This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Mass spectrum and decays of the first radial excitation axial vector meson nonet

Xue-Chao Feng 1 fxchao@zzuli.edu.cn    Ke-Wei Wei 2 weikw@ihep.ac.cn 1 Department of Technology and Physics, Zhengzhou University of Light Industry, 450002 Zhengzhou, China
2 School of Science, Henan University of Engineering, 451191 Zhengzhou, China
Abstract

In this work, the mass spectrum of the first radial excitation axial vector meson nonet is considered in the framework of the nonrelativistic constituent quark model and Regge phenomenology. After that, we investigate the strong decay characteristics of these states within the P03{}^{3}P_{0} model. The results are compared to values from other phenomenological models, and they may be beneficial in the prospective search for 23P12^{3}P_{1} meson nonets.

\PACS

11.55.Jy, 12.40.Yx, 14.40.Be

1 Introduction

In the preceding decades, with the advancement of experiments, more and more light flavor mesons have been found. During this time period, both measurements and the theoretical interpretation of the results have made significant strides. In the most recent version of the Particle Data Group, light flavor mesons, especially the ground state light mesons, have been explicitly allotted [1]. However, we also note that the assignment of radial excited states is not optimistic. On the one hand, several candidates for the radial excited states have not yet been observed experimentally. On the other hand, there are several candidates for some radial excited states that need to be screened further through theory and experiment. There is still a significant amount of work that has to be done, both theoretically and practically, in order to finish and identify the meson spectrum.

In this work, we concentrate on the ground and the first radially excited axial vector meson state. In Table 1, we present the experimental information of states with JPC=1++J^{PC}=1^{++} quantum numbers in the Particle Data Group (PDG) [1].


Table 1. Masses and decay widths of JPC=1++J^{PC}=1^{++} meson states (in units of MeV). The states listed as “further states” in the PDG [1]. The isodoublet of 13P11^{3}P_{1} meson nonet K1AK_{1A} is mixture of K1(1270)K_{1}(1270) and K1(1400)K_{1}(1400). IG(JPC)I^{G}(J^{PC}) State (13P11^{3}P_{1}) Mass Width 1+(1++)1^{+}(1^{++}) a1(1260)a_{1}(1260) 1230±401230\pm 40 420±35420\pm 35 a1(1640)a_{1}(1640) 1655±161655\pm 16 254±40254\pm 40 a1(1930)a_{1}(1930)^{{\dagger}} 193070+301930^{+30}_{-70} 155±45155\pm 45 a1(2095)a_{1}(2095)^{{\dagger}} 2096±17±1212096\pm 17\pm 121 451±41±81451\pm 41\pm 81 a1(2270)a_{1}(2270)^{{\dagger}} 227040+552270^{+55}_{-40} 30540+70305^{+70}_{-40} 0+(1++)0^{+}(1^{++}) f1(1285)f_{1}(1285) 1281.9±0.51281.9\pm 0.5 22.7±1.122.7\pm 1.1 f1(1420)f_{1}(1420) 1426.3±0.91426.3\pm 0.9 54.5±2.654.5\pm 2.6 f1(1510)f_{1}(1510) 1518±51518\pm 5 73±2573\pm 25 f1(1970)f_{1}(1970)^{{\dagger}} 1971±151971\pm 15 240±45240\pm 45 f1(2310)f_{1}(2310)^{{\dagger}} 2310±602310\pm 60 255±70255\pm 70 12+(1++)\frac{1}{2}^{+}(1^{++}) K1(1270)±K_{1}(1270)^{\pm{\ddagger}} 1253±71253\pm 7 90±2090\pm 20 K1(1400)±K_{1}(1400)^{\pm{\ddagger}} 1403±71403\pm 7 194±17194\pm 17

For the ground axial vector meson nonet, the a1(1260)a_{1}(1260), f1(1285)f_{1}(1285) and f1(1420)f_{1}(1420) are well established. The isodoublet state K1AK_{1A} is the mixture of K1(1270)K_{1}(1270) and K1(1400)K_{1}(1400), and the mixing angle has been estimated by different approaches [2, 3, 4, 5]. On the whole, the assignment for the ground axial vector meson nonet remains plausible in the light of the available experiment data. However, under the existing experimental data, the assignment for the first radially excited state of axial vector meson nonet has encountered great difficulties. On the one hand, the a1(1640)a_{1}(1640), a1(1930)a_{1}(1930), a1(2095)a_{1}(2095) and a1(2270)a_{1}(2270) with JPC=1++J^{PC}=1^{++} quantum numbers, are potential candidates for the radial excited states. In PDG, the a1(1640)a_{1}(1640) was unexpectedly assigned as nn¯n\bar{n} member of the 23P12^{3}P_{1} nonet. In past few years, the mass and decay of nn¯n\bar{n} member of the 23P12^{3}P_{1} nonet has been analyzed with different models [6, 7, 8]. The mass of a1(1640)a_{1}(1640) is obviously less than the theoretical results. The assignment is essential for further testing in future experiments. On the other hand, there is no suitable candidate for the ns¯n\bar{s} and ss¯s\bar{s} members of the 23P12^{3}P_{1} nonet. In this work, considering the present research situation, we will systematically analyze the masses and decays of the 23P12^{3}P_{1} nonet.

The organization of this paper is as follows. In Section 2, we will provide a concise discussion of the nonrelativistic constituent quark model, Regge phenomenology, and the P03{}^{3}P_{0} model. The numerical results of the 23P12^{3}P_{1} meson nonet are presented in Section 3, and Section 4 provides a description of the results.

2 Theoretical models

2.1 Nonrelativistic constituent quark model

In the constituent quark model, mesons are characterized as bound states of quark and antiquark via a phenomenological potential. It is conventional in the context of the nonrelativistic constituent quark model to assume that the qq¯q\bar{q} wave functions is a solution of a nonrelativistic Schro¨\ddot{o}dinger equation with the Breit-Fermi Hamitonian HH [9, 10, 11], which can be expressed as

Hψn(r)=(mq+mq¯+mq+mq¯2mqmq¯p2(mq3+mq¯38mq3mq¯3)p4H\psi_{n}(r)=(m_{q}+m_{\bar{q}}+\frac{m_{q}+m_{\bar{q}}}{2m_{q}m_{\bar{q}}}\vec{p^{2}}-(\frac{m_{q}^{3}+m_{\bar{q}}^{3}}{8m_{q}^{3}m_{\bar{q}}^{3}})\vec{p^{4}}
+Vv(r)+Vs(r)+HLS+SS+T)ψn(r)+V_{v}(r)+V_{s}(r)+H_{LS+SS+T})\psi_{n}(r) (1)

with

HLS+SS+T=HLS+HSS+HTH_{LS+SS+T}=H_{LS}+H_{SS}+H_{T}

where mqm_{q} and mq¯m_{\bar{q}} are the masses of constituent quarks, Vv(r)V_{v}(r) and Vs(r)V_{s}(r) are the vector and scalar contributions to the confining potential, and HLSH_{LS}, HSSH_{SS} and HTH_{T} represent the spin-spin, spin-orbit, and tensor terms, respectively.

The following connection may be found in the phenomenological form of the matrix element of the Breit-Fermi Hamitonian when it is applied to P-wave mesons[2, 10, 11]:

Mqq¯=mq+mq¯+a1+b1(1mq+1mq¯)+c1(1mq2+1mq¯2)+d1mqmq¯M_{q\bar{q}}=m_{q}+m_{\bar{q}}+a_{1}+b_{1}(\frac{1}{m_{q}}+\frac{1}{m_{\bar{q}}})+c_{1}(\frac{1}{m_{q}^{2}}+\frac{1}{m_{\bar{q}}^{2}})+\frac{d_{1}}{m_{q}m_{\bar{q}}}
+g1[(mq+mq¯)2+2mqmq¯4mq2mq¯2LSmq2mq¯24mq2mq¯2L(SqSq¯)]+g_{1}[\frac{({m_{q}+m_{\bar{q}}})^{2}+2m_{q}m_{\bar{q}}}{4m_{q}^{2}m_{\bar{q}}^{2}}\langle L\cdot S\rangle-\frac{m_{q}^{2}-m_{\bar{q}}^{2}}{4m_{q}^{2}m_{\bar{q}}^{2}}\langle L(S_{q}-S_{\bar{q}})\rangle]
+e1SqSq¯mqmq¯+f1(1mq3+1mq¯3)+h1a(j,1)mqmq¯+e_{1}\frac{\langle S_{q}S_{\bar{q}}\rangle}{m_{q}m_{\bar{q}}}+f_{1}(\frac{1}{m_{q}^{3}}+\frac{1}{m_{\bar{q}}^{3}})+h_{1}\frac{a(j,1)}{m_{q}m_{\bar{q}}} (2)

with

a(j,1)=45S2L232(LS)3(LS)2a(j,1)=\frac{4}{5}\langle S^{2}L^{2}-\frac{3}{2}(LS)-3(LS)^{2}\rangle
LS=12[j(j+1)3S2]\langle LS\rangle=\frac{1}{2}[j(j+1)-3S-2]

where a1a_{1}, b1b_{1}, c1c_{1}, d1d_{1}, e1e_{1}, f1f_{1}, g1g_{1}, and h1h_{1} are fixed values. In what follows, we employ the Breit-Fermi Hamitonian on the 13P11^{3}P_{1} and 13P21^{3}P_{2} meson multiplets.

Mqq¯(13P2)=mq+mq¯+a1+b1(1mq+1mq¯)+c1(1mq2+1mq¯2)+d1mqmq¯M_{q\bar{q}}(1^{3}P_{2})=m_{q}+m_{\bar{q}}+a_{1}+b_{1}(\frac{1}{m_{q}}+\frac{1}{m_{\bar{q}}})+c_{1}(\frac{1}{m_{q}^{2}}+\frac{1}{m_{\bar{q}}^{2}})+\frac{d_{1}}{m_{q}m_{\bar{q}}}
+g1(mq+mq¯)2+2mqmq¯4mq2mq¯2+e14mqmq¯+f1(1mq3+1mq¯3)2h15mqmq¯+g_{1}\frac{({m_{q}+m_{\bar{q}}})^{2}+2m_{q}m_{\bar{q}}}{4m_{q}^{2}m_{\bar{q}}^{2}}+\frac{e_{1}}{4m_{q}m_{\bar{q}}}+f_{1}(\frac{1}{m_{q}^{3}}+\frac{1}{m_{\bar{q}}^{3}})-\frac{2h_{1}}{5m_{q}m_{\bar{q}}} (3)
Mqq¯(13P1)=mq+mq¯+a1+b1(1mq+1mq¯)+c1(1mq2+1mq¯2)+d1mqmq¯M_{q\bar{q}}(1^{3}P_{1})=m_{q}+m_{\bar{q}}+a_{1}+b_{1}(\frac{1}{m_{q}}+\frac{1}{m_{\bar{q}}})+c_{1}(\frac{1}{m_{q}^{2}}+\frac{1}{m_{\bar{q}}^{2}})+\frac{d_{1}}{m_{q}m_{\bar{q}}}
g1(mq+mq¯)2+2mqmq¯4mq2mq¯2+e14mqmq¯+f1(1mq3+1mq¯3)+2h1mqmq¯-g_{1}\frac{({m_{q}+m_{\bar{q}}})^{2}+2m_{q}m_{\bar{q}}}{4m_{q}^{2}m_{\bar{q}}^{2}}+\frac{e_{1}}{4m_{q}m_{\bar{q}}}+f_{1}(\frac{1}{m_{q}^{3}}+\frac{1}{m_{\bar{q}}^{3}})+\frac{2h_{1}}{m_{q}m_{\bar{q}}} (4)

From relations (3) and (4), the following relations are derived:

Mss¯(13P2)Mss¯(13P1)Mnn¯(13P2)Mnn¯(13P1)=(mnms)2\frac{M_{s\bar{s}}(1^{3}P_{2})-M_{s\bar{s}}(1^{3}P_{1})}{M_{n\bar{n}}(1^{3}P_{2})-M_{n\bar{n}}(1^{3}P_{1})}=\left(\frac{m_{n}}{m_{s}}\right)^{2} (5)

where msm_{s} and mnm_{n}(n stands for non-strange u- and d-quarks) are masses of the constituent quarks.

2.2 Regge phenomenology

In this section, we will review the Regge phenomenology theory. In the 1960s, the Regge theory was developed, which connects the high-energy behavior of the scattering amplitude with singularities in the complex angular momentum plane of the partial wave amplitudes [12]. Recent years have seen a resurgence in interest in the Regge theory due to the fact that it may be applied to the prediction of meson masses as well as the determination of the quantum numbers of newly detected states in experiments [13, 14, 15, 16, 17, 18, 19, 20, 21]. According to Regge theory, mesons have poles that shift in the plane of complex angular momentum as a function of their energy. Regge trajectories of hadrons are often shown on the (J,M2)(J,M^{2}) plane, and these plots are known as Chew-Frautschi plots (where JJ and MM are the total spins and masses of the hadrons, respectively). According to the Chew-Frautschi conjecture, the poles fall onto linear trajectories in the (J,M2)(J,M^{2}) plane,

J=αnn¯N(0)+αnn¯NMnn¯N2,J=\alpha_{n\bar{n}N}(0)+\alpha^{\prime}_{n\bar{n}N}M^{2}_{n\bar{n}N}, (6)
J=αns¯N(0)+αns¯NMns¯N2,J=\alpha_{n\bar{s}N}(0)+\alpha^{\prime}_{n\bar{s}N}M^{2}_{n\bar{s}N}, (7)
J=αss¯N(0)+αss¯NMss¯N2,J=\alpha_{s\bar{s}N}(0)+\alpha^{\prime}_{s\bar{s}N}M^{2}_{s\bar{s}N}, (8)

where NN is the radial quantum number. The slope and intercept of the Regge trajectory are represented by α\alpha and α\alpha^{\prime}, respectively. In this work, the intercept and slope can be expressed as

αnn¯N(0)+αss¯N(0)=2αns¯N(0),\alpha_{n\bar{n}N}(0)+\alpha_{s\bar{s}N}(0)=2\alpha_{n\bar{s}N}(0), (9)
1αnn¯N+1αss¯N=2αns¯N.\frac{1}{\alpha^{\prime}_{n\bar{n}N}}+\frac{1}{\alpha^{\prime}_{s\bar{s}N}}=\frac{2}{\alpha^{\prime}_{n\bar{s}N}}. (10)

The dual-resonance model derived the intercept relation [22], which is fulfilled in two-dimensional QCD [23], the dual-analytic model [24], and the quark bremsstrahlung model [25]. By employing topological expansion and the qq¯q\bar{q}-string picture of hadrons, we were able to derive the slope relation (17) [26].

From relations (6)-(10), one has

Mnn¯N2αnn¯N+Mss¯N2αss¯N=2Mns¯N2αns¯N.M^{2}_{n\bar{n}N}\alpha^{\prime}_{n\bar{n}N}+M^{2}_{s\bar{s}N}\alpha^{\prime}_{s\bar{s}N}=2M^{2}_{n\bar{s}N}\alpha^{\prime}_{n\bar{s}N}. (11)

Apart from the ground meson, the radial excitations can be estimated in the framework of Regge phenomenology. Assuming that the ground and the radial excitation have the same slopes[16], we derive the following from the relations (6), (7), and (8):

Mnn¯N2αnn¯1Mnn¯12αnn¯1=αnn¯1(0)αnn¯N(0),M^{2}_{n\overline{n}N}\alpha^{\prime}_{n\overline{n}1}-M^{2}_{n\bar{n}1}\alpha^{\prime}_{n\overline{n}1}=\alpha_{n\bar{n}1}(0)-\alpha_{n\bar{n}N}(0), (12)
Mss¯N2αss¯1Mss¯12αss¯1=αss¯1(0)αss¯N(0),M^{2}_{s\overline{s}N}\alpha^{\prime}_{s\overline{s}1}-M^{2}_{s\bar{s}1}\alpha^{\prime}_{s\overline{s}1}=\alpha_{s\bar{s}1}(0)-\alpha_{s\bar{s}N}(0), (13)
Mns¯N2αns¯1Mns¯12αns¯1=αns¯1(0)αns¯N(0).M^{2}_{n\overline{s}N}\alpha^{\prime}_{n\overline{s}1}-M^{2}_{n\bar{s}1}\alpha^{\prime}_{n\overline{s}1}=\alpha_{n\bar{s}1}(0)-\alpha_{n\bar{s}N}(0). (14)

According to Refs. [27, 28], the values of αnn¯1(0)αnn¯N(0)\alpha_{n\bar{n}1}(0)-\alpha_{n\bar{n}N}(0), αns¯1(0)αns¯N(0)\alpha_{n\bar{s}1}(0)-\alpha_{n\bar{s}N}(0) and αss¯1(0)αss¯N(0)\alpha_{s\bar{s}1}(0)-\alpha_{s\bar{s}N}(0) rely on the masses of the component quarks via the combination mi+mjm_{i}+m_{j} (mim_{i} and mjm_{j} are the constituent masses of quark and antiquark). In this instance, a factor fij¯(mi+mj)f_{i\overline{j}}(m_{i}+m_{j}) is introduced into relations (12)-(14) [14, 29]. These relations are then stated as

Mnn¯N2=Mnn¯12+(N1)αnn¯(1+fnn¯(mn+mn)),M^{2}_{n\bar{n}N}=M^{2}_{n\bar{n}1}+\frac{(N-1)}{\alpha^{\prime}_{n\bar{n}}}(1+f_{n\bar{n}}(m_{n}+m_{n})), (15)
Mns¯N2=Mns¯12+(N1)αns¯(1+fns¯(mn+ms)),M^{2}_{n\bar{s}N}=M^{2}_{n\bar{s}1}+\frac{(N-1)}{\alpha^{\prime}_{n\bar{s}}}(1+f_{n\bar{s}}(m_{n}+m_{s})), (16)
Mss¯N2=Mss¯12+(N1)αss¯(1+fss¯(ms+ms)).M^{2}_{s\bar{s}N}=M^{2}_{s\bar{s}1}+\frac{(N-1)}{\alpha^{\prime}_{s\bar{s}}}(1+f_{s\bar{s}}(m_{s}+m_{s})). (17)

2.3 P03{}^{3}P_{0} model

Micu proposed the P03{}^{3}P_{0} model, and Le Yaouanc refined it [30, 31, 32, 33]; it is now commonly used to determine the OZI allowed decay processes [34, 35, 36, 38, 37, 39, 40, 41, 42, 43]. In the P03{}^{3}P_{0} model, meson decay is caused by the regrouping of the initial meson’s qq¯q\bar{q} and another qq¯q\bar{q} pair produced from vacuum using the quantum numbers JPC=0++J^{PC}=0^{++}.

The transition operator TT of the decay ABCA\rightarrow BC in the P03{}^{3}P_{0} model is denoted by

T=3γm1m1m00d3𝒑3d3𝒑4δ3(𝒑3+𝒑4)T=-3\gamma\sum_{m}\langle 1m1-m\mid 00\rangle\int d^{3}\boldsymbol{p}_{3}d^{3}\boldsymbol{p}_{4}\delta^{3}\left(\boldsymbol{p}_{3}+\boldsymbol{p}_{4}\right)
×𝒴1m(𝒑3𝒑42)χ1,m34ϕ034ω034b3(𝒑3)d4(𝒑4)\times\mathcal{Y}_{1}^{m}\left(\frac{\boldsymbol{p}_{3}-\boldsymbol{p}_{4}}{2}\right)\chi_{1,-m}^{34}\phi_{0}^{34}\omega_{0}^{34}b_{3}^{\dagger}\left(\boldsymbol{p}_{3}\right)d_{4}^{\dagger}\left(\boldsymbol{p}_{4}\right)

where 𝒑3\boldsymbol{p}_{3} and 𝒑4\boldsymbol{p}_{4} are the momentum of the created quark (antiquark). The dimensionless parameter γ\gamma represents the strength of the quark-antiquark pair created from the vacuum. χ1,m34,ϕ034\chi_{1,-m}^{34},\phi_{0}^{34}, and ω034\omega_{0}^{34} are spin, flavor, and color wave functions of the created quark-antiquark pair, respectively. The partial wave amplitude LS(𝑷)\mathcal{M}^{LS}(\boldsymbol{P}) for the decay AB+CA\rightarrow B+C may be written as[44]

LS(𝑷)=MJB,M,MJCMSMLLMLSMSJAMJAJBMJBJCMJCSMS\mathcal{M}^{LS}(\boldsymbol{P})=\sum_{\begin{subarray}{c}M_{J_{B},M},M_{J_{C}}\\ M_{S}M_{L}\end{subarray}}\left\langle LM_{L}SM_{S}\mid J_{A}M_{J_{A}}\right\rangle\left\langle J_{B}M_{J_{B}}J_{C}M_{J_{C}}\mid SM_{S}\right\rangle
𝑑ΩYLMLMJAMJBMJC(𝑷)\int d\Omega Y_{LM_{L}}^{*}\mathcal{M}^{M_{J_{A}}M_{J_{B}}M_{J_{C}}(\boldsymbol{P})}

With the transition operator TT, the helicity amplitude MJAMJBMJC(𝑷)\mathcal{M}^{M_{J_{A}}M_{J_{B}}M_{J_{C}}}(\boldsymbol{P}) can be written as

BC|T|A=δ3(𝑷A𝑷B𝑷C)MJAMJBMJC(𝑷)\langle BC|T|A\rangle=\delta^{3}\left(\boldsymbol{P}_{A}-\boldsymbol{P}_{B}-\boldsymbol{P}_{C}\right)\mathcal{M}^{M_{J_{A}}M_{J_{B}}M_{J_{C}}}(\boldsymbol{P})

Strong decay amplitudes and partial widths are detailed in Refs. [37, 38]. For the process ABCA\rightarrow BC, the partial width is expressed as

ΓABC=2πPEBECMALS(MLS)2\Gamma_{A\rightarrow BC}=2\pi\frac{PE_{B}E_{C}}{M_{A}}\sum_{LS}\left(M_{LS}\right)^{2} (18)

with

MLS=γπ1/4β1/2ξLS(Pβ)eP2/12β2M_{LS}=\frac{\gamma}{\pi^{1/4}\beta^{1/2}}\xi_{LS}(\frac{P}{\beta})e^{-P^{2}/12\beta^{2}}
P=[(MA2(MB+MC)2)(MA2(MBMC)2)]1/22MAP=\frac{\left[\left(M_{A}^{2}-\left(M_{B}+M_{C}\right)^{2}\right)\left(M_{A}^{2}-\left(M_{B}-M_{C}\right)^{2}\right)\right]^{1/2}}{2M_{A}}
EB=MA2MC2+MB22MAE_{B}=\frac{M_{A}^{2}-M_{C}^{2}+M_{B}^{2}}{2M_{A}}
EB=MA2+MC2MB22MAE_{B}=\frac{M_{A}^{2}+M_{C}^{2}-M_{B}^{2}}{2M_{A}}

where PP is the decay momentum, EBE_{B} and ECE_{C} are the energies of meson BB and CC, MAM_{A}, MBM_{B} are the masses meson AA and BB. The decay amplitudeMLSM_{LS} is proportional to the polynomial ξLS(Pβ)\xi_{LS}(\frac{P}{\beta}), which is related to decay channels and can be obtained in Refs. [37, 38]. In this work, we take β=0.4GeV\beta=0.4GeV and γ=0.4\gamma=0.4 as input, which is used in Refs.[37, 38].

3 NUMERICAL RESULTS

Applying Eqs. (5), (11), (15)-(17) for the meson states 13P21^{3}P_{2} and 23P12^{3}P_{1} states, and incorporating the respective meson and constituent quark masses, we obtain the masses of Mnn¯M_{n\bar{n}}, Mns¯M_{n\bar{s}} and Mss¯M_{s\bar{s}} members of 23P12^{3}P_{1} states. Our predictions and those given by other references are listed in Table 3. In this work, the parameters used as input are taken from our previous work ( Table 2) [29].


Table 2. The slopes (GeV-2) and the parameters fnnf_{nn} ,fnsf_{ns} and fssf_{ss} (GeV-1) of relations (19), (20), and (21). parameters αnn¯\alpha^{\prime}_{n\bar{n}} αns¯\alpha^{\prime}_{n\bar{s}} αss¯\alpha^{\prime}_{s\bar{s}} fnnf_{nn} fnsf_{ns} fssf_{ss} value 0.72180.7218 0.66130.6613 0.769020.76902 0.35560.3556 0.13760.1376 0.22190.2219


Table 3. Mass spectrum of the 13P11^{3}P_{1} and 23P12^{3}P_{1} meson nonets (in units of MeV). The masses used as input for our calculation are shown in boldface. state Mnn¯M_{n\bar{n}} Mns¯M_{n\bar{s}} Mss¯M_{s\bar{s}} Refs.Refs. 13P11^{3}P_{1} 23P12^{3}P_{1} 13P11^{3}P_{1} 23P12^{3}P_{1} 13P11^{3}P_{1} 23P12^{3}P_{1} PresentPresent 𝟏𝟐𝟑𝟎±𝟒𝟎\mathbf{{1230}\pm 40} 1784.4 1366.2 1885.1 1498.2 1986.0 Ref. [6] 1240 1820 1380 1930 1480 2030 Ref. [7] 1254 1742 1412 1893 1464 2016 Ref. [45] 1480 2027 Ref. [46] 1492 2027

Employing the P03{}^{3}P_{0} model, the decays of 23P1(nn¯)2^{3}P_{1}(n\bar{n}), 23P1(ns¯)2^{3}P_{1}(n\bar{s}) and 23P1(ss¯)2^{3}P_{1}(s\bar{s}) are investigated, and the results are listed in Tab.? and Tab.?. KK1(1270)KK_{1}(1270) depends on the mixing of K1AK_{1A} and K1BK_{1B} states, K1(1270)=K1(11P1)cosθK+K1(13P1)sinθKK_{1}(1270)=K_{1}\left({1}^{1}P_{1}\right)\cos\theta_{K}+K_{1}\left({1}^{3}P_{1}\right)\sin\theta_{K}, the θK\theta_{K} denotes the mixing angle. The mixing angle is investigated in the Refs.[4, 47, 48]. In the present work, we take θK=45o\theta_{K}=45^{o} as input parameters [47, 48].


Table 4. Strong decay properties for the 23P1(ns¯)2^{3}P_{1}(n\bar{s}) state (in units of MeV). The masses M23P1(nn¯)=1784.4M_{2^{3}P_{1}(n\bar{n})}=1784.4 MeV, M23P1(ss¯)=1986M_{2^{3}P_{1}(s\bar{s})}=1986 MeV and the masses of all the final states are taken from PDG. Decay mode Present work Decay mode Present work 23P1(nn¯)ρπ2^{3}P_{1}(n\bar{n})\rightarrow\rho\pi 76.5 23P1(ss¯)KK2^{3}P_{1}(s\bar{s})\rightarrow KK^{*} 78 23P1(nn¯)ωρ2^{3}P_{1}(n\bar{n})\rightarrow\omega\rho 42 23P1(ss¯)KK2^{3}P_{1}(s\bar{s})\rightarrow K^{*}K^{*} 48 23P1(nn¯)ρ(1465)π2^{3}P_{1}(n\bar{n})\rightarrow\rho(1465)\pi 58 23P1(ss¯)KK1(1270)2^{3}P_{1}(s\bar{s})\rightarrow KK_{1}(1270) 72.7 23P1(nn¯)b1(1230)π2^{3}P_{1}(n\bar{n})\rightarrow b_{1}(1230)\pi 62.3 23P1(ss¯)KK1(1400)2^{3}P_{1}(s\bar{s})\rightarrow KK_{1}(1400) 25.5 23P1(nn¯)f1(1285)π2^{3}P_{1}(n\bar{n})\rightarrow f{1}(1285)\pi 27.8 23P1(ss¯)KK0(1430)2^{3}P_{1}(s\bar{s})\rightarrow KK_{0}^{*}(1430) 1.9 23P1(nn¯)f2(1275)π2^{3}P_{1}(n\bar{n})\rightarrow f{2}(1275)\pi 61.5 23P1(ss¯)KK2(1430)2^{3}P_{1}(s\bar{s})\rightarrow KK_{2}^{*}(1430) 31.6 23P1(nn¯)KK2^{3}P_{1}(n\bar{n})\rightarrow K^{*}K 5.5 23P1(ss¯)KK2(1414)2^{3}P_{1}(s\bar{s})\rightarrow KK_{2}^{*}(1414) 94


Table 5. Strong decay properties for the 23P1(ns¯)2^{3}P_{1}(n\bar{s}) state (in units of MeV). The mass M23P1(ns¯)=1885.1M_{2^{3}P_{1}(n\bar{s})}=1885.1 MeV and the masses of all the final states are taken from PDG. Decay mode Present work Decay mode Present work 23P1(ns¯)ρK2^{3}P_{1}(n\bar{s})\rightarrow\rho K 27 23P1(ns¯)b1K2^{3}P_{1}(n\bar{s})\rightarrow b_{1}K 16.1 23P1(ns¯)ωK2^{3}P_{1}(n\bar{s})\rightarrow\omega K 8.8 23P1(ns¯)h1K2^{3}P_{1}(n\bar{s})\rightarrow h_{1}K 12.3 23P1(ns¯)ϕK2^{3}P_{1}(n\bar{s})\rightarrow\phi K 20.7 23P1(ns¯)a1K2^{3}P_{1}(n\bar{s})\rightarrow a_{1}K 19.1 23P1(ns¯)πK2^{3}P_{1}(n\bar{s})\rightarrow\pi K^{*} 30.0 23P1(ns¯)f1K2^{3}P_{1}(n\bar{s})\rightarrow f_{1}K 8.2 23P1(ns¯)ηK2^{3}P_{1}(n\bar{s})\rightarrow\eta K^{*} 34.8 23P1(ns¯)f2K2^{3}P_{1}(n\bar{s})\rightarrow f_{2}K 13.9 23P1(ns¯)ρK2^{3}P_{1}(n\bar{s})\rightarrow\rho K^{*} 35.5 23P1(ns¯)πK1(1270)2^{3}P_{1}(n\bar{s})\rightarrow\pi K_{1}(1270) 31.0 23P1(ns¯)ωK2^{3}P_{1}(n\bar{s})\rightarrow\omega K^{*} 10.9 23P1(ns¯)πK1(1400)2^{3}P_{1}(n\bar{s})\rightarrow\pi K_{1}(1400) 20 23P1(ns¯)KK2(1414)2^{3}P_{1}(n\bar{s})\rightarrow KK_{2}^{*}(1414) 23.2 23P1(ns¯)KK0(1430)2^{3}P_{1}(n\bar{s})\rightarrow KK_{0}^{*}(1430) 25 23P1(ns¯)KK2(1430)2^{3}P_{1}(n\bar{s})\rightarrow KK_{2}^{*}(1430) 40.1

4 Conclusion

In the present work, we examine the mass spectrum of the 23P12^{3}P_{1} meson nonet by merging the non-relativistic component quark model with Regge phenomenology. The mass of nn¯n\bar{n} is determined to be 1784.41784.4 MeV, which is consistent with different theoretical predictions [6, 7]. Considering the fact that the values is about 120120 MeV higher than the measured mass of a1(1640)a_{1}(1640), we suggest that the assignment for the a1(1640)a_{1}(1640) as nn¯n\bar{n} member of the 23P12^{3}P_{1} meson nonet need further testing in the experiment. Moreover, due to poor information on ns¯n\bar{s} and ss¯s\bar{s} member of 23P12^{3}P_{1} meson nonet, the investigation of these states has become a fascinating problem. In the present work, ns¯n\bar{s} and ss¯s\bar{s} members are determined to be 1885.1 MeV and 1996 MeV, respectively. The findings could be able to give a meaningful mass range for the phenomenological investigation. Apart from the mass spectrum, we propose the decays of these states. It is possible that in the near future it will be essential to carry out more screening, both theoretically and experimentally, for probable candidates of radial excited states. The results of our analysis could provide some benefit from this work.

References

  • [1] R. L. Workman et al. [Particle Data Group], PTEP 2022, 083C01 (2022) doi:10.1093/ptep/ptac097
  • [2] D. M. Li and Z. Li, Eur. Phys. J. A 28, 369-373 (2006) doi:10.1140/epja/i2006-10067-y [arXiv:hep-ph/0606297 [hep-ph]].
  • [3] H. Y. Cheng, Phys. Lett. B 707, 116-120 (2012) doi:10.1016/j.physletb.2011.12.013 [arXiv:1110.2249 [hep-ph]].
  • [4] F. Divotgey, L. Olbrich and F. Giacosa, Eur. Phys. J. A 49, 135 (2013) doi:10.1140/epja/i2013-13135-3 [arXiv:1306.1193 [hep-ph]].
  • [5] Z. Q. Zhang, H. Guo and S. Y. Wang, Eur. Phys. J. C 78, no.3, 219 (2018) doi:10.1140/epjc/s10052-018-5674-7 [arXiv:1705.00524 [hep-ph]].
  • [6] S. Godfrey and N. Isgur, Phys. Rev. D 32, 189-231 (1985) doi:10.1103/PhysRevD.32.189
  • [7] D. Ebert, R. N. Faustov and V. O. Galkin, Phys. Rev. D 79, 114029 (2009) doi:10.1103/PhysRevD.79.114029 [arXiv:0903.5183 [hep-ph]].
  • [8] C. Q. Pang, Y. R. Wang and C. H. Wang, Phys. Rev. D 99, no.1, 014022 (2019)
  • [9] P. V. Shlyapnikov, Phys. Lett. B 496, 129-136 (2000) doi:10.1016/S0370-2693(00)01286-7
  • [10] W. Lucha, F. F. Scho¨\ddot{o}berl and D. Gromes, Phys. Rept. 200, 127-240 (1991) doi:10.1016/0370-1573(91)90001-3
  • [11] D. Flamm, F. F. Scho¨\ddot{o}berl, Introduction to quark model of elementary particles, Vol. 1, Gordon and Breach Science Publishers, London, 1982
  • [12] T. Regge, “Introduction to complex orbital momenta,” Nuovo Cim. 14, 951 (1959).
  • [13] D. M. Li, B. Ma, Y. X. Li, Q. K. Yao and H. Yu, “Meson spectrum in Regge phenomenology,” Eur. Phys. J. C 37, 323 (2004).
  • [14] D. M. Li, B. Ma and Y. H. Liu, “Understanding masses of cs¯c\bar{s} states in Regge phenomenology,” Eur. Phys. J. C 51, 359 (2007).
  • [15] X. H. Guo, K. W. Wei and X. H. Wu, “Some mass relations for mesons and baryons in Regge phenomenology,” Phys. Rev. D 78, 056005 (2008).
  • [16] A. V. Anisovich, V. V. Anisovich and A. V. Sarantsev, “Systematics of qq¯q\bar{q} states in the (n, M2M^{2}) and (J, M2M^{2}) planes,” Phys. Rev. D 62, 051502 (2000).
  • [17] P. Masjuan, E. Ruiz Arriola and W. Broniowski, “Systematics of radial and angular-momentum Regge trajectories of light non-strange qq¯q\bar{q} states,” Phys. Rev. D 85, 094006 (2012).
  • [18] X. C. Feng, K. W. Wei, Jie-Wu and J. Wu, Eur. Phys. J. A 58, no.11, 233 (2022) doi:10.1140/epja/s10050-022-00886-5 [arXiv:2211.07083 [hep-ph]].
  • [19] X. C. Feng, K. Wei Wei, J. Wu, X. Z. Zhai and S. Wang, Acta Phys. Polon. B 53, no.10, 4 (2022) doi:10.5506/APhysPolB.53.10-A4 [arXiv:2211.03921 [hep-ph]].
  • [20] J. K. Chen, Eur. Phys. J. A 57, no.7, 238 (2021) doi:10.1140/epja/s10050-021-00502-y [arXiv:2102.07993 [hep-ph]].
  • [21] J. K. Chen, Nucl. Phys. B 983, 115911 (2022) doi:10.1016/j.nuclphysb.2022.115911 [arXiv:2203.02981 [hep-ph]].
  • [22] V. S. Berezinsky and G. T. Zatsepin, Phys. Lett. B 28, 423-424 (1969) doi:10.1016/0370-2693(69)90341-4
  • [23] R. C. Brower, J. R. Ellis, M. G. Schmidt and J. H. Weis, Nucl. Phys. B 128, 175-203 (1977) doi:10.1016/0550-3213(77)90304-2
  • [24] N. A. Kobylinsky, E. S. Martynov and A. B. Prognimak, Ukr. Fiz. Zh. (Russ. Ed. ) 24, 969-974 (1979) ITF-78-93E.
  • [25] V. V. Dixit and L. A. P. Balazs, Phys. Rev. D 20, 816 (1979) doi:10.1103/PhysRevD.20.816
  • [26] A. B. Kaidalov, Z. Phys. C 12, 63 (1982) doi:10.1007/BF01475732
  • [27] S. Filipponi, G. Pancheri and Y. Srivastava, Phys. Rev. Lett. 80, 1838-1840 (1998)
  • [28] S. Filipponi and Y. Srivastava, Phys. Rev. D 58, 016003 (1998)
  • [29] Y. H. Liu, X. C. Feng and J. J. Zhang, Eur. Phys. J. A 43, 379-388 (2010) doi:10.1140/epja/i2010-10922-2
  • [30] L. Micu, Nucl. Phys. B 10, 521-526 (1969) doi:10.1016/0550-3213(69)90039-X
  • [31] A. Le Yaouanc, L. Oliver, O. Pene and J. C. Raynal, Phys. Rev. D 8, 2223-2234 (1973) doi:10.1103/PhysRevD.8.2223
  • [32] A. Le Yaouanc, L. Oliver, O. Pene and J. C. Raynal, Phys. Rev. D 11, 1272 (1975) doi:10.1103/PhysRevD.11.1272
  • [33] A. Le Yaouanc, L. Oliver, O. Pene and J. C. Raynal, Phys. Lett. B 71, 397-399 (1977) doi:10.1016/0370-2693(77)90250-7
  • [34] Q. F. Lu, T. T. Pan, Y. Y. Wang, E. Wang and D. M. Li, Phys. Rev. D 94, no.7, 074012 (2016) doi:10.1103/PhysRevD.94.074012 [arXiv:1607.02812 [hep-ph]].
  • [35] D. M. Li, P. F. Ji and B. Ma, Eur. Phys. J. C 71, 1582 (2011) doi:10.1140/epjc/s10052-011-1582-9 [arXiv:1011.1548 [hep-ph]].
  • [36] W. Roberts and B. Silvestre-Brac, Few Body Syst. 11, no.4, 171-193 (1992) doi:10.1007/bf01641821
  • [37] E. S. Ackleh, T. Barnes and E. S. Swanson, Phys. Rev. D 54, 6811-6829 (1996) doi:10.1103/PhysRevD.54.6811 [arXiv:hep-ph/9604355 [hep-ph]].
  • [38] T. Barnes, F. E. Close, P. R. Page and E. S. Swanson, Phys. Rev. D 55, 4157-4188 (1997) doi:10.1103/PhysRevD.55.4157 [arXiv:hep-ph/9609339 [hep-ph]].
  • [39] F. E. Close and E. S. Swanson, Phys. Rev. D 72, 094004 (2005) doi:10.1103/PhysRevD.72.094004 [arXiv:hep-ph/0505206 [hep-ph]].
  • [40] T. Barnes, S. Godfrey and E. S. Swanson, Phys. Rev. D 72, 054026 (2005) doi:10.1103/PhysRevD.72.054026 [arXiv:hep-ph/0505002 [hep-ph]].
  • [41] B. Zhang, X. Liu, W. Z. Deng and S. L. Zhu, Eur. Phys. J. C 50, 617-628 (2007) doi:10.1140/epjc/s10052-007-0221-y [arXiv:hep-ph/0609013 [hep-ph]].
  • [42] Q. F. Lü and D. M. Li, Phys. Rev. D 90, no.5, 054024 (2014) doi:10.1103/PhysRevD.90.054024 [arXiv:1407.3092 [hep-ph]].
  • [43] X. C. Feng, Z. Y. Li, D. M. Li, Q. T. Song, E. Wang and W. C. Yan, Phys. Rev. D 106, no.7, 076012 (2022) doi:10.1103/PhysRevD.106.076012 [arXiv:2206.10132 [hep-ph]].
  • [44] M. Jacob and G. C. Wick, Annals Phys. 7, 404-428 (1959) doi:10.1016/0003-4916(59)90051-X
  • [45] L. Y. Xiao, X. Z. Weng, X. H. Zhong and S. L. Zhu, Chin. Phys. C 43, no.11, 113105 (2019) doi:10.1088/1674-1137/43/11/113105 [arXiv:1904.06616 [hep-ph]].
  • [46] Q. Li, L. C. Gui, M. S. Liu, Q. F. Lü and X. H. Zhong, Chin. Phys. C 45, no.2, 023116 (2021) doi:10.1088/1674-1137/abcf22 [arXiv:2004.05786 [hep-ph]].
  • [47] H. G. Blundell, S. Godfrey and B. Phelps, Phys. Rev. D 53, 3712-3722 (1996) doi:10.1103/PhysRevD.53.3712 [arXiv:hep-ph/9510245 [hep-ph]].
  • [48] C. Q. Pang, J. Z. Wang, X. Liu and T. Matsuki, “A systematic study of mass spectra and strong decay of strange mesons,” Eur. Phys. J. C 77, no.12, 861 (2017).
  • [49]