay processes  Aaij:2015sqa ; Aaij:2016fma ; Aaij:2019sqk . The spin-parity numbers are determined to be JP=3J^{P}=3^{-} by the LHCb collaboration  Aaij:2015sqa . The average measured mass and width of D3(2750)D_{3}^{*}(2750) are Mexp=2763.1±3.2M_{exp}=2763.1\pm 3.2 MeV and Γexp=66±5\Gamma_{exp}=66\pm 5 MeV Zyla:2020zbs . As the assignment of D(13D3)D(1^{3}D_{3}), the mass and width of D3(2750)D_{3}^{*}(2750) are in good agreement with the theoretical predictions. However, our predicted ratio R=Γ(Dπ)/Γ(Dπ)1.1R=\Gamma(D\pi)/\Gamma(D^{*}\pi)\simeq 1.1 is notably larger than the measured value Rexp=0.42±0.16R_{exp}=0.42\pm 0.16 at BaBar BaBar:2010zpy . To confirm the nature of D3(2750)D_{3}^{*}(2750), the partial width ratio R=Γ(Dπ)/Γ(Dπ)R=\Gamma(D\pi)/\Gamma(D^{*}\pi) is expected to be further measured in future experiments.

In the DsD_{s}-meson sector, the mass of Ds(13D3)D_{s}(1^{3}D_{3}) is predicted to be M=2882M=2882 MeV, while the mass gap between Ds(13D3)D_{s}(1^{3}D_{3}) and D(13D3)D(1^{3}D_{3}) is estimated to be ΔM100\Delta M\simeq 100 MeV. Our predictions are consistent with those predicted in Refs. Wang:2016enc ; Song:2015nia ; Zeng:1994vj ; Lahde:1999ih . The Ds(13D3)D_{s}(1^{3}D_{3}) state may be a very narrow state with a width of Γ22\Gamma\simeq 22 MeV, and mainly decays into DKDK and DKD^{*}K final states. The strong decay properties predicted in this work are consistent with our previous predictions with SHO wave functions Zhong:2009sk and other predictions in the literature Chen:2015lpa ; Wang:2016enc ; Godfrey:2015dva ; Godfrey:2014fga ; Zhang:2006yj ; Li:2009qu . It should be mention that there are obvious model dependencies in the predictions of the partial width ratio Γ(DK)/Γ(DK)\Gamma(D^{*}K)/\Gamma(DK) between DKDK and DKD^{*}K, which scatters in the range of 0.40.7\sim 0.4-0.7.

In 2006, the BaBar collaboration observed a new charmed-strange meson structure DsJ(2860)D_{sJ}(2860) in the DKDK channel with mass of Mexp=2856.6±6.5M_{exp}=2856.6\pm 6.5 MeV and a width of Γexp=47±17\Gamma_{exp}=47\pm 17 MeV BaBar:2006gme , which is consistent with the resonance observed in the DKD^{*}K channel in 2009 BaBar:2009rro . In 2014, the LHCb collaboration further studied the structure around 2.862.86 GeV in the Bs0D¯0Kπ+B_{s}^{0}\to\bar{D}^{0}K^{-}\pi^{+} decay LHCb:2014ott ; LHCb:2014ioa . They found two overlapping spin-1 resonance Ds3(2860)D_{s3}^{*}(2860) and spin-3 resonance Ds3(2860)D_{s3}^{*}(2860) in the D¯0K\bar{D}^{0}K^{-} final state. The resonance parameters of Ds3(2860)D_{s3}^{*}(2860), Mexp=2860.5±2.6±2.5±6.0M_{exp}=2860.5\pm 2.6\pm 2.5\pm 6.0 MeV and Γexp=53±7±4±6\Gamma_{exp}=53\pm 7\pm 4\pm 6 MeV extracted by LHCb LHCb:2014ott ; LHCb:2014ioa , are consistent with those of DsJ(2860)D_{sJ}(2860) extracted by BaBar. The spin-3 resonance Ds3(2860)D_{s3}^{*}(2860) can be assigned to the charmed-strange state Ds(13D3)D_{s}(1^{3}D_{3}). As this assignment, both the mass and decay properties of Ds3(2860)D_{s3}^{*}(2860) can be reasonably understood within the quark model. It should be mentioned that the DKDK channel is the optimal channel for establishing spin-1 state Ds(13D1)D_{s}(1^{3}D_{1}) and spin-3 state Ds(13D3)D_{s}(1^{3}D_{3}) due to no contributions from the other two 1D1D-wave states with JP=2J^{P}=2^{-}.

IV.6.3 1D21D_{2} and 1D21D^{\prime}_{2}

The physical states 1D21D_{2} and 1D21D^{\prime}_{2} are mixed states between states 11D21^{1}D_{2} and 13D21^{3}D_{2} via the following mixing scheme:

(1D21D2)=(cosθ1Dsinθ1Dsinθ1Dcosθ1D)(11D213D2).\left(\begin{array}[]{c}1D_{2}\\ 1D^{\prime}_{2}\\ \end{array}\right)=\left(\begin{array}[]{cc}\cos\theta_{1D}&\sin\theta_{1D}\\ -\sin\theta_{1D}&\cos\theta_{1D}\\ \end{array}\right)\left(\begin{array}[]{c}1^{1}D_{2}\\ 1^{3}D_{2}\\ \end{array}\right). (52)

In this work, the 1D21D_{2} and 1D21D^{\prime}_{2} correspond to the low-mass and high-mass mixed states, respectively.

In the DD-meson family, the masses of the two mixed states D(1D2)D(1D_{2}) and D(1D2)D(1D^{\prime}_{2}) are predicted to be M=2755M=2755 MeV and M=2827M=2827 MeV, respectively. The mass splitting between D(1D2)D(1D_{2}) and D(1D2)D(1D^{\prime}_{2}) is estimated to be ΔM70\Delta M\simeq 70 MeV, which is slightly smaller that of ΔM86\Delta M\simeq 86 MeV predicted in Li:2010vx , however, is about a factor of 2 larger than ΔM40\Delta M\sim 40 MeV predicted in Refs. Ebert:2009ua ; Godfrey:2015dva ; Zeng:1994vj ; Lahde:1999ih ; Lu:2014zua . Our predicted mixing angle between D(1D2)D(1D_{2}) and D(1D2)D(1D^{\prime}_{2}), θ1D=40.2\theta_{1D}=-40.2^{\circ}, is similar to the angle determined within the relativized quark model Ebert:2009ua ; Lu:2014zua . The predicted strong decay properties of both D(1D2)D(1D_{2}) and D(1D2)D(1D^{\prime}_{2}) are listed in Table 13. It is found that the low mass state D(1D2)D(1D_{2}) may be a broad state with a width of

Γ260MeV,\Gamma\simeq 260\ \ \ \mathrm{MeV}, (53)

and dominantly decays into the DπD^{*}\pi and D2(2460)πD^{*}_{2}(2460)\pi channels with branching fractions 35%\sim 35\% and 45%\sim 45\%, respectively. While the high mass state D(1D2)D(1D^{\prime}_{2}) may have a narrow width of

Γ60MeV,\Gamma\simeq 60\ \ \ \mathrm{MeV}, (54)

and dominantly decays into the DπD^{*}\pi channel.

Some evidence of the mixed states D(1D2)D(1D_{2}) and D(1D2)D(1D^{\prime}_{2}) may have been observed in experiments. In 2010, the BaBar collaboration observed a new resonance D(2750)0D(2750)^{0} with a mass of Mexp=2752.4±4.4M_{exp}=2752.4\pm 4.4 MeV and a width of Γexp=71±17\Gamma_{exp}=71\pm 17 MeV in the D+πD^{*+}\pi^{-} channel BaBar:2010zpy . In 2013, the LHCb collaboration observed an unnatural parity state DJ(2740)0D_{J}(2740)^{0} in the D+πD^{*+}\pi^{-} channel. The measured mass and width M=2737.0±3.5±11.2M=2737.0\pm 3.5\pm 11.2 MeV and Γ=73.2±13.4±25.0\Gamma=73.2\pm 13.4\pm 25.0 MeV at LHCb LHCb:2013jjb are consistent with the observations of D(2750)0D(2750)^{0} at BaBar. The spin-parity numbers are identified as JP=2J^{P}=2^{-}. In 2019, the LHCb collaboration carried out a determination of quantum numbers for several excited charmed mesons by using the BD+ππB^{-}\to D^{*+}\pi^{-}\pi^{-} decays Aaij:2019sqk . In this experiment, the spin-parity numbers of DJ(2740)0D_{J}(2740)^{0} [denoted by D2(2740)0D_{2}(2740)^{0}] was confirmed to be JP=2J^{P}=2^{-}, while the measured mass M=2751±3±7M=2751\pm 3\pm 7 MeV and width Γ=102±6±26\Gamma=102\pm 6\pm 26 MeV are slightly different from their previous measurements LHCb:2013jjb .

In our previous work Zhong:2010vq ; Xiao:2014ura , we predicted that D(2750)0D(2750)^{0}/D2(2740)0D_{2}(2740)^{0} is most likely to be the high-mass mixed state D(1D2)D(1D^{\prime}_{2}), which is consistent with the prediction in Ref. Song:2015fha . Considering D2(2740)0D_{2}(2740)^{0} as D(1D2)D(1D^{\prime}_{2}), our predicted decay width Γ57\Gamma\simeq 57 MeV is in agreement with the PDG average data Γexp88±19\Gamma_{exp}\simeq 88\pm 19 MeV Zyla:2020zbs , however, our predicted mass M=2827M=2827 MeV is about 7070 MeV larger than the data. On the other hand, considering D2(2740)0D_{2}(2740)^{0} as the low mass state D(1D2)D(1D_{2}), we find that although the predicted mass M=2754M=2754 MeV is consistent with the observations, our predicted width Γ250\Gamma\simeq 250 MeV is too broad to comparable with the data. It should be mentioned that two LHCb experiments Aaij:2019sqk ; LHCb:2013jjb do not give very stable resonance parameters for D2(2740)0D_{2}(2740)^{0}. This indicates that the structure around D2(2740)0D_{2}(2740)^{0} observed in the D+πD^{*+}\pi^{-} invariant mass spectrum may be contributed by both the broad state D(1D2)D(1D_{2}) and the relatively narrow state D(1D2)D(1D_{2}^{\prime}) at the same time. To distinguish D(1D2)D(1D_{2}) and D(1D2)D(1D^{\prime}_{2}) and establish them finally, more observations of the D2(2460)πD^{*}_{2}(2460)\pi, DsKD_{s}^{*}K and DηD^{*}\eta are suggested to be carried out in future experiments.

In the DsD_{s}-meson sector, our predicted masses of Ds(1D2)D_{s}(1D_{2}) and Ds(1D2)D_{s}(1D^{\prime}_{2}) are M=2857M=2857 MeV and M=2911M=2911 MeV, respectively, which are close the predictions in the literature Godfrey:2015dva ; Zeng:1994vj ; Lahde:1999ih . Our determined mixing angle θ1D=40.7\theta_{1D}=-40.7^{\circ} is similar to that for the DD-meson sector. The splitting between Ds(1D2)D_{s}(1D_{2}) and Ds(1D2)D_{s}(1D^{\prime}_{2}), ΔM54\Delta M\simeq 54 MeV, is similar to that predicted in Ref. Li:2010vx , however, is a factor of 2\sim 2 larger than that predicted in Refs. Ebert:2009ua ; Godfrey:2015dva ; Lahde:1999ih . The predicted strong decay properties of both Ds(1D2)D_{s}(1D_{2}) and Ds(1D2)D_{s}(1D^{\prime}_{2}) are listed in Table 14. It is found that the low mass state Ds(1D2)D_{s}(1D_{2}) has a width of

Γ130MeV,\Gamma\simeq 130\ \ \ \mathrm{MeV}, (55)

and dominantly decays into the DKD^{*}K and DKDK^{*} channels with branching fractions 82%\sim 82\% and 11%\sim 11\%, respectively. While the high mass state Ds(1D2)D_{s}(1D^{\prime}_{2}) may have a relatively narrow width of

Γ44MeV,\Gamma\simeq 44\ \ \ \mathrm{MeV}, (56)

and dominantly decays into the DKD^{*}K and DKDK^{*} channels with branching fractions 65%\sim 65\% and 24%\sim 24\%, respectively. The decay properties predicted with genuine wave functions extracted from potential model in this work are consistent with those predicted with the SHO wave functions in our previous works Zhong:2009sk ; Xiao:2014ura . The DKD^{*}K as the main decay channel of the Ds(1D2)D_{s}(1D_{2}) state has also been predicted within the P03{}^{3}P_{0} model Song:2015nia ; Godfrey:2015dva , however, for the high mass state Ds(1D2)D_{s}(1D^{\prime}_{2}), their predicted decay rates into DKD^{*}K is tiny.

Our previous studies Zhong:2009sk ; Xiao:2014ura indicates that the 11D21^{1}D_{2}-13D21^{3}D_{2} mixing might be crucial to uncover the longstanding puzzle about the narrow structure DsJ(2860)D_{sJ}(2860) in the charmed-strange meson family, which was first observed in the DKDK channel, then confirmed in the DKD^{*}K channels by the BaBar collaboration  BaBar:2006gme ; BaBar:2009rro . Many people believe that the DsJ(2860)D_{sJ}(2860) might be the 13D31^{3}D_{3} state due to its narrow width. However, considering the DsJ(2860)D_{sJ}(2860) as the 13D31^{3}D_{3} state only, one cannot well understand the partial width ratio of R=Γ(DK)/Γ(DK)=1.1±0.34R=\Gamma(DK)/\Gamma(D^{*}K)=1.1\pm 0.34 measured by BaBar BaBar:2009rro . To overcome the puzzle about the measured radio, in Refs. Zhong:2009sk ; Xiao:2014ura we proposed that the JP=2J^{P}=2^{-} mixed state Ds(1D2)D_{s}(1D^{\prime}_{2}) mainly decaying into DKD^{*}K might highly overlap with the Ds(13D3)D_{s}(1^{3}D_{3}) state around the mass region 2.862.86 GeV, which is compatible with the theoretical analyses in Refs. Godfrey:2013aaa ; Gandhi:2020vap . In 2014, the LHCb collaboration observed two overlapping spin-1 resonance Ds1(2860)D_{s1}^{*}(2860) and spin-3 resonance Ds3(2860)D_{s3}^{*}(2860) in the D¯0K\bar{D}^{0}K^{-} final state by analyzing the Bs0D¯0Kπ+B_{s}^{0}\to\bar{D}^{0}K^{-}\pi^{+} decay LHCb:2014ott ; LHCb:2014ioa . The measured partial width ratio R=Γ(DK)/Γ(DK)1.1±0.34R=\Gamma(DK)/\Gamma(D^{*}K)\simeq 1.1\pm 0.34 is considered to belong to the Ds1(2860)D_{s1}(2860) resonance by PDG Zyla:2020zbs . In fact, for Ds1(2860)D_{s1}(2860) our predicted partial width ratio Γ(DK)/Γ(DK)3\Gamma(DK)/\Gamma(D^{*}K)\simeq 3 is still inconsistent with the measured value at BaBar BaBar:2009rro . Since the structure around 2.862.86 GeV in the DKDK invariant mass spectrum can be contributed by both Ds1(2860)D_{s1}^{*}(2860) and Ds3(2860)D_{s3}^{*}(2860), we may expect that the structure around 2.862.86 GeV in the DKD^{*}K invariant mass spectrum observed at BaBar BaBar:2009rro can be contributed by all of the 1D1D-wave states with JP=1,2,3J^{P}=1^{-},2^{-},3^{-}, due to their large decay rates. This is also proposed in Refs. Segovia:2015dia ; Gandhi:2020vap ; Zhong:2009sk .

To uncover the longstanding puzzle about DsJ(2860)D_{sJ}(2860), searches for the missing Ds(1D2)D_{s}(1D_{2}) and Ds(1D2)D_{s}(1D^{\prime}_{2}) are urgently needed to be carried out in experiments. The DKD^{*}K channel may be the optimal channel for future observations.

IV.7 2D2D-wave states

Table 15: Partial decay widths and their branching fractions for the 2D2D-wave charmed mesons.
D(23D1)[3143]¯\underline{~{}~{}~{}~{}~{}~{}D(2^{3}D_{1})[3143]~{}~{}~{}~{}~{}~{}} D(23D3)[3202]¯\underline{~{}~{}~{}~{}~{}~{}D(2^{3}D_{3})[3202]~{}~{}~{}~{}~{}~{}} D(2D2)[3168]¯\underline{~{}~{}~{}~{}~{}~{}D(2D_{2})[3168]~{}~{}~{}~{}~{}~{}} D(2D2)[3221]¯\underline{~{}~{}~{}~{}~{}~{}D(2D^{\prime}_{2})[3221]~{}~{}~{}~{}~{}~{}}
Channel Γi\Gamma_{i} (MeV) Br (%) Γi\Gamma_{i} (MeV) Br (%) Γi\Gamma_{i} (MeV) Br (%) Γi\Gamma_{i} (MeV) Br (%)
   DπD\pi 192.1 23.2 34.4 20.6
   DsKD_{s}K 55.7 6.7 5.0 3.0
   DηD\eta 24.9 3.0 2.5 1.5
   DηD\eta^{\prime} 12.7 1.5 0.2 0.1
   DπD^{*}\pi 44.9 5.4 26.6 15.9 152.3 24.3 40.4 24.8
   DsKD_{s}^{*}K 10.6 1.3 2.5 1.5 45.2 7.2 4.9 3.0
   DηD^{*}\eta 5.0 0.6 1.3 0.8 20.9 3.3 2.3 1.4
   DηD^{*}\eta^{\prime} 0.8 0.1 0.01 6×1036\times 10^{-3} 7.5 1.2 0.4 0.2
   D0(2550)πD_{0}(2550)\pi 50.6 6.1 5.5 3.3
   Ds(2649)(21S0)KD_{s}(2649)(2^{1}S_{0})K 2×1032\times 10^{-3} 2×1042\times 10^{-4} 0.02 0.01
   D0(2550)ηD_{0}(2550)\eta 1.8 0.2 0.04 0.02
   D(23S1)(2627)πD(2^{3}S_{1})(2627)\pi 20.1 2.4 7.8 4.7 61.2 9.8 22.6 13.9
   Ds1(2700)KD_{s1}^{*}(2700)K 3×1053\times 10^{-5} 2×1072\times 10^{-7} 0.1 0.06
   D(23S1)(2627)ηD(2^{3}S_{1})(2627)\eta 1×1061\times 10^{-6} 6×1076\times 10^{-7} 0.1 0.06
   D(31S0)(3029)πD(3^{1}S_{0})(3029)\pi 6×1046\times 10^{-4} 4×1044\times 10^{-4}
   D0(2300)πD_{0}^{*}(2300)\pi 6.7 1.1 7.3 4.5
   Ds(13P0)(2409)KD_{s}(1^{3}P_{0})(2409)K 0.5 0.08 0.6 0.4
   D0(2300)ηD_{0}^{*}(2300)\eta 0.3 0.05 0.3 0.2
   D(23P0)(2849)πD(2^{3}P_{0})(2849)\pi 0.1 0.02 5.5 3.4
   D2(2460)πD_{2}^{*}(2460)\pi 0.5 0.06 8.6 5.1 105.3 16.8 14.3 8.8
   Ds2(2573)KD_{s2}^{*}(2573)K 0.1 0.01 0.03 0.02 14.0 2.2 0.6 0.4
   D2(2460)ηD_{2}^{*}(2460)\eta 0.2 0.02 0.03 0.02 9.5 1.5 0.8 0.5
   D(23P2)(2955)πD(2^{3}P_{2})(2955)\pi 0.1 0.01 1.3 0.8 63.6 10.2 3.9 2.4
   D1(2430)πD_{1}(2430)\pi 38.2 4.6 4.3 2.6 6.2 1.0 1.4 0.9
   Ds(1P1)(2528)KD_{s}(1P_{1})(2528)K 3.9 0.5 0.01 6×1036\times 10^{-3} 0.2 0.03 0.2 0.1
   D1(2430)ηD_{1}(2430)\eta 10.4 1.3 0.02 0.01 0.1 0.02 0.2 0.1
   D1(2420)πD_{1}(2420)\pi 173.7 21.0 3.5 2.1 0.5 0.08 8.8 5.4
   Ds(1P1)(2535)KD_{s}(1P^{\prime}_{1})(2535)K 17.3 2.1 0.06 0.04 0.1 0.02 3×1043\times 10^{-4} 2×1042\times 10^{-4}
   D1(2420)ηD_{1}(2420)\eta 50.6 6.1 0.1 0.06 0.1 0.02 8×1058\times 10^{-5} 5×1055\times 10^{-5}
   D(2P1)(2900)πD(2P_{1})(2900)\pi 29.8 3.6 4.1 2.5 0.2 0.03 0.03 0.02
   D(2P1)(2936)πD(2P^{\prime}_{1})(2936)\pi 44.6 5.4 6×1036\times 10^{-3} 4×1034\times 10^{-3} 0.01 0.02 4.0 2.5
   D(13D1)(2754)πD(1^{3}D_{1})(2754)\pi 3.0 0.4 0.1 0.06 1.7 0.3 4.7 2.9
   D3(2760)πD_{3}^{*}(2760)\pi 0.5 0.06 2.5 1.5 18.6 3.0 1.6 1.0
   D(1D2)(2755)πD(1D_{2})(2755)\pi 2.1 0.3 10.2 6.1 4.6 0.7 3.1 1.9
   D(1D2)(2827)πD(1D^{\prime}_{2})(2827)\pi 20.5 2.5 5.3 3.2 0.8 0.1 2.5 1.5
   DρD\rho 1.2 0.1 10.8 6.5 48.8 7.8 3.3 2.0
   DωD\omega 0.4 0.050.05 3.4 2.0 15.6 2.5 1.1 0.7
   DsKD_{s}K^{*} 0.1 0.010.01 1.4 0.8 10.1 1.6 2.4 1.5
   DρD^{*}\rho 8.4 1.0 16.5 9.8 22.9 3.7 17.7 10.9
   DωD^{*}\omega 2.5 0.30.3 5.3 3.2 6.9 1.1 5.5 3.4
   DsKD_{s}^{*}K^{*} 0.5 0.060.06 3.9 2.3 1.7 0.3 2.4 1.5
   Total 827.8\mathbf{827.8} 𝟏𝟎𝟎\mathbf{100} 167.3\mathbf{167.3} 𝟏𝟎𝟎\mathbf{100} 626.2\mathbf{626.2} 𝟏𝟎𝟎\mathbf{100} 163.0\mathbf{163.0} 𝟏𝟎𝟎\mathbf{100}
Table 16: Partial decay widths and their branching fractions for the 2D2D-wave charmed-strange mesons.
Ds(23D1)[3233]¯\underline{~{}~{}~{}~{}~{}~{}D_{s}(2^{3}D_{1})[3233]~{}~{}~{}~{}~{}~{}} Ds(23D3)[3267]¯\underline{~{}~{}~{}~{}~{}~{}D_{s}(2^{3}D_{3})[3267]~{}~{}~{}~{}~{}~{}} Ds(2D2)[3267]¯\underline{~{}~{}~{}~{}~{}~{}D_{s}(2D_{2})[3267]~{}~{}~{}~{}~{}~{}} Ds(2D2)[3306]¯\underline{~{}~{}~{}~{}~{}~{}D_{s}(2D^{\prime}_{2})[3306]~{}~{}~{}~{}~{}~{}}
Channel Γi\Gamma_{i} (MeV) Br (%) Γi\Gamma_{i} (MeV) Br (%) Γi\Gamma_{i} (MeV) Br (%) Γi\Gamma_{i} (MeV) Br (%)
   DKDK 157.0 30.9 19.0 26.6
   DsηD_{s}\eta 33.2 6.5 2.0 2.8
   DsηD_{s}\eta^{\prime} 15.6 3.1 0.2 0.3
   DKD^{*}K 34.7 6.8 11.6 16.2 130.7 31.0 19.8 28.8
   DsηD_{s}^{*}\eta 6.3 1.2 4.3 6.0 28.7 6.8 2.0 2.9
   DsηD_{s}^{*}\eta^{\prime} 0.8 0.2 1.7 2.4 5.6 1.3 0.3 0.4
   D0(2550)KD_{0}(2550)K 47.5 9.4 2.2 3.1
   Ds(21S0)(2649)ηD_{s}(2^{1}S_{0})(2649)\eta 1.6 0.3 0.03 0.04
   D(23S1)(2627)KD(2^{3}S_{1})(2627)K 14.7 2.9 1.4 2.0 53.7 12.7 7.5 10.9
   Ds1(2700)ηD_{s1}^{*}(2700)\eta 0.1 0.1 0.1 0.02 0.1 0.1
   D0(2300)KD_{0}^{*}(2300)K 3.1 0.7 4.9 7.1
   Ds(13P0)(2409)ηD_{s}(1^{3}P_{0})(2409)\eta 0.4 0.1 0.2 0.3
   D2(2460)KD_{2}^{*}(2460)K 2.4 0.5 1.1 1.5 99.2 23.5 7.3 10.6
   Ds2(2573)ηD_{s2}^{*}(2573)\eta 0.2 0.04 0.02 0.03 26.0 6.2 1.3 1.9
   D1(2430)KD_{1}(2430)K 25.2 5.0 0.2 0.3 3.2 0.8 1.2 1.7
   Ds(1P1)(2528)ηD_{s}(1P_{1})(2528)\eta 2.4 0.5 0.2 0.3 0.2 0.02 0.2 0.3
   D1(2420)KD_{1}(2420)K 146.2 28.8 1.7 2.4 1.1 0.3 0.1 0.1
   Ds1(2535)ηD_{s1}(2535)\eta 13.8 2.7 0.1 0.1 0.1 0.02 0.01 0.01
   D(13D1)(2754)KD(1^{3}D_{1})(2754)K 1×1041\times 10^{-4} 1×1041\times 10^{-4} 0.02 5×1035\times 10^{-3} 2.4 3.5
   D3(2760)KD_{3}^{*}(2760)K 0.03 0.04 1.6 0.4 0.2 0.3
   D(1D2)(2755)KD(1D_{2})(2755)K 2.8 3.9 0.1 0.02 0.3 0.4
   DKDK^{*} 0.7 0.1 6.4 9.0 43.9 10.4 5.5 8.0
   DsϕD_{s}\phi 0.02 4×1034\times 10^{-3} 0.4 0.6 6.4 1.5 2.2 3.2
   DKD^{*}K^{*} 5.1 1.0 14.3 20.0 17.5 4.1 12.2 17.7
   DsϕD_{s}^{*}\phi 0.2 0.04 1.7 2.4 0.7 0.2 1.1 1.6
   Total 507.6\mathbf{507.6} 𝟏𝟎𝟎\mathbf{100} 71.4\mathbf{71.4} 𝟏𝟎𝟎\mathbf{100} 422.3\mathbf{422.3} 𝟏𝟎𝟎\mathbf{100} 68.8\mathbf{68.8} 𝟏𝟎𝟎\mathbf{100}

IV.7.1 23D12^{3}D_{1}

In the DD-meson family, the mass of the D(23D1)D(2^{3}D_{1}) state is predicted to be M=3143M=3143 MeV, which is comparable with the predictions in Refs. Godfrey:2015dva ; Zeng:1994vj ; Li:2010vx ; Song:2015fha . Our predicted strong decay properties for these high 2D2D-wave states are listed in Table 15. It is found that the D(23D1)D(2^{3}D_{1}) state is a very broad state with a width of Γ830\Gamma\simeq 830 MeV. This state may be difficult to be observed in experiments due to its broad width. It should be mentioned that the width of D(23D1)D(2^{3}D_{1}) predicted within our chiral quark model is about a factor of 464-6 larger than the predictions within the P03{}^{3}P_{0} models in Refs. Godfrey:2015dva ; Song:2015fha .

In the DsD_{s}-meson family, the mass of Ds(23D1)D_{s}(2^{3}D_{1}) is predicted to be M=3233M=3233 MeV, which is comparable with those in Refs. Godfrey:2015dva ; Zeng:1994vj . Our predicted strong decay properties for these high 2D2D-wave states are listed in Table 16. It is found that the Ds(23D1)D_{s}(2^{3}D_{1}) state is a very broad state with a width of Γ510\Gamma\simeq 510 MeV, and may be difficult to be observed in experiments due to its broad width. It should be mentioned that the width of Ds(23D1)D_{s}(2^{3}D_{1}) predicted within our chiral quark model are a factor of 3\sim 3 larger than the predictions within the P03{}^{3}P_{0} models in Refs. Godfrey:2015dva ; Song:2015nia .

Figure 8: Total decay widths and the main partial decay widths for D(2D2)D(2D^{\prime}_{2}), Ds(2D2)D_{s}(2D^{\prime}_{2}), D(23D3)D(2^{3}D_{3}) and Ds(23D3)D_{s}(2^{3}D_{3}) as functions of their masses.

IV.7.2 23D32^{3}D_{3}

In the DD-meson family, the mass of the D(23D3)D(2^{3}D_{3}) state is predicted to be M=3202M=3202 MeV, which is comparable with those predicted in Refs. Godfrey:2015dva ; Zeng:1994vj ; Li:2010vx ; Song:2015fha . The D(23D3)D(2^{3}D_{3}) state is a relatively narrow state with a width of

Γ167MeV,\Gamma\simeq 167\ \ \ \mathrm{MeV}, (57)

and have relatively large decay rates into DπD\pi and DπD^{*}\pi channels with branching fractions 21%\sim 21\% and 16%\sim 16\%, respectively. More details of the decay properties can be seen in Table 15. To see the dependence of the decay properties of D(23D3)D(2^{3}D_{3}) on its mass, we also plot the main partial widths and the total width as functions of the mass in Fig. 8. It is found that the partial and total decay widths increase smoothly with the mass. With a mass uncertainty of 5050 MeV, the total width of D(23D3)D(2^{3}D_{3}) varies in the range 110220\sim 110-220 MeV. A relatively narrow width of D(23D3)D(2^{3}D_{3}) is also predicted in Ref. Song:2015fha , although their predicted width Γ30\Gamma\simeq 30 MeV is about a factor of 5 smaller than ours. To establish the missing D(23D3)D(2^{3}D_{3}) state, the DπD\pi and DπD^{*}\pi channels are worth to observing in future experiments. However, it should be pointed out that in Refs. Godfrey:2015dva ; Song:2015fha , the DπD\pi and DπD^{*}\pi are not predicted to be the dominant decay modes of D(23D3)D(2^{3}D_{3}).

In the DsD_{s}-meson family, the mass of the Ds(23D3)D_{s}(2^{3}D_{3}) state is predicted to be M=3267M=3267 MeV, which is comparable with those of Refs. Godfrey:2015dva ; Zeng:1994vj ; Li:2010vx ; Song:2015fha . The Ds(23D3)D_{s}(2^{3}D_{3}) state has a narrow width of

Γ71MeV,\Gamma\simeq 71\ \ \ \mathrm{MeV}, (58)

which is in agreement with the prediction of Ref. Song:2015nia . The Ds(23D3)D_{s}(2^{3}D_{3}) state dominantly decays into DKDK , DKD^{*}K^{*} and DKD^{*}K channels with branching fractions 27%\sim 27\% , 20%\sim 20\% and 16%\sim 16\%, respectively. To see the dependence of the decay properties of Ds(23D3)D_{s}(2^{3}D_{3}) on its mass, we also plot the main partial widths and the total width as functions of the mass in Fig. 8. It is found that the partial and total decay widths increase smoothly with the mass. With a mass uncertainty of 5050 MeV, the total width of Ds(23D3)D_{s}(2^{3}D_{3}) varies in the range 5090\sim 50-90 MeV. To establish the missing Ds(23D3)D_{s}(2^{3}D_{3}) state, the DKDK and DKD^{*}K channels are worth to observing in future experiments.

IV.7.3 2D22D_{2} and 2D22D^{\prime}_{2}

The physical states 2D22D_{2} and 2D22D^{\prime}_{2} are mixed states between states 21D22^{1}D_{2} and 23D22^{3}D_{2} via the following mixing scheme:

(2D22D2)=(cosθ2Dsinθ2Dsinθ2Dcosθ2D)(21D223D2).\left(\begin{array}[]{c}2D_{2}\\ 2D^{\prime}_{2}\\ \end{array}\right)=\left(\begin{array}[]{cc}\cos\theta_{2D}&\sin\theta_{2D}\\ -\sin\theta_{2D}&\cos\theta_{2D}\\ \end{array}\right)\left(\begin{array}[]{c}2^{1}D_{2}\\ 2^{3}D_{2}\\ \end{array}\right). (59)

In this work, the 2D22D_{2} and 2D22D^{\prime}_{2} correspond to the low-mass and high-mass mixed states, respectively.

In the DD-meson family, the masses of the two mixed states D(2D2)D(2D_{2}) and D(2D2)D(2D^{\prime}_{2}) are predicted to be M=3168M=3168 MeV and M=3221M=3221 MeV, respectively. Our predicted masses are comparable with those in Refs. Li:2010vx ; Godfrey:2015dva ; Zeng:1994vj . The mass splitting between D(2D2)D(2D_{2}) and D(2D2)D(2D^{\prime}_{2}) is estimated to be ΔM53\Delta M\simeq 53 MeV, which is in agreement with that of ΔM52\Delta M\simeq 52 MeV predicted in Ref. Ebert:2009ua . Our predicted mixing angle, θ2D=40.2\theta_{2D}=-40.2^{\circ}, is similar to that determined within the relativized quark model Godfrey:2015dva ; Lu:2014zua . The predicted strong decay properties of both D(2D2)D(2D_{2}) and D(2D2)D(2D^{\prime}_{2}) are listed in Table 15. It is found that the low mass state D(2D2)D(2D_{2}) may be a broad state with a width of Γ620\Gamma\simeq 620 MeV, and have large decay rates into the DπD^{*}\pi and D2(2460)πD^{*}_{2}(2460)\pi channels with branching fractions 24%\sim 24\% and 17%\sim 17\%, respectively. The D(2D2)D(2D_{2}) state may be difficult to be observed in experiments due to its too broad width. While the high mass state D(2D2)D(2D^{\prime}_{2}) may have a relatively narrow width of

Γ163MeV,\Gamma\simeq 163\ \ \ \mathrm{MeV}, (60)

and dominantly decays into DπD^{*}\pi, D1(2600)πD^{*}_{1}(2600)\pi and DρD^{*}\rho channels with branching fractions 25%\sim 25\%, 14%\sim 14\% and 11%\sim 11\%, respectively. To see the dependence of the decay properties of D(2D2)D(2D^{\prime}_{2}) on its mass, we also plot the main partial widths and the total width as functions of the mass in Fig. 8. It is found that the partial and total decay widths increase smoothly with the mass. With a mass uncertainty of 5050 MeV, the total width of D(2D2)D(2D^{\prime}_{2}) varies in the range 90200\sim 90-200 MeV. The narrow width nature of D(2D2)D(2D^{\prime}_{2}) is also predicted by Song et al. in Ref. Song:2015fha , although their predicted width Γ30\Gamma\sim 30 MeV is a factor of 5\sim 5 smaller than ours.

In the DsD_{s}-meson family, the masses of the two mixed states Ds(2D2)D_{s}(2D_{2}) and Ds(2D2)D_{s}(2D^{\prime}_{2}) are predicted to be M=3267M=3267 MeV and M=3306M=3306 MeV, respectively. Our predicted masses are comparable with those in Refs. Li:2010vx ; Godfrey:2015dva ; Zeng:1994vj . The mass splitting between Ds(2D2)D_{s}(2D_{2}) and Ds(2D2)D_{s}(2D^{\prime}_{2}) is estimated to be ΔM39\Delta M\simeq 39 MeV, which is comparable with that predicted in Li:2010vx ; Godfrey:2015dva ; Zeng:1994vj . Our predicted mixing angle, θ2D=41.3\theta_{2D}=-41.3^{\circ}, is similar to that determined within the relativized quark model Godfrey:2015dva ; Lu:2014zua . The predicted strong decay properties of both Ds(2D2)D_{s}(2D_{2}) and Ds(2D2)D_{s}(2D^{\prime}_{2}) are listed in Table 16. It is found that the low mass state Ds(2D2)D_{s}(2D_{2}) may be a broad state with a width of Γ420\Gamma\simeq 420 MeV, and have large decay rates into the DKD^{*}K and D2(2460)KD^{*}_{2}(2460)K channels with branching fractions 31%\sim 31\% and 23%\sim 23\%, respectively. The Ds(2D2)D_{s}(2D_{2}) state may be difficult to be observed in experiments due to its broad width. It should be mentioned that the width of Ds(2D2)D_{s}(2D_{2}) predicted within our chiral quark model is a factor of 3\sim 3 larger than the predictions within the P03{}^{3}P_{0} models in Refs. Godfrey:2015dva ; Song:2015nia . While the high mass state Ds(2D2)D_{s}(2D^{\prime}_{2}) may have a narrow width of

Γ69MeV,\Gamma\simeq 69\ \ \ \mathrm{MeV}, (61)

which is consistent with the prediction of Ref. Song:2015nia . The Ds(2D2)D_{s}(2D^{\prime}_{2}) dominantly decays into DKD^{*}K, DKD^{*}K^{*} , D(23S1)KD(2^{3}S_{1})K and D2(2460)KD^{*}_{2}(2460)K channels with branching fractions 29%\sim 29\%, 18%\sim 18\% , 11%\sim 11\% and 11%\sim 11\%, respectively. To see the dependence of the decay properties of Ds(2D2)D_{s}(2D^{\prime}_{2}) on its mass, we also plot the main partial widths and the total width as functions of the mass in Fig. 8. It is found that the partial and total decay widths increase smoothly with the mass. With a mass uncertainty of 5050 MeV, the total width of Ds(2D2)D_{s}(2D^{\prime}_{2}) varies in the range 45110\sim 45-110 MeV. The high mass state Ds(2D2)D_{s}(2D^{\prime}_{2}) may have a large potential to be established in forthcoming experiments. The DKD^{*}K channel may be the optimal channel for future observations.

Table 17: Partial decay widths and their branching fractions for the 1F1F-wave charmed mesons.
D(13F2)[3096]¯\underline{~{}~{}~{}~{}~{}~{}D(1^{3}F_{2})[3096]~{}~{}~{}~{}~{}~{}} D(13F4)[3034]¯\underline{~{}~{}~{}~{}~{}~{}D(1^{3}F_{4})[3034]~{}~{}~{}~{}~{}~{}} D(1F3)[3022]¯\underline{~{}~{}~{}~{}~{}~{}D(1F_{3})[3022]~{}~{}~{}~{}~{}~{}} D(1F3)[3129]¯\underline{~{}~{}~{}~{}~{}~{}D(1F^{\prime}_{3})[3129]~{}~{}~{}~{}~{}~{}}
Channel Γi\Gamma_{i} (MeV) Br (%) Γi\Gamma_{i} (MeV) Br (%) Γi\Gamma_{i} (MeV) Br (%) Γi\Gamma_{i} (MeV) Br (%)
   DπD\pi 39.4 5.5 11.2 17.3
   DsKD_{s}K 11.5 1.6 1.2 1.8
   DηD\eta 5.7 0.8 0.8 1.2
   DηD\eta^{\prime} 3.1 0.4 0.03 0.05
   DπD^{*}\pi 25.3 3.5 13.3 20.5 42.6 12.4 41.8 24.9
   DsKD_{s}^{*}K 6.7 0.9 0.9 1.4 10.4 3.0 4.3 2.6
   DηD^{*}\eta 3.5 0.5 0.6 0.9 5.8 1.7 0.2 0.1
   DηD^{*}\eta^{\prime} 0.7 0.1 7×1047\times 10^{-4} 1×1031\times 10^{-3} 0.2 0.06 0.1 0.06
   D0(2550)πD_{0}(2550)\pi 2.2 0.3 0.4 0.6
   D(23S1)(2627)πD(2^{3}S_{1})(2627)\pi 0.4 0.06 0.3 0.5 0.8 0.2 1.4 0.8
   D0(2300)πD_{0}^{*}(2300)\pi 1.1 0.3 9.5 5.7
   Ds(13P0)(2409)KD_{s}(1^{3}P_{0})(2409)K 4×1034\times 10^{-3} 1×1031\times 10^{-3} 0.7 0.4
   D0(2300)ηD_{0}^{*}(2300)\eta 0.01 3×1033\times 10^{-3} 0.5 0.3
   D(23P0)(2849)πD(2^{3}P_{0})(2849)\pi 2×1042\times 10^{-4} 6×1056\times 10^{-5} 2×1032\times 10^{-3} 1×1031\times 10^{-3}
   D2(2460)πD_{2}^{*}(2460)\pi 22.5 3.1 8.7 13.4 170.4 49.7 35.7 21.3
   Ds2(2573)KD_{s2}^{*}(2573)K 0.6 0.1 0.2 0.1
   D2(2460)ηD_{2}^{*}(2460)\eta 1.3 0.2 6×1046\times 10^{-4} 9×1049\times 10^{-4} 0.01 3×1033\times 10^{-3} 0.5 0.3
   D(23P2)(2955)πD(2^{3}P_{2})(2955)\pi 6×1066\times 10^{-6} 8×1078\times 10^{-7} 5×1035\times 10^{-3} 3×1033\times 10^{-3}
   D1(2430)πD_{1}(2430)\pi 44.9 6.2 13.4 20.6 1.3 0.4 0.1 0.06
   Ds(1P1)(2528)KD_{s}(1P_{1})(2528)K 0.6 0.1 1×1041\times 10^{-4} 2×1042\times 10^{-4} 0.04 0.02
   D1(2430)ηD_{1}(2430)\eta 3.4 0.5 0.01 0.02 3×1033\times 10^{-3} 2×1032\times 10^{-3}
   D1(2420)πD_{1}(2420)\pi 203.1 28.1 0.5 0.8 0.04 0.01 19.7 11.7
   Ds(1P1)(2535)KD_{s}(1P^{\prime}_{1})(2535)K 26.3 3.6 5×1095\times 10^{-9} 8×1098\times 10^{-9} 0.1 0.06
   D1(2420)ηD_{1}(2420)\eta 18.5 2.6 5×1055\times 10^{-5} 8×1058\times 10^{-5} 0.2 0.1
   D(2P1)(2900)πD(2P_{1})(2900)\pi 0.03 0.004 5×1055\times 10^{-5} 3×1053\times 10^{-5}
   D(2P1)(2936)πD(2P^{\prime}_{1})(2936)\pi 4×1034\times 10^{-3} 5×1045\times 10^{-4} 2×1032\times 10^{-3} 1×1031\times 10^{-3}
   D(13D1)(2754)πD(1^{3}D_{1})(2754)\pi 0.9 0.1 2×1042\times 10^{-4} 3×1043\times 10^{-4} 1.2 0.4 18.9 11.3
   D3(2760)πD_{3}^{*}(2760)\pi 1.9 0.3 2.4 3.7 87.9 25.6 6.6 3.9
   D(1D2)(2755)πD(1D_{2})(2755)\pi 91.8 12.7 2.7 4.2 0.1 0.03 3.4 2.0
   D(1D2)(2827)πD(1D^{\prime}_{2})(2827)\pi 88.5 12.2 0.4 0.6 0.06 0.02 1.5 0.9
   DρD\rho 2.0 0.3 1.4 2.2 10.6 3.1 1.3 0.8
   DωD\omega 0.6 0.1 0.4 0.6 3.3 1.0 0.4 0.2
   DsKD_{s}K^{*} 0.1 0.01 0.04 0.06 0.8 0.2 0.6 0.4
   DρD^{*}\rho 87.5 12.1 4.7 7.2 4.8 1.4 15.1 9.0
   DωD^{*}\omega 26.8 3.7 1.5 2.3 1.4 0.4 4.7 2.8
   DsKD_{s}^{*}K^{*} 2.7 0.4 0.04 0.06 4×1034\times 10^{-3} 1×1031\times 10^{-3} 0.8 0.5
   Total 722.5\mathbf{722.5} 𝟏𝟎𝟎\mathbf{100} 64.9\mathbf{64.9} 𝟏𝟎𝟎\mathbf{100} 342.8\mathbf{342.8} 𝟏𝟎𝟎\mathbf{100} 168.4\mathbf{168.4} 𝟏𝟎𝟎\mathbf{100}
Table 18: Partial decay widths and their branching fractions for the 1F1F-wave charmed-strange mesons.
Ds(13F2)[3176]¯\underline{~{}~{}~{}~{}~{}~{}D_{s}(1^{3}F_{2})[3176]~{}~{}~{}~{}~{}~{}} Ds(13F4)[3134]¯\underline{~{}~{}~{}~{}~{}~{}D_{s}(1^{3}F_{4})[3134]~{}~{}~{}~{}~{}~{}} Ds(1F)[3123]¯\underline{~{}~{}~{}~{}~{}~{}D_{s}(1F)[3123]~{}~{}~{}~{}~{}~{}} Ds(1F)[3205]¯\underline{~{}~{}~{}~{}~{}~{}D_{s}(1F^{\prime})[3205]~{}~{}~{}~{}~{}~{}}
Channel Γi\Gamma_{i} (MeV) Br (%) Γi\Gamma_{i} (MeV) Br (%) Γi\Gamma_{i} (MeV) Br (%) Γi\Gamma_{i} (MeV) Br (%)
   DKDK 33.3 8.1 8.1 26.3
   DsηD_{s}\eta 7.4 1.8 0.7 2.3
   DsηD_{s}\eta^{\prime} 3.2 0.8 0.03 0.1
   DKD^{*}K 21.7 5.3 8.8 28.6 40.3 19.3 26.8 37.4
   DsηD_{s}^{*}\eta 4.4 1.1 0.6 1.9 7.6 3.6 2.3 3.2
   DsηD_{s}^{*}\eta^{\prime} 0.5 0.1 5×1045\times 10^{-4} 2×1032\times 10^{-3} 0.2 0.1 0.1 0.1
   D0(2550)KD_{0}(2550)K 1.0 0.2 0.01 0.03
   D(23S1)(2627)KD(2^{3}S_{1})(2627)K 0.1 0.02 6×1066\times 10^{-6} 2×1052\times 10^{-5} 4×1044\times 10^{-4} 2×1042\times 10^{-4} 0.02 0.03
   D0(2300)KD_{0}^{*}(2300)K 0.5 0.2 6.5 9.1
   Ds(13P0)(2409)ηD_{s}(1^{3}P_{0})(2409)\eta 5×1055\times 10^{-5} 2×1052\times 10^{-5} 0.4 0.6
   D2(2460)KD_{2}^{*}(2460)K 17.8 4.3 2.0 6.5 142.4 68.3 12.7 17.7
   Ds2(2573)ηD_{s2}^{*}(2573)\eta 0.9 0.2 5×1055\times 10^{-5} 2×1042\times 10^{-4} 1.8 0.9 0.3 0.4
   D1(2430)KD_{1}(2430)K 39.5 9.6 3.9 12.7 0.3 0.1 0.1 0.1
   Ds(1P1)(2528)ηD_{s}(1P_{1})(2528)\eta 3.5 0.9 0.01 0.03 4×1044\times 10^{-4} 2×1042\times 10^{-4} 5×1035\times 10^{-3} 7×1037\times 10^{-3}
   D1(2420)KD_{1}(2420)K 190.2 46.3 0.04 0.1 0.02 0.01 7.5 10.5
   Ds1(2535)ηD_{s1}(2535)\eta 15.6 3.8 2×1052\times 10^{-5} 7×1057\times 10^{-5} 5×1055\times 10^{-5} 2×1052\times 10^{-5} 0.1 0.1
   DKDK^{*} 1.4 0.3 1.2 3.9 10.5 5.0 2.0 2.8
   DsϕD_{s}\phi 0.03 7×1037\times 10^{-3} 0.01 0.03 0.5 0.2 0.4 0.6
   DKD^{*}K^{*} 69.9 17.0 5.4 17.5 4.4 2.1 12.0 16.8
   DsϕD_{s}^{*}\phi 0.4 0.1 4×1054\times 10^{-5} 1×1041\times 10^{-4} 0.4 0.6
   Total 410.8\mathbf{410.8} 𝟏𝟎𝟎\mathbf{100} 30.8\mathbf{30.8} 𝟏𝟎𝟎\mathbf{100} 208.5\mathbf{208.5} 𝟏𝟎𝟎\mathbf{100} 71.6\mathbf{71.6} 𝟏𝟎𝟎\mathbf{100}

IV.8 1F1F-wave states

Figure 9: Total decay widths and the main partial decay widths for D(1F3)D(1F^{\prime}_{3}), Ds(1F3)D_{s}(1F^{\prime}_{3}), D(13F4)D(1^{3}F_{4}) and Ds(13F4)D_{s}(1^{3}F_{4}) as functions of their masses.

IV.8.1 13F21^{3}F_{2}

In the DD-meson family, our predicted mass for D(13F2)D(1^{3}F_{2}), M=3096M=3096 MeV, is comparable with the predictions in Refs. Zeng:1994vj ; Song:2015fha . From Table 17, it is found that the D(13F2)D(1^{3}F_{2}) state might be a very broad state with a width of

Γ720MeV,\Gamma\simeq 720\ \ \ \mathrm{MeV}, (62)

and dominantly decays into D1(2420)πD_{1}(2420)\pi, D(1D2)πD(1D_{2})\pi, D(1D2)πD(1D^{\prime}_{2})\pi and DρD^{*}\rho. The decay properties predicted in this work roughly agree with those predicted with the SHO wave functions in our previous work Xiao:2014ura , however, is notably (a factor of 242-4) broader than those predicted within the P03{}^{3}P_{0} models in Refs. Godfrey:2015dva ; Song:2015fha . The D(13F2)D(1^{3}F_{2}) may be too broad to be observed in experiments according to our present predictions.

In the DsD_{s}-meson sector, the predicted masses for Ds(13F2)D_{s}(1^{3}F_{2}) is 31763176 MeV, which is comparable with the predictions in Refs. Godfrey:2015dva ; Zeng:1994vj ; Song:2015nia . From table Table 18, it is found that the Ds(13F2)D_{s}(1^{3}F_{2}) state might have a very broad width of

Γ410MeV,\Gamma\simeq 410\ \ \ \mathrm{MeV}, (63)

and dominantly decays into D1(2420)KD_{1}(2420)K and DKD^{*}K^{*} with branching fractions 46%\sim 46\% and 17%\sim 17\%, respectively. The Ds(13F2)D_{s}(1^{3}F_{2}) state is also predicted to be a broad state with a width of 300400\sim 300-400 MeV in Refs. Godfrey:2015dva ; Song:2015fha ; Xiao:2014ura . The Ds(13F2)D_{s}(1^{3}F_{2}) state may be difficult to be established in experiments due to its too broad width.

IV.8.2 13F41^{3}F_{4}

In the DD-meson family, our predicted mass for D(13F4)D(1^{3}F_{4}), M=3034M=3034 MeV, is comparable with the predictions in Refs. Zeng:1994vj ; Song:2015fha . From Table 17, it is found that the D(13F4)D(1^{3}F_{4}) is a fairly narrow state with a width of

Γ65MeV,\Gamma\simeq 65\ \ \ \mathrm{MeV}, (64)

and dominantly decays into the DπD\pi, DπD^{*}\pi and D1(2430)πD_{1}(2430)\pi channels with a comparable branching fraction 20%\sim 20\%. To see the dependence of the decay properties of D(13F4)D(1^{3}F_{4}) on its mass, we also plot the main partial widths and the total width as functions of the mass in Fig. 9. It is found that the partial and total decay widths increase smoothly with the mass. With a mass uncertainty of 5050 MeV, the total width of D(13F4)D(1^{3}F_{4}) varies in the range 50110\sim 50-110 MeV. The narrow width of D(13F4)D(1^{3}F_{4}) and its relatively large decay rates into DπD\pi and DπD^{*}\pi are also predicted within the P03{}^{3}P_{0} models in Refs. Godfrey:2015dva ; Song:2015fha . The D(13F4)D(1^{3}F_{4}) might have a large potential to be observed in the DπD\pi and DπD^{*}\pi final states due to its narrow width.

It is interesting to find that the DJ(3000)D_{J}^{*}(3000) resonance with a natural parity observed in the DπD\pi channel by the LHCb collaboration in 2013 LHCb:2013jjb might be a good candidate of D(13F4)D(1^{3}F_{4}). Our predicted mass M=3034M=3034 MeV is consistent with the measured value Mexp=3008.1±4.0M_{exp}=3008.1\pm 4.0 MeV of DJ(3000)D_{J}^{*}(3000). Taking DJ(3000)D_{J}^{*}(3000) as the D(13F4)D(1^{3}F_{4}) state, we find that DJ(3000)D_{J}^{*}(3000) has a large decay rate into the DπD\pi channel with a branching fraction of 17%\sim 17\%, which is consistent with the observations. The predicted width Γ65\Gamma\simeq 65 MeV is also comparable with the data Γexp=110.5±11.5\Gamma_{exp}=110.5\pm 11.5 MeV. Considering DJ(3000)D_{J}^{*}(3000) as the D(13F4)D(1^{3}F_{4}) state, it also has a large decay rate into the DπD^{*}\pi channel, the partial width ratio between DπD^{*}\pi and DπD\pi is predicted to be

R=Γ(Dπ)Γ(Dπ)1.2,R=\frac{\Gamma(D^{*}\pi)}{\Gamma(D\pi)}\simeq 1.2, (65)

which may be useful to test the nature of DJ(3000)D_{J}^{*}(3000).

In the DsD_{s}-meson sector, the predicted mass for Ds(13F4)D_{s}(1^{3}F_{4}), is 31343134 MeV, which is comparable with the predictions in Refs. Godfrey:2015dva ; Zeng:1994vj ; Song:2015nia . Our predicted strong decay properties are listed in Table 18. It is found that the Ds(13F4)D_{s}(1^{3}F_{4}) may be a narrow state with a width of

Γ31MeV,\Gamma\simeq 31\ \ \ \mathrm{MeV}, (66)

and dominantly decays into the DKDK, DKD^{*}K and DKD^{*}K^{*} channels with branching fractions 26%\sim 26\%, 29%\sim 29\% and 18%\sim 18\%, respectively. To see the dependence of the decay properties of Ds(13F4)D_{s}(1^{3}F_{4}) on its mass, we also plot the main partial widths and the total width as functions of the mass in Fig. 9. It is found that the partial and total decay widths increase smoothly with the mass. With a mass uncertainty of 5050 MeV, the total width of Ds(13F4)D_{s}(1^{3}F_{4}) varies in the range 2050\sim 20-50 MeV. The DKDK, DKD^{*}K and DKD^{*}K^{*} as the main decay channels are also predicted in Refs. Godfrey:2015dva ; Song:2015fha ; Xiao:2014ura , however, the predicted width in these works are much broader than ours. The Ds(13F4)D_{s}(1^{3}F_{4}) might have large potentials to be observed in the dominant DKDK and DKD^{*}K channels.

IV.8.3 1F31F_{3} and 1F31F_{3}^{\prime}

The physical states 1F31F_{3} and 1F31F^{\prime}_{3} are mixed states between 11F31^{1}F_{3} and 13F31^{3}F_{3} via the following mixing scheme:

(1F31F3)=(cosθ1Fsinθ1Fsinθ1Fcosθ1F)(11F313F3).\left(\begin{array}[]{c}1F_{3}\\ 1F^{\prime}_{3}\\ \end{array}\right)=\left(\begin{array}[]{cc}\cos\theta_{1F}&\sin\theta_{1F}\\ -\sin\theta_{1F}&\cos\theta_{1F}\\ \end{array}\right)\left(\begin{array}[]{c}1^{1}F_{3}\\ 1^{3}F_{3}\\ \end{array}\right). (67)

In this work, the 1F31F_{3} and 1F31F^{\prime}_{3} correspond to the low-mass and high-mass mixed states, respectively.

In the DD-meson family, the predicted masses for the two mixed FF-wave states D(1F3)D(1F_{3}) and D(1F3)D(1F_{3}^{\prime}) are M=3022M=3022 and 31293129 MeV, respectively, which are comparable with the predictions in Refs. Zeng:1994vj ; Song:2015fha . The mixing angle is determined to be θ1F=41\theta_{1F}=-41^{\circ}, which is similar to that determined within the relativized quark model Godfrey:2015dva ; Lu:2014zua . Our predicted strong decay properties are listed in Table 17. It is found that the low mass mixed state D(1F3)D(1F_{3}) is a fairly broad state with a width of

Γ340MeV,\Gamma\simeq 340\ \ \ \mathrm{MeV}, (68)

and dominantly decays into D2(2460)πD_{2}^{*}(2460)\pi, D3(2760)πD_{3}^{*}(2760)\pi and DπD^{*}\pi with branching fractions 50%\sim 50\%, 26%\sim 26\% and 12%\sim 12\%, respectively. The decay properties of D(1F3)D(1F_{3}) predicted in this work are roughly consistent with those predicted with the SHO wave functions in our previous work Xiao:2014ura , however, is notably (a factor of 2\sim 2) broader than those predictions within the P03{}^{3}P_{0} models in Refs. Godfrey:2015dva ; Song:2015fha . While the high mass mixed state D(1F3)D(1F_{3}^{\prime}) is a relatively narrow state with a width of

Γ170MeV,\Gamma\simeq 170\ \ \ \mathrm{MeV}, (69)

and dominantly decays into DπD^{*}\pi, D2(2460)πD_{2}^{*}(2460)\pi, D1(2420)πD_{1}(2420)\pi and D(13D1)πD(1^{3}D_{1})\pi with branching fractions 25%\sim 25\%, 21%\sim 21\%, 12%\sim 12\% and 11%\sim 11\%, respectively. To see the dependence of the decay properties of D(1F3)D(1F_{3}^{\prime}) on its mass, we also plot the main partial widths and the total width as functions of the mass in Fig. 9. It is found that the partial and total decay widths increase smoothly with the mass. With a mass uncertainty of 5050 MeV, the total width of D(1F3)D(1F_{3}^{\prime}) varies in the range 140260\sim 140-260 MeV. The decay width of D(1F3)D(1F_{3}^{\prime}) predicted in this work is comparable with our previous prediction with the SHO wave functions in Ref. Xiao:2014ura , however, is about a factor of 2\sim 2 larger than that predicted in Ref. Song:2015fha . To look for the missing D(1F3)D(1F_{3}) and D(1F3)D(1F_{3}^{\prime}) states, the DπD^{*}\pi and D2(2460)πD_{2}^{*}(2460)\pi final states are worth to observing in future experiments.

In the DsD_{s}-meson family, the predicted masses for the two mixed FF-wave states Ds(1F3)D_{s}(1F_{3}) and Ds(1F3)D_{s}(1F_{3}^{\prime}) are M=3123M=3123 and 32053205 MeV, respectively, which are comparable with the predictions in Refs. Zeng:1994vj ; Song:2015fha . The mixing angle is determined to be θ1F=40.7\theta_{1F}=-40.7^{\circ}, which is similar to that determined within the relativized quark model Godfrey:2015dva ; Lu:2014zua . Our predicted strong decay properties are listed in Table 18. It is found that the low mass mixed state Ds(1F3)D_{s}(1F_{3}) may be a fairly broad state with a width of

Γ210MeV,\Gamma\simeq 210\ \ \ \mathrm{MeV}, (70)

and dominantly decays into D2(2460)KD_{2}^{*}(2460)K and DKD^{*}K with branching fractions 68%\sim 68\% and 19%\sim 19\%, respectively. The dominant decay channels of D2(2460)KD_{2}^{*}(2460)K and DKD^{*}K predicted in this work are consistent with the predictions in Refs. Song:2015fha ; Xiao:2014ura , although there are large uncertainties in the predictions of the total width. The high mass mixed state Ds(1F3)D_{s}(1F_{3}^{\prime}) is a narrow state with a width of

Γ72MeV,\Gamma\simeq 72\ \ \ \mathrm{MeV}, (71)

and dominantly decays into DKD^{*}K, D2(2460)KD_{2}^{*}(2460)K and DKD^{*}K^{*} with branching fractions 37%\sim 37\%, 18%\sim 18\% and 17%\sim 17\%, respectively. To see the dependence of the decay properties of Ds(1F3)D_{s}(1F_{3}^{\prime}) on its mass, we also plot the main partial widths and the total width as functions of the mass in Fig. 9. It is found that the partial and total decay widths increase smoothly with the mass. With a mass uncertainty of 5050 MeV, the total width of Ds(1F3)D_{s}(1F_{3}^{\prime}) varies in the range 40100\sim 40-100 MeV. The decay width predicted in this work is notably narrower than those predicted in Refs. Godfrey:2015dva ; Song:2015fha ; Xiao:2014ura . To look for the missing Ds(1F3)D_{s}(1F_{3}) and Ds(1F3)D_{s}(1F_{3}^{\prime}) states, the DKD^{*}K and D2(2460)KD_{2}^{*}(2460)K final states are worth to observing in future experiments.

Figure 10: Decay properties of D(|(SD)1L)D(|(SD)_{1}\rangle_{L}) as functions of the mixing angle ϕ\phi. The horizontally shaded region stands for the measured width Γexp=93±6±13\Gamma_{exp}=93\pm 6\pm 13 MeV at BaBar BaBar:2010zpy . The longitudinally shaded region represents the possible range of the mixing angle ϕ(27±8)\phi\simeq-(27\pm 8)^{\circ}.
Figure 11: Decay properties of D(|(SD)1H)D(|(SD)^{\prime}_{1}\rangle_{H}) as functions of the mixing angle ϕ\phi. The horizontally shaded region stands for the measured width Γexp177±53\Gamma_{exp}\simeq 177\pm 53 MeV of D1(2760)D_{1}^{*}(2760) at LHCb LHCb:2015eqv . Within the possible mixing angle range ϕ(27±8)\phi\simeq-(27\pm 8)^{\circ}, the width is determined to Γ325±53\Gamma\simeq 325\pm 53 MeV, which is shown by longitudinally shaded region.
Figure 12: Decay properties of Ds(|(SD)1L)D_{s}(|(SD)_{1}\rangle_{L}) as functions of the mixing angle ϕ\phi. The horizontally shaded region stands for the measured width Γexp=108±2331+36\Gamma_{exp}=108\pm 23^{+36}_{-31} MeV at Belle Belle:2007hht . Within the possible mixing angle range ϕ(27±8)\phi\simeq-(27\pm 8)^{\circ}, the width is determined to Γ61±18\Gamma\simeq 61\pm 18 MeV, which is shown by longitudinally shaded region.
Figure 13: Decay properties of Ds(|(SD)1H)D_{s}(|(SD)^{\prime}_{1}\rangle_{H}) as functions of the mixing angle ϕ\phi. The horizontally shaded region stands for the average measured width Γexp159±80\Gamma_{exp}\simeq 159\pm 80 MeV of Ds1(2860)D_{s1}^{*}(2860) from PDG Zyla:2020zbs . Within the possible mixing angle range ϕ(27±8)\phi\simeq-(27\pm 8)^{\circ}, the width is determined to Γ112±32\Gamma\simeq 112\pm 32 MeV, which is shown by longitudinally shaded region.

IV.9 The 23S113D12^{3}S_{1}-1^{3}D_{1} mixing

In Sec. IV.2.2, we have considered the possibility of the D1(2600)D_{1}^{*}(2600) and Ds1(2700)D_{s1}^{*}(2700) as the candidates of the pure 23S12^{3}S_{1} states in the DD- and DsD_{s}-meson families, respectively. It is found that with these assignments, our predicted widths are too narrow to be comparable with the data. In our previous works Zhong:2010vq ; Zhong:2009sk , we have studied the strong decay properties of the D1(2600)D_{1}^{*}(2600) and Ds1(2700)D_{s1}^{*}(2700) with an SHO approximation. According to our analysis, both D1(2600)D_{1}^{*}(2600) and Ds1(2700)D_{s1}^{*}(2700) could be explained as the mixed state |(SD)1L|(SD)_{1}\rangle_{L} via the 23S12^{3}S_{1}-13D11^{3}D_{1} mixing:

(|(SD)1L|(SD)1H)=(cosϕsinϕsinϕcosϕ)(23S113D1),\left(\begin{array}[]{c}|(SD)_{1}\rangle_{L}\cr|(SD)^{\prime}_{1}\rangle_{H}\end{array}\right)=\left(\begin{array}[]{cc}\cos\phi&\sin\phi\cr-\sin\phi&\cos\phi\end{array}\right)\left(\begin{array}[]{c}2^{3}S_{1}\cr 1^{3}D_{1}\end{array}\right), (72)

where (SD)1L\mid(SD)_{1}\rangle_{L} and (SD)1H\mid(SD)^{\prime}_{1}\rangle_{H} are assigned to the low-mass and high-mass mixed states, respectively. The mixing angle for the charmed sector is ϕ(36±6)\phi\simeq-(36\pm 6)^{\circ}, while that for charmed-strange sector is ϕ=(54±7)\phi=(-54\pm 7)^{\circ}. To explain the strong decay properties of the D1(2600)D_{1}^{*}(2600) and/or Ds1(2700)D_{s1}^{*}(2700), configuration mixing between 23S12^{3}S_{1} and 13D11^{3}D_{1} is also suggested in the literature Close:2006gr ; Chen:2011rr ; Li:2009qu ; Yu:2020khh ; Sun:2010pg ; Li:2010vx ; Chen:2015lpa ; Song:2015nia . In this work we restudy the D1(2600)D_{1}^{*}(2600) and Ds1(2700)D_{s1}^{*}(2700) resonances as the mixed states via the 23S12^{3}S_{1}-13D11^{3}D_{1} mixing by using the genuine wave functions calculated from our potential model.

Considering D1(2600)D_{1}^{*}(2600) as the low-mass mixed state |(SD)1L|(SD)_{1}\rangle_{L}, we plot the strong decay properties as functions of the mixing angle ϕ\phi in Figure 10. It is found that if we take a mixing angle ϕ(27±8)\phi\simeq-(27\pm 8)^{\circ}, the theoretical width can be consistent with the data Γexp=96±6±13\Gamma_{exp}=96\pm 6\pm 13 MeV measured by the BaBar collaboration BaBar:2010zpy . The mixing angle ϕ(27±8)\phi\simeq-(27\pm 8)^{\circ} determined in this work is similar to ϕ(36±6)\phi\simeq-(36\pm 6)^{\circ} determined in our previous work Zhong:2010vq . The DπD\pi and DπD^{*}\pi are the two dominant decay channels of (SD)1L\mid(SD)_{1}\rangle_{L}, which can explain why D1(2600)D_{1}^{*}(2600) has been first observed in these two channels. However, the ratio between DπD\pi and DπD^{*}\pi

R=Γ(Dπ)Γ(Dπ)7.3±1.4,R=\frac{\Gamma(D\pi)}{\Gamma(D^{*}\pi)}\simeq 7.3\pm 1.4, (73)

is too large to be comparable with the data Γ(Dπ)/Γ(Dπ)=0.32±0.11\Gamma(D\pi)/\Gamma(D^{*}\pi)=0.32\pm 0.11 measured by the BaBar collaboration BaBar:2010zpy . The ratio predicted with the genuine wave functions determined from the potential model in this work is about a factor of 1111 larger than that predicted with the SHO wave functions in our previous work Zhong:2010vq . The ratio is very sensitive to the details of the wave function of 23S12^{3}S_{1} due to the nodal effects. Thus, the partial width ratio Γ(Dπ)/Γ(Dπ)\Gamma(D\pi)/\Gamma(D^{*}\pi) is hard to be accurately predicted in theory.

If the D1(2600)D_{1}^{*}(2600) is the low-mass mixed state (SD)1L\mid(SD)_{1}\rangle_{L} indeed, the high-mass mixed state (SD)1H\mid(SD)^{\prime}_{1}\rangle_{H} might be observed in experiments as well. It is interesting to find that the JP=1J^{P}=1^{-} resonance D1(2760)D_{1}^{*}(2760) observed in the D+πD^{+}\pi^{-} channel by the LHCb collaboration LHCb:2015eqv might be a candidate of the high-mass mixed state (SD)1H\mid(SD)^{\prime}_{1}\rangle_{H} in the DD-meson family. Considering the D1(2760)D_{1}^{*}(2760) as the (SD)1H\mid(SD)^{\prime}_{1}\rangle_{H} assignment, the strong decay properties as functions of the mixing angle are plotted in Figure 11. It is found that within the range of the mixing angle ϕ(27±8)\phi\simeq-(27\pm 8)^{\circ} determined by the D1(2600)D_{1}^{*}(2600), the width of D1(2760)D_{1}^{*}(2760) is predicted to be Γ270380\Gamma\simeq 270-380 MeV, which is close to the upper limit of the measured width Γ=177±53\Gamma=177\pm 53 MeV. As the high-mass mixed state, D1(2760)D_{1}^{*}(2760) should dominantly decay into the D1(2420)πD_{1}(2420)\pi, D1(2430)πD_{1}(2430)\pi and DπD\pi channels. To confirm the nature of D1(2760)D_{1}^{*}(2760), both D1(2420)πD_{1}(2420)\pi and D1(2430)πD_{1}(2430)\pi channels are worth observing in future experiments.

In the DsD_{s}-meson family, considering Ds1(2700)D_{s1}^{*}(2700) as the low-mass mixed state |(SD)1L|(SD)_{1}\rangle_{L}, we plot the strong decay properties as functions of the mixing angle ϕ\phi in Figure 12. One sees that if we take the mixing angle with ϕ(27±8)\phi\simeq-(27\pm 8)^{\circ}, the decay width Γexp=11337+41\Gamma_{exp}=113_{-37}^{+41} MeV and partial width ratio Rexp=Γ(DK)/Γ(DK)0.91±0.25R_{exp}=\Gamma(D^{*}K)/\Gamma(DK)\simeq 0.91\pm 0.25 of Ds1(2700)D_{s1}^{*}(2700) measured by the BaBar collaboration Lees:2014abp ; BaBar:2009rro can be well described within the uncertainties.

If the Ds1(2700)D_{s1}^{*}(2700) is the low-mass mixed state |(SD)1L|(SD)_{1}\rangle_{L} indeed, the high-mass mixed state |(SD)1H|(SD)^{\prime}_{1}\rangle_{H} might be observed in experiments as well. The JP=1J^{P}=1^{-} resonance Ds1(2860)D_{s1}^{*}(2860) observed in the D¯0K\bar{D}^{0}K^{-} final state by the LHCb collaboration LHCb:2014ott might be a candidate of the high-mass mixed state |(SD)1H|(SD)^{\prime}_{1}\rangle_{H} in the DsD_{s}-meson family. Considering Ds1(2860)D_{s1}^{*}(2860) as the |(SD)1H|(SD)^{\prime}_{1}\rangle_{H} assignment, the strong decay properties as functions of the mixing angle are plotted in Figure 13. It is found that if we take mixing angle ϕ(27±8)\phi\simeq-(27\pm 8)^{\circ}, the predicted width of Ds1(2860)D_{s1}^{*}(2860), Γ112±32\Gamma\simeq 112\pm 32 MeV, is consistent with the measured width of Γ=159±23±77\Gamma=159\pm 23\pm 77 MeV LHCb:2014ott . The partial width ratio between DKD^{*}K and DKDK channels is predicted to be

R=Γ(DK)Γ(DK)0.38±0.03,R=\frac{\Gamma(D^{*}K)}{\Gamma(DK)}\simeq 0.38\pm 0.03, (74)

which can be used to test the nature of Ds1(2860)D_{s1}^{*}(2860).

As a whole, our underestimation of the decay widths of D1(2600)D_{1}^{*}(2600) and Ds1(2700)D_{s1}^{*}(2700) as a pure 23S12^{3}S_{1} configuration can be overcome by mixing with some 13D11^{3}D_{1}-wave components. Meanwhile, the widths of the JP=1J^{P}=1^{-} resonances D1(2760)D_{1}^{*}(2760) and Ds1(2860)D_{s1}^{*}(2860) observed by the LHCb collaboration can be reasonably explained with the high-mass mixed states D(|(SD)1H)D(|(SD)^{\prime}_{1}\rangle_{H}) and Ds(|(SD)1H)D_{s}(|(SD)^{\prime}_{1}\rangle_{H}), respectively. However, the measured ratio Γ(Dπ)/Γ(Dπ)=0.32±0.11\Gamma(D\pi)/\Gamma(D^{*}\pi)=0.32\pm 0.11 for D1(2600)D_{1}^{*}(2600) is inconsistent with our predictions. To clarify the natures of these JP=1J^{P}=1^{-} charmed and charmed-strange meson resonances and test various model predictions, (i) both D1(2760)D_{1}^{*}(2760) and Ds1(2860)D_{s1}^{*}(2860) are waiting to be confirmed by other experiments; (ii) the partial width ratio Γ(Dπ)/Γ(Dπ)\Gamma(D\pi)/\Gamma(D^{*}\pi) for D1(2600)D_{1}^{*}(2600) and Γ(DK)/Γ(DK)\Gamma(DK)/\Gamma(D^{*}K) for Ds1(2700)D_{s1}^{*}(2700) are waiting to be confirmed by other experiments; (iii) the resonance parameters of D1(2600)D_{1}^{*}(2600) and Ds1(2700)D_{s1}^{*}(2700) are waiting to be accurately measured in future experiments.

V Summary

In this work we systematically calculate the mass spectra of charmed and charmed-strange meson states up to the 2D2D excitations with a semi-relativistic potential model. Our results are in good agreement with other quark model predictions, although there are some model dependencies in the predicted masses for the higher 2D2D- and 1F1F-wave states. The strong decay properties are further analyzed with a chiral quark model by using the numerical wave functions obtained from the potential model. To well understand the 1P1P-wave states, we also systematically consider the coupled-channel effects on the masses of the 1P1P-wave states by using the strong decay amplitudes obtained within the chiral quark model. Based on our good descriptions of the mass and decay properties for the low-lying well-established states D1(2420)D_{1}(2420), D1(2430)D_{1}(2430), D2(2460)D_{2}(2460), Ds1(2536)D_{s1}(2536) and Ds2(2573)D_{s2}(2573), we give a quark model classification for the high mass resonances observed in recent years. Our main conclusions are summarized as follows.

\bullet There are notable couple-channel corrections to the bare masses for the D(13P0)D(1^{3}P_{0}), Ds(13P0)D_{s}(1^{3}P_{0}) and Ds(1P1)D_{s}(1P_{1}) states. The Ds0(2317)D_{s0}^{*}(2317) and Ds1(2460)D_{s1}(2460) can be explained with the dressed states Ds(13P0)D_{s}(1^{3}P_{0}) and Ds(1P1)D_{s}(1P_{1}) by the DKDK and DKD^{*}K loops, respectively. The physical mass for the dressed D(13P0)D(1^{3}P_{0}) state is predicted to be 2253\sim 2253 MeV, which is about 50 MeV lower than the PDG average mass of D0(2300)D_{0}^{*}(2300).

\bullet The D0(2550)D_{0}(2550) resonance can be classified as the D(21S0)D(2^{1}S_{0}) state. Considering the newly observed Ds0(2590)D_{s0}(2590) as the flavor partner of D0(2550)D_{0}(2550), the physical mass of Ds(21S0)D_{s}(2^{1}S_{0}), Mphy=2581M_{phy}=2581 MeV, is close to the observed mass by including the coupled-channel effects, however, our predicted width is much smaller than the observed one.

\bullet D3(2750)D_{3}^{*}(2750) and D2(2740)D_{2}(2740) can be classified as the 1D1D-wave states with the assignments D(13D3)D(1^{3}D_{3}) and D(1D2)D(1D^{\prime}_{2}), respectively. The Ds3(2860)D_{s3}^{*}(2860) resonance should be the flavor partner of D3(2750)D_{3}^{*}(2750), and correspond to the Ds(13D3)D_{s}(1^{3}D_{3}) state. The Ds(1D2)D_{s}(1D^{\prime}_{2}) state, as the flavor partner of D2(2740)D_{2}(2740), is most likely to be observed in the DKD^{*}K channel due to its narrow width nature.

\bullet DJ(3000)D_{J}^{*}(3000) is more favor a candidate of D(13F4)D(1^{3}F_{4}) or D(23P2)D(2^{3}P_{2}). As the D(13F4)D(1^{3}F_{4}) assignment the predicted width is about a factor of 2 smaller than the observation, while as the D(23P2)D(2^{3}P_{2}) assignment the predicted width is about a factor of 2.5 larger than the observation.

\bullet DJ(3000)D_{J}(3000) may favor the 2P2P-wave high-mass mixed state D(2P1)D(2P^{\prime}_{1}). The DsJ(3040)D_{sJ}(3040) resonance also favor the 2P2P-wave mixed state Ds(2P1)D_{s}(2P_{1}) or Ds(2P1)D_{s}(2P_{1}^{\prime}). Considering DsJ(3040)D_{sJ}(3040) as Ds(2P1)D_{s}(2P_{1}), the predicted width is close to the upper limit of the data, while as the DS(2P1)D_{S}(2P^{\prime}_{1}) assignment the predicted width is close to the lower limit of the data. The DsJ(3040)D_{sJ}(3040) may be contributed by both Ds(2P1)D_{s}(2P_{1}) and Ds(2P1)D_{s}(2P_{1}^{\prime}).

\bullet Ds1(2700)D_{s1}^{*}(2700) and Ds1(2860)D_{s1}^{*}(2860) may favor the mixed states |(SD)1L|(SD)_{1}\rangle_{L} and |(SD)1H|(SD)^{\prime}_{1}\rangle_{H} via the 23S12^{3}S_{1}-13D11^{3}D_{1} mixing, respectively.

\bullet There still exist puzzles for understanding the natures of D1(2600)D_{1}^{*}(2600) and D1(2760)D_{1}^{*}(2760). Considering D1(2600)D_{1}^{*}(2600) and D1(2760)D_{1}^{*}(2760) as D(23S1)D(2^{3}S_{1}) and D(13D1)D(1^{3}D_{1}), respectively, the predicted widths are inconsistent with the data. While considering them as the mixed states |(SD)1L|(SD)_{1}\rangle_{L} and |(SD)1H|(SD)^{\prime}_{1}\rangle_{H}, their widths are reasonably consistent with the data, however, the ratio R=(Dπ)/(Dπ)R=(D\pi)/(D^{*}\pi) for D1(2600)D_{1}^{*}(2600) is inconsistent with the observation.

\bullet Many missing excited DD- and DsD_{s}-meson states, such as Ds(1D2)D_{s}(1D_{2}), Ds(1D2)D_{s}(1D_{2}^{\prime}), Ds(23P2)D_{s}(2^{3}P_{2}), D(23D3)D(2^{3}D_{3})/Ds(23D3)D_{s}(2^{3}D_{3}), D(2D2)D(2D_{2}^{\prime})/Ds(2D2)D_{s}(2D_{2}^{\prime}), D(13F4)D(1^{3}F_{4})/Ds(13F4)D_{s}(1^{3}F_{4}) and D(1F3)D(1F_{3}^{\prime})/Ds(1F3)D_{s}(1F_{3}^{\prime}), have a relatively narrow width, they are most likely to be observed in their dominant decay channels in future experiments.

Acknowledgement

The authors thank Prof. Xiang Liu and Dr. Zhi Yang for very helpful discussions. This work is supported by the National Natural Science Foundation of China (Grants Nos. U1832173, 11775078, 12175065).

Appendix A Coupled-channel model

In this appendix, we give the details of the model including the coupled-channel effects on the charmed and charmed-strange meson mass spectra. This simple coupled-channel model has been widely adopted in the literature Lu:2017hma ; Luo:2019qkm ; Luo:2021dvj ; Yang:2021tvc ; Xie:2021dwe ; Ortega:2021fem ; Ortega:2016mms ; Liu:2011yp ; Lu:2016mbb ; Kalashnikova:2005ui ; Eichten:1978tg .

Figure 14: The BCBC hadronic loop coupled to a bare meson state |A|A\rangle.

A bare meson state |A|A\rangle in the quark model can couple to the two-hadron continuum BCBC by hadronic loops as shown in Fig. 14. The experimentally observed state may be an admixture between the bare state and continuum components, thus, the wave function of the physical state is given by

|ψ=cA|A+BCcBC(𝐩)|BC,𝐩d3𝐩,\displaystyle|\psi\rangle=c_{A}|A\rangle+\sum_{BC}\int c_{BC}(\mathbf{p})|BC,\mathbf{p}\rangle d^{3}\mathbf{p}, (75)

where 𝐩=𝐩B=𝐩C\mathbf{p}=\mathbf{p}_{B}=-\mathbf{p}_{C} is final two-hadron relative momentum in the initial hadron static system, cAc_{A} and cBC(𝐩)c_{BC}(\mathbf{p}) denote the probability amplitudes of the bare valence state |A|A\rangle and |BC,𝐩|BC,\mathbf{p}\rangle continuum components, respectively.

The full Hamiltonian of this mixed system |ψ|\psi\rangle can be written as

H^=(H^0H^IH^IH^c).\displaystyle\hat{H}=\left(\begin{matrix}\hat{H}_{0}~{}~{}~{}~{}~{}~{}\hat{H}_{I}\\ \hat{H}_{I}~{}~{}~{}~{}~{}~{}\hat{H}_{c}\end{matrix}\right). (76)

In the above equation, H^0\hat{H}_{0} is the Hamiltonian of the bare meson state |A|A\rangle in the potential model, while H^c\hat{H}_{c} is the Hamiltonian for the continuum state |BC,𝐩|BC,\mathbf{p}\rangle. Neglecting the interaction between the hadrons BB and CC, one has

H^c|BC,𝐩\displaystyle\hat{H}_{c}|BC,\mathbf{p}\rangle =EBC|BC,𝐩,\displaystyle=E_{BC}|BC,\mathbf{p}\rangle, (77)

where EBC=mB2+p2+mC2+p2E_{BC}=\sqrt{m_{B}^{2}+p^{2}}+\sqrt{m_{C}^{2}+p^{2}} represents the energy of BCBC continuum components. The mixing between |A|A\rangle and |BC,𝐩|BC,\mathbf{p}\rangle is caused by the Hamiltonian H^I\hat{H}_{I}, which can be borrowed from our chiral quark model.

The Schrödinger equation of a mixed system can be written as

(H^0H^IH^IH^c)(cA|ABCcBC(𝐩)|BC,𝐩d3𝐩)\displaystyle\left(\begin{matrix}\hat{H}_{0}~{}~{}~{}~{}~{}~{}\hat{H}_{I}\\ \hat{H}_{I}~{}~{}~{}~{}~{}~{}\hat{H}_{c}\end{matrix}\right)~{}\left(\begin{matrix}c_{A}|A\rangle\\ \sum_{BC}\int c_{BC}(\mathbf{p})|BC,\mathbf{p}\rangle d^{3}\mathbf{p}\end{matrix}\right) (78)
=M(cA|ABCcBC(𝐩)|BC,𝐩d3𝐩).\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}=M~{}\left(\begin{matrix}c_{A}|A\rangle\\ \sum_{BC}\int c_{BC}(\mathbf{p})|BC,\mathbf{p}\rangle d^{3}\mathbf{p}\end{matrix}\right).

From Eq.( LABEL:coupled-channel_equation), we have

A|H^|ψ=cAM=cAMA+BCcBC(𝐩)A|H^I|BC,𝐩d3𝐩,\displaystyle\langle A|\hat{H}|\psi\rangle=c_{A}M=c_{A}M_{A}+\sum_{BC}\int c_{BC}(\mathbf{p})\langle A|\hat{H}_{I}|BC,\mathbf{p}\rangle d^{3}\mathbf{p}, (79)
BC,𝐩|H^|ψ=cBC(𝐩)M=cBC(𝐩)EBC+cABC,𝐩|H^I|A.\displaystyle\langle BC,\mathbf{p}|\hat{H}|\psi\rangle=c_{BC}(\mathbf{p})M=c_{BC}(\mathbf{p})E_{BC}+c_{A}\langle BC,\mathbf{p}|\hat{H}_{I}|A\rangle. (80)

Deriving cBC(𝐩)c_{BC}(\mathbf{p}) from Eq.(80), and substituting it into Eq.(79), we get a coupled-channel equation

M=MA+ΔM(M),\displaystyle M=M_{A}+\Delta M(M), (81)

where the mass shift ΔM(M)\Delta M(M) is given by

ΔM(M)\displaystyle\Delta M(M) =ReBC0|BC,𝐩|H^I|A|2(MEBC)p2𝑑p,\displaystyle=\mathrm{Re}\sum_{BC}\int_{0}^{\infty}\frac{|\langle BC,\mathbf{p}|\hat{H}_{I}|A\rangle|^{2}}{(M-E_{BC})}p^{2}dp, (82)

and MAM_{A} is the bare mass of the meson state |A|A\rangle obtained from the potential model. From Eq.(81) and Eq.(82), the physical mass MM and the bare state mass shift ΔM\Delta M can be determined simultaneously.

Figure 15: The integral function ΔM(𝐩)|BC,𝐩|H^I|A|2(MEBC)p2\Delta M(\mathbf{p})\equiv\frac{|\langle BC,\mathbf{p}|\hat{H}_{I}|A\rangle|^{2}}{(M-E_{BC})}p^{2} in Eq.(82) for the Ds(13P0)D_{s}(1^{3}P_{0}) state varies with the momentum p=|𝐩|p=|\mathbf{p}|. The thin line stands for the results with a suppressed factor ep2/(2Λ2)e^{-p^{2}/(2\Lambda^{2})} (Λ=0.84\Lambda=0.84 GeV) as that adopted in Ref. Ortega:2016mms , while the thick line stands for the results without the suppressed factor.

It should be mentioned that when we calculate the mass shift ΔM\Delta M by using the Eq.(82), the nonphysical contributions from higher 𝐩\mathbf{p} region may be involved. To know the whole momentum region contributions, as an example, considering the DKDK loop, in Fig. 15 we plot the mass shift ΔM(𝐩)\Delta M(\mathbf{p}) of Ds(13P0)D_{s}(1^{3}P_{0}) (i.e., the integral function in Eq.(82)) as a function of the momentum p=|𝐩|p=|\mathbf{p}|. It is found that two regions contribute to the mass shift. The main contribution region is the low 𝐩\mathbf{p} region dominated by the pole. In the higher 𝐩\mathbf{p} region of p1.24p\simeq 1.2-4 GeV, a small bump structure exists. This bump contribution may be nonphysical, because the quark pair production rates via the non-perturbative interaction H^I\hat{H}_{I} should be strongly suppressed in the high momentum region Morel:2002vk ; Tan:2021bvl . It should be mentioned that in the chiral quark model the chiral interaction H^I\hat{H}_{I} is only applicable to the low 𝐩\mathbf{p} region.

To soften the hard vertices H^I\hat{H}_{I} in the higher momentum region, and reasonably describe the mass shifts, an additional factor is suggested to be introduced into the two-body decay amplitude BC,𝐩|H^I|A\langle BC,\mathbf{p}|\hat{H}_{I}|A\rangle Morel:2002vk . Adopting suppressed factor ep2/(2Λ2)e^{-p^{2}/(2\Lambda^{2})} with Λ=0.84\Lambda=0.84 GeV as that used in Ref. Ortega:2016mms , we also plot the mass shift ΔM(𝐩)\Delta M(\mathbf{p}) of Ds(13P0)D_{s}(1^{3}P_{0}) as a function of the momentum p=|𝐩|p=|\mathbf{p}| in Fig. 15. It is found that the factor ep2/(2Λ2)e^{-p^{2}/(2\Lambda^{2})} indeed eliminates the contributions from the high momentum region. To eliminate the nonphysical contributions, in our calculations we cut off the momentum pp at the inflection point in ΔM(𝐩)\Delta M(\mathbf{p}) function as shown in Fig. 15. It should be pointed out that the cut-off momentum for each meson states is different due to the different position of the inflection point. With this momentum cut-off approach, our predicted mass shifts due to coupled-channel effects for the DD and/or DsD_{s} meson states are consistent with the predictions in the literature Yang:2021tvc ; Ortega:2016mms ; Xie:2021dwe ; Ortega:2021fem .

References

  • [1] P. del Amo Sanchez et al. [BaBar], Observation of new resonances decaying to DπD\pi and DπD^{*}\pi in inclusive e+ee^{+}e^{-} collisions near s=\sqrt{s}=10.58 GeV, Phys. Rev. D 82, 111101 (2010).
  • [2] R. Aaij et al. [LHCb], Study of DJD_{J} meson decays to D+πD^{+}\pi^{-}, D0π+D^{0}\pi^{+} and D+πD^{*+}\pi^{-} final states in pppp collision, JHEP 09, 145 (2013). [arXiv:1307.4556 [hep-ex]].
  • [3] R. Aaij et al. [LHCb], First observation and amplitude analysis of the BD+KπB^{-}\to D^{+}K^{-}\pi^{-} decay, Phys. Rev. D 91, 092002 (2015) [erratum: Phys. Rev. D 93, 119901 (2016)].
  • [4] R. Aaij et al. [LHCb], Amplitude analysis of BD+ππB^{-}\to D^{+}\pi^{-}\pi^{-} decays, Phys. Rev. D 94, 072001 (2016).
  • [5] R. Aaij et al. [LHCb], Determination of quantum numbers for several excited charmed mesons observed in BD+ππB^{-}\to D^{*+}\pi^{-}\pi^{-} decays, Phys. Rev. D 101, 032005 (2020).
  • [6] R. Aaij et al. [LHCb], Dalitz plot analysis of B0D¯0π+πB^{0}\to\overline{D}^{0}\pi^{+}\pi^{-} decays, Phys. Rev. D 92, 032002 (2015).
  • [7] P. A. Zyla et al. [Particle Data Group], Review of Particle Physics, PTEP 2020, 083C01 (2020).
  • [8] B. Aubert et al. [BaBar], Observation of a new DsD_{s} meson decaying to DKDK at a mass of 2.86 GeV/c2, Phys. Rev. Lett.  97, 222001 (2006).
  • [9] J. Brodzicka et al. [Belle], Observation of a new DsJD_{sJ} meson in B+D¯0D0K+B^{+}\to\bar{D}^{0}D^{0}K^{+} decays, Phys. Rev. Lett. 100, 092001 (2008)
  • [10] B. Aubert et al. [BaBar Collaboration], Study of DsJD_{sJ} decays to DKD^{*}K in inclusive e+ee^{+}e^{-} interactions, Phys. Rev. D 80, 092003 (2009).
  • [11] R. Aaij et al. [LHCb], Study of DsJD_{sJ} decays to D+KS0D^{+}K^{0}_{S} and D0K+D^{0}K^{+} final states in pppp collisions, JHEP 10, 151 (2012).
  • [12] R. Aaij et al. [LHCb], Observation of overlapping spin-1 and spin-3 D¯0K\bar{D}^{0}K^{-} resonances at mass 2.86GeV/c22.86{\rm GeV}/c^{2}, Phys. Rev. Lett. 113, 162001 (2014).
  • [13] R. Aaij et al. [LHCb], Dalitz plot analysis of Bs0D¯0Kπ+B_{s}^{0}\rightarrow\bar{D}^{0}K^{-}\pi^{+} decays, Phys. Rev. D 90, 072003 (2014).
  • [14] R. Aaij et al. [LHCb], Study of D()+sJ{}_{sJ}^{(*)+} mesons decaying to D+KS0D^{*+}K_{S}^{0} and D0K+D^{*0}K^{+} final states, JHEP 02, 133 (2016).
  • [15] R. Aaij et al. [LHCb], Observation of a New Excited Ds+D^{+}_{s} Meson in B0DD+K+πB^{0}\rightarrow D^{-}D^{+}K^{+}\pi^{-} Decays, Phys. Rev. Lett. 126, 122002 (2021).
  • [16] J. P. Lees et al. [BaBar], Dalitz plot analyses of B0DD0K+B^{0}\to D^{-}D^{0}K^{+} and B+D¯0D0K+B^{+}\to\bar{D}^{0}D^{0}K^{+} decays, Phys. Rev. D 91, no.5, 052002 (2015).
  • [17] J. K. Chen, Regge trajectories for the mesons consisting of different quarks, Eur. Phys. J. C 78, 648 (2018).
  • [18] M. Allosh, Y. Mustafa, N. Khalifa Ahmed and A. Sayed Mustafa, Ground and Excited State Mass Spectra and Properties of Heavy-Light Mesons, Few Body Syst. 62, 26 (2021).
  • [19] V. Patel, R. Chaturvedi and A. K. Rai, Spectroscopic properties of DD-meson using screened potential, Eur. Phys. J. Plus 136, 42 (2021).
  • [20] J. B. Liu and M. Z. Yang, Spectrum of the charmed and b-flavored mesons in the relativistic potential model, JHEP 07, 106 (2014).
  • [21] J. B. Liu and M. Z. Yang, Spectrum of Higher excitations of BB and DD mesons in the relativistic potential model, Phys. Rev. D 91, 094004 (2015).
  • [22] J. B. Liu and C. D. Lü, Spectra of heavy-light mesons in a relativistic model, Eur. Phys. J. C 77, 312 (2017).
  • [23] J. B. Liu and M. Z. Yang, Heavy-Light Mesons In A Relativistic Model, Chin. Phys. C 40, 073101 (2016).
  • [24] A. M. Badalian and B. L. G. Bakker, Higher excitations of the DD and DsD_{s} mesons, Phys. Rev. D 84, 034006 (2011).
  • [25] D. Ebert, R. N. Faustov and V. O. Galkin, Heavy-light meson spectroscopy and Regge trajectories in the relativistic quark model, Eur. Phys. J. C 66, 197-206 (2010).
  • [26] A. Zhang, Implications to cs¯c\bar{s} assignments of Ds1(2700)+D_{s1}(2700)^{+-} and DsJ(2860)D_{sJ}(2860), Nucl. Phys. A 856, 88-94 (2011).
  • [27] D. Zhou, E. L. Cui, H. X. Chen, L. S. Geng, X. Liu and S. L. Zhu, D-wave heavy-light mesons from QCD sum rules, Phys. Rev. D 90, 114035 (2014).
  • [28] B. Chen, D. X. Wang and A. Zhang, Interpretation of DsJ(2632)+D_{sJ}(2632)+, Ds1(2700)+D_{s1}(2700)^{+-}, DsJ(2860)+D^{*}_{sJ}(2860)^{+} and DsJ(3040)+D_{sJ}(3040)^{+}, Phys. Rev. D 80, 071502 (2009).
  • [29] Q. T. Song, D. Y. Chen, X. Liu and T. Matsuki, Higher radial and orbital excitations in the charmed meson family, Phys. Rev. D 92, 074011 (2015).
  • [30] Q. F. Lü and D. M. Li, Understanding the charmed states recently observed by the LHCb and BaBar Collaborations in the quark model, Phys. Rev. D 90, 054024 (2014).
  • [31] S. Godfrey and K. Moats, Properties of Excited Charm and Charm-Strange Mesons, Phys. Rev. D 93, 034035 (2016).
  • [32] V. Kher, N. Devlani and A. K. Rai, Excited state mass spectra, Decay properties and Regge trajectories of charm and charm-strange mesons, Chin. Phys. C 41, 073101 (2017).
  • [33] J. Ferretti and E. Santopinto, Open-flavor strong decays of open-charm and open-bottom mesons in the P03{}^{3}P_{0} model, Phys. Rev. D 97, 114020 (2018).
  • [34] J. Segovia, D. R. Entem and F. Fernandez, Charmed-strange Meson Spectrum: Old and New Problems, Phys. Rev. D 91, 094020 (2015).
  • [35] K. Gandhi and A. K. Rai, Strong decays analysis of excited nonstrange charmed mesons: Implications for spectroscopy, Eur. Phys. J. A 57, 23 (2021).
  • [36] Y. Sun, X. Liu and T. Matsuki, Newly observed DJ(3000)+,0D_{J}(3000)^{+,0} and DJ(3000)0D_{J}^{*}(3000)^{0} as 2P2P states in DD meson family, Phys. Rev. D 88, 094020 (2013).
  • [37] D. M. Li, P. F. Ji and B. Ma, The newly observed open-charm states in quark model, Eur. Phys. J. C 71, 1582 (2011).
  • [38] H. Yu, Z. Zhao and A. Zhang, Dynamical mixing between 23S12^{3}S_{1} and 13D11^{3}D_{1} charmed mesons, Phys. Rev. D 102, 054013 (2020).
  • [39] W. I. Eshraim, F. Giacosa and D. H. Rischke, Phenomenology of charmed mesons in the extended Linear Sigma Model, Eur. Phys. J. A 51, 112 (2015).
  • [40] M. Shah, B. Patel and P. C. Vinodkumar, Mass spectra and decay properties of DsD_{s} Meson in a relativistic Dirac formalism, Phys. Rev. D 90, 014009 (2014).
  • [41] Q. T. Song, D. Y. Chen, X. Liu and T. Matsuki, Charmed-strange mesons revisited: mass spectra and strong decays, Phys. Rev. D 91, 054031 (2015).
  • [42] Z. F. Sun, J. S. Yu, X. Liu and T. Matsuki, Newly observed D(2550)D(2550), D(2610)D(2610), and D(2760)D(2760) as 2S2S and 1D1D charmed mesons, Phys. Rev. D 82, 111501 (2010).
  • [43] X. H. Zhong, Strong decays of the newly observed D(2550)D(2550), D(2600)D(2600), D(2750)D(2750), and D(2760)D(2760), Phys. Rev. D 82, 114014 (2010).
  • [44] L. Y. Xiao and X. H. Zhong, Strong decays of higher excited heavy-light mesons in a chiral quark model, Phys. Rev. D 90, 074029 (2014).
  • [45] G. L. Yu, Z. G. Wang and Z. Y. Li, Analysis of the charmed mesons D1(2680)D_{1}^{*}(2680), D3(2760)D_{3}^{*}(2760) and D2(3000)D_{2}^{*}(3000), Phys. Rev. D 94, 074024 (2016).
  • [46] Z. G. Wang, Analysis of strong decays of the charmed mesons D(2550)D(2550), D(2600)D(2600), D(2750)D(2750) and D(2760)D(2760), Phys. Rev. D 83, 014009 (2011).
  • [47] Z. G. Wang, Analysis of strong decays of the charmed mesons DJ(2580),DJ(2650),DJ(2740),DJ(2760),DJ(3000),DJ(3000)D_{J}(2580),D^{*}_{J}(2650),D_{J}(2740),D^{*}_{J}(2760),D_{J}(3000),D^{*}_{J}(3000), Phys. Rev. D 88, 114003 (2013).
  • [48] G. L. Yu, Z. G. Wang, Z. Y. Li and G. Q. Meng, Systematic analysis of the DJ(2580)D_{J}(2580), DJ(2650)D_{J}^{*}(2650), DJ(2740)D_{J}(2740), DJ(2760)D_{J}^{*}(2760), DJ(3000)D_{J}(3000) and DJ(3000)D_{J}^{*}(3000) in DD meson family, Chin. Phys. C 39, 063101 (2015).
  • [49] P. Gupta and A. Upadhyay, Analysis of strong decays of charmed mesons D2(2460)D^{*}_{2}(2460), D0(2560)D_{0}(2560), D2(2740)D_{2}(2740), D1(3000)D_{1}(3000), D2(3000)D^{*}_{2}(3000) and their spin partners D1(2680)D^{*}_{1}(2680), D3(2760)D^{*}_{3}(2760) and D0(3000)D^{*}_{0}(3000), Phys. Rev. D 97, 014015 (2018).
  • [50] B. Chen, L. Yuan and A. Zhang, Possible 2S and 1D charmed and charmed-strange mesons, Phys. Rev. D 83, 114025 (2011).
  • [51] B. Chen, X. Liu and A. Zhang, Combined study of 2S2S and 1D1D open-charm mesons with natural spin-parity, Phys. Rev. D 92, 034005 (2015).
  • [52] T. Wang, Z. H. Wang, Y. Jiang, L. Jiang and G. L. Wang, Strong decays of D3(2760)D_{3}^{*}(2760) , Ds3(2860)D_{s3}^{*}(2860) , B3B_{3}^{*} , and Bs3B_{s3}^{*}, Eur. Phys. J. C 77, 38 (2017).
  • [53] Q. T. Song, D. Y. Chen, X. Liu and T. Matsuki, Ds1(2860)D_{s1}^{*}(2860) and Ds3(2860)D_{s3}^{*}(2860): candidates for 1D1D charmed-strange mesons, Eur. Phys. J. C 75, 30 (2015).
  • [54] Z. G. Wang, Ds3(2860)D_{s3}^{*}(2860) and Ds1(2860)D_{s1}^{*}(2860) as the 1D cs¯c\bar{s} states, Eur. Phys. J. C 75, 25 (2015).
  • [55] Q. Li, Y. Jiang, T. Wang, H. Yuan, G. L. Wang and C. H. Chang, Study of the excited 11^{-} charm and charm-strange mesons, Eur. Phys. J. C 77, 297 (2017).
  • [56] S. C. Zhang, T. Wang, Y. Jiang, Q. Li and G. L. Wang, Strong decays of 2+2^{+} charm and charm-strange mesons, Int. J. Mod. Phys. A 32, 1750022 (2017).
  • [57] X. Z. Tan, T. Wang, Y. Jiang, S. C. Li, Q. Li, G. L. Wang and C. H. Chang, Strong decays of the orbitally excited scalar D0D^{*}_{0} mesons, Eur. Phys. J. C 78, 583 (2018).
  • [58] X. H. Zhong and Q. Zhao, Strong decays of heavy-light mesons in a chiral quark model, Phys. Rev.  D 78, 014029 (2008).
  • [59] X. H. Zhong and Q. Zhao, Strong decays of newly observed DsJD_{sJ} states in a constituent quark model with effective Lagrangians, Phys. Rev.  D 81, 014031 (2010).
  • [60] Z. F. Sun and X. Liu, Newly observed DsJ(3040)D_{sJ}(3040) and the radial excitations of P-wave charmed-strange mesons, Phys. Rev. D 80, 074037 (2009).
  • [61] Z. G. Wang, Analysis of the strong decays Ds3(2860)DKD_{s3}^{*}(2860)\to DK, DKD^{*}K with QCD sum rules, Eur. Phys. J. A 52, 303 (2016).
  • [62] D. M. Li and B. Ma, Implication of BaBar’s new data on theDs1(2710)D_{s1}(2710) and DsJ(2860)D_{sJ}(2860), Phys. Rev. D 81, 014021 (2010).
  • [63] S. Godfrey and I. T. Jardine, Nature of the Ds1(2710)D_{s1}^{*}(2710) and DsJ(2860)D_{sJ}^{*}(2860) mesons, Phys. Rev. D 89, 074023 (2014).
  • [64] S. Godfrey and K. Moats, The DsJ(2860)D_{sJ}^{*}(2860) Mesons as Excited D-wave cs¯c\bar{s} States, Phys. Rev. D 90, 117501 (2014).
  • [65] K. Gandhi, A. K. Rai and T. Matsuki, Identifying DsJ(2860)D_{sJ}^{*}(2860) as a four resonance states through strong decay analysis, [arXiv:2003.00487 [hep-ph]].
  • [66] G. L. Wang, W. Li, T. F. Feng, Y. L. Wang and Y. B. Liu, The newly observed state Ds0(2590)+D_{s0}(2590)^{+}, [arXiv:2107.01751 [hep-ph]].
  • [67] Y. Tian, Z. Zhao and A. Zhang, Study of radially excited Ds(21S0)D_{s}(2^{1}S_{0}) and Ds(3P)D_{s}(3P), Chin. Phys. C 41, 083107 (2017).
  • [68] Z. H. Wang, Y. Zhang, T. h. Wang, Y. Jiang, Q. Li and G. L. Wang, Strong Decays of PP-wave Mixing Heavy-Light 1+1^{+} States, Chin. Phys. C 42, 123101 (2018).
  • [69] P. Colangelo, F. De Fazio, F. Giannuzzi and S. Nicotri, New meson spectroscopy with open charm and beauty, Phys. Rev. D 86, 054024 (2012).
  • [70] P. Colangelo and F. De Fazio, Open charm meson spectroscopy: Where to place the latest piece of the puzzle, Phys. Rev. D 81, 094001 (2010).
  • [71] Z. Zhao, Y. Tian and A. Zhang, Hadronic production of D(2550)D(2550), D(2600)D^{*}(2600), D(2750)D(2750), D1(2760)D^{*}_{1}(2760) and D3(2760)D^{*}_{3}(2760), Phys. Rev. D 94, 114035 (2016).
  • [72] S. C. Li, T. Wang, Y. Jiang, X. Tan, Q. Li, G. L. Wang and C. H. Chang, Strong decays of DJ(3000)D_{J}(3000) and DsJ(3040)D_{sJ}(3040), Phys. Rev. D 97, 054002 (2018).
  • [73] S. Godfrey and N. Isgur, Mesons in a relativized quark model with chromodynamics, Phys. Rev. D 32, 189 (1985).
  • [74] J. Zeng, J. W. Van Orden and W. Roberts, Heavy mesons in a relativistic model, Phys. Rev. D 52, 5229-5241 (1995).
  • [75] S. N. Gupta and J. M. Johnson, Quantum chromodynamic potential model for light heavy quarkonia and the heavy quark effective theory, Phys. Rev. D 51, 168-175 (1995).
  • [76] T. A. Lahde, C. J. Nyfalt and D. O. Riska, Spectra and M1 decay widths of heavy light mesons, Nucl. Phys. A 674, 141-167 (2000).
  • [77] M. Di Pierro and E. Eichten, Excited Heavy-Light Systems and Hadronic Transitions, Phys. Rev. D 64, 114004 (2001).
  • [78] S. Godfrey, Properties of the charmed P-wave mesons, Phys. Rev. D 72, 054029 (2005).
  • [79] F. E. Close and E. S. Swanson, Dynamics and decay of heavy-light hadrons, Phys. Rev. D 72, 094004 (2005)
  • [80] J. Vijande, F. Fernandez and A. Valcarce, Open-charm meson spectroscopy, Phys. Rev. D 73, 034002 (2006) [erratum: Phys. Rev. D 74, 059903 (2006)].
  • [81] F. E. Close, C. E. Thomas, O. Lakhina and E. S. Swanson, Canonical interpretation of the DsJ(2860)D_{sJ}(2860) and DsJ(2690)D_{sJ}(2690), Phys. Lett. B 647, 159-163 (2007).
  • [82] D. M. Li, B. Ma and Y. H. Liu, Understanding masses of cs¯c\bar{s} states in Regge phenomenology, Eur. Phys. J. C 51, 359-365 (2007).
  • [83] B. Zhang, X. Liu, W. Z. Deng and S. L. Zhu, DsJ(2860)D_{sJ}(2860) and DsJ(2715)D_{sJ}(2715), Eur. Phys. J. C 50, 617-628 (2007).
  • [84] W. Wei, X. Liu and S. L. Zhu, D wave heavy mesons, Phys. Rev. D 75, 014013 (2007).
  • [85] D. Mohler and R. M. Woloshyn, DD and DsD_{s} meson spectroscopy, Phys. Rev. D 84, 054505 (2011).
  • [86] G. Moir, M. Peardon, S. M. Ryan, C. E. Thomas and L. Liu, Excited spectroscopy of charmed mesons from lattice QCD, JHEP 05, 021 (2013).
  • [87] M. Kalinowski and M. Wagner, Masses of DD mesons, DsD_{s} mesons and charmonium states from twisted mass lattice QCD, Phys. Rev. D 92, 094508 (2015).
  • [88] K. Cichy, M. Kalinowski and M. Wagner, Continuum limit of the DD meson, DsD_{s} meson and charmonium spectrum from Nf=2+1+1N_{f}=2+1+1 twisted mass lattice QCD, Phys. Rev. D 94, 094503 (2016).
  • [89] M. L. Du, F. K. Guo, C. Hanhart, B. Kubis and U. G. Meißner, Where is the lightest charmed scalar meson? Phys. Rev. Lett. 126, 192001 (2021).
  • [90] M. Albaladejo, P. Fernandez-Soler, F. K. Guo and J. Nieves, Two-pole structure of the D0(2400)D^{\ast}_{0}(2400), Phys. Lett. B 767, 465-469 (2017).
  • [91] M. L. Du, M. Albaladejo, P. Fernández-Soler, F. K. Guo, C. Hanhart, U. G. Meißner, J. Nieves and D. L. Yao, Towards a new paradigm for heavy-light meson spectroscopy, Phys. Rev. D 98, 094018 (2018).
  • [92] L. Gayer et al. [Hadron Spectrum], Isospin-1/2 DπD\pi scattering and the lightest D0{D}_{0}^{\ast} resonance from lattice QCD, JHEP 07 (2021), 123.
  • [93] B. Aubert et al. [BaBar], Observation of a narrow meson decaying to Ds+π0D_{s}^{+}\pi^{0} at a mass of 2.32-GeV/c2, Phys. Rev. Lett. 90, 242001 (2003).
  • [94] D. Besson et al. [CLEO], Observation of a narrow resonance of mass 2.46-GeV/c2 decaying to Ds+pi0D^{*+}_{s}pi0 and confirmation of the DsJ(2317)D^{*}_{sJ}(2317) state, Phys. Rev. D 68, 032002 (2003) [erratum: Phys. Rev. D 75, 119908 (2007)].
  • [95] Z. Yang, G. J. Wang, J. J. Wu, M. Oka and S. L. Zhu, Novel coupled channel framework connecting quark model and lattice QCD: an investigation on near-threshold DsD_{s} states, [arXiv:2107.04860 [hep-ph]].
  • [96] P. G. Ortega, J. Segovia, D. R. Entem and F. Fernandez, Molecular components in P-wave charmed-strange mesons, Phys. Rev. D 94, 074037 (2016).
  • [97] H. X. Chen, W. Chen, X. Liu, Y. R. Liu and S. L. Zhu, A review of the open charm and open bottom systems, Rept. Prog. Phys. 80, 076201 (2017).
  • [98] L. Y. Xiao and X. H. Zhong, Ξ\Xi baryon strong decays in a chiral quark model, Phys. Rev. D 87, 094002 (2013).
  • [99] M. S. Liu, K. L. Wang, Q. F. Lü and X. H. Zhong, Ω\Omega baryon spectrum and their decays in a constituent quark model, Phys. Rev. D 101, 016002 (2020).
  • [100] L. Y. Xiao and X. H. Zhong, Possible interpretation of the newly observed Ω(2012)\Omega(2012) state, Phys. Rev. D 98, 034004 (2018).
  • [101] X. H. Zhong and Q. Zhao, Charmed baryon strong decays in a chiral quark model, Phys. Rev.  D 77, 074008 (2008).
  • [102] L. H. Liu, L. Y. Xiao and X. H. Zhong, Charm-strange baryon strong decays in a chiral quark model, Phys. Rev. D 86, 034024 (2012).
  • [103] Y. X. Yao, K. L. Wang and X. H. Zhong, Strong and radiative decays of the low-lying DD-wave singly heavy baryons, Phys. Rev. D 98, 076015 (2018).
  • [104] K. L. Wang, Y. X. Yao, X. H. Zhong and Q. Zhao, Strong and radiative decays of the low-lying SS- and PP-wave singly heavy baryons, Phys. Rev. D 96, 116016 (2017).
  • [105] H. Nagahiro, S. Yasui, A. Hosaka, M. Oka and H. Noumi, Structure of charmed baryons studied by pionic decays, Phys. Rev. D 95, 014023 (2017).
  • [106] K. L. Wang, L. Y. Xiao, X. H. Zhong and Q. Zhao, Understanding the newly observed Ωc\Omega_{c} states through their decays, Phys. Rev. D 95, 116010 (2017).
  • [107] L. Y. Xiao, K. L. Wang, M. S. Liu and X. H. Zhong, Possible interpretation of the newly observed Ωb\Omega_{b} states, Eur. Phys. J. C 80, 279 (2020).
  • [108] K. L. Wang, Q. F. Lü and X. H. Zhong, Interpretation of the newly observed Λb(6146)0\Lambda_{b}(6146)^{0} and Λb(6152)0\Lambda_{b}(6152)^{0} states in a chiral quark model, Phys. Rev. D 100, 114035 (2019).
  • [109] K. L. Wang, Q. F. Lü and X. H. Zhong, Interpretation of the newly observed Σb(6097)±\Sigma_{b}(6097)^{\pm} and Ξb(6227)\Xi_{b}(6227)^{-} states as the PP-wave bottom baryons, Phys. Rev. D 99, 014011 (2019).
  • [110] L. Y. Xiao and X. H. Zhong, Toward establishing the low-lying PP-wave Σb\Sigma_{b} states, Phys. Rev. D 102, 014009 (2020).
  • [111] K. L. Wang, L. Y. Xiao and X. H. Zhong, Understanding the newly observed Ξc0\Xi_{c}^{0} states through their decays, Phys. Rev. D 102, 034029 (2020).
  • [112] L. Y. Xiao, K. L. Wang, Q. f. Lü, X. H. Zhong and S. L. Zhu, Strong and radiative decays of the doubly charmed baryons, Phys. Rev. D 96, 094005 (2017).
  • [113] Q. li, R. H. Ni and X. H. Zhong, Towards establishing an abundant BB and BsB_{s} spectrum up to the second orbital excitations, Phys. Rev. D 103, 116010 (2021).
  • [114] E. Eichten, K. Gottfried, T. Kinoshita, K. D. Lane and T. M. Yan, Charmonium: The model, Phys. Rev. D 17, 3090 (1978);21, 313(E) (1980).
  • [115] T. Barnes, S. Godfrey, and E. S. Swanson, Higher charmonia, Phys. Rev. D 72, 054026 (2005).
  • [116] S. Godfrey, Spectroscopy of BcB_{c} mesons in the relativized quark model, Phys. Rev. D 70, 054017 (2004).
  • [117] E. Hiyama, Y. Kino and M. Kamimura, Gaussian expansion method for few-body systems, Prog. Part. Nucl. Phys. 51, 223-307 (2003).
  • [118] W. J. Deng, H. Liu, L. C. Gui and X. H. Zhong, Spectrum and electromagnetic transitions of bottomonium, Phys. Rev. D 95, 074002 (2017).
  • [119] W. J. Deng, H. Liu, L. C. Gui and X. H. Zhong, Charmonium spectrum and their electromagnetic transitions with higher multipole contributions, Phys. Rev. D 95, 034026 (2017).
  • [120] Q. Li, M. S. Liu, Q. F. Lü, L. C. Gui and X. H. Zhong, Canonical interpretation of Y(10750)Y(10750) and Υ(10860)\Upsilon(10860) in the Υ\Upsilon family, Eur. Phys. J. C 80, 59 (2020).
  • [121] Q. Li, M. S. Liu, L. S. Lu, Q. F. Lü, L. C. Gui and X. H. Zhong, Excited bottom-charmed mesons in a nonrelativistic quark model, Phys. Rev. D 99, 096020 (2019).
  • [122] Q. Li, L. C. Gui, M. S. Liu, Q. F. Lü and X. H. Zhong, Mass spectrum and strong decays of strangeonium in a constituent quark model, Chin. Phys. C 45, 023116 (2021).
  • [123] A. Manohar and H. Georgi, Chiral Quarks and the Nonrelativistic Quark Model, Nucl. Phys. B 234, 189 (1984).
  • [124] Z. P. Li, The Threshold pion photoproduction of nucleons in the chiral quark model, Phys. Rev. D 50, 5639 (1994).
  • [125] Z. P. Li, H. X. Ye and M. H. Lu, An Unified approach to pseudoscalar meson photoproductions off nucleons in the quark model, Phys. Rev. C 56, 1099 (1997).
  • [126] Q. Zhao, J. S. Al-Khalili, Z. P. Li and R. L. Workman, Pion photoproduction on the nucleon in the quark model, Phys. Rev. C 65, 065204 (2002).
  • [127] Q. Zhao, Z. P. Li and C. Bennhold, Vector meson photoproduction with an effective Lagrangian in the quark model, Phys. Rev.  C 58, 2393 (1998).
  • [128] Q. Zhao, Nucleonic resonance excitations with linearly polarized photon in γpωp\gamma p\to\omega p, Phys. Rev.  C 63, 025203 (2001).
  • [129] Q. Zhao, J. S. Al-Khalili and C. Bennhold, Quark model predictions for the KK^{*} photoproduction on the proton, Phys. Rev.  C 64, 052201 (2001).
  • [130] R. Koniuk and N. Isgur, Baryon Decays in a Quark Model with Chromodynamics, Phys. Rev. D 21, 1868 (1980) Erratum: [Phys. Rev. D 23, 818 (1981)].
  • [131] J. L. Goity and W. Roberts, A Relativistic chiral quark model for pseudoscalar emission from heavy mesons, Phys. Rev. D 60, 034001 (1999).
  • [132] S. Capstick and W. Roberts, Quark models of baryon masses and decays, Prog. Part. Nucl. Phys.  45, S241 (2000).
  • [133] Z. H. Wang, G. L. Wang, J. M. Zhang and T. H. Wang, The Productions and Strong Decays of Dq(2S)D_{q}(2S) and Bq(2S)B_{q}(2S), J. Phys. G 39, 085006 (2012).
  • [134] J. M. Xie, M. Z. Liu and L. S. Geng, Ds0(2590)D_{s0}(2590) as a dominant cs state with a small DKD^{*}K component, Phys. Rev. D 104, no.9, 094051 (2021).
  • [135] P. G. Ortega, J. Segovia, D. R. Entem and F. Fernandez, The Ds0(2590)+D_{s0}(2590)^{+} as the dressed cs¯(21S0)c\bar{s}(2^{1}S_{0}) meson in a coupled-channels calculation, [arXiv:2111.00023 [hep-ph]].
  • [136] K. Abe et al. [Belle], Study of BD0π(D0D()+πB^{-}\to D^{**0}\pi^{-}(D^{**0}\to D^{(*)+}\pi^{-} decays, Phys. Rev. D 69, 112002 (2004).
  • [137] B. Aubert et al. [BaBar], Dalitz Plot Analysis of BD+ππB^{-}\to D^{+}\pi^{-}\pi^{-}, Phys. Rev. D 79, 112004 (2009).
  • [138] J. M. Link et al. [FOCUS], Measurement of masses and widths of excited charm mesons D2D_{2}^{*} and evidence for broad states, Phys. Lett. B 586, 11-20 (2004).
  • [139] L. Liu, K. Orginos, F. K. Guo, C. Hanhart and U. G. Meissner, Interactions of charmed mesons with light pseudoscalar mesons from lattice QCD and implications on the nature of the Ds0(2317)D_{s0}^{*}(2317), Phys. Rev. D 87, 014508 (2013).
  • [140] N. Isgur, Spin orbit inversion of excited heavy quark mesons, Phys. Rev. D 57, 4041-4053 (1998).
  • [141] D. Morel and S. Capstick, Baryon meson loop effects on the spectrum of nonstrange baryons, [arXiv:nucl-th/0204014 [nucl-th]].
  • [142] Y. Tan and J. Ping, Ds0(2317)D^{*}_{s0}(2317) and Ds1(2460)D_{s1}(2460) in an unquenched quark model, [arXiv:2111.04677 [hep-ph]].
  • [143] Y. S. Kalashnikova, Coupled-channel model for charmonium levels and an option for X(3872), Phys. Rev. D 72, 034010 (2005).
  • [144] Y. Lu, M. N. Anwar and B. S. Zou, Coupled-Channel Effects for the Bottomonium with Realistic Wave Functions, Phys. Rev. D 94, 034021 (2016).
  • [145] Y. Lu, M. N. Anwar and B. S. Zou, How Large is the Contribution of Excited Mesons in Coupled-Channel Effects?, Phys. Rev. D 95, 034018 (2017).
  • [146] J. F. Liu and G. J. Ding, Bottomonium Spectrum with Coupled-Channel Effects, Eur. Phys. J. C 72, 1981 (2012).
  • [147] S. Q. Luo, B. Chen, Z. W. Liu and X. Liu, Resolving the low mass puzzle of Λc(2940)+\Lambda_{c}(2940)^{+}, Eur. Phys. J. C 80, 301 (2020).
  • [148] S. Q. Luo, B. Chen, X. Liu and T. Matsuki, Predicting a new resonance as charmed-strange baryonic analog of Ds0D^{*}_{s0}(2317), Phys. Rev. D 103, 074027 (2021).