This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Mathematical analysis of subwavelength resonant acoustic scattering in multi-layered high-contrast structures

Youjun Deng Corresponding authors. School of Mathematics and Statistics, Central South University, Changsha, 410083, Hunan Province, China.   Email: youjundeng@csu.edu.cn; dengyijun_001@163.com    Lingzheng Kong Corresponding authors. School of Mathematics and Statistics, Central South University, Changsha, 410083, Hunan Province, China. Email: math_klz@csu.edu.cn; math_klz@163.com    Yongjian Liu Center for Applied Mathematics of Guangxi, Yulin Normal University, Yulin 537000, P. R. China.    Email: liuyongjianmaths@126.com    Liyan Zhu School of Mathematics and Statistics, Central South University, Changsha, 410083, Hunan Province, China.  Email: math_zly@csu.edu.cn
Abstract

Multi-layered structures are widely used in the construction of metamaterial devices to realize various cutting-edge waveguide applications. This paper makes several contributions to the mathematical analysis of subwavelength resonances in a structure of NN-layer nested resonators. Firstly, based on the Dirichlet-to-Neumann approach, we reduce the solution of the acoustic scattering problem to an NN-dimensional linear system, and derive the optimal asymptotic characterization of subwavelength resonant frequencies in terms of the eigenvalues of an N×NN\times N tridiagonal matrix, which we refer to as the generalized capacitance matrix. Moreover, we provide a modal decomposition formula for the scattered field, as well as a monopole approximation for the far-field pattern of the acoustic wave scattered by the NN-layer nested resonators. Finally, some numerical results are presented to corroborate the theoretical findings.

Key words: Multi-layered structures; Subwavelength resonance; Capacitance matrix; Monopole approximation; Modal decomposition

2020 Mathematics Subject Classification:   35R30; 35J05; 35B30

1 Introduction

In recent years, the subwavelength resonant systems have been extensively studied in the realms of physics and mathematics and applied to advanced techniques for manipulating wave propagation at subwavelength scales. In acoustics, classical examples of subwavelength resonant systems include the Minnaert resonance of bubbles in water [58, 12] and the subsequent development of stable bubble strategies [13, 52]. In electromagnetics, such systems encompass plasmonic particles [6, 37, 36, 7, 39, 45, 44, 24, 11, 47] and high-refractive-index dielectric particles [25, 20]. In linear elasticity, these systems include negative elastic materials [34, 33, 35, 23, 51] and high-contrast elastic materials [63, 57, 56, 54]. Additionally, contrasting material structures are the effective realization of various metamaterials with negative material properties through the homogenization theory [21, 17, 49]. In particular, the resonant behavior observed at subwavelength scales is a direct consequence of the high contrast in the physical parameters of the medium.

Building on this realization, a class of phononic crystals, consisting of periodic arrangements of separated subwavelength high-contrast resonators[14, 16, 15], has been demonstrated to exhibit bandgaps and is increasingly employed in various waveguide applications [8, 9, 22], as well as in imaging as contrast agents [28, 26, 60]. In most studies on phononic crystals, the structures are typically composed of single-layer (homogeneous) resonators. However, these configurations are often limited by narrow bandgap widths and poor wave filtering performance, making them less suitable for practical engineering applications [61, 48, 50]. This limitation has spurred the development and investigation of metamaterials with wider bandgaps. In particular, multi-layered high-contrast metamaterials have gained significant attention as promising candidates for subwavelength resonators, owing to their high-tunability and high-quality resonance. Experimental and numerical studies [50, 27, 48, 62] have shown that multi-layered concentric radial resonators, in the subwavelength regime, can generate multiple local resonance bandgaps. However, despite considerable progress in both the engineering and physics literature, the mathematical understanding of the origins of subwavelength resonance in multi-layered contrasting media and the mechanism underlying mode splitting remains limited.

In our recent work [32], we conducted a rigorous and systematic mathematical analysis of subwavelength resonances in multi-layered high-contrast structures. Specifically, by using layer potential techniques and Gohberg-Sigal theory, we demonstrated that a structure of NN-layer nested resonators of general shape exhibits NN subwavelength resonant frequencies with positive real parts. Moreover, based on the classical Mie scattering theory, the subwavelength resonances in the NN-layer concentric radial resonators can be characterized as a 4N×4N4N\times 4N linear system. Through lengthy and tedious calculations, we drived the exact formulas for the subwavelength resonant frequencies for single-resonator, dual-resonator models. For structures with a large number of nested resonators, we provide numerical computations of resonant modes. Although the 4N×4N4N\times 4N linear system provides a complete characterization of the subwavelength resonances in the NN-layer concentric radial resonators, it does not directly facilitate the prediction of scattering resonances. This is primarily due to the computational complexity involved in deriving the asymptotic expansions of the determinant of 4N×4N4N\times 4N block tridiagonal matrix.

The main contribution of this paper is to enhance the mathematical analysis of subwavelength resonant acoustic scattering in multi-layered high-contrast structures. Using the Dirichlet-to-Neumann (DtN) approach previously introduced in [41], we derive an asymptotic characterization of subwavelength resonant frequencies in terms of the eigenvalues of an N×NN\times N tridiagonal matrix, which we refer to as the generalized capacitance matrix. This formulation provides a highly efficient computational framework for predicting the scattering properties of the multi-layered high-contrast structures. The capacitance matrix for multiple simply-connected subwavelength resonators has been extensively studied in [40, 9, 8, 10, 17]. However, to our knowledge, there is no rigorous mathematical analysis of the capacitance matrix for multi-layered doubly-connected subwavelength resonators in the existing literature. This paper highlights the importance of studying multi-layered doubly-connected resonators, as they exhibit unique mathematical features, such as the tridiagonal positive definite property of the capacitance matrix, which are not present in multiple simply-connected subwavelength resonators. Furthermore, we provide a modal decomposition formula for the scattered field, as well as a monopole approximation for the far-field pattern, which demonstrates that the scattered field is greatly enhanced as the impinging frequency approaches one of the NN subwavelength resonant frequencies.

The remainder of this paper is organized as follows. In Section 2, we first establish the representation formula of the solution of the acoustic scattering problem in multi-layer nested resonators with general shape, and review the existence of subwavelength resonances, the number of which is equal to the number of nested resonators. In Section 3, we consider the acoustic scattering in multi-layered concentric radial resonators. Firstly, we recall the first characterization of resonances in terms of 4N×4N4N\times 4N block tridiagonal matrix (3.7) based on spherical wave expansions. Secondly, we give the second characterization of resonances in terms of 2N×2N2N\times 2N block diagonal matrix (3.22) based on Dirichlet-to-Neumann (DtN) map. Finally, based on the DtN approach [41], we reduce the solution of the acoustic scattering problem to that of an NN-dimensional linear system (3.28), and derive the subwavelength resonances in terms of the eigenvalues of an N×NN\times N tridiagonal matrix (3.47), which we refer to as the generalized capacitance matrix. In Section 4, we provide the modal decomposition and monopole approximation of multi-layered concentric radial resonators. In Section 5, numerical computations are presented to to corroborate our theoretical findings. Some concluding remarks are made in Section 6.

2 Subwavelength resonance in multi-layered high-contrast metamaterials

2.1 Problem setting

We consider the subwavelength resonant phenomenon for the multi-layered high-contrast (MLHC) metamaterials. Assume that the MLHC metamaterials consist of two types of materials: the host matrix material and the high-contrast material. We write

D=j=1NDjD=\cup_{j=1}^{N}D_{j}

to denote the entire resonator-nested, where DjD_{j} is the bounded doubly-connected domain lying between the interior boundary Γj\Gamma_{j}^{-} and the exterior boundary Γj+\Gamma_{j}^{+}, j=1,2,,Nj=1,2,\ldots,N. Each Γj\Gamma_{j}^{-} surrounds Γj+1+\Gamma_{j+1}^{+} and Γj+\Gamma_{j}^{+} surrounds Γj\Gamma_{j}^{-} (j=1,2,,N1)(j=1,2,\ldots,N-1). Denote DjD_{j}^{\prime} the region of the gap between the Γj\Gamma_{j}^{-} and Γj+1+\Gamma_{j+1}^{+}, j=1,2,,N1j=1,2,\ldots,N-1. Let D0D_{0}^{\prime} and DND_{N}^{\prime} be the unbounded domain with boundary Γ1+\Gamma_{1}^{+} and the bounded domain with boundary ΓN\Gamma_{N}^{-}, respectively. Then, the host matrix material can be written by

3D=j=0NDj.\mathbb{R}^{3}\setminus{D}=\cup_{j=0}^{N}D^{\prime}_{j}.

The configuration of the considered metamaterial is characterized by the density ρ(x)\rho(x) and the bulk modulus κ(x)\kappa(x) which are given by

ρ(x)={ρr,xDj,j=1,2,,N,ρ,xDj,j=0,1,,N, and κ(x)={κr,xDj,j=1,2,,N,κ,xDj,j=0,1,,N.\rho(x)=\left\{\begin{array}[]{ll}\rho_{\mathrm{r}},&x\in D_{j},\;j=1,2,\ldots,N,\\ \rho,&x\in D_{j}^{\prime},\;j=0,1,\ldots,N,\end{array}\right.\;\;\mbox{ and }\;\;\kappa(x)=\left\{\begin{array}[]{ll}\kappa_{\mathrm{r}},&x\in D_{j},\;j=1,2,\ldots,N,\\ \kappa,&x\in D_{j}^{\prime},\;j=0,1,\ldots,N.\end{array}\right. (2.1)

The wave speeds and wavenumbers of resonators and host matrix materials,respectively, are given by

vr=κrρr,v=κρ,kr=ωvr,k=ωv.v_{\mathrm{r}}=\sqrt{\frac{\kappa_{\mathrm{r}}}{\rho_{\mathrm{r}}}},\quad v=\sqrt{\frac{\kappa}{\rho}},\quad k_{\mathrm{r}}=\frac{\omega}{v_{\mathrm{r}}},\quad k=\frac{\omega}{v}. (2.2)

We also introduce two dimensionless contrast parameters:

δ=ρrρ,τ=krk=vvr=ρrκρκr.\delta=\frac{\rho_{\mathrm{r}}}{\rho},\,\,\tau=\frac{k_{\mathrm{r}}}{k}=\frac{v}{v_{\mathrm{r}}}=\sqrt{\frac{\rho_{\mathrm{r}}\kappa}{\rho\kappa_{\mathrm{r}}}}. (2.3)

We will assume that v=O(1)v=O(1), vr=O(1)v_{\mathrm{r}}=O(1), and τ=O(1)\tau=O(1); meanwhile δ1.\delta\ll 1. This high-contrast assumption is the cause of the underlying system’s subwavelength resonant response and will be at the center of our subsequent analysis.

We will consider the scattering of a time-harmonic acoustic wave by this MLHC structure. This is described by the Helmholtz system of equations

{Δu+ω2v2u=0in 3D,Δu+ω2vr2u=0in D,u|+u|=0on Γj±,j=1,2,,N,δuν|+=uν|on Γj+,j=1,2,,N,uν|+=δuν|on Γj,j=1,2,,N,us:=uuinsatisfies the Sommerfeld radiation condition,\begin{cases}\displaystyle\Delta u+\frac{\omega^{2}}{v^{2}}u=0&\text{in }\mathbb{R}^{3}\setminus D,\\ \displaystyle\Delta u+\frac{\omega^{2}}{v_{\mathrm{r}}^{2}}u=0&\text{in }D,\\ \vskip 3.0pt plus 1.0pt minus 1.0pt\cr\displaystyle u|_{+}-u|_{-}=0&\text{on }\Gamma^{\pm}_{j},\;j=1,2,\ldots,N,\\ \vskip 3.0pt plus 1.0pt minus 1.0pt\cr\displaystyle\delta\frac{\partial u}{\partial\nu}|_{+}=\frac{\partial u}{\partial\nu}|_{-}&\text{on }\Gamma^{+}_{j},\;j=1,2,\ldots,N,\\ \vskip 3.0pt plus 1.0pt minus 1.0pt\cr\displaystyle\frac{\partial u}{\partial\nu}|_{+}=\delta\frac{\partial u}{\partial\nu}|_{-}&\text{on }\Gamma^{-}_{j},\;j=1,2,\ldots,N,\\ \vskip 3.0pt plus 1.0pt minus 1.0pt\cr\displaystyle u^{s}:=u-u^{in}&\mbox{satisfies the Sommerfeld radiation condition,}\end{cases} (2.4)

where uinu^{in} is the incoming wave, and the notation ν\nu denotes the outward normal on Γj±\Gamma_{j}^{\pm}. By the Sommerfeld radiation condition, the scattered wave usu^{s} satisfies

(|x|ik0)us=O(|x|2) as |x|+.\left(\frac{\partial}{\partial|x|}-\mathrm{i}k_{0}\right)u^{s}=O(|x|^{-2})\quad\mbox{ as }|x|\to+\infty. (2.5)

2.2 Layer potentials

In this subsection, we briefly introduce the boundary layer potential operators and then establish the representation formula of the solution (2.4), and we also refer to [15, 29] for more relevant discussions on layer potential techniques.

Let GkG_{k} be the outgoing fundamental solution to the PDO Δ+k2\Delta+k^{2} in 3\mathbb{R}^{3}, which is given by

Gk(x)=eik|x|4π|x|.G_{k}(x)=-\frac{e^{\mathrm{i}k|x|}}{4\pi|x|}. (2.6)

Let Ω\Omega be a bounded domain with a C1,η(0<η<1)C^{1,\eta}\,(0<\eta<1) boundary Γ\Gamma. The single layer potential 𝒮Γk\mathcal{S}_{\Gamma}^{k} associated with wavenumber kk can defined by

𝒮Γk[ϕ](x)=ΓGk(xy)ϕ(y)dσ(y),x3,\mathcal{S}_{{\Gamma}}^{k}[\phi](x)=\int_{{\Gamma}}G_{k}(x-y)\phi(y)~{}\mathrm{d}\sigma(y),\quad x\in\mathbb{R}^{3}, (2.7)

where ϕL2(Γ)\phi\in L^{2}(\Gamma) is the density function. There hold the following jump relations on the surface [18]

ν𝒮Γk[ϕ]|±=(±12I+𝒦Γk,)[ϕ]on Γ,\frac{\partial}{\partial\nu}\mathcal{S}^{k}_{\Gamma}[\phi]\Big{|}_{\pm}=\left(\pm\frac{1}{2}I+\mathcal{K}_{{\Gamma}}^{k,*}\right)[\phi]\quad\mbox{on }{\Gamma}, (2.8)

where the subscripts ++ and - denote evaluation from outside and inside the boundary Γ\Gamma, respectively, and 𝒦Γk,\mathcal{K}_{\Gamma}^{k,*} is the Neumann-Poincaré (NP) operator defined by

𝒦Γk,[ϕ](x)=p.v.ΓGk(xy)νxϕ(y)dσ(y),xΓ.\mathcal{K}_{\Gamma}^{k,*}[\phi](x)=\mbox{p.v.}\;\int_{{\Gamma}}\frac{\partial G_{k}(x-y)}{\partial\nu_{x}}\phi(y)~{}\mathrm{d}\sigma(y),\quad x\in\Gamma.

Here p.v. stands for the Cauchy principle value. In what follows, we denote by 𝒮Γ\mathcal{S}_{\Gamma} and 𝒦Γ\mathcal{K}_{\Gamma}^{*} be the single-layer and Neumann-Poincaré operators 𝒮Γk\mathcal{S}_{\Gamma}^{k} and 𝒦Γk,\mathcal{K}_{\Gamma}^{k,*}, by formally taking k=0k=0 respectively.

2.3 Subwavelength resonance

With the help of the layer potentials in subsection 2.2, the solution to the Helmholtz system (2.4) can be represented by (cf. [32])

u(x)={uin+𝒮Γ1+k[ψ1+](x),xD0,𝒮Γj+kr[ϕj+](x)+𝒮Γjkr[ψj](x),xDj,j=1,2,,N,𝒮Γjk[ϕj](x)+𝒮Γj+1+k[ψj+1+](x),xDj,j=1,2,,N1,𝒮ΓNk[ϕN](x),xDN,u(x)=\begin{cases}\displaystyle u^{in}+\mathcal{S}_{\Gamma_{1}^{+}}^{k}[\psi_{1}^{+}](x),&\quad x\in D_{0}^{\prime},\\ \vskip 3.0pt plus 1.0pt minus 1.0pt\cr\displaystyle\mathcal{S}_{{\Gamma_{j}^{+}}}^{k_{\mathrm{r}}}[\phi_{j}^{+}](x)+\mathcal{S}_{{\Gamma_{j}^{-}}}^{k_{\mathrm{r}}}[\psi_{j}^{-}](x),&\quad x\in{D_{j}},\;j=1,2,\ldots,N,\\ \vskip 3.0pt plus 1.0pt minus 1.0pt\cr\displaystyle\mathcal{S}_{{\Gamma_{j}^{-}}}^{k}[\phi_{j}^{-}](x)+\mathcal{S}_{{\Gamma_{j+1}^{+}}}^{k}[\psi_{j+1}^{+}](x),&\quad x\in{D_{j}^{\prime}},\;j=1,2,\ldots,N-1,\\ \vskip 3.0pt plus 1.0pt minus 1.0pt\cr\displaystyle\mathcal{S}_{{\Gamma_{N}^{-}}}^{k}[\phi_{N}^{-}](x),&\quad x\in{D^{\prime}_{N}},\end{cases} (2.9)

where ψj±,ϕj±L2(Γj±)\psi_{j}^{\pm},\phi_{j}^{\pm}\in L^{2}(\Gamma_{j}^{\pm}), j=1,2,,N.j=1,2,\ldots,N. Using the transmission conditions in (2.4), and the jump relations for the single layer potentials, we can obtain that ψj±\psi_{j}^{\pm} and ϕj±\phi_{j}^{\pm}, j=1,2,,N,j=1,2,\ldots,N, satisfy the following system of boundary integral equations:

𝒜(ω,δ)[Ψ]=(uin,δuinν,0,0,,0)T.\mathcal{A}(\omega,\delta)[\Psi]=(u^{in},\delta\frac{\partial u^{in}}{\partial\nu},0,0,\ldots,0)^{T}. (2.10)

Here

Ψ=(ψ1+,ϕ1+,ψ1,ϕ1,ψ2+,ϕ2+,ψ2,ϕ2,,ψN+,ϕN+,ψN,ϕN)T,\Psi=(\psi_{1}^{+},\phi_{1}^{+},\psi_{1}^{-},\phi_{1}^{-},\psi_{2}^{+},\phi_{2}^{+},\psi_{2}^{-},\phi_{2}^{-},\ldots,\psi_{N}^{+},\phi_{N}^{+},\psi_{N}^{-},\phi_{N}^{-})^{T},

and the 4N4N-by-4N4N matrix type operator 𝒜(ω,δ)\mathcal{A}(\omega,\delta) has the block tridiagonal form

𝒜(ω,δ):=(Γ1+Γ1+,Γ1Γ1,Γ1+Γ1Γ1,Γ2+Γ2+,Γ1Γ2+Γ2+,Γ2Γ2,Γ2+Γ2Γ2,Γ3+ΓN+,ΓN1ΓN+ΓN+,ΓNΓN,ΓN+ΓN)\begin{split}\mathcal{A}(\omega,\delta):&=\begin{pmatrix}\mathcal{M}_{\Gamma_{1}^{+}}&\mathcal{R}_{\Gamma_{1}^{+},\Gamma_{1}^{-}}&&&&\\ \mathcal{L}_{\Gamma_{1}^{-},\Gamma_{1}^{+}}&\mathcal{M}_{\Gamma_{1}^{-}}&\mathcal{R}_{\Gamma_{1}^{-},\Gamma_{2}^{+}}&&&\\ &\mathcal{L}_{\Gamma_{2}^{+},\Gamma_{1}^{-}}&\mathcal{M}_{\Gamma_{2}^{+}}&\mathcal{R}_{\Gamma_{2}^{+},\Gamma_{2}^{-}}&&\\ &&\mathcal{L}_{\Gamma_{2}^{-},\Gamma_{2}^{+}}&\mathcal{M}_{\Gamma_{2}^{-}}&\mathcal{R}_{\Gamma_{2}^{-},\Gamma_{3}^{+}}&\\ &&&\ddots&\ddots&\ddots&\\ &&&&\mathcal{L}_{\Gamma_{N}^{+},\Gamma_{N-1}^{-}}&\mathcal{M}_{\Gamma_{N}^{+}}&\mathcal{R}_{\Gamma_{N}^{+},\Gamma_{N}^{-}}\\ &&&&&\mathcal{L}_{\Gamma_{N}^{-},\Gamma_{N}^{+}}&\mathcal{M}_{\Gamma_{N}^{-}}\end{pmatrix}\end{split} (2.11)

where Γi±\mathcal{M}_{\Gamma_{i}^{\pm}} is the self-interaction of the exterior and the interior boundaries for the ii-th resonator, respectively, defined by

Γi+=(𝒮Γi+k𝒮Γi+krδ(12I+𝒦Γi+k,)12I+𝒦Γi+kr,),Γi=(𝒮Γikr𝒮Γik(12I+𝒦Γikr,)δ(12I+𝒦Γik,)),\quad\mathcal{M}_{\Gamma_{i}^{+}}=\begin{pmatrix}-\mathcal{S}^{k}_{\Gamma_{i}^{+}}&\mathcal{S}^{k_{\mathrm{r}}}_{\Gamma_{i}^{+}}\\ -\delta(\frac{1}{2}I+\mathcal{K}_{\Gamma_{i}^{+}}^{k,*})&-\frac{1}{2}I+\mathcal{K}_{\Gamma_{i}^{+}}^{k_{\mathrm{r}},*}\end{pmatrix},\quad\mathcal{M}_{\Gamma_{i}^{-}}=\begin{pmatrix}-\mathcal{S}^{k_{\mathrm{r}}}_{\Gamma_{i}^{-}}&\mathcal{S}^{k}_{\Gamma_{i}^{-}}\\ -(\frac{1}{2}I+\mathcal{K}_{\Gamma_{i}^{-}}^{k_{\mathrm{r}},*})&\delta(-\frac{1}{2}I+\mathcal{K}_{\Gamma_{i}^{-}}^{k,*})\end{pmatrix}, (2.12)

Γi,Γi+\mathcal{L}_{\Gamma_{i}^{-},\Gamma_{i}^{+}} and Γi,Γi+1+\mathcal{R}_{\Gamma_{i}^{-},\Gamma_{i+1}^{+}} encode the effect of the exterior boundaries of the ii-th resonator and the (i+1)(i+1)-th resonator, respectively, on the interior boundary of the ii-th resonator, as defined by

Γi,Γi+=(0𝒮Γi,Γi+kr0𝒦Γi,Γi+kr,),Γi,Γi+1+=(𝒮Γi,Γi+1+k0δ𝒦Γi,Γi+1+k,0),\mathcal{L}_{\Gamma_{i}^{-},\Gamma_{i}^{+}}=\begin{pmatrix}\displaystyle 0&-\mathcal{S}^{k_{\mathrm{r}}}_{\Gamma_{i}^{-},\Gamma_{i}^{+}}\\ \vskip 3.0pt plus 1.0pt minus 1.0pt\cr\displaystyle 0&-\mathcal{K}_{\Gamma_{i}^{-},\Gamma_{i}^{+}}^{k_{\mathrm{r}},*}\end{pmatrix},\quad\mathcal{R}_{\Gamma_{i}^{-},\Gamma_{i+1}^{+}}=\begin{pmatrix}\displaystyle\mathcal{S}^{k}_{\Gamma_{i}^{-},\Gamma_{i+1}^{+}}&0\\ \vskip 3.0pt plus 1.0pt minus 1.0pt\cr\displaystyle\delta\mathcal{K}_{\Gamma_{i}^{-},\Gamma_{i+1}^{+}}^{k,*}&0\end{pmatrix}, (2.13)

Γi+,Γi1\mathcal{L}_{\Gamma_{i}^{+},\Gamma_{i-1}^{-}} and Γi+,Γi\mathcal{R}_{\Gamma_{i}^{+},\Gamma_{i}^{-}} encode the effect of the interior boundaries of the (i1)(i-1)-th resonator and the ii-th resonator, respectively, on the exterior boundary of the ii-th resonator, as defined by

Γi+,Γi1=(0𝒮Γi+,Γi1k0δ𝒦Γi+,Γi1k,),Γi+,Γi=(𝒮Γi+,Γikr0𝒦Γi+,Γikr,0).\mathcal{L}_{\Gamma_{i}^{+},\Gamma_{i-1}^{-}}=\begin{pmatrix}0&-\mathcal{S}^{k}_{\Gamma_{i}^{+},\Gamma_{i-1}^{-}}\\ \vskip 3.0pt plus 1.0pt minus 1.0pt\cr 0&-\delta\mathcal{K}_{\Gamma_{i}^{+},\Gamma_{i-1}^{-}}^{k,*}\end{pmatrix},\quad\mathcal{R}_{{\Gamma_{i}^{+},\Gamma_{i}^{-}}}=\begin{pmatrix}\displaystyle\mathcal{S}^{k_{\mathrm{r}}}_{\Gamma_{i}^{+},\Gamma_{i}^{-}}&0\\ \vskip 3.0pt plus 1.0pt minus 1.0pt\cr\displaystyle\mathcal{K}_{\Gamma_{i}^{+},\Gamma_{i}^{-}}^{k_{\mathrm{r}},*}&0\end{pmatrix}. (2.14)

Here, we introduced the operators 𝒮Γi,Γjk:L2(Γj)L2(Γi)\mathcal{S}^{k}_{\Gamma_{i},\Gamma_{j}}:L^{2}(\Gamma_{j})\to L^{2}(\Gamma_{i}) and 𝒦Γi,Γjk,:L2(Γj)L2(Γi)\mathcal{K}_{\Gamma_{i},\Gamma_{j}}^{k,*}:L^{2}(\Gamma_{j})\to L^{2}(\Gamma_{i}) as defined respectively by

𝒮Γi,Γjk[φ]=𝒮Γjk[φ]|Γi and 𝒦Γi,Γjk,[φ]=νi𝒮Γjk[φ]|Γi, for φL2(Γj).\mathcal{S}^{k}_{\Gamma_{i},\Gamma_{j}}[\varphi]=\mathcal{S}^{k}_{\Gamma_{j}}[\varphi]\big{|}_{\Gamma_{i}}\;\mbox{ and }\;\mathcal{K}_{\Gamma_{i},\Gamma_{j}}^{k,*}[\varphi]=\frac{\partial}{\partial\nu_{i}}\mathcal{S}^{k}_{\Gamma_{j}}[\varphi]\big{|}_{\Gamma_{i}},\mbox{ for }\forall\varphi\in L^{2}(\Gamma_{j}).

In order to understand the resonant behavior of the NN-layer nested scatterers, we shall give the definition of the subwavelength resonant frequencies and resonant modes of the system based on the high contrast δ\delta between the materials.

Definition 2.1.

Given δ>0\delta>0, a subwavelength resonant frequency (eigenfrequency) ω=ω(δ)\omega=\omega(\delta)\in\mathbb{C} is defined to be such that

 (i) in the case that uin=0u^{in}=0, there exists a nontrivial solution to (2.4), known as an associated resonant mode (eigenmode);

(ii) ω\omega depends continuously on δ\delta and satisfies ω0\omega\to 0 as δ0\delta\to 0.

When the material parameters are real, it is easy to see that 𝒜(ω,δ)¯=𝒜(ω¯,δ)\overline{\mathcal{A}(\omega,\delta)}=\mathcal{A}(-\overline{\omega},\delta), from which we can see that the subwavelength resonant frequencies will be symmetric about the imaginary axis.

Lemma 2.1 (see [38]).

The set of subwavelength resonant frequencies is symmetric about the imaginary axis. That is, if ω\omega is such that 𝒜(ω,δ)[Ψ]=0\mathcal{A}(\omega,\delta)[\Psi]=0 holds true for some nontrivical Ψ\Psi\in\mathcal{H}, then it will also hold that

𝒜(ω¯,δ)[Ψ¯]=0.\mathcal{A}(-\overline{\omega},\delta)\left[\overline{\Psi}\right]=0.

Based on Lemma 2.1, we will subsequently state results only for the subwavelength resonant frequencies with positive real parts. The existence of subwavelength resonant frequencies is given by the following Theorem, which was proved in [32] by using the generalized Rouché theorem [15].

Theorem 2.2 ([32]).

Consider a structure of NN-layer subwavelength nested resonators in 3\mathbb{R}^{3}. For sufficiently small δ>0\delta>0, there exist NN subwavelength resonant frequencies ω1+(δ),ω2+(δ),,ωN+(δ)\omega^{+}_{1}(\delta),\omega^{+}_{2}(\delta),\dots,\omega^{+}_{N}(\delta) with positive real parts.

3 Subwavelength resonance in multi-layered concentric balls

It is known that the subwavelength resonant frequency is associated with the shape of the resonators. However, it has been observed that breaking the rotational symmetry of the resonators does not induce mode splitting. In other words, altering the shape of the resonator does not affect the number of subwavelength resonant frequencies. Based on this observation and from a construction perspective, we shall consider the Helmholtz system (2.4) where DD is a multi-layered concentric ball, as illustrated in Figure 3.1. Precisely, we give a sequence of resonators, Dj,D_{j}, j=1,2,,Nj=1,2,\ldots,N, by

Dj={rj<rrj+},D_{j}=\{r_{j}^{-}<r\leqslant r_{j}^{+}\}, (3.1)

the host matrix material DjD_{j}^{\prime}, j=0,1,,N,j=0,1,\ldots,N, by

D0:={r>r1+},Dj:={rj+1+<rrj},j=1,2,,N1,DN:={rrN},D_{0}^{\prime}:=\{r>r_{1}^{+}\},\quad D_{j}^{\prime}:=\{r_{j+1}^{+}<r\leqslant r_{j}^{-}\},\quad j=1,2,\ldots,N-1,\quad D_{N}^{\prime}:=\{r\leqslant r_{N}^{-}\}, (3.2)

and the interfaces between the adjacent layers can be rewritten by

Γj±:={|x|=rj±},j=1,2,,N,\Gamma_{j}^{\pm}:=\left\{|x|=r_{j}^{\pm}\right\},\quad j=1,2,\ldots,N, (3.3)

where NN\in\mathbb{N} and rj±>0r_{j}^{\pm}>0.

Refer to caption
Figure 3.1: Schematic illustration of a structure of NN-layer nested resonators.

3.1 A first characterization of resonances based on spherical wave expansions

In this subsection, we recall the first characterization of resonances based on spherical wave expansions. By rather lengthy and tedious calculations, the exact formulas for the eigenfrequencies of single-resonator and dual-resonator, as well as numerical computations for any finite multi-layer nested resonators, have been derived and presented in [32].

Let jn(t)j_{n}(t) and hn(1)(t)h^{(1)}_{n}(t) be the spherical Bessel and Hankel functions of the first kind of order nn, respectively, and Yn(x^)Y_{n}(\hat{x}) be the spherical harmonics. By using spherical coordinates, the solution uu to (2.4), with the material parameters given in (2.1)–(2.3), can be written as

u(x)={uin+n=0+a1,n+hn(1)(kr)Yn,xD0,n=0+(bj,n+jn(krr)Yn+aj,nhn(1)(krr)Yn),xDj,j=1,2,,N,n=0+(bj,njn(kr)Yn+aj+1,n+hn(1)(kr)Yn),xDj,j=1,2,,N,u(x)=\begin{cases}\displaystyle u^{in}+\sum_{n=0}^{+\infty}a^{+}_{1,n}h^{(1)}_{n}(kr)Y_{n},&\quad x\in D_{0}^{\prime},\\ \vskip 3.0pt plus 1.0pt minus 1.0pt\cr\displaystyle\sum_{n=0}^{+\infty}\left(b^{+}_{j,n}j_{n}(k_{\mathrm{r}}r)Y_{n}+a^{-}_{j,n}h^{(1)}_{n}(k_{\mathrm{r}}r)Y_{n}\right),&\quad x\in{D_{j}},\;j=1,2,\ldots,N,\\ \vskip 3.0pt plus 1.0pt minus 1.0pt\cr\displaystyle\sum_{n=0}^{+\infty}\left(b^{-}_{j,n}j_{n}(kr)Y_{n}+a^{+}_{j+1,n}h^{(1)}_{n}(kr)Y_{n}\right),&\quad x\in{D_{j}^{\prime}},\;j=1,2,\ldots,N,\end{cases} (3.4)

where aN+1,n+=0a^{+}_{N+1,n}=0. By using the transmission conditions across Γj±\Gamma^{\pm}_{j}, j=1,2,,Nj=1,2,\ldots,N, we find that the constants satisfy

𝑨(n)(ω,δ)[𝒂±]=(uin|Γ1+,δuinν|Γ1+,0,0,,0)T,\bm{A}_{(n)}(\omega,\delta)[\bm{a}^{\pm}]=(u^{in}|_{\Gamma_{1}^{+}},\delta\frac{\partial u^{in}}{\partial\nu}|_{\Gamma_{1}^{+}},0,0,\cdots,0)^{T},

for all n{0}n\in\mathbb{N}\cup\{0\}. Here

𝒂±=(a1,n+,b1,n+,a1,n,b1,n,,aN,n+,bN,n+,aN,n,bN,n)T\bm{a}^{\pm}=\left(a^{+}_{1,n},b^{+}_{1,n},a^{-}_{1,n},b^{-}_{1,n},\cdots,a^{+}_{N,n},b^{+}_{N,n},a^{-}_{N,n},b^{-}_{N,n}\right)^{T}

and the 4N4N-by-4N4N matrix type operator 𝑨(n)(ω,δ)\bm{A}_{(n)}(\omega,\delta) has the block tridiagonal form

𝑨(n)(ω,δ):=(M1,n+R1,1,n+,L1,1,n,+M1,nR1,2,n,+L2,1,n+,M2,n+R2,2,n+,L2,2,n,+M2,nR2,3,n,+LN,N1,n+,MN,n+RN,N,n+,LN,N,n,+MN,n),\bm{A}_{(n)}(\omega,\delta):=\begin{pmatrix}{M}^{+}_{1,n}&{R}^{+,-}_{1,1,n}&&&&&\\ \vskip 3.0pt plus 1.0pt minus 1.0pt\cr{L}^{-,+}_{1,1,n}&{M}^{-}_{1,n}&{R}^{-,+}_{1,2,n}&&&&\\ \vskip 3.0pt plus 1.0pt minus 1.0pt\cr&{L}^{+,-}_{2,1,n}&{M}^{+}_{2,n}&{R}^{+,-}_{2,2,n}&&&\\ \vskip 3.0pt plus 1.0pt minus 1.0pt\cr&&{L}^{-,+}_{2,2,n}&{M}^{-}_{2,n}&{R}^{-,+}_{2,3,n}&&&\\ &&&\ddots&\ddots&\ddots&\\ &&&&{L}^{+,-}_{N,N-1,n}&{M}^{+}_{N,n}&{R}^{+,-}_{N,N,n}\\ \vskip 3.0pt plus 1.0pt minus 1.0pt\cr&&&&&{L}^{-,+}_{N,N,n}&{M}^{-}_{N,n}\end{pmatrix}, (3.5)

where

Mi,n+=(hn(1)(kri+)jn(krri+)δhn(1)(kri+)τjn(krri+)),Mi,n=(hn(1)(krri)jn(kri)τhn(1)(krri)δjn(kri)),{M}_{i,n}^{+}=\begin{pmatrix}-h^{(1)}_{n}(kr_{i}^{+})&j_{n}(k_{\mathrm{r}}r_{i}^{+})\\ \vskip 3.0pt plus 1.0pt minus 1.0pt\cr-\delta h^{(1)^{\prime}}_{n}(kr_{i}^{+})&\tau j^{\prime}_{n}(k_{\mathrm{r}}r_{i}^{+})\end{pmatrix},\quad{M}_{i,n}^{-}=\begin{pmatrix}-h^{(1)}_{n}(k_{\mathrm{r}}r_{i}^{-})&j_{n}(kr_{i}^{-})\\ \vskip 3.0pt plus 1.0pt minus 1.0pt\cr-\tau h^{(1)^{\prime}}_{n}(k_{\mathrm{r}}r_{i}^{-})&\delta j^{\prime}_{n}(kr_{i}^{-})\end{pmatrix}, (3.6)
Li,i,n,+=(0jn(krri)0τjn(krri)),Ri,i,n+,=(hn(1)(krri+)0τhn(1)(krri+)0),{L}^{-,+}_{i,i,n}=\begin{pmatrix}0&-j_{n}(k_{\mathrm{r}}r_{i}^{-})\\ \vskip 3.0pt plus 1.0pt minus 1.0pt\cr 0&-\tau j^{\prime}_{n}(k_{\mathrm{r}}r_{i}^{-})\end{pmatrix},\quad{R}^{+,-}_{i,i,n}=\begin{pmatrix}h^{(1)}_{n}(k_{\mathrm{r}}r_{i}^{+})&0\\ \vskip 3.0pt plus 1.0pt minus 1.0pt\cr\tau h^{(1)^{\prime}}_{n}(k_{\mathrm{r}}r_{i}^{+})&0\end{pmatrix},

and

Li,i1,n+,=(0jn(kri+)0δjn(kri+)),Ri,i+1,n,+=(hn(1)(kri)0δhn(1)(kri)0).{L}^{+,-}_{i,i-1,n}=\begin{pmatrix}0&-j_{n}(kr_{i}^{+})\\ \vskip 3.0pt plus 1.0pt minus 1.0pt\cr 0&-\delta j^{\prime}_{n}(kr_{i}^{+})\end{pmatrix},\quad{R}^{-,+}_{i,i+1,n}=\begin{pmatrix}h^{(1)}_{n}(kr_{i}^{-})&0\\ \vskip 3.0pt plus 1.0pt minus 1.0pt\cr\delta h^{(1)^{\prime}}_{n}(kr_{i}^{-})&0\end{pmatrix}.

It is important to emphasize that, from a physical perspective, we are concerned with the resonance of nested materials, which corresponds to the system’s lowest resonant frequency. At this frequency, the system exhibits a factor corresponding to n=0n=0, as the lowest resonance is characterized by the fewest number of oscillations [32, 13]. It can be seen in the proofs of [32, Theorems 4.1-4.2] that the primary reason for mode splitting lies in the fact that as the number of nested resonators increases, the degree of the corresponding characteristic polynomial also increases, while the type of resonance (which consists solely of monopolar resonances) remains unchanged. The mathematical justification for the monopole approximation is given in Section 4. Consequently, the 4N4N-by-4N4N matrix

𝑨(ω,δ):=𝑨(0)(ω,δ)\bm{A}(\omega,\delta):=\bm{A}_{(0)}(\omega,\delta) (3.7)

becomes singular.

Proposition 3.1.

Subwavelength resonant frequencies ω=ω(δ)\omega=\omega(\delta)\in\mathbb{C} are determined by det(𝐀(ω(δ),δ))=0\det(\bm{A}(\omega(\delta),\delta))=0.

Although Proposition 3.1 provides a complete characterization of the solution to (2.4), it does not directly facilitate the prediction of scattering resonances. This is primarily due to the computational complexity involved in deriving the asymptotic expansions of the determinant det(𝑨(ω,δ))\det(\bm{A}(\omega,\delta)) of the 4N4N-by-4N4N matrix 𝑨(ω,δ)\bm{A}(\omega,\delta) by using the following asymptotic expansions:

j0(t)=sintt=1t26+t4120+O(t6),j_{0}(t)=\frac{\sin t}{t}=1-\frac{t^{2}}{6}+\frac{t^{4}}{120}+O(t^{6}), (3.8)
h0(1)(t)=sintticostt=1t26+t4120+i(1t+t2t324)+O(t5),h^{(1)}_{0}(t)=\frac{\sin t}{t}-\mathrm{i}\frac{\cos t}{t}=1-\frac{t^{2}}{6}+\frac{t^{4}}{120}+\mathrm{i}(-\frac{1}{t}+\frac{t}{2}-\frac{t^{3}}{24})+O(t^{5}), (3.9)

for t1t\ll 1. We remark in Subsection 3.2 that the scattering problem (2.4) can be reformulated as a 2N×2N2N\times 2N linear system based on the Dirichlet-to-Neumann (DtN) map, which gives a second characterization of the resonances.

3.2 A second characterization of resonances based on the DtN map

In this section, we characterize the DtN map of the Helmholtz problem (2.4) in MLHC metamaterial D=j=1NDjD=\cup_{j=1}^{N}D_{j}, with the aim of applying the DtN approach developed in [41] to analyze subwavelength resonances.

The following lemma provides an explicit expression for the solution to exterior Dirichlet problems on 3D\mathbb{R}^{3}\setminus D.

Lemma 3.1.

For any k\{mπ/(rjrj+1+)|m\{0}, 1jN1}k\in\mathbb{C}\backslash\{m\pi/(r_{j}^{-}-r_{j+1}^{+})\,|\,m\in\mathbb{Z}\backslash\{0\},\,1\leq j\leq N-1\} and any vector (fj±)1jN2N(f_{j}^{\pm})_{1\leq j\leq N}\in\mathbb{C}^{2N}, there exists a unique solution vfH1(3)v_{f}\in H^{1}(\mathbb{R}^{3}) to the exterior Dirichlet problem:

{Δvf+k2vf=0in 3D,vf|Γj±=fj±for j=1,2,,N,vfsatisfies the Sommerfeld radiation condition.\begin{cases}\displaystyle\Delta v_{f}+k^{2}v_{f}=0&\text{in }\mathbb{R}^{3}\setminus D,\\ \vskip 3.0pt plus 1.0pt minus 1.0pt\cr\displaystyle{v_{f}}|_{\Gamma_{j}^{\pm}}=f_{j}^{\pm}&\text{for }j=1,2,\ldots,N,\\ \vskip 3.0pt plus 1.0pt minus 1.0pt\cr\displaystyle v_{f}&\mbox{satisfies the Sommerfeld radiation condition.}\end{cases} (3.10)

Furthermore, when k0k\neq 0, the solution vfv_{f} can be represented by

vf={f1+h0(1)(kr)h0(1)(kr1+),xD0,ajj0(kr)+bjh0(1)(kr),xDjj=1,2,,N1,fNj0(kr)j0(krN),xDN,v_{f}=\begin{cases}\displaystyle f_{1}^{+}\frac{h_{0}^{(1)}(kr)}{h_{0}^{(1)}(kr_{1}^{+})},&x\in D_{0}^{\prime},\\ \vskip 3.0pt plus 1.0pt minus 1.0pt\cr\displaystyle a_{j}j_{0}(kr)+b_{j}h_{0}^{(1)}(kr),&x\in D_{j}^{\prime}\quad j=1,2,\ldots,N-1,\\ \vskip 3.0pt plus 1.0pt minus 1.0pt\cr\displaystyle f_{N}^{-}\frac{j_{0}(kr)}{j_{0}(kr_{N}^{-})},&x\in D_{N}^{\prime},\\ \end{cases} (3.11)

where aja_{j} and bjb_{j} are given by

(ajbj)=ik2rjrj+1+sin(k(rjrj+1+))(h0(1)(krj+1+)h0(1)(krj)j0(krj+1+)j0(krj))(fjfj+1+).\begin{pmatrix}a_{j}\\ b_{j}\end{pmatrix}=\frac{\mathrm{i}k^{2}r_{j}^{-}r_{j+1}^{+}}{\sin(k(r_{j}^{-}-r_{j+1}^{+}))}\begin{pmatrix}h_{0}^{(1)}(kr_{j+1}^{+})&-h_{0}^{(1)}(kr_{j}^{-})\\ -j_{0}(kr_{j+1}^{+})&j_{0}(kr_{j}^{-})\end{pmatrix}\begin{pmatrix}f_{j}^{-}\\ f_{j+1}^{+}\end{pmatrix}. (3.12)
Proof.

When k0k\neq 0, the solution vfv_{f} to (3.10) may be represented as (3.11). It follows from the Dirichlet boundary conditions of (3.10) that the constants aja_{j} and bjb_{j}, j=1,2,,N1j=1,2,\ldots,N-1, satisfy

(j0(krj)h0(1)(krj)j0(krj+1+)h0(1)(krj+1+))(ajbj)=(fjfj+1+).\begin{pmatrix}j_{0}(kr_{j}^{-})&h_{0}^{(1)}(kr_{j}^{-})\\ j_{0}(kr_{j+1}^{+})&h_{0}^{(1)}(kr_{j+1}^{+})\end{pmatrix}\begin{pmatrix}a_{j}\\ b_{j}\end{pmatrix}=\begin{pmatrix}f_{j}^{-}\\ f_{j+1}^{+}\end{pmatrix}.

Inverting above equality and using the fact

j0(krj)h0(1)(krj+1+)j0(krj+1+))h0(1)(krj)=sin(k(rjrj+1+))ik2rjrj+1+,j_{0}(kr_{j}^{-})h_{0}^{(1)}(kr_{j+1}^{+})-j_{0}(kr_{j+1}^{+}))h_{0}^{(1)}(kr_{j}^{-})=\frac{\sin(k(r_{j}^{-}-r_{j+1}^{+}))}{\mathrm{i}k^{2}r_{j}^{-}r_{j+1}^{+}},

we can get (3.12). When k=0k=0, the uniqueness of exterior Dirichlet problem follows from [43, Proposition 3.1]. The proof is complete. ∎

Definition 3.1.

For any k\{mπ/(rjrj+1+)|m\{0}, 1jN1}k\in\mathbb{C}\backslash\{m\pi/(r_{j}^{-}-r_{j+1}^{+})\,|\,m\in\mathbb{Z}\backslash\{0\},\,1\leq j\leq N-1\}, the Dirichlet-to-Neumann (DtN) map with wave number kk is the operator 𝒯k:2N2N\mathcal{T}^{k}:\mathbb{C}^{2N}\rightarrow\mathbb{C}^{2N} defined by

𝒯k[(fj±)1jN]=(vfv|Γj±)1jN,\mathcal{T}^{k}[(f_{j}^{\pm})_{1\leq j\leq N}]=\left(\frac{\partial v_{f}}{\partial v}|_{\Gamma_{j}^{\pm}}\right)_{1\leq j\leq N}, (3.13)

where vfv_{f} is the unique solution to (3.10).

Remark 3.1.

The condition that k\{mπ/(rjrj+1+)|m\{0}, 1jN1}k\in\mathbb{C}\backslash\{m\pi/(r_{j}^{-}-r_{j+1}^{+})\,|\,m\in\mathbb{Z}\backslash\{0\},\,1\leq j\leq N-1\} is equivalent to the assumption that k2k^{2} is not a Dirichlet eigenvalue of Δ-\Delta on 3D\mathbb{R}^{3}\setminus D, which guarantees the uniqueness of exterior Dirichlet problem (3.10) and then the well-defined of DtN map (3.2).

We give the exact matrix representation of the DtN map 𝒯k\mathcal{T}^{k} in the following proposition.

Proposition 3.2.

For any k\{nπ/(rjrj+1+)|n\{0}, 1jN1}k\in\mathbb{C}\backslash\{n\pi/(r_{j}^{-}-r_{j+1}^{+})\,|\,n\in\mathbb{Z}\backslash\{0\},\,1\leq j\leq N-1\}, f:=(fj±)1jNf:=(f_{j}^{\pm})_{1\leq j\leq N}, the DtN map 𝒯k[f]:=(𝒯k[f]j±)1jN\mathcal{T}^{k}[f]:=(\mathcal{T}^{k}[f]_{j}^{\pm})_{1\leq j\leq N} admits the following exact matrix representation:

(𝒯k[f]1+𝒯k[f]1𝒯k[f]2+𝒯k[f]N1𝒯k[f]N+𝒯k[f]N)=(1r1++ikA1,2kA2,3kAN1,NkkrNcos(krN)sin(krN)rNsin(krN))(f1+f1f2+fN1fN+fN),\begin{pmatrix}\mathcal{T}^{k}[f]_{1}^{+}\\ \mathcal{T}^{k}[f]_{1}^{-}\\ \mathcal{T}^{k}[f]_{2}^{+}\\ \vdots\\ \mathcal{T}^{k}[f]_{N-1}^{-}\\ \mathcal{T}^{k}[f]_{N}^{+}\\ \mathcal{T}^{k}[f]_{N}^{-}\end{pmatrix}=\begin{pmatrix}-\frac{1}{r_{1}^{+}}+\mathrm{i}k&&&&&\\ &A^{k}_{1,2}&&&&\\ &&A^{k}_{2,3}&&&\\ &&&\ddots&&\\ &&&&A^{k}_{N-1,N}&\\ &&&&&\frac{kr_{N}^{-}\cos(kr_{N}^{-})-\sin(kr_{N}^{-})}{r_{N}^{-}\sin(kr_{N}^{-})}\end{pmatrix}\begin{pmatrix}f_{1}^{+}\\ f_{1}^{-}\\ f_{2}^{+}\\ \vdots\\ f_{N-1}^{-}\\ f_{N}^{+}\\ f_{N}^{-}\end{pmatrix}, (3.14)

where for j=1,2,,N1,j=1,2,\ldots,N-1,

Aj,j+1k:=(krjcos(k(rjrj+1+))sin(k(rjrj+1+))rjsin(k(rjrj+1+))krj+1+rjsin(k(rjrj+1+))krjrj+1+sin(k(rjrj+1+))krj+1+cos(k(rjrj+1+))+sin(k(rjrj+1+))rj+1+sin(k(rjrj+1+))).A^{k}_{j,j+1}:=\begin{pmatrix}\displaystyle\frac{kr_{j}^{-}\cos(k(r_{j}^{-}-r_{j+1}^{+}))-\sin(k(r_{j}^{-}-r_{j+1}^{+}))}{r_{j}^{-}\sin(k(r_{j}^{-}-r_{j+1}^{+}))}&\displaystyle-\frac{kr_{j+1}^{+}}{r_{j}^{-}\sin(k(r_{j}^{-}-r_{j+1}^{+}))}\\ \vskip 3.0pt plus 1.0pt minus 1.0pt\cr\displaystyle\frac{kr_{j}^{-}}{r_{j+1}^{+}\sin(k(r_{j}^{-}-r_{j+1}^{+}))}&\displaystyle-\frac{kr_{j+1}^{+}\cos(k(r_{j}^{-}-r_{j+1}^{+}))+\sin(k(r_{j}^{-}-r_{j+1}^{+}))}{r_{j+1}^{+}\sin(k(r_{j}^{-}-r_{j+1}^{+}))}\end{pmatrix}. (3.15)
Proof.

In view of (3.11)–(3.13), we have that for j=1,2,,N1j=1,2,\ldots,N-1,

(𝒯k[f]j𝒯k[f]j+1+)\displaystyle\begin{pmatrix}\mathcal{T}^{k}[f]_{j}^{-}\\ \mathcal{T}^{k}[f]_{j+1}^{+}\end{pmatrix} =k(j0(krj)h0(1)(krj)j0(krj+1+)h0(1)(krj+1+))(ajbj)\displaystyle=k\begin{pmatrix}j^{\prime}_{0}(kr_{j}^{-})&h_{0}^{(1)^{\prime}}(kr_{j}^{-})\\ \vskip 3.0pt plus 1.0pt minus 1.0pt\cr j^{\prime}_{0}(kr_{j+1}^{+})&h_{0}^{(1)^{\prime}}(kr_{j+1}^{+})\end{pmatrix}\begin{pmatrix}a_{j}\\ b_{j}\end{pmatrix}
=ik3rjrj+1+sin(k(rjrj+1+))(j0(krj)h0(1)(krj)j0(krj+1+)h0(1)(krj+1+))(h0(1)(krj+1+)h0(1)(krj)j0(krj+1+)j0(krj))(fjfj+1+)\displaystyle=\frac{\mathrm{i}k^{3}r_{j}^{-}r_{j+1}^{+}}{\sin(k(r_{j}^{-}-r_{j+1}^{+}))}\begin{pmatrix}j^{\prime}_{0}(kr_{j}^{-})&h_{0}^{(1)^{\prime}}(kr_{j}^{-})\\ \vskip 3.0pt plus 1.0pt minus 1.0pt\cr j^{\prime}_{0}(kr_{j+1}^{+})&h_{0}^{(1)^{\prime}}(kr_{j+1}^{+})\end{pmatrix}\begin{pmatrix}h_{0}^{(1)}(kr_{j+1}^{+})&-h_{0}^{(1)}(kr_{j}^{-})\\ -j_{0}(kr_{j+1}^{+})&j_{0}(kr_{j}^{-})\end{pmatrix}\begin{pmatrix}f_{j}^{-}\\ f_{j+1}^{+}\end{pmatrix}
=Aj,j+1k(fjfj+1+).\displaystyle=A^{k}_{j,j+1}\begin{pmatrix}f_{j}^{-}\\ f_{j+1}^{+}\end{pmatrix}.

Moreover, we have

𝒯k[f]1+=kh0(1)(kr1+)h0(1)(kr1+)f1+=(1r1++ik)f1+,\mathcal{T}^{k}[f]_{1}^{+}=\frac{kh_{0}^{(1)^{\prime}}(kr_{1}^{+})}{h_{0}^{(1)}(kr_{1}^{+})}f_{1}^{+}=\left(-\frac{1}{r_{1}^{+}}+\mathrm{i}k\right)f_{1}^{+},

and

𝒯k[f]N=kj0(krN)j0(krN)fN=krNcos(krN)sin(krN)rNsin(krN)fN.\mathcal{T}^{k}[f]_{N}^{-}=\frac{kj_{0}^{\prime}(kr_{N}^{-})}{j_{0}(kr_{N}^{-})}f_{N}^{-}=\frac{kr_{N}^{-}\cos(kr_{N}^{-})-\sin(kr_{N}^{-})}{r_{N}^{-}\sin(kr_{N}^{-})}f_{N}^{-}.

The proof is complete. ∎

It can be verified that the solution vfv_{f} to (3.10) with k0k\neq 0 converges as k0k\rightarrow 0 to the solution to (3.10) with k=0k=0. As expected from the matrix representation (3.14), the operator 𝒯k\mathcal{T}^{k} is analytic in a neighborhood of k=0k=0. In all what follows, we denote by RR the convergence radius

R:=πmax1jN1{rjrj+1+}.R:=\frac{\pi}{\max_{1\leq j\leq N-1}\{r_{j}^{-}-r_{j+1}^{+}\}}.
Corollary 3.1.

The DtN map 𝒯k\mathcal{T}^{k} can be extended to a holomorphic 2N×2N2N\times 2N matrix with respect to the wave number k{k:|k|<R}k\in\{k\in\mathbb{C}:|k|<R\}. Therefore, there exists a family of 2N×2N2N\times 2N matrices (𝒯n)n(\mathcal{T}_{n})_{n\in\mathbb{N}} such that the following convergent series representation holds:

𝒯k=n=0+kn𝒯n,k with |k|<R.\mathcal{T}^{k}=\sum_{n=0}^{+\infty}k^{n}\mathcal{T}_{n},\qquad\forall k\in\mathbb{C}\text{ with }|k|<R. (3.16)

Particularly, the matrices 𝒯0\mathcal{T}_{0} and 𝒯1\mathcal{T}_{1} can be, respectively, given by

𝒯0=(1r1+A1,20A2,30AN1,N00) and 𝒯1=(i0000),\mathcal{T}_{0}=\begin{pmatrix}-\frac{1}{r_{1}^{+}}&&&&&\\ &A^{0}_{1,2}&&&&\\ &&A^{0}_{2,3}&&&\\ &&&\ddots&&\\ &&&&A^{0}_{N-1,N}&\\ &&&&&0\end{pmatrix}\text{ and }\mathcal{T}_{1}=\begin{pmatrix}\mathrm{i}&&&&&\\ &0&&&&\\ &&0&&&\\ &&&\ddots&&\\ &&&&0&\\ &&&&&0\end{pmatrix}, (3.17)

where

Aj,j+10=(rj+1+rj(rjrj+1+)rj+1+rj(rjrj+1+)rjrj+1+(rjrj+1+)rjrj+1+(rjrj+1+)),j=1,2,,N1.A^{0}_{j,j+1}=\begin{pmatrix}\displaystyle\frac{r_{j+1}^{+}}{r_{j}^{-}(r_{j}^{-}-r_{j+1}^{+})}&\displaystyle-\frac{r_{j+1}^{+}}{r_{j}^{-}(r_{j}^{-}-r_{j+1}^{+})}\\ \vskip 3.0pt plus 1.0pt minus 1.0pt\cr\displaystyle\frac{r_{j}^{-}}{r_{j+1}^{+}(r_{j}^{-}-r_{j+1}^{+})}&\displaystyle-\frac{r_{j}^{-}}{r_{j+1}^{+}(r_{j}^{-}-r_{j+1}^{+})}\end{pmatrix},\quad j=1,2,\ldots,N-1.
Proof.

The result is immediate by noticing that the matrix Aj,j+1kA^{k}_{j,j+1} of (3.15) is analytic with respect to the kk satisfying |k|(rjrj+1+)<π|k|(r_{j}^{-}-r_{j+1}^{+})<\pi for j=1,2,,N1j=1,2,\ldots,N-1. From (3.8) and (3.9), we have

kj0(krN)j0(krN)=O(k2) and kh0(1)(kr1+)h0(1)(kr1+)=1r1++ik.\frac{kj_{0}^{\prime}(kr_{N}^{-})}{j_{0}(kr_{N}^{-})}=O(k^{2})\;\text{ and }\,\frac{kh_{0}^{(1)^{\prime}}(kr_{1}^{+})}{h_{0}^{(1)}(kr_{1}^{+})}=-\frac{1}{r_{1}^{+}}+\mathrm{i}k. (3.18)

This, together with Aj,j+1k=Aj,j+10+O(k2)A^{k}_{j,j+1}=A^{0}_{j,j+1}+O(k^{2}), implies that (3.17) holds. The proof is complete. ∎

Remark 3.2.

Based on (3.14) and (3.17), we have that for a vector f:=(fi±)1iN2Nf:=(f^{\pm}_{i})_{1\leq i\leq N}\in\mathbb{C}^{2N},

{𝒯0[f]1+=1r1+f1+,𝒯0[f]j+=rj1rj+(rj1rj+)fj1rj1rj+(rj1rj+)fj+,j=2,3,,N,𝒯0[f]j=rj+1+rj(rjrj+1+)fjrj+1+rj(rjrj+1+)fj+1+,j=1,2,,N1,𝒯0[f]N=0.\begin{cases}\displaystyle\mathcal{T}_{0}[f]_{1}^{+}=-\frac{1}{r_{1}^{+}}f_{1}^{+},&\\ \vskip 3.0pt plus 1.0pt minus 1.0pt\cr\displaystyle\mathcal{T}_{0}[f]_{j}^{+}=\frac{r_{j-1}^{-}}{r_{j}^{+}(r_{j-1}^{-}-r_{j}^{+})}f_{j-1}^{-}-\frac{r_{j-1}^{-}}{r_{j}^{+}(r_{j-1}^{-}-r_{j}^{+})}f_{j}^{+},&j=2,3,\ldots,N,\\ \vskip 3.0pt plus 1.0pt minus 1.0pt\cr\displaystyle\mathcal{T}_{0}[f]_{j}^{-}=\frac{r_{j+1}^{+}}{r_{j}^{-}(r_{j}^{-}-r_{j+1}^{+})}f_{j}^{-}-\frac{r_{j+1}^{+}}{r_{j}^{-}(r_{j}^{-}-r_{j+1}^{+})}f_{j+1}^{+},&j=1,2,\ldots,N-1,\\ \vskip 3.0pt plus 1.0pt minus 1.0pt\cr\displaystyle\mathcal{T}_{0}[f]_{N}^{-}=0.&\end{cases} (3.19)

Based upon the properties of the DtN map above, we now provide a second characterization of resonances in the MLHC structure D=j=1NDjD=\cup_{j=1}^{N}D_{j} as illustrated in Figure 3.1. The solution to the acoustic scattering problem (2.4) in DD can be rewritten in terms of the DtN map 𝒯k\mathcal{T}^{k} for uH1(D)u\in H^{1}(D)

{Δu+ω2vr2u=0in D,uν|=δ𝒯k[uuin]j±+δuinνon Γj±,j=1,2,,N.\begin{cases}\displaystyle\Delta u+\frac{\omega^{2}}{v_{\mathrm{r}}^{2}}u=0&\text{in }D,\\ \vskip 3.0pt plus 1.0pt minus 1.0pt\cr\displaystyle\frac{\partial u}{\partial\nu}|_{\mp}=\delta\mathcal{T}^{k}[u-u^{in}]_{j}^{\pm}+\delta\frac{\partial u^{in}}{\partial\nu}&\text{on }\Gamma^{\pm}_{j},\;j=1,2,\ldots,N.\end{cases} (3.20)
Proposition 3.3.

Any solution uu to the system (3.20) can be written as

u(x)=aij0(krr)+bih0(1)(krr),xDi,i=1,2,,N,u(x)=a_{i}j_{0}(k_{\mathrm{r}}r)+b_{i}h_{0}^{(1)}(k_{\mathrm{r}}r),\quad x\in D_{i},\;i=1,2,\ldots,N,

where the constants satisfy

𝔸(ω,δ)[𝒂]=δ(𝒯k[uin]1++uinν|Γ1+,𝒯k[uin]1+uinν|Γ1,,𝒯k[uin]N+uinν|ΓN)T.\mathbb{A}(\omega,\delta)[\bm{a}]=\delta(-\mathcal{T}^{k}[u^{in}]_{1}^{+}+\frac{\partial u^{in}}{\partial\nu}|_{\Gamma_{1}^{+}},-\mathcal{T}^{k}[u^{in}]_{1}^{-}+\frac{\partial u^{in}}{\partial\nu}|_{\Gamma_{1}^{-}},\ldots,-\mathcal{T}^{k}[u^{in}]_{N}^{-}+\frac{\partial u^{in}}{\partial\nu}|_{\Gamma_{N}^{-}})^{T}. (3.21)

Here 𝐚:=(a1,b1,a2,b2,,aN,bN)T\bm{a}:=(a_{1},b_{1},a_{2},b_{2},\ldots,a_{N},b_{N})^{T} and the 2N×2N2N\times 2N matrix 𝔸(ω,δ)\mathbb{A}(\omega,\delta) is given by

𝔸(ω,δ):=krdiag(A1,A2,,AN)δ𝒯kdiag(A1,A2,,AN)\displaystyle\mathbb{A}(\omega,\delta):=-k_{\mathrm{r}}\operatorname{diag}(A^{\prime}_{1},A^{\prime}_{2},\ldots,A^{\prime}_{N})-\delta\mathcal{T}^{k}\operatorname{diag}(A_{1},A_{2},\ldots,A_{N}) (3.22)

with

Aj=(j1(krrj+)h1(1)(krrj+)j1(krrj)h1(1)(krrj)) and Aj=(j0(krrj+)h0(1)(krrj+)j0(krrj)h0(1)(krrj)) for j=1,2,,N.A^{\prime}_{j}=\begin{pmatrix}\displaystyle j_{1}(k_{\mathrm{r}}r_{j}^{+})&\displaystyle h_{1}^{(1)}(k_{\mathrm{r}}r_{j}^{+})\\ \vskip 3.0pt plus 1.0pt minus 1.0pt\cr\displaystyle j_{1}(k_{\mathrm{r}}r_{j}^{-})&\displaystyle h_{1}^{(1)}(k_{\mathrm{r}}r_{j}^{-})\end{pmatrix}\;\text{ and }\;A_{j}=\begin{pmatrix}\displaystyle j_{0}(k_{\mathrm{r}}r_{j}^{+})&\displaystyle h_{0}^{(1)}(k_{\mathrm{r}}r_{j}^{+})\\ \vskip 3.0pt plus 1.0pt minus 1.0pt\cr\displaystyle j_{0}(k_{\mathrm{r}}r_{j}^{-})&\displaystyle h_{0}^{(1)}(k_{\mathrm{r}}r_{j}^{-})\end{pmatrix}\;\text{ for }j=1,2,\ldots,N.
Proof.

It follows from the boundary condition of (3.20) that for i=1,2,,Ni=1,2,\ldots,N,

kr(aij0(krri±)+bih0(1)(krri±))δ𝒯k[u]i±=δ𝒯k[uin]i±+δuinν|Γi±k_{\mathrm{r}}\left(a_{i}j_{0}^{\prime}(k_{\mathrm{r}}r_{i}^{\pm})+b_{i}h_{0}^{(1)^{\prime}}(k_{\mathrm{r}}r_{i}^{\pm})\right)-\delta\mathcal{T}^{k}[u]_{i}^{\pm}=-\delta\mathcal{T}^{k}[u^{in}]_{i}^{\pm}+\delta\frac{\partial u^{in}}{\partial\nu}|_{\Gamma_{i}^{\pm}}

This, together with f0(t)=f1(t)f^{\prime}_{0}(t)=-f_{1}(t) for both fn=jnf_{n}=j_{n} and fn=hn(1)f_{n}=h_{n}^{(1)} when n=1,2n=1,2, implies that (3.21) holds. ∎

Proposition 3.4.

subwavelength resonant frequencies ω=ω(δ)\omega=\omega(\delta)\in\mathbb{C} are determined by det(𝔸(ω(δ),δ))=0\det(\mathbb{A}(\omega(\delta),\delta))=0.

So far, we reduce the 4N×4N4N\times 4N problem (3.5) to a smaller 2N×2N2N\times 2N problem (3.21) by using the DtN map, which gives a second characterization of the resonances. However, it also seem rather tedious to compute asymptotic expansions of the determinant det(𝔸(ω(δ),δ))\det(\mathbb{A}(\omega(\delta),\delta)). From Lemma 2.1 and Theorem 2.2, we know that a structure of NN-layer nested resonators processes 2N2N eigenfrequencies that are symmetric about the imaginary axis. Inspired by this fact, in the next subsection, we will continue the dimensionality reduction process using the DtN approach [41], which is crucial in approximating the subwavelength eigenfrequencies and eigenmodes of the MLHC structure with the eigenvalues of an N×NN\times N tridiagonal matrix, which we refer to as the capacitance matrix.

3.3 A third characterization of resonances based on the DtN approach

In this subsection, we use the DtN approach [41], which provides a systematic and insightful characterization of subwavelength resonances. This approach not only simplifies the analysis but also enhances the clarity and efficiency of the underlying physical models, making it an invaluable tool in the study of complicated structure.

By using variational principle, (3.20) can be formulated as the following weak form:

a(u,v)=f,vH1(D),H1(D), for vH1(D),a(u,v)=\langle f,v\rangle_{H^{-1}(D),H^{1}(D)},\text{ for }\forall v\in H^{1}(D), (3.23)

where the bilinear form a(u,v)a(u,v) for u,vH1(D)u,v\in H^{1}(D) is defined by

a(u,v):=i=1NDi(uv¯ω2vr2uv¯)dxδi=1N(Γi+v¯𝒯k[u]i+dσΓiv¯𝒯k[u]idσ),a(u,v):=\sum_{i=1}^{N}\int_{D_{i}}\left(\nabla u\cdot\nabla\overline{v}-\frac{\omega^{2}}{v_{\mathrm{r}}^{2}}u\overline{v}\right)~{}\mathrm{d}x-\delta\sum_{i=1}^{N}\left(\int_{\Gamma_{i}^{+}}\overline{v}\,\mathcal{T}^{k}[u]_{i}^{+}~{}\mathrm{d}\sigma-\int_{\Gamma_{i}^{-}}\overline{v}\,\mathcal{T}^{k}[u]_{i}^{-}~{}\mathrm{d}\sigma\right),

and

f,vH1(D),H1(D):=δi=1N(Γi+v¯(𝒯k[uin]i++uinν)dσΓiv¯(𝒯k[uin]i+uinν)dσ).\langle f,v\rangle_{H^{-1}(D),H^{1}(D)}:=\delta\sum_{i=1}^{N}\left(\int_{\Gamma_{i}^{+}}\overline{v}\,\left(-\mathcal{T}^{k}[u^{in}]_{i}^{+}+\frac{\partial u^{in}}{\partial\nu}\right)~{}\mathrm{d}\sigma-\int_{\Gamma_{i}^{-}}\overline{v}\,\left(-\mathcal{T}^{k}[u^{in}]_{i}^{-}+\frac{\partial u^{in}}{\partial\nu}\right)~{}\mathrm{d}\sigma\right). (3.24)

Next, we introduce a new bilinear form

aω,δ(u,v):=a(u,v)+i=1N(DiudxDiv¯dx).a_{\omega,\delta}(u,v):=a(u,v)+\sum_{i=1}^{N}\left(\int_{D_{i}}u~{}\mathrm{d}x\int_{D_{i}}\overline{v}~{}\mathrm{d}x\right). (3.25)

For sufficiently small δ\delta and ω\omega, aω,δa_{\omega,\delta} remains coercive as a analytic perturbation of the continuous coercive bilinear form [41]

a0,0(u,v)=i=1NDiuv¯dx+i=1N(DiudxDiv¯dx).a_{0,0}(u,v)=\sum_{i=1}^{N}\int_{D_{i}}\nabla u\cdot\nabla\overline{v}~{}\mathrm{d}x+\sum_{i=1}^{N}\left(\int_{D_{i}}u~{}\mathrm{d}x\int_{D_{i}}\overline{v}~{}\mathrm{d}x\right).

Therefore, for any fH1(D)f\in H^{-1}(D), there exists a unique Lax-Milgram solution uf(ω,δ)u_{f}(\omega,\delta) to the problem

aω,δ(uf(ω,δ),v)=f,vH1(D),H1(D), for vH1(D),a_{\omega,\delta}(u_{f}(\omega,\delta),v)=\langle f,v\rangle_{H^{-1}(D),H^{1}(D)},\text{ for }\forall v\in H^{1}(D), (3.26)

which is analytic with respect to ω\omega and δ\delta. In order to characterize the subwavelength resonances, we introduce uj(ω,δ)u_{j}(\omega,\delta) satisfying the following variational problems

aω,δ(uj(ω,δ),v)=Djv¯dx, for vH1(D),j=1,2,,N.a_{\omega,\delta}(u_{j}(\omega,\delta),v)=\int_{D_{j}}\bar{v}\mathrm{d}x,\;\text{ for }\forall v\in H^{1}(D),\;j=1,2,\ldots,N. (3.27)

In the following lemma we show that the functions uj(ω,δ)u_{j}(\omega,\delta) facilitate a reduction of the 2N×2N2N\times 2N system (3.21) to a smaller N×NN\times N linear system. This reduction significantly simplifies the analysis, and from a cardinality point of view, it is optimal in the sense that it captures the necessary degrees of freedom while reducing the computational complexity, thereby allowing for a more efficient study for the resonant behavior of NN-layer nested resonators.

Lemma 3.2.

Let ω\omega\in\mathbb{C} and δ\delta\in\mathbb{R} belong to a neighborhood of zero. For any fH1(D)f\in H^{-1}(D), the variational problem (3.23) has a unique solution u:=u(ω,δ)u:=u(\omega,\delta) if and only if the following N×NN\times N linear system

(𝑰𝑼(ω,δ))𝒙=𝑭(\bm{I}-\bm{U}(\omega,\delta))\bm{x}=\bm{F} (3.28)

has a unique solution 𝐱:=(xi(ω,δ))1iN\bm{x}:=\left(x_{i}(\omega,\delta)\right)_{1\leq i\leq N}, where 𝐔(ω,δ)\bm{U}(\omega,\delta) and 𝐅\bm{F} are, respectively, given by

𝑼(ω,δ):=(𝑼ij(ω,δ))1i,jN:=(Diujdx)1i,jN,\bm{U}(\omega,\delta):=(\bm{U}_{ij}(\omega,\delta))_{1\leq i,j\leq N}:=\left(\int_{D_{i}}u_{j}~{}\mathrm{d}x\right)_{1\leq i,j\leq N}, (3.29)

and

𝑭:=(Fi)1iN:=(Diufdx)1iN.\bm{F}:=({F}_{i})_{1\leq i\leq N}:=\left(\int_{D_{i}}u_{f}~{}\mathrm{d}x\right)_{1\leq i\leq N}. (3.30)

Moreover, the solution to (3.23) can be given by

u(ω,δ)=uf(ω,δ)+j=1Nxj(ω,δ)uj(ω,δ).u(\omega,\delta)=u_{f}(\omega,\delta)+\sum_{j=1}^{N}x_{j}(\omega,\delta)u_{j}(\omega,\delta). (3.31)
Proof.

It follows from (3.25) and (3.26) that the variational problem (3.23) is equivalent to

aω,δ(u,v)i=1N(aω,δ(ui,v)Diudx)=aω,δ(uf(ω,δ),v),a_{\omega,\delta}(u,v)-\sum_{i=1}^{N}\left(a_{\omega,\delta}(u_{i},v)\int_{D_{i}}u~{}\mathrm{d}x\right)=a_{\omega,\delta}(u_{f}(\omega,\delta),v),

which implies that

uj=1N(ujDjudx)=uf(ω,δ).u-\sum_{j=1}^{N}\left(u_{j}\int_{D_{j}}u~{}\mathrm{d}x\right)=u_{f}(\omega,\delta). (3.32)

By integrating both sides of (3.32) on DiD_{i}, we see that the vector 𝒙:=(Diudx)1iN\bm{x}:=\left(\int_{D_{i}}u~{}\mathrm{d}x\right)_{1\leq i\leq N} solves the linear system

Diudxj=1N(DiujdxDjudx)=Diuf(ω,δ)dx,i=1,2,,N,\int_{D_{i}}u~{}\mathrm{d}x-\sum_{j=1}^{N}\left(\int_{D_{i}}u_{j}~{}\mathrm{d}x\int_{D_{j}}u~{}\mathrm{d}x\right)=\int_{D_{i}}u_{f}(\omega,\delta)~{}\mathrm{d}x,\;i=1,2,\ldots,N,

which is exactly (3.28). Conversely, if (3.28) has a solution, then (3.32) implies that the solution to (3.23) is given by (3.31). ∎

Therefore, we reduce the 2N×2N2N\times 2N system (3.21) to the smaller N×NN\times N linear system (3.28), and the third characterization of resonances is given in the following.

Proposition 3.5.

Subwavelength resonant frequencies ω=ω(δ)\omega=\omega(\delta)\in\mathbb{C} are determined by det(𝐈𝐔(ω,δ))=0\det(\bm{I}-\bm{U}(\omega,\delta))=0.

3.4 Asymptotic expansions of the subwavelength resonances

In this subsection, we give the exact formulas of 2N2N eigenfrequencies of any finite NN-layer nested resonators. Specifically, we compute their leading order and higher order asymptotic expansions. The solutions uj(ω,δ)u_{j}(\omega,\delta), j=1,2,,Nj=1,2,\ldots,N, to variational problem (3.27) will be determined for sufficiently small δ\delta and ω\omega. Furthermore, based on Proposition 3.5, the eigenfrequencies will be derived. To this end, we consider the strong form of the variational problem (3.27)

{Δujω2vr2uj+i=1N(Diujdx)χDi=χDj in D,ujν|±=δ𝒯k[uj]ion Γi,i=1,2,,N.\begin{cases}\displaystyle-\Delta u_{j}-\frac{\omega^{2}}{v_{\mathrm{r}}^{2}}u_{j}+\sum_{i=1}^{N}\left(\int_{D_{i}}u_{j}~{}\mathrm{d}x\right)\chi_{D_{i}}=\chi_{D_{j}}&\text{ in }D,\\ \vskip 3.0pt plus 1.0pt minus 1.0pt\cr\displaystyle\frac{\partial u_{j}}{\partial\nu}|_{\pm}=\delta\mathcal{T}^{k}[u_{j}]_{i}^{\mp}&\text{on }\Gamma^{\mp}_{i},\;i=1,2,\ldots,N.\end{cases} (3.33)
Proposition 3.6.

The solutions uj(ω,δ)u_{j}(\omega,\delta), j=1,2,,Nj=1,2,\ldots,N, to the variational problem (3.27) have the following asymptotic behaviour as ω,δ0:\omega,\delta\to 0:

uj(ω,δ)\displaystyle u_{j}(\omega,\delta) =(1|Dj|+ω2vr2|Dj|2)χDj\displaystyle=\left(\frac{1}{|D_{j}|}+\frac{\omega^{2}}{v_{\mathrm{r}}^{2}|D_{j}|^{2}}\right)\chi_{D_{j}} (3.34)
+δ[4πrj1rj+|Dj1|2|Dj|(rj1rj+)χDj1(4πrj+rj1|Dj|3(rj1rj+)+4πrjrj+1+|Dj|3(rjrj+1+))χDj\displaystyle\quad+\delta\left[\frac{4\pi r_{j-1}^{-}r_{j}^{+}}{|D_{j-1}|^{2}|D_{j}|(r_{j-1}^{-}-r_{j}^{+})}\chi_{D_{j-1}}-\left(\frac{4\pi r_{j}^{+}r_{j-1}^{-}}{|D_{j}|^{3}(r_{j-1}^{-}-r_{j}^{+})}+\frac{4\pi r_{j}^{-}r_{j+1}^{+}}{|D_{j}|^{3}(r_{j}^{-}-r_{j+1}^{+})}\right)\chi_{D_{j}}\right.
+4πrj+1+rj|Dj+1|2|Dj|(rjrj+1+)χDj+1+u~j,0,1]\displaystyle\quad\left.\quad\quad+\frac{4\pi r_{j+1}^{+}r_{j}^{-}}{|D_{j+1}|^{2}|D_{j}|(r_{j}^{-}-r_{j+1}^{+})}\chi_{D_{j+1}}+\widetilde{u}_{j,0,1}\right]
+ωδ(4π(rj+)2i|Dj|3vδ1,jχDj+u~j,1,1)+O((ω2+δ)2),\displaystyle\quad+\omega\delta\left(\frac{4\pi(r_{j}^{+})^{2}\mathrm{i}}{|D_{j}|^{3}v}\delta_{1,j}\chi_{D_{j}}+\widetilde{u}_{j,1,1}\right)+O((\omega^{2}+\delta)^{2}),

where |Dj|=4π3((rj+)3(rj)3)|D_{j}|=\frac{4\pi}{3}\left((r_{j}^{+})^{3}-(r_{j}^{-})^{3}\right), the functions u~j,0,1\widetilde{u}_{j,0,1} and u~j,1,1\widetilde{u}_{j,1,1} satisfy

Diu~j,0,1dx=0,Diu~j,1,1dx=0,i=1,2,,N.\int_{D_{i}}\widetilde{u}_{j,0,1}\mathrm{d}x=0,\quad\int_{D_{i}}\widetilde{u}_{j,1,1}\mathrm{d}x=0,\;i=1,2,\ldots,N.
Proof.

It follows from (3.1) that there exist functions (uj,m,n)m0,n0(u_{j,m,n})_{m{\geq}0,n{\geq}0} such that uj(ω,δ)u_{j}(\omega,\delta) has the following convergent series in H1(D)H^{1}(D):

uj(ω,δ)=m,n=0+ωmδnuj,m,n.u_{j}(\omega,\delta)=\sum_{m,n=0}^{+\infty}\omega^{m}\delta^{n}u_{j,m,n}. (3.35)

Substituting (3.35) into (3.33) and identifying powers of ω\omega and δ\delta, we obtain the following system of equations:

{Δuj,m,n+i=1N(Diuj,m,ndx)χDi=1vr2uj,m2,n+χDjδm,0δn,0 in D,uj,m,nν|±=p=0m1vp𝒯p[uj,mp,n1]ion Γi,i=1,2,,N,\begin{cases}\displaystyle-\Delta u_{j,m,n}+\sum_{i=1}^{N}\left(\int_{D_{i}}u_{j,m,n}~{}\mathrm{d}x\right)\chi_{D_{i}}=\frac{1}{v_{\mathrm{r}}^{2}}u_{j,m-2,n}+\chi_{D_{j}}\delta_{m,0}\delta_{n,0}&\text{ in }D,\\ \vskip 3.0pt plus 1.0pt minus 1.0pt\cr\displaystyle\frac{\partial u_{j,m,n}}{\partial\nu}|_{\pm}=\sum_{p=0}^{m}\frac{1}{v^{p}}\mathcal{T}_{p}[u_{j,m-p,n-1}]_{i}^{\mp}&\text{on }\Gamma^{\mp}_{i},\;i=1,2,\ldots,N,\end{cases} (3.36)

where uj,m,n=0u_{j,m,n}=0 for negative indices mm and nn. It can then be proved inductively that

uj,2m,0=χDjvr2m|Dj|m+1 and uj,2m+1,0=0 for any m0.u_{j,2m,0}=\frac{\chi_{D_{j}}}{v_{\mathrm{r}}^{2m}|D_{j}|^{m+1}}\text{ and }u_{j,2m+1,0}=0\text{ for any }m\geq 0. (3.37)

For m=0m=0, n=1n=1, we obtain the following system of equations

{Δuj,0,1+i=1N(Diuj,0,1dx)χDi=0 in D,uj,0,1ν|±=𝒯0[uj,0,0]ion Γi,i=1,2,,N.\begin{cases}\displaystyle-\Delta u_{j,0,1}+\sum_{i=1}^{N}\left(\int_{D_{i}}u_{j,0,1}~{}\mathrm{d}x\right)\chi_{D_{i}}=0&\text{ in }D,\\ \vskip 3.0pt plus 1.0pt minus 1.0pt\cr\displaystyle\frac{\partial u_{j,0,1}}{\partial\nu}|_{\pm}=\mathcal{T}_{0}[u_{j,0,0}]_{i}^{\mp}&\text{on }\Gamma^{\mp}_{i},\;i=1,2,\ldots,N.\end{cases} (3.38)

From (3.19) with fi±=uj,0,0|Γi±=δi,j|Dj|f_{i}^{\pm}=u_{j,0,0}|_{\Gamma_{i}^{\pm}}=\frac{\delta_{i,j}}{|D_{j}|}, we obtain

{𝒯0[uj,0,0]1+=1r1+δ1,j|Dj|,𝒯0[uj,0,0]i+=ri1|Dj|ri+(ri1ri+)(δi1,jδi,j),i=2,3,,N,𝒯0[uj,0,0]i=ri+1+|Dj|ri(riri+1+)(δi,jδi+1,j),i=1,2,,N1,𝒯0[uj,0,0]N=0.\begin{cases}\displaystyle\mathcal{T}_{0}[u_{j,0,0}]_{1}^{+}=-\frac{1}{r_{1}^{+}}\frac{\delta_{1,j}}{|D_{j}|},&\\ \vskip 3.0pt plus 1.0pt minus 1.0pt\cr\displaystyle\mathcal{T}_{0}[u_{j,0,0}]_{i}^{+}=\frac{r_{i-1}^{-}}{|D_{j}|r_{i}^{+}(r_{i-1}^{-}-r_{i}^{+})}\left({\delta_{i-1,j}}-{\delta_{i,j}}\right),&i=2,3,\ldots,N,\\ \vskip 3.0pt plus 1.0pt minus 1.0pt\cr\displaystyle\mathcal{T}_{0}[u_{j,0,0}]_{i}^{-}=\frac{r_{i+1}^{+}}{|D_{j}|r_{i}^{-}(r_{i}^{-}-r_{i+1}^{+})}\left({\delta_{i,j}}-{\delta_{i+1,j}}\right),&i=1,2,\ldots,N-1,\\ \vskip 3.0pt plus 1.0pt minus 1.0pt\cr\displaystyle\mathcal{T}_{0}[u_{j,0,0}]_{N}^{-}=0.&\end{cases} (3.39)

Multiplying (3.38) by χDi\chi_{D_{i}} and integrating by parts, we have that

Diuj,0,1dx\displaystyle\int_{D_{i}}u_{j,0,1}~{}\mathrm{d}x =1|Di|(Γi+𝒯0[uj,0,0]i+dσΓi𝒯0[uj,0,0]idσ)\displaystyle=\frac{1}{|D_{i}|}\left(\int_{\Gamma_{i}^{+}}\mathcal{T}_{0}[u_{j,0,0}]_{i}^{+}~{}\mathrm{d}\sigma-\int_{\Gamma_{i}^{-}}\mathcal{T}_{0}[u_{j,0,0}]_{i}^{-}~{}\mathrm{d}\sigma\right) (3.40)
=1|Di|(4πr1+δ1,j|Dj|χ{i=1}+4πri+ri1|Dj|(ri1ri+)(δi1,jδi,j)χ{2iN}\displaystyle=\frac{1}{|D_{i}|}\left(-\frac{4\pi r_{1}^{+}\delta_{1,j}}{|D_{j}|}\chi_{\{i=1\}}+\frac{4\pi r_{i}^{+}r_{i-1}^{-}}{|D_{j}|(r_{i-1}^{-}-r_{i}^{+})}\left({\delta_{i-1,j}}-{\delta_{i,j}}\right)\chi_{\{2\leq i\leq N\}}\right.
4πriri+1+|Dj|(riri+1+)(δi,jδi+1,j)χ{1iN1})\displaystyle\left.\quad\quad\quad\;-\frac{4\pi r_{i}^{-}r_{i+1}^{+}}{|D_{j}|(r_{i}^{-}-r_{i+1}^{+})}\left({\delta_{i,j}}-{\delta_{i+1,j}}\right)\chi_{\{1\leq i\leq N-1\}}\right)
={4πrj1rj+|Dj1||Dj|(rj1rj+) if i=j1,4πrj+rj1|Dj|2(rj1rj+)4πrjrj+1+|Dj|2(rjrj+1+) if i=j,4πrj+1+rj|Dj+1||Dj|(rjrj+1+) if i=j+1,\displaystyle=\begin{cases}\displaystyle\frac{4\pi r_{j-1}^{-}r_{j}^{+}}{|D_{j-1}||D_{j}|(r_{j-1}^{-}-r_{j}^{+})}&\text{ if }i=j-1,\\ \vskip 3.0pt plus 1.0pt minus 1.0pt\cr\displaystyle-\frac{4\pi r_{j}^{+}r_{j-1}^{-}}{|D_{j}|^{2}(r_{j-1}^{-}-r_{j}^{+})}-\frac{4\pi r_{j}^{-}r_{j+1}^{+}}{|D_{j}|^{2}(r_{j}^{-}-r_{j+1}^{+})}&\text{ if }i=j,\\ \vskip 3.0pt plus 1.0pt minus 1.0pt\cr\displaystyle\frac{4\pi r_{j+1}^{+}r_{j}^{-}}{|D_{j+1}||D_{j}|(r_{j}^{-}-r_{j+1}^{+})}&\text{ if }i=j+1,\end{cases}

where rN+1+=0r_{N+1}^{+}=0 and r0+r_{0}^{-}\to+\infty. It means that

4πrj+rj1|Dj|2(rj1rj+)4πrjrj+1+|Dj|2(rjrj+1+)={4πr1+|D1|24πr1r2+|D1|2(r1r2+) if i=j=1,4πrN+rN1|DN|2(rN1rN+) if i=j=N.-\frac{4\pi r_{j}^{+}r_{j-1}^{-}}{|D_{j}|^{2}(r_{j-1}^{-}-r_{j}^{+})}-\frac{4\pi r_{j}^{-}r_{j+1}^{+}}{|D_{j}|^{2}(r_{j}^{-}-r_{j+1}^{+})}=\begin{cases}\displaystyle-\frac{4\pi r_{1}^{+}}{|D_{1}|^{2}}-\frac{4\pi r_{1}^{-}r_{2}^{+}}{|D_{1}|^{2}(r_{1}^{-}-r_{2}^{+})}&\text{ if }i=j=1,\\ \vskip 3.0pt plus 1.0pt minus 1.0pt\cr\displaystyle-\frac{4\pi r_{N}^{+}r_{N-1}^{-}}{|D_{N}|^{2}(r_{N-1}^{-}-r_{N}^{+})}&\text{ if }i=j=N.\\ \end{cases}

It follows that uj,0,1u_{j,0,1} is given by

uj,0,1\displaystyle u_{j,0,1} =4πrj1rj+|Dj1|2|Dj|(rj1rj+)χDj1(4πrj+rj1|Dj|3(rj1rj+)+4πrjrj+1+|Dj|3(rjrj+1+))χDj\displaystyle=\frac{4\pi r_{j-1}^{-}r_{j}^{+}}{|D_{j-1}|^{2}|D_{j}|(r_{j-1}^{-}-r_{j}^{+})}\chi_{D_{j-1}}-\left(\frac{4\pi r_{j}^{+}r_{j-1}^{-}}{|D_{j}|^{3}(r_{j-1}^{-}-r_{j}^{+})}+\frac{4\pi r_{j}^{-}r_{j+1}^{+}}{|D_{j}|^{3}(r_{j}^{-}-r_{j+1}^{+})}\right)\chi_{D_{j}}
+4πrj+1+rj|Dj+1|2|Dj|(rjrj+1+)χDj+1+u~j,0,1,\displaystyle\quad+\frac{4\pi r_{j+1}^{+}r_{j}^{-}}{|D_{j+1}|^{2}|D_{j}|(r_{j}^{-}-r_{j+1}^{+})}\chi_{D_{j+1}}+\widetilde{u}_{j,0,1},

where u~j,0,1\widetilde{u}_{j,0,1} satisfies Diu~j,0,1dx=0\int_{D_{i}}\widetilde{u}_{j,0,1}\mathrm{d}x=0 for i=1,2,,Ni=1,2,\ldots,N.

For m=n=1m=n=1, it folllows from (3.36) and (3.37) that uj,1,1u_{j,1,1} satisfies

{Δuj,1,1+i=1N(Diuj,1,1dx)χDi=0 in D,uj,1,1ν|±=1v𝒯1[uj,0,0]ion Γi,i=1,2,,N.\begin{cases}\displaystyle-\Delta u_{j,1,1}+\sum_{i=1}^{N}\left(\int_{D_{i}}u_{j,1,1}~{}\mathrm{d}x\right)\chi_{D_{i}}=0&\text{ in }D,\\ \vskip 3.0pt plus 1.0pt minus 1.0pt\cr\displaystyle\frac{\partial u_{j,1,1}}{\partial\nu}|_{\pm}=\frac{1}{v}\mathcal{T}_{1}[u_{j,0,0}]_{i}^{\mp}&\text{on }\Gamma^{\mp}_{i},\;i=1,2,\ldots,N.\end{cases} (3.41)

By (3.17), we have that

𝒯1[uj,0,0]i+={iδ1,j|Dj| if i=1,0 if i2, and 𝒯1[uj,0,0]i=0 for i=1,2,,N.\mathcal{T}_{1}[u_{j,0,0}]_{i}^{+}=\begin{cases}\mathrm{i}\frac{\delta_{1,j}}{|D_{j}|}&\text{ if }i=1,\\ 0&\text{ if }i{\geq}2,\end{cases}\text{ and }\mathcal{T}_{1}[u_{j,0,0}]_{i}^{-}=0\text{ for }i=1,2,\ldots,N.

Therefore, multiplying (3.41) by χDi\chi_{D_{i}} and integrating by parts, we have that

Diuj,1,1dx=i4π(ri+)2δ1,jδ1,i|Di||Dj|v,\int_{D_{i}}u_{j,1,1}\mathrm{d}x=\mathrm{i}\frac{4\pi(r_{i}^{+})^{2}\delta_{1,j}\delta_{1,i}}{|D_{i}||D_{j}|v},

which implies that uj,1,1=4π(rj+)2i|Dj|3vδ1,jχDj+u~j,1,1u_{j,1,1}=\frac{4\pi(r_{j}^{+})^{2}\mathrm{i}}{|D_{j}|^{3}v}\delta_{1,j}\chi_{D_{j}}+\widetilde{u}_{j,1,1}, where u~j,1,1\widetilde{u}_{j,1,1} satisfies Diu~j,1,1dx=0\int_{D_{i}}\widetilde{u}_{j,1,1}\mathrm{d}x=0 for any 1iN1\leq i\leq N. The proof is complete. ∎

Next, we define the capacitance matrix similar to the three-dimensional separated structure case [40, 9].

Definition 3.2.

Consider the solutions Vj:3V_{j}:\mathbb{R}^{3}\to\mathbb{R} of the problem

{ΔVj(x)=0,x3D,Vj(x)=δij,xDi,Vj(x)=O(|x|1), as |x|;\begin{cases}-\Delta V_{j}(x)=0,&x\in\mathbb{R}^{3}\setminus D,\\ V_{j}(x)=\delta_{ij},&x\in D_{i},\\ V_{j}(x)=O(|x|^{-1}),&\text{ as }|x|\to\infty;\end{cases} (3.42)

for 1i,jN1\leq i,j\leq N. Then the capacitance matrix is defined coefficient-wise by

𝒞ij=(Γi+VjνdσΓiVjνdσ).\mathcal{C}_{ij}=-\left(\int_{\Gamma_{i}^{+}}\frac{\partial V_{j}}{\partial\nu}\mathrm{d}\sigma-\int_{\Gamma_{i}^{-}}\frac{\partial V_{j}}{\partial\nu}\mathrm{d}\sigma\right). (3.43)
Lemma 3.3.

The capacitance matrix for a structure of NN-layer nested resonators in 3\mathbb{R}^{3} is given by

𝒞ij:=4πrj1rj+rj1rj+δi,j1+4π(rj1rj+rj1rj++rjrj+1+rjrj+1+)δi,j4πrjrj+1+rjrj+1+δi,j+1,\displaystyle\mathcal{C}_{ij}:=-4\pi\frac{r_{j-1}^{-}r_{j}^{+}}{r_{j-1}^{-}-r_{j}^{+}}\delta_{i,j-1}+4\pi\left(\frac{r_{j-1}^{-}r_{j}^{+}}{r_{j-1}^{-}-r_{j}^{+}}+\frac{r_{j}^{-}r_{j+1}^{+}}{r_{j}^{-}-r_{j+1}^{+}}\right)\delta_{i,j}-4\pi\frac{r_{j}^{-}r_{j+1}^{+}}{r_{j}^{-}-r_{j+1}^{+}}\delta_{i,j+1},

where rN+1+=0r_{N+1}^{+}=0 and r0+r_{0}^{-}\to+\infty. That is

𝒞:=4π×(r1++r1r2+r1r2+r1r2+r1r2+r1r2+r1r2+r1r2+r1r2++r2r3+r2r3+r2r3+r2r3+r2r3+r2r3+r2r3+r2r3++r3r4+r3r4+r3r4+r3r4+rN2rN1+rN2rN1+rN2rN1+rN2rN1++rN1rN+rN1rN+rN1rN+rN1rN+rN1rN+rN1rN+rN1rN+rN1rN+).\small{\begin{split}&\mathcal{C}:=4\pi\times\\ &\begin{pmatrix}\displaystyle r_{1}^{+}+\frac{r_{1}^{-}r_{2}^{+}}{r_{1}^{-}-r_{2}^{+}}&\displaystyle-\frac{r_{1}^{-}r_{2}^{+}}{r_{1}^{-}-r_{2}^{+}}&&&&\\ \vskip 3.0pt plus 1.0pt minus 1.0pt\cr\displaystyle-\frac{r_{1}^{-}r_{2}^{+}}{r_{1}^{-}-r_{2}^{+}}&\displaystyle\frac{r_{1}^{-}r_{2}^{+}}{r_{1}^{-}-r_{2}^{+}}+\frac{r_{2}^{-}r_{3}^{+}}{r_{2}^{-}-r_{3}^{+}}&\displaystyle-\frac{r_{2}^{-}r_{3}^{+}}{r_{2}^{-}-r_{3}^{+}}&&&\\ \vskip 3.0pt plus 1.0pt minus 1.0pt\cr&\displaystyle-\frac{r_{2}^{-}r_{3}^{+}}{r_{2}^{-}-r_{3}^{+}}&\displaystyle\frac{r_{2}^{-}r_{3}^{+}}{r_{2}^{-}-r_{3}^{+}}+\frac{r_{3}^{-}r_{4}^{+}}{r_{3}^{-}-r_{4}^{+}}&\displaystyle-\frac{r_{3}^{-}r_{4}^{+}}{r_{3}^{-}-r_{4}^{+}}&&\\ \vskip 3.0pt plus 1.0pt minus 1.0pt\cr&&\ddots&\ddots&\ddots&\\ \vskip 3.0pt plus 1.0pt minus 1.0pt\cr&&&\displaystyle-\frac{r_{N-2}^{-}r_{N-1}^{+}}{r_{N-2}^{-}-r_{N-1}^{+}}&\displaystyle\frac{r_{N-2}^{-}r_{N-1}^{+}}{r_{N-2}^{-}-r_{N-1}^{+}}+\frac{r_{N-1}^{-}r_{N}^{+}}{r_{N-1}^{-}-r_{N}^{+}}&\displaystyle-\frac{r_{N-1}^{-}r_{N}^{+}}{r_{N-1}^{-}-r_{N}^{+}}\\ \vskip 3.0pt plus 1.0pt minus 1.0pt\cr&&&&\displaystyle-\frac{r_{N-1}^{-}r_{N}^{+}}{r_{N-1}^{-}-r_{N}^{+}}&\displaystyle\frac{r_{N-1}^{-}r_{N}^{+}}{r_{N-1}^{-}-r_{N}^{+}}\end{pmatrix}.\end{split}} (3.44)
Proof.

The solutions VjV_{j}, j=1,2,,Nj=1,2,\ldots,N, to (3.42) are given by

Vj(x)={rjrj+1+rjrj+1+1|x|+rjrjrj+1+,rj+1+|x|rj,1,rj|x|rj+,rj1rj+rj1rj+1|x|rj+rj1rj+,rj+|x|rj1,0,else,V_{j}(x)=\begin{cases}\displaystyle-\frac{r_{j}^{-}r_{j+1}^{+}}{r_{j}^{-}-r_{j+1}^{+}}\frac{1}{|x|}+\frac{r_{j}^{-}}{r_{j}^{-}-r_{j+1}^{+}},&r_{j+1}^{+}\leq|x|\leq r_{j}^{-},\\ 1,&r_{j}^{-}\leq|x|\leq r_{j}^{+},\\ \displaystyle\frac{r_{j-1}^{-}r_{j}^{+}}{r_{j-1}^{-}-r_{j}^{+}}\frac{1}{|x|}-\frac{r_{j}^{+}}{r_{j-1}^{-}-r_{j}^{+}},&r_{j}^{+}\leq|x|\leq r_{j-1}^{-},\\ 0,&\text{else},\end{cases} (3.45)

where rN+1+=0r_{N+1}^{+}=0 and r0+r_{0}^{-}\to+\infty. From definition (3.43), we have

𝒞ij\displaystyle\mathcal{C}_{ij} =δi,jrjrj+1+rjrj+1+Γi1|x|2dσ(x)δi,j1rj1rj+rj1rj+Γi1|x|2dσ(x)\displaystyle=\delta_{i,j}\frac{r_{j}^{-}r_{j+1}^{+}}{r_{j}^{-}-r_{j+1}^{+}}\int_{\Gamma_{i}^{-}}\frac{1}{|x|^{2}}~{}\mathrm{d}\sigma(x)-\delta_{i,j-1}\frac{r_{j-1}^{-}r_{j}^{+}}{r_{j-1}^{-}-r_{j}^{+}}\int_{\Gamma_{i}^{-}}\frac{1}{|x|^{2}}~{}\mathrm{d}\sigma(x)
(δi,jrj1rj+rj1rj+Γi+1|x|2dσ(x)+δi,j+1rjrj+1+rjrj+1+Γi+1|x|2dσ(x))\displaystyle\quad-\left(-\delta_{i,j}\frac{r_{j-1}^{-}r_{j}^{+}}{r_{j-1}^{-}-r_{j}^{+}}\int_{\Gamma_{i}^{+}}\frac{1}{|x|^{2}}~{}\mathrm{d}\sigma(x)+\delta_{i,j+1}\frac{r_{j}^{-}r_{j+1}^{+}}{r_{j}^{-}-r_{j+1}^{+}}\int_{\Gamma_{i}^{+}}\frac{1}{|x|^{2}}~{}\mathrm{d}\sigma(x)\right)
=4πrj1rj+rj1rj+δi,j1+4π(rj1rj+rj1rj++rjrj+1+rjrj+1+)δi,j4πrjrj+1+rjrj+1+δi,j+1.\displaystyle=-4\pi\frac{r_{j-1}^{-}r_{j}^{+}}{r_{j-1}^{-}-r_{j}^{+}}\delta_{i,j-1}+4\pi\left(\frac{r_{j-1}^{-}r_{j}^{+}}{r_{j-1}^{-}-r_{j}^{+}}+\frac{r_{j}^{-}r_{j+1}^{+}}{r_{j}^{-}-r_{j+1}^{+}}\right)\delta_{i,j}-4\pi\frac{r_{j}^{-}r_{j+1}^{+}}{r_{j}^{-}-r_{j+1}^{+}}\delta_{i,j+1}.

The proof is complete. ∎

In what follows, we introduce the N×NN\times N matrices

𝑽=diag(|D1|,|D2|,,|DN|) and 𝑬1=diag(1,0,,0).\bm{V}=\operatorname{diag}(|D_{1}|,|D_{2}|,\ldots,|D_{N}|)\text{ and }\bm{E}_{1}=\operatorname{diag}(1,0,\ldots,0).
Corollary 3.2.

The following asymptotic expansion for the matrix 𝐔(ω,δ)\bm{U}(\omega,\delta) defined in (3.29) holds:

𝑼(ω,δ)=𝑰+ω2vr2𝑽1δ𝑽1𝒞𝑽1+4π(r1+)2iωδv𝑽1𝑬1𝑽1+O((ω2+δ)2).\bm{U}(\omega,\delta)=\bm{I}+\frac{\omega^{2}}{v_{\mathrm{r}}^{2}}\bm{V}^{-1}-\delta\bm{V}^{-1}\mathcal{C}\bm{V}^{-1}+4\pi(r_{1}^{+})^{2}\frac{\mathrm{i}\omega\delta}{v}\bm{V}^{-1}\bm{E}_{1}\bm{V}^{-1}+O((\omega^{2}+\delta)^{2}). (3.46)
Proof.

It follows from (3.34) and (3.29) that

𝑼ij(ω,δ)\displaystyle\bm{U}_{ij}(\omega,\delta) =(1+ω2vr2|Di|)δi,j\displaystyle=\left(1+\frac{\omega^{2}}{v_{\mathrm{r}}^{2}|D_{i}|}\right)\delta_{i,j}
+δ[4πrj1rj+|Di||Dj|(rj1rj+)δi,j1(4πrj+rj1|Di||Dj|(rj1rj+)+4πrjrj+1+|Di||Dj|(rjrj+1+))δi,j\displaystyle\quad+\delta\left[\frac{4\pi r_{j-1}^{-}r_{j}^{+}}{|D_{i}||D_{j}|(r_{j-1}^{-}-r_{j}^{+})}\delta_{i,j-1}-\left(\frac{4\pi r_{j}^{+}r_{j-1}^{-}}{|D_{i}||D_{j}|(r_{j-1}^{-}-r_{j}^{+})}+\frac{4\pi r_{j}^{-}r_{j+1}^{+}}{|D_{i}||D_{j}|(r_{j}^{-}-r_{j+1}^{+})}\right)\delta_{i,j}\right.
+4πrj+1+|rj|Di||Dj|(rjrj+1+)δi,j+1]\displaystyle\quad\left.\quad\quad+\frac{4\pi r_{j+1}^{+}|r_{j}^{-}}{|D_{i}||D_{j}|(r_{j}^{-}-r_{j+1}^{+})}\delta_{i,j+1}\right]
+4π(rj+)2iωδ|Dj|2vδ1,jδi,j+O((ω2+δ)2).\displaystyle\quad+\frac{4\pi(r_{j}^{+})^{2}\mathrm{i}\omega\delta}{|D_{j}|^{2}v}\delta_{1,j}\delta_{i,j}+O((\omega^{2}+\delta)^{2}).

The proof is complete. ∎

The next lemma shows that the capacitance matrix 𝒞\mathcal{C} is positive-definite.

Lemma 3.4.

The capacitance matrix 𝒞\mathcal{C} defined in (3.44) is positive-definite.

Proof.

For any vector 𝒅=(di)1iNN\bm{d}=(d_{i})_{1\leq i\leq N}\in\mathbb{R}^{N},

𝒅T𝒞𝒅\displaystyle\bm{d}^{T}\mathcal{C}\bm{d} =4πj=1N[rj1rj+rj1rj+dj1dj+(rj1rj+rj1rj++rjrj+1+rjrj+1+)dj2rjrj+1+rjrj+1+djdj+1]\displaystyle=4\pi\sum_{j=1}^{N}\left[-\frac{r_{j-1}^{-}r_{j}^{+}}{r_{j-1}^{-}-r_{j}^{+}}d_{j-1}d_{j}+\left(\frac{r_{j-1}^{-}r_{j}^{+}}{r_{j-1}^{-}-r_{j}^{+}}+\frac{r_{j}^{-}r_{j+1}^{+}}{r_{j}^{-}-r_{j+1}^{+}}\right)d_{j}^{2}-\frac{r_{j}^{-}r_{j+1}^{+}}{r_{j}^{-}-r_{j+1}^{+}}d_{j}d_{j+1}\right]
=4πj=1N1[rjrj+1+rjrj+1+djdj+1+rjrj+1+rjrj+1+dj+12+rjrj+1+rjrj+1+dj2rjrj+1+rjrj+1+djdj+1]+4πr1+d12\displaystyle=4\pi\sum_{j=1}^{N-1}\left[-\frac{r_{j}^{-}r_{j+1}^{+}}{r_{j}^{-}-r_{j+1}^{+}}d_{j}d_{j+1}+\frac{r_{j}^{-}r_{j+1}^{+}}{r_{j}^{-}-r_{j+1}^{+}}d_{j+1}^{2}+\frac{r_{j}^{-}r_{j+1}^{+}}{r_{j}^{-}-r_{j+1}^{+}}d_{j}^{2}-\frac{r_{j}^{-}r_{j+1}^{+}}{r_{j}^{-}-r_{j+1}^{+}}d_{j}d_{j+1}\right]+4\pi r_{1}^{+}d_{1}^{2}
=4πj=1N1rjrj+1+rjrj+1+(dj+1dj)2+4πr1+d12,\displaystyle=4\pi\sum_{j=1}^{N-1}\frac{r_{j}^{-}r_{j+1}^{+}}{r_{j}^{-}-r_{j+1}^{+}}\left(d_{j+1}-d_{j}\right)^{2}+4\pi r_{1}^{+}d_{1}^{2},

where we have used d0=dN+1=0d_{0}=d_{N+1}=0, rN+1+=0r_{N+1}^{+}=0 and r0+r_{0}^{-}\to+\infty. Noting that rjrj+1+rjrj+1+>0\frac{r_{j}^{-}r_{j+1}^{+}}{r_{j}^{-}-r_{j+1}^{+}}>0 for j=1,2,,N1j=1,2,\ldots,N-1, we have that 𝒅T𝒞𝒅0\bm{d}^{T}\mathcal{C}\bm{d}\geq 0 for any 𝒅N\bm{d}\in\mathbb{R}^{N} with equality if and only if 𝒅=𝟎\bm{d}=\bm{0}. The proof is complete. ∎

Next, we consider the NN eigenvalues (λi)1iN(\lambda_{i})_{1\leq i\leq N} and eigenvectors (𝒂i)1iN(\bm{a}_{i})_{1\leq i\leq N} of the generalized capacitance eigenvalue problem:

𝒞𝒂i=λi𝑽𝒂i,i=1,2,,N,\mathcal{C}\bm{a}_{i}=\lambda_{i}\bm{V}\bm{a}_{i},\;i=1,2,\ldots,N, (3.47)

where the eigenvectors form an orthonormal basis with respect to the following inner product

𝒂iT𝑽𝒂j=δi,j.\bm{a}_{i}^{T}\bm{V}\bm{a}_{j}=\delta_{i,j}. (3.48)

Combining Lemma 3.4 with [59, Lemma 7.7.1], we have the following lemma.

Lemma 3.5.

The NN eigenvalues of the capacitance matrix 𝒞\mathcal{C} in 3\mathbb{R}^{3} defined by (3.44) are distinct:

0<λ1<λ2<<λN.0<\lambda_{1}<\lambda_{2}<\cdots<\lambda_{N}. (3.49)

Our main result in this subsection is the following:

Theorem 3.6.

The acoustic scattering problem (2.4) in the MLHC structure D=j=1NDjD=\cup_{j=1}^{N}D_{j} admits exactly 2N2N eigenfrequencies:

ωi±(δ)=±δ12λi12vr2π(r1+)2iδvr2v𝒂iT𝑬1𝒂i+O(δ32) for i=1,2,,N.\omega_{i}^{\pm}(\delta)=\pm\delta^{\frac{1}{2}}\lambda_{i}^{\frac{1}{2}}v_{\mathrm{r}}-2\pi(r_{1}^{+})^{2}\frac{\mathrm{i}\delta v_{\mathrm{r}}^{2}}{v}\bm{a}_{i}^{T}\bm{E}_{1}\bm{a}_{i}+O(\delta^{\frac{3}{2}})\quad\text{ for }i=1,2,\ldots,N. (3.50)
Proof.

We first let β:=ω2δ\beta:=\frac{\omega^{2}}{\delta} and introduce the function

F((β,𝒙),ω):=(βω2(𝑰𝑼(ω,δ))𝑽𝒙,𝒙T𝑽𝒙1).F((\beta,\bm{x}),\omega):=\left(\frac{\beta}{\omega^{2}}\left(\bm{I}-\bm{U}(\omega,\delta)\right)\bm{V}\bm{x},\bm{x}^{T}\bm{V}\bm{x}-1\right).

From (3.46), we have

βω2(𝑰𝑼(ω,δ))𝑽𝒙=(βvr2𝑰+𝑽1𝒞4π(r1+)2iωv𝑽1𝑬1+O(ω2))𝒙.\frac{\beta}{\omega^{2}}\left(\bm{I}-\bm{U}(\omega,\delta)\right)\bm{V}\bm{x}=\left(-\frac{\beta}{v_{\mathrm{r}}^{2}}\bm{I}+\bm{V}^{-1}\mathcal{C}-4\pi(r_{1}^{+})^{2}\frac{\mathrm{i}\omega}{v}\bm{V}^{-1}\bm{E}_{1}+O(\omega^{2})\right)\bm{x}. (3.51)

Then it is easy to see that FF is a smooth function of ω,β\omega,\beta\in\mathbb{C}. By (3.47), for ω=0\omega=0, it holds F((λivr2,𝒂i),0)=0F((\lambda_{i}v_{\mathrm{r}}^{2},\bm{a}_{i}),0)=0 for i=1,2,,Ni=1,2,\ldots,N. In order to use the implicit function theorem, we next show that the differential of (β,𝒙)F((β,𝒙),0)(\beta,\bm{x})\mapsto F((\beta,\bm{x}),0) is invertible at (β,𝒙)=(λivr2,𝒂i)(\beta,\bm{x})=(\lambda_{i}v_{\mathrm{r}}^{2},\bm{a}_{i}). Through straightforward calculations, we have that for (β~,𝒙~)×N(\tilde{\beta},\tilde{\bm{x}})\in\mathbb{C}\times\mathbb{C}^{N},

DF((λivr2,𝒂i),0)(β~,𝒙~)T=(𝒂ivr2λi𝑰+𝑽1𝒞02𝒂iT𝑽)(β~𝒙~)=(β~𝒂ivr2+(λi𝑰+𝑽1𝒞)𝒙~2𝒂iT𝑽𝒙~).\mathrm{D}F((\lambda_{i}v_{\mathrm{r}}^{2},\bm{a}_{i}),0)(\tilde{\beta},\tilde{\bm{x}})^{T}=\begin{pmatrix}-\frac{\bm{a}_{i}}{v_{\mathrm{r}}^{2}}&-\lambda_{i}\bm{I}+\bm{V}^{-1}\mathcal{C}\\ 0&2\bm{a}_{i}^{T}\bm{V}\end{pmatrix}\begin{pmatrix}\tilde{\beta}\\ \tilde{\bm{x}}\end{pmatrix}=\begin{pmatrix}-\tilde{\beta}\frac{\bm{a}_{i}}{v_{\mathrm{r}}^{2}}+(-\lambda_{i}\bm{I}+\bm{V}^{-1}\mathcal{C})\tilde{\bm{x}}\\ 2\bm{a}_{i}^{T}\bm{V}\tilde{\bm{x}}\end{pmatrix}.

From (3.47)–(3.49), we know that DF((λivr2,𝒂i),0)\mathrm{D}F((\lambda_{i}v_{\mathrm{r}}^{2},\bm{a}_{i}),0) is invertible. Thus, we get the existence of analytic functions βi(ω)\beta_{i}(\omega) and 𝒂i(ω)\bm{a}_{i}(\omega) satisfying

F((βi(ω),𝒂i(ω)),ω)=0,F((\beta_{i}(\omega),\bm{a}_{i}(\omega)),\omega)=0, (3.52)

for ω\omega\in\mathbb{C} belonging to a neighborhood of zero with βi(0)=λivr2\beta_{i}(0)=\lambda_{i}v_{\mathrm{r}}^{2} and 𝒂i(0)=𝒂i\bm{a}_{i}(0)=\bm{a}_{i}. Furthermore, differentiating (3.52) with respect to ω\omega at ω=0\omega=0, we have that

{βi(0)vr2𝒂i4π(r1+)2iv𝑽1𝑬1𝒂i+(λi𝑰+𝑽1𝒞)𝒂i(0)=0,𝒂i(0)T𝑽𝒂i=0..\begin{cases}-\frac{\beta_{i}^{\prime}(0)}{v_{\mathrm{r}}^{2}}\bm{a}_{i}-4\pi(r_{1}^{+})^{2}\frac{\mathrm{i}}{v}\bm{V}^{-1}\bm{E}_{1}\bm{a}_{i}+\left(-\lambda_{i}\bm{I}+\bm{V}^{-1}\mathcal{C}\right)\bm{a}^{\prime}_{i}(0)=0,\\ \bm{a}^{\prime}_{i}(0)^{T}\bm{V}\bm{a}_{i}=0.\end{cases}.

Left multiplying by 𝒂iT𝑽\bm{a}_{i}^{T}\bm{V}, we can obtain

βi(0)=4π(r1+)2ivr2v𝒂iT𝑬1𝒂i and 𝒂i(0)=4π(r1+)2ivji𝒂jT𝑬1𝒂iλjλi𝒂j,\beta_{i}^{\prime}(0)=-4\pi(r_{1}^{+})^{2}\frac{\mathrm{i}v_{\mathrm{r}}^{2}}{v}\bm{a}_{i}^{T}\bm{E}_{1}\bm{a}_{i}\quad\text{ and }\;\bm{a}^{\prime}_{i}(0)=4\pi(r_{1}^{+})^{2}\frac{\mathrm{i}}{v}\sum_{j\neq i}\frac{\bm{a}_{j}^{T}\bm{E}_{1}\bm{a}_{i}}{\lambda_{j}-\lambda_{i}}\bm{a}_{j},

which implies that

βi(ω)=λivr24π(r1+)2iωvr2v𝒂iT𝑬1𝒂i+O(ω2),\beta_{i}(\omega)=\lambda_{i}v_{\mathrm{r}}^{2}-4\pi(r_{1}^{+})^{2}\frac{\mathrm{i}\omega v_{\mathrm{r}}^{2}}{v}\bm{a}_{i}^{T}\bm{E}_{1}\bm{a}_{i}+O(\omega^{2}), (3.53)

and

𝒂i(ω)=𝒂i+4π(r1+)2iωvji𝒂jT𝑬1𝒂iλjλi𝒂j+O(ω2).\bm{a}_{i}(\omega)=\bm{a}_{i}+4\pi(r_{1}^{+})^{2}\frac{\mathrm{i}\omega}{v}\sum_{j\neq i}\frac{\bm{a}_{j}^{T}\bm{E}_{1}\bm{a}_{i}}{\lambda_{j}-\lambda_{i}}\bm{a}_{j}+O(\omega^{2}). (3.54)

Eigenfrequencies are the solutions to the equation ω2=δβi(ω)\omega^{2}=\delta\beta_{i}(\omega), that is, ω=δ12βi(ω)\omega=\delta^{\frac{1}{2}}\sqrt{\beta_{i}(\omega)} or ω=δ12βi(ω).\omega=-\delta^{\frac{1}{2}}\sqrt{\beta_{i}(\omega)}. By using (3.53), we can obtain that

ωi±(δ)\displaystyle\omega_{i}^{\pm}(\delta) =±δ12λi12vr14π(r1+)2iδ12λi12vrλiv𝒂iT𝑬1𝒂i+O(δ)\displaystyle=\pm\delta^{\frac{1}{2}}\lambda_{i}^{\frac{1}{2}}v_{\mathrm{r}}\sqrt{1\mp 4\pi(r_{1}^{+})^{2}\frac{\mathrm{i}\delta^{\frac{1}{2}}\lambda_{i}^{\frac{1}{2}}v_{\mathrm{r}}}{\lambda_{i}v}\bm{a}_{i}^{T}\bm{E}_{1}\bm{a}_{i}+O(\delta)}
=±δ12λi12vr(12π(r1+)2iδ12λi12vrv𝒂iT𝑬1𝒂i+O(δ))\displaystyle=\pm\delta^{\frac{1}{2}}\lambda_{i}^{\frac{1}{2}}v_{\mathrm{r}}\left({1\mp 2\pi(r_{1}^{+})^{2}\frac{\mathrm{i}\delta^{\frac{1}{2}}\lambda_{i}^{-\frac{1}{2}}v_{\mathrm{r}}}{v}\bm{a}_{i}^{T}\bm{E}_{1}\bm{a}_{i}+O(\delta)}\right)
=±δ12λi12vr2π(r1+)2iδvr2v𝒂iT𝑬1𝒂i+O(δ32).\displaystyle=\pm\delta^{\frac{1}{2}}\lambda_{i}^{\frac{1}{2}}v_{\mathrm{r}}-2\pi(r_{1}^{+})^{2}\frac{\mathrm{i}\delta v_{\mathrm{r}}^{2}}{v}\bm{a}_{i}^{T}\bm{E}_{1}\bm{a}_{i}+O(\delta^{\frac{3}{2}}).

The proof is complete. ∎

4 Modal decompositions and point scatterer approximations

In this section, we shall provide the modal decomposition and point-scatterer approximation of the solution u(ω,δ)u(\omega,\delta) to the scattering problem (2.4) in MLHC metamaterial D=j=1NDjD=\cup_{j=1}^{N}D_{j} based on DtN approach.

We first derive anasymptotic expansion of the solution uf(ω,δ)u_{f}(\omega,\delta) to the variational problem (3.26).

Proposition 4.1.

Let fH1(D)f\in H^{-1}(D) be given in (3.24). The solution uf(ω,δ)u_{f}(\omega,\delta) to (3.26) has the following asymptotic expansion:

uf(ω,δ)=δ(4πr1+|D1|2uin(0)χD1+v~0,1)+O(ωδ),u_{f}(\omega,\delta)=\delta\left(\frac{4\pi r_{1}^{+}}{|D_{1}|^{2}}u^{in}(0)\chi_{D_{1}}+\widetilde{v}_{0,1}\right)+O(\omega\delta), (4.1)

where Div~0,1dx=0\int_{D_{i}}\widetilde{v}_{0,1}~{}\mathrm{d}x=0 for i=1,2,,Ni=1,2,\ldots,N.

Proof.

We consider the following strong form of the variational problem (3.26)

{Δufω2vr2uf+i=1N(Diufdx)χDi=0,in D,ufν|δ𝒯k[uf]j±=δ𝒯k[uin]j±+δuinν,on Γj±,j=1,2,,N.\begin{cases}\displaystyle-\Delta u_{f}-\frac{\omega^{2}}{v_{\mathrm{r}}^{2}}u_{f}+\sum_{i=1}^{N}\left(\int_{D_{i}}u_{f}~{}\mathrm{d}x\right)\chi_{D_{i}}=0,&\text{in }D,\\ \vskip 3.0pt plus 1.0pt minus 1.0pt\cr\displaystyle\frac{\partial u_{f}}{\partial\nu}|_{\mp}-\delta\mathcal{T}^{k}[u_{f}]_{j}^{\pm}=-\delta\mathcal{T}^{k}[u^{in}]_{j}^{\pm}+\delta\frac{\partial u^{in}}{\partial\nu},&\text{on }\Gamma^{\pm}_{j},\;j=1,2,\ldots,N.\end{cases} (4.2)

Using the Taylor expansion of plane wave uinu^{in} at the origin, and the fact that uin=O(ω)\nabla u^{in}=O(\omega) and 2uin=O(ω2)\nabla^{2}u^{in}=O(\omega^{2}), we have that on Γj±\Gamma_{j}^{\pm}

δ𝒯k[uin]j±+δuinν\displaystyle-\delta\mathcal{T}^{k}[u^{in}]_{j}^{\pm}+\delta\frac{\partial u^{in}}{\partial\nu} =δ[(𝒯0+ωv𝒯1)[uin(0)+uin(0)x]j±+O(ω)]\displaystyle=\delta\left[-\left(\mathcal{T}_{0}+\frac{\omega}{v}\mathcal{T}_{1}\right)\left[u^{in}(0)+\nabla u^{in}(0)\cdot x\right]_{j}^{\pm}+O(\omega)\right]
={uin(0)r1+δ+O(ωδ), on Γ1+,O(ωδ), else .\displaystyle=\begin{cases}\displaystyle\frac{u^{in}(0)}{r_{1}^{+}}\delta+O(\omega\delta),&\text{ on }\Gamma_{1}^{+},\\ \vskip 3.0pt plus 1.0pt minus 1.0pt\cr\displaystyle O(\omega\delta),&\text{ else }.\end{cases}

One can make the ansatz

uf(ω,δ)=δv0,1+O(ωδ).u_{f}(\omega,\delta)=\delta v_{0,1}+O(\omega\delta).

Substituting this expression into (4.2) and identifying powers of ω\omega and δ\delta, we obtain the following system for v0,1v_{0,1}:

{Δv0,1+i=1N(Div0,1dx)χDi=0,in Dv0,1ν|=uin(0)r1+,on Γ1+,v0,1ν|=0,on Γj+,j=2,3,,N,v0,1ν|+=0,on Γj,j=1,2,,N.\begin{cases}\displaystyle-\Delta v_{0,1}+\sum_{i=1}^{N}\left(\int_{D_{i}}v_{0,1}~{}\mathrm{d}x\right)\chi_{D_{i}}=0,&\text{in }D\\ \vskip 3.0pt plus 1.0pt minus 1.0pt\cr\displaystyle\frac{\partial v_{0,1}}{\partial\nu}|_{-}=\frac{u^{in}(0)}{r_{1}^{+}},&\text{on }\Gamma^{+}_{1},\\ \vskip 3.0pt plus 1.0pt minus 1.0pt\cr\displaystyle\frac{\partial v_{0,1}}{\partial\nu}|_{-}=0,&\text{on }\Gamma^{+}_{j},\;j=2,3,\ldots,N,\\ \vskip 3.0pt plus 1.0pt minus 1.0pt\cr\displaystyle\frac{\partial v_{0,1}}{\partial\nu}|_{+}=0,&\text{on }\Gamma^{-}_{j},\;j=1,2,\ldots,N.\end{cases}

Integrating by parts on DiD_{i}, we have

Div0,1dx=4πri+|Di|uin(0)δ1,i,\int_{D_{i}}v_{0,1}~{}\mathrm{d}x=\frac{4\pi r_{i}^{+}}{|D_{i}|}u^{in}(0)\delta_{1,i},

which implies that

v0,1=4πr1+|D1|2uin(0)χD1+v~0,1,v_{0,1}=\frac{4\pi r_{1}^{+}}{|D_{1}|^{2}}u^{in}(0)\chi_{D_{1}}+\widetilde{v}_{0,1},

where Div~0,1dx=0\int_{D_{i}}\widetilde{v}_{0,1}~{}\mathrm{d}x=0 for i=1,2,,Ni=1,2,\ldots,N. ∎

Proposition 4.2.

For ω\omega\in\mathbb{R} satisfying ω=O(δ12)\omega=O(\delta^{\frac{1}{2}}) and any 𝐅N\bm{F}\in\mathbb{C}^{N} in (3.28), the solution 𝐱(ω,δ)\bm{x}(\omega,\delta) to (3.28) has the following asymptotic modal decomposition:

𝒙(ω,δ)=i=1Nvr2ω2δλivr2+4πiωδ(r1+)2vr2v𝒂iT𝑬1𝒂i(1+O(δ12))𝒂iT𝑽𝑭𝑽𝒂i.\bm{x}(\omega,\delta)=-\sum_{i=1}^{N}\frac{v_{\mathrm{r}}^{2}}{\omega^{2}-\delta\lambda_{i}v_{\mathrm{r}}^{2}+4\pi\mathrm{i}\omega\delta(r_{1}^{+})^{2}\frac{v_{\mathrm{r}}^{2}}{v}\bm{a}_{i}^{T}\bm{E}_{1}\bm{a}_{i}}(1+O(\delta^{\frac{1}{2}}))\bm{a}_{i}^{T}\bm{V}{\bm{F}}\bm{V}\bm{a}_{i}. (4.3)
Proof.

Let β:=ω2δ\beta:=\frac{\omega^{2}}{\delta}, 𝒚:=𝑽1𝒙\bm{y}:=\bm{V}^{-1}\bm{x}, 𝒢(ω,β):=βω2(𝑰𝑼(ω,ω2β))𝑽\mathcal{G}(\omega,\beta):=\frac{\beta}{\omega^{2}}\left(\bm{I}-\bm{U}(\omega,\frac{\omega^{2}}{\beta})\right)\bm{V}, and 𝑭^:=1δ𝑭\hat{\bm{F}}:=\frac{1}{\delta}\bm{F}. Then (3.28) can be rewritten by

𝒢(ω,β)𝒚=𝑭^.\mathcal{G}(\omega,\beta)\bm{y}=\hat{\bm{F}}. (4.4)

By continuity of the determinant, (𝒂i(ω))1iN(\bm{a}_{i}(\omega))_{1\leq i\leq N} is a basis of N\mathbb{C}^{N} for ω\omega sufficiently small. This enables us to decompose 𝒚=𝒚(ω,δ)\bm{y}=\bm{y}(\omega,\delta) onto this basis with corresponding coefficients (yi(ω,δ))1iN(y_{i}(\omega,\delta))_{1\leq i\leq N}:

𝒚(ω,δ)=i=1Nyi(ω,δ)𝒂i(ω).\bm{y}(\omega,\delta)=\sum_{i=1}^{N}y_{i}(\omega,\delta)\bm{a}_{i}(\omega). (4.5)

In view of (3.52), one has 𝒢(ω,βi(ω))𝒂i(ω)=0\mathcal{G}(\omega,\beta_{i}(\omega))\bm{a}_{i}(\omega)=0 for i=1,2,,Ni=1,2,\ldots,N. It follows that

𝒢(ω,β)𝒚=i=1Nyi(ω,δ)(𝒢(ω,β)𝒢(ω,βi(ω)))𝒂i(ω).\mathcal{G}(\omega,\beta)\bm{y}=\sum_{i=1}^{N}y_{i}(\omega,\delta)(\mathcal{G}(\omega,\beta)-\mathcal{G}(\omega,\beta_{i}(\omega)))\bm{a}_{i}(\omega). (4.6)

By using (3.51), we have

(𝒢(ω,β)𝒢(ω,βi(ω)))𝒂i(ω)=ββi(ω)vr2𝒂i(ω)(1+O(ω2)).(\mathcal{G}(\omega,\beta)-\mathcal{G}(\omega,\beta_{i}(\omega)))\bm{a}_{i}(\omega)=-\frac{\beta-\beta_{i}(\omega)}{v_{\mathrm{r}}^{2}}\bm{a}_{i}(\omega)(1+O(\omega^{2})). (4.7)

Left multiplying (4.4) by 𝒂jT𝑽\bm{a}_{j}^{T}\bm{V} and using (4.6)–(4.7), we obtain

i=1N𝒂jT𝑽𝒂i(ω)ββi(ω)vr2(1+O(ω2))yi(ω,δ)=𝒂jT𝑽𝑭^.-\sum_{i=1}^{N}\bm{a}_{j}^{T}\bm{V}\bm{a}_{i}(\omega)\frac{\beta-\beta_{i}(\omega)}{v_{\mathrm{r}}^{2}}(1+O(\omega^{2}))y_{i}(\omega,\delta)=\bm{a}_{j}^{T}\bm{V}\hat{\bm{F}}.

From (3.48) and (3.54), one has 𝒂jT𝑽𝒂i(ω)=δi,j+O(ω)\bm{a}_{j}^{T}\bm{V}\bm{a}_{i}(\omega)=\delta_{i,j}+O(\omega). It follows that

(ββi(ω))yi(ω,δ)=(1+O(ω))vr2𝒂iT𝑽𝑭^.(\beta-\beta_{i}(\omega))y_{i}(\omega,\delta)=-(1+O(\omega)){v_{\mathrm{r}}^{2}}\bm{a}_{i}^{T}\bm{V}\hat{\bm{F}}.

This, together with (3.54) and (4.5), implies that

𝒚(ω,δ)=i=1N1ββi(ω)(1+O(ω))vr2𝒂iT𝑽𝑭^𝒂i.\bm{y}(\omega,\delta)=-\sum_{i=1}^{N}\frac{1}{\beta-\beta_{i}(\omega)}(1+O(\omega)){v_{\mathrm{r}}^{2}}\bm{a}_{i}^{T}\bm{V}\hat{\bm{F}}\bm{a}_{i}. (4.8)

Therefore, we obtain that for any ω\omega\in\mathbb{C},

𝒙(ω,δ)=i=1Nvr2ω2δβi(ω)(1+O(ω))𝒂iT𝑽𝑭𝑽𝒂i.\bm{x}(\omega,\delta)=-\sum_{i=1}^{N}\frac{v_{\mathrm{r}}^{2}}{\omega^{2}-\delta\beta_{i}(\omega)}(1+O(\omega))\bm{a}_{i}^{T}\bm{V}{\bm{F}}\bm{V}\bm{a}_{i}.

Furthermore, for ω\omega\in\mathbb{R} satisfying ω=O(δ12)\omega=O(\delta^{\frac{1}{2}}), it follows from (3.53) that

ω2δβi(ω)\displaystyle\omega^{2}-\delta\beta_{i}(\omega) =ω2δλivr2+4πiωδ(r1+)2vr2v𝒂iT𝑬1𝒂i+O(ω2δ)\displaystyle=\omega^{2}-\delta\lambda_{i}v_{\mathrm{r}}^{2}+4\pi\mathrm{i}\omega\delta(r_{1}^{+})^{2}\frac{v_{\mathrm{r}}^{2}}{v}\bm{a}_{i}^{T}\bm{E}_{1}\bm{a}_{i}+O(\omega^{2}\delta)
=(ω2δλivr2+4πiωδ(r1+)2vr2v𝒂iT𝑬1𝒂i)(1+O(δ12)),\displaystyle=\left(\omega^{2}-\delta\lambda_{i}v_{\mathrm{r}}^{2}+4\pi\mathrm{i}\omega\delta(r_{1}^{+})^{2}\frac{v_{\mathrm{r}}^{2}}{v}\bm{a}_{i}^{T}\bm{E}_{1}\bm{a}_{i}\right)\left(1+O(\delta^{\frac{1}{2}})\right),

where the order O(δ12)O(\delta^{\frac{1}{2}}) can be derived by using a similar argument to the proofs of [40, Proposition 4.2 and Lemma 4.3]. The proof is complete. ∎

Theorem 4.1.

For ω\omega\in\mathbb{R} satisfying ω=O(δ12)\omega=O(\delta^{\frac{1}{2}}) and a given plane wave uinu^{in}, the total field u(ω,δ)u(\omega,\delta) to the scattering problem (2.4) has the following asymptotic modal decomposition in the resonator-nested D=j=1NDjD=\cup_{j=1}^{N}D_{j} as δ0\delta\rightarrow 0:

u(ω,δ)=4πr1+uin(0)i=1N1λi𝒂i(1)ω2ωM,i21+iγi(1+O(δ12))j=1N𝒂i(j)χDj,u(\omega,\delta)=-4\pi r_{1}^{+}u^{in}(0)\sum_{i=1}^{N}\frac{1}{\lambda_{i}}\frac{{\bm{a}^{(1)}_{i}}}{\frac{\omega^{2}}{\omega_{M,i}^{2}}-1+\mathrm{i}\gamma_{i}}(1+O(\delta^{\frac{1}{2}}))\sum_{j=1}^{N}\bm{a}^{(j)}_{i}\chi_{D_{j}}, (4.9)

where

ωM,i:=δ12λi12vr,γi:=4π(r1+)2ωλiv(𝒂i(1))2.\omega_{M,i}:=\delta^{\frac{1}{2}}\lambda_{i}^{\frac{1}{2}}v_{\mathrm{r}},\;\gamma_{i}:=\frac{4\pi(r_{1}^{+})^{2}\omega}{\lambda_{i}v}\left(\bm{a}^{(1)}_{i}\right)^{2}. (4.10)
Proof.

It follows from (3.30) and (4.1) that

Fi=δ4πr1+|D1|uin(0)δi,1+O(ωδ),F_{i}=\delta\frac{4\pi r_{1}^{+}}{|D_{1}|}u^{in}(0)\delta_{i,1}+O(\omega\delta),

which implies that

𝒂iT𝑽𝑭=4πr1+uin(0)𝒂i(1)δ+O(ωδ).\bm{a}_{i}^{T}\bm{V}\bm{F}={4\pi r_{1}^{+}}u^{in}(0)\bm{a}^{(1)}_{i}\delta+O(\omega\delta).

Substituting this expression into (4.3), in the subwavelength regime ω=δ\omega=\sqrt{\delta}, we obtain the asymptotic expansions of the vector 𝒙:=(xj(ω,δ))1jN\bm{x}:=\left(x_{j}(\omega,\delta)\right)_{1\leq j\leq N}

xj(ω,δ)\displaystyle x_{j}(\omega,\delta) =4πr1+uin(0)i=1N𝒂i(1)δvr2ω2δλivr2+4πiωδ(r1+)2vr2v𝒂iT𝑬1𝒂i(1+O(δ12))|Dj|𝒂i(j)\displaystyle=-4\pi r_{1}^{+}u^{in}(0)\sum_{i=1}^{N}\frac{\bm{a}^{(1)}_{i}\delta v_{\mathrm{r}}^{2}}{\omega^{2}-\delta\lambda_{i}v_{\mathrm{r}}^{2}+4\pi\mathrm{i}\omega\delta(r_{1}^{+})^{2}\frac{v_{\mathrm{r}}^{2}}{v}\bm{a}_{i}^{T}\bm{E}_{1}\bm{a}_{i}}(1+O(\delta^{\frac{1}{2}}))|D_{j}|\bm{a}^{(j)}_{i} (4.11)
=4πr1+uin(0)i=1N1λi𝒂i(1)ω2ωM,i21+iγi(1+O(δ12))|Dj|𝒂i(j).\displaystyle=-4\pi r_{1}^{+}u^{in}(0)\sum_{i=1}^{N}\frac{1}{\lambda_{i}}\frac{\bm{a}^{(1)}_{i}}{\frac{\omega^{2}}{\omega_{M,i}^{2}}-1+\mathrm{i}\gamma_{i}}(1+O(\delta^{\frac{1}{2}}))|D_{j}|\bm{a}^{(j)}_{i}.

Substituting (3.34), (4.1), and (4.11) into (3.31) concludes the proof. ∎

In the following, we prove that the structure of NN-layer nested resonators can be approximated as a point scatterer with monopole modes: us(x)u^{s}(x) is approximately proportional to the fundamental solution Gk(x)G_{k}(x) given in (2.6) as |x|+|x|\to+\infty.

Theorem 4.2.

For ω\omega\in\mathbb{R} satisfying ω=O(δ12)\omega=O(\delta^{\frac{1}{2}}) and a given plane wave uinu^{in}, the scattered field to (2.4) can be approximated as δ0\delta\to 0 by

us(x)=16π(r1+)2uin(0)(i=1N1λi(𝒂i(1))2ω2ωM,i21+iγi)(1+O(δ12)+O(|x|1))Gk(x),u^{s}(x)=16\pi(r_{1}^{+})^{2}u^{in}(0)\left(\sum_{i=1}^{N}\frac{1}{\lambda_{i}}\frac{\left({\bm{a}^{(1)}_{i}}\right)^{2}}{\frac{\omega^{2}}{\omega_{M,i}^{2}}-1+\mathrm{i}\gamma_{i}}\right)\left(1+O(\delta^{\frac{1}{2}})+O(|x|^{-1})\right)G_{k}(x),

when |x||x| is sufficiently large, where ωM,i\omega_{M,i} and γi\gamma_{i} are difined in (4.10).

Proof.

In view of (2.9), we have that in the regime ω0\omega\to 0,

us(x)=(uuin)(x)=𝒮Γ1+k[(𝒮Γ1+k)1[u|Γ1+uin|Γ1+]](x),xD0.u^{s}(x)=(u-u^{in})(x)=\mathcal{S}_{\Gamma_{1}^{+}}^{k}[(\mathcal{S}_{\Gamma_{1}^{+}}^{k})^{-1}[u|_{\Gamma_{1}^{+}}-u^{in}|_{\Gamma_{1}^{+}}]](x),\quad\forall x\in D_{0}^{\prime}. (4.12)

It follows from (4.9) that

(𝒮Γ1+k)1[u|Γ1+uin|Γ1+]\displaystyle(\mathcal{S}_{\Gamma_{1}^{+}}^{k})^{-1}[u|_{\Gamma_{1}^{+}}-u^{in}|_{\Gamma_{1}^{+}}] =4πr1+uin(0)i=1N1λi(𝒂i(1))2ω2ωM,i21+iγi(1+O(δ12))𝒮Γ1+1[χΓ1+]+O(1)\displaystyle=-4\pi r_{1}^{+}u^{in}(0)\sum_{i=1}^{N}\frac{1}{\lambda_{i}}\frac{\left({\bm{a}^{(1)}_{i}}\right)^{2}}{\frac{\omega^{2}}{\omega_{M,i}^{2}}-1+\mathrm{i}\gamma_{i}}(1+O(\delta^{\frac{1}{2}}))\mathcal{S}_{\Gamma_{1}^{+}}^{-1}[\chi_{\Gamma_{1}^{+}}]+O(1)
=4πuin(0)i=1N1λi(𝒂i(1))2ω2ωM,i21+iγi(1+O(δ12))+O(1).\displaystyle=4\pi u^{in}(0)\sum_{i=1}^{N}\frac{1}{\lambda_{i}}\frac{\left({\bm{a}^{(1)}_{i}}\right)^{2}}{\frac{\omega^{2}}{\omega_{M,i}^{2}}-1+\mathrm{i}\gamma_{i}}(1+O(\delta^{\frac{1}{2}}))+O(1).

This, together with (4.12) and for |x||x|\to\infty and δ0\delta\to 0,

𝒮Γ1+k[ψ1+](x)=(Γ1+ψ1+dσ)(1+O(δ12)+O(|x|1))Gk(x),\mathcal{S}_{\Gamma_{1}^{+}}^{k}[\psi_{1}^{+}](x)=\left(\int_{\Gamma_{1}^{+}}\psi_{1}^{+}~{}\mathrm{d}\sigma\right)\left(1+O(\delta^{\frac{1}{2}})+O(|x|^{-1})\right)G_{k}(x),

concludes the proof. ∎

5 Numerical computations

In this section, we conduct numerical simulations to corroborate our theoretical findings in the previous sections. We first analyze the mode splitting in multi-layer concentric balls. We now have both an asymptotic approach and a numerical method for computing the eigenfrequencies of MLHC resonators. It is valuable to compare the virtues of these two methods. Moreover, it is important to understand the acoustic pressure distribution associated with each eigenfrequency.

5.1 Mode splitting

In this subsection, we shall compute the eigenfrequencies. To validate the eigenfrequencies formulas in Theorem 3.6, we first numerically compute the characteristic value ωN(c)\omega_{N}^{(c)} of 𝑨(ω,δ):=𝑨(0)(ω,δ)\bm{A}(\omega,\delta):=\bm{A}_{(0)}(\omega,\delta) in (3.5) based on the spherical wave expansions. Comparing ωN(c)\omega_{N}^{(c)} and the exact formulas (3.50) for the eigenfrequencies, denoted by ωN(e)\omega_{N}^{(e)}, based on the eigenvalues of the generalized capacitance matrix 𝑽1𝒞\bm{V}^{-1}\mathcal{C} in (3.47).

In what follows, we set ρr=κr=1\rho_{\mathrm{r}}=\kappa_{\mathrm{r}}=1, ρ=κ=1/δ\rho=\kappa=1/\delta, and δ=1/6000\delta=1/6000. Setting f(ω)=det(𝑨(ω,δ))f(\omega)=\det(\bm{A}(\omega,\delta)), we have that calculating ωN(c)\omega_{N}^{(c)} is equivalent to determining the following complex root-finding problem

ωN(c)=minω{ω|f(ω)=0},\omega_{N}^{(c)}=\min\limits_{\omega\in\mathbb{C}}\{\omega|\ f(\omega)=0\}, (5.1)

which can be calculated by using Muller’s method [15]. We consider the radius of layers are equidistance. For NN-layer structure, set

ri+=(Ni+1) and ri=(Ni+0.5),i=1,2,N.r_{i}^{+}=(N-i+1)\;\text{ and }\;r_{i}^{-}=(N-i+0.5),\;\quad i=1,2,\ldots N. (5.2)

The comparison between the two methods for computing the eigenfrequencies with positive real parts in the 24-layer nested resonators is shown in Figure 5.2. The plot presents both the numerical results obtained using the spherical wave expansions outlined in Section 3.1 and the asymptotic results derived from the eigenvalues of the generalized capacitance matrix specified in Theorem 3.6. The results from both methods are in excellent agreement. The primary distinction between the two methods lies in their computational cost. In this example, when run on a laptop, the spherical wave expansion method required 18 seconds to compute, whereas the capacitance matrix approximation took only 0.03 seconds. This significant difference arises because the numerical method involves root-finding procedures, whereas the asymptotic method bypasses this step, leading to a reduction in computational cost by several orders of magnitude.

Refer to caption
Figure 5.2: The subwavelength resonant frequencies, plotted in the complex plane, of the 2424-layer nested resonators designed by (5.2) with δ=1/6000\delta=1/6000. We compare the values computed using the spherical wave expansion and the values computed using the capacitance matrix. The computations using the spherical wave expansion took 18 seconds while the approximations from the capacitance matrix took just 0.03 seconds, on the same computer.

5.2 Resonant modes and field concentration

In this subsection, we try to understand the distributions of the acoustic pressure uu to equation (2.4) under the excitation of the plane wave uin=eiωinvxdu^{in}=\mathrm{e}^{\mathrm{i}\frac{\omega_{in}}{v}x\cdot d}.

To facilitate visualization of the results, we focus on four-layer nested resonators. The acoustic pressure distributions u(j)u_{(j)} for the four-layer nested resonators, as designed by (5.2), are shown in Figure 5.3. In this case, the direction of incidence is d=(1,0,0)d=(1,0,0), and the impinging frequency is ωin=ωj+\omega_{in}=\omega_{j}^{+}, for j=1,2,3,4j=1,2,3,4). The eigenfrequencies ωj+\omega_{j}^{+} are listed in ascending order of their real parts. The corresponding acoustic pressure distributions inherit the symmetry of the nested resonators and exhibit progressively more oscillatory patterns.

It is evident from the lower plot of Figure 5.3 that the acoustic pressure remains approximately constant within each resonator, which supports the modal decomposition derived in Theorem 4.1. Additionally, it is noteworthy that u(1)u_{(1)} maintains the same sign on each resonator DjD_{j}, u(2)u_{(2)} changes sign only between D1D_{1} and D2D_{2}, u(3)u_{(3)} changes sign between DiD_{i} and Di+1D_{i+1} for i=1,3i=1,3, and u(4)u_{(4)} changes sign between DiD_{i} and Di+1D_{i+1} for i=1,2,3i=1,2,3. This behavior may be associated with the phenomenon of field concentration, where the degree of concentration is characterized by the blow-up rate of the underlying gradient field as the distance between two resonators approaches zero. This phenomenon is a central topic in the theory of composite materials. For studies on gradient blow-up in nearly touching, separated resonators, we refer to [31, 10, 55, 30]. In the context of resonators with nested geometries, the gradient blow-up phenomenon has been primarily investigated in electrostatic problems [46, 19, 53]. The determination of blow-up rates for the acoustic field is beyond the scope of the present study, and we shall investigate along this direction in a forthcoming work.

In Figures 5.4 and 5.5, we show how the L2L^{2}-norm of the acoustic pressure uu to equation (2.4) varies as a function of the impinging frequency ωin\omega_{in} for the four-layer nested resonators and the ten-layer nested resonators designed by (5.2), respectively. It can be observed that the peaks of the norm of the acoustic pressure appear when ωin\omega_{in} is close to the real part of the eigenfrequencies, providing evidence for the validity of Theorem 4.1.

Refer to caption
Figure 5.3: The acoustic pressure distributions u(1),u(2),u(3),u(4)u_{(1)},u_{(2)},u_{(3)},u_{(4)} for the four-layer nested resonators designed by (5.2). Each pair of plots corresponds to one of the four eigenfrequencies. The upper plot displays a contour plot of the function uk(x1,x2,0)\Re u_{k}(x_{1},x_{2},0), with the seven-layer concentric ball designed by (5.2) represented as solid black lines. The lower plot shows the cross section of the upper plot, taken along the line x2=0x_{2}=0 (passing through the centres of the multi-layered structures). Additionally, red dotted lines represent vertical lines at the coordinates of the radius.
Refer to caption
Figure 5.4: Norm of the acoustic pressure uu to equation (2.4) for the four-layer nested resonators designed by (5.2).
Refer to caption
Figure 5.5: Norm of the acoustic pressure uu to equation (2.4) for the ten-layer nested resonators designed by (5.2).

6 Concluding remarks

In this paper, we conducted a comprehensive mathematical analysis of subwavelength resonances in multi-layered high-contrast structures. We established a relationship between the corresponding subwavelength resonant frequencies and the eigenvalues of a tridiagonal capacitance matrix and provided the modal decomposition and monopole approximation of multi-layered high-contrast structures. The discovery of this tridiagonal structure is a noteworthy result, which opens the door for further exploration. In particular, the explicit form of the capacitance matrix facilitates the study of resonance properties in phononic crystals composed of multiple multi-layered structures. This may be achieved through the application of established spectral theory for Toeplitz matrices, particularly within the context of one-dimensional topological metamaterials [1, 42, 2, 4, 5, 3]. These new developments will be reported in our forthcoming works.

Acknowledgment

This work was partially supported by NSFC-RGC Joint Research Grant No. 12161160314 and the Natural Science Foundation Innovation Research Team Project of Guangxi (Grant No. 2025GXNSFGA069001).

References

  • [1] H. Ammari, S. Barandun, J. Cao, B. Davies, and E.O. Hiltunen, Mathematical foundations of the non-Hermitian skin effect, Arch. Ration. Mech. Anal., 248 (2024), 33.
  • [2] H. Ammari, S. Barandun, and P. Liu, Applications of Chebyshev polynomials and Toeplitz theory to topological metamaterials, Rev. Phys., 13 (2025), 100103.
  • [3] H. Ammari, S. Barandun, and P. Liu, Perturbed block Toeplitz matrices and the non-Hermitian skin effect in dimer systems of subwavelength resonators, J. Math. Pure Appl., 195 (2025), 103658.
  • [4] H. Ammari, S. Barandun, Y. Bruijn, P. Liu, and C. Thalhammer, Spectra and pseudo-spectra of tridiagonal kk-Toeplitz matrices and the topological origin of the non-Hermitian skin effect, arXiv:2401.12626.
  • [5] H. Ammari, S. Barandun, B. Davies, E. O. Hiltunen, and P. Liu, Stability of the non-Hermitian skin effect in one dimension, SIAM J. Appl. Math., 84 (2024), 1697–1717.
  • [6] H. Ammari, Y. Chow, and H. Liu, Quantum ergodicity and localization of plasmon resonances, J. Funct. Anal., 285 (2023), 109976.
  • [7] H. Ammari, G. Ciraolo, H. Kang, H. Lee, and G. W. Milton, Spectral theory of a Neumann-Poincaré-type operator and analysis of cloaking due to anomalous localized resonance, Arch. Ration. Mech. Anal., 208 (2013), 667–692.
  • [8] H. Ammari, and B. Davies, Metamaterial Analysis and Design: A Mathematical Treatment of Cochlea-inspired Sensors, (De Gruyter, Berlin, 2024).
  • [9] H. Ammari, and B. Davies, Asymptotic links between signal processing, acoustic metamaterials, and biology, SIAM J. Imaging Sci., 16 (2023), 64–88.
  • [10] H. Ammari, B. Davies, and S. Yu, Close-to-touching acoustic subwavelength resonators: eigenfrequency separation and gradient blow-up, Multiscale Model. Simul., 18 (2020), 1299–1317.
  • [11] H. Ammari, Y. Deng, and P. Millien, Surface plasmon resonance of nanoparticles and applications in imaging, Arch. Ration. Mech. Anal., 220 (2016), 109–153.
  • [12] H. Ammari, B. Fitzpatrick, D. Gontier, H. Lee, and H. Zhang, Minnaert resonances for acoustic waves in bubbly media, Ann. Inst. H. Poincaré C Anal. Non Linéaire, 35 (2018), 1975–1998.
  • [13] H. Ammari, B. Fitzpatrick, E.O. Hiltunen, H. Lee, and S. Yu, Subwavelength resonances of encapsulated bubbles, J. Differential Equations, 267 (2019), 4719–4744.
  • [14] H. Ammari, B. Fitzpatrick, E.O. Hiltunen, H. Lee, and S. Yu, Honeycomb-lattice Minnaert bubbles, SIAM J. Math. Anal., 52 (2020), 5441–5466.
  • [15] H. Ammari, B. Fitzpatrick, H. Kang, M. Ruiz, S. Yu, and H. Zhang, Mathematical and Computational Methods in Photonics and Phononics, (American Mathematical Society, Providence, RI, 2018).
  • [16] H. Ammari, B. Fitzpatrick, H. Lee, S. Yu, and H. Zhang, Subwavelength phononic bandgap opening in bubbly media, J. Differential Equations, 263 (2017), 5610–5629.
  • [17] H. Ammari, B. Fitzpatrick, H. Lee, S. Yu, and H. Zhang, Double-negative acoustic metamaterials, Quart. Appl. Math., 77 (2019), 767–791.
  • [18] H. Ammari and H. Kang, Polarization and Moment Tensors with Applications to Inverse Problems and Effective Medium Theory, (Springer-Verlag, New York, 2007).
  • [19] H. Ammari, H. Kang, H. Lee, J. Lee, and M. Lim, Optimal estimates for the electric field in two dimensions, J. Math. Pures Appl., 88 (2007), 307–324.
  • [20] H. Ammari, B. Li, H. Li and J. Zou, Fano resonances in all-dielectric electromagnetic metasurfaces, Multiscale Model. Simul., 22 (2024), 476–526.
  • [21] H. Ammari and H. Zhang, Effective medium theory for acoustic waves in bubbly fluids near minnaert resonant frequency, SIAM J. Math. Anal., 49 (2017), 3252–3276.
  • [22] H. Ammari and H. Zhang, A mathematical theory of super-resolution by using a system of sub-wavelength Helmholtz resonators, Comm. Math. Phys., 337 (2015), 379–428.
  • [23] K. Ando, Y. Ji, H. Kang, K. Kim, and S. Yu, Spectrum of Neumann-Poincaré operator on annuli and cloaking by anomalous localized resonance for linear elasticity, SIAM J. Math. Anal., 49 (2017), 4232–4250.
  • [24] E. Bonnetier and H. Zhang, Characterization of the essential spectrum of the Neumann-Poincaré operator in 2D domains with corner via Weyl sequences, Rev. Mat. Iberoam., 35 (2019), 925–948.
  • [25] X. Cao, A. Ghandriche, and M. Sini, The electromagnetic waves generated by a cluster of nanoparticles with high refractive indices, J. Lond. Math. Soc., 108 (2023), 1531–1616.
  • [26] D. Challa, A. Choudhury, and M. Sini, Mathematical imaging using electric or magnetic droplets as contrast agents, Inverse Probl. Imaging, 12 (2018), 573–605.
  • [27] M. Chen, D. Meng, H. Jiang,and Y. Wang, Investigation on the band gap and negative properties of concentric ring acoustic metamaterial, Shock Vib., 12 (2018), 1369858.
  • [28] A. Dabrowski, A. Ghandriche, and M. Sini, Mathematical analysis of the acoustic imaging modality using bubbles as contrast agents at nearly resonating frequencies, Inverse Probl. Imaging 15 (2021), 555–597.
  • [29] D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, (Springer, Cham, 2013).
  • [30] Y. Deng, X. Fang, and H. Liu, Gradient estimates for electric fields with multiscale inclusions in the quasi-static regime, Multiscale Model. Simul., 20 (2022), 641–656.
  • [31] Y. Deng, L. Kong, H. Liu, and L. Zhu, On field concentration between nearly-touching multiscale inclusions in the quasi-static regime, Adv. Appl. Math. Mech., 16 (2024), 1252–1276.
  • [32] Y. Deng, L. Kong, H. Li, H. Liu, and L. Zhu, Mathematical theory on multi-layer high contrast acoustic subwavelength resonators, arXiv:2411.08938.
  • [33] Y. Deng, L. Kong, H. Liu, and L. Zhu, Elastostatics within multi-layer metamaterial structures and an algebraic framework for polariton resonances, ESAIM Math. Model. Numer. Anal., 58 (2024), 1413–1440.
  • [34] Y. Deng, H. Li, and H. Liu, Analysis of surface polariton resonance for nanoparticles in elastic system, SIAM J. Math. Anal., 52 (2020), 1786–1805.
  • [35] Y. Deng, H. Li, and H. Liu, On spectral properties of Neuman-Poincaré operator and plasmonic resonances in 3D elastostatics, J. Spectr. Theory, 9 (2019), 767–789.
  • [36] Y. Deng and H. Liu, Spectral Theory of Localized Resonances and Applications, (Springer, Singapore, 2024).
  • [37] Y. Deng, H. Liu, and G.-H. Zheng, Mathematical analysis of plasmon resonances for curved nanorods, J. Math. Pure Appl., 153 (2021), 248–280.
  • [38] S. Dyatlov and M. Zworski, Mathematical Theory of Scattering Resonances, Grad. Stud. Math. 200, American Mathematical Society, Providence, RI, 2019.
  • [39] X. Fang and Y. Deng, On plasmon modes in multi-layer structures, Math. Methods Appl. Sci., 46 (2023), 18075–18095.
  • [40] F. Feppona and H. Ammari, Modal decompositions and point scatterer approximations near the Minnaert resonance frequencies, Stud. Appl. Math., 149 (2022), 164–229.
  • [41] F. Feppona and H. Ammari, Subwavelength resonant acoustic scattering in fast time-modulated media, J. Math. Pure Appl., 187 (2024), 233–293.
  • [42] F. Feppon, Z. Cheng, and H. Ammari, Subwavelength resonances in one-dimensional high-contrast acoustic media, SIAM J. Appl. Math., 83 (2023), 625–665.
  • [43] G. B. Folland, Introduction to Partial Differential Equations, (Princeton University Press, Princeton, NJ, 1995).
  • [44] Y.-G. Ji and H. Kang, Spectral properties of the Neumann-Poincaré operator on rotationally symmetric domains, Math. Ann., 387 (2023), 1105–1123.
  • [45] H. Kang, K. Kim, H. Lee, J. Shin, and S. Yu, Spectral properties of the Neumann-Poincaré operator and uniformity of estimates for the conductivity equation with complex coefficients, J. Lond. Math. Soc., 93 (2016), 519–545.
  • [46] J. Kim, and M. Lim, Electric field concentration in the presence of an inclusion with eccentric core-shell geometry, Math. Ann., 373 (2019), 517–551.
  • [47] L. Kong, L. Zhu, Y. Deng, and X. Fang, Enlargement of the localized resonant band gap by using multi-layer structures, J. Comput. Phys., 518 (2024), 113308.
  • [48] A. Krushynska, M. Miniaci, V. Kouznetsova, and M. Geers, Multilayered inclusions in locally resonant metamaterials: Two-dimensional versus three-dimensional modeling, J. Vib. Acoust. 139 (2017), 024501.
  • [49] Y. Lai, Y. Wu, P. Sheng, and Z. Zhang, Hybrid elastic solids, Nature Materials, 10 (2011), 620–624.
  • [50] H. Larabi, Y. Pennec, B. Djafari-Rouhani, and J. Vasseur, Multicoaxial cylindrical inclusions in locally resonant phononic crystals, Phys. Rev. E, 75, (2007) 066601.
  • [51] H. Li and H. Liu, On anomalous localized resonance for the elastostatic system, SIAM J. Math. Anal., 48 (2016), 3322–3344.
  • [52] H. Li, H. Liu, and J. Zou, Minnaert resonances for bubbles in soft elastic materials, SIAM J. Appl. Math., 82 (2022), 119–141.
  • [53] H. Li and L. Xu, Optimal estimates for the perfect conductivity problem with inclusions close to the boundary, SIAM J. Math. Anal., 49 (2017), 3125–3142.
  • [54] H. Li and L. Xu, Resonant modes of two hard inclusions within a soft elastic material and their stress estimate, arXiv:2407.19769.
  • [55] H. Li and Y. Zhao, The interaction between two close-to-touching convex acoustic subwavelength resonators, Multiscale Model. Simul., 21 (2023), 804–826.
  • [56] H. Li and J. Zou, Mathematical theory on dipolar resonances of hard inclusions within a soft elastic material, arXiv:2310.12861.
  • [57] Z. Liu, X. Zhang, Y. Mao, Y. Zhu, Z. Yang, T. Chan, and P. Sheng, Locally resonant sonic materials, Science, 289 (2000), 1734–1736.
  • [58] M. Minnaert, On musical air-bubbles and the sounds of running water, Philos. Mag., 16 (1933), 235–248.
  • [59] B. Parlett, The symmetric eigenvalue problem, (SIAM, Philadelphia, 1998).
  • [60] M. Sini and H. Wang, The inverse source problem for the wave equation revisited: A new approach, SIAM J. Math. Anal., 54 (2022), 5160–5181.
  • [61] Y. Pennec, J. Vasseur, B. Djafari-Rouhani, L. Dobrzyński, and P. Deymier, Two-dimensional phononic crystals: Examples and applications, Surf. Sci. Rep., 65 (2010), 229–291.
  • [62] G. Szczepański, M. Podleśna, L. Morzynski and A. Włudarczyk, Invpestigation of the acoustic properties of a metamaterial with a multi-ring structure, Arch. Acoust., 48 (2023), 497–507.
  • [63] X. Zhou and G. Hu, Analytic model of elastic metamaterials with local resonances, Phys. Rev. B, 79 (2009), 195109.