This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Mean squares of quadratic twists of the Möbius function

Peng Gao School of Mathematical Sciences, Beihang University, Beijing 100191, China penggao@buaa.edu.cn  and  Liangyi Zhao School of Mathematics and Statistics, University of New South Wales, Sydney NSW 2052, Australia l.zhao@unsw.edu.au
Abstract.

In this paper, we evaluate asymptotically the sum

dX(nYμ(n)(8dn))2,\sum_{d\leq X}\left(\sum_{n\leq Y}\mu(n)\left(\frac{8d}{n}\right)\right)^{2},

where (8dn)\left(\frac{8d}{n}\right) is the Kronecker symbol and dd runs over positive, odd, square-free integers.

Mathematics Subject Classification (2010): 11N37, 11L05, 11L40

Keywords: mean square, quadratic Dirichlet character, Möbius function

1. Introduction

Let μ\mu denote the Möbius function and the corresponding Mertens function M(x)M(x) is defined to be

M(x)=nxμ(n).\displaystyle M(x)=\sum_{n\leq x}\mu(n).

The size of M(x)M(x) is inextricably connected with the Riemann hypothesis (RH). It is known (see [Sound09-1]) that RH is equivalent to

(1.1) M(x)x1/2+ε,\displaystyle M(x)\ll x^{1/2+\varepsilon},

for any ε>0\varepsilon>0.

There have been a number of subsequent refinements of the bounds in (1.1), all under RH. In [Landau24], E. Landau proved that (1.1) is valid with εlogloglogx/loglogx\varepsilon\ll\log\log\log x/\log\log x. This bound was improved to ε1/loglogx\varepsilon\ll 1/\log\log x by E. C. Titchmarsh [Titchmarsh27], to ε(logx)22/61\varepsilon\ll(\log x)^{-22/61} by H. Maier and H. L. Montgomery [MM09] and by K. Soundararajan [Sound09-1] to

M(x)x1/2exp((logx)1/2(logloglogx)14).\displaystyle M(x)\ll x^{1/2}\exp\big{(}(\log x)^{1/2}(\log\log\log x)^{14}\big{)}.

The power (logloglogx)14(\log\log\log x)^{14} in the above expression has been improved to (logloglogx)5/2+ε(\log\log\log x)^{5/2+\varepsilon} for any ε>0\varepsilon>0 by M. Balazard and A. de Roton in [BR08] upon refining the method of Soundararajan.

One may consider more generally the sum with the Möbius function twisted by a Dirichlet character χ\chi modulo qq. More precisely, we define

M(x,χ)=nxμ(n)χ(n).\displaystyle M(x,\chi)=\sum_{n\leq x}\mu(n)\chi(n).

Similar to the relation between M(x)M(x) and RH, the size of M(x,χ)M(x,\chi) is related to the generalized Riemann hypothesis (GRH) of the corresponding Dirichlet LL-function L(s,χ)L(s,\chi). It follows from Perron’s formula that GRH implies that

(1.2) M(x,χ)x1/2+ε,\displaystyle M(x,\chi)\ll x^{1/2+\varepsilon},

for any ε>0\varepsilon>0. Conversely, (1.2) gives, via partial summation, the convergence of the Dirichlet series of 1/L(s,χ)1/L(s,\chi) for any s>1/2s>1/2, and therefore GRH for L(s,χ)L(s,\chi). While studying sums of the Möbius function in arithmetic progressions, L. Ye [Ye] established that under GRH, uniformly for qq and xx,

M(x,χ)x1/2exp((logx)3/5+o(1)).\displaystyle M(x,\chi)\ll x^{1/2}\exp\big{(}(\log x)^{3/5+o(1)}\big{)}.

This improved an earlier result of K. Halupczok and B. Suger [H&S13, Lemma 1,2]. Moreover, it follows from a general result of H. Maier and A. Sankaranarayanan [M&S16] on multiplicative Möbius-like functions that ε1/loglogx\varepsilon\ll 1/\log\log x in (1.2) under GRH, which is comparable to the above mentioned result of Titchmarsh [Titchmarsh27] on M(x)M(x).

As noted in [MM09], the behavior of M(x)M(x) depends both on the distribution of |ζ(ρ)||\zeta^{\prime}(\rho)| as ρ=1/2+iγ\rho=1/2+i\gamma runs over the non-trivial zeros of the Riemann zeta function ζ(s)\zeta(s) (under RH), and on the linear independence of the γ\gamma. This makes it difficult to predict the behavior of M(x)M(x) in any finer way. For example, a well-known conjecture of Mertens claiming that |M(x)|x|M(x)|\leq\sqrt{x} was disproved by A. M. Odlyzko and H. J. J. te Riele [O&R]. In connection to this, one also has the weak Mertens conjecture which asserts that

2X(M(x)x)2dxlogX.\displaystyle\int\limits^{X}_{2}\Big{(}\frac{M(x)}{x}\Big{)}^{2}\mathrm{d}x\ll\log X.

In [Ng04, Theorem 3], N. Ng proved that as XX\rightarrow\infty, for some constant cc,

(1.3) 2X(M(x)x)2dxclogX,\displaystyle\int\limits^{X}_{2}\Big{(}\frac{M(x)}{x}\Big{)}^{2}\mathrm{d}x\sim c\log X,

provided that one assumes RH and

0<(ρ)T|ζ(ρ)|2T.\displaystyle\sum_{0<\Im(\rho)\leq T}|\zeta^{\prime}(\rho)|^{-2}\ll T.

One may interpret (1.3) as a mean square type of estimation for M(x)M(x) and in this situation one is able to evaluate the average asymptotically. We are thus motivated to seek for other mean square estimations involving the Möbius function and it is the aim of our paper to study one such case.

To state our result, we write χd\chi_{d} for the Kronecker symbol (d)\left(\frac{d}{\cdot}\right) and note that if dd is odd and square-free, χ8d\chi_{8d} is a primitive Dirichlet character. We are interested in the following sum

S(X,Y)=0<dXM(Y,χ8d)2,\displaystyle S(X,Y)=\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}0<d\leq X\end{subarray}}M(Y,\chi_{8d})^{2},

where the asterisk indicates that dd runs over odd and square-free integers.

We may view S(X,Y)S(X,Y) as a mean square expression involving M(Y,χ8d)M(Y,\chi_{8d}) and one expects an asymptotic expression for it. In fact, it is not difficult to obtain one if Y2<XY^{2}<X using the Pólya-Vinogradov inequality to control the contribution of the off-diagonal terms. The situation is more intriguing for larger YY’s, especially if XX and YY are of comparable size. For instance, the sum

mX(m,2)=1nY(n,2)=1(mn)\displaystyle\sum_{\begin{subarray}{c}m\leq X\\ (m,2)=1\end{subarray}}\sum_{\begin{subarray}{c}n\leq Y\\ (n,2)=1\end{subarray}}\left(\frac{m}{n}\right)

can be evaluated asymptotically if Y=o(X/logX)Y=o(X/\log X) or X=o(Y/logY)X=o(Y/\log Y) using the Pólya-Vinogradov inequality. In [CFS], J. B. Conrey, D. W. Farmer and K. Soundararajan applied a Poisson summation formula developed by Soundararajan in [sound1] to obtain an asymptotic formula for the other ranges. We also note here that extensions and generalizations of this problem were studied by the authors in [G&Zhao2019, G&Zhao2020, G&Zhao2022].

In studying S(X,Y)S(X,Y), we shall also utlize the Poisson summation formula given in [sound1] as well as the techniques developed by K. Soundararajan and M. P. Young [S&Y] in their work on the second moment of quadratic twists of modular LL-functions. For technical reasons, we consider smoothed sums instead. We thus fix two non-negative, smooth functions Φ(x),W(x)\Phi(x),W(x) that are compactly supported on +=(0,){\mathbb{R}}_{+}=(0,\infty). Set

(1.4) S(X,Y;Φ,W)=d(nμ(n)χ8d(n)Φ(nX))2W(dX).\displaystyle S(X,Y;\Phi,W)=\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}d\end{subarray}}\Big{(}\sum_{n}\mu(n)\chi_{8d}(n)\Phi\Big{(}\frac{n}{X}\Big{)}\Big{)}^{2}W\Big{(}\frac{d}{X}\Big{)}.

We shall evaluate S(X,Y;Φ,W)S(X,Y;\Phi,W) asymptotically as follows.

Theorem 1.1.

With the notation as above and assuming the truth of GRH, for large XX and YY, we have

(1.5) S(X,Y;Φ,W)=4π2XYh~1(1,1)Z2(1)+O(X1/2+εY3/2+ε+XY1/2+ε),\displaystyle\begin{split}S(X,Y;\Phi,W)=&\frac{4}{\pi^{2}}XY\widetilde{h}_{1}(1,1)Z_{2}(1)+O\left(X^{1/2+\varepsilon}Y^{3/2+\varepsilon}+XY^{1/2+\varepsilon}\right),\end{split}

where h~1(1,1)\widetilde{h}_{1}(1,1) is given in (3.12) and the function Z2(u)Z_{2}(u) is defined in (3.10).

One checks that (1.5) gives a valid asymptotic formula if YX1εY\ll X^{1-\varepsilon} for any ε>0\varepsilon>0.

2. Preliminaries

We gather first a few auxiliary results necessary in the proof of Theorem 1.1 in this section.

2.1. Gauss sums

For all odd integers kk and all integers mm, define the Gauss-type sums Gm(k)G_{m}(k), as in [sound1, Sect. 2.2],

(2.1) Gm(k)=(1i2+(1k)1+i2)a(modk)(ak)e(amk),wheree(x)=exp(2πix).\displaystyle G_{m}(k)=\left(\frac{1-i}{2}+\left(\frac{-1}{k}\right)\frac{1+i}{2}\right)\sum_{a\negthickspace\negthickspace\negthickspace\pmod{k}}\left(\frac{a}{k}\right)e\left(\frac{am}{k}\right),\quad\mbox{where}\quad e(x)=\exp(2\pi ix).

Let φ(m)\varphi(m) be the Euler totient of mm. Our next result is taken from [sound1, Lemma 2.3] and evaluates Gm(k)G_{m}(k).

Lemma 2.2.

If (k1,k2)=1(k_{1},k_{2})=1 then Gm(k1k2)=Gm(k1)Gm(k2)G_{m}(k_{1}k_{2})=G_{m}(k_{1})G_{m}(k_{2}). Suppose that pap^{a} is the largest power of pp dividing mm (put a=a=\infty if m=0m=0). Then for b1b\geq 1 we have

Gm(pb)={0if ba is odd,φ(pb)if ba is even,paif b=a+1 is even,(m/pap)papif b=a+1 is odd,0if ba+2.G_{m}(p^{b})=\left\{\begin{array}[]{cl}0&\mbox{if $b\leq a$ is odd},\\ \varphi(p^{b})&\mbox{if $b\leq a$ is even},\\ -p^{a}&\mbox{if $b=a+1$ is even},\\ (\frac{m/p^{a}}{p})p^{a}\sqrt{p}&\mbox{if $b=a+1$ is odd},\\ 0&\mbox{if $b\geq a+2$}.\end{array}\right.

2.3. Poisson Summation

For any smooth function FF, we write F^\hat{F} for the Fourier transform of FF and we define

(2.2) F~(ξ)=1+i2F^(ξ)+1i2F^(ξ)=(cos(2πξx)+sin(2πξx))F(x)dx.\widetilde{F}(\xi)=\frac{1+i}{2}\hat{F}(\xi)+\frac{1-i}{2}\hat{F}(-\xi)=\int\limits^{\infty}_{-\infty}\left(\cos(2\pi\xi x)+\sin(2\pi\xi x)\right)F(x)\mathrm{d}x.

We note the following Poisson summation formula from [sound1, Lemma 2.6].

Lemma 2.4.

Let WW be a smooth function compactly supported on +{\mathbb{R}}_{+}. We have, for any odd integer nn,

(d,2)=1(dn)W(dX)=X2n(2n)k(1)kGk(n)W~(kX2n),\sum_{(d,2)=1}\left(\frac{d}{n}\right)W\left(\frac{d}{X}\right)=\frac{X}{2n}\left(\frac{2}{n}\right)\sum_{k}(-1)^{k}G_{k}(n)\widetilde{W}\left(\frac{kX}{2n}\right),

where W~\widetilde{W} is defined in (2.2) and Gk(n)G_{k}(n) is defined in (2.1).

2.5. Upper bounds for |L(s,χ)|1|L(s,\chi)|^{-1}

From [iwakow, Theorem 5.19], we deduce the following.

Lemma 2.6.

Assume the truth of GRH. For any Dirichlet character χ\chi modulo qq and any ε>0\varepsilon>0, we have

|L(12+ε+it,χ)|1(q(1+|t|))ε,\big{|}L(\tfrac{1}{2}+\varepsilon+it,\chi)\big{|}^{-1}\ll\big{(}q(1+|t|)\big{)}^{\varepsilon},

where the implied constant depends on ε\varepsilon alone.

2.7. Analytical behaviors of some Dirichlet Series

We define for any square-free k1k_{1},

(2.3) Z(α,β,γ;q,k1)=k2=1(n1,2q)=1(n2,2q)=1μ(n1)μ(n2)n1αn2βk22γGk1k22(n1n2)n1n2,Z(\alpha,\beta,\gamma;q,k_{1})=\sum_{k_{2}=1}^{\infty}\sum_{(n_{1},2q)=1}\sum_{(n_{2},2q)=1}\frac{\mu(n_{1})\mu(n_{2})}{n_{1}^{\alpha}n_{2}^{\beta}k_{2}^{2\gamma}}\frac{G_{k_{1}k_{2}^{2}}(n_{1}n_{2})}{n_{1}n_{2}},

where Gm(k)G_{m}(k) be defined as in (2.1). Note first that Lemma 2.2 implies that Z(α,β,γ;q,k1)Z(\alpha,\beta,\gamma;q,k_{1}) converges absolutely when (α)\Re(\alpha), (β)\Re(\beta), and (γ)\Re(\gamma) are all strictly greater than 12\tfrac{1}{2}. We write Lc(s,χ)L_{c}(s,\chi) for the Euler product of L(s,χ)L(s,\chi) with the factors from p|cp|c removed. Our next lemma describes the analytical behavior of ZZ.

Lemma 2.8.

The function Z(α,β,γ;q,k1)Z(\alpha,\beta,\gamma;q,k_{1}) defined in (2.3) may be written as

(2.4) Lq(12+α,χk1)1Lq(12+β,χk1)1Z2(α,β,γ;q,k1),\displaystyle L_{q}(\tfrac{1}{2}+\alpha,\chi_{k_{1}})^{-1}L_{q}(\tfrac{1}{2}+\beta,\chi_{k_{1}})^{-1}Z_{2}(\alpha,\beta,\gamma;q,k_{1}),

where Z2(α,β,γ;q,k1)Z_{2}(\alpha,\beta,\gamma;q,k_{1}) is a function uniformly bounded in the region (γ)12+ε\Re(\gamma)\geq\frac{1}{2}+\varepsilon, (α),(β)ε\Re(\alpha),\Re(\beta)\geq\varepsilon for any ε>0\varepsilon>0.

Proof.

We deduce from Lemma 2.2 that the summand in (2.3) is jointly multiplicative in terms of n1,n2n_{1},n_{2}, and k2k_{2}, so that we can express Z(α,β,γ;q,k1)Z(\alpha,\beta,\gamma;q,k_{1}) as an Euler product over all primes pp. It suffices to match each Euler factor at pp for Z(α,β,γ;q,k1)Z(\alpha,\beta,\gamma;q,k_{1}) with the corresponding factor in (2.4).

The contribution of such an Euler factor for the generic case with p2qk1p\nmid 2qk_{1} is

k2,n1,n2μ(n1)μ(n2)pn1α+n2β+2k2γGk1p2k2(pn1+n2)pn1+n2.\sum_{k_{2},n_{1},n_{2}}\frac{\mu(n_{1})\mu(n_{2})}{p^{n_{1}\alpha+n_{2}\beta+2k_{2}\gamma}}\frac{G_{k_{1}p^{2k_{2}}}(p^{n_{1}+n_{2}})}{p^{n_{1}+n_{2}}}.

If (γ)12+ε\Re(\gamma)\geq\tfrac{1}{2}+\varepsilon, (α)\Re(\alpha), (β)ε\Re(\beta)\geq\varepsilon, Lemma 2.2 implies that the contribution from the terms k21k_{2}\geq 1 is 1/p1+2ε\ll 1/p^{1+2\varepsilon} and the contribution of the term k2=0k_{2}=0 is 1χk1(p)(p1/2α+p1/2β)1-\chi_{k_{1}}(p)(p^{-1/2-\alpha}+p^{-1/2-\beta}). This calculation readily implies that this Euler factor for ZZ matches the corresponding one in (2.4).

Similarly, when (γ)12+ε\Re(\gamma)\geq\frac{1}{2}+\varepsilon and (α)\Re(\alpha), (β)ε\Re(\beta)\geq\varepsilon, Lemma 2.2 implies that the Euler factor for p|k1p|k_{1} but p2qp\nmid 2q equals

11p1+α+β+O(1p1+ε)=1+O(1p1+ε).1-\frac{1}{p^{1+\alpha+\beta}}+O\left(\frac{1}{p^{1+\varepsilon}}\right)=1+O\left(\frac{1}{p^{1+\varepsilon}}\right).

Lastly, the corresponding Euler factor for the case p|2qp|2q is (1p2γ)1=1+O(1/p1+2ε)(1-p^{-2\gamma})^{-1}=1+O(1/p^{1+2\varepsilon}). The assertion of the lemma now follows from these computations. ∎

3. Proof of Theorem 1.1

3.1. Decomposition of 𝒮(X,Y;Φ,W){\mathcal{S}}(X,Y;\Phi,W)

Expanding the square in (1.4) allows us to recast 𝒮(X,Y;Φ,W){\mathcal{S}}(X,Y;\Phi,W) as

S(h):=dn1n2χ8d(n1n2)μ(n1)μ(n2)h(d,n1,n2),S(h):=\sideset{}{{}^{*}}{\sum}_{d}\sum_{n_{1}}\sum_{n_{2}}\chi_{8d}(n_{1}n_{2})\mu(n_{1})\mu(n_{2})h(d,n_{1},n_{2}),

where h(x,y,z)=W(xX)Φ(yY)Φ(zY)h(x,y,z)=W(\frac{x}{X})\Phi\left(\frac{y}{Y}\right)\Phi\left(\frac{z}{Y}\right) is a smooth function on +3{\mathbb{R}}_{+}^{3}. We apply the Möbius inversion to remove the square-free condition on dd to obtain that, for an appropriate parameter ZZ to be chosen later,

S(h)=(aZ(a,2)=1+a>Z(a,2)=1)μ(a)(d,2)=1(n1,a)=1(n2,a)=1χ8d(n1n2)μ(n1)μ(n2)h(da2,n1,n2)=:S1(h)+S2(h),say.\displaystyle S(h)=\Big{(}\sum_{\begin{subarray}{c}a\leq Z\\ (a,2)=1\end{subarray}}+\sum_{\begin{subarray}{c}a>Z\\ (a,2)=1\end{subarray}}\Big{)}\mu(a)\sum_{(d,2)=1}\sum_{(n_{1},a)=1}\sum_{(n_{2},a)=1}\chi_{8d}(n_{1}n_{2})\mu(n_{1})\mu(n_{2})h(da^{2},n_{1},n_{2})=:S_{1}(h)+S_{2}(h),\quad\mbox{say}.

3.2. Estimating S2(h)S_{2}(h)

We first estimate S2(h)S_{2}(h). To this end, writing d=b2d=b^{2}\ell with \ell square-free, and grouping terms according to c=abc=ab, we deduce

(3.1) S2(h)=(c,2)=1a>Za|cμ(a)(n1,c)=1(n2,c)=1χ8(n1n2)μ(n1)μ(n2)h(c2,n1,n2).S_{2}(h)=\sum_{(c,2)=1}\sum_{\begin{subarray}{c}a>Z\\ a|c\end{subarray}}\mu(a)\sideset{}{{}^{*}}{\sum}_{\ell}\sum_{(n_{1},c)=1}\sum_{(n_{2},c)=1}\chi_{8\ell}(n_{1}n_{2})\mu(n_{1})\mu(n_{2})h(c^{2}\ell,n_{1},n_{2}).

Applying Mellin transforms in the variables n1n_{1} and n2n_{2} yeilds that the inner triple sum over \ell, n1n_{1}, and n2n_{2} in (3.1) is

(3.2) 1(2πi)2(1+ε)(1+ε)hˇ(c2;u,v)n1,n2(n1n2,c)=1χ8(n1)χ8(n2)μ(n1)μ(n2)n1un2vdudv,\frac{1}{(2\pi i)^{2}}\int\limits_{(1+\varepsilon)}\int\limits_{(1+\varepsilon)}\sideset{}{{}^{*}}{\sum}_{\ell}{\check{h}}(c^{2}\ell;u,v)\sum_{\begin{subarray}{c}n_{1},n_{2}\\ (n_{1}n_{2},c)=1\end{subarray}}\frac{\chi_{8\ell}(n_{1})\chi_{8\ell}(n_{2})\mu(n_{1})\mu(n_{2})}{n_{1}^{u}n_{2}^{v}}\mathrm{d}u\,\mathrm{d}v,

where

hˇ(x;u,v)=00h(x,y,z)yuzvdyydzz.{\check{h}}(x;u,v)=\int\limits_{0}^{\infty}\int\limits_{0}^{\infty}h(x,y,z)y^{u}z^{v}\frac{\mathrm{d}y}{y}\frac{\mathrm{d}z}{z}.

Now integration by parts gives that for (u)\Re(u), (v)>0\Re(v)>0 and any positive integers AjA_{j}, 1j31\leq j\leq 3,

(3.3) hˇ(x;u,v)(1+xX)A1Y(u)+(v)|uv|(1+|u|)A2(1+|v|)A3.{\check{h}}(x;u,v)\ll\left(1+\frac{x}{X}\right)^{-A_{1}}\frac{Y^{\Re(u)+\Re(v)}}{|uv|(1+|u|)^{A_{2}}(1+|v|)^{A_{3}}}.

Note that the sum over n1n_{1} and n2n_{2} in (3.2) equals Lc1(u,χ8)Lc1(v,χ8)L^{-1}_{c}(u,\chi_{8\ell})L^{-1}_{c}(v,\chi_{8\ell}) and we can thus move the lines of integration in (3.2) to (u)=(v)=1/2+ε\Re(u)=\Re(v)=1/2+\varepsilon without encountering any poles under GRH. Moreover,

(3.4) |Lc1(u,χ8)Lc1(v,χ8)|d(c)2(|L1(u,χ8)|2+|L1(v,χ8)|2),\displaystyle|L^{-1}_{c}(u,\chi_{8\ell})L^{-1}_{c}(v,\chi_{8\ell})|\leq d(c)^{2}(|L^{-1}(u,\chi_{8\ell})|^{2}+|L^{-1}(v,\chi_{8\ell})|^{2}),

where d(c)d(c) denotes the value of the divisor function at cc.

We now apply (3.3) with A2=A3=1A_{2}=A_{3}=1 and A1A_{1} sufficiently large and Lemma 2.6 to get that the expression in (3.2) is

d(c)2Y1+2ε(1+|t|)2(1+c2X)A1|L(12+ε+it,χ8)|2dtd(c)2(XY)1+ε/c2.\ll d(c)^{2}Y^{1+2\varepsilon}\int\limits_{-\infty}^{\infty}(1+|t|)^{-2}\sideset{}{{}^{*}}{\sum}_{\ell}\left(1+\frac{c^{2}\ell}{X}\right)^{-A_{1}}\Big{|}L(\tfrac{1}{2}+\varepsilon+it,\chi_{8\ell})\Big{|}^{-2}\ \mathrm{d}t\ll d(c)^{2}(XY)^{1+\varepsilon}/c^{2}.

We conclude from the above estimation and (3.1) that

(3.5) S2(h)(XY)1+εZ1+ε.\displaystyle S_{2}(h)\ll(XY)^{1+\varepsilon}Z^{-1+\varepsilon}.

3.3. Estimating S1(h)S_{1}(h), the main term

We evaluate S1(h)S_{1}(h) now. Write for brevity C=cosC=\cos and S=sinS=\sin. We then apply the Poisson summation formula, Lemma 2.4, to deduce that

(3.6) S1(h)=X2aZ(a,2)=1μ(a)a2k(n1,2a)=1(n2,2a)=1(1)kGk(n1n2)μ(n1)μ(n2)n1n20h(xX,n1,n2)(C+S)(2πkxX2n1n2a2)dx.\displaystyle S_{1}(h)=\frac{X}{2}\sum_{\begin{subarray}{c}a\leq Z\\ (a,2)=1\end{subarray}}\frac{\mu(a)}{a^{2}}\sum_{k\in\mathbb{Z}}\sum_{(n_{1},2a)=1}\sum_{(n_{2},2a)=1}\frac{(-1)^{k}G_{k}(n_{1}n_{2})\mu(n_{1})\mu(n_{2})}{n_{1}n_{2}}\int\limits_{0}^{\infty}h(xX,n_{1},n_{2})(C+S)\left(\frac{2\pi kxX}{2n_{1}n_{2}a^{2}}\right)\mathrm{d}x.

Let S1,0(h)S_{1,0}(h) for the terms in (3.6) with k=0k=0. Note that

aZ(a,2n1n2)=1μ(a)a2=1ζ(2)p|2n1n2(11p2)1+O(Z1)=8π2p|n1n2(11p2)1+O(Z1).\sum_{\begin{subarray}{c}a\leq Z\\ (a,2n_{1}n_{2})=1\end{subarray}}\frac{\mu(a)}{a^{2}}=\frac{1}{\zeta(2)}\prod_{p|2n_{1}n_{2}}\left(1-\frac{1}{p^{2}}\right)^{-1}+O(Z^{-1})=\frac{8}{\pi^{2}}\prod_{p|n_{1}n_{2}}\left(1-\frac{1}{p^{2}}\right)^{-1}+O(Z^{-1}).

Moreover, with \square denoting a perfect square, Lemma 2.2 implies that G0(m)=φ(m)G_{0}(m)=\varphi(m) if m=m=\square, and is zero otherwise. Thus, upon setting h1(y,z)=+h(xX,y,z)dxh_{1}(y,z)=\int_{\mathbb{R}_{+}}h(xX,y,z)\ \mathrm{d}x, we infer that

(3.7) S1,0(h)=4Xπ2(n1n2,2)=1n1n2=μ(n1)μ(n2)p|n1n2(pp+1)h1(n1,n2)+O(XZ(n1n2,2)=1n1n2=|μ(n1)μ(n2)h1(n1,n2)|).\displaystyle S_{1,0}(h)=\frac{4X}{\pi^{2}}\sum_{\begin{subarray}{c}(n_{1}n_{2},2)=1\\ n_{1}n_{2}=\square\end{subarray}}\mu(n_{1})\mu(n_{2})\prod_{p|n_{1}n_{2}}\left(\frac{p}{p+1}\right)h_{1}\left(n_{1},n_{2}\right)+O\Big{(}\frac{X}{Z}\sum_{\begin{subarray}{c}(n_{1}n_{2},2)=1\\ n_{1}n_{2}=\square\end{subarray}}\Big{|}\mu(n_{1})\mu(n_{2})h_{1}(n_{1},n_{2})\Big{|}\Big{)}.

Mark that the definition of hh implies that h11h_{1}\ll 1 and h1=0h_{1}=0 unless both n1n_{1} and n2n_{2} are Y\ll Y. Furthermore, if n1n_{1}, n2n_{2} are square-free, then n1n2=n_{1}n_{2}=\square implies that n1=n2n_{1}=n_{2}. Consequently, the sum in the OO-term in (3.7) is Y\ll Y and

S1,0(h)=4Xπ2(n,2)=1p|n(pp+1)μ2(n)h1(n,n)+O(XYZ).\displaystyle S_{1,0}(h)=\frac{4X}{\pi^{2}}\sum_{\begin{subarray}{c}(n,2)=1\end{subarray}}\prod_{p|n}\left(\frac{p}{p+1}\right)\mu^{2}(n)h_{1}\left(n,n\right)+O\left(\frac{XY}{Z}\right).

We now apply the Mellin transform to recast h1(n,n)h_{1}(n,n) as

h1(n,n)=12πi(2)Yunuh~1(u,u)du,whereh~1(u,u)=+h1(yY,yY)yudyy.h_{1}(n,n)=\frac{1}{2\pi i}\int\limits_{(2)}\frac{Y^{u}}{n^{u}}\widetilde{h}_{1}(u,u)\mathrm{d}u,\quad\mbox{where}\quad\widetilde{h}_{1}(u,u)=\int\limits_{\mathbb{R}_{+}}h_{1}(yY,yY)y^{u}\frac{\mathrm{d}y}{y}.

Similar to (3.3), we have that for (u)>0\Re(u)>0 and any integer B0B\geq 0,

(3.8) h~1(u,u)1|u|(1+|u|)B.\widetilde{h}_{1}(u,u)\ll\frac{1}{|u|(1+|u|)^{B}}.

Now we can rewrite S1,0S_{1,0} as

(3.9) S1,0(h)=4Xπ212πi(2)Yuh~1(u,u)Z(u)du+O(XYZ),whereZ(u)=(n,2)=1μ2(n)nup|n(pp+1).S_{1,0}(h)=\frac{4X}{\pi^{2}}\frac{1}{2\pi i}\int\limits_{(2)}Y^{u}\widetilde{h}_{1}(u,u)Z(u)\mathrm{d}u+O\left(\frac{XY}{Z}\right),\quad\mbox{where}\quad Z(u)=\sum_{\begin{subarray}{c}(n,2)=1\end{subarray}}\frac{\mu^{2}(n)}{n^{u}}\prod_{p|n}\left(\frac{p}{p+1}\right).

We compute the Euler factors of Z(u)Z(u) to see that

(3.10) Z(u)=p>2(1+pp+11pu)=:ζ(u)Z2(u),\displaystyle Z(u)=\prod_{p>2}\left(1+\frac{p}{p+1}\cdot\frac{1}{p^{u}}\right)=:\zeta(u)Z_{2}(u),

where Z2(u)Z_{2}(u) converges absolutely in the region (u)12+ε\Re(u)\geq\frac{1}{2}+\varepsilon for any ε>0\varepsilon>0.

Moving the line of integration in (3.9) to (u)=12+ε\Re(u)=\frac{1}{2}+\varepsilon, we encounter a simple pole at u=1u=1 whose residue gives rise to the main term

4π2XYh~1(1,1)Z2(1).\frac{4}{\pi^{2}}XY\widetilde{h}_{1}(1,1)Z_{2}(1).

Now to estimate the integral on the 12+ε\frac{1}{2}+\varepsilon line, we apply the functional equation for ζ(s)\zeta(s) (see [Da, §8]) and Stirling’s formula, together with the convexity bound for ζ(s)\zeta(s), rendering

ζ(s){1(s)>1,(1+|s|)(1(s))/20<(s)<1,(1+|s|)1/2(s)(s)0.\displaystyle\zeta(s)\ll\begin{cases}1\qquad&\Re(s)>1,\\ (1+|s|)^{(1-\Re(s))/2}\qquad&0<\Re(s)<1,\\ (1+|s|)^{1/2-\Re(s)}\qquad&\Re(s)\leq 0.\end{cases}

The above and (3.8) with B=1B=1 enable us to gather that the integral on the 12+ε\frac{1}{2}+\varepsilon line contributes XY1/2+ε\ll XY^{1/2+\varepsilon}. One can easily check here that the Lindelöf hypothesis, a consequence of GRH whose truth we assume, does not lead to a better bound. Now the above discussion, together with (3.9), implies that

(3.11) S1,0(h)=4π2XYh~1(1,1)Z2(1)+O(XYZ+XY1/2+ε).\displaystyle S_{1,0}(h)=\frac{4}{\pi^{2}}XY\widetilde{h}_{1}(1,1)Z_{2}(1)+O\left(\frac{XY}{Z}+XY^{1/2+\varepsilon}\right).

Here we note that

(3.12) h~1(1,1)=W(x)dx(Φ(y)dy)2.\displaystyle\widetilde{h}_{1}(1,1)=\int\limits_{\mathbb{R}}W(x)\mathrm{d}x\left(\int\limits_{\mathbb{R}}\Phi(y)\mathrm{d}y\right)^{2}.

3.4. Estimating S1(h)S_{1}(h), the k0k\neq 0 terms

Let S3(h)S_{3}(h) denote the contribution to S1(h)S_{1}(h) from the terms with k0k\neq 0 in (3.6). Let ff be a smooth function on +\mathbb{R}_{+} with rapid decay at infinity and ff itself and all its derivatives have finite limits as x0+x\to 0^{+}. We consider the transform given by

f^CS(y):=0f(x)CS(2πxy)dx,\widehat{f}_{CS}(y):=\int\limits_{0}^{\infty}f(x)CS(2\pi xy)\mathrm{d}x,

where CSCS stands for either the cosine or the sine function. It is shown in [S&Y, Sec. 3.3] that

f^CS(y)=12πi(1/2)f~(1s)Γ(s)CS(sgn(y)πs2)(2π|y|)sds.\widehat{f}_{CS}(y)=\frac{1}{2\pi i}\int\limits_{(1/2)}\widetilde{f}(1-s)\Gamma(s)CS\left(\frac{\text{sgn}(y)\pi s}{2}\right)(2\pi|y|)^{-s}\mathrm{d}s.

Applying the above transform, we deduce that

(3.13) 0h(Xx,n1,n2)(C+S)(2πkxX2n1n2a2)dx=12πiX(ε)hˇ(1s;n1,n2)(n1n2a2π|k|)sΓ(s)(C+sgn(k)S)(πs2)ds,\displaystyle\begin{split}\int\limits_{0}^{\infty}h\left(Xx,n_{1},n_{2}\right)(C+S)\left(\frac{2\pi kxX}{2n_{1}n_{2}a^{2}}\right)\mathrm{d}x=\frac{1}{2\pi iX}\int\limits_{(\varepsilon)}\check{h}\left(1-s;n_{1},n_{2}\right)\left(\frac{n_{1}n_{2}a^{2}}{\pi|k|}\right)^{s}\Gamma(s)(C+\text{sgn}(k)S)\left(\frac{\pi s}{2}\right)\mathrm{d}s,\end{split}

where

hˇ(s;y,z)=0h(x,y,z)xsdxx.\check{h}(s;y,z)=\int\limits_{0}^{\infty}h(x,y,z)x^{s}\frac{\mathrm{d}x}{x}.

Taking the Mellin transforms in the variables n1n_{1} and n2n_{2}, the right-hand side of (3.13) equals

1X(12πi)3(1)(1)(ε)h~(1s,u,v)1n1un2v(n1n2a2π|k|)sΓ(s)(C+sgn(k)S)(πs2)dsdudv,\frac{1}{X}\left(\frac{1}{2\pi i}\right)^{3}\int\limits_{(1)}\int\limits_{(1)}\int\limits_{(\varepsilon)}\widetilde{h}\left(1-s,u,v\right)\frac{1}{n_{1}^{u}n_{2}^{v}}\left(\frac{n_{1}n_{2}a^{2}}{\pi|k|}\right)^{s}\Gamma(s)(C+\text{sgn}(k)S)\left(\frac{\pi s}{2}\right)\mathrm{d}s\,\mathrm{d}u\,\mathrm{d}v,

where

h~(s,u,v)=+3h(x,y,z)xsyuzvdxxdyydzz.\widetilde{h}(s,u,v)=\int_{\mathbb{R}_{+}^{3}}h(x,y,z)x^{s}y^{u}z^{v}\frac{\mathrm{d}x}{x}\frac{\mathrm{d}y}{y}\frac{\mathrm{d}z}{z}.

Integrating by parts implies that for (s)\Re(s), (u)\Re(u), (v)>0\Re(v)>0 and any integers Ej0E_{j}\geq 0, 1j31\leq j\leq 3,

(3.14) |h~(s,u,v)|X(s)Y(u)+(v)|uvs|(1+|s|)E1(1+|u|)E2(1+|v|)E3.|\widetilde{h}(s,u,v)|\ll\frac{X^{\Re(s)}Y^{\Re(u)+\Re(v)}}{|uvs|(1+|s|)^{E_{1}}(1+|u|)^{E_{2}}(1+|v|)^{E_{3}}}.

Applying the above bound in (3.6) leads to

(3.15) S3(h)=12aZ(a,2)=1μ(a)a2k0(n1,2a)=1(n2,2a)=1(1)kGk(n1n2)μ(n1)μ(n2)n1n2×(12πi)3(ε)(ε)(ε)h~(1s,u,v)1n1un2v(n1n2a2π|k|)sΓ(s)(C+sgn(k)S)(πs2)dsdudv.\begin{split}S_{3}(h)=\frac{1}{2}\sum_{\begin{subarray}{c}a\leq Z\\ (a,2)=1\end{subarray}}&\frac{\mu(a)}{a^{2}}\sum_{k\neq 0}\sum_{(n_{1},2a)=1}\sum_{(n_{2},2a)=1}\frac{(-1)^{k}G_{k}(n_{1}n_{2})\mu(n_{1})\mu(n_{2})}{n_{1}n_{2}}\\ &\times\left(\frac{1}{2\pi i}\right)^{3}\int\limits_{(\varepsilon)}\int\limits_{(\varepsilon)}\int\limits_{(\varepsilon)}\widetilde{h}\left(1-s,u,v\right)\frac{1}{n_{1}^{u}n_{2}^{v}}\left(\frac{n_{1}n_{2}a^{2}}{\pi|k|}\right)^{s}\Gamma(s)(C+\text{sgn}(k)S)\left(\frac{\pi s}{2}\right)\mathrm{d}s\,\mathrm{d}u\,\mathrm{d}v.\end{split}

Note that by (3.14) and the estimation (see [S&Y, p. 1107]),

(3.16) |Γ(s)(C±S)(πs2)||s|(s)1/2,\Big{|}\Gamma(s)(C\pm S)\Big{(}\frac{\pi s}{2}\Big{)}\Big{|}\ll|s|^{\Re(s)-1/2},

the integral over ss in (3.15) may be taken over any vertical lines between 0 and 11 and the integrals over u,vu,v in (3.15) may be taken over any vertical lines between 0 and 22.

Hence we arrive at

(3.17) S3(h)=12aZ(a,2)=1μ(a)a2(12πi)3(ε)(ε)(ε)h~(1s,u,v)k0(n1,2a)=1×(n2,2a)=1(1)kGk(n1n2)μ(n1)μ(n2)n1n21n1un2v(n1n2a2π|k|)sΓ(s)(C+sgn(k)S)(πs2)dsdudv.\begin{split}S_{3}(h)=\frac{1}{2}\sum_{\begin{subarray}{c}a\leq Z\\ (a,2)=1\end{subarray}}&\frac{\mu(a)}{a^{2}}\left(\frac{1}{2\pi i}\right)^{3}\int\limits_{(\varepsilon)}\int\limits_{(\varepsilon)}\int\limits_{(\varepsilon)}\widetilde{h}\left(1-s,u,v\right)\sum_{k\neq 0}\sum_{(n_{1},2a)=1}\\ &\times\sum_{(n_{2},2a)=1}\frac{(-1)^{k}G_{k}(n_{1}n_{2})\mu(n_{1})\mu(n_{2})}{n_{1}n_{2}}\frac{1}{n_{1}^{u}n_{2}^{v}}\left(\frac{n_{1}n_{2}a^{2}}{\pi|k|}\right)^{s}\Gamma(s)(C+\text{sgn}(k)S)\left(\frac{\pi s}{2}\right)\mathrm{d}s\,\mathrm{d}u\,\mathrm{d}v.\end{split}

Now, we write k=ιk1k22k=\iota k_{1}k^{2}_{2} with ι{±1}\iota\in\{\pm 1\} and k1>0k_{1}>0 square-free. We write f(k)=Gιk(n1n2)/|k|sf(k)=G_{\iota k}(n_{1}n_{2})/|k|^{s}. It follows from [Young2, (5.15)] that

k=1(1)kf(k)=(212s1)k11(k1,2)=1k2=1f(k1k22)+k112|k1k2=1f(k1k22).\displaystyle\sum^{\infty}_{k=1}(-1)^{k}f(k)=(2^{1-2s}-1)\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}k_{1}\geq 1\\ (k_{1},2)=1\end{subarray}}\sum^{\infty}_{k_{2}=1}f(k_{1}k^{2}_{2})+\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}k_{1}\geq 1\\ 2|k_{1}\end{subarray}}\sum^{\infty}_{k_{2}=1}f(k_{1}k^{2}_{2}).

We apply the above relation to recast the expression given in (3.17) for S3(h)S_{3}(h) as

(3.18) S3(h)\displaystyle S_{3}(h) =ι=±1(S3,1ι(h)+S3,2ι(h)),\displaystyle=\sum_{\iota=\pm 1}(S^{\iota}_{3,1}(h)+S^{\iota}_{3,2}(h)),

where

S3,1ι(h)=\displaystyle S^{\iota}_{3,1}(h)= 12aZ(a,2)=1μ(a)a2k11(k1,2)=1(12πi)3\displaystyle\frac{1}{2}\sum_{\begin{subarray}{c}a\leq Z\\ (a,2)=1\end{subarray}}\frac{\mu(a)}{a^{2}}\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}k_{1}\geq 1\\ (k_{1},2)=1\end{subarray}}\left(\frac{1}{2\pi i}\right)^{3}
×(1+2ε)(1+2ε)(1/2+ε)h~(1s,u,v)Γ(s)(212s1)(C+ιS)(πs2)(a2πk1)sZ(us,vs,s;a,ιk1)dsdudv,\displaystyle\times\int\limits_{(1+2\varepsilon)}\int\limits_{(1+2\varepsilon)}\int\limits_{(1/2+\varepsilon)}\widetilde{h}\left(1-s,u,v\right)\Gamma(s)(2^{1-2s}-1)(C+\iota S)\left(\frac{\pi s}{2}\right)\left(\frac{a^{2}}{\pi k_{1}}\right)^{s}Z(u-s,v-s,s;a,\iota k_{1})\mathrm{d}s\,\mathrm{d}u\,\mathrm{d}v,
S3,2ι(h)=\displaystyle S^{\iota}_{3,2}(h)= 12aZ(a,2)=1μ(a)a2k112|k1(12πi)3\displaystyle\frac{1}{2}\sum_{\begin{subarray}{c}a\leq Z\\ (a,2)=1\end{subarray}}\frac{\mu(a)}{a^{2}}\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}k_{1}\geq 1\\ 2|k_{1}\end{subarray}}\left(\frac{1}{2\pi i}\right)^{3}
×(1+2ε)(1+2ε)(1/2+ε)h~(1s,u,v)Γ(s)(C+ιS)(πs2)(a2πk1)sZ(us,vs,s;a,ιk1)dsdudv.\displaystyle\times\int\limits_{(1+2\varepsilon)}\int\limits_{(1+2\varepsilon)}\int\limits_{(1/2+\varepsilon)}\widetilde{h}\left(1-s,u,v\right)\Gamma(s)(C+\iota S)\left(\frac{\pi s}{2}\right)\left(\frac{a^{2}}{\pi k_{1}}\right)^{s}Z(u-s,v-s,s;a,\iota k_{1})\mathrm{d}s\,\mathrm{d}u\,\mathrm{d}v.

Here the function ZZ is defined in (2.3). We make a change of variables to rewrite S3,1ι(h)S^{\iota}_{3,1}(h) as

S3,1ι(h)=12aZ(a,2)=1μ(a)a2k11(k1,2)=1(12πi)3(1/2+ε)(1/2+ε)(1/2+ε)h~(1s,u+s,v+s)Γ(s)(212s1)×(C+ιS)(πs2)(a2πk1)sZ(u,v,s;a,ιk1)dsdudv.S^{\iota}_{3,1}(h)=\frac{1}{2}\sum_{\begin{subarray}{c}a\leq Z\\ (a,2)=1\end{subarray}}\frac{\mu(a)}{a^{2}}\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}k_{1}\geq 1\\ (k_{1},2)=1\end{subarray}}\left(\frac{1}{2\pi i}\right)^{3}\int\limits_{(1/2+\varepsilon)}\int\limits_{(1/2+\varepsilon)}\int\limits_{(1/2+\varepsilon)}{\widetilde{h}}(1-s,u+s,v+s)\Gamma(s)(2^{1-2s}-1)\\ \hskip 72.26999pt\times(C+\iota S)\left(\frac{\pi s}{2}\right)\left(\frac{a^{2}}{\pi k_{1}}\right)^{s}Z(u,v,s;a,\iota k_{1})\mathrm{d}s\,\mathrm{d}u\,\mathrm{d}v.

We split the sum over k1k_{1} into two terms according to whether k1Kk_{1}\leq K or not, with KK to be optimized later. If k1Kk_{1}\leq K, we move the lines of integration to (s)=c1\Re(s)=c_{1} for some 1/2<c1<11/2<c_{1}<1, (u)=(v)=ε\Re(u)=\Re(v)=\varepsilon. Otherwise, we move the lines of integration to (s)=c2\Re(s)=c_{2} for some c2>1c_{2}>1, (u)=(v)=ε\Re(u)=\Re(v)=\varepsilon. We encounter no poles in either case. Applying Lemma 2.8 and the bound in (3.4) yields

Z(u,v,s;a,ιk1)|La1(12+u,χιk1)La1(12+v,χιk1)|d2(a)(|L1(12+u,χιk1)|2+|L1(12+v,χιk1)|2).Z(u,v,s;a,\iota k_{1})\ll|L^{-1}_{a}(\tfrac{1}{2}+u,\chi_{\iota k_{1}})L^{-1}_{a}(\tfrac{1}{2}+v,\chi_{\iota k_{1}})|\ll d^{2}(a)\left(|L^{-1}(\tfrac{1}{2}+u,\chi_{\iota k_{1}})|^{2}+|L^{-1}(\tfrac{1}{2}+v,\chi_{\iota k_{1}})|^{2}\right).

The above and (3.14) with E1=E2=E3=1E_{1}=E_{2}=E_{3}=1, together with (3.16) and the symmetry in uu and vv give that the terms with k1Kk_{1}\leq K contribute

(3.19) X1c1Y2c1+2εaZd(a)a22c1(c1)(ε)(ε)1k1K1k1c1|L(12+u,χιk1)|2|s|(s)1/2dudvds|1s|(1+|1s|)|u+s|(1+|u+s|)|v+s|(1+|v+s|).\begin{split}\ll X^{1-c_{1}}&Y^{2c_{1}+2\varepsilon}\sum_{a\leq Z}\frac{d(a)}{a^{2-2c_{1}}}\\ &\int\limits_{(c_{1})}\int\limits_{(\varepsilon)}\int\limits_{(\varepsilon)}\sideset{}{{}^{*}}{\sum}_{1\leq k_{1}\leq K}\frac{1}{k_{1}^{c_{1}}}|L(\tfrac{1}{2}+u,\chi_{\iota k_{1}})|^{-2}\frac{|s|^{\Re(s)-1/2}\mathrm{d}u\,\mathrm{d}v\,\mathrm{d}s}{|1-s|(1+|1-s|)|u+s|(1+|u+s|)|v+s|(1+|v+s|)}.\end{split}

We further apply Lemma 2.6 to get

1k1K1k1c1|L(12+u,χιk1)|2K1c1+ε(1+|t|)εK1c1+ε((1+|u+s|)ε+|s|ε).\displaystyle\sideset{}{{}^{*}}{\sum}_{1\leq k_{1}\leq K}\frac{1}{k_{1}^{c_{1}}}|L(\tfrac{1}{2}+u,\chi_{\iota k_{1}})|^{-2}\ll K^{1-c_{1}+\varepsilon}(1+|t|)^{\varepsilon}\ll K^{1-c_{1}+\varepsilon}\left((1+|u+s|)^{\varepsilon}+|s|^{\varepsilon}\right).

Applying the above in (3.19), we infer that the terms with k1Kk_{1}\leq K contribute

X1c1Y2c2+2εK1c1+εZ2c11+ε.\displaystyle\ll X^{1-c_{1}}Y^{2c_{2}+2\varepsilon}K^{1-c_{1}+\varepsilon}Z^{2c_{1}-1+\varepsilon}.

Similarly, the contribution from the complementary terms with k1>Kk_{1}>K is

X1c2Y2c2+εK1c2+εZ2c21+ε.\displaystyle\ll X^{1-c_{2}}Y^{2c_{2}+\varepsilon}K^{1-c_{2}+\varepsilon}Z^{2c_{2}-1+\varepsilon}.

We now balance these contributions by setting K=Y2Z2/XK=Y^{2}Z^{2}/X so that

X1c1Y2c1K1c1Z2c11=X1c2Y2c2K1c2Z2c21.\displaystyle X^{1-c_{1}}Y^{2c_{1}}K^{1-c_{1}}Z^{2c_{1}-1}=X^{1-c_{2}}Y^{2c_{2}}K^{1-c_{2}}Z^{2c_{2}-1}.

Now taking c1=1/2+εc_{1}=1/2+\varepsilon yields the bound

S3,1ι(h)(XYZ)εY2Z.\displaystyle S^{\iota}_{3,1}(h)\ll(XYZ)^{\varepsilon}Y^{2}Z.

Note that S3,2ι(h)S^{\iota}_{3,2}(h) satisfies the above upper bound as well. Hence, we conclude from (3.5), (3.11), (3.18) and the above that

S(h)=4π2XYh~1(1,1)Z2(1)+O((XY)1+εZ1+ε+XY1/2+ε+(XYZ)εY2Z).\displaystyle S(h)=\frac{4}{\pi^{2}}XY\widetilde{h}_{1}(1,1)Z_{2}(1)+O\left((XY)^{1+\varepsilon}Z^{-1+\varepsilon}+XY^{1/2+\varepsilon}+(XYZ)^{\varepsilon}Y^{2}Z\right).

Now (1.5) follows upon setting Z=(X/Y)1/2Z=(X/Y)^{1/2}, completing the proof of Theorem 1.1.

Acknowledgments. P. G. was supported in part by NSFC Grant 11871082 and L. Z. by the Faculty Silverstar Grant PS65447 at the University of New South Wales. The authors would also like to thank the anonymous referee for his/her careful and prompt inspection of the paper.

References