This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

aainstitutetext: Department of Physics and State Key Laboratory of Nuclear Physics and Technology,
Peking University,
Beijing 100871, China
bbinstitutetext: Collaborative Innovation Center of Quantum Matter,
Beijing 100871, China
ccinstitutetext: Center for High Energy Physics, Peking University,
Beijing 100871, China

Massive On-shell Recursion Relations for 𝒏n-point Amplitudes

Chao Wu a,b,c    and Shou-Hua Zhu wuch7@pku.edu.cn shzhu@pku.edu.cn
Abstract

We construct two and three-line shifts for tree-level amplitude with massless and/or massive particles, and provide a method to construct general multi-line shifts for all masses. We choose the massless-massive BCFW shift from these shifts and examine its validity in renormalizable theories. Using such a shift, we find that amplitudes with at least one massless vector boson are constructible. This reveals the importance of gauge theory in the construction of amplitudes with massive particles. We also find that this kind of amplitudes have a cancellation related to group structure among different channels, which is essential for constructibility. Furthermore, we show that in the limit of large shift parameter zz, the amplitude with four massive vector bosons, which can include transverse massive vector particles, have structures proportional to the amplitude with shifted vector particles replaced by Goldstone bosons in the leading order. This is responsible for the failure of massive-massive BCFW recursion relations in the amplitudes with four massive vector bosons.

{fmffile}

graph

1 Introduction

In comparison with Feynman diagrams, on-shell recursion relations provide a more efficient approach to construct higher-point tree-level amplitudes from lower-point amplitudes. It was first motivated by Britto-Cachazo-Feng-Witten (BCFW) recursion relations Britto:2004ap; Britto:2005fq in the calculation of gluon scattering, and other versions of recursion relations were proposed to study the amplitudes in gauge theories Badger:2005zh; Risager:2005vk, gravity theories Cachazo:2005ca, supersymmetric theories Brandhuber:2008pf; Arkani-Hamed:2008owk, scalar effective field theories Cheung:2015ota and more general theories Cohen:2010mi; Cheung:2015cba. They based on the same idea, namely using complex deformation of the external momenta and calculating the residues of deformed amplitudes in the complex plane, to collect the information of factorized lower-point amplitudes.

Contrary to massless particles, the momenta of massive particles cannot be written as a direct product of two spinors. To analyze amplitudes with massive particles, the method of decomposing the massive momenta into two light-like vectors was developed Schwinn:2005pi; Schwinn:2006ca; Schwinn:2007ee; Craig:2011ws; Boels:2011zz. However, this formalism is not the most convenient for specific calculation of amplitudes, since it’s not little-group covariant. Recently, Arkani-Hamed, Huang and Huang Arkani-Hamed:2017jhn introduced a new method by regarding the massive particle as a representation of its little group. In this notation, both amplitudes and complex shifts are simplified into a little-group covariant form. There have been some efforts in constructing massive BCFW shift in the massless-massive case Aoude:2019tzn; Ballav:2020ese and massive-massive case Herderschee:2019dmc; Franken:2019wqr afterwards.

After considering little-group invariance, the on-shell constructibility of amplitudes with massive particles was investigated Franken:2019wqr. Various multi-line shifts were used to estimate the large-zz behavior of amplitudes with all particles massive, where zz is the shift parameter. Although people prefer using three and more line shifts to investigate the constructibility, two-line shifts are more convenient in the computation of amplitudes.

In this work, we take the little-group covariant spinor helicity formalism and regard different spin states from one massive external leg as a whole, so these states should be deformed by a same shift. In the case that all particles are massless, some researches ArkaniHamed:2008yf; Cheung:2008dn proved that in a gauge theory coupled to scalars and fermions, any massless amplitude with at least one gluon is two-line constructible, which is a strong conclusion. We want to examine whether the amplitude with both massless and massive particles is also two-line constructible.

The present paper is organized as follows. In section 2 we review the basic idea of recursion relations and construct all possible two and three-line shifts for both massive and massless particles. Assuming the coupling is dimensionless, we evaluate the Feynman rule in a diagrammatic way in section 3 and discuss why gauge-fixing is not enough to improve the behavior of amplitude in the large-zz limit. In section 4 we evaluate nn-point massive amplitudes with at least one massless vector boson in the large-zz limit. We find that these amplitudes vanish in the large-zz limit except for the all vector amplitudes, which can have a cancellation among different channels. In section LABEL:sec5, we give the relation between such a cancellation and the group structure of massive vectors, and explore why this cancellation fails in the amplitudes without massless particles. Finally, section LABEL:sec6 presents our conclusion and discussion. Appendix LABEL:AppA gives our conventions. Appendix LABEL:AppB explicitly calculates the large-zz behavior of polarization vectors in the center-of-mass frame. Appendix LABEL:AppC gives an example of evaluating the diagrammatic expressions.

2 Recursion relations for all masses

For completeness, we review the general complex shift for AnA_{n}, a tree-level amplitude with nn massless particles. For each external particle, we shift their momentum vector pip_{i} by complex-valued vector rir_{i},

p^iμ=piμ+zriμ,\hat{p}_{i}^{\mu}=p_{i}^{\mu}+zr_{i}^{\mu}, (1)

where i=1,2,,ni=1,2,\dots,n. Now we restrict these shift vectors rir_{i} by three conditions,

iriμ=0,\displaystyle\sum_{i}r_{i}^{\mu}=0, (2)
rirj=0,\displaystyle r_{i}\cdot r_{j}=0, (3)
piri=0.\displaystyle p_{i}\cdot r_{i}=0. (4)

These three conditions (24) respectively guarantee that (a) momentum conservation holds for shifted momenta, (b) shifted momenta are still on-shell, (c) shifted propagators are linear in zz. We can construct a complex function A^n(z)/z\hat{A}_{n}(z)/z, whose residue at z=0z=0 is the unshifted amplitude AnA_{n}. Then Cauchy’s theorem tells us,

An=zIResz=zIA^n(z)z+Bn,A_{n}=-\sum_{z_{I}}\mathrm{Res}_{z=z_{I}}\frac{\hat{A}_{n}(z)}{z}+B_{n}, (5)

where the boundary term BnB_{n} is the residue at infinity. The first term on the right-hand side can factorize into two on-shell subamplitudes when the momentum PIP_{I} of the internal line goes on-shell,

Resz=zIA^n(z)z=A^L(zI)1PI2A^R(zI).-\mathrm{Res}_{z=z_{I}}\frac{\hat{A}_{n}(z)}{z}=\hat{A}_{L}(z_{I})\frac{1}{P_{I}^{2}}\hat{A}_{R}(z_{I}). (6)

Now we consider massive amplitudes. The three conditions (24) still keep the shifted momenta on-shell p^i2=pi2=m2\hat{p}_{i}^{2}=p_{i}^{2}=m^{2}. To generalize formula (5) into the massive case, we add a new term which corresponds to massive on-shell propagators,

An=zIResz=zIA^n(z)zzJResz=zJA^n(z)z+Bn.A_{n}=-\sum_{z_{I}}\mathrm{Res}_{z=z_{I}}\frac{\hat{A}_{n}(z)}{z}-\sum_{z_{J}}\mathrm{Res}_{z=z_{J}}\frac{\hat{A}_{n}(z)}{z}+B_{n}. (7)

At a zJz_{J}-pole one of massive internal particles goes on-shell. We use little-group covariant spinors Arkani-Hamed:2017jhn to describe massive particles, so the two subamplitudes A^L\hat{A}_{L} and A^R\hat{A}_{R} have little-group indices and should be contracted,

Resz=zJA^n(z)z=ϵJ1(J1ϵJ2J2ϵJnJn)A^L,J1J2Jn(zJ)1PJ2A^RJ1J2Jn(zJ),-\mathrm{Res}_{z=z_{J}}\frac{\hat{A}_{n}(z)}{z}=\epsilon^{J_{1}}_{(J^{\prime}_{1}}\epsilon^{J_{2}}_{J^{\prime}_{2}}\cdots\epsilon^{J_{n}}_{J^{\prime}_{n})}\hat{A}_{L,J_{1}J_{2}\cdots J_{n}}(z_{J})\frac{1}{P_{J}^{2}}\hat{A}_{R}^{J^{\prime}_{1}J^{\prime}_{2}\cdots J^{\prime}_{n}}(z_{J}), (8)

where the lower indices in the parenthesis means symmetrization of these indices. Here we only write the little-group indices related to the internal momentum PJP_{J} and neglect other little-group indices. If the boundary term Bn=0B_{n}=0, the nn-point on-shell amplitude AnA_{n} will be completely determined in lower-point on-shell amplitudes and this recursive formula (7) becomes an on-shell recursion relation under a valid shift.

Before we discuss whether amplitudes vanish in the large-zz limit, we should construct complex shifts for the composition of all masses. In this section, we will solve equations (24) to give all possible shift vectors rr in two and three-line shifts. Since massless shifts have been well studied, their generalizations in the massive case will be based on these massless shifts.

2.1 Shifting massless particles

In spinor-helicity formalism, which is briefly reviewed in appendix LABEL:AppA, we write massless amplitudes in terms of two kinds of Weyl spinor |p]α|p]_{\alpha} and |pα˙|p\rangle^{\dot{\alpha}}. They are two inequivalent fundamental representations of SL(2,)SL(2,\mathbb{C}). Both of them can be shifted, we refer to the former as holomorphic shift and the latter as anti-holomorphic shift.

Since the massive particles takes little-group representation into account, the three conditions (24) may not be valid in the massive case. We review some specific massless amplitude recursion relations to translate the three conditions (24) into massless spinor-helicity variables. Although all shift-vectors rir_{i} could be non-trivial ri0r_{i}\neq 0, two or three-line shifts are enough to construct amplitudes in many applications. Let’s start from these few-line shifts.

1) Two-line shift

Since the shifted momentum is linear in zz, we can’t use holomorphic and anti-holomorphic shifts simultaneously for one particle. Otherwise, the momentum conservation condition would be violated. When we shift two external lines ii and jj, there are two choices. We choose holomorphic shift for particle ii and anti-holomorphic shift for particle jj,

|i^]=|i]+z|j],|j^=|jz|i.|\hat{i}]=|i]+z|j],\quad|\hat{j}\rangle=|j\rangle-z|i\rangle. (9)

We call this a [i,j[i,j\rangle-shift. The shift-vector ri=rj=rr_{i}=-r_{j}=r, so momentum conservation condition (2) is automatically satisfied. The shift vector is

2rμ=i|γμ|j],2r^{\mu}=\langle i|\gamma^{\mu}|j], (10)

so conditions (3) and (4) lead to

2r2=ii[jj],2rpi=i|pi|j],2rpj=i|pj|j].2r^{2}=\langle ii\rangle[jj],\quad 2r\cdot p_{i}=\langle i|p_{i}|j],\quad 2r\cdot p_{j}=\langle i|p_{j}|j]. (11)

We find that ii=[jj]=0\langle ii\rangle=[jj]=0 is responsible for the condition (3). Weyl equations pj|j]=pi|i=0p_{j}|j]=p_{i}|i\rangle=0 are responsible for condition (4).

2) Risager-type three-line shift

In Risager-type, all the shifted external lines are holomorphic shifts. The shifted spinors are

|i^]=|i]+zjk|X],|j^]=|j]+zki|X],|k^]=|k]+zij|X],|\hat{i}]=|i]+z\langle jk\rangle|X],\quad|\hat{j}]=|j]+z\langle ki\rangle|X],\quad|\hat{k}]=|k]+z\langle ij\rangle|X], (12)

where |X]|X] is an arbitrary reference spinor. Here we ignore the dimension analysis for convenience111Actually The mass dimension of jk\langle jk\rangle, ki\langle ki\rangle and ij\langle ij\rangle is 11. In order to ensure the dimensionless zz, we should write the shifts as |i^]=|i]+zcjk|X]|\hat{i}]=|i]+zc\langle jk\rangle|X], |j^]=|j]+zcki|X]|\hat{j}]=|j]+zc\langle ki\rangle|X] and |k^]=|k]+zcij|X]|\hat{k}]=|k]+zc\langle ij\rangle|X], where the mass dimension of constant cc is 1-1. Since we only want to discuss the large-zz behavior, we ignore such constants, which will not change the result of our following analysis.. The shift vectors are

2riμ=jki|γμ|X],2rjμ=kij|γμ|X],2rkμ=ijk|γμ|X].\displaystyle 2r_{i}^{\mu}=\langle jk\rangle\langle i|\gamma^{\mu}|X],\quad 2r_{j}^{\mu}=\langle ki\rangle\langle j|\gamma^{\mu}|X],\quad 2r_{k}^{\mu}=\langle ij\rangle\langle k|\gamma^{\mu}|X]. (13)

Using Schouten identity kij|+kij|+ijk|=0\langle ki\rangle\langle j|+\langle ki\rangle\langle j|+\langle ij\rangle\langle k|=0, we easily verify condition (2) ri+rj+rk=0r_{i}+r_{j}+r_{k}=0. We find that [XX]=0[XX]=0 ensures condition (3), and that Weyl equations pi|i=pj|j=pk|k=0p_{i}|i\rangle=p_{j}|j\rangle=p_{k}|k\rangle=0 are responsible for condition (4).

3) BCFW-type three-line shift

In BCFW-type, only one shifted external line is anti-holomorphic shift, the other shifted external lines are holomorphic shifts. The shifted spinors are,

|i^]=|i]+zjX|k],|j^]=|j]+zXi|k],|k^=|k+zij|X,|\hat{i}]=|i]+z\langle jX\rangle|k],\quad|\hat{j}]=|j]+z\langle Xi\rangle|k],\quad|\hat{k}\rangle=|k\rangle+z\langle ij\rangle|X\rangle, (14)

where |X|X\rangle is an arbitrary reference spinor. The shift vectors are

2riμ=jXi|γμ|k],2rjμ=Xij|γμ|k],2rkμ=ijX|γμ|k].\displaystyle 2r_{i}^{\mu}=\langle jX\rangle\langle i|\gamma^{\mu}|k],\quad 2r_{j}^{\mu}=\langle Xi\rangle\langle j|\gamma^{\mu}|k],\quad 2r_{k}^{\mu}=\langle ij\rangle\langle X|\gamma^{\mu}|k]. (15)

We use Schouten identity to verify condition (2), iri=0\sum_{i}r_{i}=0. We find that [kk]=0[kk]=0 ensures condition (3) and Weyl equations pi|i=pj|j=pk|k]=0p_{i}|i\rangle=p_{j}|j\rangle=p_{k}|k]=0 are responsible for condition (4).

So far all possible two and three-line shifts in the massless case are presented. Since Risager and BCFW-type shifts are the only two distinct classes of recursion relations Cheung:2015cba, the analysis of four and more-line shifts are just generalizations of three-line shifts. They are sufficient for analyzing mixed or massive recursion relations. We find that the antisymmetry of brackets \langle\cdots\rangle and [][\cdots] ensure condition (3), and the equation of motion for massless particles is responsible for condition (4).

2.2 Shifting mixed particles

Now let’s think about how to satisfy the three conditions when massive particles are taken into account. The massive spinor-helicity variables |𝐩I]α|\mathbf{p}^{I}]_{\alpha} and |𝐩Iα˙|\mathbf{p}^{I}\rangle^{\dot{\alpha}} are not only fundamental representations of Lorentz group SO(3,1)SO(3,1), but also fundamental representations of little group SU(2)LGSU(2)_{LG}. We write them as (12;12,0)(\frac{1}{2};\frac{1}{2},0) and (12;0,12)(\frac{1}{2};0,\frac{1}{2}), which are the representations of SU(2)LG×SO(3,1)SU(2)_{LG}\times SO(3,1). In the massive case, the antisymmetric brackets

[𝐢I𝐢I]=𝐢I𝐢I=mi2ϵII0[\mathbf{i}^{I}\mathbf{i}^{I^{\prime}}]=-\langle\mathbf{i}^{I}\mathbf{i}^{I^{\prime}}\rangle=m_{i}^{2}\epsilon^{II^{\prime}}\neq 0 (16)

and massive Dirac equation

p|𝐩I]=m|𝐩I0p|\mathbf{p}^{I}]=-m|\mathbf{p}^{I}\rangle\neq 0 (17)

are different from the massless case. Therefore, conditions (3) and (4) wouldn’t be satisfied automatically in the massive case. For example, we can give up condition (4) for massive particles and construct a shift, where masses are no longer invariants. The validity of this kind of shifts was examined numerically for the amplitudes with graviton and scalar bosons Britto:2021pud. Here we try to satisfy all conditions.

The key point is to use some variables to contract the little-group index or Weyl-spinor index of massive spinors. For example, we can introduce an unknown variable ηI\eta^{I}, which is the representation (12;0,0)(\frac{1}{2};0,0). We use ηI\eta^{I} to contract the little-group index of |𝐢I]|\mathbf{i}^{I}], so the inner product ηI|𝐢I]\eta_{I}|\mathbf{i}^{I}] gives the antisymmetric bracket

ηI[𝐢I𝐢I]ηI=mi2ηIϵIIηI=0,\eta_{I}[\mathbf{i}^{I}\mathbf{i}^{I^{\prime}}]\eta_{I^{\prime}}=m_{i}^{2}\eta_{I}\epsilon^{II^{\prime}}\eta_{I^{\prime}}=0, (18)

which ensures condition (3). Another way is to introduce |Y]|Y] and contract the Weyl-spinor index of |𝐢I]|\mathbf{i}^{I}], which has been used in ref. Franken:2019wqr.

Our strategy is the former one. First, we take massless shifts in Section 2.1 and replace the massless variables |p]α|p]_{\alpha} and |pα˙|p\rangle^{\dot{\alpha}} with the massive spinor-helicity variables |𝐩I]α|\mathbf{p}^{I}]_{\alpha} and |𝐩Iα˙|\mathbf{p}^{I}\rangle^{\dot{\alpha}} for massive particles, while the spinor part of the shifts remain as massless shifts. Then we introduce some unknown variables with little-group indices (ηI\eta^{I}, ζJ\zeta^{J}, ξL\xi^{L}, etc.), whose number equals the number of massive shifted external legs. With the shifts which have been replaced multiplied by or contracted with these unknown variables, condition (3) must be satisfied. Since the above manipulation is based on massless shifts, condition (2) is still satisfied. Finally, we use the last condition (4) to determine these unknown variables.

2.2.1 Two-line shifts for mixed particles

Let’s consider two-line shifts for massive particle ii and massless particle jj. There are two ways to shift them. We can choose the [i,𝐣[i,\mathbf{j}\rangle-shift: the massless line ii is shifted holomorphically, while the massive line jj is shifted anti-holomorphically. We introduce one unknown ζJ\zeta^{J}, so the shifted spinors are

|i^]=|i]+z|𝐣J]ζJ,|𝐣^J=|𝐣Jz|iζJ.|\hat{i}]=|i]+z|\mathbf{j}^{J}]\zeta_{J},\quad|\mathbf{\hat{j}}^{J}\rangle=|\mathbf{j}^{J}\rangle-z|i\rangle\zeta^{J}. (19)

The shift vector is 2rμ=i|γμ|𝐣J]ζJ2r^{\mu}=\langle i|\gamma^{\mu}|\mathbf{j}^{J}]\zeta_{J}. It is orthogonal to the massless momentum pip_{i} because of the Weyl equation i|pi=0\langle i|p_{i}=0. Condition (4) leads to

2pjr=i|pj|𝐣J]ζJ=mji𝐣JζJ=0.2p_{j}\cdot r=\langle i|p_{j}|\mathbf{j}^{J}]\zeta_{J}=m_{j}\langle i\mathbf{j}^{J}\rangle\zeta_{J}=0. (20)

The solution is ζJ=i𝐣J\zeta^{J}=\langle i\mathbf{j}^{J}\rangle. We substitute the solution into eq. (19), so the explicit form of [i,𝐣[i,\mathbf{j}\rangle-shift is

|i^]=|i]+z|𝐣J]i𝐣J,|𝐣^J=|𝐣Jz|ii𝐣J.|\hat{i}]=|i]+z|\mathbf{j}^{J}]\langle i\mathbf{j}_{J}\rangle,\quad|\mathbf{\hat{j}}^{J}\rangle=|\mathbf{j}^{J}\rangle-z|i\rangle\langle i\mathbf{j}^{J}\rangle. (21)

Another choice is the [𝐣,i[\mathbf{j},i\rangle-shift: the massless line ii uses holomorphic shift, the massive line jj uses anti-holomorphic shift. For real-valued momenta, angle and square spinors are not independent. For massless particles, we have (|i)=[i|(|i\rangle)^{*}=[i| and (|i])=i|(|i])^{*}=\langle i|. For the massive particle jj, the complex conjugation of massive spinors lowers the little indices: (|𝐣J)=[𝐣J|(|\mathbf{j}^{J}\rangle)^{*}=[\mathbf{j}_{J}| and (|𝐣J])=𝐣J|(|\mathbf{j}^{J}])^{*}=\langle\mathbf{j}_{J}|. Therefore, the [𝐣,i[\mathbf{j},i\rangle-shift can be implemented from the complex conjugate of [i,𝐣[i,\mathbf{j}\rangle-shift,

|𝐣^J]=|𝐣J]+z|i][i𝐣J],|i^=|iz|𝐣J[i𝐣J].|\mathbf{\hat{j}}^{J}]=|\mathbf{j}^{J}]+z|i][i\mathbf{j}^{J}],\quad|\hat{i}\rangle=|i\rangle-z|\mathbf{j}^{J}\rangle[i\mathbf{j}_{J}]. (22)

2.2.2 Three-line Risager type shifts for mixed Particles

We take massless shift (12) and choose one or two shifted particles to be massive. Since all shifts are holomorphic shifts in Risager type, each shift vector must be rμ|γμ|X]r^{\mu}\propto\langle\cdots|\gamma^{\mu}|X]. Condition (3) is satisfied, because rirj[XX]=0r_{i}\cdot r_{j}\propto[XX]=0.

1) One massive and two massless

Let particle ii be massive particle and particles jj and kk be massless particles. We introduce one unknown ηI\eta^{I}, so the shifted spinors are

|𝐢^I]=|𝐢I]+zηIjk|X],|j^]=|j]+zηIk𝐢I|X],|k^]=|k]+zηI𝐢Ij|X].|\mathbf{\hat{i}}^{I}]=|\mathbf{i}^{I}]+z\eta^{I}\langle jk\rangle|X],\quad|\hat{j}]=|j]+z\eta^{I}\langle k\mathbf{i}_{I}\rangle|X],\quad|\hat{k}]=|k]+z\eta^{I}\langle\mathbf{i}_{I}j\rangle|X]. (23)

The shift vectors are

2riμ=ηIjk𝐢I|γμ|X],2rjμ=ηIk𝐢Ij|γμ|X],2rkμ=ηI𝐢Ijk|γμ|X],2r_{i}^{\mu}=\eta^{I}\langle jk\rangle\langle\mathbf{i}_{I}|\gamma^{\mu}|X],\quad 2r_{j}^{\mu}=\eta^{I}\langle k\mathbf{i}_{I}\rangle\langle j|\gamma^{\mu}|X],\quad 2r_{k}^{\mu}=\eta^{I}\langle\mathbf{i}_{I}j\rangle\langle k|\gamma^{\mu}|X], (24)

so condition (4) leads to

2piri=ηIjk𝐢I|pi|X]=miηIjk[𝐢IX]=0.2p_{i}\cdot r_{i}=\eta^{I}\langle jk\rangle\langle\mathbf{i}_{I}|p_{i}|X]=m_{i}\eta^{I}\langle jk\rangle[\mathbf{i}_{I}X]=0. (25)

The solution is ηI=[𝐢IX]\eta^{I}=[\mathbf{i}^{I}X].

2) Two massive and one massless

Let particles ii and jj be massive particles and particle kk be massless particle. We introduce two unknowns ηI\eta^{I} and ζJ\zeta^{J}, so the shifted spinors are

|𝐢^I]\displaystyle|\mathbf{\hat{i}}^{I}] =|𝐢I]+zηIζJ𝐣Jk|X],\displaystyle=|\mathbf{i}^{I}]+z\eta^{I}\zeta^{J}\langle\mathbf{j}_{J}k\rangle|X], (26)
|𝐣^J]\displaystyle|\mathbf{\hat{j}}^{J}] =|𝐣J]+zηIζJk𝐢I|X],\displaystyle=|\mathbf{j}^{J}]+z\eta^{I}\zeta^{J}\langle k\mathbf{i}_{I}\rangle|X],
|k^]\displaystyle|\hat{k}] =|k]+zηIζJ𝐢I𝐣J|X].\displaystyle=|k]+z\eta^{I}\zeta^{J}\langle\mathbf{i}_{I}\mathbf{j}_{J}\rangle|X].

The shift vectors are

2riμ\displaystyle 2r_{i}^{\mu} =ηIζJ𝐣Jk𝐢I|γμ|X],\displaystyle=\eta^{I}\zeta^{J}\langle\mathbf{j}_{J}k\rangle\langle\mathbf{i}_{I}|\gamma^{\mu}|X], (27)
2rjμ\displaystyle 2r_{j}^{\mu} =ηIζJk𝐢I𝐣J|γμ|X],\displaystyle=\eta^{I}\zeta^{J}\langle k\mathbf{i}_{I}\rangle\langle\mathbf{j}_{J}|\gamma^{\mu}|X],
2rkμ\displaystyle 2r_{k}^{\mu} =ηIζJ𝐢I𝐣Jk|γμ|X],\displaystyle=\eta^{I}\zeta^{J}\langle\mathbf{i}_{I}\mathbf{j}_{J}\rangle\langle k|\gamma^{\mu}|X],

so condition (4) leads to

2piri\displaystyle 2p_{i}\cdot r_{i} =ηIζJ𝐣Jk𝐢I|pi|X]=miηIζJ𝐣Jk[𝐢IX]=0,\displaystyle=\eta^{I}\zeta^{J}\langle\mathbf{j}_{J}k\rangle\langle\mathbf{i}_{I}|p_{i}|X]=m_{i}\eta^{I}\zeta^{J}\langle\mathbf{j}_{J}k\rangle[\mathbf{i}_{I}X]=0, (28)
2pjrj\displaystyle 2p_{j}\cdot r_{j} =ηIζJk𝐢I𝐣J|pj|X]=mjηIζJk𝐢I[𝐣JX]=0.\displaystyle=\eta^{I}\zeta^{J}\langle k\mathbf{i}_{I}\rangle\langle\mathbf{j}_{J}|p_{j}|X]=m_{j}\eta^{I}\zeta^{J}\langle k\mathbf{i}_{I}\rangle[\mathbf{j}_{J}X]=0.

The shift vectors should be non-trivial, so ζJ𝐣Jk0\zeta^{J}\langle\mathbf{j}_{J}k\rangle\neq 0, ηIζJk𝐢I0\eta^{I}\zeta^{J}\langle k\mathbf{i}_{I}\rangle\neq 0. The only solutions are ηI=[𝐢IX]\eta^{I}=[\mathbf{i}^{I}X], ζJ=[𝐣JX]\zeta^{J}=[\mathbf{j}^{J}X].

2.2.3 Three-line BCFW type shifts for mixed particles

We take massless shift (14) and choose one or two shifted particles to be massive. If particle kk is massive, each shift vector in this type of shifts must be rμ|γμ|𝐤K]ξKr^{\mu}\propto\langle\cdots|\gamma^{\mu}|\mathbf{k}^{K}]\xi_{K}. Condition (3) is satisfied, because rirj[𝐤K𝐤K]ξKξK=ϵKKξKξK=0r_{i}\cdot r_{j}\propto[\mathbf{k}^{K}\mathbf{k}^{K^{\prime}}]\xi_{K}\xi_{K^{\prime}}=\epsilon^{KK^{\prime}}\xi_{K}\xi_{K^{\prime}}=0. If particle kk is massless, condition (3) is also satisfied for the same reason as the case of massless three-line BCFW type shifts.

1) One massive and two massless

Since BCFW type recursion relations use holomorphic and anti-holomorphic shift, there are two kinds of compositions. The first kind is that the massive particle uses holomorphic shift. Let particle ii be massive particle and particles jj and kk be massless particle. We introduce one unknown ηI\eta^{I}, so the shifted spinors are

|𝐢^I]=|𝐢I]+zηIjX|k],|j^]=|j]+zηIX𝐢I|k],|k^=|k+zηI𝐢Ij|X.|\mathbf{\hat{i}}^{I}]=|\mathbf{i}^{I}]+z\eta^{I}\langle jX\rangle|k],\quad|\hat{j}]=|j]+z\eta^{I}\langle X\mathbf{i}_{I}\rangle|k],\quad|\hat{k}\rangle=|k\rangle+z\eta^{I}\langle\mathbf{i}_{I}j\rangle|X\rangle. (29)

The shift vectors are

2riμ=ηIjX𝐢I|γμ|k],2rjμ=ηIX𝐢Ij|γμ|k],2rkμ=ηI𝐢IjX|γμ|k],2r_{i}^{\mu}=\eta^{I}\langle jX\rangle\langle\mathbf{i}_{I}|\gamma^{\mu}|k],\quad 2r_{j}^{\mu}=\eta^{I}\langle X\mathbf{i}_{I}\rangle\langle j|\gamma^{\mu}|k],\quad 2r_{k}^{\mu}=\eta^{I}\langle\mathbf{i}_{I}j\rangle\langle X|\gamma^{\mu}|k], (30)

so condition (4) leads to

2piri=ηIXj𝐢I|pi|k]=miηIXj[𝐢Ik]=0.2p_{i}\cdot r_{i}=\eta^{I}\langle Xj\rangle\langle\mathbf{i}_{I}|p_{i}|k]=m_{i}\eta^{I}\langle Xj\rangle[\mathbf{i}_{I}k]=0. (31)

The solution is ηI=[𝐢Ik]\eta^{I}=[\mathbf{i}^{I}k].

The second kind is that the massive particle uses anti-holomorphic shift. Let particle kk be massive particle and particles ii and jj be massless particles. We introduce one unknown ξK\xi^{K}, so the shifted spinors are

|i^]=|i]+zξKjX|𝐤K],|j^]=|j]+zξKXi|𝐤K],|𝐤^K=|𝐤KzξKij|X.|\hat{i}]=|i]+z\xi_{K}\langle jX\rangle|\mathbf{k}^{K}],\quad|\hat{j}]=|j]+z\xi_{K}\langle Xi\rangle|\mathbf{k}^{K}],\quad|\mathbf{\hat{k}}^{K}\rangle=|\mathbf{k}^{K}\rangle-z\xi^{K}\langle ij\rangle|X\rangle. (32)

The shift vectors are

2riμ=ξKjXi|γμ|𝐤K],2rjμ=ξKXij|γμ|𝐤K],2rkμ=ξKijX|γμ|𝐤K],2r_{i}^{\mu}=\xi_{K}\langle jX\rangle\langle i|\gamma^{\mu}|\mathbf{k}^{K}],\quad 2r_{j}^{\mu}=\xi_{K}\langle Xi\rangle\langle j|\gamma^{\mu}|\mathbf{k}^{K}],\quad 2r_{k}^{\mu}=\xi_{K}\langle ij\rangle\langle X|\gamma^{\mu}|\mathbf{k}^{K}], (33)

so condition (4) leads to

2pkrk=ξKijX|pk|𝐤K]=mkξKijX𝐤K=0.2p_{k}\cdot r_{k}=\xi_{K}\langle ij\rangle\langle X|p_{k}|\mathbf{k}^{K}]=-m_{k}\xi_{K}\langle ij\rangle\langle X\mathbf{k}^{K}\rangle=0. (34)

The solution is ξK=X𝐤K\xi^{K}=\langle X\mathbf{k}^{K}\rangle.

2) Two massive and one massless

Let particles ii and jj be massive particles and particle kk be massless particle. We introduce two unknowns ηI\eta^{I} and ζJ\zeta^{J}, so the shifted spinors are

|𝐢^I]\displaystyle|\mathbf{\hat{i}}^{I}] =|𝐢I]+zηIζJ𝐣JX|k]\displaystyle=|\mathbf{i}^{I}]+z\eta^{I}\zeta^{J}\langle\mathbf{j}_{J}X\rangle|k] (35)
|𝐣^J]\displaystyle|\mathbf{\hat{j}}^{J}] =|𝐣J]+zηIζJX𝐢I|k]\displaystyle=|\mathbf{j}^{J}]+z\eta^{I}\zeta^{J}\langle X\mathbf{i}_{I}\rangle|k]
|k^\displaystyle|\hat{k}\rangle =|k+zηIζJ𝐢I𝐣J|X.\displaystyle=|k\rangle+z\eta^{I}\zeta^{J}\langle\mathbf{i}_{I}\mathbf{j}_{J}\rangle|X\rangle.

The shift vectors are

2riμ=ηIζJ𝐣JX𝐢I|γμ|k],\displaystyle 2r_{i}^{\mu}=\eta^{I}\zeta^{J}\langle\mathbf{j}_{J}X\rangle\langle\mathbf{i}_{I}|\gamma^{\mu}|k], (36)
2rjμ=ηIζJX𝐢I𝐣J|γμ|k],\displaystyle 2r_{j}^{\mu}=\eta^{I}\zeta^{J}\langle X\mathbf{i}_{I}\rangle\langle\mathbf{j}_{J}|\gamma^{\mu}|k],
2rkμ=ηIζJ𝐢I𝐣JX|γμ|k],\displaystyle 2r_{k}^{\mu}=\eta^{I}\zeta^{J}\langle\mathbf{i}_{I}\mathbf{j}_{J}\rangle\langle X|\gamma^{\mu}|k],

so condition (4) leads to

2piri\displaystyle 2p_{i}\cdot r_{i} =ηIζJ𝐣JX𝐢I|pi|k]=miηIζJ𝐣JX[𝐢Ik]=0,\displaystyle=\eta^{I}\zeta^{J}\langle\mathbf{j}_{J}X\rangle\langle\mathbf{i}_{I}|p_{i}|k]=m_{i}\eta^{I}\zeta^{J}\langle\mathbf{j}_{J}X\rangle[\mathbf{i}_{I}k]=0, (37)
2pjrj\displaystyle 2p_{j}\cdot r_{j} =ηIζJX𝐢I𝐣J|pj|k]=mjηIζJX𝐢I[𝐣Jk]=0.\displaystyle=\eta^{I}\zeta^{J}\langle X\mathbf{i}_{I}\rangle\langle\mathbf{j}_{J}|p_{j}|k]=m_{j}\eta^{I}\zeta^{J}\langle X\mathbf{i}_{I}\rangle[\mathbf{j}_{J}k]=0.

The solutions are ηI=[𝐢Ik]\eta^{I}=[\mathbf{i}^{I}k], ζJ=[𝐣Jk]\zeta^{J}=[\mathbf{j}^{J}k].

Let particles ii and kk be massive particles and particle jj be massless particle. We introduce two unknowns ηI\eta^{I} and ξK\xi^{K}, so the shifted spinors are

|𝐢^I]\displaystyle|\mathbf{\hat{i}}^{I}] =|𝐢I]+zηIξKjX|𝐤K],\displaystyle=|\mathbf{i}^{I}]+z\eta^{I}\xi^{K}\langle jX\rangle|\mathbf{k}_{K}], (38)
|j^]\displaystyle|\hat{j}] =|j]+zηIξKX𝐢I|𝐤K],\displaystyle=|j]+z\eta^{I}\xi^{K}\langle X\mathbf{i}_{I}\rangle|\mathbf{k}_{K}],
|𝐤^K\displaystyle|\mathbf{\hat{k}}^{K}\rangle =|𝐤KzηIξK𝐢Ij|X.\displaystyle=|\mathbf{k}^{K}\rangle-z\eta^{I}\xi^{K}\langle\mathbf{i}_{I}j\rangle|X\rangle.

The shift vectors are

2riμ\displaystyle 2r_{i}^{\mu} =ηIξKjX𝐢I|γμ|𝐤K],\displaystyle=\eta^{I}\xi^{K}\langle jX\rangle\langle\mathbf{i}_{I}|\gamma^{\mu}|\mathbf{k}_{K}], (39)
2rjμ\displaystyle 2r_{j}^{\mu} =ηIξKX𝐢Ij|γμ|𝐤K],\displaystyle=\eta^{I}\xi^{K}\langle X\mathbf{i}_{I}\rangle\langle j|\gamma^{\mu}|\mathbf{k}_{K}],
2rkμ\displaystyle 2r_{k}^{\mu} =ηIξK𝐢IjX|γμ|𝐤K],\displaystyle=\eta^{I}\xi^{K}\langle\mathbf{i}_{I}j\rangle\langle X|\gamma^{\mu}|\mathbf{k}_{K}],

so condition (4) leads to

2piri\displaystyle 2p_{i}\cdot r_{i} =ηIξKjX𝐢I|pi|𝐤K]=miηIξKjX[𝐢I𝐤K]=0,\displaystyle=\eta^{I}\xi^{K}\langle jX\rangle\langle\mathbf{i}_{I}|p_{i}|\mathbf{k}_{K}]=m_{i}\eta^{I}\xi^{K}\langle jX\rangle[\mathbf{i}_{I}\mathbf{k}_{K}]=0, (40)
2pkrk\displaystyle 2p_{k}\cdot r_{k} =ηIξK𝐢IjX|pk|𝐤K]=mjηIξK𝐢IjX𝐤K=0.\displaystyle=\eta^{I}\xi^{K}\langle\mathbf{i}_{I}j\rangle\langle X|p_{k}|\mathbf{k}_{K}]=m_{j}\eta^{I}\xi^{K}\langle\mathbf{i}_{I}j\rangle\langle X\mathbf{k}_{K}\rangle=0.

The solutions are ηI=[𝐢I|pk|X\eta^{I}=[\mathbf{i}^{I}|p_{k}|X\rangle, ξK=[𝐤KX]\xi^{K}=[\mathbf{k}^{K}X]. The solutions become more complicated.

2.3 Shifting massive particles

The all-massive recursion relations have been worked out to study the constructibility of all-massive amplitudes in spontaneously broken gauge theories Franken:2019wqr. Now we want to reproduce these massive shifts with our method. Similarly, we introduce nn unknown variables for nn-line shifts and then solve eq. (4) for these unknown variables.

2.3.1 Two-line shift for massive particles

Unfortunately, we can’t construct consistent massive BCFW shift for two massive lines as simply as what we do in last subsection. We don’t have a natural choice of massless spinors to contract with Weyl-spinor index, since two external lines are both massive particles. It means that the general form of two-line shift doesn’t exist. We must choose a specific spinor or reference frame to write down a particular shift. For example, we can only shift one of the helicity states instead of both Herderschee:2019dmc; Franken:2019wqr in a special frame.

Now we still introduce two unknowns ηI\eta^{I} and ζJ\zeta^{J} in [𝐢,𝐣[\mathbf{i},\mathbf{j}\rangle-shift, so the shifted spinors are

|𝐢^I]=|𝐢I]+zηIζJ|𝐣J],|𝐣^J=|𝐣J+zηIζJ|𝐢I.|\mathbf{\hat{i}}^{I}]=|\mathbf{i}^{I}]+z\eta^{I}\zeta^{J}|\mathbf{j}_{J}],\quad|\mathbf{\hat{j}}^{J}\rangle=|\mathbf{j}^{J}\rangle+z\eta^{I}\zeta^{J}|\mathbf{i}_{I}\rangle. (41)

The shift vectors are 2riμ=2rjμ=ηIζJ𝐢I|γμ|𝐣J]2r_{i}^{\mu}=-2r_{j}^{\mu}=\eta^{I}\zeta^{J}\langle\mathbf{i}_{I}|\gamma^{\mu}|\mathbf{j}_{J}], so condition (4) leads to

2piri\displaystyle 2p_{i}\cdot r_{i} =ηIζJ𝐢I|pi|𝐣J]=miηIζJ[𝐢I𝐣J]=0,\displaystyle=\eta^{I}\zeta^{J}\langle\mathbf{i}_{I}|p_{i}|\mathbf{j}_{J}]=m_{i}\eta^{I}\zeta^{J}[\mathbf{i}_{I}\mathbf{j}_{J}]=0, (42)
2pjrj\displaystyle 2p_{j}\cdot r_{j} =ηIζJ𝐢I|pj|𝐣J]=mjηIζJ𝐢I𝐣J=0.\displaystyle=-\eta^{I}\zeta^{J}\langle\mathbf{i}_{I}|p_{j}|\mathbf{j}_{J}]=m_{j}\eta^{I}\zeta^{J}\langle\mathbf{i}_{I}\mathbf{j}_{J}\rangle=0.

The tensor ηIζJ\eta^{I}\zeta^{J} has three degrees of freedom, since its determinant is zero. Two equations are not enough to determine all degrees of freedom, so we should choose ηI\eta^{I} and ηJ\eta^{J} from other information. The massive momenta of two particles can be written as different linear combinations of two null vectors lil_{i} and ljl_{j}:

pi\displaystyle p_{i} =li+αjlj,\displaystyle=l_{i}+\alpha_{j}l_{j}, (43)
pj\displaystyle p_{j} =lj+αili,\displaystyle=l_{j}+\alpha_{i}l_{i},

where αi\alpha_{i} and αj\alpha_{j} are coefficient. We choose ηI=[lj𝐢I]/[ljli]\eta^{I}=[l_{j}\mathbf{i}^{I}]/[l_{j}l_{i}], ζJ=𝐣Jli/ljli\zeta^{J}=\langle\mathbf{j}^{J}l_{i}\rangle/\langle l_{j}l_{i}\rangle. We can verify condition 4,

ηIζJ[𝐢I𝐣J]\displaystyle\eta^{I}\zeta^{J}[\mathbf{i}_{I}\mathbf{j}_{J}] =[lj𝐢I][𝐢I|pj|li[ljli]ljli=[lj𝐢I][𝐢Ilj][ljli]=0,\displaystyle=-\frac{[l_{j}\mathbf{i}^{I}][\mathbf{i}_{I}|p_{j}|l_{i}\rangle}{[l_{j}l_{i}]\langle l_{j}l_{i}\rangle}=-\frac{[l_{j}\mathbf{i}^{I}][\mathbf{i}_{I}l_{j}]}{[l_{j}l_{i}]}=0, (44)
ηIζJ𝐢I𝐣J\displaystyle\eta^{I}\zeta^{J}\langle\mathbf{i}_{I}\mathbf{j}_{J}\rangle =[lj|pi|𝐣J𝐣Jli[ljli]ljli=li𝐣J𝐣Jliljli=0.\displaystyle=\frac{[l_{j}|p_{i}|\mathbf{j}_{J}\rangle\langle\mathbf{j}^{J}l_{i}\rangle}{[l_{j}l_{i}]\langle l_{j}l_{i}\rangle}=\frac{\langle l_{i}\mathbf{j}_{J}\rangle\langle\mathbf{j}^{J}l_{i}\rangle}{\langle l_{j}l_{i}\rangle}=0.

Now the shift can be written as

|𝐢^I]=|𝐢I]z[lj𝐢I][ljli]|lj],|𝐣^J=|𝐣J+z𝐣Jliljli|li.\displaystyle|\mathbf{\hat{i}}^{I}]=|\mathbf{i}^{I}]-z\frac{[l_{j}\mathbf{i}^{I}]}{[l_{j}l_{i}]}|l_{j}],\quad|\mathbf{\hat{j}}^{J}\rangle=|\mathbf{j}^{J}\rangle+z\frac{\langle\mathbf{j}^{J}l_{i}\rangle}{\langle l_{j}l_{i}\rangle}|l_{i}\rangle. (45)

2.3.2 Three-line Risage-type shifts for massive particles

We introduce three unknowns ηI\eta^{I}, ζJ\zeta^{J} and ξK\xi^{K}. Since they are all massive, there is a permutation symmetry between these shifted lines. The shifted spinors are

|𝐢^I]\displaystyle|\mathbf{\hat{i}}^{I}] =|𝐢I]+zηIζJξK𝐣J𝐤K|X],\displaystyle=|\mathbf{i}^{I}]+z\eta^{I}\zeta^{J}\xi^{K}\langle\mathbf{j}_{J}\mathbf{k}_{K}\rangle|X], (46)
|𝐣^J]\displaystyle|\mathbf{\hat{j}}^{J}] =|𝐣J]+zηIζJξK𝐤K𝐢I|X],\displaystyle=|\mathbf{j}^{J}]+z\eta^{I}\zeta^{J}\xi^{K}\langle\mathbf{k}_{K}\mathbf{i}_{I}\rangle|X],
|𝐤^K]\displaystyle|\mathbf{\hat{k}}^{K}] =|𝐤K]+zηIζJξK𝐢I𝐣J|X].\displaystyle=|\mathbf{k}^{K}]+z\eta^{I}\zeta^{J}\xi^{K}\langle\mathbf{i}_{I}\mathbf{j}_{J}\rangle|X].

The shift vectors are

2riμ\displaystyle 2r_{i}^{\mu} =ηIζJξK𝐣J𝐤K𝐢I|γμ|X],\displaystyle=\eta^{I}\zeta^{J}\xi^{K}\langle\mathbf{j}_{J}\mathbf{k}_{K}\rangle\langle\mathbf{i}_{I}|\gamma^{\mu}|X], (47)
2rjμ\displaystyle 2r_{j}^{\mu} =ηIζJξK𝐤K𝐢I𝐣J|γμ|X],\displaystyle=\eta^{I}\zeta^{J}\xi^{K}\langle\mathbf{k}_{K}\mathbf{i}_{I}\rangle\langle\mathbf{j}_{J}|\gamma^{\mu}|X],
2rkμ\displaystyle 2r_{k}^{\mu} =ηIζJξK𝐢I𝐣J𝐤K|γμ|X],\displaystyle=\eta^{I}\zeta^{J}\xi^{K}\langle\mathbf{i}_{I}\mathbf{j}_{J}\rangle\langle\mathbf{k}_{K}|\gamma^{\mu}|X],

so condition (4) leads to

2piri\displaystyle 2p_{i}\cdot r_{i} =ηIζJξK𝐣J𝐤K𝐢I|pi|X]=miηIζJξK𝐣J𝐤K[𝐢IX]=0,\displaystyle=\eta^{I}\zeta^{J}\xi^{K}\langle\mathbf{j}_{J}\mathbf{k}_{K}\rangle\langle\mathbf{i}_{I}|p_{i}|X]=m_{i}\eta^{I}\zeta^{J}\xi^{K}\langle\mathbf{j}_{J}\mathbf{k}_{K}\rangle[\mathbf{i}_{I}X]=0, (48)
2pjrj\displaystyle 2p_{j}\cdot r_{j} =ηIζJξK𝐤K𝐢I𝐣J|pj|X]=mjηIζJξK𝐤K𝐢I[𝐣JX]=0,\displaystyle=\eta^{I}\zeta^{J}\xi^{K}\langle\mathbf{k}_{K}\mathbf{i}_{I}\rangle\langle\mathbf{j}_{J}|p_{j}|X]=m_{j}\eta^{I}\zeta^{J}\xi^{K}\langle\mathbf{k}_{K}\mathbf{i}_{I}\rangle[\mathbf{j}_{J}X]=0,
2pkrk\displaystyle 2p_{k}\cdot r_{k} =ηIζJξK𝐢I𝐣J𝐤K|pk|X]=mkηIζJξK𝐢I𝐣J[𝐤KX]=0.\displaystyle=\eta^{I}\zeta^{J}\xi^{K}\langle\mathbf{i}_{I}\mathbf{j}_{J}\rangle\langle\mathbf{k}_{K}|p_{k}|X]=m_{k}\eta^{I}\zeta^{J}\xi^{K}\langle\mathbf{i}_{I}\mathbf{j}_{J}\rangle[\mathbf{k}_{K}X]=0.

The solutions are simple, ηI=[𝐢IX]\eta^{I}=[\mathbf{i}^{I}X], ζJ=[𝐣JX]\zeta^{J}=[\mathbf{j}^{J}X], ξK=[𝐤KX]\xi^{K}=[\mathbf{k}^{K}X].

2.3.3 Three-line BCFW-type shifts for massive particles

We introduce three unknowns ηI\eta^{I}, ζJ\zeta^{J} and ξK\xi^{K}, so the shifted spinors are

|𝐢^I]\displaystyle|\mathbf{\hat{i}}^{I}] =|𝐢I]+zηIζJξK𝐣JX|𝐤K],\displaystyle=|\mathbf{i}^{I}]+z\eta^{I}\zeta^{J}\xi^{K}\langle\mathbf{j}_{J}X\rangle|\mathbf{k}_{K}], (49)
|𝐣^J]\displaystyle|\mathbf{\hat{j}}^{J}] =|𝐣J]+zηIζJξKX𝐢I|𝐤K],\displaystyle=|\mathbf{j}^{J}]+z\eta^{I}\zeta^{J}\xi^{K}\langle X\mathbf{i}_{I}\rangle|\mathbf{k}_{K}],
|𝐤^K\displaystyle|\mathbf{\hat{k}}^{K}\rangle =|𝐤KzηIζJξK𝐢I𝐣J|X.\displaystyle=|\mathbf{k}^{K}\rangle-z\eta^{I}\zeta^{J}\xi^{K}\langle\mathbf{i}_{I}\mathbf{j}_{J}\rangle|X\rangle.

The shift vectors are

2riμ\displaystyle 2r_{i}^{\mu} =ηIζJξK𝐣JX𝐢I|γμ|𝐤K],\displaystyle=\eta^{I}\zeta^{J}\xi^{K}\langle\mathbf{j}_{J}X\rangle\langle\mathbf{i}_{I}|\gamma^{\mu}|\mathbf{k}_{K}], (50)
2rjμ\displaystyle 2r_{j}^{\mu} =ηIζJξKX𝐢I𝐣J|γμ|𝐤K],\displaystyle=\eta^{I}\zeta^{J}\xi^{K}\langle X\mathbf{i}_{I}\rangle\langle\mathbf{j}_{J}|\gamma^{\mu}|\mathbf{k}_{K}],
2rkμ\displaystyle 2r_{k}^{\mu} =ηIζJξK𝐢I𝐣JX|γμ|𝐤K],\displaystyle=\eta^{I}\zeta^{J}\xi^{K}\langle\mathbf{i}_{I}\mathbf{j}_{J}\rangle\langle X|\gamma^{\mu}|\mathbf{k}_{K}],

so condition (4) leads to

2piri\displaystyle 2p_{i}\cdot r_{i} =ηIζJξK𝐣JX𝐢I|pi|𝐤K]=miηIζJξK𝐣JX[𝐢I𝐤K]=0,\displaystyle=\eta^{I}\zeta^{J}\xi^{K}\langle\mathbf{j}_{J}X\rangle\langle\mathbf{i}_{I}|p_{i}|\mathbf{k}_{K}]=m_{i}\eta^{I}\zeta^{J}\xi^{K}\langle\mathbf{j}_{J}X\rangle[\mathbf{i}_{I}\mathbf{k}_{K}]=0, (51)
2pjrj\displaystyle 2p_{j}\cdot r_{j} =ηIζJξKX𝐢I𝐣J|pj|𝐤K]=mjηIζJξKX𝐢I[𝐣J𝐤K]=0,\displaystyle=\eta^{I}\zeta^{J}\xi^{K}\langle X\mathbf{i}_{I}\rangle\langle\mathbf{j}_{J}|p_{j}|\mathbf{k}_{K}]=m_{j}\eta^{I}\zeta^{J}\xi^{K}\langle X\mathbf{i}_{I}\rangle[\mathbf{j}_{J}\mathbf{k}_{K}]=0,
2pkrk\displaystyle 2p_{k}\cdot r_{k} =ηIζJξK𝐢I𝐣JX|pk|𝐤K]=mkηIζJξK𝐢I𝐣JX𝐤K=0.\displaystyle=\eta^{I}\zeta^{J}\xi^{K}\langle\mathbf{i}_{I}\mathbf{j}_{J}\rangle\langle X|p_{k}|\mathbf{k}_{K}]=-m_{k}\eta^{I}\zeta^{J}\xi^{K}\langle\mathbf{i}_{I}\mathbf{j}_{J}\rangle\langle X\mathbf{k}_{K}\rangle=0.

We can choose ηI=[𝐢I𝐤K]ξK,ζJ=[𝐣J𝐤K]ξK,ξK=X𝐤K\eta^{I}=[\mathbf{i}^{I}\mathbf{k}^{K}]\xi_{K},\zeta^{J}=[\mathbf{j}^{J}\mathbf{k}^{K}]\xi_{K},\xi^{K}=\langle X\mathbf{k}^{K}\rangle. However, it isn’t the final solution. After substituting ξK=X𝐤K\xi^{K}=\langle X\mathbf{k}^{K}\rangle, we get the final result: ηI=[𝐢I|pk|X,ζJ=[𝐣J|pk|X\eta^{I}=[\mathbf{i}^{I}|p_{k}|X\rangle,\zeta^{J}=[\mathbf{j}^{J}|p_{k}|X\rangle.

2.4 Explicit form of three-line shifts

In previous discussions, we figured out solutions for all two and three-line shifts. To simplify the expressions of these shifts, we define some new Weyl spinors,

|km\displaystyle|k_{m}\rangle =pm|k],\displaystyle=p_{m}|k], (52)
|Xm\displaystyle|X_{m}\rangle =pm|X],\displaystyle=p_{m}|X],
|Xm,n\displaystyle|X_{m,n}\rangle =pm|Xn]=pmpn|X,\displaystyle=p_{m}|X_{n}]=p_{m}p_{n}|X\rangle,

where pmp_{m} and pnp_{n} correspond to massive particles. The simplified expressions of three-line shifts are shown in table 1, in which the massive spinor helicity variables are denoted in BOLD notation. Now we can write down massless three-line shifts (12) and (14) and use replacements listed in table 1 to rederive three-line shifts for all masses.

External Legs Type Shifted Spinors Shift-Vectors Replacement 1 massive 2 massless Risager |𝐢^]=|𝐢]+zjk[𝐢X]|X]|\mathbf{\hat{i}}]=|\mathbf{i}]+z\langle jk\rangle[\mathbf{i}X]|X] |j^]=|j]+zkXi|X]|\hat{j}]=|j]+z\langle kX_{i}\rangle|X] |k^]=|k]+zXij|X]|\hat{k}]=|k]+z\langle X_{i}j\rangle|X] riμ=jkXi|γμ|X]r_{i}^{\mu}=\langle jk\rangle\langle X_{i}|\gamma^{\mu}|X] rjμ=kXij|γμ|X]r_{j}^{\mu}=\langle kX_{i}\rangle\langle j|\gamma^{\mu}|X] rkμ=Xijk|γμ|X]r_{k}^{\mu}=\langle X_{i}j\rangle\langle k|\gamma^{\mu}|X] |i|Xi|i\rangle\rightarrow|X_{i}\rangle BCFW |𝐢^]=|𝐢]+zXj[𝐢k]|k]|\mathbf{\hat{i}}]=|\mathbf{i}]+z\langle Xj\rangle[\mathbf{i}k]|k] |j^]=|j]+zkiX|k]|\hat{j}]=|j]+z\langle k_{i}X\rangle|k] |k^=|k+zjki|X|\hat{k}\rangle=|k\rangle+z\langle jk_{i}\rangle|X\rangle riμ=Xjki|γμ|k]r_{i}^{\mu}=\langle Xj\rangle\langle k_{i}|\gamma^{\mu}|k] rjμ=kiXj|γμ|k]r_{j}^{\mu}=\langle k_{i}X\rangle\langle j|\gamma^{\mu}|k] rkμ=jkiX|γμ|k]r_{k}^{\mu}=\langle jk_{i}\rangle\langle X|\gamma^{\mu}|k] |i|ki|i\rangle\rightarrow|k_{i}\rangle |i^]=|i]+zXj|Xk]|\hat{i}]=|i]+z\langle Xj\rangle|X_{k}] |j^]=|j]+ziX|Xk]|\hat{j}]=|j]+z\langle iX\rangle|X_{k}] |𝐤^=|𝐤+zji𝐤X|X|\mathbf{\hat{k}}\rangle=|\mathbf{k}\rangle+z\langle ji\rangle\langle\mathbf{k}X\rangle|X\rangle riμ=Xji|γμ|Xk]r_{i}^{\mu}=\langle Xj\rangle\langle i|\gamma^{\mu}|X_{k}] rjμ=iXj|γμ|Xk]r_{j}^{\mu}=\langle iX\rangle\langle j|\gamma^{\mu}|X_{k}] rkμ=jiX|γμ|Xk]r_{k}^{\mu}=\langle ji\rangle\langle X|\gamma^{\mu}|X_{k}] |k]|Xk]|k]\rightarrow|X_{k}] 2 massive 1 massless Risager |𝐢^]=|𝐢]+zXjk[𝐢X]|X]|\mathbf{\hat{i}}]=|\mathbf{i}]+z\langle X_{j}k\rangle[\mathbf{i}X]|X] |𝐣^]=|𝐣]+zkXi[𝐣X]|X]|\mathbf{\hat{j}}]=|\mathbf{j}]+z\langle kX_{i}\rangle[\mathbf{j}X]|X] |k^]=|k]+zXiXj|X]|\hat{k}]=|k]+z\langle X_{i}X_{j}\rangle|X] riμ=XjkXi|γμ|X]r_{i}^{\mu}=\langle X_{j}k\rangle\langle X_{i}|\gamma^{\mu}|X] rjμ=kXiXj|γμ|X]r_{j}^{\mu}=\langle kX_{i}\rangle\langle X_{j}|\gamma^{\mu}|X] rkμ=XiXjk|γμ|X]r_{k}^{\mu}=\langle X_{i}X_{j}\rangle\langle k|\gamma^{\mu}|X] |i|Xi|i\rangle\rightarrow|X_{i}\rangle |j|Xj|j\rangle\rightarrow|X_{j}\rangle BCFW |𝐢^]=|𝐢]+zXkj[𝐢k]|k]|\mathbf{\hat{i}}]=|\mathbf{i}]+z\langle Xk_{j}\rangle[\mathbf{i}k]|k] |𝐣^]=|𝐣]+zkiX[𝐣k]|k]|\mathbf{\hat{j}}]=|\mathbf{j}]+z\langle k_{i}X\rangle[\mathbf{j}k]|k] |k^=|k+zkjki|X|\hat{k}\rangle=|k\rangle+z\langle k_{j}k_{i}\rangle|X\rangle riμ=Xkjki|γμ|k]r_{i}^{\mu}=\langle Xk_{j}\rangle\langle k_{i}|\gamma^{\mu}|k] rjμ=kiXkj|γμ|k]r_{j}^{\mu}=\langle k_{i}X\rangle\langle k_{j}|\gamma^{\mu}|k] rkμ=kjkiX|γμ|k]r_{k}^{\mu}=\langle k_{j}k_{i}\rangle\langle X|\gamma^{\mu}|k] |i|ki|i\rangle\rightarrow|k_{i}\rangle |j|kj|j\rangle\rightarrow|k_{j}\rangle |𝐢^]=|𝐢]+zXj[𝐢Xk]|Xk]|\mathbf{\hat{i}}]=|\mathbf{i}]+z\langle Xj\rangle[\mathbf{i}X_{k}]|X_{k}] |j^]=|j]+zXk,iX|Xk]|\hat{j}]=|j]+z\langle X_{k,i}X\rangle|X_{k}] |𝐤^=|𝐤+zjXk,i𝐤X|X|\mathbf{\hat{k}}\rangle=|\mathbf{k}\rangle+z\langle jX_{k,i}\rangle\langle\mathbf{k}X\rangle|X\rangle riμ=XjXk,i|γμ|Xk]r_{i}^{\mu}=\langle Xj\rangle\langle X_{k,i}|\gamma^{\mu}|X_{k}] rjμ=Xk,iXj|γμ|Xk]r_{j}^{\mu}=\langle X_{k,i}X\rangle\langle j|\gamma^{\mu}|X_{k}] rkμ=jXk,iX|γμ|Xk]r_{k}^{\mu}=\langle jX_{k,i}\rangle\langle X|\gamma^{\mu}|X_{k}] |i|Xk,i|i\rangle\rightarrow|X_{k,i}\rangle |k]|Xk]|k]\rightarrow|X_{k}] 3 massive Risager |𝐢^]=|𝐢]+zXjXk[𝐢X]|X]|\mathbf{\hat{i}}]=|\mathbf{i}]+z\langle X_{j}X_{k}\rangle[\mathbf{i}X]|X] |𝐣^]=|𝐣]+zXkXi[𝐣X]|X]|\mathbf{\hat{j}}]=|\mathbf{j}]+z\langle X_{k}X_{i}\rangle[\mathbf{j}X]|X] |𝐤^]=|𝐤]+zXiXj[𝐤X]|X]|\mathbf{\hat{k}}]=|\mathbf{k}]+z\langle X_{i}X_{j}\rangle[\mathbf{k}X]|X] riμ=XjXkXi|γμ|X]r_{i}^{\mu}=\langle X_{j}X_{k}\rangle\langle X_{i}|\gamma^{\mu}|X] rjμ=XkXiXj|γμ|X]r_{j}^{\mu}=\langle X_{k}X_{i}\rangle\langle X_{j}|\gamma^{\mu}|X] rkμ=XiXjXk|γμ|X]r_{k}^{\mu}=\langle X_{i}X_{j}\rangle\langle X_{k}|\gamma^{\mu}|X] |i|Xi|i\rangle\rightarrow|X_{i}\rangle |j|Xj|j\rangle\rightarrow|X_{j}\rangle |k|Xk|k\rangle\rightarrow|X_{k}\rangle BCFW |𝐢^]=|𝐢]+zXXk,j[𝐢Xk]|Xk]|\mathbf{\hat{i}}]=|\mathbf{i}]+z\langle XX_{k,j}\rangle[\mathbf{i}X_{k}]|X_{k}] |𝐣^]=|𝐣]+zXk,iX[𝐣Xk]|Xk]|\mathbf{\hat{j}}]=|\mathbf{j}]+z\langle X_{k,i}X\rangle[\mathbf{j}X_{k}]|X_{k}] |𝐤^=|𝐤+zXk,jXk,i𝐤X|X|\mathbf{\hat{k}}\rangle=|\mathbf{k}\rangle+z\langle X_{k,j}X_{k,i}\rangle\langle\mathbf{k}X\rangle|X\rangle riμ=XXk,jXk,i|γμ|Xk]r_{i}^{\mu}=\langle XX_{k,j}\rangle\langle X_{k,i}|\gamma^{\mu}|X_{k}] rjμ=Xk,iXXk,j|γμ|Xk]r_{j}^{\mu}=\langle X_{k,i}X\rangle\langle X_{k,j}|\gamma^{\mu}|X_{k}] rkμ=Xk,jXk,iX|γμ|Xk]r_{k}^{\mu}=\langle X_{k,j}X_{k,i}\rangle\langle X|\gamma^{\mu}|X_{k}] |i|Xk,i|i\rangle\rightarrow|X_{k,i}\rangle |j|Xk,j|j\rangle\rightarrow|X_{k,j}\rangle |k]|Xk]|k]\rightarrow|X_{k}]

Table 1: Three-line shifts for all masses, where the little-group indices are suppressed.

Furthermore, the notation |Xm,n|X_{m,n}\rangle is not necessary in the expressions. We can rewrite |Xm,n|X_{m,n}\rangle and |X|X\rangle in terms of |Y]=|Xn]|Y]=|X_{n}],

|Xm,n\displaystyle|X_{m,n}\rangle =pm|Xn]=pm|Y=|Ym,\displaystyle=p_{m}|X_{n}]=p_{m}|Y\rangle=|Y_{m}\rangle, (53)
|X\displaystyle|X\rangle =pnpn|Xm2n=pn|Y]m2n=|Ynm2n.\displaystyle=\frac{p_{n}p_{n}|X\rangle}{m^{2}_{n}}=\frac{p_{n}|Y]}{m^{2}_{n}}=\frac{|Y_{n}\rangle}{m^{2}_{n}}.

For example, we set |Y]=|Xk]|Y]=|X_{k}]. The all-massive BCFW-type three-line shifts reduce to

|𝐢^]\displaystyle|\mathbf{\hat{i}}] =|𝐢]+zYkYj[𝐢Y]|Y],\displaystyle=|\mathbf{i}]+z\langle Y_{k}Y_{j}\rangle[\mathbf{i}Y]|Y], (54)
|𝐣^]\displaystyle|\mathbf{\hat{j}}] =|𝐣]+zYiYk[𝐣Y]|Y],\displaystyle=|\mathbf{j}]+z\langle Y_{i}Y_{k}\rangle[\mathbf{j}Y]|Y],
|𝐤^\displaystyle|\mathbf{\hat{k}}\rangle =|𝐤+zYjYi𝐤X|Yk.\displaystyle=|\mathbf{k}\rangle+z\langle Y_{j}Y_{i}\rangle\langle\mathbf{k}X\rangle|Y_{k}\rangle.

This expression coincides with Franken:2019wqr.

3 Feynman rules in the large-zz limit

There is no general constructive method to give an expression of the contribution BnB_{n} in eq. (7), so the recursion relations hold as long as A(z)=0A(z\rightarrow\infty)=0. To investigate the validity of recursion relations, there are many works on the large-zz behavior of tree-level massless amplitudes in various shifts ArkaniHamed:2008yf; Cheung:2008dn; Cohen:2010mi; Cheung:2015cba. In refs. ArkaniHamed:2008yf; Cheung:2008dn the authors focused on the BCFW recursion relations and used background field method to show that, in a theory of spin 1\leq 1, any massless amplitudes with at least one gluon is constructible. We want to examine whether this argument is applicable to the massive case, so the steps in their proof should be carefully reconsidered.

We label two external particles of massless amplitudes AnA_{n} by 1 and 2. Their momenta are chosen to be deformed,

p^1=p1+zr,p^2=p2zr,\hat{p}_{1}=p_{1}+zr,\quad\hat{p}_{2}=p_{2}-zr, (55)

which corresponds to eq. (9). In the background field method, the large-zz behavior of amplitudes An(z)A_{n}(z) have a nice physical interpretation. We take particles 1 and 2 to be incoming and outgoing, so this process can be interpreted as a hard particle shooting through a soft background. In the hard limit zz\rightarrow\infty, the zz-independent soft physics is treated as a classical background, while the large-zz behavior of amplitudes is completely determined by the hard fluctuations.

Now, let’s discuss the zz-dependent propagators, vertices and external legs separately. We will see differences in the case when hard fluctuations correspond to massive particles.

3.1 Hard propagators

The first problem is how massive propagators scale at large-zz. Both massive fermions and scalar propagators scale as the same as massless propagators, while a massive vector propagator goes as 𝒪(z)\mathcal{O}(z) :

Πμν=gμνp^μp^νm2p^2m2=gμν(pμ+zrμ)(pν+zrν)m2p2+2zprm2=zzrμrν2m2pr.\Pi^{\mu\nu}=\frac{g^{\mu\nu}-\frac{\hat{p}^{\mu}\hat{p}^{\nu}}{m^{2}}}{\hat{p}^{2}-m^{2}}=\frac{g^{\mu\nu}-\frac{(p^{\mu}+zr^{\mu})(p^{\nu}+zr^{\nu})}{m^{2}}}{p^{2}+2zp\cdot r-m^{2}}\overset{z\rightarrow\infty}{=}-z\frac{r^{\mu}r^{\nu}}{2m^{2}p\cdot r}. (56)

Notice that a massless vector propagator goes as 𝒪(1/z)\mathcal{O}(1/z), so we should distinguish massless and massive vectors in the following discussion. As in table 2, we use single and double wavy lines to make a distinction between massless and massive vectors propagators.

particle massless massive
scalar {fmfgraph*}(50,10) \fmflefti1 \fmfrighto1 \fmfdashesi1,o1
fermion {fmfgraph*}(50,10) \fmflefti1 \fmfrighto1 \fmfplaini1,o1
vector boson {fmfgraph*}(50,10) \fmflefti1 \fmfrighto1 \fmfwigglyi1,o1 {fmfgraph*}(50,10) \fmflefti1 \fmfrighto1 \fmfdbl_wigglyi1,o1
Table 2: Propagators

Here we introduce a diagrammatic expression to represent the numerator in propagator (56):

gμνp^μp^νm2μν+1m2 μ^p ^pν ,g^{\mu\nu}-\frac{\hat{p}^{\mu}\hat{p}^{\nu}}{m^{2}}\equiv\parbox[c]{31.2982pt}{ \leavevmode\hbox to28.32pt{\vbox to9.45pt{\pgfpicture\makeatletter\hbox{\hskip 4.72421pt\lower-4.72421pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{{}}{}{{}} {}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{19.91684pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{4.32422pt}{0.0pt}\pgfsys@curveto{4.32422pt}{2.38823pt}{2.38823pt}{4.32422pt}{0.0pt}{4.32422pt}\pgfsys@curveto{-2.38823pt}{4.32422pt}{-4.32422pt}{2.38823pt}{-4.32422pt}{0.0pt}\pgfsys@curveto{-4.32422pt}{-2.38823pt}{-2.38823pt}{-4.32422pt}{0.0pt}{-4.32422pt}\pgfsys@curveto{2.38823pt}{-4.32422pt}{4.32422pt}{-2.38823pt}{4.32422pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.01274pt}{-1.18056pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\mu$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{23.19296pt}{0.0pt}\pgfsys@curveto{23.19296pt}{1.80937pt}{21.72621pt}{3.27612pt}{19.91684pt}{3.27612pt}\pgfsys@curveto{18.10747pt}{3.27612pt}{16.64072pt}{1.80937pt}{16.64072pt}{0.0pt}\pgfsys@curveto{16.64072pt}{-1.80937pt}{18.10747pt}{-3.27612pt}{19.91684pt}{-3.27612pt}\pgfsys@curveto{21.72621pt}{-3.27612pt}{23.19296pt}{-1.80937pt}{23.19296pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{19.91684pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{17.44693pt}{-2.15277pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\nu$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}+\frac{1}{m^{2}}\parbox[c]{31.2982pt}{ \leavevmode\hbox to29.59pt{\vbox to9.91pt{\pgfpicture\makeatletter\hbox{\hskip 4.72421pt\lower-4.9537pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{{}}{}{{}} {}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{19.91684pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{4.32422pt}{0.0pt}\pgfsys@curveto{4.32422pt}{2.38823pt}{2.38823pt}{4.32422pt}{0.0pt}{4.32422pt}\pgfsys@curveto{-2.38823pt}{4.32422pt}{-4.32422pt}{2.38823pt}{-4.32422pt}{0.0pt}\pgfsys@curveto{-4.32422pt}{-2.38823pt}{-2.38823pt}{-4.32422pt}{0.0pt}{-4.32422pt}\pgfsys@curveto{2.38823pt}{-4.32422pt}{4.32422pt}{-2.38823pt}{4.32422pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.01274pt}{-1.18056pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\mu$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{24.47055pt}{0.0pt}\pgfsys@curveto{24.47055pt}{2.51497pt}{22.43181pt}{4.55371pt}{19.91684pt}{4.55371pt}\pgfsys@curveto{17.40187pt}{4.55371pt}{15.36313pt}{2.51497pt}{15.36313pt}{0.0pt}\pgfsys@curveto{15.36313pt}{-2.51497pt}{17.40187pt}{-4.55371pt}{19.91684pt}{-4.55371pt}\pgfsys@curveto{22.43181pt}{-4.55371pt}{24.47055pt}{-2.51497pt}{24.47055pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{19.91684pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{17.13905pt}{-3.61111pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\hat{p}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}\parbox[c]{31.2982pt}{ \leavevmode\hbox to28.55pt{\vbox to9.91pt{\pgfpicture\makeatletter\hbox{\hskip 4.9537pt\lower-4.9537pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{{}}{}{{}} {}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{19.91684pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{4.55371pt}{0.0pt}\pgfsys@curveto{4.55371pt}{2.51497pt}{2.51497pt}{4.55371pt}{0.0pt}{4.55371pt}\pgfsys@curveto{-2.51497pt}{4.55371pt}{-4.55371pt}{2.51497pt}{-4.55371pt}{0.0pt}\pgfsys@curveto{-4.55371pt}{-2.51497pt}{-2.51497pt}{-4.55371pt}{0.0pt}{-4.55371pt}\pgfsys@curveto{2.51497pt}{-4.55371pt}{4.55371pt}{-2.51497pt}{4.55371pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.77779pt}{-3.61111pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\hat{p}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{23.19296pt}{0.0pt}\pgfsys@curveto{23.19296pt}{1.80937pt}{21.72621pt}{3.27612pt}{19.91684pt}{3.27612pt}\pgfsys@curveto{18.10747pt}{3.27612pt}{16.64072pt}{1.80937pt}{16.64072pt}{0.0pt}\pgfsys@curveto{16.64072pt}{-1.80937pt}{18.10747pt}{-3.27612pt}{19.91684pt}{-3.27612pt}\pgfsys@curveto{21.72621pt}{-3.27612pt}{23.19296pt}{-1.80937pt}{23.19296pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{19.91684pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{17.44693pt}{-2.15277pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\nu$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}, (57)

where the line segment and the letters attached with it, which are either indices or momentum p^\hat{p}, compose a representation of Lorentz group. The first diagram represents a symmetric tensor gμνg^{\mu\nu}, in which the line segment connects two Lorentz indices. The second diagram represents two Lorentz vectors, where the line segments connect the shifted momentum p^\hat{p} to Lorentz indices.

Furthermore, Einstein summation also has a diagrammatic representation,

μ pμ μp =pp=p2=m2,\sum_{\mu}\parbox[c]{31.2982pt}{ \leavevmode\hbox to29.04pt{\vbox to9.45pt{\pgfpicture\makeatletter\hbox{\hskip 4.39975pt\lower-4.72421pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{{}}{}{{}} {}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{19.91684pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{3.99976pt}{0.0pt}\pgfsys@curveto{3.99976pt}{2.20903pt}{2.20903pt}{3.99976pt}{0.0pt}{3.99976pt}\pgfsys@curveto{-2.20903pt}{3.99976pt}{-3.99976pt}{2.20903pt}{-3.99976pt}{0.0pt}\pgfsys@curveto{-3.99976pt}{-2.20903pt}{-2.20903pt}{-3.99976pt}{0.0pt}{-3.99976pt}\pgfsys@curveto{2.20903pt}{-3.99976pt}{3.99976pt}{-2.20903pt}{3.99976pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.51563pt}{-1.18056pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$p$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{24.24106pt}{0.0pt}\pgfsys@curveto{24.24106pt}{2.38823pt}{22.30507pt}{4.32422pt}{19.91684pt}{4.32422pt}\pgfsys@curveto{17.52861pt}{4.32422pt}{15.59262pt}{2.38823pt}{15.59262pt}{0.0pt}\pgfsys@curveto{15.59262pt}{-2.38823pt}{17.52861pt}{-4.32422pt}{19.91684pt}{-4.32422pt}\pgfsys@curveto{22.30507pt}{-4.32422pt}{24.24106pt}{-2.38823pt}{24.24106pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{19.91684pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.9041pt}{-1.18056pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\mu$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}\parbox[c]{31.2982pt}{ \leavevmode\hbox to29.04pt{\vbox to9.45pt{\pgfpicture\makeatletter\hbox{\hskip 4.72421pt\lower-4.72421pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{{}}{}{{}} {}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{19.91684pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{4.32422pt}{0.0pt}\pgfsys@curveto{4.32422pt}{2.38823pt}{2.38823pt}{4.32422pt}{0.0pt}{4.32422pt}\pgfsys@curveto{-2.38823pt}{4.32422pt}{-4.32422pt}{2.38823pt}{-4.32422pt}{0.0pt}\pgfsys@curveto{-4.32422pt}{-2.38823pt}{-2.38823pt}{-4.32422pt}{0.0pt}{-4.32422pt}\pgfsys@curveto{2.38823pt}{-4.32422pt}{4.32422pt}{-2.38823pt}{4.32422pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.01274pt}{-1.18056pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\mu$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{23.9166pt}{0.0pt}\pgfsys@curveto{23.9166pt}{2.20903pt}{22.12587pt}{3.99976pt}{19.91684pt}{3.99976pt}\pgfsys@curveto{17.70781pt}{3.99976pt}{15.91708pt}{2.20903pt}{15.91708pt}{0.0pt}\pgfsys@curveto{15.91708pt}{-2.20903pt}{17.70781pt}{-3.99976pt}{19.91684pt}{-3.99976pt}\pgfsys@curveto{22.12587pt}{-3.99976pt}{23.9166pt}{-2.20903pt}{23.9166pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{19.91684pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{17.40121pt}{-1.18056pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$p$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}=\parbox[c]{31.2982pt}{ \leavevmode\hbox to28.72pt{\vbox to8.8pt{\pgfpicture\makeatletter\hbox{\hskip 4.39975pt\lower-4.39975pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{{}}{}{{}} {}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{19.91684pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{3.99976pt}{0.0pt}\pgfsys@curveto{3.99976pt}{2.20903pt}{2.20903pt}{3.99976pt}{0.0pt}{3.99976pt}\pgfsys@curveto{-2.20903pt}{3.99976pt}{-3.99976pt}{2.20903pt}{-3.99976pt}{0.0pt}\pgfsys@curveto{-3.99976pt}{-2.20903pt}{-2.20903pt}{-3.99976pt}{0.0pt}{-3.99976pt}\pgfsys@curveto{2.20903pt}{-3.99976pt}{3.99976pt}{-2.20903pt}{3.99976pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.51563pt}{-1.18056pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$p$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{23.9166pt}{0.0pt}\pgfsys@curveto{23.9166pt}{2.20903pt}{22.12587pt}{3.99976pt}{19.91684pt}{3.99976pt}\pgfsys@curveto{17.70781pt}{3.99976pt}{15.91708pt}{2.20903pt}{15.91708pt}{0.0pt}\pgfsys@curveto{15.91708pt}{-2.20903pt}{17.70781pt}{-3.99976pt}{19.91684pt}{-3.99976pt}\pgfsys@curveto{22.12587pt}{-3.99976pt}{23.9166pt}{-2.20903pt}{23.9166pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{19.91684pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{17.40121pt}{-1.18056pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$p$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}=p^{2}=m^{2}, (58)

where two same indices are equivalent to a line segment. Therefore, the first diagram reduces to a line segment with two momenta pp attached to it, which represents Lorentz scalar p2p^{2}.

3.2 External polarizations

External spinors are constructed in the little-group notation,

u¯I(p)=([𝐩I|𝐩I|),vI(p)=(|𝐩I]|𝐩I),\bar{u}^{I}(p)=\begin{pmatrix}[\mathbf{p}^{I}|&\langle\mathbf{p}^{I}|\end{pmatrix},\quad v^{I}(p)=\begin{pmatrix}|\mathbf{p}^{I}]\\ |\mathbf{p}^{I}\rangle\end{pmatrix}, (59)

where the little-group indices I=1,2I=1,2 characterize two different solutions of the Dirac equation.

For massive vector bosons, the polarization vectors transform under the three-dimensional tensor representation of the little group,

ϵμI1I2(p)=12m[𝐩I1|γμ|𝐩I2.\epsilon_{\mu}^{I_{1}I_{2}}(p)=-\frac{1}{\sqrt{2}m}\left[\mathbf{p}^{I_{1}}|\gamma_{\mu}|\mathbf{p}^{I_{2}}\right\rangle. (60)

However, this little-group covariant expression is not convenient when we are talking about amplitudes in the large-zz limit. Usually we don’t choose the rest frame of massive particles as a reference system, since any shift should include more than one external leg. It implies that we can choose the spin axis along the 3-momentum direction and write down the spin state for massive vector particles in terms of ϵI1I2\epsilon^{I_{1}I_{2}}:

ϵi+=ϵ11(pi),ϵi0=12(ϵ12(pi)+ϵ21(pi)),ϵi=ϵ22(pi),\epsilon_{i}^{+}=\epsilon^{11}(p_{i}),\quad\epsilon_{i}^{0}=\frac{1}{2}\left(\epsilon^{12}(p_{i})+\epsilon^{21}(p_{i})\right),\quad\epsilon_{i}^{-}=-\epsilon^{22}(p_{i}), (61)

where we ignore Lorentz indices.

3.2.1 [1,𝟐[1,\mathbf{2}\rangle-shift

To consider two-line shifts, we take particles 1 and 2 to be massless and massive respectively. Particle 1 is always a gauge boson, while particle 2 can be any massive particle whose spin 1\leq 1. Since the large-zz behavior is independent of the reference system, we can choose the center-of-mass frame of the particles for simplicity. The momenta of particle 1 and 2 and shift vectors become

p1μ=(1,0,0,1),p2μ=(m2+1,0,0,1),rμ=(0,1,i,0),\displaystyle p_{1}^{\mu}=(1,0,0,1),\quad p_{2}^{\mu}=(\sqrt{m^{2}+1},0,0,-1),\quad r^{\mu}=(0,-1,-i,0), (62)

where the 3-momenta are normalized. The shift vector rr is basically the same as the polarization vectors for the real momentum p1p_{1}.

In pure Yang-Mills theory, the shift vector rr is enough to construct the polarization vectors. We add a new vector p¯2\bar{p}_{2} to give the longitudinal polarization, whose spatial components point opposite to the direction of spatial components of p2p_{2}. Similarly, we construct a new null vector p¯1\bar{p}_{1}. The expressions of p¯1\bar{p}_{1} and p¯2\bar{p}_{2} are,

p¯1μ=(1,0,0,1),p¯2μ=(1,0,0,m2+1).\bar{p}_{1}^{\mu}=(1,0,0,-1),\quad\bar{p}_{2}^{\mu}=(1,0,0,-\sqrt{m^{2}+1}). (63)

We choose [1,𝟐[1,\mathbf{2}\rangle-shift (21). The shifted polarization vectors of particle 1 are

ϵ^1+=r+zp¯1,ϵ^1=r,\displaystyle\hat{\epsilon}_{1}^{+}=r^{*}+z\bar{p}_{1},\quad\hat{\epsilon}_{1}^{-}=r, (64)

which are the same as in the all-massless case. They should stay orthogonal to momentum p^1\hat{p}_{1} and their product (ϵ1+ϵ1)(\epsilon_{1}^{+}\epsilon_{1}^{-}) is maintained. The Ward identity is still valid for complexified amplitudes:

p^1μA^μ(z)=(p1μ+zrμ)A^μ(z)=0.\hat{p}_{1}^{\mu}\hat{A}_{\mu}(z)=(p_{1}^{\mu}+zr^{\mu})\hat{A}_{\mu}(z)=0. (65)

Therefore, we can use it to replace the negative polarization,

ϵ^11zp1.\hat{\epsilon}_{1}^{-}\rightarrow-\frac{1}{z}p_{1}. (66)

If particle 2 is a vector boson, we choose the zz axis as the spin direction, and the shifted external polarizations are

ϵ^2+=r,ϵ^2=rzCp1,ϵ^20=p¯2mzrm,\hat{\epsilon}_{2}^{+}=r,\quad\hat{\epsilon}_{2}^{-}=r^{*}-zCp_{1},\quad\hat{\epsilon}_{2}^{0}=\frac{\bar{p}_{2}}{m}-z\frac{r}{m},\\ (67)

where C=2/(m2+1+1)C=2/(\sqrt{m^{2}+1}+1). Since we focus on the large-zz behavior of amplitudes, the overall factor 1/m1/m in the expression of ϵ^20\hat{\epsilon}_{2}^{0} can be ignored. The polarizations are modified appropriately to remain normalized to unity and orthogonal to p^2\hat{p}_{2}. What’s more, the longitudinal polarization should be orthogonal to other two transverse polarizations. A more detailed discussion is performed in appendix LABEL:AppB. Using Goldstone boson equivalence theorem, the scaling behaviour of massive vector bosons can also be improved Franken:2019wqr. However, this improvement changes type of particles, so we don’t apply it in the following analysis.

If particle 2 is a fermion, we need the shifted Dirac spinors,

u¯^J2=u¯J2zu¯11𝟐J,v^J2=vJ2zv11𝟐J.\hat{\bar{u}}^{J}_{2}=\bar{u}^{J}_{2}-z\bar{u}^{-}_{1}\langle 1\mathbf{2}^{J}\rangle,\quad\hat{v}^{J}_{2}=v^{J}_{2}-zv^{-}_{1}\langle 1\mathbf{2}^{J}\rangle.\\ (68)

Although particle 1 is a gauge boson, we still use u¯1=1|\bar{u}^{-}_{1}=\langle 1| and v1=|1v^{-}_{1}=|1\rangle for consistency.

3.2.2 [𝟏,𝟐[\mathbf{1},\mathbf{2}\rangle-shift

Particles 1 and 2 have equal mass. The momenta of them become

p1μ=(m2+1,0,0,1),p2μ=(m2+1,0,0,1).\displaystyle p_{1}^{\mu}=(\sqrt{m^{2}+1},0,0,1),\quad p_{2}^{\mu}=(\sqrt{m^{2}+1},0,0,-1). (69)

We set the shift vector rr to be the same as in eq. (62). Now both p1p_{1} and p2p_{2} are time-like vectors, we need two vectors p¯1\bar{p}_{1} and p¯2\bar{p}_{2} to give the longitudinal polarizations,

p¯1μ=(1,0,0,m2+1),p¯2μ=(1,0,0,m2+1).\displaystyle\bar{p}_{1}^{\mu}=(1,0,0,\sqrt{m^{2}+1}),\quad\bar{p}_{2}^{\mu}=(1,0,0,-\sqrt{m^{2}+1}). (70)

Here we only discuss the case that both particles 1 and 2 are massive vector bosons. The shifted external legs of massive vectors are

ϵ^1+=r+zC2p2+p¯22,ϵ^1=r,ϵ^10=p¯1m+zrm,\displaystyle\hat{\epsilon}_{1}^{+}=r^{*}+zC^{2}\frac{p_{2}+\bar{p}_{2}}{2},\quad\hat{\epsilon}_{1}^{-}=r,\quad\hat{\epsilon}_{1}^{0}=\frac{\bar{p}_{1}}{m}+z\frac{r}{m}, (71)
ϵ^2+=r,ϵ^2=rzC2p1+p¯12,ϵ^20=p¯2mzrm,\displaystyle\hat{\epsilon}_{2}^{+}=r,\quad\hat{\epsilon}_{2}^{-}=r^{*}-zC^{2}\frac{p_{1}+\bar{p}_{1}}{2},\quad\hat{\epsilon}_{2}^{0}=\frac{\bar{p}_{2}}{m}-z\frac{r}{m},

where C=2/(m2+1+1)C=2/(\sqrt{m^{2}+1}+1). In the high energy limit, C1C\rightarrow 1, p¯1p1\bar{p}_{1}\rightarrow p_{1} and p¯2p2\bar{p}_{2}\rightarrow p_{2}. Therefore, eqs. (64) and (67) become the high energy limit of eq. (71).

3.3 𝒪(z)\mathcal{O}(z) vertices

Along the hard fluctuation, the spin of the hard particle may be changed by zz-dependent vertices which involve soft background fields. Since we are discussing renormalizable field theory, the zz-dependent vertices from derivative interactions must be linear in zz. In massless gauge theory, they are eliminated by choosing appropriate light-cone and RξR_{\xi} gauges ArkaniHamed:2008yf; Elvang:2013cua. However, the massive vector bosons don’t have such degrees of freedom to eliminate these zz-dependence. In renormalizable field theory, there are two classes of 𝒪(z)\mathcal{O}(z) vertices that cannot be eliminated by gauge fixing in the massive case: triple vector coupling (VVVVVV) and Vector-Vector-Scalar (VSSVSS) interaction. For simplicity, we only consider massive vector bosons that have equal mass.

Since all on-shell 3-point amplitudes in the Standard Model have been figured outChristensen:2018zcq, we can translate them into the Feynman rules to find out the vertices. Then we deform these vertices to give their zz-dependence explicitly.

{fmfgraph*}

(60,60) \fmflefti1,i2 \fmfrighto1 \fmfdbl_wigglyi1,v1 \fmfphotoni2,v1 \fmfdbl_wigglyv1,o1

(a)
{fmfgraph*}

(60,60) \fmflefti1,i2 \fmfrighto1 \fmfdbl_wigglyi1,v1 \fmfdbl_wigglyi2,v1 \fmfdbl_wigglyv1,o1

(b)
Figure 1: VVVVVV vertices with massive vectors

There are two kinds of possible VVVVVV amplitudes (see figure 1). Since VVVVVV amplitude has three vector external legs, the vertex should be a order-3 Lorentz tensor Vk,p,qμνλV_{k,p,q}^{\mu\nu\lambda}, which refers to VV attached with three line segments in the diagrammatic expression. One kind of vertex includes two massive vectors and one massless vector. Its diagrammatic representations are

ϵiI1I2VϵjJ1J1Vϵk+=2mx𝐢𝐣2,ϵiI1I2VϵjJ1J1Vϵk=2m1x[𝐢𝐣]2,\displaystyle\parbox[b]{79.6678pt}{ \leavevmode\hbox to64.11pt{\vbox to31.69pt{\pgfpicture\makeatletter\hbox{\hskip 5.41147pt\lower-6.06064pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{{}}{}{{}} {}{}{{}} {}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{25.6073pt}{0.0pt}\pgfsys@lineto{52.63777pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{5.01147pt}{0.0pt}\pgfsys@curveto{5.01147pt}{2.76779pt}{2.76779pt}{5.01147pt}{0.0pt}{5.01147pt}\pgfsys@curveto{-2.76779pt}{5.01147pt}{-5.01147pt}{2.76779pt}{-5.01147pt}{0.0pt}\pgfsys@curveto{-5.01147pt}{-2.76779pt}{-2.76779pt}{-5.01147pt}{0.0pt}{-5.01147pt}\pgfsys@curveto{2.76779pt}{-5.01147pt}{5.01147pt}{-2.76779pt}{5.01147pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.99416pt}{-2.18611pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\epsilon_{i}^{I_{1}I_{2}}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{30.8949pt}{0.0pt}\pgfsys@curveto{30.8949pt}{2.92029pt}{28.52759pt}{5.2876pt}{25.6073pt}{5.2876pt}\pgfsys@curveto{22.68701pt}{5.2876pt}{20.3197pt}{2.92029pt}{20.3197pt}{0.0pt}\pgfsys@curveto{20.3197pt}{-2.92029pt}{22.68701pt}{-5.2876pt}{25.6073pt}{-5.2876pt}\pgfsys@curveto{28.52759pt}{-5.2876pt}{30.8949pt}{-2.92029pt}{30.8949pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{25.6073pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{21.57953pt}{-3.41666pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$V$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{58.29842pt}{0.0pt}\pgfsys@curveto{58.29842pt}{3.12633pt}{55.7641pt}{5.66064pt}{52.63777pt}{5.66064pt}\pgfsys@curveto{49.51144pt}{5.66064pt}{46.97713pt}{3.12633pt}{46.97713pt}{0.0pt}\pgfsys@curveto{46.97713pt}{-3.12633pt}{49.51144pt}{-5.66064pt}{52.63777pt}{-5.66064pt}\pgfsys@curveto{55.7641pt}{-5.66064pt}{58.29842pt}{-3.12633pt}{58.29842pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{52.63777pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{49.29492pt}{-1.64166pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\epsilon_{j}^{J_{1}J_{1}}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{{}} {}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{25.6073pt}{0.0pt}\pgfsys@lineto{25.6073pt}{19.91684pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{30.8949pt}{0.0pt}\pgfsys@curveto{30.8949pt}{2.92029pt}{28.52759pt}{5.2876pt}{25.6073pt}{5.2876pt}\pgfsys@curveto{22.68701pt}{5.2876pt}{20.3197pt}{2.92029pt}{20.3197pt}{0.0pt}\pgfsys@curveto{20.3197pt}{-2.92029pt}{22.68701pt}{-5.2876pt}{25.6073pt}{-5.2876pt}\pgfsys@curveto{28.52759pt}{-5.2876pt}{30.8949pt}{-2.92029pt}{30.8949pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{25.6073pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{21.57953pt}{-3.41666pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$V$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{30.91809pt}{19.91684pt}\pgfsys@curveto{30.91809pt}{22.84995pt}{28.5404pt}{25.22763pt}{25.6073pt}{25.22763pt}\pgfsys@curveto{22.6742pt}{25.22763pt}{20.29651pt}{22.84995pt}{20.29651pt}{19.91684pt}\pgfsys@curveto{20.29651pt}{16.98373pt}{22.6742pt}{14.60605pt}{25.6073pt}{14.60605pt}\pgfsys@curveto{28.5404pt}{14.60605pt}{30.91809pt}{16.98373pt}{30.91809pt}{19.91684pt}\pgfsys@closepath\pgfsys@moveto{25.6073pt}{19.91684pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{22.03195pt}{17.91962pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\epsilon_{k}^{+}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\vspace{-0.4cm}}=\frac{\sqrt{2}}{m}x\langle\mathbf{i}\mathbf{j}\rangle^{2},\qquad\parbox[b]{79.6678pt}{ \leavevmode\hbox to64.11pt{\vbox to31.54pt{\pgfpicture\makeatletter\hbox{\hskip 5.41147pt\lower-6.06064pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{{}}{}{{}} {}{}{{}} {}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{25.6073pt}{0.0pt}\pgfsys@lineto{52.63777pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{5.01147pt}{0.0pt}\pgfsys@curveto{5.01147pt}{2.76779pt}{2.76779pt}{5.01147pt}{0.0pt}{5.01147pt}\pgfsys@curveto{-2.76779pt}{5.01147pt}{-5.01147pt}{2.76779pt}{-5.01147pt}{0.0pt}\pgfsys@curveto{-5.01147pt}{-2.76779pt}{-2.76779pt}{-5.01147pt}{0.0pt}{-5.01147pt}\pgfsys@curveto{2.76779pt}{-5.01147pt}{5.01147pt}{-2.76779pt}{5.01147pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.99416pt}{-2.18611pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\epsilon_{i}^{I_{1}I_{2}}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{30.8949pt}{0.0pt}\pgfsys@curveto{30.8949pt}{2.92029pt}{28.52759pt}{5.2876pt}{25.6073pt}{5.2876pt}\pgfsys@curveto{22.68701pt}{5.2876pt}{20.3197pt}{2.92029pt}{20.3197pt}{0.0pt}\pgfsys@curveto{20.3197pt}{-2.92029pt}{22.68701pt}{-5.2876pt}{25.6073pt}{-5.2876pt}\pgfsys@curveto{28.52759pt}{-5.2876pt}{30.8949pt}{-2.92029pt}{30.8949pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{25.6073pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{21.57953pt}{-3.41666pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$V$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{58.29842pt}{0.0pt}\pgfsys@curveto{58.29842pt}{3.12633pt}{55.7641pt}{5.66064pt}{52.63777pt}{5.66064pt}\pgfsys@curveto{49.51144pt}{5.66064pt}{46.97713pt}{3.12633pt}{46.97713pt}{0.0pt}\pgfsys@curveto{46.97713pt}{-3.12633pt}{49.51144pt}{-5.66064pt}{52.63777pt}{-5.66064pt}\pgfsys@curveto{55.7641pt}{-5.66064pt}{58.29842pt}{-3.12633pt}{58.29842pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{52.63777pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{49.29492pt}{-1.64166pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\epsilon_{j}^{J_{1}J_{1}}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{{}} {}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{25.6073pt}{0.0pt}\pgfsys@lineto{25.6073pt}{19.91684pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{30.8949pt}{0.0pt}\pgfsys@curveto{30.8949pt}{2.92029pt}{28.52759pt}{5.2876pt}{25.6073pt}{5.2876pt}\pgfsys@curveto{22.68701pt}{5.2876pt}{20.3197pt}{2.92029pt}{20.3197pt}{0.0pt}\pgfsys@curveto{20.3197pt}{-2.92029pt}{22.68701pt}{-5.2876pt}{25.6073pt}{-5.2876pt}\pgfsys@curveto{28.52759pt}{-5.2876pt}{30.8949pt}{-2.92029pt}{30.8949pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{25.6073pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{21.57953pt}{-3.41666pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$V$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{30.7655pt}{19.91684pt}\pgfsys@curveto{30.7655pt}{22.76567pt}{28.45613pt}{25.07504pt}{25.6073pt}{25.07504pt}\pgfsys@curveto{22.75847pt}{25.07504pt}{20.4491pt}{22.76567pt}{20.4491pt}{19.91684pt}\pgfsys@curveto{20.4491pt}{17.06801pt}{22.75847pt}{14.75864pt}{25.6073pt}{14.75864pt}\pgfsys@curveto{28.45613pt}{14.75864pt}{30.7655pt}{17.06801pt}{30.7655pt}{19.91684pt}\pgfsys@closepath\pgfsys@moveto{25.6073pt}{19.91684pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{22.03195pt}{18.13351pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\epsilon_{k}^{-}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\vspace{-0.4cm}}=\frac{\sqrt{2}}{m}\frac{1}{x}[\mathbf{i}\mathbf{j}]^{2}, (72)

where the xx factor is introduced by Arkani-Hamed:2017jhn, which carries +1+1 helicity. The vertex γW+W\gamma W^{+}W^{-} in the Standard Model belongs to this kind of vertex.

Another kind of amplitude includes three massive vectors. Its diagrammatic representation is

ϵiI1I2\epsilon_{i}^{I_{1}I_{2}}VVϵjJ1J1\epsilon_{j}^{J_{1}J_{1}}VVϵkK1K1\epsilon_{k}^{K_{1}K_{1}} =[𝐢𝐣]𝐣𝐤[𝐤𝐢]+𝐢𝐣[𝐣𝐤]𝐤𝐢2m2+[𝐢𝐣][𝐣𝐤]𝐤𝐢+𝐢𝐣𝐣𝐤[𝐤𝐢]2m2\displaystyle=\frac{[\mathbf{i}\mathbf{j}]\langle\mathbf{j}\mathbf{k}\rangle[\mathbf{k}\mathbf{i}]+\langle\mathbf{i}\mathbf{j}\rangle[\mathbf{j}\mathbf{k}]\langle\mathbf{k}\mathbf{i}\rangle}{\sqrt{2}m^{2}}+\frac{[\mathbf{i}\mathbf{j}][\mathbf{j}\mathbf{k}]\langle\mathbf{k}\mathbf{i}\rangle+\langle\mathbf{i}\mathbf{j}\rangle\langle\mathbf{j}\mathbf{k}\rangle[\mathbf{k}\mathbf{i}]}{\sqrt{2}m^{2}} (73)
+𝐢𝐣[𝐣𝐤][𝐤𝐢]+[𝐢𝐣]𝐣𝐤𝐤𝐢2m2.\displaystyle\;\quad+\frac{\langle\mathbf{i}\mathbf{j}\rangle[\mathbf{j}\mathbf{k}][\mathbf{k}\mathbf{i}]+[\mathbf{i}\mathbf{j}]\langle\mathbf{j}\mathbf{k}\rangle\langle\mathbf{k}\mathbf{i}\rangle}{\sqrt{2}m^{2}}.

There is no such vertex in the Standard Model, because WW and ZZ bosons have different masses.

Now we give the expression for the VVVVVV vertex Vk,p,qμνλV_{k,p,q}^{\mu\nu\lambda},

Vk,p,qμνλμVλVν=gμν(pk)λ+gνλ(qp)μ+gλμ(kq)ν,\displaystyle V_{k,p,q}^{\mu\nu\lambda}\equiv\parbox[b]{51.21504pt}{ \leavevmode\hbox to49.49pt{\vbox to29.28pt{\pgfpicture\makeatletter\hbox{\hskip 4.72421pt\lower-5.68759pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{{}}{}{{}} {}{}{{}} {}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{19.91684pt}{0.0pt}\pgfsys@lineto{39.83368pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{4.32422pt}{0.0pt}\pgfsys@curveto{4.32422pt}{2.38823pt}{2.38823pt}{4.32422pt}{0.0pt}{4.32422pt}\pgfsys@curveto{-2.38823pt}{4.32422pt}{-4.32422pt}{2.38823pt}{-4.32422pt}{0.0pt}\pgfsys@curveto{-4.32422pt}{-2.38823pt}{-2.38823pt}{-4.32422pt}{0.0pt}{-4.32422pt}\pgfsys@curveto{2.38823pt}{-4.32422pt}{4.32422pt}{-2.38823pt}{4.32422pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.01274pt}{-1.18056pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\mu$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{25.20444pt}{0.0pt}\pgfsys@curveto{25.20444pt}{2.92029pt}{22.83713pt}{5.2876pt}{19.91684pt}{5.2876pt}\pgfsys@curveto{16.99655pt}{5.2876pt}{14.62924pt}{2.92029pt}{14.62924pt}{0.0pt}\pgfsys@curveto{14.62924pt}{-2.92029pt}{16.99655pt}{-5.2876pt}{19.91684pt}{-5.2876pt}\pgfsys@curveto{22.83713pt}{-5.2876pt}{25.20444pt}{-2.92029pt}{25.20444pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{19.91684pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{15.88907pt}{-3.41666pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$V$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{44.36859pt}{0.0pt}\pgfsys@curveto{44.36859pt}{2.5046pt}{42.33827pt}{4.53491pt}{39.83368pt}{4.53491pt}\pgfsys@curveto{37.32909pt}{4.53491pt}{35.29877pt}{2.5046pt}{35.29877pt}{0.0pt}\pgfsys@curveto{35.29877pt}{-2.5046pt}{37.32909pt}{-4.53491pt}{39.83368pt}{-4.53491pt}\pgfsys@curveto{42.33827pt}{-4.53491pt}{44.36859pt}{-2.5046pt}{44.36859pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{39.83368pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{36.917pt}{-3.47221pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\lambda$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{{}} {}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{19.91684pt}{0.0pt}\pgfsys@lineto{19.91684pt}{19.91684pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{25.20444pt}{0.0pt}\pgfsys@curveto{25.20444pt}{2.92029pt}{22.83713pt}{5.2876pt}{19.91684pt}{5.2876pt}\pgfsys@curveto{16.99655pt}{5.2876pt}{14.62924pt}{2.92029pt}{14.62924pt}{0.0pt}\pgfsys@curveto{14.62924pt}{-2.92029pt}{16.99655pt}{-5.2876pt}{19.91684pt}{-5.2876pt}\pgfsys@curveto{22.83713pt}{-5.2876pt}{25.20444pt}{-2.92029pt}{25.20444pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{19.91684pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{15.88907pt}{-3.41666pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$V$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{23.19296pt}{19.91684pt}\pgfsys@curveto{23.19296pt}{21.72621pt}{21.72621pt}{23.19296pt}{19.91684pt}{23.19296pt}\pgfsys@curveto{18.10747pt}{23.19296pt}{16.64072pt}{21.72621pt}{16.64072pt}{19.91684pt}\pgfsys@curveto{16.64072pt}{18.10747pt}{18.10747pt}{16.64072pt}{19.91684pt}{16.64072pt}\pgfsys@curveto{21.72621pt}{16.64072pt}{23.19296pt}{18.10747pt}{23.19296pt}{19.91684pt}\pgfsys@closepath\pgfsys@moveto{19.91684pt}{19.91684pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{17.44693pt}{17.76407pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\nu$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\vspace{-0.15cm}}=g^{\mu\nu}(p-k)^{\lambda}+g^{\nu\lambda}(q-p)^{\mu}+g^{\lambda\mu}(k-q)^{\nu}, (74)

where k+p+q=0k+p+q=0. It is easy to check this expression by dotting it into vector boson polarizations. This manipulation will give the amplitudes in eqs. (72) and (73) again. We can use shifted momenta k+zrk+zr and qzrq-zr instead of kk and qq to deform this vertex. Diagrammatically, shifted vertex is represented as

μV^λV^ν=V^k+zr,p,qzrμνλ=Vk,p,qμνλ+zRμνλ=μVλVν+z×μRλRν,\displaystyle\parbox[b]{51.21504pt}{ \leavevmode\hbox to49.49pt{\vbox to28.55pt{\pgfpicture\makeatletter\hbox{\hskip 4.72421pt\lower-4.9537pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{{}}{}{{}} {}{}{{}} {}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{19.91684pt}{0.0pt}\pgfsys@lineto{39.83368pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{4.32422pt}{0.0pt}\pgfsys@curveto{4.32422pt}{2.38823pt}{2.38823pt}{4.32422pt}{0.0pt}{4.32422pt}\pgfsys@curveto{-2.38823pt}{4.32422pt}{-4.32422pt}{2.38823pt}{-4.32422pt}{0.0pt}\pgfsys@curveto{-4.32422pt}{-2.38823pt}{-2.38823pt}{-4.32422pt}{0.0pt}{-4.32422pt}\pgfsys@curveto{2.38823pt}{-4.32422pt}{4.32422pt}{-2.38823pt}{4.32422pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.01274pt}{-1.18056pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\mu$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{24.47055pt}{0.0pt}\pgfsys@curveto{24.47055pt}{2.51497pt}{22.43181pt}{4.55371pt}{19.91684pt}{4.55371pt}\pgfsys@curveto{17.40187pt}{4.55371pt}{15.36313pt}{2.51497pt}{15.36313pt}{0.0pt}\pgfsys@curveto{15.36313pt}{-2.51497pt}{17.40187pt}{-4.55371pt}{19.91684pt}{-4.55371pt}\pgfsys@curveto{22.43181pt}{-4.55371pt}{24.47055pt}{-2.51497pt}{24.47055pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{19.91684pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{17.13905pt}{-3.61111pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\hat{V}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{44.36859pt}{0.0pt}\pgfsys@curveto{44.36859pt}{2.5046pt}{42.33827pt}{4.53491pt}{39.83368pt}{4.53491pt}\pgfsys@curveto{37.32909pt}{4.53491pt}{35.29877pt}{2.5046pt}{35.29877pt}{0.0pt}\pgfsys@curveto{35.29877pt}{-2.5046pt}{37.32909pt}{-4.53491pt}{39.83368pt}{-4.53491pt}\pgfsys@curveto{42.33827pt}{-4.53491pt}{44.36859pt}{-2.5046pt}{44.36859pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{39.83368pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{36.917pt}{-3.47221pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\lambda$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{{}} {}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{19.91684pt}{0.0pt}\pgfsys@lineto{19.91684pt}{19.91684pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{24.47055pt}{0.0pt}\pgfsys@curveto{24.47055pt}{2.51497pt}{22.43181pt}{4.55371pt}{19.91684pt}{4.55371pt}\pgfsys@curveto{17.40187pt}{4.55371pt}{15.36313pt}{2.51497pt}{15.36313pt}{0.0pt}\pgfsys@curveto{15.36313pt}{-2.51497pt}{17.40187pt}{-4.55371pt}{19.91684pt}{-4.55371pt}\pgfsys@curveto{22.43181pt}{-4.55371pt}{24.47055pt}{-2.51497pt}{24.47055pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{19.91684pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{17.13905pt}{-3.61111pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\hat{V}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{23.19296pt}{19.91684pt}\pgfsys@curveto{23.19296pt}{21.72621pt}{21.72621pt}{23.19296pt}{19.91684pt}{23.19296pt}\pgfsys@curveto{18.10747pt}{23.19296pt}{16.64072pt}{21.72621pt}{16.64072pt}{19.91684pt}\pgfsys@curveto{16.64072pt}{18.10747pt}{18.10747pt}{16.64072pt}{19.91684pt}{16.64072pt}\pgfsys@curveto{21.72621pt}{16.64072pt}{23.19296pt}{18.10747pt}{23.19296pt}{19.91684pt}\pgfsys@closepath\pgfsys@moveto{19.91684pt}{19.91684pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{17.44693pt}{17.76407pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\nu$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\vspace{-0.17cm}}=\hat{V}_{k+zr,p,q-zr}^{\mu\nu\lambda}=V_{k,p,q}^{\mu\nu\lambda}+zR^{\mu\nu\lambda}=\parbox[b]{51.21504pt}{ \leavevmode\hbox to49.49pt{\vbox to29.28pt{\pgfpicture\makeatletter\hbox{\hskip 4.72421pt\lower-5.68759pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{{}}{}{{}} {}{}{{}} {}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{19.91684pt}{0.0pt}\pgfsys@lineto{39.83368pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{4.32422pt}{0.0pt}\pgfsys@curveto{4.32422pt}{2.38823pt}{2.38823pt}{4.32422pt}{0.0pt}{4.32422pt}\pgfsys@curveto{-2.38823pt}{4.32422pt}{-4.32422pt}{2.38823pt}{-4.32422pt}{0.0pt}\pgfsys@curveto{-4.32422pt}{-2.38823pt}{-2.38823pt}{-4.32422pt}{0.0pt}{-4.32422pt}\pgfsys@curveto{2.38823pt}{-4.32422pt}{4.32422pt}{-2.38823pt}{4.32422pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.01274pt}{-1.18056pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\mu$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{25.20444pt}{0.0pt}\pgfsys@curveto{25.20444pt}{2.92029pt}{22.83713pt}{5.2876pt}{19.91684pt}{5.2876pt}\pgfsys@curveto{16.99655pt}{5.2876pt}{14.62924pt}{2.92029pt}{14.62924pt}{0.0pt}\pgfsys@curveto{14.62924pt}{-2.92029pt}{16.99655pt}{-5.2876pt}{19.91684pt}{-5.2876pt}\pgfsys@curveto{22.83713pt}{-5.2876pt}{25.20444pt}{-2.92029pt}{25.20444pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{19.91684pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{15.88907pt}{-3.41666pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$V$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{44.36859pt}{0.0pt}\pgfsys@curveto{44.36859pt}{2.5046pt}{42.33827pt}{4.53491pt}{39.83368pt}{4.53491pt}\pgfsys@curveto{37.32909pt}{4.53491pt}{35.29877pt}{2.5046pt}{35.29877pt}{0.0pt}\pgfsys@curveto{35.29877pt}{-2.5046pt}{37.32909pt}{-4.53491pt}{39.83368pt}{-4.53491pt}\pgfsys@curveto{42.33827pt}{-4.53491pt}{44.36859pt}{-2.5046pt}{44.36859pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{39.83368pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{36.917pt}{-3.47221pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\lambda$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{{}} {}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{19.91684pt}{0.0pt}\pgfsys@lineto{19.91684pt}{19.91684pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{25.20444pt}{0.0pt}\pgfsys@curveto{25.20444pt}{2.92029pt}{22.83713pt}{5.2876pt}{19.91684pt}{5.2876pt}\pgfsys@curveto{16.99655pt}{5.2876pt}{14.62924pt}{2.92029pt}{14.62924pt}{0.0pt}\pgfsys@curveto{14.62924pt}{-2.92029pt}{16.99655pt}{-5.2876pt}{19.91684pt}{-5.2876pt}\pgfsys@curveto{22.83713pt}{-5.2876pt}{25.20444pt}{-2.92029pt}{25.20444pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{19.91684pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{15.88907pt}{-3.41666pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$V$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{23.19296pt}{19.91684pt}\pgfsys@curveto{23.19296pt}{21.72621pt}{21.72621pt}{23.19296pt}{19.91684pt}{23.19296pt}\pgfsys@curveto{18.10747pt}{23.19296pt}{16.64072pt}{21.72621pt}{16.64072pt}{19.91684pt}\pgfsys@curveto{16.64072pt}{18.10747pt}{18.10747pt}{16.64072pt}{19.91684pt}{16.64072pt}\pgfsys@curveto{21.72621pt}{16.64072pt}{23.19296pt}{18.10747pt}{23.19296pt}{19.91684pt}\pgfsys@closepath\pgfsys@moveto{19.91684pt}{19.91684pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{17.44693pt}{17.76407pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\nu$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\vspace{-0.13cm}}+z\times\parbox[b]{51.21504pt}{ \leavevmode\hbox to49.49pt{\vbox to29.13pt{\pgfpicture\makeatletter\hbox{\hskip 4.72421pt\lower-5.54013pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{{}}{}{{}} {}{}{{}} {}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{19.91684pt}{0.0pt}\pgfsys@lineto{39.83368pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{4.32422pt}{0.0pt}\pgfsys@curveto{4.32422pt}{2.38823pt}{2.38823pt}{4.32422pt}{0.0pt}{4.32422pt}\pgfsys@curveto{-2.38823pt}{4.32422pt}{-4.32422pt}{2.38823pt}{-4.32422pt}{0.0pt}\pgfsys@curveto{-4.32422pt}{-2.38823pt}{-2.38823pt}{-4.32422pt}{0.0pt}{-4.32422pt}\pgfsys@curveto{2.38823pt}{-4.32422pt}{4.32422pt}{-2.38823pt}{4.32422pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.01274pt}{-1.18056pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\mu$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{25.05698pt}{0.0pt}\pgfsys@curveto{25.05698pt}{2.83885pt}{22.75569pt}{5.14014pt}{19.91684pt}{5.14014pt}\pgfsys@curveto{17.07799pt}{5.14014pt}{14.7767pt}{2.83885pt}{14.7767pt}{0.0pt}\pgfsys@curveto{14.7767pt}{-2.83885pt}{17.07799pt}{-5.14014pt}{19.91684pt}{-5.14014pt}\pgfsys@curveto{22.75569pt}{-5.14014pt}{25.05698pt}{-2.83885pt}{25.05698pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{19.91684pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.08177pt}{-3.41666pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$R$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{44.36859pt}{0.0pt}\pgfsys@curveto{44.36859pt}{2.5046pt}{42.33827pt}{4.53491pt}{39.83368pt}{4.53491pt}\pgfsys@curveto{37.32909pt}{4.53491pt}{35.29877pt}{2.5046pt}{35.29877pt}{0.0pt}\pgfsys@curveto{35.29877pt}{-2.5046pt}{37.32909pt}{-4.53491pt}{39.83368pt}{-4.53491pt}\pgfsys@curveto{42.33827pt}{-4.53491pt}{44.36859pt}{-2.5046pt}{44.36859pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{39.83368pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{36.917pt}{-3.47221pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\lambda$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{{}} {}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{19.91684pt}{0.0pt}\pgfsys@lineto{19.91684pt}{19.91684pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{25.05698pt}{0.0pt}\pgfsys@curveto{25.05698pt}{2.83885pt}{22.75569pt}{5.14014pt}{19.91684pt}{5.14014pt}\pgfsys@curveto{17.07799pt}{5.14014pt}{14.7767pt}{2.83885pt}{14.7767pt}{0.0pt}\pgfsys@curveto{14.7767pt}{-2.83885pt}{17.07799pt}{-5.14014pt}{19.91684pt}{-5.14014pt}\pgfsys@curveto{22.75569pt}{-5.14014pt}{25.05698pt}{-2.83885pt}{25.05698pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{19.91684pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.08177pt}{-3.41666pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$R$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{23.19296pt}{19.91684pt}\pgfsys@curveto{23.19296pt}{21.72621pt}{21.72621pt}{23.19296pt}{19.91684pt}{23.19296pt}\pgfsys@curveto{18.10747pt}{23.19296pt}{16.64072pt}{21.72621pt}{16.64072pt}{19.91684pt}\pgfsys@curveto{16.64072pt}{18.10747pt}{18.10747pt}{16.64072pt}{19.91684pt}{16.64072pt}\pgfsys@curveto{21.72621pt}{16.64072pt}{23.19296pt}{18.10747pt}{23.19296pt}{19.91684pt}\pgfsys@closepath\pgfsys@moveto{19.91684pt}{19.91684pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{17.44693pt}{17.76407pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\nu$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\vspace{-0.13cm}}, (75)

where Rμνλ=(gμνrλgνλrμ+2gλμrν)R^{\mu\nu\lambda}=(-g^{\mu\nu}r^{\lambda}-g^{\nu\lambda}r^{\mu}+2g^{\lambda\mu}r^{\nu}). In the diagram, the three lines correspond to three Lorentz indices of the vertex. Two horizontal lines represent hard fluctuations, so the momenta they carry should be shifted (e.g. k+zrk+zr and qzrq-zr in eq. (75)).

{fmfgraph*}

(60,60) \fmflefti1,i2 \fmfrighto1 \fmfdashesi1,v1 \fmfdashesi2,v1 \fmfdbl_wigglyv1,o1

Figure 2: VSSVSS vertex with massive vector

Next, VSSVSS amplitude (see figure 2) will give a simpler vertex. Since the only one external vector boson contributes one Lorentz index, the vertex must be a Lorentz vector. Suppose the momenta of scalar bosons are pp and qq, the vertex Vp,qμV_{p,q}^{\mu} will be

Vμ=(pq)μ.\parbox[c]{34.14322pt}{ \leavevmode\hbox to33.17pt{\vbox to11.38pt{\pgfpicture\makeatletter\hbox{\hskip 5.68759pt\lower-5.68759pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{{}}{}{{}} {}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{22.76228pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{5.2876pt}{0.0pt}\pgfsys@curveto{5.2876pt}{2.92029pt}{2.92029pt}{5.2876pt}{0.0pt}{5.2876pt}\pgfsys@curveto{-2.92029pt}{5.2876pt}{-5.2876pt}{2.92029pt}{-5.2876pt}{0.0pt}\pgfsys@curveto{-5.2876pt}{-2.92029pt}{-2.92029pt}{-5.2876pt}{0.0pt}{-5.2876pt}\pgfsys@curveto{2.92029pt}{-5.2876pt}{5.2876pt}{-2.92029pt}{5.2876pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-4.02777pt}{-3.41666pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$V$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{27.0865pt}{0.0pt}\pgfsys@curveto{27.0865pt}{2.38823pt}{25.15051pt}{4.32422pt}{22.76228pt}{4.32422pt}\pgfsys@curveto{20.37405pt}{4.32422pt}{18.43806pt}{2.38823pt}{18.43806pt}{0.0pt}\pgfsys@curveto{18.43806pt}{-2.38823pt}{20.37405pt}{-4.32422pt}{22.76228pt}{-4.32422pt}\pgfsys@curveto{25.15051pt}{-4.32422pt}{27.0865pt}{-2.38823pt}{27.0865pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{22.76228pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{19.74954pt}{-1.18056pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\mu$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}=(p-q)^{\mu}. (76)

This vertex can be realized in various BSM models, such as 2HDM, MSSM and the simplest Little Higgs model Gunion:1989we; He:2017jjx. In the last case, there is a Higgs-Goldstone mixing term in the non-linear Lagrangian.

Notice that the VSSVSS vertex seems to be a substructure of VVVVVV vertex. Diagrammatically, this means

μVλVν=μλVν+μνVλ+λνμV.\parbox[b]{51.21504pt}{ \leavevmode\hbox to49.49pt{\vbox to29.28pt{\pgfpicture\makeatletter\hbox{\hskip 4.72421pt\lower-5.68759pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{{}}{}{{}} {}{}{{}} {}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{19.91684pt}{0.0pt}\pgfsys@lineto{39.83368pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{4.32422pt}{0.0pt}\pgfsys@curveto{4.32422pt}{2.38823pt}{2.38823pt}{4.32422pt}{0.0pt}{4.32422pt}\pgfsys@curveto{-2.38823pt}{4.32422pt}{-4.32422pt}{2.38823pt}{-4.32422pt}{0.0pt}\pgfsys@curveto{-4.32422pt}{-2.38823pt}{-2.38823pt}{-4.32422pt}{0.0pt}{-4.32422pt}\pgfsys@curveto{2.38823pt}{-4.32422pt}{4.32422pt}{-2.38823pt}{4.32422pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.01274pt}{-1.18056pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\mu$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{25.20444pt}{0.0pt}\pgfsys@curveto{25.20444pt}{2.92029pt}{22.83713pt}{5.2876pt}{19.91684pt}{5.2876pt}\pgfsys@curveto{16.99655pt}{5.2876pt}{14.62924pt}{2.92029pt}{14.62924pt}{0.0pt}\pgfsys@curveto{14.62924pt}{-2.92029pt}{16.99655pt}{-5.2876pt}{19.91684pt}{-5.2876pt}\pgfsys@curveto{22.83713pt}{-5.2876pt}{25.20444pt}{-2.92029pt}{25.20444pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{19.91684pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{15.88907pt}{-3.41666pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$V$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{44.36859pt}{0.0pt}\pgfsys@curveto{44.36859pt}{2.5046pt}{42.33827pt}{4.53491pt}{39.83368pt}{4.53491pt}\pgfsys@curveto{37.32909pt}{4.53491pt}{35.29877pt}{2.5046pt}{35.29877pt}{0.0pt}\pgfsys@curveto{35.29877pt}{-2.5046pt}{37.32909pt}{-4.53491pt}{39.83368pt}{-4.53491pt}\pgfsys@curveto{42.33827pt}{-4.53491pt}{44.36859pt}{-2.5046pt}{44.36859pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{39.83368pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{36.917pt}{-3.47221pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\lambda$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{{}} {}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{19.91684pt}{0.0pt}\pgfsys@lineto{19.91684pt}{19.91684pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{25.20444pt}{0.0pt}\pgfsys@curveto{25.20444pt}{2.92029pt}{22.83713pt}{5.2876pt}{19.91684pt}{5.2876pt}\pgfsys@curveto{16.99655pt}{5.2876pt}{14.62924pt}{2.92029pt}{14.62924pt}{0.0pt}\pgfsys@curveto{14.62924pt}{-2.92029pt}{16.99655pt}{-5.2876pt}{19.91684pt}{-5.2876pt}\pgfsys@curveto{22.83713pt}{-5.2876pt}{25.20444pt}{-2.92029pt}{25.20444pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{19.91684pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{15.88907pt}{-3.41666pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$V$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{23.19296pt}{19.91684pt}\pgfsys@curveto{23.19296pt}{21.72621pt}{21.72621pt}{23.19296pt}{19.91684pt}{23.19296pt}\pgfsys@curveto{18.10747pt}{23.19296pt}{16.64072pt}{21.72621pt}{16.64072pt}{19.91684pt}\pgfsys@curveto{16.64072pt}{18.10747pt}{18.10747pt}{16.64072pt}{19.91684pt}{16.64072pt}\pgfsys@curveto{21.72621pt}{16.64072pt}{23.19296pt}{18.10747pt}{23.19296pt}{19.91684pt}\pgfsys@closepath\pgfsys@moveto{19.91684pt}{19.91684pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{17.44693pt}{17.76407pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\nu$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\vspace{-0.13cm}}=\parbox[b]{51.21504pt}{ \leavevmode\hbox to49.49pt{\vbox to29.95pt{\pgfpicture\makeatletter\hbox{\hskip 4.72421pt\lower-4.9349pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{{}}{}{{}} {}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{39.83368pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{4.32422pt}{0.0pt}\pgfsys@curveto{4.32422pt}{2.38823pt}{2.38823pt}{4.32422pt}{0.0pt}{4.32422pt}\pgfsys@curveto{-2.38823pt}{4.32422pt}{-4.32422pt}{2.38823pt}{-4.32422pt}{0.0pt}\pgfsys@curveto{-4.32422pt}{-2.38823pt}{-2.38823pt}{-4.32422pt}{0.0pt}{-4.32422pt}\pgfsys@curveto{2.38823pt}{-4.32422pt}{4.32422pt}{-2.38823pt}{4.32422pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.01274pt}{-1.18056pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\mu$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{44.36859pt}{0.0pt}\pgfsys@curveto{44.36859pt}{2.5046pt}{42.33827pt}{4.53491pt}{39.83368pt}{4.53491pt}\pgfsys@curveto{37.32909pt}{4.53491pt}{35.29877pt}{2.5046pt}{35.29877pt}{0.0pt}\pgfsys@curveto{35.29877pt}{-2.5046pt}{37.32909pt}{-4.53491pt}{39.83368pt}{-4.53491pt}\pgfsys@curveto{42.33827pt}{-4.53491pt}{44.36859pt}{-2.5046pt}{44.36859pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{39.83368pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{36.917pt}{-3.47221pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\lambda$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{{}} {}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{19.91684pt}{7.11319pt}\pgfsys@lineto{19.91684pt}{21.33957pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{25.20444pt}{7.11319pt}\pgfsys@curveto{25.20444pt}{10.03348pt}{22.83713pt}{12.40079pt}{19.91684pt}{12.40079pt}\pgfsys@curveto{16.99655pt}{12.40079pt}{14.62924pt}{10.03348pt}{14.62924pt}{7.11319pt}\pgfsys@curveto{14.62924pt}{4.1929pt}{16.99655pt}{1.82559pt}{19.91684pt}{1.82559pt}\pgfsys@curveto{22.83713pt}{1.82559pt}{25.20444pt}{4.1929pt}{25.20444pt}{7.11319pt}\pgfsys@closepath\pgfsys@moveto{19.91684pt}{7.11319pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{15.88907pt}{3.69653pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$V$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{23.19296pt}{21.33957pt}\pgfsys@curveto{23.19296pt}{23.14894pt}{21.72621pt}{24.61569pt}{19.91684pt}{24.61569pt}\pgfsys@curveto{18.10747pt}{24.61569pt}{16.64072pt}{23.14894pt}{16.64072pt}{21.33957pt}\pgfsys@curveto{16.64072pt}{19.5302pt}{18.10747pt}{18.06345pt}{19.91684pt}{18.06345pt}\pgfsys@curveto{21.72621pt}{18.06345pt}{23.19296pt}{19.5302pt}{23.19296pt}{21.33957pt}\pgfsys@closepath\pgfsys@moveto{19.91684pt}{21.33957pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{17.44693pt}{19.1868pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\nu$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\vspace{-0.15cm}}+\parbox[b]{51.21504pt}{ \leavevmode\hbox to49.49pt{\vbox to30.7pt{\pgfpicture\makeatletter\hbox{\hskip 4.72421pt\lower-5.68759pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{{}}{}{{}} {}{} {}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{17.07182pt}{0.0pt}\pgfsys@lineto{17.07182pt}{21.33957pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{4.32422pt}{0.0pt}\pgfsys@curveto{4.32422pt}{2.38823pt}{2.38823pt}{4.32422pt}{0.0pt}{4.32422pt}\pgfsys@curveto{-2.38823pt}{4.32422pt}{-4.32422pt}{2.38823pt}{-4.32422pt}{0.0pt}\pgfsys@curveto{-4.32422pt}{-2.38823pt}{-2.38823pt}{-4.32422pt}{0.0pt}{-4.32422pt}\pgfsys@curveto{2.38823pt}{-4.32422pt}{4.32422pt}{-2.38823pt}{4.32422pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.01274pt}{-1.18056pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\mu$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{20.34795pt}{21.33957pt}\pgfsys@curveto{20.34795pt}{23.14894pt}{18.8812pt}{24.61569pt}{17.07182pt}{24.61569pt}\pgfsys@curveto{15.26245pt}{24.61569pt}{13.7957pt}{23.14894pt}{13.7957pt}{21.33957pt}\pgfsys@curveto{13.7957pt}{19.5302pt}{15.26245pt}{18.06345pt}{17.07182pt}{18.06345pt}\pgfsys@curveto{18.8812pt}{18.06345pt}{20.34795pt}{19.5302pt}{20.34795pt}{21.33957pt}\pgfsys@closepath\pgfsys@moveto{17.07182pt}{21.33957pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{14.60191pt}{19.1868pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\nu$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{{}} {}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{24.18501pt}{0.0pt}\pgfsys@lineto{39.83368pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{29.47261pt}{0.0pt}\pgfsys@curveto{29.47261pt}{2.92029pt}{27.1053pt}{5.2876pt}{24.18501pt}{5.2876pt}\pgfsys@curveto{21.26472pt}{5.2876pt}{18.89742pt}{2.92029pt}{18.89742pt}{0.0pt}\pgfsys@curveto{18.89742pt}{-2.92029pt}{21.26472pt}{-5.2876pt}{24.18501pt}{-5.2876pt}\pgfsys@curveto{27.1053pt}{-5.2876pt}{29.47261pt}{-2.92029pt}{29.47261pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{24.18501pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{20.15724pt}{-3.41666pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$V$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{44.36859pt}{0.0pt}\pgfsys@curveto{44.36859pt}{2.5046pt}{42.33827pt}{4.53491pt}{39.83368pt}{4.53491pt}\pgfsys@curveto{37.32909pt}{4.53491pt}{35.29877pt}{2.5046pt}{35.29877pt}{0.0pt}\pgfsys@curveto{35.29877pt}{-2.5046pt}{37.32909pt}{-4.53491pt}{39.83368pt}{-4.53491pt}\pgfsys@curveto{42.33827pt}{-4.53491pt}{44.36859pt}{-2.5046pt}{44.36859pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{39.83368pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{36.917pt}{-3.47221pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\lambda$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\vspace{-0.15cm}}+\parbox[b]{51.21504pt}{ \leavevmode\hbox to49.49pt{\vbox to30.7pt{\pgfpicture\makeatletter\hbox{\hskip 4.72421pt\lower-5.68759pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{{}}{}{{}} {}{} {}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{39.83368pt}{0.0pt}\pgfsys@lineto{22.76228pt}{0.0pt}\pgfsys@lineto{22.76228pt}{21.33957pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{44.36859pt}{0.0pt}\pgfsys@curveto{44.36859pt}{2.5046pt}{42.33827pt}{4.53491pt}{39.83368pt}{4.53491pt}\pgfsys@curveto{37.32909pt}{4.53491pt}{35.29877pt}{2.5046pt}{35.29877pt}{0.0pt}\pgfsys@curveto{35.29877pt}{-2.5046pt}{37.32909pt}{-4.53491pt}{39.83368pt}{-4.53491pt}\pgfsys@curveto{42.33827pt}{-4.53491pt}{44.36859pt}{-2.5046pt}{44.36859pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{39.83368pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{36.917pt}{-3.47221pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\lambda$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{26.0384pt}{21.33957pt}\pgfsys@curveto{26.0384pt}{23.14894pt}{24.57166pt}{24.61569pt}{22.76228pt}{24.61569pt}\pgfsys@curveto{20.95291pt}{24.61569pt}{19.48616pt}{23.14894pt}{19.48616pt}{21.33957pt}\pgfsys@curveto{19.48616pt}{19.5302pt}{20.95291pt}{18.06345pt}{22.76228pt}{18.06345pt}\pgfsys@curveto{24.57166pt}{18.06345pt}{26.0384pt}{19.5302pt}{26.0384pt}{21.33957pt}\pgfsys@closepath\pgfsys@moveto{22.76228pt}{21.33957pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{20.29237pt}{19.1868pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\nu$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{{}} {}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{15.6491pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{4.32422pt}{0.0pt}\pgfsys@curveto{4.32422pt}{2.38823pt}{2.38823pt}{4.32422pt}{0.0pt}{4.32422pt}\pgfsys@curveto{-2.38823pt}{4.32422pt}{-4.32422pt}{2.38823pt}{-4.32422pt}{0.0pt}\pgfsys@curveto{-4.32422pt}{-2.38823pt}{-2.38823pt}{-4.32422pt}{0.0pt}{-4.32422pt}\pgfsys@curveto{2.38823pt}{-4.32422pt}{4.32422pt}{-2.38823pt}{4.32422pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.01274pt}{-1.18056pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\mu$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{20.93669pt}{0.0pt}\pgfsys@curveto{20.93669pt}{2.92029pt}{18.56938pt}{5.2876pt}{15.6491pt}{5.2876pt}\pgfsys@curveto{12.7288pt}{5.2876pt}{10.3615pt}{2.92029pt}{10.3615pt}{0.0pt}\pgfsys@curveto{10.3615pt}{-2.92029pt}{12.7288pt}{-5.2876pt}{15.6491pt}{-5.2876pt}\pgfsys@curveto{18.56938pt}{-5.2876pt}{20.93669pt}{-2.92029pt}{20.93669pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{15.6491pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{11.62132pt}{-3.41666pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$V$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\vspace{-0.15cm}}. (77)

Therefore, the large-zz behavior of VSSVSS vertex is contained in VVVVVV vertex.

4 Large-zz behavior of nn-point amplitudes

For massless amplitudes, appropriate gauges eliminate all large-zz contributions from derivative interactions except in the so-called “unique diagrams". Therefore, the large-zz behavior of amplitudes depends on the number of hard propagators. If there are more hard boson propagators, the amplitudes will be suppressed by higher powers of zz. As for hard fermion propagators, the contribution can be simplified by using anti-commuted gamma matrices and rr=r2=0\not{r}\not{r}=r^{2}=0. At last, the hard polarizations are dotted into the sum of all contributions.

In the massive case, we have seen that the 𝒪(z)\mathcal{O}(z) vertices are not eliminated completely, so the diagrams with hard vector propagators cannot be ignored. Thus, the large-zz behavior in the massive case should be evaluated directly instead of estimated.

One may wonder if the Goldstone boson equivalence theorem Lee:1977eg; Chanowitz:1985hj is useful in the complex deformation. In the high energy limit, this theorem treats the longitudinal modes of vector bosons as Goldstone bosons to simplify calculations. However, the large-zz limit is not exactly the same as the high energy limit. Actually, it has been used in amplitudes under the all-line shift Cohen:2010mi, but there are also many cases where it doesn’t work. Consider the following amplitude in the large-zz limit with particles 1 and 2 shifted:

{fmfgraph*}(90,50)\fmfbottomi1,o1\fmfvl=1,l.a=70,l.d=.06wi1\fmfphotoni1,v1\fmfdblwigglyv1,o1\fmfvl=2,l.a=110,l.d=.05wo1\fmffreeze\fmftopi2\fmfvl=3,l.a=30,l.d=.08wi2\fmfdblwigglyv1,i2={fmfgraph*}(90,50)\fmfbottomi1,o1\fmfphotoni1,v1\fmfvl=1,l.a=70,l.d=.06wi1\fmfdashesv1,o1\fmfvl=2,l.a=120,l.d=.06wo1\fmffreeze\fmftopi2\fmfvl=3,l.a=30,l.d=.08wi2\fmfdashesv1,i2×(1+𝒪(mΦ2E2)).\begin{gathered}\fmfgraph*(90,50)\fmfbottom{i1,o1}\fmfv{l=1,l.a=70,l.d=.06w}{i1}\fmf{photon}{i1,v1}\fmf{dbl_{w}iggly}{v1,o1}\fmfv{l=2,l.a=110,l.d=.05w}{o1}\fmffreeze\fmftop{i2}\fmfv{l=3,l.a=-30,l.d=.08w}{i2}\fmf{dbl_{w}iggly}{v1,i2}\end{gathered}\quad=\quad\begin{gathered}\fmfgraph*(90,50)\fmfbottom{i1,o1}\fmf{photon}{i1,v1}\fmfv{l=1,l.a=70,l.d=.06w}{i1}\fmf{dashes}{v1,o1}\fmfv{l=2,l.a=120,l.d=.06w}{o1}\fmffreeze\fmftop{i2}\fmfv{l=3,l.a=-30,l.d=.08w}{i2}\fmf{dashes}{v1,i2}\end{gathered}\times\left(1+\mathcal{O}\left(\frac{m_{\Phi}^{2}}{E^{2}}\right)\right).\\ (78)

where mΦm_{\Phi} is the mass of scalar bosons and EE is the energy of particle 3. Particle 3 is unshifted, so mΦ2E2\frac{m_{\Phi}^{2}}{E^{2}} is no longer a negligible quantity. If we insist on applying this expansion, we should sum over the contributions from infinite terms. Thus, we won’t use the Goldstone boson equivalence theorem in our analysis.

4.1 nn-point Vector Boson Scattering Amplitudes

In the massive case, the large-zz behavior of amplitudes depends on massive vector bosons, so we can first consider vector boson scattering. Besides particle 1, we set all particles to be massive. The massive vector propagator (56) has two terms. The first term connects vertices while the second term splits the diagram in two. Therefore, the amplitudes can be split into two parts,

A^n=A^nC+A^nD,\displaystyle\hat{A}_{n}=\hat{A}_{n}^{C}+\hat{A}_{n}^{D}, (79)

where A^nC\hat{A}_{n}^{C} and A^nD\hat{A}_{n}^{D} correspond to the connected and disconnected diagrammatic expressions respectively.

When a hard particle shoots through a soft background, it will interact with the classical field more than once. The soft physics is parameterized by currents BμjB^{\mu_{j}}, so the amplitude A^nC\hat{A}_{n}^{C} becomes

A^nC=\displaystyle\hat{A}_{n}^{C}= Nμ3Bμ33+i=4nσSi2Nσ(μ3μ4μi)j=3i1Dσ(j)j=3iBμji,\displaystyle N_{\mu_{3}}B^{\mu_{3}}_{3}+\sum_{i=4}^{n}\sum_{\sigma\in S_{i-2}}\frac{N_{\sigma(\mu_{3}\mu_{4}\cdots\mu_{i})}}{\prod_{j=3}^{i-1}D_{\sigma(j)}}\prod_{j=3}^{i}B^{\mu_{j}}_{i}, (80)

where the second sum is over all permutations of the labels (3,4,,i)(3,4,\dots,i). Here DjD_{j} is the denominator of shifted propagators. After permutation, it becomes

Dσ(j)\displaystyle D_{\sigma(j)} =(p^1+k=3jpσ(k))2m2=2zk=3jpσ(k)r+𝒪(1).\displaystyle=\left(\hat{p}_{1}+\sum_{k=3}^{j}p_{\sigma(k)}\right)^{2}-m^{2}=2z\sum_{k=3}^{j}p_{\sigma}(k)\cdot r+\mathcal{O}(1). (81)
{fmfgraph*}

(100,70) \fmfbottomi1,o1\fmfvl=1,l.a=70,l.d=.06wi1 \fmfphotoni1,v1 \fmfdbl_wigglyv1,o1\fmfvl=2,l.a=110,l.d=.05wo1 \fmffreeze\fmftopi2 \fmfphantomi2,v3,v2 \fmfdbl_wigglyv3,v2,v1 \fmfblob.15wv3

(a)
Figure 3: The diagram without hard propagators. The blob represents the soft background.

The first term in eq. (80) corresponds to the diagram without hard propagators (see figure 3). Since the hard particle interacts with the classical field only once, the large-zz behavior of the numerator should be given by a Lorentz vector Nμ3N_{\mu_{3}}. Inserting polarizations (67) and (66), it becomes

N,+μ3\displaystyle N^{-,+}_{\mu_{3}} =ϵ^1V^ϵ^2+V^μ=p1RrRμ+𝒪(1z)𝒪(1z),\displaystyle=\parbox[b]{59.75095pt}{ \leavevmode\hbox to53.97pt{\vbox to31.8pt{\pgfpicture\makeatletter\hbox{\hskip 6.9813pt\lower-7.15463pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{{}}{}{{}} {}{}{{}} {}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{19.91684pt}{0.0pt}\pgfsys@lineto{39.83368pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{6.5813pt}{0.0pt}\pgfsys@curveto{6.5813pt}{3.6348pt}{3.6348pt}{6.5813pt}{0.0pt}{6.5813pt}\pgfsys@curveto{-3.6348pt}{6.5813pt}{-6.5813pt}{3.6348pt}{-6.5813pt}{0.0pt}\pgfsys@curveto{-6.5813pt}{-3.6348pt}{-3.6348pt}{-6.5813pt}{0.0pt}{-6.5813pt}\pgfsys@curveto{3.6348pt}{-6.5813pt}{6.5813pt}{-3.6348pt}{6.5813pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-4.17778pt}{-3.31166pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\hat{\epsilon}_{1}^{-}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{24.47055pt}{0.0pt}\pgfsys@curveto{24.47055pt}{2.51497pt}{22.43181pt}{4.55371pt}{19.91684pt}{4.55371pt}\pgfsys@curveto{17.40187pt}{4.55371pt}{15.36313pt}{2.51497pt}{15.36313pt}{0.0pt}\pgfsys@curveto{15.36313pt}{-2.51497pt}{17.40187pt}{-4.55371pt}{19.91684pt}{-4.55371pt}\pgfsys@curveto{22.43181pt}{-4.55371pt}{24.47055pt}{-2.51497pt}{24.47055pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{19.91684pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{17.13905pt}{-3.61111pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\hat{V}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{46.58832pt}{0.0pt}\pgfsys@curveto{46.58832pt}{3.73053pt}{43.56421pt}{6.75464pt}{39.83368pt}{6.75464pt}\pgfsys@curveto{36.10315pt}{6.75464pt}{33.07904pt}{3.73053pt}{33.07904pt}{0.0pt}\pgfsys@curveto{33.07904pt}{-3.73053pt}{36.10315pt}{-6.75464pt}{39.83368pt}{-6.75464pt}\pgfsys@curveto{43.56421pt}{-6.75464pt}{46.58832pt}{-3.73053pt}{46.58832pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{39.83368pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{35.6559pt}{-3.52556pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\hat{\epsilon}_{2}^{+}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{{}} {}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{19.91684pt}{0.0pt}\pgfsys@lineto{19.91684pt}{19.91684pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{24.47055pt}{0.0pt}\pgfsys@curveto{24.47055pt}{2.51497pt}{22.43181pt}{4.55371pt}{19.91684pt}{4.55371pt}\pgfsys@curveto{17.40187pt}{4.55371pt}{15.36313pt}{2.51497pt}{15.36313pt}{0.0pt}\pgfsys@curveto{15.36313pt}{-2.51497pt}{17.40187pt}{-4.55371pt}{19.91684pt}{-4.55371pt}\pgfsys@curveto{22.43181pt}{-4.55371pt}{24.47055pt}{-2.51497pt}{24.47055pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{19.91684pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{17.13905pt}{-3.61111pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\hat{V}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{24.24106pt}{19.91684pt}\pgfsys@curveto{24.24106pt}{22.30507pt}{22.30507pt}{24.24106pt}{19.91684pt}{24.24106pt}\pgfsys@curveto{17.52861pt}{24.24106pt}{15.59262pt}{22.30507pt}{15.59262pt}{19.91684pt}\pgfsys@curveto{15.59262pt}{17.52861pt}{17.52861pt}{15.59262pt}{19.91684pt}{15.59262pt}\pgfsys@curveto{22.30507pt}{15.59262pt}{24.24106pt}{17.52861pt}{24.24106pt}{19.91684pt}\pgfsys@closepath\pgfsys@moveto{19.91684pt}{19.91684pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.9041pt}{18.73628pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\mu$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\vspace{-0.2cm}}=-\parbox[b]{51.21504pt}{ \leavevmode\hbox to48.86pt{\vbox to30.18pt{\pgfpicture\makeatletter\hbox{\hskip 5.41196pt\lower-5.54013pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{{}}{}{{}} {}{}{{}} {}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{19.91684pt}{0.0pt}\pgfsys@lineto{39.83368pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{5.01196pt}{0.0pt}\pgfsys@curveto{5.01196pt}{2.76805pt}{2.76805pt}{5.01196pt}{0.0pt}{5.01196pt}\pgfsys@curveto{-2.76805pt}{5.01196pt}{-5.01196pt}{2.76805pt}{-5.01196pt}{0.0pt}\pgfsys@curveto{-5.01196pt}{-2.76805pt}{-2.76805pt}{-5.01196pt}{0.0pt}{-5.01196pt}\pgfsys@curveto{2.76805pt}{-5.01196pt}{5.01196pt}{-2.76805pt}{5.01196pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.91562pt}{-1.18056pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$p_{1}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{25.05698pt}{0.0pt}\pgfsys@curveto{25.05698pt}{2.83885pt}{22.75569pt}{5.14014pt}{19.91684pt}{5.14014pt}\pgfsys@curveto{17.07799pt}{5.14014pt}{14.7767pt}{2.83885pt}{14.7767pt}{0.0pt}\pgfsys@curveto{14.7767pt}{-2.83885pt}{17.07799pt}{-5.14014pt}{19.91684pt}{-5.14014pt}\pgfsys@curveto{22.75569pt}{-5.14014pt}{25.05698pt}{-2.83885pt}{25.05698pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{19.91684pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.08177pt}{-3.41666pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$R$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{43.04315pt}{0.0pt}\pgfsys@curveto{43.04315pt}{1.77255pt}{41.60623pt}{3.20947pt}{39.83368pt}{3.20947pt}\pgfsys@curveto{38.06113pt}{3.20947pt}{36.6242pt}{1.77255pt}{36.6242pt}{0.0pt}\pgfsys@curveto{36.6242pt}{-1.77255pt}{38.06113pt}{-3.20947pt}{39.83368pt}{-3.20947pt}\pgfsys@curveto{41.60623pt}{-3.20947pt}{43.04315pt}{-1.77255pt}{43.04315pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{39.83368pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{37.439pt}{-2.15277pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$r$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{{}} {}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{19.91684pt}{0.0pt}\pgfsys@lineto{19.91684pt}{19.91684pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{25.05698pt}{0.0pt}\pgfsys@curveto{25.05698pt}{2.83885pt}{22.75569pt}{5.14014pt}{19.91684pt}{5.14014pt}\pgfsys@curveto{17.07799pt}{5.14014pt}{14.7767pt}{2.83885pt}{14.7767pt}{0.0pt}\pgfsys@curveto{14.7767pt}{-2.83885pt}{17.07799pt}{-5.14014pt}{19.91684pt}{-5.14014pt}\pgfsys@curveto{22.75569pt}{-5.14014pt}{25.05698pt}{-2.83885pt}{25.05698pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{19.91684pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.08177pt}{-3.41666pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$R$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{24.24106pt}{19.91684pt}\pgfsys@curveto{24.24106pt}{22.30507pt}{22.30507pt}{24.24106pt}{19.91684pt}{24.24106pt}\pgfsys@curveto{17.52861pt}{24.24106pt}{15.59262pt}{22.30507pt}{15.59262pt}{19.91684pt}\pgfsys@curveto{15.59262pt}{17.52861pt}{17.52861pt}{15.59262pt}{19.91684pt}{15.59262pt}\pgfsys@curveto{22.30507pt}{15.59262pt}{24.24106pt}{17.52861pt}{24.24106pt}{19.91684pt}\pgfsys@closepath\pgfsys@moveto{19.91684pt}{19.91684pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.9041pt}{18.73628pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\mu$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\vspace{-0.15cm}}+\mathcal{O}\left(\frac{1}{z}\right)\rightarrow\mathcal{O}\left(\frac{1}{z}\right), (82)
N,μ3\displaystyle N^{-,-}_{\mu_{3}} =ϵ^1V^ϵ^2V^μ\displaystyle=\parbox[b]{59.75095pt}{ \leavevmode\hbox to53.8pt{\vbox to31.62pt{\pgfpicture\makeatletter\hbox{\hskip 6.9813pt\lower-6.9813pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{{}}{}{{}} {}{}{{}} {}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{19.91684pt}{0.0pt}\pgfsys@lineto{39.83368pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{6.5813pt}{0.0pt}\pgfsys@curveto{6.5813pt}{3.6348pt}{3.6348pt}{6.5813pt}{0.0pt}{6.5813pt}\pgfsys@curveto{-3.6348pt}{6.5813pt}{-6.5813pt}{3.6348pt}{-6.5813pt}{0.0pt}\pgfsys@curveto{-6.5813pt}{-3.6348pt}{-3.6348pt}{-6.5813pt}{0.0pt}{-6.5813pt}\pgfsys@curveto{3.6348pt}{-6.5813pt}{6.5813pt}{-3.6348pt}{6.5813pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-4.17778pt}{-3.31166pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\hat{\epsilon}_{1}^{-}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{24.47055pt}{0.0pt}\pgfsys@curveto{24.47055pt}{2.51497pt}{22.43181pt}{4.55371pt}{19.91684pt}{4.55371pt}\pgfsys@curveto{17.40187pt}{4.55371pt}{15.36313pt}{2.51497pt}{15.36313pt}{0.0pt}\pgfsys@curveto{15.36313pt}{-2.51497pt}{17.40187pt}{-4.55371pt}{19.91684pt}{-4.55371pt}\pgfsys@curveto{22.43181pt}{-4.55371pt}{24.47055pt}{-2.51497pt}{24.47055pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{19.91684pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{17.13905pt}{-3.61111pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\hat{V}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{46.41498pt}{0.0pt}\pgfsys@curveto{46.41498pt}{3.6348pt}{43.46848pt}{6.5813pt}{39.83368pt}{6.5813pt}\pgfsys@curveto{36.19888pt}{6.5813pt}{33.25238pt}{3.6348pt}{33.25238pt}{0.0pt}\pgfsys@curveto{33.25238pt}{-3.6348pt}{36.19888pt}{-6.5813pt}{39.83368pt}{-6.5813pt}\pgfsys@curveto{43.46848pt}{-6.5813pt}{46.41498pt}{-3.6348pt}{46.41498pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{39.83368pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{35.6559pt}{-3.31166pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\hat{\epsilon}_{2}^{-}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{{}} {}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{19.91684pt}{0.0pt}\pgfsys@lineto{19.91684pt}{19.91684pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{24.47055pt}{0.0pt}\pgfsys@curveto{24.47055pt}{2.51497pt}{22.43181pt}{4.55371pt}{19.91684pt}{4.55371pt}\pgfsys@curveto{17.40187pt}{4.55371pt}{15.36313pt}{2.51497pt}{15.36313pt}{0.0pt}\pgfsys@curveto{15.36313pt}{-2.51497pt}{17.40187pt}{-4.55371pt}{19.91684pt}{-4.55371pt}\pgfsys@curveto{22.43181pt}{-4.55371pt}{24.47055pt}{-2.51497pt}{24.47055pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{19.91684pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{17.13905pt}{-3.61111pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\hat{V}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{24.24106pt}{19.91684pt}\pgfsys@curveto{24.24106pt}{22.30507pt}{22.30507pt}{24.24106pt}{19.91684pt}{24.24106pt}\pgfsys@curveto{17.52861pt}{24.24106pt}{15.59262pt}{22.30507pt}{15.59262pt}{19.91684pt}\pgfsys@curveto{15.59262pt}{17.52861pt}{17.52861pt}{15.59262pt}{19.91684pt}{15.59262pt}\pgfsys@curveto{22.30507pt}{15.59262pt}{24.24106pt}{17.52861pt}{24.24106pt}{19.91684pt}\pgfsys@closepath\pgfsys@moveto{19.91684pt}{19.91684pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.9041pt}{18.73628pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\mu$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\vspace{-0.2cm}}
=zCp1Rp1Rμ ( p1RrRμ C p1Vp1Vμ ) +𝒪(1z)\displaystyle=zC\parbox[b]{54.06006pt}{ \leavevmode\hbox to50.66pt{\vbox to30.18pt{\pgfpicture\makeatletter\hbox{\hskip 5.41196pt\lower-5.54013pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{{}}{}{{}} {}{}{{}} {}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{19.91684pt}{0.0pt}\pgfsys@lineto{39.83368pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{5.01196pt}{0.0pt}\pgfsys@curveto{5.01196pt}{2.76805pt}{2.76805pt}{5.01196pt}{0.0pt}{5.01196pt}\pgfsys@curveto{-2.76805pt}{5.01196pt}{-5.01196pt}{2.76805pt}{-5.01196pt}{0.0pt}\pgfsys@curveto{-5.01196pt}{-2.76805pt}{-2.76805pt}{-5.01196pt}{0.0pt}{-5.01196pt}\pgfsys@curveto{2.76805pt}{-5.01196pt}{5.01196pt}{-2.76805pt}{5.01196pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.91562pt}{-1.18056pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$p_{1}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{25.05698pt}{0.0pt}\pgfsys@curveto{25.05698pt}{2.83885pt}{22.75569pt}{5.14014pt}{19.91684pt}{5.14014pt}\pgfsys@curveto{17.07799pt}{5.14014pt}{14.7767pt}{2.83885pt}{14.7767pt}{0.0pt}\pgfsys@curveto{14.7767pt}{-2.83885pt}{17.07799pt}{-5.14014pt}{19.91684pt}{-5.14014pt}\pgfsys@curveto{22.75569pt}{-5.14014pt}{25.05698pt}{-2.83885pt}{25.05698pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{19.91684pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.08177pt}{-3.41666pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$R$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{44.84564pt}{0.0pt}\pgfsys@curveto{44.84564pt}{2.76805pt}{42.60173pt}{5.01196pt}{39.83368pt}{5.01196pt}\pgfsys@curveto{37.06563pt}{5.01196pt}{34.82172pt}{2.76805pt}{34.82172pt}{0.0pt}\pgfsys@curveto{34.82172pt}{-2.76805pt}{37.06563pt}{-5.01196pt}{39.83368pt}{-5.01196pt}\pgfsys@curveto{42.60173pt}{-5.01196pt}{44.84564pt}{-2.76805pt}{44.84564pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{39.83368pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{35.91806pt}{-1.18056pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$p_{1}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{{}} {}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{19.91684pt}{0.0pt}\pgfsys@lineto{19.91684pt}{19.91684pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{25.05698pt}{0.0pt}\pgfsys@curveto{25.05698pt}{2.83885pt}{22.75569pt}{5.14014pt}{19.91684pt}{5.14014pt}\pgfsys@curveto{17.07799pt}{5.14014pt}{14.7767pt}{2.83885pt}{14.7767pt}{0.0pt}\pgfsys@curveto{14.7767pt}{-2.83885pt}{17.07799pt}{-5.14014pt}{19.91684pt}{-5.14014pt}\pgfsys@curveto{22.75569pt}{-5.14014pt}{25.05698pt}{-2.83885pt}{25.05698pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{19.91684pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.08177pt}{-3.41666pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$R$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{24.24106pt}{19.91684pt}\pgfsys@curveto{24.24106pt}{22.30507pt}{22.30507pt}{24.24106pt}{19.91684pt}{24.24106pt}\pgfsys@curveto{17.52861pt}{24.24106pt}{15.59262pt}{22.30507pt}{15.59262pt}{19.91684pt}\pgfsys@curveto{15.59262pt}{17.52861pt}{17.52861pt}{15.59262pt}{19.91684pt}{15.59262pt}\pgfsys@curveto{22.30507pt}{15.59262pt}{24.24106pt}{17.52861pt}{24.24106pt}{19.91684pt}\pgfsys@closepath\pgfsys@moveto{19.91684pt}{19.91684pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.9041pt}{18.73628pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\mu$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\vspace{-0.15cm}}-\parbox[b]{8.5359pt}{\Bigg{(}\vspace{-0.2cm}}\parbox[b]{54.06006pt}{ \leavevmode\hbox to50.36pt{\vbox to30.18pt{\pgfpicture\makeatletter\hbox{\hskip 5.41196pt\lower-5.54013pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{{}}{}{{}} {}{}{{}} {}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{19.91684pt}{0.0pt}\pgfsys@lineto{39.83368pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{5.01196pt}{0.0pt}\pgfsys@curveto{5.01196pt}{2.76805pt}{2.76805pt}{5.01196pt}{0.0pt}{5.01196pt}\pgfsys@curveto{-2.76805pt}{5.01196pt}{-5.01196pt}{2.76805pt}{-5.01196pt}{0.0pt}\pgfsys@curveto{-5.01196pt}{-2.76805pt}{-2.76805pt}{-5.01196pt}{0.0pt}{-5.01196pt}\pgfsys@curveto{2.76805pt}{-5.01196pt}{5.01196pt}{-2.76805pt}{5.01196pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.91562pt}{-1.18056pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$p_{1}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{25.05698pt}{0.0pt}\pgfsys@curveto{25.05698pt}{2.83885pt}{22.75569pt}{5.14014pt}{19.91684pt}{5.14014pt}\pgfsys@curveto{17.07799pt}{5.14014pt}{14.7767pt}{2.83885pt}{14.7767pt}{0.0pt}\pgfsys@curveto{14.7767pt}{-2.83885pt}{17.07799pt}{-5.14014pt}{19.91684pt}{-5.14014pt}\pgfsys@curveto{22.75569pt}{-5.14014pt}{25.05698pt}{-2.83885pt}{25.05698pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{19.91684pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.08177pt}{-3.41666pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$R$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{44.54926pt}{0.0pt}\pgfsys@curveto{44.54926pt}{2.60437pt}{42.43805pt}{4.71558pt}{39.83368pt}{4.71558pt}\pgfsys@curveto{37.22931pt}{4.71558pt}{35.1181pt}{2.60437pt}{35.1181pt}{0.0pt}\pgfsys@curveto{35.1181pt}{-2.60437pt}{37.22931pt}{-4.71558pt}{39.83368pt}{-4.71558pt}\pgfsys@curveto{42.43805pt}{-4.71558pt}{44.54926pt}{-2.60437pt}{44.54926pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{39.83368pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{36.039pt}{-2.80415pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$r^{*}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{{}} {}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{19.91684pt}{0.0pt}\pgfsys@lineto{19.91684pt}{19.91684pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{25.05698pt}{0.0pt}\pgfsys@curveto{25.05698pt}{2.83885pt}{22.75569pt}{5.14014pt}{19.91684pt}{5.14014pt}\pgfsys@curveto{17.07799pt}{5.14014pt}{14.7767pt}{2.83885pt}{14.7767pt}{0.0pt}\pgfsys@curveto{14.7767pt}{-2.83885pt}{17.07799pt}{-5.14014pt}{19.91684pt}{-5.14014pt}\pgfsys@curveto{22.75569pt}{-5.14014pt}{25.05698pt}{-2.83885pt}{25.05698pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{19.91684pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.08177pt}{-3.41666pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$R$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{24.24106pt}{19.91684pt}\pgfsys@curveto{24.24106pt}{22.30507pt}{22.30507pt}{24.24106pt}{19.91684pt}{24.24106pt}\pgfsys@curveto{17.52861pt}{24.24106pt}{15.59262pt}{22.30507pt}{15.59262pt}{19.91684pt}\pgfsys@curveto{15.59262pt}{17.52861pt}{17.52861pt}{15.59262pt}{19.91684pt}{15.59262pt}\pgfsys@curveto{22.30507pt}{15.59262pt}{24.24106pt}{17.52861pt}{24.24106pt}{19.91684pt}\pgfsys@closepath\pgfsys@moveto{19.91684pt}{19.91684pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.9041pt}{18.73628pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\mu$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\vspace{-0.15cm}}-C\parbox[b]{54.06006pt}{ \leavevmode\hbox to50.66pt{\vbox to30.33pt{\pgfpicture\makeatletter\hbox{\hskip 5.41196pt\lower-5.68759pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{{}}{}{{}} {}{}{{}} {}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{19.91684pt}{0.0pt}\pgfsys@lineto{39.83368pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{5.01196pt}{0.0pt}\pgfsys@curveto{5.01196pt}{2.76805pt}{2.76805pt}{5.01196pt}{0.0pt}{5.01196pt}\pgfsys@curveto{-2.76805pt}{5.01196pt}{-5.01196pt}{2.76805pt}{-5.01196pt}{0.0pt}\pgfsys@curveto{-5.01196pt}{-2.76805pt}{-2.76805pt}{-5.01196pt}{0.0pt}{-5.01196pt}\pgfsys@curveto{2.76805pt}{-5.01196pt}{5.01196pt}{-2.76805pt}{5.01196pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.91562pt}{-1.18056pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$p_{1}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{25.20444pt}{0.0pt}\pgfsys@curveto{25.20444pt}{2.92029pt}{22.83713pt}{5.2876pt}{19.91684pt}{5.2876pt}\pgfsys@curveto{16.99655pt}{5.2876pt}{14.62924pt}{2.92029pt}{14.62924pt}{0.0pt}\pgfsys@curveto{14.62924pt}{-2.92029pt}{16.99655pt}{-5.2876pt}{19.91684pt}{-5.2876pt}\pgfsys@curveto{22.83713pt}{-5.2876pt}{25.20444pt}{-2.92029pt}{25.20444pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{19.91684pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{15.88907pt}{-3.41666pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$V$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{44.84564pt}{0.0pt}\pgfsys@curveto{44.84564pt}{2.76805pt}{42.60173pt}{5.01196pt}{39.83368pt}{5.01196pt}\pgfsys@curveto{37.06563pt}{5.01196pt}{34.82172pt}{2.76805pt}{34.82172pt}{0.0pt}\pgfsys@curveto{34.82172pt}{-2.76805pt}{37.06563pt}{-5.01196pt}{39.83368pt}{-5.01196pt}\pgfsys@curveto{42.60173pt}{-5.01196pt}{44.84564pt}{-2.76805pt}{44.84564pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{39.83368pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{35.91806pt}{-1.18056pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$p_{1}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{{}} {}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{19.91684pt}{0.0pt}\pgfsys@lineto{19.91684pt}{19.91684pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{25.20444pt}{0.0pt}\pgfsys@curveto{25.20444pt}{2.92029pt}{22.83713pt}{5.2876pt}{19.91684pt}{5.2876pt}\pgfsys@curveto{16.99655pt}{5.2876pt}{14.62924pt}{2.92029pt}{14.62924pt}{0.0pt}\pgfsys@curveto{14.62924pt}{-2.92029pt}{16.99655pt}{-5.2876pt}{19.91684pt}{-5.2876pt}\pgfsys@curveto{22.83713pt}{-5.2876pt}{25.20444pt}{-2.92029pt}{25.20444pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{19.91684pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{15.88907pt}{-3.41666pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$V$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{24.24106pt}{19.91684pt}\pgfsys@curveto{24.24106pt}{22.30507pt}{22.30507pt}{24.24106pt}{19.91684pt}{24.24106pt}\pgfsys@curveto{17.52861pt}{24.24106pt}{15.59262pt}{22.30507pt}{15.59262pt}{19.91684pt}\pgfsys@curveto{15.59262pt}{17.52861pt}{17.52861pt}{15.59262pt}{19.91684pt}{15.59262pt}\pgfsys@curveto{22.30507pt}{15.59262pt}{24.24106pt}{17.52861pt}{24.24106pt}{19.91684pt}\pgfsys@closepath\pgfsys@moveto{19.91684pt}{19.91684pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.9041pt}{18.73628pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\mu$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\vspace{-0.15cm}}\parbox[b]{8.5359pt}{\Bigg{)}\vspace{-0.2cm}}+\mathcal{O}\left(\frac{1}{z}\right)
=[(rr)+C(p1p2)]p1μ𝒪(1z)𝒪(1z),\displaystyle=[(r^{*}r)+C(p_{1}p_{2})]p_{1}^{\mu}-\mathcal{O}\left(\frac{1}{z}\right)\rightarrow\mathcal{O}\left(\frac{1}{z}\right),
N,0μ3\displaystyle N^{-,0}_{\mu_{3}} =ϵ^1V^ϵ^20V^μ\displaystyle=\parbox[b]{59.75095pt}{ \leavevmode\hbox to54.04pt{\vbox to31.87pt{\pgfpicture\makeatletter\hbox{\hskip 6.9813pt\lower-7.22934pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{{}}{}{{}} {}{}{{}} {}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{19.91684pt}{0.0pt}\pgfsys@lineto{39.83368pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{6.5813pt}{0.0pt}\pgfsys@curveto{6.5813pt}{3.6348pt}{3.6348pt}{6.5813pt}{0.0pt}{6.5813pt}\pgfsys@curveto{-3.6348pt}{6.5813pt}{-6.5813pt}{3.6348pt}{-6.5813pt}{0.0pt}\pgfsys@curveto{-6.5813pt}{-3.6348pt}{-3.6348pt}{-6.5813pt}{0.0pt}{-6.5813pt}\pgfsys@curveto{3.6348pt}{-6.5813pt}{6.5813pt}{-3.6348pt}{6.5813pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-4.17778pt}{-3.31166pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\hat{\epsilon}_{1}^{-}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{24.47055pt}{0.0pt}\pgfsys@curveto{24.47055pt}{2.51497pt}{22.43181pt}{4.55371pt}{19.91684pt}{4.55371pt}\pgfsys@curveto{17.40187pt}{4.55371pt}{15.36313pt}{2.51497pt}{15.36313pt}{0.0pt}\pgfsys@curveto{15.36313pt}{-2.51497pt}{17.40187pt}{-4.55371pt}{19.91684pt}{-4.55371pt}\pgfsys@curveto{22.43181pt}{-4.55371pt}{24.47055pt}{-2.51497pt}{24.47055pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{19.91684pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{17.13905pt}{-3.61111pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\hat{V}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{46.66302pt}{0.0pt}\pgfsys@curveto{46.66302pt}{3.77179pt}{43.60547pt}{6.82935pt}{39.83368pt}{6.82935pt}\pgfsys@curveto{36.06189pt}{6.82935pt}{33.00433pt}{3.77179pt}{33.00433pt}{0.0pt}\pgfsys@curveto{33.00433pt}{-3.77179pt}{36.06189pt}{-6.82935pt}{39.83368pt}{-6.82935pt}\pgfsys@curveto{43.60547pt}{-6.82935pt}{46.66302pt}{-3.77179pt}{46.66302pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{39.83368pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{35.6559pt}{-3.61111pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\hat{\epsilon}_{2}^{0}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{{}} {}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{19.91684pt}{0.0pt}\pgfsys@lineto{19.91684pt}{19.91684pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{24.47055pt}{0.0pt}\pgfsys@curveto{24.47055pt}{2.51497pt}{22.43181pt}{4.55371pt}{19.91684pt}{4.55371pt}\pgfsys@curveto{17.40187pt}{4.55371pt}{15.36313pt}{2.51497pt}{15.36313pt}{0.0pt}\pgfsys@curveto{15.36313pt}{-2.51497pt}{17.40187pt}{-4.55371pt}{19.91684pt}{-4.55371pt}\pgfsys@curveto{22.43181pt}{-4.55371pt}{24.47055pt}{-2.51497pt}{24.47055pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{19.91684pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{17.13905pt}{-3.61111pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\hat{V}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{24.24106pt}{19.91684pt}\pgfsys@curveto{24.24106pt}{22.30507pt}{22.30507pt}{24.24106pt}{19.91684pt}{24.24106pt}\pgfsys@curveto{17.52861pt}{24.24106pt}{15.59262pt}{22.30507pt}{15.59262pt}{19.91684pt}\pgfsys@curveto{15.59262pt}{17.52861pt}{17.52861pt}{15.59262pt}{19.91684pt}{15.59262pt}\pgfsys@curveto{22.30507pt}{15.59262pt}{24.24106pt}{17.52861pt}{24.24106pt}{19.91684pt}\pgfsys@closepath\pgfsys@moveto{19.91684pt}{19.91684pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.9041pt}{18.73628pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\mu$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\vspace{-0.2cm}}
=zp1RrRμ ( p1R¯p2Rμ p1VrVμ ) +𝒪(1z)\displaystyle=z\parbox[b]{54.06006pt}{ \leavevmode\hbox to48.86pt{\vbox to30.18pt{\pgfpicture\makeatletter\hbox{\hskip 5.41196pt\lower-5.54013pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{{}}{}{{}} {}{}{{}} {}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{19.91684pt}{0.0pt}\pgfsys@lineto{39.83368pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{5.01196pt}{0.0pt}\pgfsys@curveto{5.01196pt}{2.76805pt}{2.76805pt}{5.01196pt}{0.0pt}{5.01196pt}\pgfsys@curveto{-2.76805pt}{5.01196pt}{-5.01196pt}{2.76805pt}{-5.01196pt}{0.0pt}\pgfsys@curveto{-5.01196pt}{-2.76805pt}{-2.76805pt}{-5.01196pt}{0.0pt}{-5.01196pt}\pgfsys@curveto{2.76805pt}{-5.01196pt}{5.01196pt}{-2.76805pt}{5.01196pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.91562pt}{-1.18056pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$p_{1}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{25.05698pt}{0.0pt}\pgfsys@curveto{25.05698pt}{2.83885pt}{22.75569pt}{5.14014pt}{19.91684pt}{5.14014pt}\pgfsys@curveto{17.07799pt}{5.14014pt}{14.7767pt}{2.83885pt}{14.7767pt}{0.0pt}\pgfsys@curveto{14.7767pt}{-2.83885pt}{17.07799pt}{-5.14014pt}{19.91684pt}{-5.14014pt}\pgfsys@curveto{22.75569pt}{-5.14014pt}{25.05698pt}{-2.83885pt}{25.05698pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{19.91684pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.08177pt}{-3.41666pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$R$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{43.04315pt}{0.0pt}\pgfsys@curveto{43.04315pt}{1.77255pt}{41.60623pt}{3.20947pt}{39.83368pt}{3.20947pt}\pgfsys@curveto{38.06113pt}{3.20947pt}{36.6242pt}{1.77255pt}{36.6242pt}{0.0pt}\pgfsys@curveto{36.6242pt}{-1.77255pt}{38.06113pt}{-3.20947pt}{39.83368pt}{-3.20947pt}\pgfsys@curveto{41.60623pt}{-3.20947pt}{43.04315pt}{-1.77255pt}{43.04315pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{39.83368pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{37.439pt}{-2.15277pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$r$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{{}} {}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{19.91684pt}{0.0pt}\pgfsys@lineto{19.91684pt}{19.91684pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{25.05698pt}{0.0pt}\pgfsys@curveto{25.05698pt}{2.83885pt}{22.75569pt}{5.14014pt}{19.91684pt}{5.14014pt}\pgfsys@curveto{17.07799pt}{5.14014pt}{14.7767pt}{2.83885pt}{14.7767pt}{0.0pt}\pgfsys@curveto{14.7767pt}{-2.83885pt}{17.07799pt}{-5.14014pt}{19.91684pt}{-5.14014pt}\pgfsys@curveto{22.75569pt}{-5.14014pt}{25.05698pt}{-2.83885pt}{25.05698pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{19.91684pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.08177pt}{-3.41666pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$R$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{24.24106pt}{19.91684pt}\pgfsys@curveto{24.24106pt}{22.30507pt}{22.30507pt}{24.24106pt}{19.91684pt}{24.24106pt}\pgfsys@curveto{17.52861pt}{24.24106pt}{15.59262pt}{22.30507pt}{15.59262pt}{19.91684pt}\pgfsys@curveto{15.59262pt}{17.52861pt}{17.52861pt}{15.59262pt}{19.91684pt}{15.59262pt}\pgfsys@curveto{22.30507pt}{15.59262pt}{24.24106pt}{17.52861pt}{24.24106pt}{19.91684pt}\pgfsys@closepath\pgfsys@moveto{19.91684pt}{19.91684pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.9041pt}{18.73628pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\mu$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\vspace{-0.15cm}}-\parbox[b]{8.5359pt}{\Bigg{(}\vspace{-0.2cm}}\parbox[b]{54.06006pt}{ \leavevmode\hbox to51.04pt{\vbox to30.44pt{\pgfpicture\makeatletter\hbox{\hskip 5.41196pt\lower-5.79672pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{{}}{}{{}} {}{}{{}} {}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{19.91684pt}{0.0pt}\pgfsys@lineto{39.83368pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{5.01196pt}{0.0pt}\pgfsys@curveto{5.01196pt}{2.76805pt}{2.76805pt}{5.01196pt}{0.0pt}{5.01196pt}\pgfsys@curveto{-2.76805pt}{5.01196pt}{-5.01196pt}{2.76805pt}{-5.01196pt}{0.0pt}\pgfsys@curveto{-5.01196pt}{-2.76805pt}{-2.76805pt}{-5.01196pt}{0.0pt}{-5.01196pt}\pgfsys@curveto{2.76805pt}{-5.01196pt}{5.01196pt}{-2.76805pt}{5.01196pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.91562pt}{-1.18056pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$p_{1}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{25.05698pt}{0.0pt}\pgfsys@curveto{25.05698pt}{2.83885pt}{22.75569pt}{5.14014pt}{19.91684pt}{5.14014pt}\pgfsys@curveto{17.07799pt}{5.14014pt}{14.7767pt}{2.83885pt}{14.7767pt}{0.0pt}\pgfsys@curveto{14.7767pt}{-2.83885pt}{17.07799pt}{-5.14014pt}{19.91684pt}{-5.14014pt}\pgfsys@curveto{22.75569pt}{-5.14014pt}{25.05698pt}{-2.83885pt}{25.05698pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{19.91684pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.08177pt}{-3.41666pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$R$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{45.23041pt}{0.0pt}\pgfsys@curveto{45.23041pt}{2.98056pt}{42.81424pt}{5.39673pt}{39.83368pt}{5.39673pt}\pgfsys@curveto{36.85312pt}{5.39673pt}{34.43695pt}{2.98056pt}{34.43695pt}{0.0pt}\pgfsys@curveto{34.43695pt}{-2.98056pt}{36.85312pt}{-5.39673pt}{39.83368pt}{-5.39673pt}\pgfsys@curveto{42.81424pt}{-5.39673pt}{45.23041pt}{-2.98056pt}{45.23041pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{39.83368pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{35.93367pt}{-1.93666pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\bar{p}_{2}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{{}} {}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{19.91684pt}{0.0pt}\pgfsys@lineto{19.91684pt}{19.91684pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{25.05698pt}{0.0pt}\pgfsys@curveto{25.05698pt}{2.83885pt}{22.75569pt}{5.14014pt}{19.91684pt}{5.14014pt}\pgfsys@curveto{17.07799pt}{5.14014pt}{14.7767pt}{2.83885pt}{14.7767pt}{0.0pt}\pgfsys@curveto{14.7767pt}{-2.83885pt}{17.07799pt}{-5.14014pt}{19.91684pt}{-5.14014pt}\pgfsys@curveto{22.75569pt}{-5.14014pt}{25.05698pt}{-2.83885pt}{25.05698pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{19.91684pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.08177pt}{-3.41666pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$R$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{24.24106pt}{19.91684pt}\pgfsys@curveto{24.24106pt}{22.30507pt}{22.30507pt}{24.24106pt}{19.91684pt}{24.24106pt}\pgfsys@curveto{17.52861pt}{24.24106pt}{15.59262pt}{22.30507pt}{15.59262pt}{19.91684pt}\pgfsys@curveto{15.59262pt}{17.52861pt}{17.52861pt}{15.59262pt}{19.91684pt}{15.59262pt}\pgfsys@curveto{22.30507pt}{15.59262pt}{24.24106pt}{17.52861pt}{24.24106pt}{19.91684pt}\pgfsys@closepath\pgfsys@moveto{19.91684pt}{19.91684pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.9041pt}{18.73628pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\mu$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\vspace{-0.15cm}}-\parbox[b]{54.06006pt}{ \leavevmode\hbox to48.86pt{\vbox to30.33pt{\pgfpicture\makeatletter\hbox{\hskip 5.41196pt\lower-5.68759pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{{}}{}{{}} {}{}{{}} {}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{19.91684pt}{0.0pt}\pgfsys@lineto{39.83368pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{5.01196pt}{0.0pt}\pgfsys@curveto{5.01196pt}{2.76805pt}{2.76805pt}{5.01196pt}{0.0pt}{5.01196pt}\pgfsys@curveto{-2.76805pt}{5.01196pt}{-5.01196pt}{2.76805pt}{-5.01196pt}{0.0pt}\pgfsys@curveto{-5.01196pt}{-2.76805pt}{-2.76805pt}{-5.01196pt}{0.0pt}{-5.01196pt}\pgfsys@curveto{2.76805pt}{-5.01196pt}{5.01196pt}{-2.76805pt}{5.01196pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.91562pt}{-1.18056pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$p_{1}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{25.20444pt}{0.0pt}\pgfsys@curveto{25.20444pt}{2.92029pt}{22.83713pt}{5.2876pt}{19.91684pt}{5.2876pt}\pgfsys@curveto{16.99655pt}{5.2876pt}{14.62924pt}{2.92029pt}{14.62924pt}{0.0pt}\pgfsys@curveto{14.62924pt}{-2.92029pt}{16.99655pt}{-5.2876pt}{19.91684pt}{-5.2876pt}\pgfsys@curveto{22.83713pt}{-5.2876pt}{25.20444pt}{-2.92029pt}{25.20444pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{19.91684pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{15.88907pt}{-3.41666pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$V$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{43.04315pt}{0.0pt}\pgfsys@curveto{43.04315pt}{1.77255pt}{41.60623pt}{3.20947pt}{39.83368pt}{3.20947pt}\pgfsys@curveto{38.06113pt}{3.20947pt}{36.6242pt}{1.77255pt}{36.6242pt}{0.0pt}\pgfsys@curveto{36.6242pt}{-1.77255pt}{38.06113pt}{-3.20947pt}{39.83368pt}{-3.20947pt}\pgfsys@curveto{41.60623pt}{-3.20947pt}{43.04315pt}{-1.77255pt}{43.04315pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{39.83368pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{37.439pt}{-2.15277pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$r$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{{}} {}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{19.91684pt}{0.0pt}\pgfsys@lineto{19.91684pt}{19.91684pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{25.20444pt}{0.0pt}\pgfsys@curveto{25.20444pt}{2.92029pt}{22.83713pt}{5.2876pt}{19.91684pt}{5.2876pt}\pgfsys@curveto{16.99655pt}{5.2876pt}{14.62924pt}{2.92029pt}{14.62924pt}{0.0pt}\pgfsys@curveto{14.62924pt}{-2.92029pt}{16.99655pt}{-5.2876pt}{19.91684pt}{-5.2876pt}\pgfsys@curveto{22.83713pt}{-5.2876pt}{25.20444pt}{-2.92029pt}{25.20444pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{19.91684pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{15.88907pt}{-3.41666pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$V$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{24.24106pt}{19.91684pt}\pgfsys@curveto{24.24106pt}{22.30507pt}{22.30507pt}{24.24106pt}{19.91684pt}{24.24106pt}\pgfsys@curveto{17.52861pt}{24.24106pt}{15.59262pt}{22.30507pt}{15.59262pt}{19.91684pt}\pgfsys@curveto{15.59262pt}{17.52861pt}{17.52861pt}{15.59262pt}{19.91684pt}{15.59262pt}\pgfsys@curveto{22.30507pt}{15.59262pt}{24.24106pt}{17.52861pt}{24.24106pt}{19.91684pt}\pgfsys@closepath\pgfsys@moveto{19.91684pt}{19.91684pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.9041pt}{18.73628pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\mu$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\vspace{-0.15cm}}\parbox[b]{8.5359pt}{\Bigg{)}\vspace{-0.2cm}}+\mathcal{O}\left(\frac{1}{z}\right)
=2[(p1p¯2)(p1p2)]rμ+𝒪(1z)𝒪(1z).\displaystyle=-2[(p_{1}\bar{p}_{2})-(p_{1}p_{2})]r^{\mu}+\mathcal{O}\left(\frac{1}{z}\right)\rightarrow\mathcal{O}\left(\frac{1}{z}\right).

The leading diagrams are equal to zero. We used (rr)+C(p1p2)=0(r^{*}r)+C(p_{1}p_{2})=0 and (p1p¯2)=(p1p2)(p_{1}\bar{p}_{2})=(p_{1}p_{2}) to cancel the subleading diagrams in N,+μ3N^{-,+}_{\mu_{3}} and N,0μ3N^{-,0}_{\mu_{3}}. It shows that the first term in eq. (80) vanishes in the large-zz limit.

{fmfgraph*}

(150,50) \fmfbottomb1,b5\fmfvl=1,l.a=70,l.d=.06wb1 \fmfphotonb1,b2 \fmfdbl_wigglyb2,b3,b4,b5 \fmfvl=2,l.a=110,l.d=.05wb5 \fmffreeze\fmftopns6 \fmfdbl_wigglys2,b2 \fmfdbl_wigglys3,m1,b3 \fmfdbl_wigglys5,m2,b4 \fmfblob.15ws2,s3,s5 \fmffreeze\fmfphantomm1,m3,m4,m5,m2 \fmfvd.shape=circle,d.f=full,d.size=1.5thickm3,m4,m5

(a)
{fmfgraph*}

(150,50) \fmfbottomb1,b5\fmfvl=1,l.a=70,l.d=.06wb1 \fmfphotonb1,b2 \fmfdbl_wigglyb2,b3,b4,b5 \fmfvl=2,l.a=110,l.d=.05wb5 \fmffreeze\fmftopns6 \fmfdbl_wigglys2,m1,b2 \fmfdbl_wigglys3,m2,b3 \fmfdbl_wigglys4,m3,b3 \fmfdbl_wigglys5,m4,b4 \fmfblob.15ws2,s3,s4,s5 \fmffreeze\fmfphantomm1,ma1,ma2,ma3,m2 \fmfphantomm3,mb1,mb2,mb3,m4 \fmfvd.shape=circle,d.f=full,d.size=1.5thickma1,ma2,ma3 \fmfvd.shape=circle,d.f=full,d.size=1.5thickmb1,mb2,mb3

(b)
Figure 4: The diagrams that give the leading contributions in the large-zz limit. The blobs correspond to soft backgrounds.

As for the second term in eq. (80), the large-zz behavior is given by a Lorentz tensor Nσ(μ3μ4μi)N_{\sigma(\mu_{3}\mu_{4}\cdots\mu_{i})}. Since this term includes more than three external particles, 4-vertices should be considered. We use a tensor V4μνσρV_{4}^{\mu\nu\sigma\rho} to represent a 4-vertex. Since there are three ways to contract four polarization vectors, the diagrammatic expression of a 4-vertex should be

V4μνσρμVνVσVρ=cαgμρgνσ+cβgμσgνρ+cγgμνgσρ,\displaystyle V_{4}^{\mu\nu\sigma\rho}\equiv\parbox[b]{51.21504pt}{ \leavevmode\hbox to48.23pt{\vbox to27.2pt{\pgfpicture\makeatletter\hbox{\hskip 4.72421pt\lower-5.68759pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{{}}{}{{}} {}{}{{}} {}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{19.91684pt}{0.0pt}\pgfsys@lineto{39.83368pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{4.32422pt}{0.0pt}\pgfsys@curveto{4.32422pt}{2.38823pt}{2.38823pt}{4.32422pt}{0.0pt}{4.32422pt}\pgfsys@curveto{-2.38823pt}{4.32422pt}{-4.32422pt}{2.38823pt}{-4.32422pt}{0.0pt}\pgfsys@curveto{-4.32422pt}{-2.38823pt}{-2.38823pt}{-4.32422pt}{0.0pt}{-4.32422pt}\pgfsys@curveto{2.38823pt}{-4.32422pt}{4.32422pt}{-2.38823pt}{4.32422pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.01274pt}{-1.18056pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\mu$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{25.20444pt}{0.0pt}\pgfsys@curveto{25.20444pt}{2.92029pt}{22.83713pt}{5.2876pt}{19.91684pt}{5.2876pt}\pgfsys@curveto{16.99655pt}{5.2876pt}{14.62924pt}{2.92029pt}{14.62924pt}{0.0pt}\pgfsys@curveto{14.62924pt}{-2.92029pt}{16.99655pt}{-5.2876pt}{19.91684pt}{-5.2876pt}\pgfsys@curveto{22.83713pt}{-5.2876pt}{25.20444pt}{-2.92029pt}{25.20444pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{19.91684pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{15.88907pt}{-3.41666pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$V$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{43.1098pt}{0.0pt}\pgfsys@curveto{43.1098pt}{1.80937pt}{41.64305pt}{3.27612pt}{39.83368pt}{3.27612pt}\pgfsys@curveto{38.0243pt}{3.27612pt}{36.55756pt}{1.80937pt}{36.55756pt}{0.0pt}\pgfsys@curveto{36.55756pt}{-1.80937pt}{38.0243pt}{-3.27612pt}{39.83368pt}{-3.27612pt}\pgfsys@curveto{41.64305pt}{-3.27612pt}{43.1098pt}{-1.80937pt}{43.1098pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{39.83368pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{37.36377pt}{-2.15277pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\nu$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{{}} {}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{19.91684pt}{0.0pt}\pgfsys@lineto{9.95863pt}{17.07182pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{25.20444pt}{0.0pt}\pgfsys@curveto{25.20444pt}{2.92029pt}{22.83713pt}{5.2876pt}{19.91684pt}{5.2876pt}\pgfsys@curveto{16.99655pt}{5.2876pt}{14.62924pt}{2.92029pt}{14.62924pt}{0.0pt}\pgfsys@curveto{14.62924pt}{-2.92029pt}{16.99655pt}{-5.2876pt}{19.91684pt}{-5.2876pt}\pgfsys@curveto{22.83713pt}{-5.2876pt}{25.20444pt}{-2.92029pt}{25.20444pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{19.91684pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{15.88907pt}{-3.41666pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$V$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{13.52626pt}{17.07182pt}\pgfsys@curveto{13.52626pt}{19.04219pt}{11.929pt}{20.63945pt}{9.95863pt}{20.63945pt}\pgfsys@curveto{7.98827pt}{20.63945pt}{6.391pt}{19.04219pt}{6.391pt}{17.07182pt}\pgfsys@curveto{6.391pt}{15.10146pt}{7.98827pt}{13.5042pt}{9.95863pt}{13.5042pt}\pgfsys@curveto{11.929pt}{13.5042pt}{13.52626pt}{15.10146pt}{13.52626pt}{17.07182pt}\pgfsys@closepath\pgfsys@moveto{9.95863pt}{17.07182pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{7.10158pt}{14.91905pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\sigma$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{{}} {}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{19.91684pt}{0.0pt}\pgfsys@lineto{29.87547pt}{17.07182pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{25.20444pt}{0.0pt}\pgfsys@curveto{25.20444pt}{2.92029pt}{22.83713pt}{5.2876pt}{19.91684pt}{5.2876pt}\pgfsys@curveto{16.99655pt}{5.2876pt}{14.62924pt}{2.92029pt}{14.62924pt}{0.0pt}\pgfsys@curveto{14.62924pt}{-2.92029pt}{16.99655pt}{-5.2876pt}{19.91684pt}{-5.2876pt}\pgfsys@curveto{22.83713pt}{-5.2876pt}{25.20444pt}{-2.92029pt}{25.20444pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{19.91684pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{15.88907pt}{-3.41666pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$V$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{33.91576pt}{17.07182pt}\pgfsys@curveto{33.91576pt}{19.30324pt}{32.10689pt}{21.1121pt}{29.87547pt}{21.1121pt}\pgfsys@curveto{27.64406pt}{21.1121pt}{25.83519pt}{19.30324pt}{25.83519pt}{17.07182pt}\pgfsys@curveto{25.83519pt}{14.84041pt}{27.64406pt}{13.03154pt}{29.87547pt}{13.03154pt}\pgfsys@curveto{32.10689pt}{13.03154pt}{33.91576pt}{14.84041pt}{33.91576pt}{17.07182pt}\pgfsys@closepath\pgfsys@moveto{29.87547pt}{17.07182pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{27.2904pt}{15.89127pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\rho$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\vspace{-0.13cm}}=c_{\alpha}g^{\mu\rho}g^{\nu\sigma}+c_{\beta}g^{\mu\sigma}g^{\nu\rho}+c_{\gamma}g^{\mu\nu}g^{\sigma\rho}, (83)

where cαc_{\alpha}, cβc_{\beta} and cγc_{\gamma} are arbitrary coefficients. If we use one 𝒪(1)\mathcal{O}(1) 4-vertex instead of two 𝒪(z)\mathcal{O}(z) 3-vertices, one 𝒪(z1)\mathcal{O}(z^{-1}) propagator will decrease. Basically, the more 4-vertices diagrammatic expressions have, the lower order they are. The Lorentz tensor Nσ(μ3μ4μi)N_{\sigma(\mu_{3}\mu_{4}\cdots\mu_{i})} can be expanded as

Nσ(μ3μ4μi)=N(0)σ(μ3μ4μi)+k=3i1Dσ(k)N(1),σ(k)σ(μ3μi)+,\displaystyle N_{\sigma(\mu_{3}\mu_{4}\cdots\mu_{i})}=N^{(0)}_{\sigma(\mu_{3}\mu_{4}\cdots\mu_{i})}+\sum_{k=3}^{i-1}D_{\sigma(k)}N^{(1),\sigma(k)}_{\sigma(\mu_{3}\cdots\mu_{i})}+\cdots, (84)

where the superscript (n)(n) is the number of 4-vertices. Only the first two terms N0N_{0} and N1N_{1} (see figure 4) give the same contributions in A^nC\hat{A}_{n}^{C}. Their diagrammatic expressions are

N(0)μ3μ4μi=ϵ^1V^V^V^ϵ^2V^μ3V^μ4V^μi,\displaystyle N^{(0)}_{\mu_{3}\mu_{4}\cdots\mu_{i}}=\parbox[b]{113.81102pt}{ \leavevmode\hbox to112.68pt{\vbox to33.38pt{\pgfpicture\makeatletter\hbox{\hskip 6.54575pt\lower-7.65756pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{{}}{}{{}} {}{}{{}} {}{}{{}} {}{}{{}} {}{}{{}} {}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{19.91684pt}{0.0pt}\pgfsys@lineto{39.83368pt}{0.0pt}\pgfsys@lineto{59.75096pt}{0.0pt}\pgfsys@lineto{79.6678pt}{0.0pt}\pgfsys@lineto{99.58466pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{\hbox{\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{6.14575pt}{0.0pt}\pgfsys@curveto{6.14575pt}{3.39424pt}{3.39424pt}{6.14575pt}{0.0pt}{6.14575pt}\pgfsys@curveto{-3.39424pt}{6.14575pt}{-6.14575pt}{3.39424pt}{-6.14575pt}{0.0pt}\pgfsys@curveto{-6.14575pt}{-3.39424pt}{-3.39424pt}{-6.14575pt}{0.0pt}{-6.14575pt}\pgfsys@curveto{3.39424pt}{-6.14575pt}{6.14575pt}{-3.39424pt}{6.14575pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-4.17778pt}{-2.7089pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\hat{\epsilon}_{1}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{24.47055pt}{0.0pt}\pgfsys@curveto{24.47055pt}{2.51497pt}{22.43181pt}{4.55371pt}{19.91684pt}{4.55371pt}\pgfsys@curveto{17.40187pt}{4.55371pt}{15.36313pt}{2.51497pt}{15.36313pt}{0.0pt}\pgfsys@curveto{15.36313pt}{-2.51497pt}{17.40187pt}{-4.55371pt}{19.91684pt}{-4.55371pt}\pgfsys@curveto{22.43181pt}{-4.55371pt}{24.47055pt}{-2.51497pt}{24.47055pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{19.91684pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{17.13905pt}{-3.61111pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\hat{V}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{44.38739pt}{0.0pt}\pgfsys@curveto{44.38739pt}{2.51497pt}{42.34865pt}{4.55371pt}{39.83368pt}{4.55371pt}\pgfsys@curveto{37.31871pt}{4.55371pt}{35.27997pt}{2.51497pt}{35.27997pt}{0.0pt}\pgfsys@curveto{35.27997pt}{-2.51497pt}{37.31871pt}{-4.55371pt}{39.83368pt}{-4.55371pt}\pgfsys@curveto{42.34865pt}{-4.55371pt}{44.38739pt}{-2.51497pt}{44.38739pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{39.83368pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{37.0559pt}{-3.61111pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\hat{V}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{67.00853pt}{0.0pt}\pgfsys@curveto{67.00853pt}{4.00829pt}{63.75925pt}{7.25757pt}{59.75096pt}{7.25757pt}\pgfsys@curveto{55.74268pt}{7.25757pt}{52.4934pt}{4.00829pt}{52.4934pt}{0.0pt}\pgfsys@curveto{52.4934pt}{-4.00829pt}{55.74268pt}{-7.25757pt}{59.75096pt}{-7.25757pt}\pgfsys@curveto{63.75925pt}{-7.25757pt}{67.00853pt}{-4.00829pt}{67.00853pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{59.75096pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{56.00096pt}{-2.5pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\dots$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{84.22151pt}{0.0pt}\pgfsys@curveto{84.22151pt}{2.51497pt}{82.18277pt}{4.55371pt}{79.6678pt}{4.55371pt}\pgfsys@curveto{77.15283pt}{4.55371pt}{75.11409pt}{2.51497pt}{75.11409pt}{0.0pt}\pgfsys@curveto{75.11409pt}{-2.51497pt}{77.15283pt}{-4.55371pt}{79.6678pt}{-4.55371pt}\pgfsys@curveto{82.18277pt}{-4.55371pt}{84.22151pt}{-2.51497pt}{84.22151pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{79.6678pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{76.89001pt}{-3.61111pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\hat{V}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{105.73041pt}{0.0pt}\pgfsys@curveto{105.73041pt}{3.39424pt}{102.9789pt}{6.14575pt}{99.58466pt}{6.14575pt}\pgfsys@curveto{96.19041pt}{6.14575pt}{93.4389pt}{3.39424pt}{93.4389pt}{0.0pt}\pgfsys@curveto{93.4389pt}{-3.39424pt}{96.19041pt}{-6.14575pt}{99.58466pt}{-6.14575pt}\pgfsys@curveto{102.9789pt}{-6.14575pt}{105.73041pt}{-3.39424pt}{105.73041pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{99.58466pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{95.40688pt}{-2.7089pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\hat{\epsilon}_{2}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{{}} {}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{19.91684pt}{0.0pt}\pgfsys@lineto{19.91684pt}{19.91684pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{24.47055pt}{0.0pt}\pgfsys@curveto{24.47055pt}{2.51497pt}{22.43181pt}{4.55371pt}{19.91684pt}{4.55371pt}\pgfsys@curveto{17.40187pt}{4.55371pt}{15.36313pt}{2.51497pt}{15.36313pt}{0.0pt}\pgfsys@curveto{15.36313pt}{-2.51497pt}{17.40187pt}{-4.55371pt}{19.91684pt}{-4.55371pt}\pgfsys@curveto{22.43181pt}{-4.55371pt}{24.47055pt}{-2.51497pt}{24.47055pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{19.91684pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{17.13905pt}{-3.61111pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\hat{V}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{25.32187pt}{19.91684pt}\pgfsys@curveto{25.32187pt}{22.902pt}{22.902pt}{25.32187pt}{19.91684pt}{25.32187pt}\pgfsys@curveto{16.93169pt}{25.32187pt}{14.51181pt}{22.902pt}{14.51181pt}{19.91684pt}\pgfsys@curveto{14.51181pt}{16.93169pt}{16.93169pt}{14.51181pt}{19.91684pt}{14.51181pt}\pgfsys@curveto{22.902pt}{14.51181pt}{25.32187pt}{16.93169pt}{25.32187pt}{19.91684pt}\pgfsys@closepath\pgfsys@moveto{19.91684pt}{19.91684pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{15.5041pt}{18.73628pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\mu_{3}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{{}} {}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{39.83368pt}{0.0pt}\pgfsys@lineto{39.83368pt}{19.91684pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{44.38739pt}{0.0pt}\pgfsys@curveto{44.38739pt}{2.51497pt}{42.34865pt}{4.55371pt}{39.83368pt}{4.55371pt}\pgfsys@curveto{37.31871pt}{4.55371pt}{35.27997pt}{2.51497pt}{35.27997pt}{0.0pt}\pgfsys@curveto{35.27997pt}{-2.51497pt}{37.31871pt}{-4.55371pt}{39.83368pt}{-4.55371pt}\pgfsys@curveto{42.34865pt}{-4.55371pt}{44.38739pt}{-2.51497pt}{44.38739pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{39.83368pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{37.0559pt}{-3.61111pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\hat{V}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{45.23871pt}{19.91684pt}\pgfsys@curveto{45.23871pt}{22.902pt}{42.81883pt}{25.32187pt}{39.83368pt}{25.32187pt}\pgfsys@curveto{36.84853pt}{25.32187pt}{34.42865pt}{22.902pt}{34.42865pt}{19.91684pt}\pgfsys@curveto{34.42865pt}{16.93169pt}{36.84853pt}{14.51181pt}{39.83368pt}{14.51181pt}\pgfsys@curveto{42.81883pt}{14.51181pt}{45.23871pt}{16.93169pt}{45.23871pt}{19.91684pt}\pgfsys@closepath\pgfsys@moveto{39.83368pt}{19.91684pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{35.42094pt}{18.73628pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\mu_{4}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{{}} {}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{79.6678pt}{0.0pt}\pgfsys@lineto{79.6678pt}{19.91684pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{84.22151pt}{0.0pt}\pgfsys@curveto{84.22151pt}{2.51497pt}{82.18277pt}{4.55371pt}{79.6678pt}{4.55371pt}\pgfsys@curveto{77.15283pt}{4.55371pt}{75.11409pt}{2.51497pt}{75.11409pt}{0.0pt}\pgfsys@curveto{75.11409pt}{-2.51497pt}{77.15283pt}{-4.55371pt}{79.6678pt}{-4.55371pt}\pgfsys@curveto{82.18277pt}{-4.55371pt}{84.22151pt}{-2.51497pt}{84.22151pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{79.6678pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{76.89001pt}{-3.61111pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\hat{V}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{84.70833pt}{19.91684pt}\pgfsys@curveto{84.70833pt}{22.70067pt}{82.45163pt}{24.95737pt}{79.6678pt}{24.95737pt}\pgfsys@curveto{76.88397pt}{24.95737pt}{74.62727pt}{22.70067pt}{74.62727pt}{19.91684pt}\pgfsys@curveto{74.62727pt}{17.13301pt}{76.88397pt}{14.87631pt}{79.6678pt}{14.87631pt}\pgfsys@curveto{82.45163pt}{14.87631pt}{84.70833pt}{17.13301pt}{84.70833pt}{19.91684pt}\pgfsys@closepath\pgfsys@moveto{79.6678pt}{19.91684pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{75.69043pt}{18.73628pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\mu_{i}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\vspace{-0.2cm}}, (85)
N(1),kμ3μi=ϵ^1V^VV^ϵ^2V^μ3μkVμk+1V^μi,\displaystyle N^{(1),k}_{\mu_{3}\cdots\mu_{i}}=\parbox[b]{133.72786pt}{ \leavevmode\hbox to132.59pt{\vbox to32.39pt{\pgfpicture\makeatletter\hbox{\hskip 6.54575pt\lower-6.54575pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{{}}{}{{}} {}{}{{}} {}{}{{}} {}{}{{}} {}{}{{}} {}{}{{}} {}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{19.91684pt}{0.0pt}\pgfsys@lineto{39.83368pt}{0.0pt}\pgfsys@lineto{59.75096pt}{0.0pt}\pgfsys@lineto{79.6678pt}{0.0pt}\pgfsys@lineto{99.58466pt}{0.0pt}\pgfsys@lineto{119.5015pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{\hbox{\hbox{\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{6.14575pt}{0.0pt}\pgfsys@curveto{6.14575pt}{3.39424pt}{3.39424pt}{6.14575pt}{0.0pt}{6.14575pt}\pgfsys@curveto{-3.39424pt}{6.14575pt}{-6.14575pt}{3.39424pt}{-6.14575pt}{0.0pt}\pgfsys@curveto{-6.14575pt}{-3.39424pt}{-3.39424pt}{-6.14575pt}{0.0pt}{-6.14575pt}\pgfsys@curveto{3.39424pt}{-6.14575pt}{6.14575pt}{-3.39424pt}{6.14575pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-4.17778pt}{-2.7089pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\hat{\epsilon}_{1}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{24.47055pt}{0.0pt}\pgfsys@curveto{24.47055pt}{2.51497pt}{22.43181pt}{4.55371pt}{19.91684pt}{4.55371pt}\pgfsys@curveto{17.40187pt}{4.55371pt}{15.36313pt}{2.51497pt}{15.36313pt}{0.0pt}\pgfsys@curveto{15.36313pt}{-2.51497pt}{17.40187pt}{-4.55371pt}{19.91684pt}{-4.55371pt}\pgfsys@curveto{22.43181pt}{-4.55371pt}{24.47055pt}{-2.51497pt}{24.47055pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{19.91684pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{17.13905pt}{-3.61111pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\hat{V}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{45.68134pt}{0.0pt}\pgfsys@curveto{45.68134pt}{3.2296pt}{43.06328pt}{5.84766pt}{39.83368pt}{5.84766pt}\pgfsys@curveto{36.60408pt}{5.84766pt}{33.98602pt}{3.2296pt}{33.98602pt}{0.0pt}\pgfsys@curveto{33.98602pt}{-3.2296pt}{36.60408pt}{-5.84766pt}{39.83368pt}{-5.84766pt}\pgfsys@curveto{43.06328pt}{-5.84766pt}{45.68134pt}{-3.2296pt}{45.68134pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{39.83368pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{36.08368pt}{-2.5pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\cdots$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{65.03856pt}{0.0pt}\pgfsys@curveto{65.03856pt}{2.92029pt}{62.67125pt}{5.2876pt}{59.75096pt}{5.2876pt}\pgfsys@curveto{56.83067pt}{5.2876pt}{54.46336pt}{2.92029pt}{54.46336pt}{0.0pt}\pgfsys@curveto{54.46336pt}{-2.92029pt}{56.83067pt}{-5.2876pt}{59.75096pt}{-5.2876pt}\pgfsys@curveto{62.67125pt}{-5.2876pt}{65.03856pt}{-2.92029pt}{65.03856pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{59.75096pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{55.72319pt}{-3.41666pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$V$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{85.51546pt}{0.0pt}\pgfsys@curveto{85.51546pt}{3.2296pt}{82.8974pt}{5.84766pt}{79.6678pt}{5.84766pt}\pgfsys@curveto{76.4382pt}{5.84766pt}{73.82014pt}{3.2296pt}{73.82014pt}{0.0pt}\pgfsys@curveto{73.82014pt}{-3.2296pt}{76.4382pt}{-5.84766pt}{79.6678pt}{-5.84766pt}\pgfsys@curveto{82.8974pt}{-5.84766pt}{85.51546pt}{-3.2296pt}{85.51546pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{79.6678pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{75.9178pt}{-2.5pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\cdots$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{104.13837pt}{0.0pt}\pgfsys@curveto{104.13837pt}{2.51497pt}{102.09962pt}{4.55371pt}{99.58466pt}{4.55371pt}\pgfsys@curveto{97.06969pt}{4.55371pt}{95.03094pt}{2.51497pt}{95.03094pt}{0.0pt}\pgfsys@curveto{95.03094pt}{-2.51497pt}{97.06969pt}{-4.55371pt}{99.58466pt}{-4.55371pt}\pgfsys@curveto{102.09962pt}{-4.55371pt}{104.13837pt}{-2.51497pt}{104.13837pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{99.58466pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{96.80687pt}{-3.61111pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\hat{V}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{125.64725pt}{0.0pt}\pgfsys@curveto{125.64725pt}{3.39424pt}{122.89574pt}{6.14575pt}{119.5015pt}{6.14575pt}\pgfsys@curveto{116.10725pt}{6.14575pt}{113.35574pt}{3.39424pt}{113.35574pt}{0.0pt}\pgfsys@curveto{113.35574pt}{-3.39424pt}{116.10725pt}{-6.14575pt}{119.5015pt}{-6.14575pt}\pgfsys@curveto{122.89574pt}{-6.14575pt}{125.64725pt}{-3.39424pt}{125.64725pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{119.5015pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{115.32372pt}{-2.7089pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\hat{\epsilon}_{2}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{{}} {}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{19.91684pt}{0.0pt}\pgfsys@lineto{19.91684pt}{19.91684pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{24.47055pt}{0.0pt}\pgfsys@curveto{24.47055pt}{2.51497pt}{22.43181pt}{4.55371pt}{19.91684pt}{4.55371pt}\pgfsys@curveto{17.40187pt}{4.55371pt}{15.36313pt}{2.51497pt}{15.36313pt}{0.0pt}\pgfsys@curveto{15.36313pt}{-2.51497pt}{17.40187pt}{-4.55371pt}{19.91684pt}{-4.55371pt}\pgfsys@curveto{22.43181pt}{-4.55371pt}{24.47055pt}{-2.51497pt}{24.47055pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{19.91684pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{17.13905pt}{-3.61111pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\hat{V}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{25.32187pt}{19.91684pt}\pgfsys@curveto{25.32187pt}{22.902pt}{22.902pt}{25.32187pt}{19.91684pt}{25.32187pt}\pgfsys@curveto{16.93169pt}{25.32187pt}{14.51181pt}{22.902pt}{14.51181pt}{19.91684pt}\pgfsys@curveto{14.51181pt}{16.93169pt}{16.93169pt}{14.51181pt}{19.91684pt}{14.51181pt}\pgfsys@curveto{22.902pt}{14.51181pt}{25.32187pt}{16.93169pt}{25.32187pt}{19.91684pt}\pgfsys@closepath\pgfsys@moveto{19.91684pt}{19.91684pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{15.5041pt}{18.73628pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\mu_{3}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{{}} {}{}{{}} {}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{48.3696pt}{19.91684pt}\pgfsys@lineto{59.75096pt}{0.0pt}\pgfsys@lineto{71.1319pt}{19.91684pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{53.90036pt}{19.91684pt}\pgfsys@curveto{53.90036pt}{22.97142pt}{51.42418pt}{25.4476pt}{48.3696pt}{25.4476pt}\pgfsys@curveto{45.31502pt}{25.4476pt}{42.83884pt}{22.97142pt}{42.83884pt}{19.91684pt}\pgfsys@curveto{42.83884pt}{16.86226pt}{45.31502pt}{14.38608pt}{48.3696pt}{14.38608pt}\pgfsys@curveto{51.42418pt}{14.38608pt}{53.90036pt}{16.86226pt}{53.90036pt}{19.91684pt}\pgfsys@closepath\pgfsys@moveto{48.3696pt}{19.91684pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{43.81104pt}{18.73628pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\mu_{k}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{65.03856pt}{0.0pt}\pgfsys@curveto{65.03856pt}{2.92029pt}{62.67125pt}{5.2876pt}{59.75096pt}{5.2876pt}\pgfsys@curveto{56.83067pt}{5.2876pt}{54.46336pt}{2.92029pt}{54.46336pt}{0.0pt}\pgfsys@curveto{54.46336pt}{-2.92029pt}{56.83067pt}{-5.2876pt}{59.75096pt}{-5.2876pt}\pgfsys@curveto{62.67125pt}{-5.2876pt}{65.03856pt}{-2.92029pt}{65.03856pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{59.75096pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{55.72319pt}{-3.41666pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$V$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{74.93146pt}{19.91684pt}\pgfsys@curveto{74.93146pt}{22.0153pt}{73.23036pt}{23.7164pt}{71.1319pt}{23.7164pt}\pgfsys@curveto{69.03343pt}{23.7164pt}{67.33234pt}{22.0153pt}{67.33234pt}{19.91684pt}\pgfsys@curveto{67.33234pt}{17.81837pt}{69.03343pt}{16.11728pt}{71.1319pt}{16.11728pt}\pgfsys@curveto{73.23036pt}{16.11728pt}{74.93146pt}{17.81837pt}{74.93146pt}{19.91684pt}\pgfsys@closepath\pgfsys@moveto{71.1319pt}{19.91684pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{62.99554pt}{18.96962pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\mu_{k+1}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{{}} {}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{99.58466pt}{0.0pt}\pgfsys@lineto{99.58466pt}{19.91684pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{104.13837pt}{0.0pt}\pgfsys@curveto{104.13837pt}{2.51497pt}{102.09962pt}{4.55371pt}{99.58466pt}{4.55371pt}\pgfsys@curveto{97.06969pt}{4.55371pt}{95.03094pt}{2.51497pt}{95.03094pt}{0.0pt}\pgfsys@curveto{95.03094pt}{-2.51497pt}{97.06969pt}{-4.55371pt}{99.58466pt}{-4.55371pt}\pgfsys@curveto{102.09962pt}{-4.55371pt}{104.13837pt}{-2.51497pt}{104.13837pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{99.58466pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{96.80687pt}{-3.61111pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\hat{V}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{104.62518pt}{19.91684pt}\pgfsys@curveto{104.62518pt}{22.70067pt}{102.36848pt}{24.95737pt}{99.58466pt}{24.95737pt}\pgfsys@curveto{96.80083pt}{24.95737pt}{94.54413pt}{22.70067pt}{94.54413pt}{19.91684pt}\pgfsys@curveto{94.54413pt}{17.13301pt}{96.80083pt}{14.87631pt}{99.58466pt}{14.87631pt}\pgfsys@curveto{102.36848pt}{14.87631pt}{104.62518pt}{17.13301pt}{104.62518pt}{19.91684pt}\pgfsys@closepath\pgfsys@moveto{99.58466pt}{19.91684pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{95.60728pt}{18.73628pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\mu_{i}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\vspace{-0.2cm}\vspace{-0.2cm}}, (86)

where the script kk denotes the position of the 4-vertex. Now we also evaluate these connected diagrammatic expressions in specific helicity and spin states.

N(0),,+μ3μ4μi=\displaystyle N^{(0),-,+}_{\mu_{3}\mu_{4}\cdots\mu_{i}}= zi3p1RRRrRμ3Rμ4Rμi+𝒪(zi4),\displaystyle z^{i-3}\parbox[b]{113.81102pt}{ \leavevmode\hbox to108.61pt{\vbox to33.38pt{\pgfpicture\makeatletter\hbox{\hskip 5.41196pt\lower-7.65756pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{{}}{}{{}} {}{}{{}} {}{}{{}} {}{}{{}} {}{}{{}} {}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{19.91684pt}{0.0pt}\pgfsys@lineto{39.83368pt}{0.0pt}\pgfsys@lineto{59.75096pt}{0.0pt}\pgfsys@lineto{79.6678pt}{0.0pt}\pgfsys@lineto{99.58466pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{\hbox{\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{5.01196pt}{0.0pt}\pgfsys@curveto{5.01196pt}{2.76805pt}{2.76805pt}{5.01196pt}{0.0pt}{5.01196pt}\pgfsys@curveto{-2.76805pt}{5.01196pt}{-5.01196pt}{2.76805pt}{-5.01196pt}{0.0pt}\pgfsys@curveto{-5.01196pt}{-2.76805pt}{-2.76805pt}{-5.01196pt}{0.0pt}{-5.01196pt}\pgfsys@curveto{2.76805pt}{-5.01196pt}{5.01196pt}{-2.76805pt}{5.01196pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.91562pt}{-1.18056pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$p_{1}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{25.05698pt}{0.0pt}\pgfsys@curveto{25.05698pt}{2.83885pt}{22.75569pt}{5.14014pt}{19.91684pt}{5.14014pt}\pgfsys@curveto{17.07799pt}{5.14014pt}{14.7767pt}{2.83885pt}{14.7767pt}{0.0pt}\pgfsys@curveto{14.7767pt}{-2.83885pt}{17.07799pt}{-5.14014pt}{19.91684pt}{-5.14014pt}\pgfsys@curveto{22.75569pt}{-5.14014pt}{25.05698pt}{-2.83885pt}{25.05698pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{19.91684pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.08177pt}{-3.41666pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$R$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{44.97382pt}{0.0pt}\pgfsys@curveto{44.97382pt}{2.83885pt}{42.67253pt}{5.14014pt}{39.83368pt}{5.14014pt}\pgfsys@curveto{36.99483pt}{5.14014pt}{34.69354pt}{2.83885pt}{34.69354pt}{0.0pt}\pgfsys@curveto{34.69354pt}{-2.83885pt}{36.99483pt}{-5.14014pt}{39.83368pt}{-5.14014pt}\pgfsys@curveto{42.67253pt}{-5.14014pt}{44.97382pt}{-2.83885pt}{44.97382pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{39.83368pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{35.99861pt}{-3.41666pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$R$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{67.00853pt}{0.0pt}\pgfsys@curveto{67.00853pt}{4.00829pt}{63.75925pt}{7.25757pt}{59.75096pt}{7.25757pt}\pgfsys@curveto{55.74268pt}{7.25757pt}{52.4934pt}{4.00829pt}{52.4934pt}{0.0pt}\pgfsys@curveto{52.4934pt}{-4.00829pt}{55.74268pt}{-7.25757pt}{59.75096pt}{-7.25757pt}\pgfsys@curveto{63.75925pt}{-7.25757pt}{67.00853pt}{-4.00829pt}{67.00853pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{59.75096pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{56.00096pt}{-2.5pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\dots$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{84.80794pt}{0.0pt}\pgfsys@curveto{84.80794pt}{2.83885pt}{82.50665pt}{5.14014pt}{79.6678pt}{5.14014pt}\pgfsys@curveto{76.82895pt}{5.14014pt}{74.52766pt}{2.83885pt}{74.52766pt}{0.0pt}\pgfsys@curveto{74.52766pt}{-2.83885pt}{76.82895pt}{-5.14014pt}{79.6678pt}{-5.14014pt}\pgfsys@curveto{82.50665pt}{-5.14014pt}{84.80794pt}{-2.83885pt}{84.80794pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{79.6678pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{75.83273pt}{-3.41666pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$R$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{102.79413pt}{0.0pt}\pgfsys@curveto{102.79413pt}{1.77255pt}{101.35721pt}{3.20947pt}{99.58466pt}{3.20947pt}\pgfsys@curveto{97.8121pt}{3.20947pt}{96.37518pt}{1.77255pt}{96.37518pt}{0.0pt}\pgfsys@curveto{96.37518pt}{-1.77255pt}{97.8121pt}{-3.20947pt}{99.58466pt}{-3.20947pt}\pgfsys@curveto{101.35721pt}{-3.20947pt}{102.79413pt}{-1.77255pt}{102.79413pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{99.58466pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{97.18997pt}{-2.15277pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$r$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{{}} {}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{19.91684pt}{0.0pt}\pgfsys@lineto{19.91684pt}{19.91684pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{25.05698pt}{0.0pt}\pgfsys@curveto{25.05698pt}{2.83885pt}{22.75569pt}{5.14014pt}{19.91684pt}{5.14014pt}\pgfsys@curveto{17.07799pt}{5.14014pt}{14.7767pt}{2.83885pt}{14.7767pt}{0.0pt}\pgfsys@curveto{14.7767pt}{-2.83885pt}{17.07799pt}{-5.14014pt}{19.91684pt}{-5.14014pt}\pgfsys@curveto{22.75569pt}{-5.14014pt}{25.05698pt}{-2.83885pt}{25.05698pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{19.91684pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.08177pt}{-3.41666pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$R$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{25.32187pt}{19.91684pt}\pgfsys@curveto{25.32187pt}{22.902pt}{22.902pt}{25.32187pt}{19.91684pt}{25.32187pt}\pgfsys@curveto{16.93169pt}{25.32187pt}{14.51181pt}{22.902pt}{14.51181pt}{19.91684pt}\pgfsys@curveto{14.51181pt}{16.93169pt}{16.93169pt}{14.51181pt}{19.91684pt}{14.51181pt}\pgfsys@curveto{22.902pt}{14.51181pt}{25.32187pt}{16.93169pt}{25.32187pt}{19.91684pt}\pgfsys@closepath\pgfsys@moveto{19.91684pt}{19.91684pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{15.5041pt}{18.73628pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\mu_{3}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{{}} {}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{39.83368pt}{0.0pt}\pgfsys@lineto{39.83368pt}{19.91684pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{44.97382pt}{0.0pt}\pgfsys@curveto{44.97382pt}{2.83885pt}{42.67253pt}{5.14014pt}{39.83368pt}{5.14014pt}\pgfsys@curveto{36.99483pt}{5.14014pt}{34.69354pt}{2.83885pt}{34.69354pt}{0.0pt}\pgfsys@curveto{34.69354pt}{-2.83885pt}{36.99483pt}{-5.14014pt}{39.83368pt}{-5.14014pt}\pgfsys@curveto{42.67253pt}{-5.14014pt}{44.97382pt}{-2.83885pt}{44.97382pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{39.83368pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{35.99861pt}{-3.41666pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$R$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{45.23871pt}{19.91684pt}\pgfsys@curveto{45.23871pt}{22.902pt}{42.81883pt}{25.32187pt}{39.83368pt}{25.32187pt}\pgfsys@curveto{36.84853pt}{25.32187pt}{34.42865pt}{22.902pt}{34.42865pt}{19.91684pt}\pgfsys@curveto{34.42865pt}{16.93169pt}{36.84853pt}{14.51181pt}{39.83368pt}{14.51181pt}\pgfsys@curveto{42.81883pt}{14.51181pt}{45.23871pt}{16.93169pt}{45.23871pt}{19.91684pt}\pgfsys@closepath\pgfsys@moveto{39.83368pt}{19.91684pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{35.42094pt}{18.73628pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\mu_{4}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{{}} {}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{79.6678pt}{0.0pt}\pgfsys@lineto{79.6678pt}{19.91684pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{84.80794pt}{0.0pt}\pgfsys@curveto{84.80794pt}{2.83885pt}{82.50665pt}{5.14014pt}{79.6678pt}{5.14014pt}\pgfsys@curveto{76.82895pt}{5.14014pt}{74.52766pt}{2.83885pt}{74.52766pt}{0.0pt}\pgfsys@curveto{74.52766pt}{-2.83885pt}{76.82895pt}{-5.14014pt}{79.6678pt}{-5.14014pt}\pgfsys@curveto{82.50665pt}{-5.14014pt}{84.80794pt}{-2.83885pt}{84.80794pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{79.6678pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{75.83273pt}{-3.41666pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$R$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{84.70833pt}{19.91684pt}\pgfsys@curveto{84.70833pt}{22.70067pt}{82.45163pt}{24.95737pt}{79.6678pt}{24.95737pt}\pgfsys@curveto{76.88397pt}{24.95737pt}{74.62727pt}{22.70067pt}{74.62727pt}{19.91684pt}\pgfsys@curveto{74.62727pt}{17.13301pt}{76.88397pt}{14.87631pt}{79.6678pt}{14.87631pt}\pgfsys@curveto{82.45163pt}{14.87631pt}{84.70833pt}{17.13301pt}{84.70833pt}{19.91684pt}\pgfsys@closepath\pgfsys@moveto{79.6678pt}{19.91684pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{75.69043pt}{18.73628pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\mu_{i}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\vspace{-0.2cm}}+\mathcal{O}(z^{i-4}), (87)
N(0),,μ3μ4μi=\displaystyle N^{(0),-,-}_{\mu_{3}\mu_{4}\cdots\mu_{i}}= zi2Cp1RRRp1Rμ3Rμ4Rμizi3 [ p1RRRrRμ3Rμ4Rμi \displaystyle z^{i-2}C\parbox[b]{113.81102pt}{ \leavevmode\hbox to110.41pt{\vbox to33.38pt{\pgfpicture\makeatletter\hbox{\hskip 5.41196pt\lower-7.65756pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{{}}{}{{}} {}{}{{}} {}{}{{}} {}{}{{}} {}{}{{}} {}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{19.91684pt}{0.0pt}\pgfsys@lineto{39.83368pt}{0.0pt}\pgfsys@lineto{59.75096pt}{0.0pt}\pgfsys@lineto{79.6678pt}{0.0pt}\pgfsys@lineto{99.58466pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{\hbox{\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{5.01196pt}{0.0pt}\pgfsys@curveto{5.01196pt}{2.76805pt}{2.76805pt}{5.01196pt}{0.0pt}{5.01196pt}\pgfsys@curveto{-2.76805pt}{5.01196pt}{-5.01196pt}{2.76805pt}{-5.01196pt}{0.0pt}\pgfsys@curveto{-5.01196pt}{-2.76805pt}{-2.76805pt}{-5.01196pt}{0.0pt}{-5.01196pt}\pgfsys@curveto{2.76805pt}{-5.01196pt}{5.01196pt}{-2.76805pt}{5.01196pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.91562pt}{-1.18056pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$p_{1}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{25.05698pt}{0.0pt}\pgfsys@curveto{25.05698pt}{2.83885pt}{22.75569pt}{5.14014pt}{19.91684pt}{5.14014pt}\pgfsys@curveto{17.07799pt}{5.14014pt}{14.7767pt}{2.83885pt}{14.7767pt}{0.0pt}\pgfsys@curveto{14.7767pt}{-2.83885pt}{17.07799pt}{-5.14014pt}{19.91684pt}{-5.14014pt}\pgfsys@curveto{22.75569pt}{-5.14014pt}{25.05698pt}{-2.83885pt}{25.05698pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{19.91684pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.08177pt}{-3.41666pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$R$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{44.97382pt}{0.0pt}\pgfsys@curveto{44.97382pt}{2.83885pt}{42.67253pt}{5.14014pt}{39.83368pt}{5.14014pt}\pgfsys@curveto{36.99483pt}{5.14014pt}{34.69354pt}{2.83885pt}{34.69354pt}{0.0pt}\pgfsys@curveto{34.69354pt}{-2.83885pt}{36.99483pt}{-5.14014pt}{39.83368pt}{-5.14014pt}\pgfsys@curveto{42.67253pt}{-5.14014pt}{44.97382pt}{-2.83885pt}{44.97382pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{39.83368pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{35.99861pt}{-3.41666pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$R$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{67.00853pt}{0.0pt}\pgfsys@curveto{67.00853pt}{4.00829pt}{63.75925pt}{7.25757pt}{59.75096pt}{7.25757pt}\pgfsys@curveto{55.74268pt}{7.25757pt}{52.4934pt}{4.00829pt}{52.4934pt}{0.0pt}\pgfsys@curveto{52.4934pt}{-4.00829pt}{55.74268pt}{-7.25757pt}{59.75096pt}{-7.25757pt}\pgfsys@curveto{63.75925pt}{-7.25757pt}{67.00853pt}{-4.00829pt}{67.00853pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{59.75096pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{56.00096pt}{-2.5pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\dots$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{84.80794pt}{0.0pt}\pgfsys@curveto{84.80794pt}{2.83885pt}{82.50665pt}{5.14014pt}{79.6678pt}{5.14014pt}\pgfsys@curveto{76.82895pt}{5.14014pt}{74.52766pt}{2.83885pt}{74.52766pt}{0.0pt}\pgfsys@curveto{74.52766pt}{-2.83885pt}{76.82895pt}{-5.14014pt}{79.6678pt}{-5.14014pt}\pgfsys@curveto{82.50665pt}{-5.14014pt}{84.80794pt}{-2.83885pt}{84.80794pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{79.6678pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{75.83273pt}{-3.41666pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$R$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{104.59662pt}{0.0pt}\pgfsys@curveto{104.59662pt}{2.76805pt}{102.3527pt}{5.01196pt}{99.58466pt}{5.01196pt}\pgfsys@curveto{96.8166pt}{5.01196pt}{94.5727pt}{2.76805pt}{94.5727pt}{0.0pt}\pgfsys@curveto{94.5727pt}{-2.76805pt}{96.8166pt}{-5.01196pt}{99.58466pt}{-5.01196pt}\pgfsys@curveto{102.3527pt}{-5.01196pt}{104.59662pt}{-2.76805pt}{104.59662pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{99.58466pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{95.66904pt}{-1.18056pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$p_{1}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{{}} {}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{19.91684pt}{0.0pt}\pgfsys@lineto{19.91684pt}{19.91684pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{25.05698pt}{0.0pt}\pgfsys@curveto{25.05698pt}{2.83885pt}{22.75569pt}{5.14014pt}{19.91684pt}{5.14014pt}\pgfsys@curveto{17.07799pt}{5.14014pt}{14.7767pt}{2.83885pt}{14.7767pt}{0.0pt}\pgfsys@curveto{14.7767pt}{-2.83885pt}{17.07799pt}{-5.14014pt}{19.91684pt}{-5.14014pt}\pgfsys@curveto{22.75569pt}{-5.14014pt}{25.05698pt}{-2.83885pt}{25.05698pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{19.91684pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.08177pt}{-3.41666pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$R$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{25.32187pt}{19.91684pt}\pgfsys@curveto{25.32187pt}{22.902pt}{22.902pt}{25.32187pt}{19.91684pt}{25.32187pt}\pgfsys@curveto{16.93169pt}{25.32187pt}{14.51181pt}{22.902pt}{14.51181pt}{19.91684pt}\pgfsys@curveto{14.51181pt}{16.93169pt}{16.93169pt}{14.51181pt}{19.91684pt}{14.51181pt}\pgfsys@curveto{22.902pt}{14.51181pt}{25.32187pt}{16.93169pt}{25.32187pt}{19.91684pt}\pgfsys@closepath\pgfsys@moveto{19.91684pt}{19.91684pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{15.5041pt}{18.73628pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\mu_{3}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{{}} {}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{39.83368pt}{0.0pt}\pgfsys@lineto{39.83368pt}{19.91684pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{44.97382pt}{0.0pt}\pgfsys@curveto{44.97382pt}{2.83885pt}{42.67253pt}{5.14014pt}{39.83368pt}{5.14014pt}\pgfsys@curveto{36.99483pt}{5.14014pt}{34.69354pt}{2.83885pt}{34.69354pt}{0.0pt}\pgfsys@curveto{34.69354pt}{-2.83885pt}{36.99483pt}{-5.14014pt}{39.83368pt}{-5.14014pt}\pgfsys@curveto{42.67253pt}{-5.14014pt}{44.97382pt}{-2.83885pt}{44.97382pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{39.83368pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{35.99861pt}{-3.41666pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$R$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{45.23871pt}{19.91684pt}\pgfsys@curveto{45.23871pt}{22.902pt}{42.81883pt}{25.32187pt}{39.83368pt}{25.32187pt}\pgfsys@curveto{36.84853pt}{25.32187pt}{34.42865pt}{22.902pt}{34.42865pt}{19.91684pt}\pgfsys@curveto{34.42865pt}{16.93169pt}{36.84853pt}{14.51181pt}{39.83368pt}{14.51181pt}\pgfsys@curveto{42.81883pt}{14.51181pt}{45.23871pt}{16.93169pt}{45.23871pt}{19.91684pt}\pgfsys@closepath\pgfsys@moveto{39.83368pt}{19.91684pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{35.42094pt}{18.73628pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\mu_{4}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{{}} {}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{79.6678pt}{0.0pt}\pgfsys@lineto{79.6678pt}{19.91684pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{84.80794pt}{0.0pt}\pgfsys@curveto{84.80794pt}{2.83885pt}{82.50665pt}{5.14014pt}{79.6678pt}{5.14014pt}\pgfsys@curveto{76.82895pt}{5.14014pt}{74.52766pt}{2.83885pt}{74.52766pt}{0.0pt}\pgfsys@curveto{74.52766pt}{-2.83885pt}{76.82895pt}{-5.14014pt}{79.6678pt}{-5.14014pt}\pgfsys@curveto{82.50665pt}{-5.14014pt}{84.80794pt}{-2.83885pt}{84.80794pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{79.6678pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{75.83273pt}{-3.41666pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$R$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{84.70833pt}{19.91684pt}\pgfsys@curveto{84.70833pt}{22.70067pt}{82.45163pt}{24.95737pt}{79.6678pt}{24.95737pt}\pgfsys@curveto{76.88397pt}{24.95737pt}{74.62727pt}{22.70067pt}{74.62727pt}{19.91684pt}\pgfsys@curveto{74.62727pt}{17.13301pt}{76.88397pt}{14.87631pt}{79.6678pt}{14.87631pt}\pgfsys@curveto{82.45163pt}{14.87631pt}{84.70833pt}{17.13301pt}{84.70833pt}{19.91684pt}\pgfsys@closepath\pgfsys@moveto{79.6678pt}{19.91684pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{75.69043pt}{18.73628pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\mu_{i}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\vspace{-0.2cm}}-z^{i-3}\parbox[b]{8.5359pt}{\Bigg{[}\vspace{-0.2cm}}\parbox[b]{113.81102pt}{ \leavevmode\hbox to110.11pt{\vbox to33.38pt{\pgfpicture\makeatletter\hbox{\hskip 5.41196pt\lower-7.65756pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{{}}{}{{}} {}{}{{}} {}{}{{}} {}{}{{}} {}{}{{}} {}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{19.91684pt}{0.0pt}\pgfsys@lineto{39.83368pt}{0.0pt}\pgfsys@lineto{59.75096pt}{0.0pt}\pgfsys@lineto{79.6678pt}{0.0pt}\pgfsys@lineto{99.58466pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{\hbox{\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{5.01196pt}{0.0pt}\pgfsys@curveto{5.01196pt}{2.76805pt}{2.76805pt}{5.01196pt}{0.0pt}{5.01196pt}\pgfsys@curveto{-2.76805pt}{5.01196pt}{-5.01196pt}{2.76805pt}{-5.01196pt}{0.0pt}\pgfsys@curveto{-5.01196pt}{-2.76805pt}{-2.76805pt}{-5.01196pt}{0.0pt}{-5.01196pt}\pgfsys@curveto{2.76805pt}{-5.01196pt}{5.01196pt}{-2.76805pt}{5.01196pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.91562pt}{-1.18056pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$p_{1}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{25.05698pt}{0.0pt}\pgfsys@curveto{25.05698pt}{2.83885pt}{22.75569pt}{5.14014pt}{19.91684pt}{5.14014pt}\pgfsys@curveto{17.07799pt}{5.14014pt}{14.7767pt}{2.83885pt}{14.7767pt}{0.0pt}\pgfsys@curveto{14.7767pt}{-2.83885pt}{17.07799pt}{-5.14014pt}{19.91684pt}{-5.14014pt}\pgfsys@curveto{22.75569pt}{-5.14014pt}{25.05698pt}{-2.83885pt}{25.05698pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{19.91684pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.08177pt}{-3.41666pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$R$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{44.97382pt}{0.0pt}\pgfsys@curveto{44.97382pt}{2.83885pt}{42.67253pt}{5.14014pt}{39.83368pt}{5.14014pt}\pgfsys@curveto{36.99483pt}{5.14014pt}{34.69354pt}{2.83885pt}{34.69354pt}{0.0pt}\pgfsys@curveto{34.69354pt}{-2.83885pt}{36.99483pt}{-5.14014pt}{39.83368pt}{-5.14014pt}\pgfsys@curveto{42.67253pt}{-5.14014pt}{44.97382pt}{-2.83885pt}{44.97382pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{39.83368pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{35.99861pt}{-3.41666pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$R$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{67.00853pt}{0.0pt}\pgfsys@curveto{67.00853pt}{4.00829pt}{63.75925pt}{7.25757pt}{59.75096pt}{7.25757pt}\pgfsys@curveto{55.74268pt}{7.25757pt}{52.4934pt}{4.00829pt}{52.4934pt}{0.0pt}\pgfsys@curveto{52.4934pt}{-4.00829pt}{55.74268pt}{-7.25757pt}{59.75096pt}{-7.25757pt}\pgfsys@curveto{63.75925pt}{-7.25757pt}{67.00853pt}{-4.00829pt}{67.00853pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{59.75096pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{56.00096pt}{-2.5pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\dots$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{84.80794pt}{0.0pt}\pgfsys@curveto{84.80794pt}{2.83885pt}{82.50665pt}{5.14014pt}{79.6678pt}{5.14014pt}\pgfsys@curveto{76.82895pt}{5.14014pt}{74.52766pt}{2.83885pt}{74.52766pt}{0.0pt}\pgfsys@curveto{74.52766pt}{-2.83885pt}{76.82895pt}{-5.14014pt}{79.6678pt}{-5.14014pt}\pgfsys@curveto{82.50665pt}{-5.14014pt}{84.80794pt}{-2.83885pt}{84.80794pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{79.6678pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{75.83273pt}{-3.41666pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$R$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{104.30023pt}{0.0pt}\pgfsys@curveto{104.30023pt}{2.60437pt}{102.18903pt}{4.71558pt}{99.58466pt}{4.71558pt}\pgfsys@curveto{96.98029pt}{4.71558pt}{94.86908pt}{2.60437pt}{94.86908pt}{0.0pt}\pgfsys@curveto{94.86908pt}{-2.60437pt}{96.98029pt}{-4.71558pt}{99.58466pt}{-4.71558pt}\pgfsys@curveto{102.18903pt}{-4.71558pt}{104.30023pt}{-2.60437pt}{104.30023pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{99.58466pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{95.78998pt}{-2.80415pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$r^{*}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{{}} {}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{19.91684pt}{0.0pt}\pgfsys@lineto{19.91684pt}{19.91684pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{25.05698pt}{0.0pt}\pgfsys@curveto{25.05698pt}{2.83885pt}{22.75569pt}{5.14014pt}{19.91684pt}{5.14014pt}\pgfsys@curveto{17.07799pt}{5.14014pt}{14.7767pt}{2.83885pt}{14.7767pt}{0.0pt}\pgfsys@curveto{14.7767pt}{-2.83885pt}{17.07799pt}{-5.14014pt}{19.91684pt}{-5.14014pt}\pgfsys@curveto{22.75569pt}{-5.14014pt}{25.05698pt}{-2.83885pt}{25.05698pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{19.91684pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.08177pt}{-3.41666pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$R$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{25.32187pt}{19.91684pt}\pgfsys@curveto{25.32187pt}{22.902pt}{22.902pt}{25.32187pt}{19.91684pt}{25.32187pt}\pgfsys@curveto{16.93169pt}{25.32187pt}{14.51181pt}{22.902pt}{14.51181pt}{19.91684pt}\pgfsys@curveto{14.51181pt}{16.93169pt}{16.93169pt}{14.51181pt}{19.91684pt}{14.51181pt}\pgfsys@curveto{22.902pt}{14.51181pt}{25.32187pt}{16.93169pt}{25.32187pt}{19.91684pt}\pgfsys@closepath\pgfsys@moveto{19.91684pt}{19.91684pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{15.5041pt}{18.73628pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\mu_{3}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{{}} {}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{39.83368pt}{0.0pt}\pgfsys@lineto{39.83368pt}{19.91684pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{44.97382pt}{0.0pt}\pgfsys@curveto{44.97382pt}{2.83885pt}{42.67253pt}{5.14014pt}{39.83368pt}{5.14014pt}\pgfsys@curveto{36.99483pt}{5.14014pt}{34.69354pt}{2.83885pt}{34.69354pt}{0.0pt}\pgfsys@curveto{34.69354pt}{-2.83885pt}{36.99483pt}{-5.14014pt}{39.83368pt}{-5.14014pt}\pgfsys@curveto{42.67253pt}{-5.14014pt}{44.97382pt}{-2.83885pt}{44.97382pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{39.83368pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{35.99861pt}{-3.41666pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$R$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{45.23871pt}{19.91684pt}\pgfsys@curveto{45.23871pt}{22.902pt}{42.81883pt}{25.32187pt}{39.83368pt}{25.32187pt}\pgfsys@curveto{36.84853pt}{25.32187pt}{34.42865pt}{22.902pt}{34.42865pt}{19.91684pt}\pgfsys@curveto{34.42865pt}{16.93169pt}{36.84853pt}{14.51181pt}{39.83368pt}{14.51181pt}\pgfsys@curveto{42.81883pt}{14.51181pt}{45.23871pt}{16.93169pt}{45.23871pt}{19.91684pt}\pgfsys@closepath\pgfsys@moveto{39.83368pt}{19.91684pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{35.42094pt}{18.73628pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\mu_{4}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{{}} {}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{79.6678pt}{0.0pt}\pgfsys@lineto{79.6678pt}{19.91684pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{84.80794pt}{0.0pt}\pgfsys@curveto{84.80794pt}{2.83885pt}{82.50665pt}{5.14014pt}{79.6678pt}{5.14014pt}\pgfsys@curveto{76.82895pt}{5.14014pt}{74.52766pt}{2.83885pt}{74.52766pt}{0.0pt}\pgfsys@curveto{74.52766pt}{-2.83885pt}{76.82895pt}{-5.14014pt}{79.6678pt}{-5.14014pt}\pgfsys@curveto{82.50665pt}{-5.14014pt}{84.80794pt}{-2.83885pt}{84.80794pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{79.6678pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{75.83273pt}{-3.41666pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$R$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{84.70833pt}{19.91684pt}\pgfsys@curveto{84.70833pt}{22.70067pt}{82.45163pt}{24.95737pt}{79.6678pt}{24.95737pt}\pgfsys@curveto{76.88397pt}{24.95737pt}{74.62727pt}{22.70067pt}{74.62727pt}{19.91684pt}\pgfsys@curveto{74.62727pt}{17.13301pt}{76.88397pt}{14.87631pt}{79.6678pt}{14.87631pt}\pgfsys@curveto{82.45163pt}{14.87631pt}{84.70833pt}{17.13301pt}{84.70833pt}{19.91684pt}\pgfsys@closepath\pgfsys@moveto{79.6678pt}{19.91684pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{75.69043pt}{18.73628pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\mu_{i}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\vspace{-0.2cm}} (88)
C ( p1VRRp1Vμ3Rμ4Rμi +p1RVRp1Rμ3Vμ4Rμi+\displaystyle-C\parbox[b]{8.5359pt}{\Bigg{(}\vspace{-0.2cm}}\parbox[b]{113.81102pt}{ \leavevmode\hbox to110.41pt{\vbox to33.38pt{\pgfpicture\makeatletter\hbox{\hskip 5.41196pt\lower-7.65756pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{{}}{}{{}} {}{}{{}} {}{}{{}} {}{}{{}} {}{}{{}} {}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{19.91684pt}{0.0pt}\pgfsys@lineto{39.83368pt}{0.0pt}\pgfsys@lineto{59.75096pt}{0.0pt}\pgfsys@lineto{79.6678pt}{0.0pt}\pgfsys@lineto{99.58466pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{\hbox{\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{5.01196pt}{0.0pt}\pgfsys@curveto{5.01196pt}{2.76805pt}{2.76805pt}{5.01196pt}{0.0pt}{5.01196pt}\pgfsys@curveto{-2.76805pt}{5.01196pt}{-5.01196pt}{2.76805pt}{-5.01196pt}{0.0pt}\pgfsys@curveto{-5.01196pt}{-2.76805pt}{-2.76805pt}{-5.01196pt}{0.0pt}{-5.01196pt}\pgfsys@curveto{2.76805pt}{-5.01196pt}{5.01196pt}{-2.76805pt}{5.01196pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.91562pt}{-1.18056pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$p_{1}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{25.20444pt}{0.0pt}\pgfsys@curveto{25.20444pt}{2.92029pt}{22.83713pt}{5.2876pt}{19.91684pt}{5.2876pt}\pgfsys@curveto{16.99655pt}{5.2876pt}{14.62924pt}{2.92029pt}{14.62924pt}{0.0pt}\pgfsys@curveto{14.62924pt}{-2.92029pt}{16.99655pt}{-5.2876pt}{19.91684pt}{-5.2876pt}\pgfsys@curveto{22.83713pt}{-5.2876pt}{25.20444pt}{-2.92029pt}{25.20444pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{19.91684pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{15.88907pt}{-3.41666pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$V$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{44.97382pt}{0.0pt}\pgfsys@curveto{44.97382pt}{2.83885pt}{42.67253pt}{5.14014pt}{39.83368pt}{5.14014pt}\pgfsys@curveto{36.99483pt}{5.14014pt}{34.69354pt}{2.83885pt}{34.69354pt}{0.0pt}\pgfsys@curveto{34.69354pt}{-2.83885pt}{36.99483pt}{-5.14014pt}{39.83368pt}{-5.14014pt}\pgfsys@curveto{42.67253pt}{-5.14014pt}{44.97382pt}{-2.83885pt}{44.97382pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{39.83368pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{35.99861pt}{-3.41666pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$R$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{67.00853pt}{0.0pt}\pgfsys@curveto{67.00853pt}{4.00829pt}{63.75925pt}{7.25757pt}{59.75096pt}{7.25757pt}\pgfsys@curveto{55.74268pt}{7.25757pt}{52.4934pt}{4.00829pt}{52.4934pt}{0.0pt}\pgfsys@curveto{52.4934pt}{-4.00829pt}{55.74268pt}{-7.25757pt}{59.75096pt}{-7.25757pt}\pgfsys@curveto{63.75925pt}{-7.25757pt}{67.00853pt}{-4.00829pt}{67.00853pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{59.75096pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{56.00096pt}{-2.5pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\dots$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{84.80794pt}{0.0pt}\pgfsys@curveto{84.80794pt}{2.83885pt}{82.50665pt}{5.14014pt}{79.6678pt}{5.14014pt}\pgfsys@curveto{76.82895pt}{5.14014pt}{74.52766pt}{2.83885pt}{74.52766pt}{0.0pt}\pgfsys@curveto{74.52766pt}{-2.83885pt}{76.82895pt}{-5.14014pt}{79.6678pt}{-5.14014pt}\pgfsys@curveto{82.50665pt}{-5.14014pt}{84.80794pt}{-2.83885pt}{84.80794pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{79.6678pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{75.83273pt}{-3.41666pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$R$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{104.59662pt}{0.0pt}\pgfsys@curveto{104.59662pt}{2.76805pt}{102.3527pt}{5.01196pt}{99.58466pt}{5.01196pt}\pgfsys@curveto{96.8166pt}{5.01196pt}{94.5727pt}{2.76805pt}{94.5727pt}{0.0pt}\pgfsys@curveto{94.5727pt}{-2.76805pt}{96.8166pt}{-5.01196pt}{99.58466pt}{-5.01196pt}\pgfsys@curveto{102.3527pt}{-5.01196pt}{104.59662pt}{-2.76805pt}{104.59662pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{99.58466pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{95.66904pt}{-1.18056pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$p_{1}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{{}} {}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{19.91684pt}{0.0pt}\pgfsys@lineto{19.91684pt}{19.91684pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{25.20444pt}{0.0pt}\pgfsys@curveto{25.20444pt}{2.92029pt}{22.83713pt}{5.2876pt}{19.91684pt}{5.2876pt}\pgfsys@curveto{16.99655pt}{5.2876pt}{14.62924pt}{2.92029pt}{14.62924pt}{0.0pt}\pgfsys@curveto{14.62924pt}{-2.92029pt}{16.99655pt}{-5.2876pt}{19.91684pt}{-5.2876pt}\pgfsys@curveto{22.83713pt}{-5.2876pt}{25.20444pt}{-2.92029pt}{25.20444pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{19.91684pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{15.88907pt}{-3.41666pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$V$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{25.32187pt}{19.91684pt}\pgfsys@curveto{25.32187pt}{22.902pt}{22.902pt}{25.32187pt}{19.91684pt}{25.32187pt}\pgfsys@curveto{16.93169pt}{25.32187pt}{14.51181pt}{22.902pt}{14.51181pt}{19.91684pt}\pgfsys@curveto{14.51181pt}{16.93169pt}{16.93169pt}{14.51181pt}{19.91684pt}{14.51181pt}\pgfsys@curveto{22.902pt}{14.51181pt}{25.32187pt}{16.93169pt}{25.32187pt}{19.91684pt}\pgfsys@closepath\pgfsys@moveto{19.91684pt}{19.91684pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{15.5041pt}{18.73628pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\mu_{3}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{{}} {}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{39.83368pt}{0.0pt}\pgfsys@lineto{39.83368pt}{19.91684pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{44.97382pt}{0.0pt}\pgfsys@curveto{44.97382pt}{2.83885pt}{42.67253pt}{5.14014pt}{39.83368pt}{5.14014pt}\pgfsys@curveto{36.99483pt}{5.14014pt}{34.69354pt}{2.83885pt}{34.69354pt}{0.0pt}\pgfsys@curveto{34.69354pt}{-2.83885pt}{36.99483pt}{-5.14014pt}{39.83368pt}{-5.14014pt}\pgfsys@curveto{42.67253pt}{-5.14014pt}{44.97382pt}{-2.83885pt}{44.97382pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{39.83368pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{35.99861pt}{-3.41666pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$R$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{45.23871pt}{19.91684pt}\pgfsys@curveto{45.23871pt}{22.902pt}{42.81883pt}{25.32187pt}{39.83368pt}{25.32187pt}\pgfsys@curveto{36.84853pt}{25.32187pt}{34.42865pt}{22.902pt}{34.42865pt}{19.91684pt}\pgfsys@curveto{34.42865pt}{16.93169pt}{36.84853pt}{14.51181pt}{39.83368pt}{14.51181pt}\pgfsys@curveto{42.81883pt}{14.51181pt}{45.23871pt}{16.93169pt}{45.23871pt}{19.91684pt}\pgfsys@closepath\pgfsys@moveto{39.83368pt}{19.91684pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{35.42094pt}{18.73628pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\mu_{4}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{{}} {}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{79.6678pt}{0.0pt}\pgfsys@lineto{79.6678pt}{19.91684pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{84.80794pt}{0.0pt}\pgfsys@curveto{84.80794pt}{2.83885pt}{82.50665pt}{5.14014pt}{79.6678pt}{5.14014pt}\pgfsys@curveto{76.82895pt}{5.14014pt}{74.52766pt}{2.83885pt}{74.52766pt}{0.0pt}\pgfsys@curveto{74.52766pt}{-2.83885pt}{76.82895pt}{-5.14014pt}{79.6678pt}{-5.14014pt}\pgfsys@curveto{82.50665pt}{-5.14014pt}{84.80794pt}{-2.83885pt}{84.80794pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{79.6678pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{75.83273pt}{-3.41666pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$R$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{84.70833pt}{19.91684pt}\pgfsys@curveto{84.70833pt}{22.70067pt}{82.45163pt}{24.95737pt}{79.6678pt}{24.95737pt}\pgfsys@curveto{76.88397pt}{24.95737pt}{74.62727pt}{22.70067pt}{74.62727pt}{19.91684pt}\pgfsys@curveto{74.62727pt}{17.13301pt}{76.88397pt}{14.87631pt}{79.6678pt}{14.87631pt}\pgfsys@curveto{82.45163pt}{14.87631pt}{84.70833pt}{17.13301pt}{84.70833pt}{19.91684pt}\pgfsys@closepath\pgfsys@moveto{79.6678pt}{19.91684pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{75.69043pt}{18.73628pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\mu_{i}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\vspace{-0.2cm}}+\parbox[b]{113.81102pt}{ \leavevmode\hbox to110.41pt{\vbox to33.38pt{\pgfpicture\makeatletter\hbox{\hskip 5.41196pt\lower-7.65756pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{{}}{}{{}} {}{}{{}} {}{}{{}} {}{}{{}} {}{}{{}} {}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{19.91684pt}{0.0pt}\pgfsys@lineto{39.83368pt}{0.0pt}\pgfsys@lineto{59.75096pt}{0.0pt}\pgfsys@lineto{79.6678pt}{0.0pt}\pgfsys@lineto{99.58466pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{\hbox{\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{5.01196pt}{0.0pt}\pgfsys@curveto{5.01196pt}{2.76805pt}{2.76805pt}{5.01196pt}{0.0pt}{5.01196pt}\pgfsys@curveto{-2.76805pt}{5.01196pt}{-5.01196pt}{2.76805pt}{-5.01196pt}{0.0pt}\pgfsys@curveto{-5.01196pt}{-2.76805pt}{-2.76805pt}{-5.01196pt}{0.0pt}{-5.01196pt}\pgfsys@curveto{2.76805pt}{-5.01196pt}{5.01196pt}{-2.76805pt}{5.01196pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.91562pt}{-1.18056pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$p_{1}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{25.05698pt}{0.0pt}\pgfsys@curveto{25.05698pt}{2.83885pt}{22.75569pt}{5.14014pt}{19.91684pt}{5.14014pt}\pgfsys@curveto{17.07799pt}{5.14014pt}{14.7767pt}{2.83885pt}{14.7767pt}{0.0pt}\pgfsys@curveto{14.7767pt}{-2.83885pt}{17.07799pt}{-5.14014pt}{19.91684pt}{-5.14014pt}\pgfsys@curveto{22.75569pt}{-5.14014pt}{25.05698pt}{-2.83885pt}{25.05698pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{19.91684pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.08177pt}{-3.41666pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$R$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{45.12128pt}{0.0pt}\pgfsys@curveto{45.12128pt}{2.92029pt}{42.75397pt}{5.2876pt}{39.83368pt}{5.2876pt}\pgfsys@curveto{36.91339pt}{5.2876pt}{34.54608pt}{2.92029pt}{34.54608pt}{0.0pt}\pgfsys@curveto{34.54608pt}{-2.92029pt}{36.91339pt}{-5.2876pt}{39.83368pt}{-5.2876pt}\pgfsys@curveto{42.75397pt}{-5.2876pt}{45.12128pt}{-2.92029pt}{45.12128pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{39.83368pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{35.80591pt}{-3.41666pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$V$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{67.00853pt}{0.0pt}\pgfsys@curveto{67.00853pt}{4.00829pt}{63.75925pt}{7.25757pt}{59.75096pt}{7.25757pt}\pgfsys@curveto{55.74268pt}{7.25757pt}{52.4934pt}{4.00829pt}{52.4934pt}{0.0pt}\pgfsys@curveto{52.4934pt}{-4.00829pt}{55.74268pt}{-7.25757pt}{59.75096pt}{-7.25757pt}\pgfsys@curveto{63.75925pt}{-7.25757pt}{67.00853pt}{-4.00829pt}{67.00853pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{59.75096pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{56.00096pt}{-2.5pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\dots$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{84.80794pt}{0.0pt}\pgfsys@curveto{84.80794pt}{2.83885pt}{82.50665pt}{5.14014pt}{79.6678pt}{5.14014pt}\pgfsys@curveto{76.82895pt}{5.14014pt}{74.52766pt}{2.83885pt}{74.52766pt}{0.0pt}\pgfsys@curveto{74.52766pt}{-2.83885pt}{76.82895pt}{-5.14014pt}{79.6678pt}{-5.14014pt}\pgfsys@curveto{82.50665pt}{-5.14014pt}{84.80794pt}{-2.83885pt}{84.80794pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{79.6678pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{75.83273pt}{-3.41666pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$R$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{104.59662pt}{0.0pt}\pgfsys@curveto{104.59662pt}{2.76805pt}{102.3527pt}{5.01196pt}{99.58466pt}{5.01196pt}\pgfsys@curveto{96.8166pt}{5.01196pt}{94.5727pt}{2.76805pt}{94.5727pt}{0.0pt}\pgfsys@curveto{94.5727pt}{-2.76805pt}{96.8166pt}{-5.01196pt}{99.58466pt}{-5.01196pt}\pgfsys@curveto{102.3527pt}{-5.01196pt}{104.59662pt}{-2.76805pt}{104.59662pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{99.58466pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{95.66904pt}{-1.18056pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$p_{1}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{{}} {}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{19.91684pt}{0.0pt}\pgfsys@lineto{19.91684pt}{19.91684pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{25.05698pt}{0.0pt}\pgfsys@curveto{25.05698pt}{2.83885pt}{22.75569pt}{5.14014pt}{19.91684pt}{5.14014pt}\pgfsys@curveto{17.07799pt}{5.14014pt}{14.7767pt}{2.83885pt}{14.7767pt}{0.0pt}\pgfsys@curveto{14.7767pt}{-2.83885pt}{17.07799pt}{-5.14014pt}{19.91684pt}{-5.14014pt}\pgfsys@curveto{22.75569pt}{-5.14014pt}{25.05698pt}{-2.83885pt}{25.05698pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{19.91684pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.08177pt}{-3.41666pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$R$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{25.32187pt}{19.91684pt}\pgfsys@curveto{25.32187pt}{22.902pt}{22.902pt}{25.32187pt}{19.91684pt}{25.32187pt}\pgfsys@curveto{16.93169pt}{25.32187pt}{14.51181pt}{22.902pt}{14.51181pt}{19.91684pt}\pgfsys@curveto{14.51181pt}{16.93169pt}{16.93169pt}{14.51181pt}{19.91684pt}{14.51181pt}\pgfsys@curveto{22.902pt}{14.51181pt}{25.32187pt}{16.93169pt}{25.32187pt}{19.91684pt}\pgfsys@closepath\pgfsys@moveto{19.91684pt}{19.91684pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{15.5041pt}{18.73628pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\mu_{3}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{{}} {}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{39.83368pt}{0.0pt}\pgfsys@lineto{39.83368pt}{19.91684pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{45.12128pt}{0.0pt}\pgfsys@curveto{45.12128pt}{2.92029pt}{42.75397pt}{5.2876pt}{39.83368pt}{5.2876pt}\pgfsys@curveto{36.91339pt}{5.2876pt}{34.54608pt}{2.92029pt}{34.54608pt}{0.0pt}\pgfsys@curveto{34.54608pt}{-2.92029pt}{36.91339pt}{-5.2876pt}{39.83368pt}{-5.2876pt}\pgfsys@curveto{42.75397pt}{-5.2876pt}{45.12128pt}{-2.92029pt}{45.12128pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{39.83368pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{35.80591pt}{-3.41666pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$V$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{45.23871pt}{19.91684pt}\pgfsys@curveto{45.23871pt}{22.902pt}{42.81883pt}{25.32187pt}{39.83368pt}{25.32187pt}\pgfsys@curveto{36.84853pt}{25.32187pt}{34.42865pt}{22.902pt}{34.42865pt}{19.91684pt}\pgfsys@curveto{34.42865pt}{16.93169pt}{36.84853pt}{14.51181pt}{39.83368pt}{14.51181pt}\pgfsys@curveto{42.81883pt}{14.51181pt}{45.23871pt}{16.93169pt}{45.23871pt}{19.91684pt}\pgfsys@closepath\pgfsys@moveto{39.83368pt}{19.91684pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{35.42094pt}{18.73628pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\mu_{4}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{{}} {}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{79.6678pt}{0.0pt}\pgfsys@lineto{79.6678pt}{19.91684pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{84.80794pt}{0.0pt}\pgfsys@curveto{84.80794pt}{2.83885pt}{82.50665pt}{5.14014pt}{79.6678pt}{5.14014pt}\pgfsys@curveto{76.82895pt}{5.14014pt}{74.52766pt}{2.83885pt}{74.52766pt}{0.0pt}\pgfsys@curveto{74.52766pt}{-2.83885pt}{76.82895pt}{-5.14014pt}{79.6678pt}{-5.14014pt}\pgfsys@curveto{82.50665pt}{-5.14014pt}{84.80794pt}{-2.83885pt}{84.80794pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{79.6678pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{75.83273pt}{-3.41666pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$R$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{84.70833pt}{19.91684pt}\pgfsys@curveto{84.70833pt}{22.70067pt}{82.45163pt}{24.95737pt}{79.6678pt}{24.95737pt}\pgfsys@curveto{76.88397pt}{24.95737pt}{74.62727pt}{22.70067pt}{74.62727pt}{19.91684pt}\pgfsys@curveto{74.62727pt}{17.13301pt}{76.88397pt}{14.87631pt}{79.6678pt}{14.87631pt}\pgfsys@curveto{82.45163pt}{14.87631pt}{84.70833pt}{17.13301pt}{84.70833pt}{19.91684pt}\pgfsys@closepath\pgfsys@moveto{79.6678pt}{19.91684pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{75.69043pt}{18.73628pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\mu_{i}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\vspace{-0.2cm}}+\cdots