This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Mathematical analysis of an extended cellular model of the Hepatitis C Virus infection with non-cytolytic process

Alexis Nangue Email : Alexis Nangue : alexnanga02@yahoo.fr University of Maroua, Higher Teacher’s Training College, Department of Mathematics, P.O.Box 55 Maroua, Cameroon Cyprien Fokoue University of Maroua, Faculty of Science, Department of Mathematics and Computer Science, Cameroon Raoue Poumeni Now at : elsewhere University of Maroua, Higher Teacher’s Training College
Abstract

The aims of this work is to analyse of the global stability of the extended model of hepatitis C virus(HCV) infection with cellular proliferation, spontaneous cure and hepatocyte homeostasis. We first give general information about hepatitis C. Secondly, We prove the existence of local, maximal and global solutions of the model and establish some properties of this solution as positivity and asymptotic behaviour. Thirdly we show, by the construction of an appropriate Lyapunov function, that the uninfected equilibrium and the unique infected equilibrium of the model of HCV are globally asymptotically stable respectively when the threshold number 0<1qdI+q\mathcal{R}_{0}<1-\frac{q}{d_{I}+q} and when 0>1\mathcal{R}_{0}>1. Finally, some numerical simulations are carried out using Maple software confirm these theoretical results.

keywords : HCV model; global solutions; non-cytolytic process; invariant set; Lyapunov functions; basic reproduction number; equilibrium points.

AMS Classification Subject 2010 : 92B99, 34D23, 92D25.

1 Introduction

Hepatitis C infection is a viral disease caused by Hepatitis C Virus (HCV) and being transmitted mainly by blood contact between an infected person and a healthy person. This virus that attacks the hepatocytes is one of the main causes of chronic diseases of the liver such as hepatocellular carcinoma, liver cancer and cirrhosis of the liver [1, 19]. According to the WHO [22] global report published in April 2017 on hepatitis, 200 to 300 million people worldwide are infected with HCV, and between 60%\% et 85%\% of these people develop chronic liver disease [22, 23]. Although there is considerable progress in the research for the fight against this infection whose virus was discovered in 1989 [1, 19] and which presents today six genotypes, ranked from 1 to 6 according to [19]. There is no vaccine for prevention yet [20, 22]. Concerning the treatment of HCV infection, since 2014, the new direct-acting antivirals combined with Interferon-α\alpha and Ribavirin have been able to cure about 90%\% of cases of chronic infection, but leaves the chronic diseases whose infection has caused. HCV infection is therefore a major public health problem.
To understand the dynamics of HCV viral load and its infectious process, mathematical models have become an important and almost unavoidable tool[2, 16]. A model is a system of mathematical equations accounting for all known experimental data of the studied biological phenomenon. It makes it possible to better understand the phenomenon under consideration and to act on the system optimally. Until 2009, most research work on the modeling of viral dynamics of HCV only took into account the level of circulating virus in a human population, the case in vivo was almost ignored as it provides a better understanding of the pathogenesis of the virus as Harel Dahari et al [8] and Chong et al.[1].
Our goal is therefore to analyze the stability of an extended model of HCV infection in a patient with cell proliferation and spontaneous healing presented in [7, 20] to reveal significant information on pathogenesis and dynamics of this virus. The work is organized as follows : In section 1, first focuses on presentation of the epidemiological model and give some properties of its solutions, then we calculate the basic reproduction ratio 0\mathcal{R}_{0}, which is an indispensable element in the study and analysis of the models. 0\mathcal{R}_{0} is considered in the virus dynamics as a metric. We theoretically analyze the local stability and the global stability of the model by the linearization and Lyapounov’s functions respectively in section 2 and in section 3 we perform numerical simulations using biologically plausible parameter values in Table 1 to confirm the results obtained theoretically and we complete the work by an appendix.

2 A dynamical model of HCV infection and some properties of the solutions of the differential system associated to the model

Mathematical modeling applies to the study of dynamics of infectious diseases seems to be one of the most interesting tool for designing control or eradication strategies of a disease like hepatitis C. It allows to test on computer different prevention scenarios and so help the decision-making in public health [14]. In the following sections, we will firstly present epidemiology and brief history of HCV dynamics, then describe the model itself, show the existence of solutions and establish some properties of these solutions and finally calculate the basic reproduction rate 0\mathcal{R}_{0} which is an important tool in epidemiology.

2.1 Epidemiology and history of HCV

2.1.1 HCV infection

HCV is a virus that attacks the cells of the liver and causes inflammation of the latter. This virus is present in the blood of an infected person and is, according to the WHO, mandatory declaration. It can live for about 5 to 7 weeks in the open air. In the long term, there may be very serious consequences such as cirrhosis and in some cases, liver cancer . This virus can remain for decades in the body without any apparent symptoms. According to [14, njou] six main genotypes HCV were identified whereas several subtypes play an important role in the severity of the disease and its response to treatment.

2.1.2 Epidemiology of HCV Infection

HCV infection is a major public health problem. Worldwide, the number of chronic HCV carriers is estimated at about 170 million, or 3%3\% of the world’s population, and the incidence is between 3 and 4 million infections per year according to the statistics published by the World Health Organization in 2014. The actual incidence is uncertain because the distinction between acute and chronic forms is difficult to make. HCV was only identified in 1989 with the advent of modern molecular cloning techniques.
In Cameroon, about 10,000 people die each year from hepatitis (A, B, C, D, …). The country is one of the 17 most affected worldwide, with a prevalence rate of about 13%13\%, that is 2.5 million people infected.

2.1.3 Natural history of HCV infection

According to WHO’s global report on hepatitis C published in April 2017 the first phase of HCV infection is said Acute: It can cause jaundice, but remains asymptomatic in the majority of cases (70 to 80 %\%), hence the risk of going unnoticed. It is estimated that 20 to 30 %\% people infected will spontaneously clear the virus within the first six months after initial contact. If the virus persists, hepatitis progresses to chronicity. The liver reacts to HCV aggression by an inflammatory reaction, one of the components of which is fibrogenesis. Hepatic fibrosis is the main complication of chronic hepatitis C. Hepatitis C is likely to evolve at the chronic phase in about 25 %\% of cases to cirrhosis within a period of 5 to 20 years. In case of cirrhosis, the incidence of hepatocellular carcinoma is high: on the order of 1 to 4 %\% per year [14].(See figure 1).

Refer to caption
Figure 1: Natural history of infection with hepatitis C virus.

In order to achieve our various goals, we first describe the model and its parameters.

2.2 Description of the HCV model with compartmental diagram

There are two mathematical models of HCV dynamics : the original model or model of Newmann [17] and its extended models like that of Dahari [1, fashion]. Each model can be represented by a compartmental scheme. A compartmental scheme is a scheme for estimating the variation in the number of individuals in each compartment over time. Figure 2 is the schematic representation of the extended model, which we will study, of HCV with cellular proliferation and spontaneous healing designed by T. C. Reluga et al. [20]. This model expands the viral dynamics of the original model of infection and the disappearance of HCV by incorporating the proliferation and death density dependence. In addition to cell proliferation, the number of uninfected hepatocytes may increase through immigration or differentiation of hepatocyte precursors that develop into hepatocytes at a constitutive rate of ss or by spontaneous infected hepatocyte healing by a non-cytolytic process at the rate qq.

Refer to caption
Figure 2: Schematic representation of HCV infection models. T and I represent target and infected cells, respectively, and V represents free virus. The parameters shown in the figure are defined in the text. The original model of Neumann et al.[17] assumed that there is no proliferation of target and infected cells (i.e., rT=rI=0r_{T}=r_{I}=0) and no spontaneous cure (i.e., q=0q=0). The extended model of Dahari, Ribeiro, and Perelson[4], which was used for predicting complex HCV kinetics under therapy, includes target and infected cell proliferation without cure (rT>0r_{T}>0, rI>0r_{I}>0 and q=0q=0). A model including both proliferation and the spontaneous cure of infected cells (dashed line; q>0q>0) was used to explain the kinetics of HCV in primary infection in chimpanzees[5]

The model proposed by Dahari and coworkers [8, 4] expands on the standard HCV viral-dynamic model [17] of infection and clearance by incorporating density-dependent proliferation and death. Uninfected hepatocytes or noninfected hepatocytes, T, are infected at a rate β\beta per free virus per hepatocyte. Infected cells, I, produce free virus at rate pp per cell but also die with rate dId_{I} . Free virus is cleared at rate cc by immune and other degradation processes. Besides infection processes, hepatocyte numbers are influenced by homeostatic processes. Uninfected hepatocytes die at rate dTd_{T}. Both infected and uninfected hepatocytes proliferate logistically with maximum rates rIr_{I} and rTr_{T} , respectively, as long as the total number of hepatocytes is less than TmaxT_{max}. Besides proliferation, uninfected hepatocytes may increase in number through immigration or differentiation of hepatocyte precursors that develop into hepatocytes at constitutive rate ss, or by spontaneous cure of infected hepatocytes through a noncytolytic process at rate qq. Treatment with antiviral drugs reduces the infection rate by a fraction η\eta and the viral production rate by a fraction ε\varepsilon. It should be noted that η\eta and ε\varepsilon are parameters which values are non-negative and less than one.
The interpretations and biologically plausible value of other parameters are listed in following Table 1 , and a further comprehensive survey on the description of the model is given in [7, 6, 20].
Thus, the variation of healthy hepatocytes T is expressed by the following expression :

dTdt=s+rTT(1T+ITmax)dTT(1η)βVT+qI.\frac{dT}{dt}=s+r_{T}T\left(1-\frac{T+I}{T_{max}}\right)-d_{T}T-(1-\eta)\beta VT+qI. (1)

The variation of infected hepatocytes I is expressed by the following expression:

dIdt=rII(1T+ITmax)dII(1η)βVTqI.\frac{dI}{dt}=r_{I}I\left(1-\frac{T+I}{T_{max}}\right)-d_{I}I-(1-\eta)\beta VT-qI. (2)

And the variation of the viral load V is expressed by the following expression :

dVdt=(1ε)pIcV.\frac{dV}{dt}=(1-\varepsilon)pI-cV. (3)

It follows that the dynamics of T, I and V is governed by the following differential system :

{dTdt=s+rTT(1T+ITmax)dTT(1η)βVT+qIdIdt=rII(1dT+ITmax)dII(1η)βVTqIdVdt=(1ε)pIcV\left\{\begin{array}[]{lcr}\dfrac{dT}{dt}=s+r_{T}T\left(1-\dfrac{T+I}{T_{max}}\right)-d_{T}T-(1-\eta)\beta VT+qI\\ \\ \dfrac{dI}{dt}=r_{I}I\left(1-d\frac{T+I}{T_{max}}\right)-d_{I}I-(1-\eta)\beta VT-qI\\ \\ \dfrac{dV}{dt}=(1-\varepsilon)pI-cV\end{array}\right.\\ (4)

System (4) is under the following initial conditions:

T0=T(t0),I0=I(t0)andV0=V(t0)wheret0[0,+[.T_{0}=T(t_{0}),\quad I_{0}=I(t_{0})\quad\mbox{and}\quad V_{0}=V(t_{0})\quad\mbox{where}\quad t_{0}\in[0,+\infty[. (5)

Given the meanings of η\eta and β\beta, the term (1η)βVT(1-\eta)\beta VT represents the mass action principle; βVT\beta VT is the rate of infection of healthy T cells by interaction with virus V.

For biological significance of the parameters, three assumptions are employed. (1) Due to the burden of supporting virus replication, infected cells may proliferate more slowly than uninfected cells, i.e. rIrTr_{I}\leq r_{T} . (2) To have a physiologically realistic model, in an uninfected liver when TmaxT_{max} is reached, liver size should no longer increase, i.e. sdTTmaxs\leq d_{T}T_{max}. (3) Infected cells have a higher turnover rate than uninfected cells, i.e. dIdTd_{I}\geq d_{T}. The interpretations and biologically plausible values of other parameters are listed in Table 1, and a further comprehensive survey on the description of (4) is given in [20]. Besides HCV infection, the similar model of (4) is also used to describe the dynamics of HBV or HIV infection, in which the full logistic terms mean the proliferation of uninfected/infected hepatocytes [3, 15, 5], or the mitotic transmission of uninfected/infected CD4+T.
The range of variation of each parameter is recorded in table 1 [20].

Table 1

Estimated parameter ranges for hepatitis C when modeled with system [20]. The rTr_{T}, TmaxT_{max}, and dTd_{T} parameters are not independently identifiable, so common practice is to fix dTd_{T} prior to fitting

Symbol Minimum Maximum Units
β\beta 10810^{-8} 10610^{-6} virus1.ml.day1virus^{-1}.ml.day^{-1}
TmaxT_{max} 4×1064\times 10^{6} 1.3.1071.3.10^{7} cells.ml1cells.ml^{-1}
pp 0.10.1 4444 virus.cell1.day1virus.cell^{-1}.day^{-1}
ss 11 1.8×1051.8\times 10^{5} cells.ml1.day1cells.ml^{-1}.day^{-1}
qq 0 11 day1day^{-1}
cc 0.80.8 2222 day1day^{-1}
dTd_{T} 10310^{-3} 1.4×1021.4\times 10^{-2} day1day^{-1}
dId_{I} 10310^{-3} 0.50.5 day1day^{-1}
rTr_{T} 2×1032\times 10^{-3} 3.43.4 day1day^{-1}
rIr_{I} UnknownUnknown UnknownUnknown day1day^{-1}

This table tells us in which interval varies each parameter of the model. For the study of stability and for simulations these ranges of values will have to be respected for a good decision-making.

2.3 Theorems of existence and some properties of solution to the cauchy problem (4), (5)

2.3.1 Existence of local solutions

Theorem 2.1

Let T0,I0,V0T_{0},I_{0},V_{0}\in\mathbb{R}. There exists t1>0t_{1}>0 and functions T,I,V:[t0;t1[T,I,V:[t_{0};t_{1}[\longrightarrow\mathbb{R} continuously differentiable such that (T,I,V)(T,I,V) is a solution of system (4) satisfying (5).

Proof. We will use the local Cauchy-Lipschitz theorem to proof this. Since the system of equations (4) is autonomous, it is enough to show that the function

ff : 3\mathbb{R}^{3} \longrightarrow 3\mathbb{R}^{3}
(T,I,V)(T,I,V) \longmapsto (f1(T,I,V);f2(T,I,V);f3(T,I,V))\Big{(}f_{1}(T,I,V);f_{2}(T,I,V);f_{3}(T,I,V)\Big{)}

is locally Lipschitzian with:

f1(T,I,V)=s+rTT(1T+ITmax)dTT(1η)βVT+qI.f_{1}(T,I,V)=s+r_{T}T\left(1-\frac{T+I}{T_{max}}\right)-d_{T}T-(1-\eta)\beta VT+qI. (6)
f2(T,I,V)=rII(1T+ITmax)+(1η)βVTdIIqI.f_{2}(T,I,V)=r_{I}I\left(1-\frac{T+I}{T_{max}}\right)+(1-\eta)\beta VT-d_{I}I-qI. (7)
f3(T,I,V)=(1ε)pIcV.f_{3}(T,I,V)=(1-\varepsilon)pI-cV. (8)

According to L. Perko [18], it is also enough to prove that ff is a class 𝒞1\mathcal{C}^{1} function.
The jacobian matrix of ff at (T,I,V)(T,I,V) is:

Df(T,I,V)=(f1T(T,I,V)f1I(T,I,V)f1V(T,I,V)f2T(T,I,V)f2I(T,I,V)f2V(T,I,V)f3T(T,I,V)f3I(T,I,V)f3V(T,I,V)),Df(T,I,V)=\begin{pmatrix}\frac{\partial f_{1}}{\partial T}(T,I,V)&\frac{\partial f_{1}}{\partial I}(T,I,V)&\frac{\partial f_{1}}{\partial V}(T,I,V)\\ \\ \frac{\partial f_{2}}{\partial T}(T,I,V)&\frac{\partial f_{2}}{\partial I}(T,I,V)&\frac{\partial f_{2}}{\partial V}(T,I,V)\\ \\ \frac{\partial f_{3}}{\partial T}(T,I,V)&\frac{\partial f_{3}}{\partial I}(T,I,V)&\frac{\partial f_{3}}{\partial V}(T,I,V)\end{pmatrix},

i.e.

Df(T,I,V)=(rT(12T+ITmax)dT+rTTTmax+q(1η)βT(1η)βVrIITmax+(1η)βVrI(1T+2ITmax)dIq(1η)βT0(1ε)pc).Df(T,I,V)=\begin{pmatrix}r_{T}\left(1-\frac{2T+I}{T_{max}}\right)-d_{T}+&-\frac{r_{T}T}{T_{max}}+q&-(1-\eta)\beta T\\ -(1-\eta)\beta V&&\\ \\ -\frac{r_{I}I}{T_{max}}+(1-\eta)\beta V&r_{I}\left(1-\frac{T+2I}{T_{max}}\right)-d_{I}-q&(1-\eta)\beta T\\ \\ 0&(1-\varepsilon)p&-c\end{pmatrix}.

Each component of this matrix being continuous, they are locally bounded for all (T,I,V)3(T,I,V)\in\mathbb{R}^{3}. Therefore ff possesses continuous and bounded partial derivatives on any compact of \mathbb{R}. Thus ff is locally Lipschitzian with respect to (T,I,V)(T,I,V). By the Cauchy-Lipschitz theorem, there is a local solution defined on [t0;t1[[t_{0};t_{1}[ This completes the proof of this theorem 2.1.   

Remark 1

The function ff in the proof of theorem 2.1 is a class C1C^{1} function so the system (4) has a unique maximal solution.

2.3.2 positivity of the system (4)

Theorem 2.2

Let (T,I,V)(T,I,V) be a solution of the system (4) over an interval [t0,t1[[t_{0},t_{1}[ such that T(t0)=T0,I(t0)=I0T(t_{0})=T_{0},I(t_{0})=I_{0} et V(t0)=V0V(t_{0})=V_{0}.
If T0,I0,V0T_{0},I_{0},V_{0} are positive, then T(t)T(t), I(t)I(t) and V(t)V(t) are also positive for all t[t0,t1[t\in[t_{0},t_{1}[.

Proof. We are going to prove by contradiction. so suppose there is t[t0,t1[t\in[t_{0},t_{1}[ such that T(t)=0T(t)=0 or I(t)=0I(t)=0 or V(t)=0V(t)=0.
Let x=(x1,x2,x3)=(T,I,V)x=(x_{1},x_{2},x_{3})=(T,I,V)
Let also tt_{*} be the smallest of all tt in the interval [t0,t1[[t_{0},t_{1}[ such that xi(t)>0,t[t0,t[,i{1,2,3}x_{i}(t)>0,\\ \forall t\in[t_{0},t_{*}[,\forall i\in\left\{1,2,3\right\} and xi(t)=0x_{i}(t_{*})=0 for a certain ii.
Then each of the equations of the system (4) can be written x˙i=hi(x)+gi(x)\dot{x}_{i}=-h_{i}(x)+g_{i}(x) where gig_{i} is a non negative function and hih_{i} any function.
Thus,

T˙\displaystyle\quad\dot{T} =\displaystyle= dTdt,\displaystyle\frac{dT}{dt},
=\displaystyle= T(rT(1T+ITmax)+dT+(1η)βV)+s+qI,\displaystyle-T\left(-r_{T}\left(1-\frac{T+I}{T_{max}}\right)+d_{T}+(1-\eta)\beta V\right)+s+qI,
=\displaystyle= Th1(T,I,V)+g1(T,I,V).\displaystyle-Th_{1}(T,I,V)+g_{1}(T,I,V).

with

h1(T,I,V)=(rT(1T+ITmax)+dT+(1η)βV)h_{1}(T,I,V)=\left(-r_{T}\left(1-\frac{T+I}{T_{max}}\right)+d_{T}+(1-\eta)\beta V\right)

and

g1(T,I,V)=s+qI;g_{1}(T,I,V)=s+qI;

similarly;

I˙\displaystyle\quad\dot{I} =\displaystyle= dIdt,\displaystyle\frac{dI}{dt},
=\displaystyle= I(rI(1T+ITmax)+dI+q)+(1η)βVT,\displaystyle-I\left(-r_{I}\left(1-\frac{T+I}{T_{max}}\right)+d_{I}+q\right)+(1-\eta)\beta VT,
=\displaystyle= Ih2(T,I,V)+g2(T,I,V).\displaystyle-Ih_{2}(T,I,V)+g_{2}(T,I,V).

with

h2(T,I,V)=(rI(1T+ITmax)+dI+q)h_{2}(T,I,V)=\left(-r_{I}\left(1-\frac{T+I}{T_{max}}\right)+d_{I}+q\right)

and

g2(T,I,V)=(1η)βVTg_{2}(T,I,V)=(1-\eta)\beta VT

and

V\displaystyle V =\displaystyle= dVdt,\displaystyle\frac{dV}{dt},
=\displaystyle= Vc+(1ε)pI,\displaystyle-Vc+(1-\varepsilon)pI,
=\displaystyle= Vh3(T,I,V)+g3(T,I,V).\displaystyle-Vh_{3}(T,I,V)+g_{3}(T,I,V).

with

h3(T,I,V)=ch_{3}(T,I,V)=c

and

g3(T,I,V)=(1ε)pI.g_{3}(T,I,V)=(1-\varepsilon)pI.

Without loss the generality, suppose that x1(t)=0x_{1}(t_{*})=0.
As hypothesized, g1(T,I,V)g_{1}(T,I,V) is positive on [t0,t][t_{0},t_{*}], it follows that

T˙Th1(T,I,V);\dot{T}\geq-Th_{1}(T,I,V);

from where

ddt(logT)h1(T,I,V).\frac{d}{dt}(\log T)\geq-h_{1}(T,I,V).

Yet (T,I,V)(T,I,V) is a solution of (4). TT, II, VV are class class C1C^{1} functions. They are continuous on [t0,t][t_{0},t_{*}] and therefore are bounded on [t0,t][t_{0},t_{*}]. Thus h1(T,I,V)h_{1}(T,I,V) is bounded on [t0,t][t_{0},t_{*}].
There exists a constant k>0k>0 such that

ddt(logT)h1(T,I,V)>k.\frac{d}{dt}(\log T)\geq-h_{1}(T,I,V)>-k.

By integrating this previous expression on [t0,t][t_{0},t_{*}], we get

logT(t)logT(t0)k(tt0).\log T(t_{*})-\log T(t_{0})\geq-k(t_{*}-t_{0}).

Where

T(t)T(t0)ek(tt0)>0.T(t_{*})\geq T(t_{0})e^{-k(t_{*}-t_{0})}>0.

This is a contradiction because T(t)=0T(t_{*})=0.
Similarly, assuming that x2(t)=0x_{2}(t_{*})=0, as hypothesized, g2(T,I,V)g_{2}(T,I,V) is positive on [t0,t][t_{0},t_{*}], it follows that

I˙Ih2(T,I,V).\dot{I}\geq-Ih_{2}(T,I,V).

Thus,

ddt(logI)h1(T,I,V).\frac{d}{dt}(\log I)\geq-h_{1}(T,I,V).

Yet (T,I,V)(T,I,V) is a solution of system (4); TT, II, VV are class C1C^{1} functions. They are therefore continuous on [t0,t][t_{0},t_{*}] and consequently are bounded on [t0,t][t_{0},t_{*}].
Therefore h2(T,I,V)h_{2}(T,I,V) is bounded on [t0,t][t_{0},t_{*}].
Thus, there exists a constant λ>0\lambda>0 such that

ddt(logI)h2(T,I,V)>λ.\frac{d}{dt}(\log I)\geq-h_{2}(T,I,V)>-\lambda.

Integrating, the last expression on [t0,t][t_{0},t_{*}], yields

logI(t)logI(t0)λ(tt0).\log I(t_{*})-\log I(t_{0})\geq-\lambda(t_{*}-t_{0}).

Therefore

I(t)I(t0)eλ(tt0)>0.I(t_{*})\geq I(t_{0})e^{-\lambda(t_{*}-t_{0})}>0.

This is a contradiction because I(t)=0I(t_{*})=0.
As far as that goes, assuming that x3(t)=0x_{3}(t_{*})=0.
By hypothesis, g3(T,I,V)g_{3}(T,I,V) is positive on [t0,t][t_{0},t_{*}], we obtain VVc.V\geq-Vc. i.e

ddt(logI)c.\frac{d}{dt}(\log I)\geq-c.

Hence integrating on [t0,t][t_{0},t_{*}] we obtain

V(t)V(t0)ek(tt0)>0.V(t_{*})\geq V(t_{0})e^{-k(t_{*}-t_{0})}>0.

This is a contraction.
Conclusion: TT, II, VV are positive on [t0,t1[[t_{0},t_{1}[.   
It will now be shown, with the help of the continuation criterion the existence of global solutions of problem (4), (5).

2.3.3 Existence of global solutions

Theorem 2.3

The solutions of the Cauchy problem (4), (5), with positive initial data, exist globally in time in the future that is on [t0,+[[t_{0},+\infty[.

Proof. To prove this it is enough to show that all variables are bounded on an arbitrary finite interval [t0;t)[t_{0};t). Using the positivity, by the theorem 2.2, of the solutions it is enough to show that all variables are bounded above.
Taking the sum of equations (1), (2) shows that :

ddt(T+I)λ\frac{d}{dt}(T+I)\leq\lambda

and hence that T(t)+I(t)T0+I0+λ(tt0)T(t)+I(t)\leq T_{0}+I_{0}+\lambda(t-t_{0}). Thus TT and II are bounded on any finite interval. The third equation, i.e.

dVdt=(1ε)pIcV,\frac{dV}{dt}=(1-\varepsilon)pI-cV,

then shows that V(t)V(t) cannot grow faster than linearly and is also bounded on any finite interval. This completes the proof of this theorem.   

2.3.4 Asymptotic behaviour

Theorem 2.4

For any positive solution (T,I,V)(T,I,V) of system (4), (5) we have :

T(t)T~0,I(t)T~0andV(t)λ0T(t)\leq\tilde{T}_{0}\;\;,I(t)\leq\tilde{T}_{0}\;\;and\;\;V(t)\leq\lambda_{0}

where

T~0=Tmax2rI((rTdT)2+4srITmax+rTdT),λ0=λ0=max{V0,(1ε)cpT0~}.\tilde{T}_{0}=\frac{T_{max}}{2r_{I}}\left(\sqrt{(r_{T}-d_{T})^{2}+\frac{4sr_{I}}{T_{max}}}+r_{T}-d_{T}\right),\lambda_{0}=\lambda_{0}=\max\Big{\{}V_{0},\frac{(1-\varepsilon)}{c}p\tilde{T_{0}}\Big{\}}.

Proof. Summing equations (1) and (2), we get:

ddt(T+I)\displaystyle\frac{d}{dt}(T+I) =\displaystyle= s+(1T+ITmax)(rTTrII)dTTdII,\displaystyle s+\left(1-\frac{T+I}{T_{max}}\right)\left(r_{T}T-r_{I}I\right)-d_{T}T-d_{I}I,
=\displaystyle= s+rTTrIIdTTdIIT+ITmax,\displaystyle s+r_{T}T-r_{I}I-d_{T}T-d_{I}I-\frac{T+I}{T_{max}},
=\displaystyle= s+(rTdT)T+(rIdI)IT+ITmax(rTT+rII),\displaystyle s+\left(r_{T}-d_{T}\right)T+\left(r_{I}-d_{I}\right)I-\frac{T+I}{T_{max}}(r_{T}T+r_{I}I),
\displaystyle\leqslant s+(rTdT)(T+I)T+ITmax(rTT+rII)sincerTdTrIdI,\displaystyle s+\left(r_{T}-d_{T}\right)(T+I)-\frac{T+I}{T_{max}}(r_{T}T+r_{I}I)\quad\ \hbox{since}\quad\ r_{T}-d_{T}\geq r_{I}-d_{I},
thusddt(T+I)\displaystyle\mbox{thus}\;\frac{d}{dt}(T+I) \displaystyle\leqslant s+(rTdT)(T+I)rITmax(T+I)2sincerIrT.\displaystyle s+\left(r_{T}-d_{T}\right)(T+I)-\frac{r_{I}}{T_{max}}(T+I)^{2}\quad\ \hbox{since}\quad r_{I}\leqslant r_{T}.

Let N1=T+IN_{1}=T+I, a=s>0a=s>0, b=(rTdT)>0b=\left(r_{T}-d_{T}\right)>0, d=rITmax<0d=-\frac{r_{I}}{T_{max}}<0 and let us solve the following equation

dN1dt=a+bN1+dN12\frac{dN_{1}}{dt}=a+bN_{1}+dN_{1}^{2} (9)

Coupled to equation (9) the initial condition :

N1(t0)=N10.N_{1}(t_{0})=N_{1}^{0}. (10)

The resolution of the problem (9), (10) gives for all t[t0,+[t\in[t_{0},+\infty[,

N1(t)=12d[tanh(124ad+b212t04ad+b2arctan(2N10+b4ad+b2))4ad+b2]b2d.N_{1}(t)=-\frac{1}{2d}\biggl{[}\tanh\biggl{(}\frac{1}{2}\sqrt{-4ad+b^{2}}-\frac{1}{2}t_{0}\sqrt{-4ad+b^{2}}-\arctan\left(\frac{2N_{1}^{0}+b}{\sqrt{-4ad+b^{2}}}\right)\biggr{)}\sqrt{-4ad+b^{2}}\biggr{]}-\frac{b}{2d}.

As for all x,1tanhx1x\in\mathbb{R},-1\leqslant\tanh x\leqslant 1, it follows that :

N1(t)12d(4ad+b2+b)N_{1}(t)\leqslant-\frac{1}{2d}\left(\sqrt{-4ad+b^{2}}+b\right)

i.e.

N1(t)Tmax2rI((rTdT)2+4srITmax+rTdT).N_{1}(t)\leqslant\frac{T_{max}}{2r_{I}}\left(\sqrt{(r_{T}-d_{T})^{2}+\frac{4sr_{I}}{T_{max}}}+r_{T}-d_{T}\right).

Let

T~0=Tmax2rI((rTdT)2+4srITmax+rTdT),\tilde{T}_{0}=\frac{T_{max}}{2r_{I}}\left(\sqrt{(r_{T}-d_{T})^{2}+\frac{4sr_{I}}{T_{max}}}+r_{T}-d_{T}\right),

we obtain :

N1(t)T~0.N_{1}(t)\leqslant\tilde{T}_{0}.

Therefore

T+IT~0.T+I\leqslant\tilde{T}_{0}.

Since T and I are positive IT+II\leqslant T+I and TT+IT\leqslant T+I, so it follows that T(t)T~0T(t)\leqslant\tilde{T}_{0} and I(t)T~0I(t)\leqslant\tilde{T}_{0}.
From (3), we have:

dVdt\displaystyle\frac{dV}{dt} \displaystyle\leqslant (1ε)p(T+I)cV,\displaystyle(1-\varepsilon)p(T+I)-cV,
\displaystyle\leqslant (1ε)pT0~cVsinceT+IT0~.\displaystyle(1-\varepsilon)p\tilde{T_{0}}-cV\quad\ \hbox{since}\quad\ T+I\leqslant\tilde{T_{0}}.

According to Gronwall inequality,

V(t)\displaystyle V(t) \displaystyle\leqslant V(t0)ec(tt0)+t0t(1ε)pT0~eutcds𝑑u,\displaystyle V(t_{0})e^{-c(t-t_{0})}+\int_{t_{0}}^{t}(1-\varepsilon)p\tilde{T_{0}}e^{\int_{u}^{t}-cds}du,
\displaystyle\leqslant V0ec(tt0)+(1ε)pT0~t0tec(tu)𝑑u,\displaystyle V_{0}e^{-c(t-t_{0})}+(1-\varepsilon)p\tilde{T_{0}}\int_{t_{0}}^{t}e^{-c(t-u)}du,
V(t)\displaystyle V(t) \displaystyle\leqslant V0ec(tt0)+(1ε)pT0~ec(tt)ec(tt0)c,\displaystyle V_{0}e^{-c(t-t_{0})}+(1-\varepsilon)p\tilde{T_{0}}\frac{e^{-c(t-t)}-e^{-c(t-t_{0})}}{c},
\displaystyle\leqslant V0ec(tt0)+(1ε)pT0~1ec(tt0)c,\displaystyle V_{0}e^{-c(t-t_{0})}+(1-\varepsilon)p\tilde{T_{0}}\frac{1-e^{-c(t-t_{0})}}{c},
\displaystyle\leqslant λ0(ec(tt0)+1ec(tt0))\displaystyle\lambda_{0}\Big{(}e^{-c(t-t_{0})}+1-e^{-c(t-t_{0})}\Big{)}
V(t)\displaystyle V(t) \displaystyle\leqslant λ0.\displaystyle\lambda_{0}.

with

λ0=max{V0,(1ε)cpT0~}.\lambda_{0}=\max\Big{\{}V_{0},\frac{(1-\varepsilon)}{c}p\tilde{T_{0}}\Big{\}}.

This completes the proof of theorem 2.4.   

Remark 2

It follows that all solutions of the system (4) are asymptotically uniformly bounded in compact subset Ω\Omega defined by

Ω={(T,I,V);0<T+IT0~;0<Vλ0}.\Omega=\left\{(T,I,V)\in\mathbb{R};0<T+I\leqslant\tilde{T_{0}};\quad 0<V\leqslant\lambda_{0}\right\}.
Remark 3

Theorem 2.4 shows that all solutions of model (4) in +3\mathds{R}^{3}_{+} are ultimately bounded and according to theorem 2.2, that solutions with positive initial value conditions are positive, which indicates that model (4) is well-posed and biologically valid.

2.4 Basic reproduction ratio 0\mathcal{R}_{0}

One of the most important concerns about any infectious disease is its ability to invade a population. Many epidemiological models have a disease free equilibrium (DFE) at which the population remains in the absence of disease. These models usually have a threshold parameter, known as the basic reproduction number, 0\mathcal{R}_{0}, such that if 0<1\mathcal{R}_{0}<1, then the DFE is locally asymptotically stable, and the disease cannot invade the population, but if 0>1\mathcal{R}_{0}>1, then the DFE is unstable and invasion is always possible. In other words, we have the following definition :

Definition 2.5

[9] The basic reproduction ratio or the basic reproduction number or basic reproductive ratio 0\mathcal{R}_{0} is defined as the expected number of secondary cases produced, in a completely susceptible population, by a typical infected individual during its entire period of infectiousness.

Determine 0\mathcal{R}_{0} in function of the parameters of the model allow us to guess the conditions under which the disease invade the population.

2.4.1 Determination of the uninfected equilibrium or virus-free equilibrium or noninfected equilibrium

Proposition 2.6

The uninfected equilibrium point E0E^{0} of the system (4) is given by

E0=(T0,0,0)E^{0}=(T^{0},0,0)

where :

T0=Tmax2rT(rTdT+(rTdT)2+4rTsTmax).T^{0}=\frac{T_{max}}{2r_{T}}\left(r_{T}-d_{T}+\sqrt{(r_{T}-d_{T})^{2}+\frac{4r_{T}s}{T_{max}}}\right).

Proof. When there is no viral infection, the uninfected hepatocytes dynamic is determined by :

dTdt=s+rTT(1TTmax)dTT.\frac{dT}{dt}=s+r_{T}T\left(1-\frac{T}{T_{max}}\right)-d_{T}T. (11)

The quantity T0T^{0} of the free-virus equilibrium point E0E^{0} is solution of the equation dTdt=0\frac{dT}{dt}=0.
Hence, let us solve the following equation :

rTTmaxT2+(rTdT)T+s=0.-\frac{r_{T}}{T_{max}}T^{2}+(r_{T}-d_{T})T+s=0.

Its discriminant is given by :

Δ=(rTdT)2+4rTTmaxs,\Delta=(r_{T}-d_{T})^{2}+4\frac{r_{T}}{T_{max}}s,

which yields :

T=dTrT(rTdT)2+4rTTmaxs2rTTmax.T=\frac{d_{T}-r_{T}-\sqrt{(r_{T}-d_{T})^{2}+4\frac{r_{T}}{T_{max}}s}}{2\frac{r_{T}}{T_{max}}}.

Thus, in the absence of viral infection, the amount of susceptible cells or uninfected hepatocytes attend to a positive constant level T0T^{0}, which is :

T0=Tmax2rT(rTdT+(rTdT)2+4rTTmaxs).T^{0}=\frac{T_{max}}{2r_{T}}\left(r_{T}-d_{T}+\sqrt{(r_{T}-d_{T})^{2}+4\frac{r_{T}}{T_{max}}s}\right).

This completes the proof.   

2.4.2 Computation of the basic reproduction number 0\mathcal{R}_{0}

We are going to use Van Den Driessche and Watmough method [9, 21] for calculating the basic reproduction ratio 0\mathcal{R}_{0} of the model (4).
Let us first present briefly the method.
Considering population whose population are grouped into nn homogeneous compartments X=(X1,X2,,Xn)X=(X_{1},X_{2},...,X_{n}) where Xi0X_{i}\geq 0 is the number of individuals in compartment ii. For clarity we sort the compartments XiX_{i}, i=1,,ni=1,...,n so that the first mm (mn)(m\leqslant n) compartments correspond to infected individuals. The distinction between infected and uninfected compartments must be determined from the epidemiological interpretation of the model and cannot be deduced from the structure of the equations alone.
We define XsX_{s} to be the set of all disease free states. That is :

Xs={X0/X1=X2=.=Xm=0}.X_{s}=\left\{X\geq 0/X_{1}=X_{2}=....=X_{m}=0\right\}.

Let Fi(X)F_{i}(X) be the rate of appearance of new infections in compartment ii that is the infected individuals coming from other compartments and enter into ii.
Vi+V_{i}^{+} be the rate of transfer of individuals into compartment ii by all other means (displacement, healing, aging).
ViV_{i}^{-} be the rate of transfer of individuals out of compartment ii (mortality, change of statut).
It is assumed that each function is continuously differentiable at least twice in each variable.
Figure 3 below shows the variations of the number of individuals in compartment ii in a population.

Refer to caption
Figure 3: variation of the number of individuals in compartment ii in a population

The variation of the number of individuals in compartment ii is given by :

dXidt=Fi(X)Vi(X)\frac{dX_{i}}{dt}=F_{i}(X)-V_{i}(X)

where

Vi(X)=Vi(X)Vi+(X).V_{i}(X)=V_{i}^{-}(X)-V_{i}^{+}(X).

Due to the nature of the epidemiological model, we have the following properties :

  1. P1)P_{1})

    If Xi0X_{i}\geq 0 then Fi(X)0F_{i}(X)\geq 0, Vi(X)0V_{i}^{-}(X)\geq 0 and Vi+(X)0V_{i}^{+}(X)\geq 0.
    Since each function represents a directed transfer of individuals.

  2. P2)P_{2})

    If Xi=0X_{i}=0 then Vi(X)=0V_{i}^{-}(X)=0.
    Indeed, If a compartment is empty, then there can be no transfer of individuals out of the compartment by death, infection, nor any other means : it is the essential property of a compartmental model.

  3. P3)P_{3})

    Pour i>mi>m, Fi(X)=0F_{i}(X)=0.
    In fact, the compartments with an index greater than mm are ”uninfected”. By definition, it can not appear in these compartments infected individual.

  4. P4)P_{4})

    Si XXsX\in X_{s} alors Fi(X)=0F_{i}(X)=0 et pour imi\leqslant m, Vi+(X)=0V_{i}^{+}(X)=0.
    Indeed, to ensure that the disease free subspace is invariant, we assume that if the population is free of disease then the population will remain free of disease. That is, there is no (density independent) immigration of infectives. This is Lavoisier’s principle. There is no spontaneous generation.

Let F=(Fi)i=1,,nF=(F_{i})_{i=1,...,n} and V=V+V=(Vi+Vi)i=1,..,nV=V^{+}-V^{-}=(V_{i}^{+}-V_{i}^{-})_{i=1,.....,n}.
Let also x0x^{0} the uninfected equilibrium point of the corresponding model.
Let DF(x0)DF(x^{0}) and DV(x0)DV(x^{0}) denote the jacobian matrices of F and V respectively at the point x0x^{0}.
It follows that DF(x0)DF(x^{0}) is a positive matrix and DV(x0)DV(x^{0}) a Metzler matrix (matrix whose the extra diagonal terms are greater or equal than zero ). Thus we have the following equivalent definition of 0\mathcal{R}_{0} :

Definition 2.7

[9, 21]

0=ρ(DF.DV1)\mathcal{R}_{0}=\rho(-DF.DV^{-1})

where ρ\rho represents the spectral radius. i.e

0=max|λ|\mathcal{R}_{0}=\max|\lambda|

with

λsp(DF.DV1),\lambda\in sp(-DF.DV^{-1}),

where sp(A)sp(A) is the spectrum of AA, i.e. the set of eigenvalues associated to a matrix A.A.

2.4.3 Expression of the basic reproduction number 0\mathcal{R}_{0} associated to the system (4)

Proposition 2.8

The expression of the basic reproduction number 0\mathcal{R}_{0} associated to the system (4) is given by :

0=rIdI+q(1T0Tmax)+(1θ)βT0pc(dI+q).\mathcal{R}_{0}=\frac{r_{I}}{d_{I}+q}\left(1-\frac{T^{0}}{T_{max}}\right)+\frac{(1-\theta)\beta T^{0}p}{c(d_{I}+q)}. (12)

where

1θ=(1ε)(1η).1-\theta=(1-\varepsilon)(1-\eta).

Proof. Concerning the model (4) that we study here, the system of infected states is the following :

{dIdt=rII(1T+ITmax)+(1η)βVTdIIqIdVdt=(1ε)pIcV\left\{\begin{array}[]{lcr}\dfrac{dI}{dt}=r_{I}I\left(1-\dfrac{T+I}{T_{max}}\right)+(1-\eta)\beta VT-d_{I}I-qI\\ \\ \dfrac{dV}{dt}=(1-\varepsilon)pI-cV\end{array}\right.

The expression of the quantities FF, VV, DF(E0)DF(E^{0}), DV(E0)DV(E^{0}) and DV1(E0)DV^{-1}(E^{0}) are given by:
F=(rII(1T+ITmax)+(1η)βVT0)F=\begin{pmatrix}r_{I}I\left(1-\frac{T+I}{T_{max}}\right)+(1-\eta)\beta VT\\ \\ 0\end{pmatrix}, V=((dIq)I(1ε)pIcV)V=\begin{pmatrix}(-d_{I}-q)I\\ \\ (1-\varepsilon)pI-cV\end{pmatrix},
DF(E0)=(rI(1T0Tmax)(1η)βVT000)DF(E^{0})=\begin{pmatrix}r_{I}\left(1-\frac{T^{0}}{T_{max}}\right)\quad&(1-\eta)\beta VT^{0}\\ \\ 0\quad&0\end{pmatrix}, DV(E0)=(dIq0(1ε)pc)DV(E^{0})=\begin{pmatrix}-d_{I}-q\quad&0\\ \\ (1-\varepsilon)p\quad&-c\end{pmatrix},
DV1=(1dI+q0(1ε)pc(dI+q)1c).DV^{-1}=\begin{pmatrix}\frac{-1}{d_{I}+q}\quad&0\\ \\ \frac{-(1-\varepsilon)p}{c(d_{I}+q)}\quad&-\frac{1}{c}\end{pmatrix}.

From those quantities, we obtain:

DF.DV1=(rI(1TTmax)(1η)βVT000)DF.DV^{-1}=\begin{pmatrix}-r_{I}\left(1-\frac{T^{\circ}}{T_{max}}\right)\quad&-(1-\eta)\beta VT^{0}\\ \\ 0\quad&0\end{pmatrix} (1dI+q0(1ε)pc(dI+q)1c)\begin{pmatrix}\frac{-1}{d_{I}+q}\quad&0\\ \\ \frac{-(1-\varepsilon)p}{c(d_{I}+q)}\quad&-\frac{1}{c}\end{pmatrix}

= (rIdI+q(1T0Tmax)+(1ε)(1η)βT0pc(dI+q)(1η)βT0c00)\begin{pmatrix}\frac{r_{I}}{d_{I}+q}\left(1-\frac{T^{0}}{T_{max}}\right)+\frac{(1-\varepsilon)(1-\eta)\beta T^{0}p}{c(d_{I}+q)}\quad&\frac{(1-\eta)\beta T^{0}}{c}\\ \\ 0\quad&0\end{pmatrix}.

Let 1θ=(1ε)(1η)1-\theta=(1-\varepsilon)(1-\eta). It follows that :

|DF.DV1λI2|=0\displaystyle|-DF.DV^{-1}-\lambda I_{2}|=0 \displaystyle\Leftrightarrow λ(rIdI+q(1T0Tmax)+(1θ)βT0pc(dI+q)λ)=0\displaystyle-\lambda\left(\frac{r_{I}}{d}_{I}+q\left(1-\frac{T^{0}}{T_{max}}\right)+\frac{(1-\theta)\beta T^{0}p}{c(d_{I}+q)}-\lambda\right)=0
\displaystyle\Leftrightarrow λ=0ouλ=rIdI+q(1T0Tmax)+(1θ)βT0pc(dI+q).\displaystyle\lambda=0\;\;\mbox{ou}\;\;\lambda=\frac{r_{I}}{d}_{I}+q\left(1-\frac{T^{0}}{T_{max}}\right)+\frac{(1-\theta)\beta T^{0}p}{c(d_{I}+q)}.

Therefore :

0=rIdI+q(1T0Tmax)+(1θ)βT0pc(dI+q),\mathcal{R}_{0}=\frac{r_{I}}{d_{I}+q}\left(1-\frac{T^{0}}{T_{max}}\right)+\frac{(1-\theta)\beta T^{0}p}{c(d_{I}+q)},\\

which completes the proof of the proposition.   

Remark 4

θ]0,1[\theta\in]0,1[ denotes the overall effectiveness rate of the drug .

Remark 5

Henceforth, we will let δ=dI+q\delta=d_{I}+q and 1θ=(1ε)(1η)1-\theta=(1-\varepsilon)(1-\eta).

At the end of this section, we note that HCV is a major health problem in the world and particularly in Cameroon where it affects almost 13% of population.
For the model (4) which is the subject of our work, we have shown the existence of the global solution and establish some properties like positivity. The calculation of 0\mathcal{R}_{0} has been done.

In the next section, we will determine the infected equilibrium point and establish the conditions on 0\mathcal{R}_{0} for which stability of the model occurs.

3 Stability analysis of the model

In this section, we study the local stability and global stability of the equilibrium points and we present some numerical simulations of the theoretical results obtained. Specifically, we prove by Lyapunov’s theory that the uninfected equilibrium point E0E^{0} is globally asymptotically stable if 0<1qδ\mathcal{R}_{0}<1-\frac{q}{\delta} and the infected equilibrium point EE^{\ast} is globally asymptotically stable when it exists.
Before that we establish a number of essential preliminary results for the next steps

3.1 Invariant set of the model

Theorem 3.1

Let (t0,S0=(T0,I0,V0))×+3(t_{0},S_{0}=(T_{0},I_{0},V_{0}))\in\mathds{R}\times\mathds{R}^{3}_{+} and ([t0,T[,S=(T,I,V))([t_{0},T[,S=(T,I,V)) be a maximal solution of the Cauchy problem (4), (5) (T]t0,+[T\in]t_{0},+\infty[). If T(t0)+I(t0)T~0T(t_{0})+I(t_{0})\leq\tilde{T}_{0} and V(t0)λ0V(t_{0})\leq\lambda_{0} then the set :

Ω={(T,I,V);0<T+IT~0;0<Vλ0},\Omega=\left\{(T,I,V)\in\mathbb{R};0<T+I\leqslant\tilde{T}_{0};\quad 0<V\leqslant\lambda_{0}\right\},

where :

T~0=Tmax2rI((rTdT)2+4srITmax+rTdT),andλ0max{V0,(1ε)cpT~0},\tilde{T}_{0}=\frac{T_{max}}{2r_{I}}\left(\sqrt{(r_{T}-d_{T})^{2}+\frac{4sr_{I}}{T_{max}}}+r_{T}-d_{T}\right),\;\;\mbox{and}\;\;\lambda_{0}\max\Big{\{}V_{0},\frac{(1-\varepsilon)}{c}p\tilde{T}_{0}\Big{\}},

is a positively invariant set by system (4).

Proof. Let t1[t0,T[t_{1}\in[t_{0},T[. We shall show that :

  1. (i)

    If T(t1)+I(t1)T~0T(t_{1})+I(t_{1})\leq\tilde{T}_{0} then for all t1t<Tt_{1}\leq t<T, T(t)+I(t)T~0T(t)+I(t)\leq\tilde{T}_{0}.

  2. (ii)

    If V(t1)λ0V(t_{1})\leq\lambda_{0} then for all t1t<Tt_{1}\leq t<T, V(t)λ0V(t)\leq\lambda_{0}.

  1. i)

    Let us show i) by contradiction.
    Let us suppose that there exists ε1>0\varepsilon_{1}>0 such that t1<t1+ε1<+t_{1}<t_{1}+\varepsilon_{1}<+\infty we have

    (T+I)(t1+ε1)>T0.(T+I)(t_{1}+\varepsilon_{1})>T_{0}.

    Let t1=inf{tt1;(T+I)(t1+ε1)>T0}.t_{1}^{\ast}=inf\{t\geq t_{1};(T+I)(t_{1}+\varepsilon_{1})>T_{0}\}.
    If (T+I)(t1)=T0,(T+I)(t_{1}^{\ast})=T_{0}, then since

    (T+I)(t)=T0+ddt(T(t1)+I(t1))(tt1)+o(tt1)(T+I)(t)=T_{0}+\frac{d}{dt}\left(T(t_{1}^{\ast})+I(t_{1}^{\ast})\right)(t-t_{1}^{\ast})+o(t-t_{1}^{\ast})

    when tt1t\rightarrow t_{1}^{\ast}. In addition, according to equations (1) and (2) of system (4), we have

    ddt((T+I)(t1))s+(rTdT)T0rITmaxT02.\frac{d}{dt}\left((T+I)(t_{1}^{\ast})\right)\leq s+(r_{T}-d_{T})T_{0}-\frac{r_{I}}{T_{max}}T_{0}^{2}.

    Recall that

    s+(rTdT)T0rITmaxT02=0.s+(r_{T}-d_{T})T_{0}-\frac{r_{I}}{T_{max}}T_{0}^{2}=0.

    It follows that :

    ddt((T+I)(t1))0.\frac{d}{dt}\left((T+I)(t_{1}^{\ast})\right)\leq 0.

    Hence, there exists ε~>0\tilde{\varepsilon}>0 such that for all t[t1,t1+ε[t\in[t_{1}^{\ast},t_{1}^{\ast}+\varepsilon[, (T+I)(t)T0,(T+I)(t)\leq T_{0}, which is a contradiction. Therefore for all t[t0,+[t\in[t_{0},+\infty[, (T+I)(t)T0(T+I)(t)\leq T_{0}.

  2. ii)

    Let us show ii) by contradiction.
    Let us suppose that there exists ε1>0\varepsilon_{1}>0 such that t1<t1+ε1<+t_{1}<t_{1}+\varepsilon_{1}<+\infty and

    T(t1+ε1)>λ0.T(t_{1}+\varepsilon_{1})>\lambda_{0}.

    Let t2=inf{tt1;V(t)>λ0}t_{2}^{\ast}=inf\{t\geq t_{1};V(t)>\lambda_{0}\}.
    Since V(t2)=λ0V(t_{2}^{\ast})=\lambda_{0}, since:

    V(t)=λ0+dVdt(t2)(tt2)+o(tt2)V(t)=\lambda_{0}+\frac{dV}{dt}(t_{2}^{\ast})(t-t_{2}^{\ast})+o(t-t_{2}^{\ast})

    with when tt2t\rightarrow t_{2}^{\ast}.
    Equation (3) yields :

    ddt(V(t2))\displaystyle\frac{d}{dt}(V(t_{2}^{\ast})) \displaystyle\leq (1ε)p(I+T)(t2)cV(t2)\displaystyle(1-\varepsilon)p(I+T)(t_{2}^{\ast})-cV(t_{2}^{\ast})
    \displaystyle\leq (1ε)pT0cλ0;\displaystyle(1-\varepsilon)pT_{0}-c\lambda_{0};\quad

    yet

    λ0=max{V0,(1ε)pT0c};\lambda_{0}=\max\left\{V_{0},\frac{(1-\varepsilon)pT_{0}}{c}\right\};

    consequently

    ddt(V(t2))\displaystyle\frac{d}{dt}(V(t_{2}^{\ast})) \displaystyle\leq (1ε)pT0c(1ε)pT0c\displaystyle(1-\varepsilon)pT_{0}-c\frac{(1-\varepsilon)pT_{0}}{c}
    \displaystyle\leq 0.\displaystyle 0.

    Thus, there exists ε~>0\tilde{\varepsilon}>0 such that for all t2tt2+εt_{2}^{\ast}\leq t\leq t_{2}^{\ast}+\varepsilon, V(t)λ0V(t)\leq\lambda_{0} which is a contradiction. Therefore for all t[t0,+[t\in[t_{0},+\infty[, V(t)λ0.V(t)\leq\lambda_{0}. Which completes the proof of Theorem 3.1.

 

3.2 Existence of the infected equilibrium point

When it exists, the infected equilibrium point is given by: E=(T,I,V)E^{\ast}=(T^{\ast},I^{\ast},V^{\ast}) where TT^{\ast}, II^{\ast} and VV^{\ast} are positive constants that we are going to determine.

Lemma 3.2

TT^{\ast} exists if and only if

s+qTmaxrI(rIδ)>0.s+q\frac{T_{max}}{r_{I}}(r_{I}-\delta)>0.

Proof. Let us consider the following system of algebraic equations :

s+rTT(1T+ITmax)dTT(1η)βVT+qI=0;\displaystyle s+r_{T}T\left(1-\frac{T+I}{T_{max}}\right)-d_{T}T-(1-\eta)\beta VT+qI=0; (13)
rII(1T+ITmax)dII(1η)βVTqI=0;\displaystyle r_{I}I\left(1-\frac{T+I}{T_{max}}\right)-d_{I}I-(1-\eta)\beta VT-qI=0; (14)
(1ε)pIcV=0.\displaystyle(1-\varepsilon)pI-cV=0. (15)

(15) yields :

V=(1ε)pIc.V=\frac{(1-\varepsilon)pI}{c}. (16)

Reporting (16) in (14), we have :

rII(1T+ITmax)+(1η)(1ε)βpITcδI=0.r_{I}I\left(1-\frac{T+I}{T_{max}}\right)+\frac{(1-\eta)(1-\varepsilon)\beta pIT}{c}-\delta I=0.

Hence

rI(1T+ITmax)+(1θ)βpTcδ=0sinceI0(there is an infection)r_{I}\left(1-\frac{T+I}{T_{max}}\right)+\frac{(1-\theta)\beta pT}{c}-\delta=0\;\;\mbox{since}\;\;I\neq 0\;\;\mbox{(there is an infection)}

i.e

rIITmax=(1θ)βpTcδrI(1TTmax).\frac{r_{I}I}{T_{max}}=\frac{(1-\theta)\beta pT}{c}-\delta r_{I}\left(1-\frac{T}{T_{max}}\right).

It follows that :

I=((1θ)βpTmaxcrI1)T+TmaxrI(rIδ).I=\left(\frac{(1-\theta)\beta pT_{max}}{cr_{I}}-1\right)T+\frac{T_{max}}{r_{I}}(r_{I}-\delta). (17)

Let

g1(T)=qI=q((1θ)βpTmaxcrI1)T+qTmaxrI(rIδ).g_{1}(T)=qI=q\left(\frac{(1-\theta)\beta pT_{max}}{cr_{I}}-1\right)T+q\frac{T_{max}}{r_{I}}(r_{I}-\delta). (18)

Reporting (16) and (17) in (13) leads to :

s+rTT(1TTmax)rTTTmax(((1θ)βpTmaxcrI1)T+TmaxrI(rIδ))dTT\displaystyle s+r_{T}T\left(1-\frac{T}{T_{max}}\right)-\frac{r_{T}T}{T_{max}}\left(\left(\frac{(1-\theta)\beta pT_{max}}{cr_{I}}-1\right)T+\frac{T_{max}}{r_{I}}(r_{I}-\delta)\right)-d_{T}T
(1η)βT(1ε)pc(((1θ)βpTmaxcrI1)T+TmaxrI(rIδ))\displaystyle-(1-\eta)\beta T\frac{(1-\varepsilon)p}{c}\left(\left(\frac{(1-\theta)\beta pT_{max}}{cr_{I}}-1\right)T+\frac{T_{max}}{r_{I}}(r_{I}-\delta)\right)
+q(((1θ)βpTmaxcrI1)T+TmaxrI(rIδ))=0\displaystyle+q\left(\left(\frac{(1-\theta)\beta pT_{max}}{cr_{I}}-1\right)T+\frac{T_{max}}{r_{I}}(r_{I}-\delta)\right)=0

i.e.

s+T(rTdTrTrI(rIδ)(1θ)βpTmaxcrI(rIδ))(1θ)βpc(rTrI+(1θ)βpTmaxcrI1)T2\displaystyle s+T\left(r_{T}-d_{T}-\frac{r_{T}}{r_{I}}(r_{I}-\delta)-\frac{(1-\theta)\beta pT_{max}}{cr_{I}}(r_{I}-\delta)\right)-\frac{(1-\theta)\beta p}{c}\Bigl{(}\frac{r_{T}}{r_{I}}+\frac{(1-\theta)\beta pT_{max}}{cr_{I}}-1\Bigr{)}T^{2}
+q((1θ)βpTmaxcrI1)T+qTmaxrI(rIδ)=0.\displaystyle+q\left(\frac{(1-\theta)\beta pT_{max}}{cr_{I}}-1\right)T+q\frac{T_{max}}{r_{I}}(r_{I}-\delta)=0.

Thus ,

s+qTmaxrI(rIδ)+T(rTdTrTrI(rIδ)(1θ)βpTmaxcrI(rIδ)+q((1θ)βpTmaxcrI1))\displaystyle s+q\frac{T_{max}}{r_{I}}(r_{I}-\delta)+T\biggl{(}r_{T}-d_{T}-\frac{r_{T}}{r_{I}}(r_{I}-\delta)-\frac{(1-\theta)\beta pT_{max}}{cr_{I}}(r_{I}-\delta)+q\left(\frac{(1-\theta)\beta pT_{max}}{cr_{I}}-1\right)\biggr{)}
(1θ)βpc(rTrI+(1θ)βpTmaxcrI1)T2=0.\displaystyle-\frac{(1-\theta)\beta p}{c}\left(\frac{r_{T}}{r_{I}}+\frac{(1-\theta)\beta pT_{max}}{cr_{I}}-1\right)T^{2}=0.

It follows that,

s+qTmaxrI(rIδ)+T(rTδrTrI(rIδ)(1θ)βpTmaxcrI(rIδ)+(1θ)βpTmaxcrIq)\displaystyle s+q\frac{T_{max}}{r_{I}}(r_{I}-\delta)+T\Bigl{(}r_{T}-\delta-\frac{r_{T}}{r_{I}}(r_{I}-\delta)-\frac{(1-\theta)\beta pT_{max}}{cr_{I}}(r_{I}-\delta)+\frac{(1-\theta)\beta pT_{max}}{cr_{I}}q\Bigr{)}
(1θ)βpc(rTrI+(1θ)βpTmaxcrI1)T2=0.\displaystyle-\frac{(1-\theta)\beta p}{c}\left(\frac{r_{T}}{r_{I}}+\frac{(1-\theta)\beta pT_{max}}{cr_{I}}-1\right)T^{2}=0.

Let

h2(T)\displaystyle h_{2}(T) =\displaystyle= s+qTmaxrI(rIδ)+T(rTδrTrI(rIδ)(1θ)βpTmaxcrI(rIδ)+(1θ)βpTmaxcrIq)\displaystyle s+q\frac{T_{max}}{r_{I}}(r_{I}-\delta)+T\Bigl{(}r_{T}-\delta-\frac{r_{T}}{r_{I}}(r_{I}-\delta)-\frac{(1-\theta)\beta pT_{max}}{cr_{I}}(r_{I}-\delta)+\frac{(1-\theta)\beta pT_{max}}{cr_{I}}q\Bigr{)}
(1θ)βpc(rTrI+(1θ)βpTmaxcrI1)T2;\displaystyle-\frac{(1-\theta)\beta p}{c}\left(\frac{r_{T}}{r_{I}}+\frac{(1-\theta)\beta pT_{max}}{cr_{I}}-1\right)T^{2};

we have :

h2(T)=g2(T)+g1(T)h_{2}(T)=g_{2}(T)+g_{1}(T) (19)

with :

g2(T)=s+T(rTdTrTrI(rIδ)(1θ)βpTmaxcrI(rIδ))(1θ)βpc(rTrI+(1θ)βpTmaxcrI1)T2.g_{2}(T)=s+T\left(r_{T}-d_{T}-\frac{r_{T}}{r_{I}}(r_{I}-\delta)-\frac{(1-\theta)\beta pT_{max}}{cr_{I}}(r_{I}-\delta)\right)-\frac{(1-\theta)\beta p}{c}\left(\frac{r_{T}}{r_{I}}+\frac{(1-\theta)\beta pT_{max}}{cr_{I}}-1\right)T^{2}.

Since rIrTr_{I}\leq r_{T}, the polynomial (19) has a unique positive root TT^{\ast} if and only if :

s+qTmaxrI(rIδ)>0.s+q\frac{T_{max}}{r_{I}}(r_{I}-\delta)>0.

This completes the proof of Lemma 3.2.   
Suppose that δrI\delta\geq r_{I}, we have the following results :

Lemma 3.3

If (1θ)βpTmaxcrI>1\frac{(1-\theta)\beta pT_{max}}{cr_{I}}>1, then :

  1. i)

    TT1~T^{\ast}\leq\tilde{T_{1}} if and only if g1(T)0g_{1}(T^{\ast})\leq 0

  2. ii)

    T>T1~T^{\ast}>\tilde{T_{1}} if and only if g1(T)>0g_{1}(T^{\ast})>0.

Remark 6

T~1\tilde{T}_{1} of Lemma 3.3 is the solution of equation g1(T)=0,g_{1}(T)=0, i.e

T~1=c(δrI)Tmax(1θ)βpTmaxcrI.\tilde{T}_{1}=\frac{c(\delta-r_{I})T_{max}}{(1-\theta)\beta pT_{max}-cr_{I}}.
Proposition 3.4

Suppose that δrI\delta\geq r_{I}.

  • If (1θ)βpTmaxcrI1\frac{(1-\theta)\beta pT_{max}}{cr_{I}}\leq 1, then g1(T)0g_{1}(T^{\ast})\leq 0. Hence, system (4) admits no infected equilibrium point.

  • If (1θ)βpTmaxcrI>1\frac{(1-\theta)\beta pT_{max}}{cr_{I}}>1 then :

    1. i)

      system (4) admits no infected equilibrium point when TT1~T^{\ast}\leq\tilde{T_{1}}.

    2. ii)

      system (4) admits a unique infected equilibrium point EE^{\ast} when T>T1~T^{\ast}>\tilde{T_{1}}.

Lemma 3.5

T1~=(rIδ)T0rIδ0\tilde{T_{1}}=\frac{(r_{I}-\delta)T^{0}}{r_{I}-\delta\mathcal{R}_{0}}.

Proof. Since T~1\tilde{T}_{1} is the root of equation (18), we have :

T1~\displaystyle\tilde{T_{1}} =\displaystyle= c(rIδ)TmaxcrI(1θ)βpTmax\displaystyle\frac{c(r_{I}-\delta)T_{max}}{cr_{I}-(1-\theta)}\beta pT_{max}
=\displaystyle= (rIδ)(1rITmax(1θ)βpc)\displaystyle(r_{I}-\delta)\left(\frac{1}{\frac{r_{I}}{T_{max}}-\frac{(1-\theta)\beta p}{c}}\right)
=\displaystyle= (rIδ)(T0rIT0Tmax(1θ)βpT0c)\displaystyle(r_{I}-\delta)\left(\frac{T^{0}}{\frac{r_{I}T^{0}}{T_{max}}-\frac{(1-\theta)\beta pT^{0}}{c}}\right)
=\displaystyle= (rIδ)T0rIδ0.\displaystyle\frac{(r_{I}-\delta)T^{0}}{r_{I}-\delta\mathcal{R}_{0}}.
 
Lemma 3.6

(1θ)βpTmaxcrI1\frac{(1-\theta)\beta pT_{max}}{cr_{I}}\leq 1 if and only if 0rIδ\mathcal{R}_{0}\leq\frac{r_{I}}{\delta}.

Proof. We have :

(1θ)βpTmaxcrI1\displaystyle\frac{(1-\theta)\beta pT_{max}}{cr_{I}}\leq 1 \displaystyle\Leftrightarrow (1θ)βpcrITmax\displaystyle\frac{(1-\theta)\beta p}{c}\leq\frac{r_{I}}{T_{max}}
\displaystyle\Leftrightarrow (1θ)βpT0cδrIT0δTmax\displaystyle\frac{(1-\theta)\beta pT^{0}}{c\delta}\leq\frac{r_{I}T^{0}}{\delta T_{max}}
\displaystyle\Leftrightarrow (1θ)βpT0cδrIT0δTmax+rIδrIδ\displaystyle\frac{(1-\theta)\beta pT^{0}}{c\delta}-\frac{r_{I}T^{0}}{\delta T_{max}}+\frac{r_{I}}{\delta}\leq\frac{r_{I}}{\delta}
\displaystyle\Leftrightarrow 0rIδ.\displaystyle\mathcal{R}_{0}\leq\frac{r_{I}}{\delta}.
 

Since rIδ1\frac{r_{I}}{\delta}\leq 1, the equivalence of the Lemma 3.6 allows us to write 01\mathcal{R}_{0}\leq 1.
The following proposition establishes the link between 0\mathcal{R}_{0} and the existence of the equilibrium point EE^{\ast} when (1θ)βpTmaxcrI>1\frac{(1-\theta)\beta pT_{max}}{cr_{I}}>1.

Proposition 3.7

Suppose that TT^{\ast} exists, rIδr_{I}\leq\delta and (1θ)βpTmaxcrI>1\frac{(1-\theta)\beta pT_{max}}{cr_{I}}>1, then :

  1. i)

    T>T1~T^{\ast}>\tilde{T_{1}} if 0>1\mathcal{R}_{0}>1.

  2. ii)

    TT1~T^{\ast}\leq\tilde{T_{1}} if rIδ<01\frac{r_{I}}{\delta}<\mathcal{R}_{0}\leq 1.

Proof. Recall that T>T1~T^{\ast}>\tilde{T_{1}} if and only if h2(T1~)>0h_{2}(\tilde{T_{1}})>0 and TT1~T^{\ast}\leq\tilde{T_{1}} if and only if h2(T1~)0.h_{2}(\tilde{T_{1}})\leq 0.
Using the expression of h2(T)h_{2}(T) given in (19) we have :

h2(T1~)=g2(T1~).h_{2}(\tilde{T_{1}})=g_{2}(\tilde{T_{1}}).

Thus

h2(T1~)\displaystyle h_{2}(\tilde{T_{1}}) =\displaystyle= s+(δrI)T0δ0rI(rTdTrTrI(rIδ)(1θ)βpTmaxcrI(rIδ))\displaystyle s+\frac{(\delta-r_{I})T^{0}}{\delta\mathcal{R}_{0}-r_{I}}\left(r_{T}-d_{T}-\frac{r_{T}}{r_{I}}(r_{I}-\delta)-\frac{(1-\theta)\beta pT_{max}}{cr_{I}}(r_{I}-\delta)\right)
(1θ)βpc(rTrI+(1θ)βpTmaxcrI1)((δrI)T0δ0rI)2\displaystyle-\frac{(1-\theta)\beta p}{c}\left(\frac{r_{T}}{r_{I}}+\frac{(1-\theta)\beta pT_{max}}{cr_{I}}-1\right)\left(\frac{(\delta-r_{I})T^{0}}{\delta\mathcal{R}_{0}-r_{I}}\right)^{2}

Yet

s\displaystyle s =\displaystyle= (dTrT(1T0Tmax))T0,\displaystyle\left(d_{T}-r_{T}\left(1-\frac{T^{0}}{T_{max}}\right)\right)T^{0},
(1θ)βpTmaxcrI\displaystyle\frac{(1-\theta)\beta pT_{max}}{cr_{I}} =\displaystyle= TmaxT0(δ0rIrI)+1\displaystyle\frac{T_{max}}{T^{0}}\left(\frac{\delta\mathcal{R}_{0}-r_{I}}{r_{I}}\right)+1

and

(1θ)βpc\displaystyle\frac{(1-\theta)\beta p}{c} =\displaystyle= δ0rIT0+rITmax.\displaystyle\frac{\delta\mathcal{R}_{0}-r_{I}}{T^{0}}+\frac{r_{I}}{T_{max}}.

Hence,

h2(T1~)\displaystyle h_{2}(\tilde{T_{1}}) =\displaystyle= (dTrT(1T0Tmax))T0+(rTdTrTrI(rIδ)+\displaystyle\biggl{(}d_{T}-r_{T}(1-\frac{T^{0}}{T_{max}})\biggr{)}T^{0}+\biggl{(}r_{T}-d_{T}-\frac{r_{T}}{r_{I}}(r_{I}-\delta)+
TmaxT0(δ0rIrI)(rIδ)(rIδ))(δrI)T0δ0rI+\displaystyle-\frac{T_{max}}{T^{0}}\Bigl{(}\frac{\delta\mathcal{R}_{0}-r_{I}}{r_{I}}\Bigr{)}(r_{I}-\delta)-(r_{I}-\delta)\biggr{)}\frac{(\delta-r_{I})T^{0}}{\delta\mathcal{R}_{0}-r_{I}}+
(δ0rIT0+rITmax)(rTrI+TmaxT0(δ0rIrI))((δrI)T0δ0rI)2\displaystyle-\Bigl{(}\frac{\delta\mathcal{R}_{0}-r_{I}}{T^{0}}+\frac{r_{I}}{T_{max}}\Bigr{)}\biggl{(}\frac{r_{T}}{r_{I}}+\frac{T_{max}}{T^{0}}\Bigl{(}\frac{\delta\mathcal{R}_{0}-r_{I}}{r_{I}}\Bigr{)}\biggr{)}\Bigl{(}\frac{{(}\delta-r_{I}{)}T^{0}}{\delta\mathcal{R}_{0}-r_{I}}\Bigr{)}^{2}
=\displaystyle= δT0(01)(δ0rI)2Tmax(rTT0(δrI)+(δ0rI)Tmax(dTrT(1T0Tmax))).\displaystyle\frac{\delta T^{0}(\mathcal{R}_{0}-1)}{(\delta\mathcal{R}_{0}-r_{I})^{2}T_{max}}\Biggl{(}r_{T}T^{0}(\delta-r_{I})+(\delta\mathcal{R}_{0}-r_{I})T_{max}\biggl{(}d_{T}-r_{T}\Bigl{(}1-\frac{T^{0}}{T_{max}}\Bigr{)}\biggr{)}\Biggr{)}.

Since dTrT(1T0Tmax)>0d_{T}-r_{T}\left(1-\frac{T^{0}}{T_{max}}\right)>0 and δrI\delta\geq r_{I}, we get :

h2(T1~)>0if0>1h_{2}(\tilde{T_{1}})>0\quad\mbox{if}\quad\mathcal{R}_{0}>1

and

h2(T1~)0ifrIδ<01.h_{2}(\tilde{T_{1}})\leq 0\quad\mbox{if}\quad\frac{r_{I}}{\delta}<\mathcal{R}_{0}\leq 1.

This completes the proof of Proposition 3.7.   
Suppose now δ<rI\delta<r_{I}, then equation (19) admits a unique positive solution TT^{\ast} and we have the following results:

Lemma 3.8

Suppose that (1θ)βpTmaxcrI<1\frac{(1-\theta)\beta pT_{max}}{cr_{I}}<1, then :

  • TT2~T^{\ast}\geq\tilde{T_{2}} if and only if g1(T)0g_{1}(T^{\ast})\leq 0.

  • T<T2~T^{\ast}<\tilde{T_{2}} if and only if g1(T)>0g_{1}(T^{\ast})>0.

Remark 7

T2~\tilde{T_{2}} of lemma 3.8is the solution of equation g1(T)=0g_{1}(T)=0, i.e

T2~=c(rIδ)TmaxcrI(1θ)βpTmax.\tilde{T_{2}}=\frac{c(r_{I}-\delta)T_{max}}{cr_{I}-(1-\theta)\beta pT_{max}}.
Proposition 3.9
  1. i)

    If (1θ)βpTmaxcrI1\frac{(1-\theta)\beta pT_{max}}{cr_{I}}\geq 1, then g1(T)>0g_{1}(T)>0 and the system (4) admits in this case a unique infected equilibrium point EE^{\ast}.

  2. ii)

    If (1θ)βpTmaxcrI<1\frac{(1-\theta)\beta pT_{max}}{cr_{I}}<1, alors :

    • the system (4) not admits an infected equilibrium point when TT2~T^{\ast}\geq\tilde{T_{2}}.

    • the system (4) admits a unique infected equilibrium point EE^{\ast} when T<T2~T^{\ast}<\tilde{T_{2}}.

We state the following two lemmas whose the proofs are analogous of those of lemma 3.5 and lemma 3.6 respectively. These lemmas will help us to complete the conditions of existence of the infected equilibrium point E.E^{\ast}.

Lemma 3.10

T2~=(rIδ)T0rIδ0\tilde{T_{2}}=\frac{(r_{I}-\delta)T^{0}}{r_{I}-\delta\mathcal{R}_{0}}

Lemma 3.11

(1θ)βpTmaxcrI1\frac{(1-\theta)\beta pT_{max}}{cr_{I}}\geq 1 if and only if 0rIδ\mathcal{R}_{0}\geq\frac{r_{I}}{\delta}.

Proposition 3.12

Suppose that : rI>δr_{I}>\delta and (1θ)βpTmaxcrI<1\frac{(1-\theta)\beta pT_{max}}{cr_{I}}<1.
Then TT2~T^{\ast}\geq\tilde{T_{2}} if 01\mathcal{R}_{0}\leq 1, and T<T2~T^{\ast}<\tilde{T_{2}} if 1<0<rIδ1<\mathcal{R}_{0}<\frac{r_{I}}{\delta}.

Proof. Recall that TT2~T^{\ast}\geq\tilde{T_{2}} if and only if h2(T2~)0h_{2}(\tilde{T_{2}})\geq 0 and T<T2~T^{\ast}<\tilde{T_{2}} if and only if h2(T2~)<0.h_{2}(\tilde{T_{2}})<0. From the expression of h2(T)h_{2}(T) given by (19) we have :

h2(T2~)=g2(T2~).h_{2}(\tilde{T_{2}})=g_{2}(\tilde{T_{2}}).

Thus :

h2(T2~)\displaystyle h_{2}(\tilde{T_{2}}) =\displaystyle= s+(rIδ)T0rIδ0(rTdTrTrI(δrI)(1θ)βpTmaxcrI(δrI))\displaystyle s+\frac{(r_{I}-\delta)T^{0}}{r_{I}-\delta\mathcal{R}_{0}}\left(r_{T}-d_{T}-\frac{r_{T}}{r_{I}}(\delta-r_{I})-\frac{(1-\theta)\beta pT_{max}}{cr_{I}}(\delta-r_{I})\right)
(1θ)βpc(rTrI+(1θ)βpTmaxcrI1)((rIδ)T0rIδ0)2\displaystyle-\frac{(1-\theta)\beta p}{c}\left(\frac{r_{T}}{r_{I}}+\frac{(1-\theta)\beta pT_{max}}{cr_{I}}-1\right)\left(\frac{(r_{I}-\delta)T^{0}}{r_{I}-\delta\mathcal{R}_{0}}\right)^{2}

yet

s=[dTrT(1T0Tmax)]T0,s=\left[d_{T}-r_{T}\left(1-\frac{T^{0}}{T_{max}}\right)\right]T^{0},
(1θ)βpTmaxcrI=TmaxT0(rIδ0rI)+1\frac{(1-\theta)\beta pT_{max}}{cr_{I}}=\frac{T_{max}}{T^{0}}\left(\frac{r_{I}-\delta\mathcal{R}_{0}}{r_{I}}\right)+1
and(1θ)βpc=rIδ0T0+rITmax.\mbox{and}\quad\frac{(1-\theta)\beta p}{c}=\frac{r_{I}-\delta\mathcal{R}_{0}}{T^{0}}+\frac{r_{I}}{T_{max}}.

Hence :

h2(T2~)\displaystyle h_{2}(\tilde{T_{2}}) =\displaystyle= (dTrT(1T0Tmax))T0+(rTdTrTrI(δrI)+\displaystyle\left(d_{T}-r_{T}\left(1-\frac{T^{0}}{T_{max}}\right)\right)T^{0}+\biggl{(}r_{T}-d_{T}-\frac{r_{T}}{r_{I}}(\delta-r_{I})+
TmaxT0(rIδ0rI)(δrI)(δrI))(rIδ)T0rIδ0+\displaystyle-\frac{T_{max}}{T^{0}}\left(\frac{r_{I}-\delta\mathcal{R}_{0}}{r_{I}}\right)(\delta-r_{I})-(\delta-r_{I})\biggr{)}\frac{(r_{I}-\delta)T^{0}}{r_{I}-\delta\mathcal{R}_{0}}+
(rIδ0T0+rITmax)(rTrI+TmaxT0(rIδ0rI))((rIδ)T0rIδ0)2\displaystyle-\left(\frac{r_{I}-\delta\mathcal{R}_{0}}{T^{0}}+\frac{r_{I}}{T_{max}}\right)\left(\frac{r_{T}}{r_{I}}+\frac{T_{max}}{T^{0}}\left(\frac{r_{I}-\delta\mathcal{R}_{0}}{r_{I}}\right)\right)\left(\frac{(r_{I}-\delta)T^{0}}{r_{I}-\delta\mathcal{R}_{0}}\right)^{2}
=\displaystyle= δT0(10)(rIδ0)2Tmax[rTT0(rIδ)+(rIδ0)Tmax(dTrT(1T0Tmax))].\displaystyle\frac{\delta T^{0}(1-\mathcal{R}_{0})}{(r_{I}-\delta\mathcal{R}_{0})^{2}T_{max}}\left[r_{T}T^{0}(r_{I}-\delta)+(r_{I}-\delta\mathcal{R}_{0})T_{max}\left(d_{T}-r_{T}\left(1-\frac{T^{0}}{T_{max}}\right)\right)\right].

Since dTrT(1T0Tmax)>0d_{T}-r_{T}\Big{(}1-\frac{T^{0}}{T_{max}}\Big{)}>0 and δ<rI\delta<r_{I}, we get :

  • h2(T2~)0h_{2}(\tilde{T_{2}})\geq 0 if 01\mathcal{R}_{0}\leq 1.

  • h2(T2~)<0h_{2}(\tilde{T_{2}})<0 if 1<0<rIδ1<\mathcal{R}_{0}<\frac{r_{I}}{\delta}.

This completes the the proof.   
The conditions of existence of an infected equilibrium point EE^{\ast} have been established, we are going in the following subsection give its expression.

3.3 Expression of the equilibrium points

3.3.1 Uninfected equilibrium point

By the proposition 2.6, the uninfected equilibrium point is given by E0=(T0,0,0)E^{0}=(T^{0},0,0) where

T0=Tmax2rT(rTdT+(rTdT)2+4srTTmax).T^{0}=\frac{T_{max}}{2r_{T}}\left(r_{T}-d_{T}+\sqrt{(r_{T}-d_{T})^{2}+\frac{4sr_{T}}{T_{max}}}\right).

3.3.2 Infected equilibrium point

Lemma 3.13

When it exists, TT^{\ast} is defined by :

T=12(DH+(DH)2+F+4sTmaxrTH)T^{\ast}=\frac{1}{2}\left(-\frac{D}{H}+\sqrt{\left(\frac{D}{H}\right)^{2}+F+\frac{4sT_{max}}{r_{T}}H}\right)

where :

D=ATmax(1rT(1+dT+qA)δrI(1rT+1A)qrTrI);D=AT_{max}\left(\frac{1}{r_{T}}\Big{(}1+\frac{d_{T}+q}{A}\Big{)}-\frac{\delta}{r_{I}}\Big{(}\frac{1}{r_{T}}+\frac{1}{A}\Big{)}-\frac{q}{r_{T}r_{I}}\right);
F=4AqTmax2H2rT2rI2(A(δrI)dI(rIrT)rI(qrIrT)+rTq);F=\frac{4AqT_{max}^{2}}{H^{2}r_{T}^{2}r_{I}^{2}}\Big{(}A(\delta-r_{I})-d_{I}(r_{I}-r_{T})-r_{I}(q-r_{I}-r_{T})+r_{T}q\Big{)};
H=A2rIrT+ArIArTH=\frac{A^{2}}{r_{I}r_{T}}+\frac{A}{r_{I}}-\frac{A}{r_{T}}

and

A=(1θ)βpTmaxc.A=\frac{(1-\theta)\beta pT_{max}}{c}.

Proof. When TT^{\ast} exists, it will be a positive solution of the equation of second degree :

h2(T)=0,h_{2}(T)=0, (20)

with :

h2(T)\displaystyle h_{2}(T) =\displaystyle= s+qTmaxrI(rIδ)+T(rTδrTrI(rIδ)(1θ)βpTmaxcrI(rIδ)+(1θ)βpTmaxcrIq)\displaystyle s+q\frac{T_{max}}{r_{I}}(r_{I}-\delta)+T\Bigl{(}r_{T}-\delta-\frac{r_{T}}{r_{I}}(r_{I}-\delta)-\frac{(1-\theta)\beta pT_{max}}{cr_{I}}(r_{I}-\delta)+\frac{(1-\theta)\beta pT_{max}}{cr_{I}}q\Bigr{)}
(1θ)βpc(rTrI+(1θ)βpTmaxcrI1)T2.\displaystyle-\frac{(1-\theta)\beta p}{c}\left(\frac{r_{T}}{r_{I}}+\frac{(1-\theta)\beta pT_{max}}{cr_{I}}-1\right)T^{2}.

Let

A=(1θ)βpTmaxc;A=\frac{(1-\theta)\beta pT_{max}}{c};

then (20) becomes :

s+qTmaxrI(rIδ)+(rT(dT+q)rTrI(rIδ)ArI(rIδ+AqrI))TrTTmax(A2rIrT+ArIArT)T2=0.s+q\frac{T_{max}}{r_{I}}(r_{I}-\delta)+\left(r_{T}-(d_{T}+q)-\frac{r_{T}}{r_{I}}(r_{I}-\delta)-\frac{A}{r_{I}}\left(r_{I}-\delta+\frac{Aq}{r_{I}}\right)\right)T-\frac{r_{T}}{T_{max}}\left(\frac{A^{2}}{r_{I}r_{T}}+\frac{A}{r_{I}}-\frac{A}{r_{T}}\right)T^{2}=0.

Let also :

H=A2rIrT+ArIArT,H=\frac{A^{2}}{r_{I}r_{T}}+\frac{A}{r_{I}}-\frac{A}{r_{T}},

then (20) becomes :

s+qTmaxrI(rIδ)+(rT(dT+q)rTrI(rIδ)ArI(rIδ+AqrI))TrTTmaxHT2=0.s+q\frac{T_{max}}{r_{I}}(r_{I}-\delta)+\left(r_{T}-(d_{T}+q)-\frac{r_{T}}{r_{I}}(r_{I}-\delta)-\frac{A}{r_{I}}\left(r_{I}-\delta+\frac{Aq}{r_{I}}\right)\right)T-\frac{r_{T}}{T_{max}}HT^{2}=0.

Let :

a=rTHTmax,a=-\frac{r_{T}H}{T_{max}},
d=s+qTmaxrI(rIδ),d=s+q\frac{T_{max}}{r_{I}}(r_{I}-\delta),
b=rT(dT+q)rTrI(rIδ)ArI(rIδ+AqrI),b=r_{T}-(d_{T}+q)-\frac{r_{T}}{r_{I}}(r_{I}-\delta)-\frac{A}{r_{I}}\Big{(}r_{I}-\delta+\frac{Aq}{r_{I}}\Big{)},

hence the previous equation yields :

aT2+bT+d=0.aT^{2}+bT+d=0.

Its discriminant is:

Δ=b24ad\Delta=b^{2}-4ad

i.e.

Δ=[rT(dT+q)rTrI(rIδArI(rIδ)+AqrI)]2+(s+qTmaxrIδ).\Delta=\left[r_{T}-(d_{T}+q)-\frac{r_{T}}{r_{I}}\left(r_{I}-\delta-\frac{A}{r_{I}}(r_{I}-\delta)+\frac{Aq}{r_{I}}\right)\right]^{2}+\left(s+\frac{qT_{max}}{r_{I}}\delta\right).

Hence

T\displaystyle T^{\ast} =\displaystyle= rT(dT+q)rTrI(rIδArI(rIδ)+AqrI+Δ2HrTTmax\displaystyle\frac{r_{T}-(d_{T}+q)-\frac{r_{T}}{r_{I}}(r_{I}-\delta-\frac{A}{r_{I}}(r_{I}-\delta)+\frac{Aq}{r_{I}}+\sqrt{\Delta}}{2\frac{Hr_{T}}{T_{max}}}
=\displaystyle= 12(ATmax(rT(dT+q)ArTrTrIrTA(rIδ)(1rTδrIrT)+qrIrT)H+TmaxΔHrT)\displaystyle\frac{1}{2}\left(\frac{AT_{max}\left(\frac{r_{T}-(d_{T}+q)}{Ar_{T}}-\frac{r_{T}}{r_{I}r_{T}A}(r_{I}-\delta)-(\frac{1}{r_{T}}-\frac{\delta}{r_{I}r_{T}})+\frac{q}{r_{I}r_{T}}\right)}{H}+\frac{T_{max}\sqrt{\Delta}}{Hr_{T}}\right)
=\displaystyle= 12(ATmax(rT(dT+q)ArI1rIA(rIδ)(1rTδrIrT)+qrIrT)H+TmaxΔHrT)\displaystyle\frac{1}{2}\left(\frac{AT_{max}\left(\frac{r_{T}-(d_{T}+q)}{Ar_{I}}-\frac{1}{r_{I}A}(r_{I}-\delta)-\Big{(}\frac{1}{r_{T}}-\frac{\delta}{r_{I}r_{T}}\Big{)}+\frac{q}{r_{I}r_{T}}\right)}{H}+\frac{T_{max}\sqrt{\Delta}}{Hr_{T}}\right)
=\displaystyle= 12(ATmax(1rT(1+dT+qAδrI(1rT+1A)qrIrT)H+TmaxΔHrT)\displaystyle\frac{1}{2}\left(\frac{AT_{max}\left(\frac{1}{r_{T}}(1+\frac{d_{T}+q}{A}-\frac{\delta}{r_{I}}(\frac{1}{r_{T}}+\frac{1}{A})-\frac{q}{r_{I}r_{T}}\right)}{H}+\frac{T_{max}\sqrt{\Delta}}{Hr_{T}}\right)
=\displaystyle= 12(DH+TmaxΔHrT).\displaystyle\frac{1}{2}\left(-\frac{D}{H}+\frac{T_{max}\sqrt{\Delta}}{Hr_{T}}\right).

Where

D=ATmax(1rT(1+dT+qA)δrI(1rT+1A)qrTrI).D=AT_{max}\left(\frac{1}{r_{T}}\Big{(}1+\frac{d_{T}+q}{A}\Big{)}-\frac{\delta}{r_{I}}\Big{(}\frac{1}{r_{T}}+\frac{1}{A}\Big{)}-\frac{q}{r_{T}r_{I}}\right).

We have :

TmaxΔHrT\displaystyle\frac{T_{max}\sqrt{\Delta}}{Hr_{T}} =\displaystyle= Tmax2ΔH2rT2\displaystyle\sqrt{\frac{T_{max}^{2}\Delta}{H^{2}r_{T}^{2}}}
=\displaystyle= (DH)24HrTTmaxH2rT2(s+qTmaxrI(rIδ))\displaystyle\sqrt{\left(\frac{D}{H}\right)^{2}-\frac{4Hr_{T}T_{max}}{H^{2}r_{T}^{2}}\left(s+\frac{qT_{max}}{r_{I}}(r_{I}-\delta)\right)}
=\displaystyle= (DH)2+4sTmaxHrT+4AqTmax2H2rT2rI2(HrTrI2AHrTrIAδ)\displaystyle\sqrt{\left(\frac{D}{H}\right)^{2}+\frac{4sT_{max}}{Hr_{T}}+\frac{4AqT_{max}^{2}}{H^{2}r_{T}^{2}r_{I}^{2}}\left(\frac{Hr_{T}r_{I}^{2}}{A}-\frac{Hr_{T}r_{I}}{A}\delta\right)}
=\displaystyle= (DH)2+4sTmaxHrT+4AqTmax2H2rT2rI2(A(δrI)dI(rIrT))rI(qrIrT)+rTq\displaystyle\sqrt{\left(\frac{D}{H}\right)^{2}+\frac{4sT_{max}}{Hr_{T}}+\frac{4AqT_{max}^{2}}{H^{2}r_{T}^{2}r_{I}^{2}}\left(A(\delta-r_{I})-d_{I}(r_{I}-r_{T})\right)-r_{I}(q-r_{I}-r_{T})+r_{T}q}
=\displaystyle= (DH)2+F+4sTmaxrTH\displaystyle\sqrt{\left(\frac{D}{H}\right)^{2}+F+\frac{4sT_{max}}{r_{T}}H}

with

F=4AqTmax2H2rT2rI2(A(δrI)dI(rIrT)rI(qrIrT)+rTq).F=\frac{4AqT_{max}^{2}}{H^{2}r_{T}^{2}r_{I}^{2}}\left(A(\delta-r_{I})-d_{I}(r_{I}-r_{T})-r_{I}(q-r_{I}-r_{T})+r_{T}q\right).

It follows that :

T=12(DH+(DH)2+F+4sTmaxrTH).T^{\ast}=\frac{1}{2}\left(-\frac{D}{H}+\sqrt{\left(\frac{D}{H}\right)^{2}+F+\frac{4sT_{max}}{r_{T}}H}\right).
 

The combination of the proposition 3.4, proposition 3.12 and the lemma 3.13 leads to the following theorem :

Theorem 3.14

The model (4) admits a unique infected equilibrium E=(T,I,V)E^{\ast}=(T^{\ast},I^{\ast},V^{\ast}) if and only if 0>1\mathcal{R}_{0}>1, where

T\displaystyle T^{\ast} =\displaystyle= 12(DH+(DH)2+F+4sTmaxrTH),\displaystyle\frac{1}{2}\left(-\frac{D}{H}+\sqrt{\Big{(}\frac{D}{H}\Big{)}^{2}+F+\frac{4sT_{max}}{r_{T}}H}\right),
I\displaystyle I^{\ast} =\displaystyle= T(ArI1)+Tmax(1δrI),\displaystyle T^{\ast}\left(\frac{A}{r_{I}}-1\right)+T_{max}\left(1-\frac{\delta}{r_{I}}\right),
V\displaystyle V^{\ast} =\displaystyle= (1ε)pIc;\displaystyle\frac{(1-\varepsilon)pI^{\ast}}{c};

where where :

D=ATmax(1rT(1+dT+qA)δrI(1rT+1A)qrTrI);D=AT_{max}\left(\frac{1}{r_{T}}\Big{(}1+\frac{d_{T}+q}{A}\Big{)}-\frac{\delta}{r_{I}}\Big{(}\frac{1}{r_{T}}+\frac{1}{A}\Big{)}-\frac{q}{r_{T}r_{I}}\right);
F=4AqTmax2H2rT2rI2(A(δrI)dI(rIrT)rI(qrIrT)+rTq);F=\frac{4AqT_{max}^{2}}{H^{2}r_{T}^{2}r_{I}^{2}}\Big{(}A(\delta-r_{I})-d_{I}(r_{I}-r_{T})-r_{I}(q-r_{I}-r_{T})+r_{T}q\Big{)};
H=A2rIrT+ArIArTH=\frac{A^{2}}{r_{I}r_{T}}+\frac{A}{r_{I}}-\frac{A}{r_{T}}

and

A=(1θ)βpTmaxc.A=\frac{(1-\theta)\beta pT_{max}}{c}.

When 01\mathcal{R}_{0}\leq 1 the unique equilibrium is the uninfected equilibrium point or the infection-free steady state E0=(T0,0,0)E^{0}=(T^{0},0,0).

3.4 Local stability analysis of the model 1 at the equilibrium points

For the study of local stability of the model (4) at the equilibrium points, let us consider once more the functions f1f_{1}, f2f_{2} et f3f_{3} given by (6), (7) and (6) respectively.

3.4.1 Case of the uninfected equilibrium point or infection-free steady state

Theorem 3.15

The infection-free steady state E0=(T0,0,0)E^{0}=(T^{0},0,0) of model (4) is locally asymptotically stable if 01\mathcal{R}_{0}\leq 1 and unstable if 0>1\mathcal{R}_{0}>1.

Proof. The Jacobian matrix J(E0)J(E^{0}) of the system (4) at E0E^{0} is as the following :

J(E0)\displaystyle J(E^{0}) =\displaystyle= (f1T(E0)f1I(E0)f1V(E0)f2T(E0)f2I(E0)f2V(E0)f3T(E0)f3I(E0)f3V(E0))\displaystyle\left(\begin{array}[]{ccc}\frac{\partial f_{1}}{\partial T}(E^{0})&\frac{\partial f_{1}}{\partial I}(E^{0})&\frac{\partial f_{1}}{\partial V}(E^{0})\\ \\ \frac{\partial f_{2}}{\partial T}(E^{0})&\frac{\partial f_{2}}{\partial I}(E^{0})&\frac{\partial f_{2}}{\partial V}(E^{0})\\ \\ \frac{\partial f_{3}}{\partial T}(E^{0})&\frac{\partial f_{3}}{\partial I}(E^{0})&\frac{\partial f_{3}}{\partial V}(E^{0})\end{array}\right)

i.e.

J(E0)\displaystyle J(E^{0}) =\displaystyle= (rT(12T0Tmax)dTrTT0Tmax+q(1η)βT00rI(1T0Tmax)δ(1η)βT00(1ε)pc).\displaystyle\left(\begin{array}[]{ccc}r_{T}\Big{(}1-\frac{2T^{0}}{T_{max}}\Big{)}-d_{T}&-\frac{r_{T}T^{0}}{T_{max}}+q&-(1-\eta)\beta T^{0}\\ \\ 0&r_{I}\Big{(}1-\frac{T^{0}}{T_{max}}\Big{)}-\delta&(1-\eta)\beta T^{0}\\ \\ 0&(1-\varepsilon)p&-c\end{array}\right).

Since

rTdT=sT0+rTT0Tmax,r_{T}-d_{T}=-\frac{s}{T^{0}}+\frac{r_{T}T^{0}}{T_{max}},

it follows that :

J(E0)\displaystyle J(E^{0}) =\displaystyle= (sT0rTT0TmaxrTT0Tmax+q(1η)βT00rI(1T0Tmax)δ(1η)βT00(1ε)pc).\displaystyle\left(\begin{array}[]{ccc}-\frac{s}{T^{0}}-\frac{r_{T}T^{0}}{T_{max}}&-\frac{r_{T}T^{0}}{T_{max}}+q&-(1-\eta)\beta T^{0}\\ \\ 0&r_{I}\Big{(}1-\frac{T^{0}}{T_{max}}\Big{)}-\delta&(1-\eta)\beta T^{0}\\ \\ 0&(1-\varepsilon)p&-c\end{array}\right).

Now let us show that the eigenvalues of the matrix J(E0)J(E^{0}) have negative real part if and only if 0<1\mathcal{R}_{0}<1.
Considering the expression of J(E0)J(E^{0}), sT0rTT0Tmax-\frac{s}{T^{0}}-\frac{r_{T}T^{0}}{T_{max}} is a negative eigenvalue of the matrix J(E0)J(E^{0}). Now let us consider the sub-matrix J1(E0)J_{1}(E^{0}) defined by :

J1(E0)=(rI(1T0Tmax)δ(1η)βT0(1ε)pc).J_{1}(E^{0})=\left(\begin{array}[]{ccc}r_{I}\left(1-\frac{T^{0}}{T_{max}}\right)-\delta&(1-\eta)\beta T^{0}\\ \\ (1-\varepsilon)p&-c\end{array}\right). (24)

The trace of J1(E0)J_{1}(E^{0}) is :

Tr(J1(E0))\displaystyle Tr(J_{1}(E^{0})) =\displaystyle= cδ+rI(1T0Tmax)\displaystyle-c-\delta+r_{I}\left(1-\frac{T^{0}}{T_{max}}\right)
=\displaystyle= δ(cδ1+rIδ(1T0Tmax))\displaystyle\delta\left(-\frac{c}{\delta}-1+\frac{r_{I}}{\delta}\left(1-\frac{T^{0}}{T_{max}}\right)\right)
=\displaystyle= δ(cδ1+R0(1θ)cδβpT0)\displaystyle\delta\left(-\frac{c}{\delta}-1+R_{0}-\frac{(1-\theta)}{c\delta}\beta pT^{0}\right)
=\displaystyle= cδ(1R0)(1θ)cβpT0,\displaystyle-c-\delta(1-R_{0})-\frac{(1-\theta)}{c}\beta pT^{0},

and the determinant of J1(E0J_{1}(E^{0} is:

|J1(E0)|\displaystyle|J_{1}(E^{0})| =\displaystyle= crI(1T0Tmax)+cδ(1θ)βPT0\displaystyle-cr_{I}\left(1-\frac{T^{0}}{T_{max}}\right)+c\delta-(1-\theta)\beta PT^{0}
=\displaystyle= cδ[rIδ(1T0Tmax)+1(1θ)βPT0cδ]\displaystyle c\delta\left[-\frac{r_{I}}{\delta}\left(1-\frac{T^{0}}{T_{max}}\right)+1-\frac{(1-\theta)\beta PT^{0}}{c\delta}\right]
=\displaystyle= cδ(10).\displaystyle c\delta(1-\mathcal{R}_{0}).

The system (4) est locally asymptotically stable at E0E^{0} if and only if

cδ(10)(1θ)cβpT0<0,-c-\delta(1-\mathcal{R}_{0})-\frac{(1-\theta)}{c}\beta pT^{0}<0,

and

cδ(10)>0c\delta(1-\mathcal{R}_{0})>0

i.e.

0<1.\mathcal{R}_{0}<1.

Therefore the model (4), is locally asymptotically stable at E0=(T0,0,0)E^{0}=(T^{0},0,0) when 0<1\mathcal{R}_{0}<1 and unstable when 0>1.\mathcal{R}_{0}>1. This completes the proof of theorem 3.15   

3.4.2 Case of infected equilibrium point

We start this subsection by two preliminary lemmas.

Lemma 3.16

The Jacobian matrix J(E)J(E^{\ast}), of lemma 3.16 , of system (4) at EE^{\ast} is given by :

J(E)=(sTrTTTmaxqITrTTTmax+q(1q)βTrIITmax+(1η)βVrIITmax(1η)βVTI(1η)βT0(1ε)pc)J(E^{\ast})=\left(\begin{array}[]{ccc}-\frac{s}{T^{\ast}}-\frac{r_{T}T^{\ast}}{T_{max}}-q\frac{I^{\ast}}{T^{\ast}}&-\frac{r_{T}T^{\ast}}{T_{max}}+q&-(1-q)\beta T^{\ast}\\ &&\\ \\ -\frac{r_{I}I^{\ast}}{T_{max}}+(1-\eta)\beta V^{\ast}&-\frac{r_{I}I^{\ast}}{T_{max}}-\frac{(1-\eta)\beta V^{\ast}T^{\ast}}{I^{\ast}}&(1-\eta)\beta T^{\ast}\\ \\ 0&(1-\varepsilon)p&-c\\ \\ \end{array}\right)

Proof. See the Appendice for the proof.   

Lemma 3.17

The characteristic equation of the Jacobian matrix J(E)J(E^{\ast}) of the system (4) at EE^{\ast} is given by the following cubic equation :

λ3+A1λ2+A2λ+A3=0;\lambda^{3}+A_{1}\lambda^{2}+A_{2}\lambda+A_{3}=0;

where :

A1\displaystyle A_{1} =\displaystyle= c+sT+rTT+rII+ATTmax+qIT,\displaystyle c+\frac{s}{T^{\ast}}+\frac{r_{T}T^{\ast}+r_{I}I^{\ast}+AT^{\ast}}{T_{max}}+q\frac{I^{\ast}}{T^{\ast}},
A2\displaystyle A_{2} =\displaystyle= csT+crTT+sA+crIITmax+qIT(rIδ)+srIITTmax+rTAT(T+I)Tmax2+cqIT+qITmax,\displaystyle\frac{cs}{T^{\ast}}+\frac{cr_{T}T^{\ast}+sA+cr_{I}I^{\ast}}{T_{max}}+q\frac{I^{\ast}}{T^{\ast}}(r_{I}-\delta)+\frac{sr_{I}I^{\ast}}{T^{\ast}T_{max}}+\frac{r_{T}AT^{\ast}(T^{\ast}+I^{\ast})}{T_{max}^{2}}+\frac{cqI^{\ast}}{T^{\ast}}+q\frac{I^{\ast}}{T_{max}},
A3\displaystyle A_{3} =\displaystyle= csrIITTmax+cA2ITTmax2cArIITTmax2+cArTITTmax2+qcIT(rIδ).\displaystyle\frac{csr_{I}I^{\ast}}{T^{\ast}T_{max}}+\frac{cA^{2}I^{\ast}T^{\ast}}{T_{max}^{2}}-\frac{cAr_{I}I^{\ast}T^{\ast}}{T_{max}^{2}}+\frac{cAr_{T}I^{\ast}T^{\ast}}{T_{max}^{2}}+q\frac{cI^{\ast}}{T^{\ast}}(r_{I}-\delta).

Proof. See the appendice for the proof of lemma 3.17.   

Now let :

Δ2=|A11A3A2|\Delta_{2}=\begin{vmatrix}A_{1}&1\\ A_{3}&A_{2}\end{vmatrix}

By Routh-Hurwitz criteria[16], we have the following results.

Theorem 3.18

For model (4), when 0>1\mathcal{R}_{0}>1 is valid, the unique endemic equilibrium EE^{\ast} is locally asymptotically stable if Δ2>0\Delta_{2}>0 and unstable if Δ2<0\Delta_{2}<0.

Especially, we have :

Corollary 3.19

The infected steady state during the therapy EE^{\ast} of the model (4) is locally asymptotically stable if 0>1\mathcal{R}_{0}>1 and unstable if 0>1\mathcal{R}_{0}>1.

Proof. Since A1>0A_{1}>0, A2>0A_{2}>0, it remains to show that Δ2>0\Delta_{2}>0.

Δ2\displaystyle\Delta_{2} =\displaystyle= A1A2A3\displaystyle A_{1}A_{2}-A_{3}
=\displaystyle= (c+sT+rTTTmax+rIITmax+ATTmax+qIT)(csT+srIITTmax+sATmax+crIITmax++crTTTmax\displaystyle\Big{(}c+\frac{s}{T^{\ast}}+\frac{r_{T}T^{\ast}}{T_{max}}+\frac{r_{I}I^{\ast}}{T_{max}}+\frac{AT^{\ast}}{T_{max}}+q\frac{I^{\ast}}{T^{\ast}}\Big{)}\Big{(}\frac{cs}{T^{\ast}}+\frac{sr_{I}I^{\ast}}{T^{\ast}T_{max}}+\frac{sA}{T_{max}}+\frac{cr_{I}I^{\ast}}{T_{max}}++\frac{cr_{T}T^{\ast}}{T_{max}}
+rTA(T)2Tmax2+rTATITmax2+cqIT+qIT(rIδ)+qITmax)csrIITTmaxcA2TITmax2+crIATITmax2\displaystyle+\frac{r_{T}A(T^{\ast})^{2}}{T_{max}^{2}}+\frac{r_{T}AT^{\ast}I^{\ast}}{T_{max}^{2}}+cq\frac{I^{\ast}}{T^{\ast}}+q\frac{I^{\ast}}{T^{\ast}}(r_{I}-\delta)+q\frac{I^{\ast}}{T_{max}}\Big{)}-\frac{csr_{I}I^{\ast}}{T^{\ast}T_{max}}-\frac{cA^{2}T^{\ast}I^{\ast}}{T_{max}^{2}}+\frac{cr_{I}AT^{\ast}I^{\ast}}{T_{max}^{2}}
crIATITmax2qcIT(rIδ)\displaystyle-\frac{cr_{I}AT^{\ast}I^{\ast}}{T_{max}^{2}}-qc\frac{I^{\ast}}{T^{\ast}}(r_{I}-\delta)
=\displaystyle= c2sT+csrIITTmax+csATmax+c2rIITmax+c2rTTTmax+crTA(T)2Tmax2+crTATITmax2+c2qIT+cqIT(rIδ)\displaystyle\frac{c^{2}s}{T^{\ast}}+\frac{csr_{I}I^{\ast}}{T^{\ast}T_{max}}+\frac{csA}{T_{max}}+\frac{c^{2}r_{I}I^{\ast}}{T_{max}}+\frac{c^{2}r_{T}T^{\ast}}{T_{max}}+\frac{cr_{T}A(T^{\ast})^{2}}{T_{max}^{2}}+\frac{cr_{T}AT^{\ast}I^{\ast}}{T_{max}^{2}}+c^{2}q\frac{I^{\ast}}{T^{\ast}}+cq\frac{I^{\ast}}{T^{\ast}}(r_{I}-\delta)
+cqITmax+cs2(T)2+s2rII(T)2Tmax+s2ATTmax+csrIITTmax+csrTTmax+srTATTmax2+srTAITmax2+csqI(T)2\displaystyle+cq\frac{I^{\ast}}{T_{max}}+\frac{cs^{2}}{(T^{\ast})^{2}}+\frac{s^{2}r_{I}I^{\ast}}{(T^{\ast})^{2}T_{max}}+\frac{s^{2}A}{T^{\ast}T_{max}}+\frac{csr_{I}I^{\ast}}{T^{\ast}T_{max}}+\frac{csr_{T}}{T_{max}}+\frac{sr_{T}AT^{\ast}}{T_{max}^{2}}+\frac{sr_{T}AI^{\ast}}{T_{max}^{2}}+\frac{csqI^{\ast}}{(T^{\ast})^{2}}
+sqI(T)2(rIδ)+sqITTmax+csrTTmax+srIrTITmax2+sArTTTmax2+crIrTITTmax2+crT2(T)2Tmax2\displaystyle+\frac{sqI^{\ast}}{(T^{\ast})^{2}}(r_{I}-\delta)+\frac{sqI^{\ast}}{T^{\ast}T_{max}}+\frac{csr_{T}}{T_{max}}+\frac{sr_{I}r_{T}I^{\ast}}{T_{max}^{2}}+\frac{sAr_{T}T^{\ast}}{T_{max}^{2}}+\frac{cr_{I}r_{T}I^{\ast}T^{\ast}}{T_{max}^{2}}+\frac{cr_{T}^{2}(T^{\ast})^{2}}{T_{max}^{2}}
+rT2A(T)3Tmax3+rT2A(T)2ITmax3+rT2A(T)2ITmax3+cqrTITmax+qrTITmax(rIδ)qrTITTmax2+csrIITTmax\displaystyle+\frac{r_{T}^{2}A(T^{\ast})^{3}}{T_{max}^{3}}+\frac{r_{T}^{2}A(T^{\ast})^{2}I^{\ast}}{T_{max}^{3}}+\frac{r_{T}^{2}A(T^{\ast})^{2}I^{\ast}}{T_{max}^{3}}+cq\frac{r_{T}I^{\ast}}{T_{max}}+q\frac{r_{T}I^{\ast}}{T_{max}}(r_{I}-\delta)\frac{qr_{T}I^{\ast}T^{\ast}}{T_{max}^{2}}+\frac{csr_{I}I^{\ast}}{T^{\ast}T_{max}}
+srI2(I)2TTmax+sArIITmax2+crI2(I)2Tmax2+crIrTITTmax2+rIrTA(T)2ITmax3+rIrTAT(I)2Tmax3+qcrIITTmax\displaystyle+\frac{sr_{I}^{2}(I^{\ast})^{2}}{T^{\ast}T_{max}}+\frac{sAr_{I}I^{\ast}}{T_{max}^{2}}+\frac{cr_{I}^{2}(I^{\ast})^{2}}{T_{max}^{2}}+\frac{cr_{I}r_{T}I^{\ast}T^{\ast}}{T_{max}^{2}}+\frac{r_{I}r_{T}A(T^{\ast})^{2}I^{\ast}}{T_{max}^{3}}+\frac{r_{I}r_{T}AT^{\ast}(I^{\ast})^{2}}{T_{max}^{3}}+qc\frac{r_{I}I^{\ast}}{T^{\ast}T_{max}}
+qrI(I)2TTmax(rIδ)+qrI(I)2Tmax2+csATmax+srIITmax2+sA2TTmax2+crIAITTmax+crTA(T)2Tmax2\displaystyle+\frac{qr_{I}(I^{\ast})^{2}}{T^{\ast}T_{max}}(r_{I}-\delta)+\frac{qr_{I}(I^{\ast})^{2}}{T_{max}^{2}}+\frac{csA}{T_{max}}+\frac{sr_{I}I^{\ast}}{T_{max}^{2}}+\frac{sA^{2}T^{\ast}}{T_{max}^{2}}+\frac{cr_{I}AI^{\ast}T^{\ast}}{T_{max}}+\frac{cr_{T}A(T^{\ast})^{2}}{T_{max}^{2}}
+rTA2(T)3Tmax3+rTA2(T)2ITmax3+qcAITmax+qAITmax(rIδ)+qAITTmax2+qcsI(T)2\displaystyle+\frac{r_{T}A^{2}(T^{\ast})^{3}}{T_{max}^{3}}+\frac{r_{T}A^{2}(T^{\ast})^{2}I}{T_{max}^{3}}+q\frac{cAI^{\ast}}{T_{max}}+q\frac{AI^{\ast}}{T_{max}}(r_{I}-\delta)+q\frac{AI^{\ast}T^{\ast}}{T_{max}^{2}}+q\frac{csI^{\ast}}{(T^{\ast})^{2}}
+qsrI(I)2(T)2Tmax+qsAITTmax+qcrI(I)2TTmax+qcrTITmax+qrTAITTmax2+qrTA(I)2Tmax2\displaystyle+q\frac{sr_{I}(I^{\ast})^{2}}{(T^{\ast})^{2}T_{max}}+q\frac{sAI^{\ast}}{T^{\ast}T_{max}}+q\frac{cr_{I}(I^{\ast})^{2}}{T^{\ast}T_{max}}+q\frac{cr_{T}I^{\ast}}{T_{max}}+q\frac{r_{T}AI^{\ast}T^{\ast}}{T_{max}^{2}}+q\frac{r_{T}A(I^{\ast})^{2}}{T_{max}^{2}}
+q2c(I)2(T)2+q2(I)2(T)2(rIδ)+q2(I)2TTmaxcsrIITTmaxcA2TITmax2\displaystyle+q^{2}\frac{c(I^{\ast})^{2}}{(T^{\ast})^{2}}+q^{2}\frac{(I^{\ast})^{2}}{(T^{\ast})^{2}}(r_{I}-\delta)+q^{2}\frac{(I^{\ast})^{2}}{T^{\ast}T_{max}}-\frac{csr_{I}I^{\ast}}{T^{\ast}T_{max}}-\frac{cA^{2}T^{\ast}I^{\ast}}{T_{max}^{2}}
+crIATITmax2crTATITmax2qcIT(rIδ)\displaystyle+\frac{cr_{I}AT^{\ast}I^{\ast}}{T_{max}^{2}}-\frac{cr_{T}AT^{\ast}I^{\ast}}{T_{max}^{2}}-qc\frac{I^{\ast}}{T^{\ast}}(r_{I}-\delta)
=\displaystyle= B+D\displaystyle B+D

where,

B\displaystyle B =\displaystyle= c2sT+csrIITTmax+c2rIITmax+c2rTTTmax+crTA(T)2Tmax2+crTATITmax2\displaystyle\frac{c^{2}s}{T^{\ast}}+\frac{csr_{I}I^{\ast}}{T^{\ast}T_{max}}+\frac{c^{2}r_{I}I^{\ast}}{T_{max}}+\frac{c^{2}r_{T}T^{\ast}}{T_{max}}+\frac{cr_{T}A(T^{\ast})^{2}}{T_{max}^{2}}+\frac{cr_{T}AT^{\ast}I^{\ast}}{T_{max}^{2}}
+c2qIT+cqIT(rIδ)+cqITmax+cs2(T)2+s2rII(T)2Tmax+s2ATTmax\displaystyle+c^{2}q\frac{I^{\ast}}{T^{\ast}}+cq\frac{I^{\ast}}{T^{\ast}}(r_{I}-\delta)+cq\frac{I^{\ast}}{T_{max}}+\frac{cs^{2}}{(T^{\ast})^{2}}+\frac{s^{2}r_{I}I^{\ast}}{(T^{\ast})^{2}T_{max}}+\frac{s^{2}A}{T^{\ast}T_{max}}
+csrIITTmax+srTATTmax2+srTAITmax2+csqI(T)2+sqI(T)2(rIδ)+sqITTmax\displaystyle+\frac{csr_{I}I^{\ast}}{T^{\ast}T_{max}}+\frac{sr_{T}AT^{\ast}}{T_{max}^{2}}+\frac{sr_{T}AI^{\ast}}{T_{max}^{2}}+\frac{csqI^{\ast}}{(T^{\ast})^{2}}+\frac{sqI^{\ast}}{(T^{\ast})^{2}}(r_{I}-\delta)+\frac{sqI^{\ast}}{T^{\ast}T_{max}}
+srIrTITmax2+sArTTTmax2+crIrTITTmax2+crT2(T)2Tmax2+rT2A(T)3Tmax3+rT2A(T)2ITmax3\displaystyle+\frac{sr_{I}r_{T}I^{\ast}}{T_{max}^{2}}+\frac{sAr_{T}T^{\ast}}{T_{max}^{2}}+\frac{cr_{I}r_{T}I^{\ast}T^{\ast}}{T_{max}^{2}}+\frac{cr_{T}^{2}(T^{\ast})^{2}}{T_{max}^{2}}+\frac{r_{T}^{2}A(T^{\ast})^{3}}{T_{max}^{3}}+\frac{r_{T}^{2}A(T^{\ast})^{2}I^{\ast}}{T_{max}^{3}}
+rT2A(T)2ITmax3+cqrTITmax+qrTITmax(rIδ)+qrTITTmax2+csrIITTmax+srI2(I)2TTmax\displaystyle+\frac{r_{T}^{2}A(T^{\ast})^{2}I^{\ast}}{T_{max}^{3}}+cq\frac{r_{T}I^{\ast}}{T_{max}}+q\frac{r_{T}I^{\ast}}{T_{max}}(r_{I}-\delta)+\frac{qr_{T}I^{\ast}T^{\ast}}{T_{max}^{2}}+\frac{csr_{I}I^{\ast}}{T^{\ast}T_{max}}+\frac{sr_{I}^{2}(I^{\ast})^{2}}{T^{\ast}T_{max}}
+sArIITmax2+crI2(I)2Tmax2+crIrTITTmax2+rIrTA(T)2ITmax3+rIrTAT(I)2Tmax3\displaystyle+\frac{sAr_{I}I^{\ast}}{T_{max}^{2}}+\frac{cr_{I}^{2}(I^{\ast})^{2}}{T_{max}^{2}}+\frac{cr_{I}r_{T}I^{\ast}T^{\ast}}{T_{max}^{2}}+\frac{r_{I}r_{T}A(T^{\ast})^{2}I^{\ast}}{T_{max}^{3}}+\frac{r_{I}r_{T}AT^{\ast}(I^{\ast})^{2}}{T_{max}^{3}}
+qcrIITTmax+qrI(I)2TTmax(rIδ)+qrI(I)2Tmax2+srIITmax2+sA2TTmax2+crIAITTmax\displaystyle+qc\frac{r_{I}I^{\ast}}{T^{\ast}T_{max}}+\frac{qr_{I}(I^{\ast})^{2}}{T^{\ast}T_{max}}(r_{I}-\delta)+\frac{qr_{I}(I^{\ast})^{2}}{T_{max}^{2}}+\frac{sr_{I}I^{\ast}}{T_{max}^{2}}+\frac{sA^{2}T^{\ast}}{T_{max}^{2}}+\frac{cr_{I}AI^{\ast}T^{\ast}}{T_{max}}
+crTA(T)2Tmax2+rTA2(T)3Tmax3+rTA2(T)2ITmax3+qAITmax(rIδ)+qAITTmax2\displaystyle+\frac{cr_{T}A(T^{\ast})^{2}}{T_{max}^{2}}+\frac{r_{T}A^{2}(T^{\ast})^{3}}{T_{max}^{3}}+\frac{r_{T}A^{2}(T^{\ast})^{2}I}{T_{max}^{3}}+q\frac{AI^{\ast}}{T_{max}}(r_{I}-\delta)+q\frac{AI^{\ast}T^{\ast}}{T_{max}^{2}}
+qcsI(T)2+qsrI(I)2(T)2Tmax+qsAITTmax+qcrI(I)2TTmax+qcrTITmax+qrTAITTmax2\displaystyle+q\frac{csI^{\ast}}{(T^{\ast})^{2}}+q\frac{sr_{I}(I^{\ast})^{2}}{(T^{\ast})^{2}T_{max}}+q\frac{sAI^{\ast}}{T^{\ast}T_{max}}+q\frac{cr_{I}(I^{\ast})^{2}}{T^{\ast}T_{max}}+q\frac{cr_{T}I^{\ast}}{T_{max}}+q\frac{r_{T}AI^{\ast}T^{\ast}}{T_{max}^{2}}
+qrTA(I)2Tmax2+q2c(I)2(T)2+q2(I)2(T)2(rIδ)+q2(I)2TTmaxcsrIITTmax+crIATITmax2crTATITmax2\displaystyle+q\frac{r_{T}A(I^{\ast})^{2}}{T_{max}^{2}}+q^{2}\frac{c(I^{\ast})^{2}}{(T^{\ast})^{2}}+q^{2}\frac{(I^{\ast})^{2}}{(T^{\ast})^{2}}(r_{I}-\delta)+q^{2}\frac{(I^{\ast})^{2}}{T^{\ast}T_{max}}-\frac{csr_{I}I^{\ast}}{T^{\ast}T_{max}}+\frac{cr_{I}AT^{\ast}I^{\ast}}{T_{max}^{2}}-\frac{cr_{T}AT^{\ast}I^{\ast}}{T_{max}^{2}}
qcIT(rIδ),\displaystyle-qc\frac{I^{\ast}}{T^{\ast}}(r_{I}-\delta),

and

D=2csATmax+2csrTTmax+qcAITmaxcA2TITmax2.D=2\frac{csA}{T_{max}}+2\frac{csr_{T}}{T_{max}}+q\frac{cAI^{\ast}}{T_{max}}-\frac{cA^{2}T^{\ast}I^{\ast}}{T_{max}^{2}}. (25)

Since B>0B>0, it remains to show that D>0D>0.
From (1) we have :

s+rTTrT(T)2TmaxrTTITmaxdTT(1η)βVT+qI=0,s+r_{T}T^{\ast}-\frac{r_{T}(T^{\ast})^{2}}{T_{max}}-\frac{r_{T}T^{\ast}I^{\ast}}{T_{max}}-d_{T}T^{\ast}-(1-\eta)\beta V^{\ast}T^{\ast}+qI^{\ast}=0,

yet

V=(1ε)pIc;V^{\ast}=\frac{(1-\varepsilon)pI^{\ast}}{c};

hence,

(1η)βVT\displaystyle(1-\eta)\beta V^{\ast}T^{\ast} =\displaystyle= (1θ)pβITc\displaystyle\frac{(1-\theta)p\beta I^{\ast}T^{\ast}}{c}
=\displaystyle= AITTmax.\displaystyle\frac{AI^{\ast}T^{\ast}}{T_{max}}.

Thus,

AITTmax=s+rTTdTTrT(T)2TmaxrTTITmax+qI\frac{AI^{\ast}T^{\ast}}{T_{max}}=s+r_{T}T^{\ast}-d_{T}T^{\ast}-\frac{r_{T}(T^{\ast})^{2}}{T_{max}}-\frac{r_{T}T^{\ast}I^{\ast}}{T_{max}}+qI^{\ast}

it follows that ;

cA2ITTmax2=csATmaxcArTTTmax+cAdTTTmax+cArT(T)2Tmax2+cArTTITmax2cAqITmax.-\frac{cA^{2}I^{\ast}T^{\ast}}{T_{max}^{2}}=-\frac{csA}{T_{max}}-\frac{cAr_{T}T^{\ast}}{T_{max}}+\frac{cAd_{T}T^{\ast}}{T_{max}}+\frac{cAr_{T}(T^{\ast})^{2}}{T_{max}^{2}}+\frac{cAr_{T}T^{\ast}I^{\ast}}{T_{max}^{2}}-\frac{cAqI^{\ast}}{T_{max}}.

Reporting this previous expression in (25) yields :

D\displaystyle D =\displaystyle= 2csATmax+2csrTTmax+qcAITmaxcsATmaxcArTTTmax\displaystyle 2\frac{csA}{T_{max}}+2\frac{csr_{T}}{T_{max}}+q\frac{cAI^{\ast}}{T_{max}}-\frac{csA}{T_{max}}-\frac{cAr_{T}T^{\ast}}{T_{max}}
+cAdTTTmax+cArT(T)2Tmax2+cArTTITmax2cAqITmax\displaystyle+\frac{cAd_{T}T^{\ast}}{T_{max}}+\frac{cAr_{T}(T^{\ast})^{2}}{T_{max}^{2}}+\frac{cAr_{T}T^{\ast}I^{\ast}}{T_{max}^{2}}-\frac{cAqI^{\ast}}{T_{max}}
=\displaystyle= csATmax+2csrTTmaxcArTTTmax+cAdTTTmax+cArT(T)2Tmax2+cArTTITmax2\displaystyle\frac{csA}{T_{max}}+2\frac{csr_{T}}{T_{max}}-\frac{cAr_{T}T^{\ast}}{T_{max}}+\frac{cAd_{T}T^{\ast}}{T_{max}}+\frac{cAr_{T}(T^{\ast})^{2}}{T_{max}^{2}}+\frac{cAr_{T}T^{\ast}I^{\ast}}{T_{max}^{2}}

Taking especially s=dTTmaxs=d_{T}T_{max} and δ=dT\delta=d_{T}, we obtain : T=dTTmaxAT^{\ast}=\frac{d_{T}T_{max}}{A}. Thus,

D=csATmax+cδrT+cAdTTTmax+cArT(T)2Tmax2+cArTTITmax2,D=\frac{csA}{T_{max}}+c\delta r_{T}+\frac{cAd_{T}T^{\ast}}{T_{max}}+\frac{cAr_{T}(T^{\ast})^{2}}{T_{max}^{2}}+\frac{cAr_{T}T^{\ast}I^{\ast}}{T_{max}^{2}},

and D>0D>0, therefore the system (4) is locally asymptotically stable at E.E^{\ast}. This completes the proof of Corollary 3.19.   

3.5 Global stability analysis of the system at equilibrium points

The global stability analysis of a dynamical system is usually a very complex problem. One of the most efficient methods to solve this problem is Lyapunov’s theory. To build the functions of Lyapunov we will follow the method proposed by A. Korobeinikov [11, 12, 13].

3.5.1 Case of infection-free steady state

Theorem 3.20

The infection-free steady state E0=(T0,0,0)E^{0}=(T^{0},0,0) of the model (4) is globally asymptotically stable if the basic reproduction number R0<1qδR_{0}<1-\frac{q}{\delta} and unstable if R0>1qδR_{0}>1-\frac{q}{\delta}.

Proof. Consider the Lyapunov function :

L(T,I,V)=TT0T0lnTT0+I+(1η)βT0cV.L(T,I,V)=T-T^{0}-T^{0}ln\frac{T}{T^{0}}+I+\frac{(1-\eta)\beta T^{0}}{c}V.

L1L_{1} is defined, continuous and positive definite for all T>0T>0, I>0I>0, V>0V>0. Also, the global minimum L1=0L_{1}=0 occurs at the infection free equilibrium E0E^{0}. Further, function L1L_{1}, along the solutions of system (1), satisfies :

dLdt\displaystyle\frac{dL}{dt} =\displaystyle= LTdTdt+LIdIdt+LVdVdt,\displaystyle\frac{\partial L}{\partial T}\frac{dT}{dt}+\frac{\partial L}{\partial I}\frac{dI}{dt}+\frac{\partial L}{\partial V}\frac{dV}{dt},
=\displaystyle= (1T0T)T˙+I˙+(1η)βT0cV˙,\displaystyle\left(1-\frac{T^{0}}{T}\right)\dot{T}+\dot{I}+\frac{(1-\eta)\beta T^{0}}{c}\dot{V},
=\displaystyle= (TT0)T˙T+I˙+(1η)βT0cV˙,\displaystyle(T-T^{0})\frac{\dot{T}}{T}+\dot{I}+\frac{(1-\eta)\beta T^{0}}{c}\dot{V},
=\displaystyle= (TT0)(sT+rTrT(T+I)TmaxdT(1η)βV+qIT)+(1η)βVT\displaystyle(T-T^{0})\left(\frac{s}{T}+r_{T}-\frac{r_{T}(T+I)}{T_{max}}-dT-(1-\eta)\beta V+q\frac{I}{T}\right)+(1-\eta)\beta VT
+rII(1T+ITmax)δI+(1θ)cβpT0T(1η)βT0V,\displaystyle+r_{I}I\left(1-\frac{T+I}{T_{max}}\right)-\delta I+\frac{(1-\theta)}{c}\beta pT^{0}T-(1-\eta)\beta T^{0}V,
=\displaystyle= (TT0)(sT+rTdTrT(T+I)Tmax+qIT)T(1η)βV+T0(1η)βV\displaystyle(T-T^{0})\left(\frac{s}{T}+r_{T}-dT-\frac{r_{T}(T+I)}{T_{max}}+q\frac{I}{T}\right)-T(1-\eta)\beta V+T^{0}(1-\eta)\beta V
+(1η)βVT+rII(1T+ITmax)δI+(1θ)cβpT0I(1η)βT0V,\displaystyle+(1-\eta)\beta VT+r_{I}I\left(1-\frac{T+I}{T_{max}}\right)-\delta I+\frac{(1-\theta)}{c}\beta pT^{0}I-(1-\eta)\beta T^{0}V,
=\displaystyle= (TT0)(sT+rTdTrT(T+I)Tmax)+qIqIT0T+rII(1T+ITmax)+(1θ)cβpT0δ)I;\displaystyle(T-T^{0})\left(\frac{s}{T}+r_{T}-dT-\frac{r_{T}(T+I)}{T_{max}}\right)+qI-qI\frac{T^{0}}{T}+r_{I}I\left(1-\frac{T+I}{T_{max}}\right)+\frac{(1-\theta)}{c}\beta pT^{0}-\delta)I;

yet

rTdT=rT0TmaxsT0r_{T}-d_{T}=\frac{rT^{0}}{T_{max}}-\frac{s}{T^{0}}

hence, further collecting terms, we have :

dLdt\displaystyle\frac{dL}{dt} =\displaystyle= (TT0)(sT+rT0TmaxsT0rT(T+I)Tmax)+rII(1T+ITmax)+(1θ)cβpT0δ)I,\displaystyle(T-T^{0})\left(\frac{s}{T}+\frac{rT^{0}}{T_{max}}-\frac{s}{T^{0}}-\frac{r_{T}(T+I)}{T_{max}}\right)+r_{I}I(1-\frac{T+I}{T_{max}})+\frac{(1-\theta)}{c}\beta pT^{0}-\delta)I,
=\displaystyle= (TT0)(sTT0(TT0)rTTmax(TT0)rTITmax)+rII(1T+ITmax)\displaystyle(T-T^{0})\left(-\frac{s}{TT^{0}}(T-T^{0})-\frac{r_{T}}{T_{max}}(T-T^{0})-\frac{r_{T}I}{T_{max}}\right)+r_{I}I\left(1-\frac{T+I}{T_{max}}\right)
+((1θ)cβpT0δ)I+qIqIT0T,\displaystyle+(\frac{(1-\theta)}{c}\beta pT^{0}-\delta)I+qI-qI\frac{T^{0}}{T},
=\displaystyle= sTT0(TT0)2rTTmax((TT0)2+(TT0)I)+rIIrIITTmaxrII2Tmax\displaystyle-\frac{s}{TT^{0}}(T-T^{0})^{2}-\frac{r_{T}}{T_{max}}\left((T-T^{0})^{2}+(T-T^{0})I\right)+r_{I}I-\frac{r_{I}IT}{T_{max}}-\frac{r_{I}I^{2}}{T_{max}}
+((1θ)cβpT0δ)I+qIqIT0T,\displaystyle+\left(\frac{(1-\theta)}{c}\beta pT^{0}-\delta\right)I+qI-qI\frac{T^{0}}{T},
=\displaystyle= sTT0(TT0)2rTTmax((TT0)2+(TT0)I+rIITrT+rII2rT)+rII\displaystyle-\frac{s}{TT^{0}}(T-T^{0})^{2}-\frac{r_{T}}{T_{max}}\left((T-T^{0})^{2}+(T-T^{0})I+\frac{r_{I}IT}{r_{T}}+\frac{r_{I}I^{2}}{r_{T}}\right)+r_{I}I
+((1θ)cβpT0δ)I+qIqIT0T,\displaystyle+\left(\frac{(1-\theta)}{c}\beta pT_{0}-\delta\right)I+qI-qI\frac{T^{0}}{T},
=\displaystyle= sTT0(TT0)2rTTmax[(TT0)2+(TT0)I+rIITrT+rII2rT+rIrTIT0rIrTIT0]\displaystyle-\frac{s}{TT_{0}}(T-T^{0})^{2}-\frac{r_{T}}{T_{max}}\Bigl{[}(T-T^{0})^{2}+(T-T^{0})I+\frac{r_{I}IT}{r_{T}}+\frac{r_{I}I^{2}}{r_{T}}+\frac{r_{I}}{r_{T}}IT^{0}-\frac{r_{I}}{r_{T}}IT^{0}\Bigr{]}
+rII+((1θ)cβpT0δ)I+qIqIT0T,\displaystyle+r_{I}I+\left(\frac{(1-\theta)}{c}\beta pT^{0}-\delta\right)I+qI-qI\frac{T^{0}}{T},
=\displaystyle= sTT0(TT0)2rTTmax((TT0)2+(TT0)I+rIITrT(TT0)+rII2rT+rIrTIT0)\displaystyle-\frac{s}{TT^{0}}(T-T^{0})^{2}-\frac{r_{T}}{T_{max}}\Bigl{(}(T-T^{0})^{2}+(T-T^{0})I+\frac{r_{I}IT}{r_{T}}(T-T^{0})+\frac{r_{I}I^{2}}{r_{T}}+\frac{r_{I}}{r_{T}}IT^{0}\Bigr{)}
+rII+((1θ)cβpT0δ)I+qIqIT0T,\displaystyle+r_{I}I+\left(\frac{(1-\theta)}{c}\beta pT^{0}-\delta\right)I+qI-qI\frac{T^{0}}{T},
=\displaystyle= sTT0(TT0)2rTTmax(T+IT0)(T+rIrTIT0)rITmaxIT0+rII\displaystyle-\frac{s}{TT^{0}}(T-T^{0})^{2}-\frac{r_{T}}{T_{max}}(T+I-T^{0})(T+\frac{r_{I}}{r_{T}}I-T^{0})-\frac{r_{I}}{T_{max}}IT^{0}+r_{I}I
+((1θ)cβpT0δ)I+qIqIT0T,\displaystyle+\left(\frac{(1-\theta)}{c}\beta pT^{0}-\delta\right)I+qI-qI\frac{T^{0}}{T},
=\displaystyle= sTT0(TT0)2rTTmax(T+IT0)(T+rIrTIT0)+δI(rIδrIT0δTmax(1θ)cδβpT01)\displaystyle-\frac{s}{TT^{0}}(T-T^{0})^{2}-\frac{r_{T}}{T_{max}}(T+I-T^{0})(T+\frac{r_{I}}{r_{T}}I-T^{0})+\delta I\Bigl{(}\frac{r_{I}}{\delta}-\frac{r_{I}T^{0}}{\delta T_{max}}\frac{(1-\theta)}{c\delta}\beta pT^{0}-1\Bigr{)}
+qIqIT0T.\displaystyle+qI-qI\frac{T^{0}}{T}.

Furthermore ,

0=(1θ)cδβpT0+rIδ(1T0Tmax),\mathcal{R}_{0}=\frac{(1-\theta)}{c\delta}\beta pT^{0}+\frac{r_{I}}{\delta}\left(1-\frac{T^{0}}{T_{max}}\right),

hence

dLdt\displaystyle\frac{dL}{dt} =\displaystyle= sTT0(TT0)2rTTmax(T+IT0)(T+rIrTIT0)qIT0T+δI(01)+qI,\displaystyle-\frac{s}{TT^{0}}(T-T^{0})^{2}-\frac{r_{T}}{T_{max}}(T+I-T^{0})(T+\frac{r_{I}}{r_{T}}I-T^{0})-qI\frac{T^{0}}{T}+\delta I(\mathcal{R}_{0}-1)+qI,
=\displaystyle= sTT0(TT0)2rTTmax(T+IT0)(T+rIrTIT0)qIT0T+δI(01+qδ).\displaystyle-\frac{s}{TT^{0}}(T-T^{0})^{2}-\frac{r_{T}}{T_{max}}(T+I-T^{0})(T+\frac{r_{I}}{r_{T}}I-T^{0})-qI\frac{T^{0}}{T}+\delta I(\mathcal{R}_{0}-1+\frac{q}{\delta}).

Since rIrTr_{I}\leq r_{T} and 0<1qδ\mathcal{R}_{0}<1-\frac{q}{\delta}, we have dLdt0\frac{dL}{dt}\leq 0
and dLdt=0\frac{dL}{dt}=0 if and only if T=T0T=T^{0} and I=0I=0 simultaneously.
Therefore, the largest compact invariant subset of the set

M={(T,I,V)Ω:dLdt=0}M=\Big{\{}(T,I,V)\in\Omega:\frac{dL}{dt}=0\Big{\}}

is the singleton {E0}\{E^{0}\}. By the Lasalle invariance principle[10], the infection-free equilibrium is globally asymptotically stable if 0<1qδ\mathcal{R}_{0}<1-\frac{q}{\delta}. We have seen previously that if 0>1\mathcal{R}_{0}>1, at least one of the eigenvalues of the Jacobian matrix evaluated at E0E^{0} has a positive real part. Therefore, the infection-free equilibrium E0E^{0} is unstable when 0>1\mathcal{R}_{0}>1. This completes the proof of the theorem.   

Remark 8

The Lyapunov function defined in the proof of theorem 3.20 has been obtained following the general giving by Korobonikov [12, 13, 11] for the dynamic virus fondamental model.

3.5.2 Case of infected equilibrium point

We recall :

Remark 9

According to (13, 14, 15) the infected equilibrium point EE^{\ast} verify :

rTdT\displaystyle r_{T}-d_{T} =\displaystyle= sT+(1η)βV+rTTmax(T+I)qIT,\displaystyle-\frac{s}{T^{\ast}}+(1-\eta)\beta V^{\ast}+\frac{r_{T}}{T_{max}}(T^{\ast}+I^{\ast})-q\frac{I^{\ast}}{T^{\ast}},
rIδ\displaystyle r_{I}-\delta =\displaystyle= (1η)βVTI+rITmax(T+I),\displaystyle-\frac{(1-\eta)\beta V^{\ast}T^{\ast}}{I^{\ast}}+\frac{r_{I}}{T_{max}}(T^{\ast}+I^{\ast}),
c\displaystyle c =\displaystyle= (1ε)pIV.\displaystyle\frac{(1-\varepsilon)pI^{\ast}}{V^{\ast}}.
Theorem 3.21

Suppose that rI=rTr_{I}=r_{T}, s=dTTmaxs=d_{T}T_{max} and δ=dT\delta=d_{T}.
Then the infected steady state during therapy EE^{\ast} of model (4) is globally asymptotically stable as soon as it exists.

Proof. Consider the Lyapunov function defined by :

L(T,I,V)=TTTlnTT+IIIlnII+(1η)βTV(1ε)pI(VVVlnVV).L(T,I,V)=T-T^{\ast}-T^{\ast}\ln\frac{T}{T^{\ast}}+I-I^{\ast}-I^{\ast}\ln\frac{I}{I^{\ast}}+\frac{(1-\eta)\beta T^{\ast}V^{\ast}}{(1-\varepsilon)pI^{\ast}}\bigl{(}V-V^{\ast}-V^{\ast}\ln\frac{V}{V^{\ast}}\bigr{)}.

Let us show that dLdt0\frac{dL}{dt}\leq 0 and dLdt=0\frac{dL}{dt}=0 if and only if T=TT=T^{\ast}, I=II=I^{\ast}, V=VV=V^{\ast} simultaneously.
The time derivative of LL along the trajectories of system (4) is :

dLdt\displaystyle\frac{dL}{dt} =\displaystyle= LTdTdt+LIdIdt+LVdVdt\displaystyle\frac{\partial L}{\partial T}\frac{dT}{dt}+\frac{\partial L}{\partial I}\frac{dI}{dt}+\frac{\partial L}{\partial V}\frac{dV}{dt}
=\displaystyle= (1TT)T˙+(1II)I˙+(1η)βTV(1ε)pI(1VV)V˙\displaystyle\left(1-\frac{T^{\ast}}{T}\right)\dot{T}+\left(1-\frac{I^{\ast}}{I}\right)\dot{I}+\frac{(1-\eta)\beta T^{\ast}V^{\ast}}{(1-\varepsilon)pI^{\ast}}\left(1-\frac{V^{\ast}}{V}\right)\dot{V}
=\displaystyle= (TT)T˙T+(II)I˙I+(1η)βTV(1ε)pI(VV)V˙V.\displaystyle(T-T^{\ast})\frac{\dot{T}}{T}+(I-I^{\ast})\frac{\dot{I}}{I}+\frac{(1-\eta)\beta T^{\ast}V^{\ast}}{(1-\varepsilon)pI^{\ast}}(V-V^{\ast})\frac{\dot{V}}{V}.

Collecting terms, and canceling identical terms with opposite signs, yields :

dLdt\displaystyle\frac{dL}{dt} =\displaystyle= (TT)(sT+rTrT(T+I)TmaxdT(1η)βV+qIT)\displaystyle(T-T^{\ast})\left(\frac{s}{T}+r_{T}-\frac{r_{T}(T+I)}{T_{max}}-d_{T}-(1-\eta)\beta V+q\frac{I}{T}\right) (26)
+(1η)βTV(1ε)pI(VVV)((1ε)pIcV)\displaystyle+\frac{(1-\eta)\beta T^{\ast}V^{\ast}}{(1-\varepsilon)pI^{\ast}}\left(\frac{V-V^{\ast}}{V}\right)\Big{(}(1-\varepsilon)pI-cV\Big{)}
+(II)((1η)βVTI+rI(1T+ITmax)δ).\displaystyle+(I-I^{\ast})\left((1-\eta)\frac{\beta VT}{I}+r_{I}\left(1-\frac{T+I}{T_{max}}\right)-\delta\right).

Reporting equalities of remark 9 into (26), we have :

dLdt\displaystyle\frac{dL}{dt} =\displaystyle= (TT)[sTsT+(1η)βV+rTTmax(T+I)qITrT(T+I)Tmax(1η)βV+qIT]\displaystyle(T-T^{\ast})\Bigl{[}\frac{s}{T}-\frac{s}{T^{\ast}}+(1-\eta)\beta V^{\ast}+\frac{r_{T}}{T_{max}}(T^{\ast}+I^{\ast})-q\frac{I^{\ast}}{T^{\ast}}-\frac{r_{T}(T+I)}{T_{max}}-(1-\eta)\beta V+q\frac{I}{T}\Bigr{]}
+(II)[(1η)βVTIrITTmaxrIITmax(1η)βVTI+rITmax(T+I)]+(1η)β\displaystyle+(I-I^{\ast})\Bigl{[}(1-\eta)\frac{\beta VT}{I}-r_{I}\frac{T}{T_{max}}-r_{I}\frac{I}{T_{max}}-\frac{(1-\eta)\beta V^{\ast}T^{\ast}}{I^{\ast}}+\frac{r_{I}}{T_{max}}(T^{\ast}+I^{\ast})\Bigr{]}+(1-\eta)\beta
+TV(1ε)pI(VVV)((1ε)pI(1ε)pIVV)\displaystyle+\frac{T^{\ast}V^{\ast}}{(1-\varepsilon)pI^{\ast}}\left(\frac{V-V^{\ast}}{V}\right)\left((1-\varepsilon)pI-\frac{(1-\varepsilon)pI^{\ast}}{V^{\ast}}V\right)
=\displaystyle= sTT(TT)2rTTmax(TT)2rTTmax(TT)(II)(1η)β(TT)(VV)\displaystyle-\frac{s}{TT^{\ast}}(T-T^{\ast})^{2}-\frac{r_{T}}{T_{max}}(T-T^{\ast})^{2}-\frac{r_{T}}{T_{max}}(T-T^{\ast})(I-I^{\ast})-(1-\eta)\beta(T-T^{\ast})(V-V^{\ast})
+(1η)β[(VTIVTI)(II)+TV(1ε)pI(VV)V((1ε)pI(1ε)VpIV)]\displaystyle+(1-\eta)\beta\Bigl{[}\Big{(}\frac{VT}{I}-\frac{V^{\ast}T^{\ast}}{I^{\ast}}\Big{)}(I-I^{\ast})+\frac{T^{\ast}V^{\ast}}{(1-\varepsilon)pI^{\ast}}\frac{(V-V^{\ast})}{V}\Bigl{(}(1-\varepsilon)pI-\frac{(1-\varepsilon)}{V^{\ast}}pI^{\ast}V\Bigr{)}\Bigr{]}
qIT(TT)+qIT(TT)rITmax(TT)(II)rITmax(II)2\displaystyle-q\frac{I^{\ast}}{T^{\ast}}(T-T^{\ast})+q\frac{I}{T}(T-T^{\ast})-\frac{r_{I}}{T_{max}}(T-T^{\ast})(I-I^{\ast})-\frac{r_{I}}{T_{max}}(I-I^{\ast})^{2}
=\displaystyle= sTT(TT)2rTTmax(TT)2(rT+rI)Tmax(TT)(II)rITmax(II)2\displaystyle-\frac{s}{TT^{\ast}}(T-T^{\ast})^{2}-\frac{r_{T}}{T_{max}}(T-T^{\ast})^{2}-\frac{(r_{T}+r_{I})}{T_{max}}(T-T^{\ast})(I-I^{\ast})-\frac{r_{I}}{T_{max}}(I-I^{\ast})^{2}
+(1η)β[(VTIVTI)(II)\displaystyle+(1-\eta)\beta\biggl{[}\Big{(}\frac{VT}{I}-\frac{V^{\ast}T^{\ast}}{I^{\ast}}\Big{)}(I-I^{\ast})
(TT)(VV)+TV(1ε)pI(VV)V((1ε)pI(1ε)VpIV)]\displaystyle-(T-T^{\ast})(V-V^{\ast})+\frac{T^{\ast}V^{\ast}}{(1-\varepsilon)pI^{\ast}}\frac{(V-V^{\ast})}{V}\left((1-\varepsilon)pI-\frac{(1-\varepsilon)}{V^{\ast}}pI^{\ast}V\right)\biggr{]}
q1TT(T2I+(T)2ITTITTI)\displaystyle-q\frac{1}{TT^{\ast}}\Bigl{(}T^{2}I^{\ast}+(T^{\ast})^{2}I-T^{\ast}TI-T^{\ast}TI^{\ast}\Bigr{)}
=\displaystyle= sTT(TT)21Tmax(rTT+rIIrTTrII)(T+ITI)\displaystyle-\frac{s}{TT^{\ast}}(T-T^{\ast})^{2}-\frac{1}{T_{max}}(r_{T}T+r_{I}I-r_{T}T^{\ast}-r_{I}I^{\ast})(T+I-T^{\ast}-I^{\ast})
+(1η)βTV(VTVTVTIIVTVTIIVT+VTIVTITVTV+TVTV\displaystyle+(1-\eta)\beta T^{\ast}V^{\ast}\Bigl{(}\frac{VT}{V^{\ast}T^{\ast}}-\frac{VTI^{\ast}}{IV^{\ast}T^{\ast}}-\frac{V^{\ast}T^{\ast}I}{I^{\ast}V^{\ast}T^{\ast}}+\frac{V^{\ast}T^{\ast}I^{\ast}}{V^{\ast}T^{\ast}I^{\ast}}-\frac{TV}{T^{\ast}V^{\ast}}+\frac{TV^{\ast}}{T^{\ast}V^{\ast}}
+TVTVTVTV+IVIVIV2IVVVIIV+VIVVIV)\displaystyle+\frac{T^{\ast}V}{T^{\ast}V^{\ast}}-\frac{T^{\ast}V^{\ast}}{T^{\ast}V^{\ast}}+\frac{IV}{I^{\ast}V}-\frac{I^{\ast}V^{2}}{I^{\ast}VV^{\ast}}-\frac{V^{\ast}I}{I^{\ast}V}+\frac{V^{\ast}I^{\ast}V}{V^{\ast}I^{\ast}V}\Bigr{)}
q1TT((TT)2I+(T)2(II)+TT(II))\displaystyle-q\frac{1}{TT^{\ast}}\Bigl{(}(T-T^{\ast})^{2}I^{\ast}+(T^{\ast})^{2}(I-I^{\ast})+TT^{\ast}(I^{\ast}-I)\Bigr{)}
=\displaystyle= sTT(TT)21Tmax(rTT+rIIrTTrII)(T+ITI)\displaystyle-\frac{s}{TT^{\ast}}(T-T^{\ast})^{2}-\frac{1}{T_{max}}(r_{T}T+r_{I}I-r_{T}T^{\ast}-r_{I}I^{\ast})(T+I-T^{\ast}-I^{\ast})
+(1η)βTV(1+TTVTIIVTVIIV)q1TT((TT)2I\displaystyle+(1-\eta)\beta T^{\ast}V^{\ast}\Bigl{(}1+\frac{T}{T^{\ast}}-\frac{VTI^{\ast}}{IV^{\ast}T^{\ast}}-\frac{V^{\ast}I}{I^{\ast}V}\Bigr{)}-q\frac{1}{TT^{\ast}}\big{(}(T-T^{\ast})^{2}I^{\ast}
+(T)(II)(TT)).\displaystyle+(T^{\ast})(I-I^{\ast})(T^{\ast}-T)\Bigr{)}.

Note that

1+TTVTIIVTVIIV=(3TTVTIIVTVIIV)+(TT+TT2)1+\frac{T}{T^{\ast}}-\frac{VTI^{\ast}}{IV^{\ast}T^{\ast}}-\frac{V^{\ast}I}{I^{\ast}V}=\Big{(}3-\frac{T^{\ast}}{T}-\frac{VTI^{\ast}}{IV^{\ast}T^{\ast}}-\frac{V^{\ast}I}{I^{\ast}V}\big{)}+\big{(}\frac{T}{T^{\ast}}+\frac{T^{\ast}}{T}-2\Big{)}

and

(TT+TT2)=(TT)2TT.\big{(}\frac{T}{T^{\ast}}+\frac{T^{\ast}}{T}-2\big{)}=\frac{(T-T^{\ast})^{2}}{TT^{\ast}}.

According to (13),

s=(1η)βTV+(dTrT+rT(T+I)Tmax)TqI.s=(1-\eta)\beta T^{\ast}V^{\ast}+\Big{(}d_{T}-r_{T}+r_{T}\frac{(T^{\ast}+I^{\ast})}{T_{max}}\Big{)}T^{\ast}-qI^{\ast}.

furthermore,

T+I=Tmax;T^{\ast}+I^{\ast}=T_{max};

hence,

s=(1η)βTV+dTTqI.s=(1-\eta)\beta T^{\ast}V^{\ast}+d_{T}T^{\ast}-qI^{\ast}.

By hypothesis, rT=rIr_{T}=r_{I} this leads to :

dLdt\displaystyle\frac{dL}{dt} =\displaystyle= (dTT+qITT(1η)βVT)(TT)2rTTmax(T+ITI)2\displaystyle\Big{(}-\frac{d_{T}}{T}+q\frac{I^{\ast}}{TT^{\ast}-\frac{(1-\eta)\beta V^{\ast}}{T}}\Big{)}(T-T^{\ast})^{2}-\frac{r_{T}}{T_{max}}(T+I-T^{\ast}-I^{\ast})^{2}
+(1η)βVT(3TTVTIIVTVIIV)+(1η)βVT(TT)2TT\displaystyle+(1-\eta)\beta V^{\ast}T^{\ast}\Big{(}3-\frac{T^{\ast}}{T}-\frac{VTI^{\ast}}{IV^{\ast}T^{\ast}}-\frac{V^{\ast}I}{I^{\ast}V}\Big{)}+(1-\eta)\beta V^{\ast}T^{\ast}\frac{(T-T^{\ast})^{2}}{TT^{\ast}}
q1TT((TT)2I+T(II)(TT))\displaystyle-q\frac{1}{TT^{\ast}}\Big{(}(T-T^{\ast})^{2}I^{\ast}+T^{\ast}(I-I^{\ast})(T^{\ast}-T)\Big{)}
=\displaystyle= dTT(TT)2rTTmax(T+ITI)2q1T(II)(TT)\displaystyle-\frac{d_{T}}{T}(T-T^{\ast})^{2}-\frac{r_{T}}{T_{max}}(T+I-T^{\ast}-I^{\ast})^{2}-q\frac{1}{T}(I-I^{\ast})(T^{\ast}-T)
+(1η)βVT(3TTVTIIVTVIIV)\displaystyle+(1-\eta)\beta V^{\ast}T^{\ast}\big{(}3-\frac{T^{\ast}}{T}-\frac{VTI^{\ast}}{IV^{\ast}T^{\ast}}-\frac{V^{\ast}I}{I^{\ast}V}\big{)}
=\displaystyle= dTT(TT)2rTTmax(T+ITI)2q1T(II)(TT)\displaystyle-\frac{d_{T}}{T}(T-T^{\ast})^{2}-\frac{r_{T}}{T_{max}}(T+I-T^{\ast}-I^{\ast})^{2}-q\frac{1}{T}(I-I^{\ast})(T^{\ast}-T)
+(1η)βVT(3(T)2IIVV+(IVT)2+(IV)2TTTTIIVV)\displaystyle+(1-\eta)\beta V^{\ast}T^{\ast}\Big{(}3-\frac{(T^{\ast})^{2}II^{\ast}VV^{\ast}+(I^{\ast}VT)^{2}+(IV^{\ast})^{2}TT^{\ast}}{TT^{\ast}II^{\ast}VV^{\ast}}\Big{)}
=\displaystyle= dTT(TT)2rTTmax(T+ITI)2q1T(II)(TT)\displaystyle-\frac{d_{T}}{T}(T-T^{\ast})^{2}-\frac{r_{T}}{T_{max}}(T+I-T^{\ast}-I^{\ast})^{2}-q\frac{1}{T}(I-I^{\ast})(T^{\ast}-T)
+3(1η)βVTTTIIVV(TTIIVV13((T)2IIVV+(IVT)2+(IV)2TT)).\displaystyle+\frac{3(1-\eta)\beta V^{\ast}T^{\ast}}{TT^{\ast}II^{\ast}VV^{\ast}}\left(TT^{\ast}II^{\ast}VV^{\ast}-\frac{1}{3}\Big{(}(T^{\ast})^{2}II^{\ast}VV^{\ast}+(I^{\ast}VT)^{2}+(IV^{\ast})^{2}TT^{\ast}\Big{)}\right).

Yet

13((T)2IIVV+(IVT)2+(IV)2TT)TTIIVV\frac{1}{3}\Big{(}(T^{\ast})^{2}II^{\ast}VV^{\ast}+(I^{\ast}VT)^{2}+(IV^{\ast})^{2}TT^{\ast}\Big{)}\geq TT^{\ast}II^{\ast}VV^{\ast}

since the geometric mean is less than or equal to the arithmetic mean.
It should be noted that dLdt0\frac{dL}{dt}\leq 0 and dL2dt=0\frac{dL_{2}}{dt}=0 holds if and only if (T,X,V)(T,X,V) take the steady states values (T,X,V)(T^{*},X^{*},V^{*}) . Therefore the infected equilibrium point EE^{*} is globally asymptotically stable. This completes the proof of this theorem.   

3.6 Some numerical simulations

Some numerical simulations have been done in the case R0<1R_{0}<1 to confirm theoretical result obtain on global stability for the uninfected equilibrium.
The following curves, obtained using the Maple software, show the real-time evolution of uninfected hepatocytes, infected hepatocytes and viral load. The values of the parameters are taken in the parameter range defined by the table (2.2) and the initial conditions are T0=103T_{0}=10^{3}, I0=2I_{0}=2 and V0=1V_{0}=1.

3.6.1 Evolution in time of uninfected cells, infected cells and viral load when 0<1\mathcal{R}_{0}<1

. Parameters values : s=10s=10, rT=0.05r_{T}=0.05, rI=0.112r_{I}=0.112, dT=0.001d_{T}=0.001, dI=0.1d_{I}=0.1, Tmax=107T_{max}=10^{7}, β=107\beta=10^{-7}, η=107\eta=10^{-7}, ε=108\varepsilon=10^{-8}, p=1p=1, q=0.5q=0.5, c=2c=2. These parameters values yields : T0=4160020T^{0}=4160020 and 0=0.4556<1\mathcal{R}_{0}=0.4556<1.

Refer to caption
(a) numerical solution curve for the uninfected hepatocytes.
Refer to caption
(b) numerical solution curve for the infected hepatocytes.
Refer to caption
(c) numerical solution curve for the virus load.
Refer to caption
Figure 5: Numerical simulations of the extended HCV model in 1000 days.

3.6.2 Evolution in time of uninfected cells, infected cells and viral load when 0>1\mathcal{R}_{0}>1.

Parameters values: s=10s=10, rT=2r_{T}=2, rI=0.112r_{I}=0.112, dT=0.01d_{T}=0.01, dI=0.3d_{I}=0.3, Tmax=107T_{max}=10^{7}, β=107\beta=10^{-7}, η=104\eta=10^{-4}, ε=104\varepsilon=10^{-4}, p=1p=1, q=0.5q=0.5, c=0.5c=0.5. These parameters values yields: T0=14875270T^{0}=14875270 et 0=3.6501>1\mathcal{R}_{0}=3.6501>1.

Refer to caption
(a) numerical solution curve for the uninfected hepatocytes.
Refer to caption
(b) numerical solution curve for the infected hepatocytes.
Refer to caption
(c) numerical solution curve for the virus load.
Refer to caption
Figure 7: Numerical simulations of the extended HCV model in 1000 days.

In short, in this section, it was a question to study the global stability of the model (4). We have established that the model (4) is globally asymptotically stable at equilibrium points EE^{\ast} and E0E^{0} when 0<1\mathcal{R}_{0}<1 and unstable when 0>1\mathcal{R}_{0}>1. the numerical simulations has been carried out using the Maple software confirming theoretical results.

Acknowledgement(s)

I am grateful to Professor Alan Rendall for valuable and tremendous discussions. I wish to thank him for introducing me to Mathematical Biology and to its relationship with Mathematical Analysis. I also thank the Higher Teacher’s Training College of the University of Maroua were this paper were initiated.

Conclusion and discussions

Having reached the end of our work, it emerges from all the investigations presented that hepatitis C is a major health problem in the world and especially in Cameroon. To understand the dynamics of HCV and its infectious processes, mathematical models are present as an important and unavoidable tool. Global stability analysis has been done, by the technique of Lyapunov, to the model of HCV infection with proliferation cell and spontaneous healing, for revealing significant information for making good decision for the fighting against hepatitis C. We first show the existence of the global solution to the Cauchy problem (4), (5); then we have calculated the basic reproduction ratio 0\mathcal{R}_{0}. We finally show that the only infected equilibrium point for the model is globally asymptotically stable when 0>1\mathcal{R}_{0}>1 and unstable when 0<1\mathcal{R}_{0}<1 under others hypotheses. Furthermore uninfected equilibrium point for the model is globally asymptotically stable when 0<1\mathcal{R}_{0}<1 and unstable when 0>1\mathcal{R}_{0}>1. These theoretical results have been confirmed by numerical simulations done using the software Maple. Given the results obtained, this work is the beginning point of very interesting other future investigations.
We plan to extend our analysis by focusing on more realistic models such as:

  1. 1.

    models with delay which involve delay ordinary differential equations;

  2. 2.

    models taking into account space which involve Partial differential equations;

  3. 3.

    models taking into account random phenomena which evolve stochastic differential equations.

We also plan to focus on others methods of studying global stability like the geometric method that can provides results with less hypotheses on model (4).

References

  • [1] M. S. F. Chong, L.S.M.Crossley and Madzvamuse, The stability analyses of the mathematical models of hepatitis C virus infection. Modern Applied Science, 9 (3). pp. 250-271. ISSN 1913-1844, Article (Published Version) Anotida (2015), 23 pages. http://sro.sussex.ac.uk/52312/
  • [2] Y. Cherruault, Biomath matiques, Presses Universitaire de France, 1983, 108, boulevard Saint-Germain, 75006 Paris 2014, 132 pages.
  • [3] S. M. Ciupe, R. M. Ribeiro, P. W. Nelson and A. S. Perelson, Modeling the mechanisms of acute hepatitis B virus infection, J. Theor. Biol. 247 (2007) 23 35.
  • [4] H. Dahari, R. M. Ribeiro, and A. S. Perelson, Triphasic decline of HCV RNA during antiviral therapy, Hepatology, 46 (2007), pp. 16 21.
  • [5] H. Dahari, E. Shudo, R. M. Ribeiro, and A. S. Perelson, Modeling complex decay profiles of hepatitis B virus during antiviral therapy, Hepatology, to appear (DOI: 10.1002/hep.22586).
  • [6] H. Dahari, J. E. Layden-Almer, E. Kallwitz, R. M. Ribeiro, S. J. Cotler, T. J. Layden and A. S. Perelson, A mathematical model of hepatitis C virus dynamics in patients with high baseline viral loads or advanced liver disease, Gastroenterology 136 (2009) 1402 1409.
  • [7] H. Dahari, M. Major, X.Zhang, K.Mihalik, C. M. Rice, A. S. Perelson, S. M. Feinstone and A.U.Neumann Mathematical Modeling of Primary Hepatitis C Infection: Noncytolytic Clearance and Early Blockage of Virion Production, Gastroenterology 128 2005:1056 1066.
  • [8] H. Daharia, A. Loa, R. M. Ribeiroa, A. S. Perelson; Modeling hepatitis C virus dynamics: Liver regeneration and critical drug efficacy. Journal of Theoretical Biology 247 (2007) 371 381, 2007, P.371-381. www.sciencedirect.com.
  • [9] O. Diekmann, J.A.P. Heesterbeek, J.A.J. Metz, On the definition and the computation of the basic reproduction ratio R0R_{0} in models for infectious diseases in heterogeneous populations, J. Math. Biol. 28 (1990) 365.
  • [10] Khalil, H., 2002. Nonlinear Systems, 3rd edn. Prentice Hall, New York.
  • [11] A. Korobeinikov, Global Properties of Basic Virus Dynamics Models, doi: 10.1016/2004.02.001 879-883, Bulletin of Mathematical Biology (2004)66. 2016, 63 pages.
  • [12] A. Korobeinikov, Lyapunov functions and global properties for SEIR and SEIS epidemic models, Mathematical Medicine and Biology (2004).
  • [13] A. Korobeinikov, G. C. Wake; Lyapunov Functions and Global Stability for SIR, SIRS, and SIS Epidemiological Models, Applied Mathematics Letters 15 (2002) P.955-960
  • [14] C. Laou nan, Utilisation des modèles dynamiques pour l´ évaluation des traitements de l´hépatite C, Thèse de Mathématiques de l’Université Paris Diderot (Paris 7) Sorbonne Paris Cité, juillet 2014, 113 pages.
  • [15] Q. Li, F. Lu, G. Deng and K. Wang, Modeling the effects of covalently closed circular DNA and dendritic cells in chronic HBV infection, J. Theor. Biol. 357 (2014) 1 9.
  • [16] J.D. Murray, Mathematical Biology I: An introduction, Editors S.S. Antman J.E. Marsden L. Sirovich S. Wiggins, 2001.
  • [17] A. U. Neumann, N. P. Lam, H. Dahari, D. R. Gretch, T. E. Wiley, T. J. Layden, and A. S. Perelson, Hepatitis C viral dynamics in vivo and the antiviral efficacy of interferon-alpha therapy, Science, 282 (1998), pp. 103 107.
  • [18] L. Perko, Differential Equations and Dynamical Systems,Springer, Third Edition, Editors J.E. Marsden L. Sirovich M. Golubitsky, 571 pages.
  • [19] S. Banerjee, R. Keval, S. Gakkhar, Modeling the dynamics of Hepatitis C Virus with combined antiviral drug therapy: Interferon and Ribavirin, arXiv:1105.3669v1 [q-bio.CB] 18 May 2011 Bulletin of Mathematical Biology.
  • [20] T. C. Reluga, H. Dahari, and A. S. Perelson, analysis of hepatitis C virus infection models with hepatocyte homeostasis.SIAM J. APPL. MATH.Vol. 69, No. 4, pp. 999 1023, 2009, P.999-1023. http://www.siam.org/journals/ojsa.php.
  • [21] P. Van den Driessche and J. Watmough. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Mathematical Biosciences, 2002 180 2948.
  • [22] WHO, Global hepatitis repport 2017, ISBN 978-92-4-156545-5, www.who.int/mediacentre/factsheets/fs164/en/.
  • [23] N. Yousfi, K. Hattaf and M. Rachik; Analysis of a HCV Model with CTL and Antibody Responses, Applied Mathematical Sciences, Vol. 3, 2009, no. 57, P.2835-2846.

4 Appendices

Appendix A Proof lemma 3.16

Proof. The Jacobian matrix J(E)J(E^{\ast}) of the system (4) at EE^{\ast} is given by :

J(E)\displaystyle J(E^{\ast}) =\displaystyle= (f1T(E)f1I(E)f1V(E)f2T(E)f2I(E)f2V(E)f3T(E)f3I(E)f3V(E)).\displaystyle\left(\begin{array}[]{ccc}\frac{\partial f_{1}}{\partial T}(E^{\ast})&\frac{\partial f_{1}}{\partial I}(E^{\ast})&\frac{\partial f_{1}}{\partial V}(E^{\ast})\\ \\ \frac{\partial f_{2}}{\partial T}(E^{\ast})&\frac{\partial f_{2}}{\partial I}(E^{\ast})&\frac{\partial f_{2}}{\partial V}(E^{\ast})\\ \\ \frac{\partial f_{3}}{\partial T}(E^{\ast})&\frac{\partial f_{3}}{\partial I}(E^{\ast})&\frac{\partial f_{3}}{\partial V}(E^{\ast})\end{array}\right).

Let us determine the coefficients of that Jacobian matrix .

f1T(E)=rTrTTTmaxrTITmaxrTTTmaxdT(1η)βV.\frac{\partial f_{1}}{\partial T}(E^{\ast})=r_{T}-\frac{r_{T}T^{\ast}}{T_{max}}-\frac{r_{T}I^{\ast}}{T_{max}}-\frac{r_{T}T^{\ast}}{T_{max}}-d_{T}-(1-\eta)\beta V^{\ast}.

Yet

V=(1ε)cpI,V^{\ast}=\frac{(1-\varepsilon)}{c}pI^{\ast},
I=((1θ)βpTmaxcrI1)T+TmaxrI(rIδ)I^{\ast}=\left(\frac{(1-\theta)\beta pT_{max}}{cr_{I}}-1\right)T^{\ast}+\frac{T_{max}}{r_{I}}(r_{I}-\delta)

and

dT=+(1θ)cβp(rTrI+(1θ)βpTmaxcrI1)TsTqTmaxTrI(rIδ)\displaystyle-d_{T}=+\frac{(1-\theta)}{c}\beta p\left(\frac{r_{T}}{r_{I}}+\frac{(1-\theta)\beta pT_{max}}{cr_{I}}-1\right)T^{\ast}-\frac{s}{T^{\ast}}-\frac{qT_{max}}{T^{\ast}r_{I}}(r_{I}-\delta)
+rTrI(rIδ)+(1θ)βpTmaxcrI(rIδ)(1θ)βpTmaxcrIqrT+q;\displaystyle+\frac{r_{T}}{r_{I}}(r_{I}-\delta)+\frac{(1-\theta)\beta pT_{max}}{cr_{I}}(r_{I}-\delta)-\frac{(1-\theta)\beta pT_{max}}{cr_{I}}q-r_{T}+q;

hence ,

f1T(E)\displaystyle\frac{\partial f_{1}}{\partial T}(E^{\ast}) =\displaystyle= rT2rTTTmaxrTTmax(((1θ)βpTmaxcrI1)T+TmaxrI(rIδ))\displaystyle r_{T}-2\frac{r_{T}T^{\ast}}{T_{max}}-\frac{r_{T}}{T_{max}}\left(\Big{(}\frac{(1-\theta)\beta pT_{max}}{cr_{I}}-1\Big{)}T^{\ast}+\frac{T_{max}}{r_{I}}(r_{I}-\delta)\right)
+(1θ)cβp(rTrI+(1θ)βpTmaxcrI1)TsTqTmaxTrI(rIδ)\displaystyle+\frac{(1-\theta)}{c}\beta p\left(\frac{r_{T}}{r_{I}}+\frac{(1-\theta)\beta pT_{max}}{cr_{I}}-1\right)T^{\ast}-\frac{s}{T^{\ast}}-\frac{qT_{max}}{T^{\ast}r_{I}}(r_{I}-\delta)
+rTrI(rIδ)+(1θ)βpTmaxcrI(rIδ)(1θ)βpTmaxcrIqrT\displaystyle+\frac{r_{T}}{r_{I}}(r_{I}-\delta)+\frac{(1-\theta)\beta pT_{max}}{cr_{I}}(r_{I}-\delta)-\frac{(1-\theta)\beta pT_{max}}{cr_{I}}q-r_{T}
+q(1η)βp(1ε)c(((1θ)βpTmaxcrI1)T+TmaxrI(rIδ)),\displaystyle+q-\frac{(1-\eta)\beta p(1-\varepsilon)}{c}\left(\Big{(}\frac{(1-\theta)\beta pT_{max}}{cr_{I}}-1\Big{)}T^{\ast}+\frac{T_{max}}{r_{I}}(r_{I}-\delta)\right),
=\displaystyle= sT+rT2rTTTmax+rTTTmaxrTcrI(1θ)βpTrT+rTrIδ\displaystyle-\frac{s}{T^{\ast}}+r_{T}-\frac{2r_{T}T^{\ast}}{T_{max}}+\frac{r_{T}T^{\ast}}{T_{max}}-\frac{r_{T}}{cr_{I}}(1-\theta)\beta pT^{\ast}-r_{T}+\frac{r_{T}}{r_{I}}\delta
(1θ)cβpT+rTcrI(1θ)βpT+(1θ)2β2p2c2TmaxrITqTmaxT\displaystyle-\frac{(1-\theta)}{c}\beta pT^{\ast}+\frac{r_{T}}{cr_{I}}(1-\theta)\beta pT^{\ast}+\frac{(1-\theta)^{2}\beta^{2}p^{2}}{c^{2}}\frac{T_{max}}{r_{I}}T^{\ast}-\frac{qT_{max}}{T^{\ast}}
+qTmaxTrIδ+rTrTrIδ+(1θ)crIβpTmax(rIδ)(1θ)crIβpTmaxq\displaystyle+\frac{qT_{max}}{T^{\ast}r_{I}}\delta+r_{T}-\frac{r_{T}}{r_{I}}\delta+\frac{(1-\theta)}{cr_{I}}\beta pT_{max}(r_{I}-\delta)-\frac{(1-\theta)}{cr_{I}}\beta pT_{max}q
rT+q+(1θ)cβpT+(1θ)2β2p2c2TmaxrIT(1θ)cβpTmax\displaystyle-r_{T}+q+\frac{(1-\theta)}{c}\beta pT^{\ast}+\frac{(1-\theta)^{2}\beta^{2}p^{2}}{c^{2}}\frac{T_{max}}{r_{I}}T^{\ast}-\frac{(1-\theta)}{c}\beta pT_{max}
+(1θ)crIβpTmaxδ,\displaystyle+\frac{(1-\theta)}{cr_{I}}\beta pT_{max}\delta,
=\displaystyle= sTrTTTmaxqIT;\displaystyle-\frac{s}{T^{\ast}}-\frac{r_{T}T^{\ast}}{T_{max}}-\frac{qI^{\ast}}{T^{\ast}};
f1I(E)\displaystyle\frac{\partial f_{1}}{\partial I}(E^{\ast}) =\displaystyle= rTTTmax+q;\displaystyle-\frac{r_{T}T^{\ast}}{T_{max}}+q;
f1V(E)\displaystyle\frac{\partial f_{1}}{\partial V}(E^{\ast}) =\displaystyle= (1η)βT;\displaystyle-(1-\eta)\beta T^{\ast};
f2T(E)\displaystyle\frac{\partial f_{2}}{\partial T}(E^{\ast}) =\displaystyle= rIITmax+(1η)βV;\displaystyle-\frac{r_{I}I^{\ast}}{T_{max}}+(1-\eta)\beta V^{\ast};
f2I(E)\displaystyle\frac{\partial f_{2}}{\partial I}(E^{\ast}) =\displaystyle= rI(1T+ITmax)rIITmaxδ,\displaystyle r_{I}\big{(}1-\frac{T^{\ast}+I^{\ast}}{T_{max}}\big{)}-\frac{r_{I}I^{\ast}}{T_{max}}-\delta,
=\displaystyle= rIrITTmax2rIITmaxδ,\displaystyle r_{I}-\frac{r_{I}T^{\ast}}{T_{max}}-2\frac{r_{I}I^{\ast}}{T_{max}}-\delta,
=\displaystyle= rIITmax+rI(1T+((1θ)βpTmaxcrI1)T+TmaxrI(rIδ)Tmax)δ,\displaystyle-\frac{r_{I}I^{\ast}}{T_{max}}+r_{I}\left(1-\frac{T^{\ast}+\Big{(}\frac{(1-\theta)\beta pT_{max}}{cr_{I}}-1\Big{)}T^{\ast}+\frac{T_{max}}{r_{I}(r_{I}-\delta)}}{T_{max}}\right)-\delta,
=\displaystyle= rIITmax+rIrITTmax(1θ)βpTc+rIITmaxrI+δδ,\displaystyle-\frac{r_{I}I^{\ast}}{T_{max}}+r_{I}-\frac{r_{I}T^{\ast}}{T_{max}}-\frac{(1-\theta)\beta pT^{\ast}}{c}+\frac{r_{I}I^{\ast}}{T_{max}}-r_{I}+\delta-\delta,
=\displaystyle= rIITmax(1θ)βpTc,\displaystyle-\frac{r_{I}I^{\ast}}{T_{max}}-\frac{(1-\theta)\beta pT^{\ast}}{c},
f2I(E)\displaystyle\frac{\partial f_{2}}{\partial I}(E^{\ast}) =\displaystyle= rIITmax(1η)βVTI.\displaystyle-\frac{r_{I}I^{\ast}}{T_{max}}-\frac{(1-\eta)\beta V^{\ast}T^{\ast}}{I^{\ast}}.
f2V(E)\displaystyle\frac{\partial f_{2}}{\partial V}(E^{\ast}) =\displaystyle= (1η)βT;\displaystyle(1-\eta)\beta T^{\ast};
f3T(E)\displaystyle\frac{\partial f_{3}}{\partial T}(E^{\ast}) =\displaystyle= 0;\displaystyle 0;
f3I(E)\displaystyle\frac{\partial f_{3}}{\partial I}(E^{\ast}) =\displaystyle= (1ε)p;\displaystyle(1-\varepsilon)p;
f3V(E)\displaystyle\frac{\partial f_{3}}{\partial V}(E^{\ast}) =\displaystyle= c.\displaystyle-c.

Therefore, J(E)=(sTrTTTmaxqITrTTTmax+q(1q)βTrIITmax+(1η)βVrIITmax(1η)βVTI(1η)βT0(1ε)pC).J(E^{\ast})=\left(\begin{array}[]{ccc}-\frac{s}{T^{\ast}}-\frac{r_{T}T^{\ast}}{T_{max}}-q\frac{I^{\ast}}{T^{\ast}}&-\frac{r_{T}T^{\ast}}{T_{max}}+q&-(1-q)\beta T^{\ast}\\ &&\\ \\ -\frac{r_{I}I^{\ast}}{T_{max}}+(1-\eta)\beta V^{\ast}&-\frac{r_{I}I^{\ast}}{T_{max}}-\frac{(1-\eta)\beta V^{\ast}T^{\ast}}{I^{\ast}}&(1-\eta)\beta T^{\ast}\\ \\ 0&(1-\varepsilon)p&-C\\ \\ \end{array}\right).
This completes the proof of the lemma 3.16.   

Appendix B Proof of lemma 3.17

Proof. The characteristic equation is given by |JλI|=0|J-\lambda I|=0, i.e.

|sTrTTTmaxqITλrTTTmax+q(1q)βTrIITmax+(1η)βVrIITmax(1η)βVTIλ(1η)βT0(1ε)pCλ|\begin{vmatrix}-\frac{s}{T^{\ast}}-\frac{r_{T}T^{\ast}}{T_{max}}-q\frac{I^{\ast}}{T^{\ast}}-\lambda&-\frac{r_{T}T^{\ast}}{T_{max}}+q&-(1-q)\beta T^{\ast}\\ &&\\ \\ -\frac{r_{I}I^{\ast}}{T_{max}}+(1-\eta)\beta V^{\ast}&-\frac{r_{I}I^{\ast}}{T_{max}}-\frac{(1-\eta)\beta V^{\ast}T^{\ast}}{I^{\ast}}-\lambda&(1-\eta)\beta T^{\ast}\\ \\ 0&(1-\varepsilon)p&-C-\lambda\\ \\ \end{vmatrix}=0.

With

qIT=qTmaxT(δrI+1)q(ArI1),q\frac{I^{\ast}}{T^{\ast}}=\frac{qT_{max}}{T^{\ast}}\left(-\frac{\delta}{r_{I}}+1\right)-q\left(\frac{A}{r_{I}}-1\right),

it follows that :

|JλI|=0|J-\lambda I|=0

if and only if [sTrTTTmaxqTmaxT(δrI+1)q(ArI1)λ][(c+λ)(rIITmax+(1η)βVTI+λ)(1ε)p(1η)βT]+[rIITmax+(1η)βV][(c+λ)(rTTTmaxq)++(1ε)p(1η)βT]=0,\left[-\frac{s}{T^{\ast}}-\frac{r_{T}T^{\ast}}{T_{max}}-\frac{qT_{max}}{T^{\ast}}\Big{(}-\frac{\delta}{r_{I}}+1\Big{)}-q\Big{(}\frac{A}{r_{I}}-1\Big{)}-\lambda\right]\Big{[}(c+\lambda)\Big{(}\frac{r_{I}I^{\ast}}{T_{max}}+\frac{(1-\eta)\beta V^{\ast}T^{\ast}}{I^{\ast}}+\lambda\Big{)}\\ \\ -(1-\varepsilon)p(1-\eta)\beta T^{\ast}\Big{]}\\ \\ +\left[\frac{r_{I}I^{\ast}}{T_{max}}+(1-\eta)\beta V^{\ast}\right]\Bigl{[}(c+\lambda)\Big{(}\frac{r_{T}T^{\ast}}{T_{max}}-q\Big{)}++(1-\varepsilon)p(1-\eta)\beta T^{\ast}\Bigr{]}=0, i.e.

[sTrTTTmaxqTmaxT(δrI+1)q(ArI1)λ][λ2+λ(c+rII+ATTmax)+crIITmax]\Big{[}-\frac{s}{T^{\ast}}-\frac{r_{T}T^{\ast}}{T_{max}}-\frac{qT_{max}}{T^{\ast}}\Big{(}-\frac{\delta}{r_{I}}+1\Big{)}-q\Big{(}\frac{A}{r_{I}}-1\Big{)}-\lambda\Big{]}\Big{[}\lambda^{2}+\lambda(c+\frac{r_{I}I^{\ast}+AT^{\ast}}{T_{max}})+\frac{cr_{I}I^{\ast}}{T_{max}}\Big{]}
+[rIIAITmax][λ(rTTTmaxq)+crTT+AcTTmaxqc]=0,+\Big{[}\frac{r_{I}I^{\ast}-AI^{\ast}}{T_{max}}\Big{]}\Big{[}\lambda\Big{(}\frac{r_{T}T^{\ast}}{T_{max}}-q\Big{)}+\frac{cr_{T}T^{\ast}+AcT^{\ast}}{T_{max}}-qc\Big{]}=0,

i.e

λ2[sTrTTTmaxqTmaxT(δrI+1)q(ArI1)]+λ[(c+rII+ATTmax)sTrTTTmaxqTmaxT(δrI+1)q(ArI1))]+crIITmax[sTrTTTmaxqTmaxT(δrI+1)q(ArI1)]λ3λ2(c+rII+ATTmax)λcrTITmax+λ(rTTTmaxq)(rIIAITmax)+rIIAITmax[crTT+AcTTmaxqc]=0\lambda^{2}\Big{[}-\frac{s}{T^{\ast}}-\frac{r_{T}T^{\ast}}{T_{max}}-\frac{qT_{max}}{T^{\ast}}\Big{(}-\frac{\delta}{r_{I}}+1\Big{)}-q\Big{(}\frac{A}{r_{I}}-1\Big{)}\Big{]}+\lambda\Big{[}\Big{(}c+\frac{r_{I}I^{\ast}+AT^{\ast}}{T_{max}}\Big{)}-\frac{s}{T^{\ast}}\\ \\ -\frac{r_{T}T^{\ast}}{T_{max}}-\frac{qT_{max}}{T^{\ast}}\Big{(}-\frac{\delta}{r_{I}}+1\Big{)}-q\Big{(}\frac{A}{r_{I}}-1)\Big{)}\Big{]}+\frac{cr_{I}I^{\ast}}{T_{max}}\Big{[}-\frac{s}{T^{\ast}}-\frac{r_{T}T^{\ast}}{T_{max}}-\frac{qT_{max}}{T^{\ast}}\Big{(}-\frac{\delta}{r_{I}}+1\Big{)}\\ \\ -q\Big{(}\frac{A}{r_{I}}-1\Big{)}\Big{]}-\lambda^{3}-\lambda^{2}\Big{(}c+\frac{r_{I}I^{\ast}+AT^{\ast}}{T_{max}}\Big{)}-\lambda\frac{cr_{T}I^{\ast}}{T_{max}}+\lambda\Big{(}\frac{r_{T}T^{\ast}}{T_{max}}-q\Big{)}\Big{(}\frac{r_{I}I^{\ast}-AI^{\ast}}{T_{max}}\Big{)}\\ \\ +\frac{r_{I}I^{\ast}-AI^{\ast}}{T_{max}}\Big{[}\frac{cr_{T}T^{\ast}+AcT^{\ast}}{T_{max}}-qc\Big{]}=0.

By developing the different factors in the previous equation, we get :

λ3+λ2[sT+rTTTmax+qTmaxT(δrI+1)+q(ArI1)+c+rII+ATTmax]+λ[(c+rII+ATTmax)(sT+rTTTmax+qTmaxT(δrI+1)+q(ArI1))+crIITmax+(qrTTTmax)(rIIAITmax)]+[crIITmax(sT+rTTTmax+qTmaxT(δrI+1)q(ArI1))+rIIAITmax(qccrTT+AcTTmax)]=0\lambda^{3}+\lambda^{2}\Big{[}\frac{s}{T^{\ast}}+\frac{r_{T}T^{\ast}}{T_{max}}+\frac{qT_{max}}{T^{\ast}}\Big{(}-\frac{\delta}{r_{I}}+1\Big{)}+q\Big{(}\frac{A}{r_{I}}-1\Big{)}+c+\frac{r_{I}I^{\ast}+AT^{\ast}}{T_{max}}\Big{]}\\ \\ +\lambda\Big{[}(c+\frac{r_{I}I^{\ast}+AT^{\ast}}{T_{max}})(\frac{s}{T^{\ast}}+\frac{r_{T}T^{\ast}}{T_{max}}+\frac{qT_{max}}{T^{\ast}}\Big{(}-\frac{\delta}{r_{I}}+1\Big{)}+q\Big{(}\frac{A}{r_{I}}-1)\Big{)}+\frac{cr_{I}I^{\ast}}{T_{max}}+\Big{(}q-\frac{r_{T}T^{\ast}}{T_{max}}\Big{)}\Big{(}\frac{r_{I}I^{\ast}-AI^{\ast}}{T_{max}}\Big{)}\Big{]}\\ \\ +\Big{[}\frac{cr_{I}I^{\ast}}{T_{max}}\Big{(}\frac{s}{T^{\ast}}+\frac{r_{T}T^{\ast}}{T_{max}}+\frac{qT_{max}}{T^{\ast}}\Big{(}-\frac{\delta}{r_{I}}+1\Big{)}q\Big{(}\frac{A}{r_{I}}-1\Big{)}\Big{)}+\frac{r_{I}I^{\ast}-AI^{\ast}}{T_{max}}\Big{(}qc-\frac{cr_{T}T^{\ast}+AcT^{\ast}}{T_{max}}\Big{)}\Big{]}=0.

Let:

A1=sT+rTTTmax+qTmaxT(δrI+1)+q(ArI1)+c+rII+ATTmax,A_{1}=\frac{s}{T^{\ast}}+\frac{r_{T}T^{\ast}}{T_{max}}+\frac{qT_{max}}{T^{\ast}}\Big{(}-\frac{\delta}{r_{I}}+1\Big{)}+q\Big{(}\frac{A}{r_{I}}-1\Big{)}+c+\frac{r_{I}I^{\ast}+AT^{\ast}}{T_{max}},

we have:

A1=c+sT+rTT+rII+ATTmax+qIT.A_{1}=c+\frac{s}{T^{\ast}}+\frac{r_{T}T^{\ast}+r_{I}I^{\ast}+AT^{\ast}}{T_{max}}+q\frac{I^{\ast}}{T^{\ast}}.

Let also :

A2\displaystyle A_{2} =\displaystyle= (c+rII+ATTmax)(sT+rTTTmax+qTmaxT(δrI+1)+q(ArI1))\displaystyle\Big{(}c+\frac{r_{I}I^{\ast}+AT^{\ast}}{T_{max}}\Big{)}\left(\frac{s}{T^{\ast}}+\frac{r_{T}T^{\ast}}{T_{max}}+\frac{qT_{max}}{T^{\ast}}(-\frac{\delta}{r_{I}}+1)+q(\frac{A}{r_{I}}-1)\right)
+crIITmax+(qrTTTmax)(rIIAITmax)\displaystyle+\frac{cr_{I}I^{\ast}}{T_{max}}+\Big{(}q-\frac{r_{T}T^{\ast}}{T_{max}}\Big{)}\Big{(}\frac{r_{I}I^{\ast}-AI^{\ast}}{T_{max}}\Big{)}

we have :

A2\displaystyle A_{2} =\displaystyle= (c+rIITmax+(1η)βVTI)(sT+rTTTmax+qTmaxT(δrI+1)\displaystyle\Big{(}c+\frac{r_{I}I^{\ast}}{T_{max}}+(1-\eta)\frac{\beta V^{\ast}T^{\ast}}{I^{\ast}}\Big{)}\Big{(}\frac{s}{T^{\ast}}+\frac{r_{T}T^{\ast}}{T_{max}}+\frac{qT_{max}}{T^{\ast}}(-\frac{\delta}{r_{I}}+1)
+q((1θ)crIβpTmax1))+crIITmax+c(1η)βVTI(1θ)βpT\displaystyle+q\Big{(}\frac{(1-\theta)}{cr_{I}}\beta pT_{max}-1\Big{)}\Big{)}+\frac{cr_{I}I^{\ast}}{T_{max}}+\frac{c(1-\eta)\beta V^{\ast}T^{\ast}}{I^{\ast}}-(1-\theta)\beta pT^{\ast}
+(rTTTmax+q)(rIITmax(1η)βV)\displaystyle+\Big{(}-\frac{r_{T}T^{\ast}}{T_{max}}+q\Big{)}\Big{(}\frac{r_{I}I^{\ast}}{T_{max}}-(1-\eta)\beta V^{\ast}\Big{)}
=\displaystyle= csT+crTTTmax+cqTmaxrIT(rIδ)+cq((1θ)crIβpTmax1)+rIITmaxsT\displaystyle\frac{cs}{T^{\ast}}+\frac{cr_{T}T^{\ast}}{T_{max}}+\frac{cqT_{max}}{r_{I}T^{\ast}}(r_{I}-\delta)+cq\Big{(}\frac{(1-\theta)}{cr_{I}}\beta pT_{max}-1\Big{)}+\frac{r_{I}I^{\ast}}{T_{max}}\frac{s}{T^{\ast}}
+rIIrTTTmax2+qIT(rIδ)+qrIITmax((1θ)crIβpTmax1)\displaystyle+\frac{r_{I}I^{\ast}r_{T}T^{\ast}}{T_{max}^{2}}+q\frac{I^{\ast}}{T^{\ast}}(r_{I}-\delta)+q\frac{r_{I}I^{\ast}}{T_{max}}\Big{(}\frac{(1-\theta)}{cr_{I}}\beta pT_{max}-1\Big{)}
+(1η)βVsI+(1η)βV(T)2rTITmax+q(1η)βVTmaxrII(rIδ)\displaystyle+(1-\eta)\frac{\beta V^{\ast}s}{I^{\ast}}+\frac{(1-\eta)\beta V^{\ast}(T^{\ast})^{2}r_{T}}{I^{\ast}T_{max}}+\frac{q(1-\eta)\beta V^{\ast}T_{max}}{r_{I}I^{\ast}}(r_{I}-\delta)
+q(1η)βVTI((1θ)crIβpTmax1)+crIITmax+c(1η)βVTI\displaystyle+\frac{q(1-\eta)\beta V^{\ast}T^{\ast}}{I^{\ast}}\Big{(}\frac{(1-\theta)}{cr_{I}}\beta pT_{max}-1\Big{)}+\frac{cr_{I}I^{\ast}}{T_{max}}+\frac{c(1-\eta)\beta V^{\ast}T^{\ast}}{I^{\ast}}
(1θ)βpTrTTrIITmax2+(1η)βVrTTTmax+qrIITmaxq(1η)βV\displaystyle-(1-\theta)\beta pT^{\ast}-\frac{r_{T}T^{\ast}r_{I}I^{\ast}}{T_{max}^{2}}+(1-\eta)\beta V^{\ast}\frac{r_{T}T^{\ast}}{T_{max}}+\frac{qr_{I}I^{\ast}}{T_{max}}-q(1-\eta)\beta V^{\ast}
=\displaystyle= csT+crTTTmax+cqTmaxrIT(rIδ)+cq((1θ)crIβpTmax1)+qIT(rIδ)\displaystyle\frac{cs}{T^{\ast}}+\frac{cr_{T}T^{\ast}}{T_{max}}+\frac{cqT_{max}}{r_{I}T^{\ast}}(r_{I}-\delta)+cq\Big{(}\frac{(1-\theta)}{cr_{I}}\beta pT_{max}-1\Big{)}+q\frac{I^{\ast}}{T^{\ast}}(r_{I}-\delta)
+qrIITmax((1θ)crIβpTmax1)+q(1η)βVTmaxrII(rIδ)\displaystyle+q\frac{r_{I}I^{\ast}}{T_{max}}\Big{(}\frac{(1-\theta)}{cr_{I}}\beta pT_{max}-1\Big{)}+\frac{q(1-\eta)\beta V^{\ast}T_{max}}{r_{I}I^{\ast}}(r_{I}-\delta)
+q(1η)βVTI((1θ)crIβpTmax1)+crIITmax+qrIITmaxq(1η)βV\displaystyle+\frac{q(1-\eta)\beta V^{\ast}T^{\ast}}{I^{\ast}}\Big{(}\frac{(1-\theta)}{cr_{I}}\beta pT_{max}-1\Big{)}+\frac{cr_{I}I^{\ast}}{T_{max}}+\frac{qr_{I}I^{\ast}}{T_{max}}-q(1-\eta)\beta V^{\ast}
+srIITTmax+sATmax+rTAT(T+ITmax2\displaystyle+\frac{sr_{I}I^{\ast}}{T^{\ast}T_{max}}+\frac{sA}{T_{max}}+\frac{r_{T}AT^{\ast}(T^{\ast}+I^{\ast}}{T_{max}^{2}}
=\displaystyle= csT+crTT+sA+crIITmax+qIT(rIδ)+srIITTmax+rTAT(T+I)Tmax2+cqIT+qITmax\displaystyle\frac{cs}{T^{\ast}}+\frac{cr_{T}T^{\ast}+sA+cr_{I}I^{\ast}}{T_{max}}+q\frac{I^{\ast}}{T^{\ast}}(r_{I}-\delta)+\frac{sr_{I}I^{\ast}}{T^{\ast}T_{max}}+\frac{r_{T}AT^{\ast}(T^{\ast}+I^{\ast})}{T_{max}^{2}}+\frac{cqI^{\ast}}{T^{\ast}}+q\frac{I^{\ast}}{T_{max}}

Let once more :

A3=crIITmax(sT+rTTTmax+qTmaxT(δrI+1)+q(ArI1))+rIIAITmax(qccrTT+AcTTmax).A_{3}=\frac{cr_{I}I^{\ast}}{T_{max}}\Big{(}\frac{s}{T^{\ast}}+\frac{r_{T}T^{\ast}}{T_{max}}+\frac{qT_{max}}{T^{\ast}}(-\frac{\delta}{r_{I}}+1)+q(\frac{A}{r_{I}}-1)\Big{)}+\frac{r_{I}I^{\ast}-AI^{\ast}}{T_{max}}\Big{(}qc-\frac{cr_{T}T^{\ast}+AcT^{\ast}}{T_{max}}\Big{)}.

We get :

A3\displaystyle A_{3} =\displaystyle= (crIITmax+c(1η)βVTI(θ)βpT)(sT+rTTTmax+qTmaxT(δrI+1)\displaystyle\Big{(}\frac{cr_{I}I^{\ast}}{T_{max}}+\frac{c(1-\eta)\beta V^{\ast}T^{\ast}}{I^{\ast}}-(-\theta)\beta pT^{\ast}\Big{)}\Big{(}\frac{s}{T^{\ast}}+\frac{r_{T}T^{\ast}}{T_{max}}+\frac{qT_{max}}{T^{\ast}}(-\frac{\delta}{r_{I}}+1)
+q((1θ)βpTmaxcrI1))+(rIITmax+(1η)βV)(crTTTmaxcq+(1θ)βpT)\displaystyle+q\Big{(}\frac{(1-\theta)\beta pT_{max}}{cr_{I}}-1\Big{)}\Big{)}+\Big{(}-\frac{r_{I}I^{\ast}}{T_{max}}+(1-\eta)\beta V^{\ast}\Big{)}\Big{(}\frac{cr_{T}T^{\ast}}{T_{max}}-cq+(1-\theta)\beta pT^{\ast}\Big{)}
=\displaystyle= csrIITTmax+crIrTITTmax2+qcIT(rIδ)+qcrIITmax((1θ)crIβpTmax1)\displaystyle\frac{csr_{I}I^{\ast}}{T^{\ast}T_{max}}+\frac{cr_{I}r_{T}I^{\ast}T^{\ast}}{T_{max}^{2}}+q\frac{cI^{\ast}}{T^{\ast}}(r_{I}-\delta)+q\frac{cr_{I}I^{\ast}}{T_{max}}\Big{(}\frac{(1-\theta)}{cr_{I}}\beta pT_{max}-1\Big{)}
+csI(1η)βV+crT(1η)βV(T)2ITmax+qc(1η)βVrIITmax(rIδ)\displaystyle+\frac{cs}{I^{\ast}}(1-\eta)\beta V^{\ast}+\frac{cr_{T}(1-\eta)\beta V^{\ast}(T^{\ast})^{2}}{I^{\ast}T_{max}}+q\frac{c(1-\eta)\beta V^{\ast}}{r_{I}I^{\ast}}T_{max}(r_{I}-\delta)
+qc(1η)βVTI((1θ)crIβpTmax1)(1θ)sβprT(T)2(1θ)βpTmax\displaystyle+q\frac{c(1-\eta)\beta V^{\ast}T^{\ast}}{I^{\ast}}\Big{(}\frac{(1-\theta)}{cr_{I}}\beta pT_{max}-1\Big{)}-(1-\theta)s\beta p-r_{T}(T^{\ast})^{2}\frac{(1-\theta)\beta p}{T_{max}}
q(1θ)βprITmax(rIδ)q(1θ)βpT((1θ)crIβpTmax1)\displaystyle-q\frac{(1-\theta)\beta p}{r_{I}}T_{max}(r_{I}-\delta)-q(1-\theta)\beta pT^{\ast}\Big{(}\frac{(1-\theta)}{cr_{I}}\beta pT_{max}-1\Big{)}
crIrTITTmax2+cqrIITmax(1θ)rIITβpTmax+(1η)βVcrTTTmax\displaystyle-\frac{cr_{I}r_{T}I^{\ast}T^{\ast}}{T_{max}^{2}}+cq\frac{r_{I}I^{\ast}}{T_{max}}-(1-\theta)\frac{r_{I}I^{\ast}T^{\ast}\beta p}{T_{max}}+\frac{(1-\eta)\beta V^{\ast}cr_{T}T^{\ast}}{T_{max}}
qc(1η)βV+(1θ)(1η)β2pVT\displaystyle-qc(1-\eta)\beta V^{\ast}+(1-\theta)(1-\eta)\beta^{2}pV^{\ast}T^{\ast}
=\displaystyle= csrIITTmax+cA2ITTmax2cArIITTmax2+cArTITTmax2+qcIT(rIδ)\displaystyle\frac{csr_{I}I^{\ast}}{T^{\ast}T_{max}}+\frac{cA^{2}I^{\ast}T^{\ast}}{T_{max}^{2}}-\frac{cAr_{I}I^{\ast}T^{\ast}}{T_{max}^{2}}+\frac{cAr_{T}I^{\ast}T^{\ast}}{T_{max}^{2}}+q\frac{cI^{\ast}}{T^{\ast}}(r_{I}-\delta)
+qcrIITmax((1θ)crIβpTmax1)+qc(1η)βVrIITmax(rIδ)\displaystyle+q\frac{cr_{I}I^{\ast}}{T_{max}}\Big{(}\frac{(1-\theta)}{cr_{I}}\beta pT_{max}-1\Big{)}+q\frac{c(1-\eta)\beta V^{\ast}}{r_{I}I^{\ast}}T_{max}(r_{I}-\delta)
+qc(1η)βVTI((1θ)crIβpTmax1)q(1θ)βprITmax(rIδ)\displaystyle+q\frac{c(1-\eta)\beta V^{\ast}T^{\ast}}{I^{\ast}}\Big{(}\frac{(1-\theta)}{cr_{I}}\beta pT_{max}-1\Big{)}-q\frac{(1-\theta)\beta p}{r_{I}}T_{max}(r_{I}-\delta)
q(1θ)βpT((1θ)crIβpTmax1)+cqrIITmaxqc(1η)βV\displaystyle-q(1-\theta)\beta pT^{\ast}\Big{(}\frac{(1-\theta)}{cr_{I}}\beta pT_{max}-1\Big{)}+cq\frac{r_{I}I^{\ast}}{T_{max}}-qc(1-\eta)\beta V^{\ast}
=\displaystyle= csrIITTmax+cA2ITTmax2cArIITTmax2+cArTITTmax2+qcIT(rIδ).\displaystyle\frac{csr_{I}I^{\ast}}{T^{\ast}T_{max}}+\frac{cA^{2}I^{\ast}T^{\ast}}{T_{max}^{2}}-\frac{cAr_{I}I^{\ast}T^{\ast}}{T_{max}^{2}}+\frac{cAr_{T}I^{\ast}T^{\ast}}{T_{max}^{2}}+q\frac{cI^{\ast}}{T^{\ast}}(r_{I}-\delta).

Therefore,

λ3+A1λ2+A2λ+A3=0;\lambda^{3}+A_{1}\lambda^{2}+A_{2}\lambda+A_{3}=0;

with

A1=c+sT+rTT+rII+ATTmax+qIT.A_{1}=c+\frac{s}{T^{\ast}}+\frac{r_{T}T^{\ast}+r_{I}I^{\ast}+AT^{\ast}}{T_{max}}+q\frac{I^{\ast}}{T^{\ast}}.
A2=csT+crTT+sA+crIITmax+qIT(rIδ)+srIITTmax+rTAT(T+I)Tmax2+cqIT+qITmaxA_{2}=\frac{cs}{T^{\ast}}+\frac{cr_{T}T^{\ast}+sA+cr_{I}I^{\ast}}{T_{max}}+q\frac{I^{\ast}}{T^{\ast}}(r_{I}-\delta)+\frac{sr_{I}I^{\ast}}{T^{\ast}T_{max}}+\frac{r_{T}AT^{\ast}(T^{\ast}+I^{\ast})}{T_{max}^{2}}+\frac{cqI^{\ast}}{T^{\ast}}+q\frac{I^{\ast}}{T_{max}}

and

A3=csrIITTmax+cA2ITTmax2cArIITTmax2+cArTITTmax2+qcIT(rIδ).A_{3}=\frac{csr_{I}I^{\ast}}{T^{\ast}T_{max}}+\frac{cA^{2}I^{\ast}T^{\ast}}{T_{max}^{2}}-\frac{cAr_{I}I^{\ast}T^{\ast}}{T_{max}^{2}}+\frac{cAr_{T}I^{\ast}T^{\ast}}{T_{max}^{2}}+q\frac{cI^{\ast}}{T^{\ast}}(r_{I}-\delta).

This completes the proof of the lemma 3.17.