This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Mean dimension theory in symbolic dynamics for finitely generated amenable groups 00footnotetext: * Corresponding author 00footnotetext: 2010 Mathematics Subject Classification: 37B40, 37C85.

Yunping Wang1, Ercai Chen2, Xiaoyao Zhou*2
1 School of Science, Ningbo Unversity of Technology,
Ningbo 315211, Zhejiang, P.R.China
2 School of Mathematical Sciences and Institute of Mathematics, Nanjing Normal University,
Nanjing 210046, Jiangsu, P.R.China
e-mail: yunpingwangj@126.com, ecchen@njnu.edu.cn,
zhouxiaoyaodeyouxian@126.com

Abstract. In this paper, we mainly elucidate a close relationship between the topological entropy and mean dimension theory for actions of polynomial growth groups. We show that metric mean dimension and mean Hausdorff dimension of subshifts with respect to the lower rank subgroup are equal to its topological entropy multiplied by the growth rate of the subgroup. Meanwhile, we also prove the above result holds for the rate distortion dimension of subshifts with respect to the lower rank subgroup and measure entropy. Furthermore, some relevant examples are indicated.


Keywords and phrases: subshift, metric mean dimension, mean Hausdorff dimension, rate distortion dimension, polynomial growth groups.

1 Introduction

Let (X,G)(X,G) be a GG-action topological dynamical system, where XX is a compact Hausdorff space and GG a topological group. Throughout this paper, GG is a finitely generated amenable groups. An important dynamical quantity of a shift is its entropy, which roughly measures the exponential growth rate of its projections on finite sets. For the case G=G=\mathbb{N}, we consider the one-sided infinite product AA^{\mathbb{N}} with the shift map σ:AA\sigma:A^{\mathbb{N}}\rightarrow A^{\mathbb{N}} defined by

σ((xn)n)=(xn+1)n.\sigma((x_{n})_{n\in\mathbb{N}})=(x_{n+1})_{n\in\mathbb{N}}.

Define a metric which is compatible with the product topology on AA^{\mathbb{N}} as follows: for every x=(xn)n,y=(yn)nAx=(x_{n})_{n\in\mathbb{N}},y=(y_{n})_{n\in\mathbb{N}}\in A^{\mathbb{N}},

d(x,y)=2min{n|xnyn}.\displaystyle d(x,y)=2^{-\min\left\{n|x_{n}\neq y_{n}\right\}}.

Let 𝒳\mathcal{X} be a closed invariant subset of AA^{\mathbb{N}}. Furstenberg proved the following relationship among entropy, Hausdorff and Minkowski dimensions of 𝒳\mathcal{X} with respect to dd [9, Proposition III.1]:

dimH(𝒳,d)=dimM(𝒳,d)=htop(𝒳,σ),\displaystyle{\rm dim}_{H}(\mathcal{X},d)={\rm dim}_{M}(\mathcal{X},d)={h_{top}(\mathcal{X},\sigma)},

where htop(𝒳,σ)h_{top}(\mathcal{X},\sigma) is the topological entropy of (𝒳,σ)(\mathcal{X},\sigma). Simpson [27] generalized the above results to k\mathbb{Z}^{k} action and more general result for amenable group action appears in [8]. For more relevant studies one may refer to [3, 20].

Mean dimension is a conjugacy invariant of topological dynamical systems which was introduced by Gromov [21]. This is a dynamical version of topological dimension and it counts how many parameters per iterate we need to describe an orbit in the dynamical systems. This invariant has several applications which cannot be touched within the framework of topological entropy, see [25, 17, 18]. In particularly, it has many applications to embedding problem whether a dynamical system can be embedded into another or not, see for instance [14, 13, 22, 23, 24].

It is well known that the concepts of entropy and dimension are closely connected. So it is natural to except we can approach to mean dimension from the entropy theory viewpoint. The first attempt of such an approach was made by Lindenstrauss and Weiss [14]. They introduced the notion of metric mean dimension, which is a dynamical analogue of Minkowski dimension [14], and they proved that metric mean dimension is an upper bound of the mean dimension. It allowed them to establish the relationship between the mean dimension and the topological entropy of dynamical systems. Namely, each system with finite topological entropy has zero metric mean dimension and zero mean dimension. Lindenstrauss and Tsukamoto in [15] established a variational principle between the metric mean dimension and the rate distortion function under a mild condition on the metric dd (called tame growth of covering numbers, for this definition see [15]). Inspired by the classic variational principle of entropy, they [16] also considered a measure-theoretic notion of mean dimension-rate distortion dimension, which was first introduced by Kawabata and Dembo in [11] and proved a corresponding variational principle for mean dimension. In order to link the measure theoretic aspect of mean dimension theory, they introduced the mean Hausdorff dimension in [16], which is a dynamical analogue of Hausdorff dimension.

Recently, Shinoda and Tsukamoto [26] generalized Furstenberg’s result in [9] to 2\mathbb{Z}^{2} action which involves metric mean dimension, mean Hausdorff dimension and rate distortion dimension. In this paper, by adopting the method of [26] and [8], we are going to prove the relationship between mean dimension quantities (metric mean dimension, mean Hausdorff dimension and rate distortion dimension) and entropy, which generalize the result of [26] to actions of polynomial growth groups. The main difficulty in carrying out this generalization is that we need a Vitali type covering lemma. To this aim we apply a more general covering lemma developed by Lindentrauss [12].

The paper is organized as follows. In section 2, we review basic definitions of finitely generated amenable groups and mean dimension theory. Meanwhile, we state our main results. In section 3, we introduce covering lemma and give the proof of Theorem 2.1. In section 4, we present the notion of rate distortion dimension and prove the Theorem 2.2 by following Shinoda and Tsukamoto’s technical line. In section 5, we give some examples to illustrate our main theorem.

2 Preliminaries

In this section, we review some of the standard concepts and results on finitely generate amenable groups, metric mean dimension and mean Hausdorff dimension. Finally, we state our main results.

2.1 Finitely generated amenable groups

Let GG be an infinite discrete countable group. Let F(G)F(G) denote the set of all finite non-empty subset of GG. For KK, FF(G)F\in F(G), let KFF(G)KF\in F(G), let KF={st:sK,tF}KF=\left\{st:s\in K,t\in F\right\} and KFΔF=(KFF)(FKF)KF\Delta F=(KF\setminus F)\cup(F\setminus KF). A group GG is called amenable if for each KF(G)K\in F(G) and δ>0\delta>0, there exists FF(G)F\in F(G) such that |KFΔF|<δ|F||KF\Delta F|<\delta|F|, where |||\cdot| is the counting measure.

Let KF(G)K\in F(G) and δ>0\delta>0. A finite subset AF(G)A\in F(G) is called (K,δ)(K,\delta)-invariant if

|B(A,K)||A|<δ,\dfrac{|B(A,K)|}{|A|}<\delta,

where B(A,K)B(A,K), theKK-boundary of AA, is defined by

B(A,K)={gG:KgAandKg(GA)}.\displaystyle B(A,K)=\left\{g\in G:Kg\cap A\neq\emptyset~{}\text{and}~{}Kg\cap(G\setminus A)\neq\emptyset\right\}.

Another equivalent condition for the sequence of finite subset {Fn}\left\{F_{n}\right\} of GG to be a Fϕ\philner sequence is that {Fn}\left\{F_{n}\right\} becomes more and more invariant, i.e., for each KF(G)K\in F(G) and δ>0\delta>0, FnF_{n} is (K,δ)(K,\delta)-invariant when nn is large enough. A group GG is amenable group if and only if GG admits a Fϕ\philner sequence {Fn}\left\{F_{n}\right\}. For more details and properties of the amenable group, one is referred to [19] [6]. Let ϵ(0,1)\epsilon\in(0,1). A1,A2,,AkF(G)A_{1},A_{2},\cdots,A_{k}\in F(G) are said to be ϵ\epsilon-disjoint if there exist mutually disjoint AiAiA_{i}^{\prime}\subset A_{i} such that |Ai|(1ϵ)|Ai||A_{i}^{\prime}|\geq(1-\epsilon)|A_{i}| for 1ik1\leq i\leq k. Recall that a Fϕ\philner sequence {Fn}\left\{F_{n}\right\} in GG is said to be tempered if there exists a constant C>0C>0 which is independent of nn such that

|k<nFk1Fn|C|Fn|,for anyn.\displaystyle|\bigcup\limits_{k<n}F_{k}^{-1}F_{n}|\leq C|F_{n}|,~{}\text{for any}~{}n. (2.1)

Let GG be a finitely generated amenable group with a symmetric generating set SS. Recall that a generating set is called symmetric if together with any sSs\in S it contains s1s^{-1}. The SS-word-length S(g)\ell_{S}(g) of an element gGg\in G is the minimal integer n0n\geq 0 such that gg can be expressed as a product of nn elements in SS, that is,

S(g)=min{n0:g=s1sn:siS,1in}.\displaystyle\ell_{S}(g)=\min\left\{n\geq 0:g=s_{1}\cdots s_{n}:s_{i}\in S,1\leq i\leq n\right\}.

It immediately follows from the definition that for gGg\in G one has S(g)=0if an only ifg=1G.\ell_{S}(g)=0~{}\text{if an only if}~{}g=1_{G}. Define the metric dSd_{S} on GG : dS(g,h)=S(g1h).d_{S}(g,h)=\ell_{S}(g^{-1}h). It is obvious that the metric dSd_{S} is invariant by left multiplication.

For gGg\in G and nn\in\mathbb{N}, we denote by

BSG(g,n)={hG:dS(g,h)n},\displaystyle B_{S}^{G}(g,n)=\left\{h\in G:d_{S}(g,h)\leq n\right\},

the ball of radius nn in GG centered at the element gGg\in G. When g=1Gg=1_{G} we have BSG(1G,n)={hG:S(h)n}B_{S}^{G}(1_{G},n)=\left\{h\in G:\ell_{S}(h)\leq n\right\} and we simply write BSG(n)B_{S}^{G}(n) instead of BSG(1G,n)B_{S}^{G}(1_{G},n). Also, when there is no ambiguity on the group GG, we omit the subscript GG and we simply write BS(g,n)B_{S}(g,n) and BS(n)B_{S}(n) instead of BSG(g,n)B_{S}^{G}(g,n) and BSG(n)B_{S}^{G}(n). The growth function of GG relative to SS is a function γS:\gamma_{S}:\mathbb{N}\rightarrow\mathbb{N} defined by γS(n)=|BS(n)|=|{gG:S(g)n}|.\gamma_{S}(n)=|B_{S}(n)|=|\left\{g\in G:\ell_{S}(g)\leq n\right\}|.

Remark 2.1.

[7] Let G1G_{1} and G2G_{2} be two finitely generated amenable groups. Then the direct product G1×G2G_{1}\times G_{2} is also a finitely generated amenable group.

Definition 2.1.

Let GG be a finitely generated group of polynomial growth with a symmetric generating set SS if there exists constants d,A,B>0d,A,B>0 such that

AndγS(n)BndAn^{d}\leq\gamma_{S}(n)\leq Bn^{d}

for all n.n\in\mathbb{N}. We denote by deg(G)=d{\rm deg}(G)=d the degree of the polynomial growth of GG.

In this paper, we consider a finitely generated group of polynomial growth. Polynomial growth groups are amenable. We will review the definitions of metric mean dimension [4] and introduce the mean Hausdorff dimension of amenable group actions in subsection 2.2.

2.2 Metric mean dimension and mean Hausdorff dimension

Let GG be a countable discrete amenable group. Let (𝒳,G)(\mathcal{X},G) be a GG-system with dd. For ϵ>0\epsilon>0, we define #(𝒳,d,ϵ)\#(\mathcal{X},d,\epsilon) as the minimum natural number nn such that 𝒳\mathcal{X} can be covered by open sets U1,,UnU_{1},\cdots,U_{n} with diam(Ui)<ϵ{\rm diam}(U_{i})<\epsilon for 1in1\leq i\leq n. For FF(G)F\in F(G), define metric dFd_{F} on 𝒳\mathcal{X} by

dF(x,y)=maxgFd(gx,gy).d_{F}(x,y)=\max\limits_{g\in F}d(gx,gy).

For s0s\geq 0 and ϵ>0\epsilon>0, we define Hϵs(𝒳,d)H_{\epsilon}^{s}(\mathcal{X},d) as

inf{n=1(diamEn)s|𝒳=nEnwithdiamEn<ϵfor alln1}.\displaystyle\inf\left\{\sum\limits_{n=1}^{\infty}({\rm diam}E_{n})^{s}|\mathcal{X}=\bigcup\limits_{n}E_{n}~{}\text{with}~{}{\rm diam}E_{n}<\epsilon~{}\text{for all}~{}n\geq 1\right\}. (2.2)

We set

dimH(𝒳,d,ϵ)=sup{s0|Hϵs(𝒳,d)1}.{\rm dim}_{H}(\mathcal{X},d,\epsilon)=\sup\left\{s\geq 0|H_{\epsilon}^{s}(\mathcal{X},d)\geq 1\right\}.

The Hausdorff dimension dimH(𝒳,d){\rm dim}_{H}(\mathcal{X},d) is given by

dimH(𝒳,d)=limϵ0dimH(𝒳,d,ϵ).{\rm dim}_{H}(\mathcal{X},d)=\lim\limits_{\epsilon\rightarrow 0}{\rm dim}_{H}(\mathcal{X},d,\epsilon).

We define the upper and lower mean Hausdorff dimension. Let {Fn}\left\{F_{n}\right\} be a Fϕ\philner sequence in GG, we can define

mdim¯H(𝒳,{Fn},d)=limϵ0(lim supndimH(𝒳,dFn,ϵ)|Fn|),\displaystyle\overline{\rm mdim}_{H}(\mathcal{X},\left\{F_{n}\right\},d)=\lim\limits_{\epsilon\rightarrow 0}\left(\limsup\limits_{n\rightarrow\infty}\dfrac{{\rm dim}_{H}(\mathcal{X},d_{F_{n}},\epsilon)}{|F_{n}|}\right),
mdim¯H(𝒳,{Fn},d)=limϵ0(lim infndimH(𝒳,dFn,ϵ)|Fn|).\displaystyle\underline{\rm mdim}_{H}(\mathcal{X},\left\{F_{n}\right\},d)=\lim\limits_{\epsilon\rightarrow 0}\left(\liminf\limits_{n\rightarrow\infty}\dfrac{{\rm dim}_{H}(\mathcal{X},d_{F_{n}},\epsilon)}{|F_{n}|}\right).

When these two quantities are equal to each other, we denote the common value by mdimH(𝒳,{Fn},d){\rm mdim}_{H}(\mathcal{X},\left\{F_{n}\right\},d). For any ϵ>0\epsilon>0, we define

S(𝒳,G,d,ϵ)=limn1|Fn|log#(𝒳,dFn,ϵ).S(\mathcal{X},G,d,\epsilon)=\lim\limits_{n\rightarrow\infty}\dfrac{1}{|F_{n}|}\log\#(\mathcal{X},d_{F_{n}},\epsilon).

The limit always exists and does not depend on the choice of the Fϕ\philner sequence {Fn}\left\{F_{n}\right\}. The upper and lower metric mean dimension is then defined by

mdim¯M(𝒳,G,d)=lim supϵ0S(𝒳,G,d,ϵ)|logϵ|,\overline{\rm mdim}_{M}(\mathcal{X},G,d)=\limsup\limits_{\epsilon\rightarrow 0}\dfrac{S(\mathcal{X},G,d,\epsilon)}{|\log\epsilon|},
mdim¯M(𝒳,G,d)=lim infϵ0S(𝒳,G,d,ϵ)|logϵ|.\underline{\rm mdim}_{M}(\mathcal{X},G,d)=\liminf\limits_{\epsilon\rightarrow 0}\dfrac{S(\mathcal{X},G,d,\epsilon)}{|\log\epsilon|}.

When the upper and lower limits coincide, we denote the common value by midmM(𝒳,G,d){\rm midm}_{M}(\mathcal{X},G,d).

The following result is the dynamical analogue of the fact that Minkowski dimension no less than Hausdorff dimension.

Proposition 2.1.

Let {Fn}\left\{F_{n}\right\} be a Fϕ\philner sequence, then

mdim¯H(𝒳,{Fn},d)mdim¯M(𝒳,G,d).\displaystyle\overline{{\rm mdim}}_{H}(\mathcal{X},\left\{F_{n}\right\},d)\leq\underline{{\rm mdim}}_{M}(\mathcal{X},G,d).
Proof.

Let {Fn}\left\{F_{n}\right\} be a the Fϕ\philner sequence in GG. For n0n\geq 0, ϵ>0\epsilon>0, choose an open cover 𝒳=U1Um\mathcal{X}=U_{1}\cup\cdots\cup U_{m} with diam(Ui,dFn)ϵ{\rm diam}(U_{i},d_{F_{n}})\leq\epsilon and m=#(𝒳,dFn,ϵ)m=\#(\mathcal{X},d_{F_{n}},\epsilon). We have

Hϵs(𝒳,dFn)mϵs.H_{\epsilon}^{s}(\mathcal{X},d_{F_{n}})\leq m\epsilon^{s}.

If s>logm/log(1/ϵ)s>\log m/\log(1/\epsilon), then Hs(𝒳,dFn)<1H^{s}(\mathcal{X},d_{F_{n}})<1. This shows

dimH(𝒳,dFn,ϵ)log#(𝒳,dFn,ϵ)log(1/ϵ).{\rm dim}_{H}(\mathcal{X},d_{F_{n}},\epsilon)\leq\dfrac{\log\#(\mathcal{X},d_{F_{n}},\epsilon)}{\log(1/\epsilon)}.

Divide this by |Fn||F_{n}| and take limits with respect to nn and then ϵ\epsilon. It follows that mdim¯H(𝒳,{Fn},d)midm¯M(𝒳,G,d).\overline{\rm mdim}_{H}(\mathcal{X},\left\{F_{n}\right\},d)\leq\underline{\rm midm}_{M}(\mathcal{X},G,d).

2.3 Statement of the main results

Now we state the main theorems. Let G1G_{1} and G2G_{2} be finitely generated groups of polynomial growth. Then direct product G=G1×G2G=G_{1}\times G_{2} is also finitely generated of polynomial growth. Let S1S_{1} and S2S_{2} be finite symmetric generating subsets of G1G_{1} and G2G_{2}. Then the set

S=(S1×{1G1})({1G2}×S2)S=(S_{1}\times\left\{1_{G_{1}}\right\})\cup(\left\{1_{G_{2}}\right\}\times S_{2})

is a finite symmetric generating subset of GG. We denote by deg(G1){\rm deg}(G_{1}) and deg(G2){\rm deg}(G_{2}) the degrees of the polynoimal growth of G1G_{1} and G2G_{2}, respectively (e.g., deg(k)=k{\rm deg}(\mathbb{Z}^{k})=k). Set S={s1,sm}S=\left\{s_{1},\cdots s_{m}\right\}. Next we defines a order in SS which formalize through the following construction: given si,sjSs_{i},s_{j}\in S we say that si<sjs_{i}<s_{j} if i<ji<j. Hence s1<s2<<sms_{1}<s_{2}<\cdots<s_{m}. Hence we can consider the order in GG. For g,gGg,g^{\prime}\in G, we call g<gg<g^{\prime} if (g)<(g)\ell(g)<\ell(g^{\prime}). If (g)=(g)=n\ell(g)=\ell(g^{\prime})=n, then there exist s1,,sns_{1},\cdots,s_{n} and s1,,sns_{1}^{\prime},\cdots,s_{n}^{\prime} such that

g=s1sn,g=s1sn.\displaystyle g=s_{1}\cdots s_{n},~{}g^{\prime}=s_{1}^{\prime}\cdots s_{n}^{\prime}.

Take k=min{i:sisi}k=\min\left\{i:s_{i}\neq s_{i}^{\prime}\right\}. When sk<sks_{k}<s_{k}^{\prime}, we denote by g<gg<g^{\prime}, otherwise, g>gg>g^{\prime}. Then we can arrange the elements in the group. Let G=(gn)n=0G=(g_{n})_{n=0}^{\infty} be an enumeration of GG according to the order such that (1G)=S(g0)S(g1))S(g2)\ell(1_{G})=\ell_{S}(g_{0})\leq\ell_{S}(g_{1}))\leq\ell_{S}(g_{2})\cdots.

We can define a metric dd on AGA^{G} by the following:

d(x,y)=2min{|gn||xgnygn},\displaystyle d(x,y)=2^{-\min\left\{|g_{n}|_{\infty}\big{|}x_{g_{n}}\neq y_{g_{n}}\right\}}, (2.3)

where |gn|=max{S1(gn,1),S2(gn,2)}|g_{n}|_{\infty}=\max\left\{\ell_{S_{1}}(g_{n,1}),\ell_{S_{2}}(g_{n,2})\right\} and g=(gn,1,gn,2)g=(g_{n,1},g_{n,2}). A closed GG-invariant subset 𝒳\mathcal{X} of AGA^{G} is called a subshift of AGA^{G}.

Theorem 2.1.

Let 𝒳AG\mathcal{X}\subset A^{G} be a subshift. Suppose that deg(G2)=1{\rm deg}(G_{2})=1. Then

  • (1).

    mdim¯M(𝒳,G1,d)c1htop(𝒳,G),\overline{\rm mdim}_{M}(\mathcal{X},{G_{1}},d)\leq c_{1}\cdot h_{top}(\mathcal{X},{G}), where c1=lim supn|BS2(n)|nc_{1}=\limsup\limits_{n\rightarrow\infty}\frac{|B_{S_{2}}(n)|}{n}.

  • (2).

    mdim¯H(𝒳,{BS1(n)},d)c2htop(𝒳,G),\underline{{\rm mdim}}_{H}(\mathcal{X},\left\{B_{S_{1}}(n)\right\},d)\geq c_{2}\cdot h_{top}(\mathcal{X},G), where c2=lim infn|BS2(n)|n.c_{2}=\liminf\limits_{n\rightarrow\infty}\frac{|B_{S_{2}}(n)|}{n}.

In particular, if c1=c2=cc_{1}=c_{2}=c, we have

mdimH(𝒳,{BS1(n)},d)=mdimM(𝒳,G1,d)=chtop(𝒳,G).\displaystyle{\rm mdim}_{H}(\mathcal{X},\left\{B_{S_{1}}(n)\right\},d)={\rm mdim}_{M}(\mathcal{X},{G_{1}},d)=c\cdot h_{top}(\mathcal{X},{G}).
Theorem 2.2.

If μ\mu is a Borel probability measure on 𝒳\mathcal{X} invariant under both σ1\sigma_{1} and σ2\sigma_{2} and c1=c2=cc_{1}=c_{2}=c, then

rdim(𝒳,σ1,{BS1(n)},d,μ)=chμ(𝒳,G).\displaystyle{\rm rdim}(\mathcal{X},\sigma_{1},\left\{B_{S_{1}}(n)\right\},d,\mu)=c\cdot h_{\mu}(\mathcal{X},G).
Remark 2.2.
  • (1)

    It is not clear whether the value of cc exists for general amenable groups. Hence we only consider the polynomial growth groups in this paper.

  • (2)

    The reason for imposing the condition deg(G2)=1{\rm deg}(G_{2})=1 is that if deg(G2)>1{\rm deg}(G_{2})>1, we don’t know whether the value of cc exists.

3 Proof of Theorem 2.1

For a finite alphabet AA and a finitely generated group of polynomial growth GG, the full GG-shift over AA is the set AGA^{G}, which is viewed as a compact topological space with the discrete product topology. Consider the shift action on the product space AGA^{G}:

g(xg)gG=(xgg)gG,for allgGand (xg)gGAG.g^{\prime}(x_{g})_{g\in G}=(x_{gg^{\prime}})_{g\in G},\text{for all}~{}g^{\prime}\in G~{}\text{and }~{}(x_{g})_{g\in G}\in A^{G}.

We define the shifts σ1\sigma_{1} and σ2\sigma_{2} on AGA^{G} by (σ1,gx)(g1,g2)=x(g1g,g2)(\sigma_{1,g}x)_{(g_{1},g_{2})}=x_{(g_{1}g,g_{2})} and (σ2,hx)(g1,g2)=x(g1,g2h)(\sigma_{2,h}x)_{(g_{1},g_{2})}=x_{(g_{1},g_{2}h)} for all gG1g\in G_{1}, hG2h\in G_{2}, (g1,g2)G(g_{1},g_{2})\in G. Let 𝒳\mathcal{X} be a subshift. For EGE\subset G, let πE:𝒳AE\pi_{E}:\mathcal{X}\rightarrow A^{E} denote the canonical projection map, that is, the map defined by πE(x):=x|E\pi_{E}(x):=x|_{E} for all x𝒳x\in\mathcal{X}, where x|Ex|_{E} denote the restriction of x:GAx:G\rightarrow A to EGE\subset G. For each finite set FGF\subset G and ωAF\omega\in A^{F}, a subset C𝒳C\subset\mathcal{X} is called a cylinder over FF if there exists x𝒳x\in\mathcal{X} such that CC is equal to the set of all x𝒳x\in\mathcal{X} with πF(x)=πF(y)\pi_{F}(x)=\pi_{F}(y). The proof falls naturally into two steps.

Step 1: mdim¯M(𝒳,G1,d)c1htop(𝒳,G).\overline{\rm mdim}_{M}(\mathcal{X},G_{1},d)\leq c_{1}\cdot h_{top}(\mathcal{X},G).

Proof.

For ϵ>0\epsilon>0, choose M>0M>0 such that 2M<ϵ<2M+12^{-M}<\epsilon<2^{-M+1}. For each a natural number N>0N>0, then

#(𝒳,dBS1(N)σ1,ϵ)|π(BS1(M)BS1(N)×BS2(M))(𝒳)|,\displaystyle\#(\mathcal{X},d_{B_{S_{1}}(N)}^{\sigma_{{1}}},\epsilon)\leq|\pi_{(B_{S_{1}}(M)B_{S_{1}}(N)\times B_{S_{2}}(M))}(\mathcal{X})|,

where dBS1(N)σ1(x,y)=maxgBS1(N)d(σ1,gx,σ1,gy)d_{B_{S_{1}}(N)}^{\sigma_{1}}(x,y)=\max_{g\in B_{S_{1}}(N)}d(\sigma_{1,g}x,\sigma_{1,g}y). Since M1log(1/ϵ)MM-1\leq\log(1/\epsilon)\leq M,

mdim¯M(𝒳,G1,d)\displaystyle\overline{\rm mdim}_{M}(\mathcal{X},G_{1},d)
=\displaystyle= lim supϵ0(limNlog#(𝒳,dBS1(N)σ1,ϵ)|BS1(N)|log(1/ϵ))\displaystyle\limsup\limits_{\epsilon\rightarrow 0}\left(\lim\limits_{N\rightarrow\infty}\dfrac{\log\#(\mathcal{X},d_{B_{S_{1}}(N)}^{\sigma_{{1}}},\epsilon)}{|B_{S_{1}}(N)|\log(1/\epsilon)}\right)
\displaystyle\leq limM(limN|π(BS1(M)BS1(N)×BS2(M))(𝒳)||BS1(N)|(M1))\displaystyle\lim\limits_{M\rightarrow\infty}\left(\lim\limits_{N\rightarrow\infty}\dfrac{|\pi_{(B_{S_{1}}({M})B_{S_{1}}(N)\times B_{S_{2}}({M}))}(\mathcal{X})|}{|B_{S_{1}}(N)|({M-1})}\right)
\displaystyle\leq limM(limN|π(BS1(M)BS1(N)×BS2(M))(𝒳)||BS1(M)BS1(N)||BS2(M)|×|BS1(M)BS1(N)||BS2(M)||BS1(N)|(M1))\displaystyle\lim\limits_{M\rightarrow\infty}\left(\lim\limits_{N\rightarrow\infty}\dfrac{|\pi_{(B_{S_{1}}({M})B_{S_{1}}(N)\times B_{S_{2}}({M}))}(\mathcal{X})|}{|B_{S_{1}}({M})B_{S_{1}}(N)||B_{S_{2}}({M})|}\times\dfrac{|B_{S_{1}}({M})B_{S_{1}}(N)||B_{S_{2}}({M})|}{|B_{S_{1}}(N)|({M-1})}\right)

Since {BS1(N)}\left\{B_{S_{1}}(N)\right\} is a Fϕ\philner sequence, then limN|BS1(M)BS1(N)||BS1(N)|=1\lim\limits_{N\rightarrow\infty}\dfrac{|B_{S_{1}}({M})B_{S_{1}}(N)|}{|B_{S_{1}}(N)|}=1. Note that lim supM|BS2(M)|M=c1\limsup\limits_{M\rightarrow\infty}\dfrac{|B_{S_{2}}(M)|}{{M}}=c_{1}. We can get the desired result. ∎

We next give the following covering lemma which was proved by Linedentrauss [12]. This lemma is crucial in the proof of step 2 of Theorem 2.1.

Lemma 3.1.

[12] For any δ(0,1/100)\delta\in(0,1/100), C>0C>0 and finite DGD\subset G, let MM\in\mathbb{N} be sufficiently large (depending only on δ\delta, CC and DD). Let Fi,jF_{i,j} be an array of a finite subsets of GG where i=1,,Mi=1,\cdots,M and j=1,,ij=1,\cdots,\ell_{i}, such that

  • For every ii, F¯i,={Fi,j}j=1i\overline{F}_{i,*}=\left\{F_{i,j}\right\}_{j=1}^{\ell_{i}} satisfies

    |k<kFi,k1Fi,k|C|Fi,k|,fork=2,,i.\displaystyle|\bigcup\limits_{k^{\prime}<k}F_{i,k^{\prime}}^{-1}F_{i,k}|\leq C|F_{i,k}|,\text{for}~{}k=2,\cdots,\ell_{i}.

    Denote Fi,=F¯i,F_{i,*}=\bigcup\overline{F}_{i,*}.

  • The finite set sequence Fi,F_{i,*} satisfy that for every 1iM1\leq i\leq M and every 1ki1\leq k\leq\ell_{i},

    |i<iDFi,1Fi,k|(1+δ)|Fi,k|.\displaystyle|\bigcup\limits_{i^{\prime}<i}DF_{i^{\prime},*}^{-1}F_{i,k}|\leq(1+\delta)|F_{i,k}|.

Assume that Ai,jA_{i,j} is another array of finite subset of GG with Fi,jAi,jFF_{i,j}A_{i,j}\subset F for some finite subset FF of GG. Let Ai,=jAi,jA_{i,*}=\cup_{j}A_{i,j} and

α=min1iM|DAi,||F|.\displaystyle\alpha=\dfrac{\min\limits_{1\leq i\leq M}|DA_{i,*}|}{|F|}.

Then the collection of subsets of FF,

F¯={Fi,ja:1iM,1jiandaAi,j}\displaystyle\overline{F}=\left\{F_{i,j}a:1\leq i\leq M,1\leq j\leq\ell_{i}~{}\text{and}~{}a\in A_{i,j}\right\}

has a subfamily \mathcal{F} that is 10δ1/410\delta^{1/4}-disjoint such that

||(αδ1/4)|F|.\displaystyle|\cup\mathcal{F}|\geq(\alpha-\delta^{1/4})|F|.

Step 2: mdim¯H(𝒳,{BS1(N)},d)c2htop(𝒳,G)\underline{{\rm mdim}}_{H}(\mathcal{X},\left\{B_{S_{1}}(N)\right\},d)\geq c_{2}\cdot h_{top}(\mathcal{X},G).

Proof.

Set s=c2htop(𝒳,G),h=htop(𝒳,G).s=c_{2}\cdot h_{top}(\mathcal{X},G),~{}h=h_{top}(\mathcal{X},G). We suppose mdim¯H(𝒳,{BS1(n)},d)<s\underline{\rm mdim}_{H}(\mathcal{X},\left\{B_{S_{1}}(n)\right\},d)<s. We would like to get a contradiction. Take ϵ\epsilon such that sϵϵ22<1s\epsilon-\frac{\epsilon^{2}}{2}<1 and

mdim¯H(𝒳,{BS1(n)},d)<s(h+2)ϵ.\displaystyle\underline{\rm mdim}_{H}(\mathcal{X},\left\{B_{S_{1}}(n)\right\},d)<s-(h+2)\epsilon.

Let D={eG}GD=\left\{e_{G}\right\}\subset G and C>0C>0 be the constant in the tempered condition for the Fϕ\philner sequence {BS(n)}\left\{B_{S}(n)\right\}. We choose 0<δ<min{1/100,ϵ}0<\delta<\min\left\{1/100,\epsilon\right\} small enough and a natural number MM satisfying the following conditions:

H(δ)+δlogM<ϵ3/4c2,|A|δ<2ϵ3/4c2,1/(110δ1/4)<1+ϵ2.\displaystyle H(\delta)+\delta\log M<\epsilon^{3}/4c_{2},~{}|A|^{\delta}<2^{\epsilon^{3}/4c_{2}},~{}1/(1-10\delta^{1/4})<1+\epsilon^{2}. (3.1)

Here H(δ)=δlogδ(1δ)log(1δ)H(\delta)=-\delta\log\delta-(1-\delta)\log(1-\delta). (Recall that the base of the logarithm is two.) Take MlogC/δ2M\approx\log C/\delta^{2} to satisfy the requirement of Lemma 3.1 corresponding to δ,D\delta,D and CC. Then we can choose a sufficiently small δ\delta satisfying the second and third conditions.

We choose a natural number r0r_{0} such that

r0>1δ(110δ1/4).\displaystyle r_{0}>\dfrac{1}{\delta(1-10\delta^{1/4})}. (3.2)

and

(s(h+2)ϵ)r<(s(h+1)ϵ)(r1),|BS2(r)|>r(c2ϵ)\displaystyle(s-(h+2)\epsilon)r<(s-(h+1)\epsilon)(r-1),~{}~{}|B_{S_{2}}(r)|>r(c_{2}-\epsilon) (3.3)

for every rr0r\geq r_{0}.

From mdim¯H(𝒳,{BS1(N)},d)<s(h+2)ϵ\underline{\rm mdim}_{H}(\mathcal{X},\left\{B_{S_{1}}(N)\right\},d)<s-(h+2)\epsilon, for each i=1,2,Mi=1,2,\cdots M, we can find Ni>0N_{i}>0 satisfying

1|BS1(Ni)|dimH(𝒳,dBS1(Ni)σ1,2r0)<s(h+2)ϵ.\displaystyle\dfrac{1}{|B_{S_{1}}(N_{i})|}{\rm dim}_{H}(\mathcal{X},d_{B_{S_{1}}(N_{i})}^{\sigma_{1}},2^{-r_{0}})<s-(h+2)\epsilon.

Also, we let the sequence {Ni}\left\{N_{i}\right\} be increasing. This implies that there exists a covering 𝒳=j=1liEji\mathcal{X}=\cup_{j=1}^{l_{i}}E_{j}^{i} satisfying

diam(Eji,dBS1(Ni)σ1)<2r0(1jli),j=1li(diam(Eji,dBS1(Ni)σ1))(s(h+2)ϵ)|BS1(Ni)|<1.\displaystyle{\rm diam}(E_{j}^{i},d_{B_{S_{1}}(N_{i})}^{\sigma_{1}})<2^{-r_{0}}(1\leq j\leq l_{i}),\sum_{j=1}^{l_{i}}({\rm diam}(E_{j}^{i},~{}d_{B_{S_{1}}(N_{i})}^{\sigma_{1}}))^{(s-(h+2)\epsilon)|B_{S_{1}}(N_{i})|}<1.

Set 2rji=diam(Eji,dANiσ1).2^{-r_{j}^{i}}={\rm diam}(E_{j}^{i},d_{A_{N_{i}}}^{\sigma_{1}}). Then rjir_{j}^{i} is a natural number with rji>r0r_{j}^{i}>r_{0}. Choose xjiEjix_{j}^{i}\in E_{j}^{i}, let Cji=πFni,j1(πFni,j(xji))C_{j}^{i}=\pi_{F_{n_{i,j}}}^{-1}\left(\pi_{F_{n_{i,j}}}(x_{j}^{i})\right) be a cylinder over

Fni,j:={BS1(rji1)BS1(Ni)×BS2(rji1)}.F_{n_{i,j}}:=\left\{B_{S_{1}}(r_{j}^{i}-1)B_{S_{1}}(N_{i})\times B_{S_{2}}(r_{j}^{i}-1)\right\}.

Then EjiCjiE_{j}^{i}\subset C_{j}^{i} and 𝒳=j=1iCji\mathcal{X}=\cup_{j=1}^{\ell_{i}}C_{j}^{i}. For each 1iM1\leq i\leq M, we can get {Fni,1,,Fni,li}\{F_{n_{i,1}},\cdots,F_{n_{i,l_{i}}}\}. Without loss of generality, let r1i<r2i<<rliir_{1}^{i}<r_{2}^{i}<\cdots<r_{l_{i}}^{i}. Then let {Fi,1,,Fi,li}\left\{F_{i,1},\cdots,F_{i,l_{i}}\right\} in Lemma 3.1 be as

{Fi,1,,Fi,li}={Fni,1,,Fni,li}.\displaystyle\left\{F_{i,1},\cdots,F_{i,l_{i}}\right\}=\{F_{n_{i,1}},\cdots,F_{n_{i,l_{i}}}\}.

Since |BS2(r)|>r(c2ϵ)|B_{S_{2}}(r)|>r(c_{2}-\epsilon) and s(h+1)ϵ<(sϵ)c2ϵc2s-(h+1)\epsilon<(s-\epsilon)\frac{c_{2}-\epsilon}{c_{2}}, we have

|Fi,j|=|BS1(rji1)BS1(Ni)×BS2(rji1)||BS1(Ni)||BS2(rji1)|,\displaystyle|F_{i,j}|=|B_{S_{1}}(r_{j}^{i}-1)B_{S_{1}}(N_{i})\times B_{S_{2}}(r_{j}^{i}-1)|\geq|B_{S_{1}}(N_{i})||B_{S_{2}}(r_{j}^{i}-1)|,

and

1c2(sϵ)|Fi,j|\displaystyle\dfrac{1}{c_{2}}(s-\epsilon)|F_{i,j}| 1c2(sϵ)|BS1((Ni)||BS2(rji1)|\displaystyle\geq\dfrac{1}{c_{2}}(s-\epsilon)|B_{S_{1}}((N_{i})||B_{S_{2}}(r_{j}^{i}-1)|
>(sϵ)|BS1((Ni)|((rji1)(c2ϵ)c2)\displaystyle>(s-\epsilon)|B_{S_{1}}((N_{i})|\left(\frac{(r_{j}^{i}-1)(c_{2}-\epsilon)}{c_{2}}\right)
>(s(h+1)ϵ)|BS1(Ni)|(rji1)\displaystyle>(s-(h+1)\epsilon)|B_{S_{1}}(N_{i})|(r_{j}^{i}-1)
>(s(h+2)ϵ)|BS1(Ni)|rji.(by3.3)\displaystyle>(s-(h+2)\epsilon)|B_{S_{1}}(N_{i})|r_{j}^{i}.~{}~{}(\text{by}~{}\ref{cd})

Hence

21c2(sϵ)|Fi,j|<2(s(h+2)ϵ)|BS1(Ni)|rji=diam(Eji,dBS1(Ni)σ1)(s(h+2)ϵ)|BS1(Ni)|.\displaystyle 2^{-\frac{1}{c_{2}}(s-\epsilon)|F_{i,j}|}<2^{-(s-(h+2)\epsilon)|B_{S_{1}}(N_{i})|r_{j}^{i}}={\rm diam}(E_{j}^{i},d_{B_{S_{1}}(N_{i})}^{\sigma_{1}})^{(s-(h+2)\epsilon)|B_{S_{1}}(N_{i})|}.

It follows that

j=1li21c2(sϵ)|Fi,j|j=1li(diam(Eji,dANiσ1))(s(h+2)ϵ)|BS1(Ni)|<1.\displaystyle\sum\limits_{j=1}^{l_{i}}2^{-\frac{1}{c_{2}}(s-\epsilon)|F_{i,j}|}\leq\sum\limits_{j=1}^{l_{i}}({\rm diam}(E_{j}^{i},~{}d_{A_{N_{i}}}^{\sigma_{1}}))^{(s-(h+2)\epsilon)|B_{S_{1}}(N_{i})|}<1. (3.4)

For any x𝒳x\in\mathcal{X} and sufficiently large NN (independent on xx), let

Ai,j={aBS(N):Fi,jaBS(N)andσaxCji}.\displaystyle A_{i,j}=\left\{a\in B_{S}(N):F_{i,j}a\subset B_{S}(N)~{}\text{and}~{}\sigma^{a}x\in C_{j}^{i}\right\}.

We note here that Ai,jA_{i,j} depends on xx. For any gBS(N)B(BS(N),Fi,)g\in B_{S}(N)\setminus B(B_{S}(N),F_{i,*}), we have Fi,gBS(N)F_{i,*}g\subset B_{S}(N). Then Fi,jgBS(N)F_{i,j}g\subset B_{S}(N) for each 1jli1\leq j\leq l_{i}. Since {Cji}j=1li\left\{C_{j}^{i}\right\}_{j=1}^{l_{i}} cover 𝒳\mathcal{X}, there exists CjiC_{j}^{i} such that σgxCji\sigma^{g}x\in C_{j}^{i}. This implies gAi,jg\in A_{i,j} and BS(N)B(BS(N),Fi,)Ai,B_{S}(N)\setminus B(B_{S}(N),F_{i,*})\subset A_{i,*}. Let NN be sufficiently large so that BS(N)B_{S}(N) is (Fi,,δ)(F_{i,*},\delta)-invariant for all 1iM1\leq i\leq M, 1jli1\leq j\leq l_{i}, then

α=min1iM|DAi,||BS(N)|>1δ.\displaystyle\alpha=\dfrac{\min_{1\leq i\leq M}|DA_{i,*}|}{|B_{S}(N)|}>1-\delta.

We note that the array {Fi,j}\left\{F_{i,j}\right\} meet the first requirement in Lemma 3.1 because of the tempered condition of {BS(N)}\left\{B_{S}(N)\right\}. For the second requirement, we need to choose NiN_{i} large enough compared with rli1i1r_{l_{i-1}}^{i-1} for every 2iM2\leq i\leq M. Now we can apply Lemma 3.1 to

¯={Fi,ja:1iM,1jliandaAi,j},\overline{\mathcal{F}}=\left\{F_{i,j}a:1\leq i\leq M,1\leq j\leq l_{i}~{}\text{and}~{}a\in A_{i,j}\right\},

we can find a subcollection \mathcal{F} that is 10δ1/410\delta^{1/4}-disjoint such that

||(1δδ1/4)|BS(N)|.\displaystyle|\cup\mathcal{F}|\geq(1-\delta-\delta^{1/4})|B_{S}(N)|. (3.5)

The element in \mathcal{F} will be denoted by Fi,jaF_{i,j}a. Denote by A¯\overline{A} the collection of aa’s such that Fi,jaF_{i,j}a occurs in \mathcal{F}. The cardinality of A¯\overline{A} is no more than the cardinality of the subcollection \mathcal{F}. Then |A¯||||\overline{A}|\leq|\mathcal{F}|. Note that \mathcal{F} is 10δ1/410\delta^{1/4}-disjoint, we have

Fi,ja|Fi,ja|1110δ1/4||1110δ1/4|BS(N)|.\displaystyle\sum\limits_{F_{i,j}a\in\mathcal{F}}|F_{i,j}a|\leq\dfrac{1}{1-10\delta^{1/4}}|\cup\mathcal{F}|\leq\dfrac{1}{1-10\delta^{1/4}}|B_{S}(N)|.

Then

|A¯|||1min|Fi,j|1110δ1/4|BS(N)|δ|BS(N)|.(by(3.2))\displaystyle|\overline{A}|\leq|\mathcal{F}|\leq\dfrac{1}{\min{|F_{i,j}|}}\cdot\dfrac{1}{1-10\delta^{1/4}}|B_{S}(N)|\leq\delta|B_{S}(N)|.~{}~{}(\text{by}~{}(\ref{1}))

Set

D(x)={(a,i,j):aAi,j1iM,1jisuch thatFi,ja}.\displaystyle D(x)=\left\{(a,i,j):a\in A_{i,j}~{}1\leq i\leq M,~{}1\leq j\leq\ell_{i}~{}\text{such that}~{}F_{i,j}a\in\mathcal{F}\right\}.

By the above argument, if N>0N>0 is sufficiently large, we have the following conclusion:

  • (1)

    For each (a,i,j)D(x)(a,i,j)\in D(x), we have σaxCji\sigma^{a}x\in C_{j}^{i} and Fi,jaF_{i,j}a\subset\mathcal{F}.

  • (2)

    If (a,i,j)(a,i,j) and (a,i,j)(a^{\prime},i^{\prime},j^{\prime}) are two different element of D(x)D(x), then Fi,j,aF_{i,j,}a and Fi,jaF_{i^{\prime},j^{\prime}}a^{\prime} is 10δ1/410\delta^{1/4} disjoint.

  • (3)

    |(a,i,j)D(x)Fi,ja|(1δδ1/4)|BS(N)||\bigcup\limits_{(a,i,j)\in D(x)}F_{i,j}a|\geq(1-\delta-\delta^{1/4})|B_{S}(N)|.

For each x𝒳x\in\mathcal{X} we define D¯(x)BS(N)×[1,M]\underline{D}(x)\subset B_{S}(N)\times[1,M] as the set of (a,i)(a,i) such that there exists j[1,i]j\in[1,\ell_{i}] with (a,i,j)D(x)(a,i,j)\in D(x). (Note that the sets D(x)D(x) and D¯(x)\underline{D}(x) depend on NN). For simplicity of notation, we write D(x)D(x) and D¯(x)\underline{D}(x) instead of DN(x)D_{N}(x) and D¯N(x)\underline{D}_{N}(x).

Claim 1.

If NN is sufficiently large then the number of possibilities of D¯(x)\underline{D}(x) is bounded as follows:

|{D¯(x)|x𝒳}|<2(ϵ3/4c2)|BS(N)|.\displaystyle|\left\{\underline{D}(x)|x\in\mathcal{X}\right\}|<2^{(\epsilon^{3}/4c_{2})|B_{S}(N)|}.
Proof.

It is well-known that

(nk)2nH(k/n).\tbinom{n}{k}\leq 2^{nH(k/n)}.

Since |A¯|δ|BS(N)||\overline{A}|\leq\delta|B_{S}(N)|, then the number of possibilities of D¯(x)\underline{D}(x) is bounded by

k=1δ|BS(N)|(|BS(N)|k)×Mδ|BS(N)|\displaystyle\sum\limits_{k=1}^{\delta|B_{S}(N)|}\tbinom{|B_{S}(N)|}{k}\times M^{\delta|B_{S}(N)|} |BS(N)|2|BS(N)|H(δ)×2|BS(N)|δlogM\displaystyle\leq|B_{S}(N)|\cdot 2^{|B_{S}(N)|H(\delta)}\times 2^{|B_{S}(N)|\delta\log M}
=|BS(N)|2|BS(N)|(H(δ)+δlogM).\displaystyle=|B_{S}(N)|\cdot 2^{|B_{S}(N)|(H(\delta)+\delta\log M)}.

We assume H(δ)+δlogM<(ϵ3/4c2)H(\delta)+\delta\log M<(\epsilon^{3}/4c_{2}) in (3.1). Hence, if NN is sufficiently large then

|BS(N)|2|BS(N)|(H(δ)+δlogM)<2(ϵ3/4c2)|BS(N)|.\displaystyle|B_{S}(N)|\cdot 2^{|B_{S}(N)|(H(\delta)+\delta\log M)}<2^{(\epsilon^{3}/4c_{2})|B_{S}(N)|}.

Take a subset EBS(N)×[1,M]E\subset B_{S}(N)\times[1,M] such that there exists x𝒳x\in\mathcal{X} with D¯(x)=E\underline{D}(x)=E. We denote by 𝒳E\mathcal{X}_{E} the set of x𝒳x\in\mathcal{X} with D¯(x)=E\underline{D}(x)=E. Let E={(a1,i1),(a2,i2),,(ak,ik)}E=\left\{(a_{1},i_{1}),(a_{2},i_{2}),\cdots,(a_{k},i_{k})\right\}.

Claim 2.
|πBS(N)(𝒳E)|21c2(sϵ)(1+ϵ2)|BS(N)||A|(δ+δ1/4)|BS(N)|.\displaystyle|\pi_{B_{S}(N)}(\mathcal{X}_{E})|\cdot 2^{-\frac{1}{c_{2}}(s-\epsilon)(1+\epsilon^{2})|B_{S}(N)|}\leq|A|^{(\delta+\delta^{1/4})|B_{S}(N)|}.
Proof.

For 𝐣=(j1,,jk)[1,i1]××[1,ik]{\bf j}=(j_{1},\cdots,j_{k})\in[1,\ell_{i_{1}}]\times\cdots\times[1,\ell_{i_{k}}], we denote by 𝒳E,𝐣𝒳E\mathcal{X}_{E,{\bf j}}\subset\mathcal{X}_{E} the set of x𝒳Ex\in\mathcal{X}_{E} with D(x)={(a1,i1,j1),,(ak,ik,jk)}D(x)=\left\{(a_{1},i_{1},j_{1}),\cdots,(a_{k},i_{k},j_{k})\right\}. We have σam(x)Cjmim\sigma^{a_{m}}(x)\in C_{j_{m}}^{i_{m}} for x𝒳E,𝐣x\in\mathcal{X}_{E,{\bf j}}. Therefore we have

|πBS(N)(𝒳E,𝐣)||A|(δ+δ1/4)|BS(N)|.\displaystyle|\pi_{B_{S}(N)}(\mathcal{X}_{E,{\bf j}})|\leq|A|^{(\delta+\delta^{1/4})|B_{S}(N)|}.

Here the inequality follows from (3.5). This follows from

|πBS(N)(𝒳E)|21c2(sϵ)(1+ϵ2)|BS(N)|\displaystyle|\pi_{B_{S}(N)}(\mathcal{X}_{E})|\cdot 2^{-\frac{1}{c_{2}}(s-\epsilon)(1+\epsilon^{2})|B_{S}(N)|} =𝐣|πBS(N)(𝒳E,𝐣)|21c2(sϵ)(1+ϵ2)|BS(N)|\displaystyle=\sum\limits_{{\bf j}}|\pi_{B_{S}(N)}(\mathcal{X}_{E,\bf j})|\cdot 2^{-\frac{1}{c_{2}}(s-\epsilon)(1+\epsilon^{2})|B_{S}(N)|}
𝐣|A|(δ+δ1/4)|BS(N)|21c2(sϵ)(1+ϵ2)|BS(N)|.\displaystyle\leq\sum\limits_{{\bf j}}|A|^{(\delta+\delta^{1/4})|B_{S}(N)|}2^{-\frac{1}{c_{2}}(s-\epsilon)(1+\epsilon^{2})|B_{S}(N)|}.

Take 𝐣=(j1,,jk)[1,i1]××[1,ik]{\bf j}=(j_{1},\cdots,j_{k})\in[1,\ell_{i_{1}}]\times\cdots\times[1,\ell_{i_{k}}] with 𝒳E,𝐣\mathcal{X}_{E,{\bf j}}\neq\emptyset. Since

Fi,ja|Fi,ja|1110δ1/4|BS(N)|<(1+ϵ2)|BS(N)|by(3.1),\displaystyle\sum\limits_{F_{i,j}a\in\mathcal{F}}|F_{i,j}a|\leq\dfrac{1}{1-10\delta^{1/4}}|B_{S}(N)|<(1+\epsilon^{2})|B_{S}(N)|~{}\text{by}~{}(\ref{da}),

we have

21c2(sϵ)(1+ϵ2)|BS(N)|m=1k21c2(sϵ)|Fim,jm|.\displaystyle 2^{-\frac{1}{c_{2}}(s-\epsilon)(1+\epsilon^{2})|B_{S}(N)|}\leq\prod_{m=1}^{k}2^{-\frac{1}{c_{2}}(s-\epsilon)|F_{i_{m},j_{m}}|}.

Moreover

|πBS(N)(𝒳E)|21c2(sϵ)(1+ϵ2)|BS(N)|𝐣|A|(δ+δ1/4)|BS(N)|m=1k21c2(sϵ)|Fim,jm|.\displaystyle|\pi_{B_{S}(N)}(\mathcal{X}_{E})|\cdot 2^{-\frac{1}{c_{2}}(s-\epsilon)(1+\epsilon^{2})|B_{S}(N)|}\leq\sum\limits_{{\bf j}}|A|^{(\delta+\delta^{1/4})|B_{S}(N)|}\prod_{m=1}^{k}2^{-\frac{1}{c_{2}}(s-\epsilon)|F_{i_{m},j_{m}}|}.

The right-hand side isn’t more than

|A|(δ+δ1/4)|BS(N)|(j=1li121c2(sϵ)|Fi1,j|)××(j=1lik21c2(sϵ)|Fik,j|).\displaystyle|A|^{(\delta+\delta^{1/4})|B_{S}(N)|}\left(\sum\limits_{j=1}^{l_{i_{1}}}2^{-\frac{1}{c_{2}}(s-\epsilon)|F_{i_{1},j}|}\right)\times\cdots\times\left(\sum\limits_{j=1}^{l_{i_{k}}}2^{-\frac{1}{c_{2}}(s-\epsilon)|F_{i_{k},j}|}\right).

According to (3.4), we have

|πBS(N)(𝒳E)|21c2(sϵ)(1+ϵ2)|BS(N)||A|(δ+δ1/4)|BS(N)|.\displaystyle|\pi_{B_{S}(N)}(\mathcal{X}_{E})|\cdot 2^{-\frac{1}{c_{2}}(s-\epsilon)(1+\epsilon^{2})|B_{S}(N)|}\leq|A|^{(\delta+\delta^{1/4})|B_{S}(N)|}.

We can now proceed to prove Theorem 2.1.

|πBS(N)(𝒳E)|21c2(sϵ)(1+ϵ2)|BS(N)|\displaystyle|\pi_{B_{S}(N)}(\mathcal{X}_{E})|\cdot 2^{-\frac{1}{c_{2}}(s-\epsilon)(1+\epsilon^{2})|B_{S}(N)|} |A|(δ+δ1/4)|BS(N)|\displaystyle\leq|A|^{(\delta+\delta^{1/4})|B_{S}(N)|}
2|BS(N)|ϵ3/4c2.by(3.1)\displaystyle\leq 2^{|B_{S}(N)|\epsilon^{3}/4c_{2}}.~{}\text{by}~{}(\ref{da})

If NN is sufficiently large, the number of choices EBS(N)×[1,M]E\subset B_{S}(N)\times[1,M] such that 𝒳E\mathcal{X}_{E}\neq\emptyset is not greater than 2(ϵ3/4c2)|BS(N)|2^{(\epsilon^{3}/4c_{2})|B_{S}(N)|}. Hence

|πBS(N)(𝒳)|21c2(sϵ)(1+ϵ2)|BS(N)|\displaystyle|\pi_{B_{S}(N)}(\mathcal{X})|\cdot 2^{-\frac{1}{c_{2}}(s-\epsilon)(1+\epsilon^{2})|B_{S}(N)|} =Ewith𝒳E|πBS(N)(𝒳E)|21c2(sϵ)(1+ϵ2)|BS(N)|\displaystyle=\sum\limits_{E~{}\text{with}~{}\mathcal{X}_{E}\neq\emptyset}|\pi_{B_{S}(N)}(\mathcal{X}_{E})|\cdot 2^{-\frac{1}{c_{2}}(s-\epsilon)(1+\epsilon^{2})|B_{S}(N)|}
<2(ϵ3/4c2)|BS(N)|×2(ϵ3/4c2)|BS(N)|\displaystyle<2^{(\epsilon^{3}/4c_{2})|B_{S}(N)|}\times 2^{(\epsilon^{3}/4c_{2})|B_{S}(N)|}
=2(ϵ3/2c2)|BS(N)|.\displaystyle=2^{(\epsilon^{3}/2c_{2})|B_{S}(N)|}.

Then

log|πBS(N)(𝒳)||BS(N)|<1c2(sϵ+sϵ212ϵ3).\displaystyle\dfrac{\log|\pi_{B_{S}(N)}(\mathcal{X})|}{|B_{S}(N)|}<\dfrac{1}{c_{2}}(s-\epsilon+s\epsilon^{2}-\frac{1}{2}\epsilon^{3}).

Letting NN\rightarrow\infty, we have

htop(𝒳,G)1c2(sϵ+sϵ212ϵ3)<1c2s=htop(𝒳,G)(bysϵϵ22<1).\displaystyle h_{top}(\mathcal{X},G)\leq\dfrac{1}{c_{2}}(s-\epsilon+s\epsilon^{2}-\frac{1}{2}\epsilon^{3})<\dfrac{1}{c_{2}}s=h_{top}(\mathcal{X},G)~{}(\text{by}~{}s\epsilon-\frac{\epsilon^{2}}{2}<1).

This is a contradiction.

4 Proof of Theorem 2.2

4.1 Mutual information

Here we prepare some basics of mutual information. Let (Ω,)(\Omega,\mathbb{P}) be a probability space. Let 𝒳\mathcal{X} and 𝒴\mathcal{Y} be measurable spaces, and let X:Ω𝒳X:\Omega\rightarrow\mathcal{X} and Y:Ω𝒴Y:\Omega\rightarrow\mathcal{Y} be measurable maps. We want to define their mutual information I(X;Y)I(X;Y) as the measure of the amount of information XX and YY share. For more details and properties of mutual information, one is referred to [5].

Case 1: Suppose 𝒳\mathcal{X} and 𝒴\mathcal{Y} are finite sets. Then we define

I(X;Y)=H(X)+H(Y)H(X,Y)=H(X)H(X|Y).\displaystyle I(X;Y)=H(X)+H(Y)-H(X,Y)=H(X)-H(X|Y).

More explicitly

I(X;Y)=xX,yY(X=x,Y=y)log(X=x,Y=y)(X=x)(Y=y).I(X;Y)=\sum\limits_{x\in X,y\in Y}\mathbb{P}(X=x,Y=y)\log\dfrac{\mathbb{P}(X=x,Y=y)}{\mathbb{P}(X=x)\mathbb{P}(Y=y)}.

Here we use the convention that 0log(0/a)=00\log(0/a)=0 for all a0a\leq 0.

Case 2: In general, take measurable maps f:𝒳Af:\mathcal{X}\rightarrow A and g:𝒴Bg:\mathcal{Y}\rightarrow B into finite sets AA and BB. Then we can consider I(fX;gY)I(f\circ X;g\circ Y) defined by Case 1. We define I(X;Y)I(X;Y) as the supremum of I(fX;gY)I(f\circ X;g\circ Y) over all finite-range measurable maps ff and gg defined on 𝒳\mathcal{X} and 𝒴\mathcal{Y}. This definition is compatible with Case 1 when 𝒳\mathcal{X} and 𝒴\mathcal{Y} are finite sets.

Lemma 4.1 (Date-Processing inequality).

Let XX and YY be random variables taking values in measurable spaces 𝒳\mathcal{X} and 𝒴\mathcal{Y} respectively. If f:𝒴𝒵f:\mathcal{Y}\rightarrow\mathcal{Z} is a measurable map then I(X;f(Y))I(X;Y)I(X;f(Y))\leq I(X;Y).

4.2 Rate distortion theory

We introduce rate distortion function and dimension. Let (𝒳,G)(\mathcal{X},G) be a dynamical system with a distance dd on 𝒳\mathcal{X}. Take an invariant probability μM(𝒳,G)\mu\in M(\mathcal{X},G). For a positive number ϵ\epsilon and FF(G)F\in F(G), we define Rμ(ϵ,F)R_{\mu}(\epsilon,F) as the infimum of

I(X,Y),\displaystyle{I(X,Y)}, (4.1)

XX and Y=(Y0,,Yn1)Y=(Y_{0},\cdots,Y_{n-1}) are random variables defined on some probability space (Ω,)(\Omega,\mathbb{P}) such that

  • XX takes values in 𝒳\mathcal{X} and its law is given by μ\mu.

  • Each YgY_{g} takes values in 𝒳\mathcal{X} and Y=(Yg)gFY=(Y_{g})_{g\in F} approximates the process (gX)gF(gX)_{g\in F} in the sense that

    𝔼(1|F|gFd(gX,Yg))<ϵ.\displaystyle\mathbb{E}\left(\dfrac{1}{|F|}\sum\limits_{g\in F}d(gX,Y_{g})\right)<\epsilon. (4.2)

Here 𝔼\mathbb{E} is the expectation with respect to the probability measure \mathbb{P}. Note that Rμ(ϵ,F)R_{\mu}(\epsilon,F) depends on the distance dd although it is not explicitly written in the notation.

We define the rate distortion function

Rμ({BS(N)},ϵ)=lim supNRμ(ϵ,BS(N))|BS(N)|.R_{\mu}(\left\{B_{S}(N)\right\},\epsilon)=\limsup\limits_{N\rightarrow\infty}\dfrac{R_{\mu}(\epsilon,B_{S}(N))}{|B_{S}(N)|}.

The upper and lower rate distortion dimensions are defined by

rdim¯(𝒳,{BS(N)},d,μ)=lim supϵ0Rμ({BS(N)},ϵ)log(1/ϵ),\displaystyle\overline{\rm rdim}(\mathcal{X},\left\{B_{S}(N)\right\},d,\mu)=\limsup\limits_{\epsilon\rightarrow 0}\dfrac{R_{\mu}(\left\{B_{S}(N)\right\},\epsilon)}{\log(1/\epsilon)},
rdim¯(𝒳,{BS(N)},d,μ)=lim infϵ0Rμ({BS(N)},ϵ)log(1/ϵ).\displaystyle\underline{\rm rdim}(\mathcal{X},\left\{B_{S}(N)\right\},d,\mu)=\liminf\limits_{\epsilon\rightarrow 0}\dfrac{R_{\mu}(\left\{B_{S}(N)\right\},\epsilon)}{\log(1/\epsilon)}.

4.3 Proof of Theorem 2.2

The proof of Theorem 2.2 is divided into two steps.

Step 1: rdim¯(𝒳,σ1,{BS1(N)},d,μ)chμ(𝒳,G)\overline{\rm rdim}(\mathcal{X},\sigma_{1},\left\{B_{S_{1}}(N)\right\},d,\mu)\leq c\cdot h_{\mu}(\mathcal{X},G).

Proof.

Let XX be a random variable taking values in 𝒳\mathcal{X} and obeying μ\mu. Let 0<ϵ<10<\epsilon<1 and choose M>0M>0 such that 2M<ϵ2M+12^{-M}<\epsilon\leq 2^{-M+1}. Given N>0N>0 and for every point xπBS1(M)BS1(N)×BS2(M)(𝒳)x\in\pi_{B_{S_{1}}(M)B_{S_{1}}(N)\times B_{S_{2}}(M)}(\mathcal{X}) we take q(x)𝒳q(x)\in\mathcal{X} satisfying πBS1(M)BS1(N)×BS2(M)(q(x))=x\pi_{B_{S_{1}}(M)B_{S_{1}}(N)\times B_{S_{2}}(M)}(q(x))=x. Let X=q(πBS1(M)BS1(N)×BS2(M)(𝒳))X^{\prime}=q(\pi_{B_{S_{1}}(M)B_{S_{1}}(N)\times B_{S_{2}}(M)}(\mathcal{X})) and Y=(σ1,gX)gBS1(N)Y=(\sigma_{1,g}X^{\prime})_{g\in B_{S_{1}}(N)}, we conclude that

1|BS1(N)|gBS1(N)d(σ1,gX,Yg)=1|BS1(N)|gBS1(N)d(σ1,gX,σ1,gX)2M<ϵ,\displaystyle\dfrac{1}{|B_{S_{1}}(N)|}\sum\limits_{g\in B_{S_{1}}(N)}d(\sigma_{1,g}X,Y_{g})=\dfrac{1}{|B_{S_{1}}(N)|}\sum\limits_{g\in B_{S_{1}}(N)}d(\sigma_{1,g}X,\sigma_{1,g}X^{\prime})\leq 2^{-M}<\epsilon,

and

I(X;Y)H(Y)=H(X)=H((Xg)gBS1(M)BS1(N)×BS2(M)).\displaystyle I(X;Y)\leq H(Y)=H(X^{\prime})=H\left((X_{g^{\prime}})_{g^{\prime}\in{B_{S_{1}}(M)B_{S_{1}}(N)\times B_{S_{2}}(M)}}\right).

This yields that

Rμ({BS1(N)},ϵ)I(X;Y)|BS1(N)|H((Xg)gBS1(M)BS1(N)×BS2(M))|BS1(N)|,\displaystyle R_{\mu}(\left\{B_{S_{1}}(N)\right\},\epsilon)\leq\dfrac{I(X;Y)}{|B_{S_{1}}(N)|}\leq\dfrac{H\left((X_{g^{\prime}})_{g^{\prime}\in{B_{S_{1}}(M)B_{S_{1}}(N)\times B_{S_{2}}(M)}}\right)}{|B_{S_{1}}(N)|},

and

Rμ({BS1(N)},ϵ)log(1/ϵ)H((Xg)gπBS1(M)BS1(N)×BS2(M))|BS1(M)BS1(N)×BS2(M)|×|BS1(M)BS1(N)×BS2(M)||BS1(N)|(M1).\displaystyle\dfrac{R_{\mu}(\left\{B_{S_{1}}(N)\right\},\epsilon)}{\log(1/\epsilon)}\leq\dfrac{H\left((X_{g^{\prime}})_{g^{\prime}\in\pi_{B_{S_{1}}(M)B_{S_{1}}(N)\times B_{S_{2}}(M)}}\right)}{|B_{S_{1}}(M)B_{S_{1}}(N)\times B_{S_{2}}(M)|}\times\dfrac{|B_{S_{1}}(M)B_{S_{1}}(N)\times B_{S_{2}}(M)|}{|B_{S_{1}}(N)|(M-1)}.

Letting NN\rightarrow\infty and then take ϵ0\epsilon\rightarrow 0. Note that {BS1(N)}\left\{B_{S_{1}}(N)\right\} is a Fϕ\philner sequence, we get

limN|BS1(M)BS1(N)||BS1(N)|=1.\lim\limits_{N\rightarrow\infty}\dfrac{|B_{S_{1}}(M)B_{S_{1}}(N)|}{|B_{S_{1}}(N)|}=1.

Since limM|BS2(M)|M1=c\lim\limits_{M\rightarrow\infty}\dfrac{|B_{S_{2}}(M)|}{M-1}=c, then

rdim¯(𝒳,σ1,{BS1(N)},d,μ)chμ(𝒳,G).\displaystyle\overline{\rm rdim}(\mathcal{X},\sigma_{1},\left\{B_{S_{1}}(N)\right\},d,\mu)\leq c\cdot h_{\mu}(\mathcal{X},G).

For the proof of Theorem 2.2, we need the following lemma. The proof of this idea is adapted from [15] [4].

Lemma 4.2.

Let N1N\geq 1 and BB a finite set. Let X=(Xg)gBS1(N)X=(X_{g})_{g\in B_{S_{1}}(N)} and Y=(Yg)gBS1(N)Y=(Y_{g})_{g\in B_{S_{1}}(N)} be random variables taking values in BBS1(N)B^{B_{S_{1}}(N)} (namely, each XgX_{g} and YgY_{g} takes values in BB) such that for some 0<δ<1/20<\delta<1/2

𝔼(#{gBS1(N):XgYg})<δ|BS1(N)|.\displaystyle\mathbb{E}(\#\left\{g\in B_{S_{1}}(N):X_{g}\neq Y_{g}\right\})<\delta|B_{S_{1}}(N)|.

Then

I(X;Y)>H(X)|BS1(N)|H(δ)δ|BS1(N)|log|B|.\displaystyle I(X;Y)>H(X)-|B_{S_{1}}(N)|H(\delta)-\delta|B_{S_{1}}(N)|\log|B|.
Proof.

Let Zg=1{XgYg}Z_{g}=1_{\left\{X_{g}\neq Y_{g}\right\}} and Z={gBS1(N)|XgYg}Z=\left\{g\in B_{S_{1}}(N)|X_{g}\neq Y_{g}\right\}. We can identity ZZ with (Zg)gBS1(N)(Z_{g})_{g\in B_{S_{1}}(N)} and hence

H(Z)\displaystyle H(Z) gBS1(N)H(Zg)=gBS1(N)H(𝔼Zg)\displaystyle\leq\sum\limits_{g\in B_{S_{1}}(N)}H(Z_{g})=\sum\limits_{g\in B_{S_{1}}(N)}H(\mathbb{E}Z_{g})
|BS1(N)|H(1BS1(N)gBS1(N)𝔼Zg)<|BS1(N)|H(δ).\displaystyle\leq|B_{S_{1}}(N)|H\left(\dfrac{1}{B_{S_{1}}(N)}\sum\limits_{g\in B_{S_{1}}(N)}\mathbb{E}Z_{g}\right)<|B_{S_{1}}(N)|H(\delta).

Then H(Z)<|BS1(N)|H(δ)H(Z)<|B_{S_{1}}(N)|H(\delta). We expand H(X,Z|Y)H(X,Z|Y) in two ways:

H(X,Z|Y)=H(X|Y)+H(Z|X,Y)=H(Z|Y)+H(X|Y,Z).\displaystyle H(X,Z|Y)=H(X|Y)+H(Z|X,Y)=H(Z|Y)+H(X|Y,Z).

H(Z|X,Y)=0H(Z|X,Y)=0 because ZZ is determined by XX and YY. Form this, we conclude that

H(X|Y)=H(Z|Y)+H(Z|Y,Z)<|BS1(N)|H(δ)+H(X|Y,Z).\displaystyle H(X|Y)=H(Z|Y)+H(Z|Y,Z)<|B_{S_{1}}(N)|H(\delta)+H(X|Y,Z).

Noticing that

H(X|Y,Z)=EBS1(N)(Z=E)H(X|Y,Z=E).H(X|Y,Z)=\sum\limits_{E\subset B_{S_{1}}(N)}\mathbb{P}(Z=E)H(X|Y,Z=E).

For YY and the condition Z=EZ=E, the possibilities of XX is at most |B||E||B|^{|E|}. So H(X|Y,Z=E)|E|log|B|H(X|Y,Z=E)\leq|E|\log|B| and

H(X|Y,Z)\displaystyle H(X|Y,Z) EBS1(N)|E|(Z=E)log|B|\displaystyle\leq\sum\limits_{E\subset B_{S_{1}}(N)}|E|\mathbb{P}(Z=E)\log|B|
=𝔼|Z|log|B|\displaystyle=\mathbb{E}|Z|\cdot\log|B|
δ|BS1(N)|log|B|.\displaystyle\leq\delta|B_{S_{1}}(N)|\log|B|.

Thus H(X|Y)<|BS1(N)|H(δ)+δ|BS1(N)|log|B|H(X|Y)<|B_{S_{1}}(N)|H(\delta)+\delta|B_{S_{1}}(N)|\log|B| and

I(X;Y)>H(X)|BS1(N)|H(δ)δ|BS1(N)|log|B|.I(X;Y)>H(X)-|B_{S_{1}}(N)|H(\delta)-\delta|B_{S_{1}}(N)|\log|B|.

Step 2: rdim¯(𝒳,σ1,d,{BS1(N)},μ)chμ(𝒳,G)\underline{\rm rdim}(\mathcal{X},\sigma_{1},d,\left\{B_{S_{1}}(N)\right\},\mu)\geq c\cdot h_{\mu}(\mathcal{X},G).

Proof.

Let XX be a random variable taking values in 𝒳\mathcal{X} with Law(X)=μ{\rm Law}(X)=\mu. Given 0<ϵ<δ<1/20<\epsilon<\delta<1/2, N>0N>0 and let Y=(Yg)gBS1(N)Y=(Y_{g})_{g\in B_{S_{1}}(N)} be a random variable taking values in 𝒳BS1(N)\mathcal{X}^{B_{S_{1}}(N)} and satisfying

𝔼(1|BS1(N)|gBS1(N)d(σ1,gX,Yg))<ϵ.\displaystyle\mathbb{E}\left(\dfrac{1}{|B_{S_{1}}(N)|}\sum\limits_{g\in B_{S_{1}}(N)}d(\sigma_{1,g}X,Y_{g})\right)<\epsilon.

We will estimate the lower bound of I(X;Y)I(X;Y) . Choose M0M\geq 0 with δ2M1<ϵ<δ2M\delta 2^{-M-1}<\epsilon<\delta 2^{-M}. For gBS1(N)g\in B_{S_{1}}(N), set

Xg=π{g}×BS2(M)(X)=(X(g,g2))g2BS2(M),\displaystyle X_{g}^{\prime}=\pi_{\left\{g\right\}\times B_{S_{2}}(M)}(X)=(X_{(g,g_{2})})_{g_{2}\in B_{S_{2}}(M)},
Yg=π{1G1}×BS2(M)(Yg)=((Yg)(1G1,g2))g2BS2(M).\displaystyle Y_{g}^{\prime}=\pi_{\left\{1_{G_{1}}\right\}\times B_{S_{2}}(M)}(Y_{g})=((Y_{g})_{(1_{G_{1}},g_{2})})_{g_{2}\in B_{S_{2}}(M)}.

If XgYgX_{g}^{\prime}\neq Y_{g}^{\prime} for some gg then d(σ1,gX,Yg)2Md(\sigma_{1,g}X,Y_{g})\geq 2^{-M}. Therefore 𝔼d(σ1,gX,Yg)2M(XgYg)\mathbb{E}d(\sigma_{1,g}X,Y_{g})\geq 2^{-M}\mathbb{P}(X_{g}^{\prime}\neq Y_{g}^{\prime}) and

𝔼(#{gBS1(N):XgYg})\displaystyle\mathbb{E}(\#\left\{g\in B_{S_{1}}(N):X_{g}^{\prime}\neq Y_{g}^{\prime}\right\}) =gBS1(N)(XgYg)\displaystyle=\sum\limits_{g\in B_{S_{1}}(N)}\mathbb{P}(X_{g}^{\prime}\neq Y_{g}^{\prime})
2M𝔼(gBS1(N)d(σ1,gX,Yg))\displaystyle\leq 2^{M}\mathbb{E}\left(\sum\limits_{g\in B_{S_{1}}(N)}d(\sigma_{1,g}X,Y_{g})\right)
<2Mϵ|BS1(N)|δ|BS1(N)|.\displaystyle<2^{M}\epsilon|B_{S_{1}}(N)|\leq\delta|B_{S_{1}}(N)|.

Applying Lemma 4.2 to XgX_{g}^{\prime} and YgY_{g}^{\prime} with B=ABS2(M)B=A^{B_{S_{2}}(M)}:

I((Xg)gBS1(N);(Yg)gBS1(N))\displaystyle I\left((X_{g}^{\prime})_{g\in B_{S_{1}}(N)};(Y_{g}^{\prime})_{g\in B_{S_{1}}(N)}\right)
>H((Xg)gBS1(N))|BS1(N)|H(δ)δ|BS1(N)||BS2(M)|log|A|.\displaystyle>H((X_{g}^{\prime})_{g\in B_{S_{1}}(N)})-|B_{S_{1}}(N)|H(\delta)-\delta|B_{S_{1}}(N)||B_{S_{2}}(M)|\log|A|.

According to the data-processing inequality (Lemma 4.1),

I(X;Y)I((Xg)gBS1(N);(Yg)gBS1(N)).\displaystyle I(X;Y)\geq I((X_{g}^{\prime})_{g\in B_{S_{1}}(N)};(Y_{g}^{\prime})_{g\in B_{S_{1}}(N)}).

Then

I(X;Y)|BS1(N)|H{(Xg)gBS1(N)×BS2(M)}|BS1(N)|H(δ)δ|BS2(M)|log|A|.\displaystyle\dfrac{I(X;Y)}{|B_{S_{1}}(N)|}\geq\dfrac{H\left\{(X_{g^{\prime}})_{g^{\prime}\in B_{S_{1}}(N)\times B_{S_{2}}(M)}\right\}}{|B_{S_{1}}(N)|}-H(\delta)-\delta|B_{S_{2}}(M)|\log|A|.

This holds for any N>0N>0. So

Rμ({BS1(N)},ϵ)\displaystyle R_{\mu}(\left\{B_{S_{1}}(N)\right\},\epsilon) infNH{(Xg)gBS1(N)×BS2(M)}|BS1(N)|H(δ)δ|BS2(M)|log|A|\displaystyle\geq\inf_{N}\dfrac{H\left\{(X_{g^{\prime}})_{g^{\prime}\in B_{S_{1}}(N)\times B_{S_{2}}(M)}\right\}}{|B_{S_{1}}(N)|}-H(\delta)-\delta|B_{S_{2}}(M)|\log|A|
=limNH{(Xg)gBS1(N)×BS2(M)}|BS1(N)|H(δ)δ|BS2(M)|log|A|.\displaystyle=\lim\limits_{N\rightarrow\infty}\dfrac{H\left\{(X_{g^{\prime}})_{g^{\prime}\in B_{S_{1}}(N)\times B_{S_{2}}(M)}\right\}}{|B_{S_{1}}(N)|}-H(\delta)-\delta|B_{S_{2}}(M)|\log|A|.

We divide this by log(1/ϵ)\log(1/\epsilon) and take the limit ϵ0\epsilon\rightarrow 0. Since log(1/ϵ)<log(1/δ)+(M+1)\log(1/\epsilon)<\log(1/\delta)+(M+1) (here δ\delta has been fixed) and limM|BS2(M)|M1=c\lim\limits_{M\rightarrow\infty}\dfrac{|B_{S_{2}}(M)|}{M-1}=c, we obtain

rdim¯(𝒳,σ1,{BS1(N)},d,μ)chμ(𝒳,G)cδlog|A|.\displaystyle{\overline{\rm rdim}}(\mathcal{X},\sigma_{{1}},\left\{B_{S_{1}}(N)\right\},d,\mu)\geq c\cdot h_{\mu}(\mathcal{X},G)-c\delta\log|A|.

Here we have used

hμ(𝒳,G)=limN,MH{(Xg)gBS1(N)×BS2(M)}|BS1(N)||BS2(M)|\displaystyle h_{\mu}(\mathcal{X},G)=\lim\limits_{N,M\rightarrow\infty}\dfrac{H\left\{\left(X_{g^{\prime}}\right)_{g^{\prime}\in B_{S_{1}}(N)\times B_{S_{2}}(M)}\right\}}{|B_{S_{1}}(N)||B_{S_{2}}(M)|}

Letting δ0\delta\rightarrow 0, we have rdim¯(𝒳,σ1,{BS1(N)},d,μ)chμ(𝒳,G)\underline{\rm rdim}(\mathcal{X},\sigma_{1},\left\{B_{S_{1}}(N)\right\},d,\mu)\geq ch_{\mu}(\mathcal{X},G). ∎

5 Examples

In this section, we consider the following examples to illustrate our main theorem for the case of c1=c2=cc_{1}=c_{2}=c. (see [7] for more details )

Example 5.1.

Let G1=dG_{1}=\mathbb{Z}^{d}, S1={(1,0,,0),,(0,,1),(0,0,,1)}S_{1}=\left\{(1,0,\cdots,0),\cdots,(0,\cdots,1),(0,0,\cdots,-1)\right\}. Let G2=×(/2)G_{2}=\mathbb{Z}\times(\mathbb{Z}/2\mathbb{Z}) and S2={(1,0¯),(1,0¯),(0,1¯)}S_{2}=\left\{(1,\overline{0}),(-1,\overline{0}),(0,\overline{1})\right\}. Then the ball radius rr centered at the element (n,0¯)(n,\overline{0}) is represented in Fig1. We deduce that γS2(n)=(2n+1)+2(n1)+1=4n\gamma_{S_{2}}(n)=(2n+1)+2(n-1)+1=4n. Take G=G1×G2G=G_{1}\times G_{2}, by Theorem 2.1, we can have

mdimH(𝒳,{BS1(n)},d)=mdimM(𝒳,G1,d)=4htop(𝒳,G).{\rm mdim}_{H}(\mathcal{X},\left\{B_{S_{1}}(n)\right\},d)={\rm mdim}_{M}(\mathcal{X},{G_{1}},d)=4h_{top}(\mathcal{X},{G}).
Refer to caption
Figure 1:

Recall infinite dihedral group, that is, the group of isometries of the real line \mathbb{R} generated by reflections r:r:\mathbb{R}\rightarrow\mathbb{R} and s:s:\mathbb{R}\rightarrow\mathbb{R} defined by

r(x)=x(symmetry with respect to 0)\displaystyle r(x)=-x~{}~{}(\text{symmetry with respect to 0})
s(x)=1x(symmetry with respect to 1/2)\displaystyle s(x)=1-x~{}~{}(\text{symmetry with respect to 1/2})

for all xx\in\mathbb{R}. Note that r2=s2=1Gr^{2}=s^{2}=1_{G}.

Example 5.2.

Let G1=dG_{1}=\mathbb{Z}^{d}, S1={(1,0,,0),,(0,,1),(0,0,,1)}S_{1}=\left\{(1,0,\cdots,0),\cdots,(0,\cdots,1),(0,0,\cdots,-1)\right\}. Let G2G_{2} be the infinite dihedral group and S2={r,s}S_{2}=\left\{r,s\right\}. Then the ball of radius nn centered at the element gG2g\in G_{2} is represented in Fig 2. It follows that γS2(n)=2n+1\gamma_{S_{2}}(n)=2n+1. Take G=G1×G2G=G_{1}\times G_{2}. By Theorem 2.1, thus mdimH(𝒳,{BS1(n)},d)=mdimM(𝒳,G1,d)=2htop(𝒳,G).{\rm mdim}_{H}(\mathcal{X},\left\{B_{S_{1}}(n)\right\},d)={\rm mdim}_{M}(\mathcal{X},{G_{1}},d)=2\cdot h_{top}(\mathcal{X},{G}).

Refer to caption
Figure 2:

Let GG be a group. The lower central series of GG is the sequence (Ci(G))i0(C^{i}(G))_{i\geq 0} of subgroup of GG defined by C0(G)=GC^{0}(G)=G and Ci+1=[Ci(G),G]C^{i+1}=[C^{i}(G),G] for all i0i\geq 0. Here [h,k]:=hkh1k1[h,k]:=hkh^{-1}k^{-1} for h,kGh,k\in G. An easy induction shows that Ci(G)C^{i}(G) is normal in GG and that Gi+1(G)Ci(G)G^{i+1}(G)\subset C^{i}(G) for all ii. The group GG is said to be nilpotent if there is an integer i0i\geq 0 such that Ci(G)={1G}C^{i}(G)=\left\{1_{G}\right\}. The group GG is said to be nilpotent if there is an integer i0i\geq 0 such that Ci(G)={1G}C^{i}(G)=\left\{1_{G}\right\}. The smallest integer i0i\geq 0 such that Ci(G)={1G}C^{i}(G)=\left\{1_{G}\right\} is then called the nilpotency degree of GG. Every nilpotent group is amenable.

1972, H. Bass [2] showed that the growth of a nilpotent group GG with finite symmetric generating subset SS is exactly polynomial in the sense that there are positive constants C1C_{1} and C2C_{2} such that C1ndγS(n)C2ndC_{1}n^{d}\leq\gamma_{S}(n)\leq C_{2}n^{d}, for all n1n\geq 1, where d=d(G)d=d(G) is an integer which can be computed explicitly from the lower central series of GG.

Example 5.3.

Let G1G_{1} be a nilpotent group with finite symmetric generating subset S1S_{1} and deg(G1)=ddeg(G_{1})=d. Let G2G_{2} be the infinite dihedral group and S2={r,s}S_{2}=\left\{r,s\right\}. Set G=G1×G2G=G_{1}\times G_{2}. Then

mdimH(𝒳,{BS1(n)},d)=mdimM(𝒳,G1,d)=2htop(𝒳,G).{\rm mdim}_{H}(\mathcal{X},\left\{B_{S_{1}}(n)\right\},d)={\rm mdim}_{M}(\mathcal{X},{G_{1}},d)=2\cdot h_{top}(\mathcal{X},{G}).

Similarly, the above examples hold for Theorem 2.2.

Acknowledgements. The first author was supported by the Postgraduate Research Innovation Program of Jiangsu Province (KYCX201162). The first and second author were supported by NNSF of China (11671208 and 11431012). The third author was supported by NNSF of China (11971236,11601235), NSF of Jiangsu Province (BK20161014), NSF of the Jiangsu Higher Education Institutions of China (16KJD110003), China Postdoctoral Science Foundation (2016M591873), and China Postdoctoral Science Special Foundation (2017T100384). The work was also funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions. We would like to express our gratitude to Tianyuan Mathematical Center in Southwest China, Sichuan University and Southwest Jiaotong University for their support and hospitality.

References

  • [1] R. Adler, A. Konheim and J. McAndrew, Topological entropy, Trans. Amer. Math. Soc. 114 (1965), 309-319.
  • [2] H. Bass, The degree of polynomial growth of finitely generated nilpotent groups, Pro. London Math. Soc. 25 (1972), 603-614.
  • [3] E. Chen and J. Xiong, Dimension and measure theoretic entropy of a subshift in symbolic space, Chinese Sci. Bull. 42 (1997), 1193-1196.
  • [4] E. Chen, D. Dou and D. Zheng, Variational principle for amenable metric mean dimensions, arxiv:1708.02087.
  • [5] T. Cover and J. Thomas, Elements of information theory, Wiley, New York, 2006.
  • [6] M. Coornaert, Topological Dimension and Dynamical Systems, Springer, New York, 2015.
  • [7] T. Ceccherini-Silberstein and M. Coornaert, Cellular automata and groups, Springer-Verlag, Berlin, 2010.
  • [8] D. Dou and R. Zhang, A note on dimensional entropy for amenable group actions, Topol. Methods Nonlinear Anal. 51 (2018), 599-608.
  • [9] H. Furstenberg, Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation, Math. Systems Theory. 1 (1967), 1-49.
  • [10] D. Kerr and H. Li, Ergodic theory : independence and dichotomies, Springer, 2017.
  • [11] T. Kawabata and A. Dembo, The rate distortion dimension of sets and measures, IEEE Trans.Inf. Theory. 40 (1994), 1564-1572.
  • [12] E. Lindenstrauss, Pointwise theorems for amenable groups, Invent. Math. 146 (2001), 259-295.
  • [13] E. Lindenstrauss and M. Tsukamoto, Mean dimension and an embedding problem: an example, Israel J. Math. 199 (2014), 573-584.
  • [14] E. Lindenstrauss and B. Weiss, Mean topological dimension, Israel J. Math. 115 (2000), 1-24.
  • [15] E. Lindenstrauss and M. Tsukamoto, From rate distortion theory to metric mean dimension: variational principle, IEEE Trans. Inform. Theory. 64 (2018), 3590-3609.
  • [16] E. Lindenstrauss and M. Tsukamoto, Double variational principle for mean dimension, Geom. Funct. Anal. 29 (2019), 1048-1109.
  • [17] H. Li and B. Liang, Mean dimension, mean rank and von Neumann-Luck rank, J. Reine Angew. Math. 739 (2018), 207-240.
  • [18] T. Meyerovitch and M. Tsukamoto, Expansive multiparameter actions and mean dimension, Trans. Amer. Math. Soc. 371 (2019), 7275-7299.
  • [19] D. Ornsein and B. Weiss, Entropy and isomorphism theorems for actions of amenable groups, J. Anal. Math. 48 (1987) 1-141.
  • [20] D. Gatzouras and Y. Peres, Invariant measures of full dimension for some expanding maps, Ergod. Th. Dynam. Sys. 17 (1997), 147-167.
  • [21] M. Gromov, Topological invariants of dynamical systems and spaces of holomorphic maps, I. Math. Phys. Anal. Geom. 2 (1999), 323-415.
  • [22] Y. Gutman, E. Lindenstrauss and M. Tsukamoto, Mean dimension of k\mathbb{Z}^{k}-actions, Geom. Funct. Anal. 26 (2016), 778-817.
  • [23] Y. Gutman, Y. Qiao and M. Tsukamoto, Application of signal analysis to the embedding problem of k\mathbb{Z}^{k}-actions, Geom. Funct. Anal. 29 (2019), 1440-1502.
  • [24] Y. Gutman and M. Tsukamoto, Embedding minimal dynamical systems into Hilbert cubes, Invent. math. 221 (2020), 113-166.
  • [25] M. Tsukamoto, Mean dimension of the dynamical system of Brody curves, Invent. Math. 211 (2018), 935-968.
  • [26] M. Shinoda and M. Tsukamoto, Symbolic dynamical in mean dimension theory, Ergod. Th. Dynam. Sys. DOI: 10.1017/etds.2020.47
  • [27] S. Simpson, Symbolic dynamics : Entropy=Dimension=Complexity, Theory Comput. Syst. 56 (2015), 527-543.