This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

[7]L. K. Li, 11institutetext: Department of Physics, University of the Basque Country UPV/EHU, 48080 Bilbao, Spain 22institutetext: University of Bonn, 53115 Bonn, Germany 33institutetext: Brookhaven National Laboratory, Upton, New York 11973, USA 44institutetext: Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090, Russian Federation 55institutetext: Faculty of Mathematics and Physics, Charles University, 121 16 Prague, The Czech Republic 66institutetext: Chonnam National University, Gwangju 61186, South Korea 77institutetext: University of Cincinnati, Cincinnati, OH 45221, USA 88institutetext: Deutsches Elektronen–Synchrotron, 22607 Hamburg, Germany 99institutetext: University of Florida, Gainesville, FL 32611, USA 1010institutetext: Department of Physics, Fu Jen Catholic University, Taipei 24205, Taiwan 1111institutetext: Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) and Institute of Modern Physics, Fudan University, Shanghai 200443, PR China 1212institutetext: Gifu University, Gifu 501-1193, Japan 1313institutetext: SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193, Japan 1414institutetext: Gyeongsang National University, Jinju 52828, South Korea 1515institutetext: Department of Physics and Institute of Natural Sciences, Hanyang University, Seoul 04763, South Korea 1616institutetext: University of Hawaii, Honolulu, HI 96822, USA 1717institutetext: High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801, Japan 1818institutetext: J-PARC Branch, KEK Theory Center, High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801, Japan 1919institutetext: National Research University Higher School of Economics, Moscow 101000, Russian Federation 2020institutetext: Forschungszentrum Jülich, 52425 Jülich, Germany 2121institutetext: IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain 2222institutetext: Indian Institute of Technology Bhubaneswar, Satya Nagar 751007, India 2323institutetext: Indian Institute of Technology Hyderabad, Telangana 502285, India 2424institutetext: Indian Institute of Technology Madras, Chennai 600036, India 2525institutetext: Indiana University, Bloomington, IN 47408, USA 2626institutetext: Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, PR China 2727institutetext: Institute for High Energy Physics, Protvino 142281, Russian Federation 2828institutetext: Institute of High Energy Physics, Vienna 1050, Austria 2929institutetext: INFN - Sezione di Napoli, I-80126 Napoli, Italy 3030institutetext: INFN - Sezione di Roma Tre, I-00146 Roma, Italy 3131institutetext: Advanced Science Research Center, Japan Atomic Energy Agency, Naka 319-1195, Japan 3232institutetext: J. Stefan Institute, 1000 Ljubljana, Slovenia 3333institutetext: Institut für Experimentelle Teilchenphysik, Karlsruher Institut für Technologie, 76131 Karlsruhe, Germany 3434institutetext: Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia 3535institutetext: Kitasato University, Sagamihara 252-0373, Japan 3636institutetext: Korea Institute of Science and Technology Information, Daejeon 34141, South Korea 3737institutetext: Korea University, Seoul 02841, South Korea 3838institutetext: Kyoto Sangyo University, Kyoto 603-8555, Japan 3939institutetext: Kyungpook National University, Daegu 41566, South Korea 4040institutetext: Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France 4141institutetext: P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991, Russian Federation 4242institutetext: Liaoning Normal University, Dalian 116029, China 4343institutetext: Faculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana, Slovenia 4444institutetext: Ludwig Maximilians University, 80539 Munich, Germany 4545institutetext: Luther College, Decorah, IA 52101, USA 4646institutetext: Malaviya National Institute of Technology Jaipur, Jaipur 302017, India 4747institutetext: Faculty of Chemistry and Chemical Engineering, University of Maribor, 2000 Maribor, Slovenia 4848institutetext: Max-Planck-Institut für Physik, 80805 München, Germany 4949institutetext: University of Mississippi, University, MS 38677, USA 5050institutetext: Moscow Physical Engineering Institute, Moscow 115409, Russian Federation 5151institutetext: Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan 5252institutetext: Università di Napoli Federico II, I-80126 Napoli, Italy 5353institutetext: Nara Women’s University, Nara 630-8506, Japan 5454institutetext: National Central University, Chung-li 32054, Taiwan 5555institutetext: National United University, Miao Li 36003, Taiwan 5656institutetext: Department of Physics, National Taiwan University, Taipei 10617, Taiwan 5757institutetext: H. Niewodniczanski Institute of Nuclear Physics, Krakow 31-342, Poland 5858institutetext: Nippon Dental University, Niigata 951-8580, Japan 5959institutetext: Niigata University, Niigata 950-2181, Japan 6060institutetext: Novosibirsk State University, Novosibirsk 630090, Russian Federation 6161institutetext: Osaka City University, Osaka 558-8585, Japan 6262institutetext: Pacific Northwest National Laboratory, Richland, WA 99352, USA 6363institutetext: Panjab University, Chandigarh 160014, India 6464institutetext: University of Pittsburgh, Pittsburgh, PA 15260, USA 6565institutetext: Research Center for Nuclear Physics, Osaka University, Osaka 567-0047, Japan 6666institutetext: Meson Science Laboratory, Cluster for Pioneering Research, RIKEN, Saitama 351-0198, Japan 6767institutetext: Dipartimento di Matematica e Fisica, Università di Roma Tre, I-00146 Roma, Italy 6868institutetext: Department of Modern Physics and State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei 230026, PR China 6969institutetext: Seoul National University, Seoul 08826, South Korea 7070institutetext: Showa Pharmaceutical University, Tokyo 194-8543, Japan 7171institutetext: Soongsil University, Seoul 06978, South Korea 7272institutetext: Sungkyunkwan University, Suwon 16419, South Korea 7373institutetext: School of Physics, University of Sydney, New South Wales 2006, Australia 7474institutetext: Department of Physics, Faculty of Science, University of Tabuk, Tabuk 71451, Saudi Arabia 7575institutetext: Tata Institute of Fundamental Research, Mumbai 400005, India 7676institutetext: Department of Physics, Technische Universität München, 85748 Garching, Germany 7777institutetext: School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978, Israel 7878institutetext: Department of Physics, Tohoku University, Sendai 980-8578, Japan 7979institutetext: Earthquake Research Institute, University of Tokyo, Tokyo 113-0032, Japan 8080institutetext: Department of Physics, University of Tokyo, Tokyo 113-0033, Japan 8181institutetext: Tokyo Institute of Technology, Tokyo 152-8550, Japan 8282institutetext: Tokyo Metropolitan University, Tokyo 192-0397, Japan 8383institutetext: Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA 8484institutetext: Wayne State University, Detroit, MI 48202, USA 8585institutetext: Yamagata University, Yamagata 990-8560, Japan 8686institutetext: Yonsei University, Seoul 03722, South Korea

Measurement of branching fractions and search for 𝑪𝑷C\!P violation in 𝑫𝟎𝝅+𝝅𝜼D^{0}\rightarrow\pi^{+}\pi^{-}\eta, 𝑫𝟎𝑲+𝑲𝜼D^{0}\rightarrow K^{+}K^{-}\eta, and 𝑫𝟎ϕ𝜼D^{0}\rightarrow\phi\eta at Belle

7    A. J. Schwartz 7    K. Kinoshita 17,13    I. Adachi 80    H. Aihara, 74,34    S. Al Said 3    D. M. Asner, 7    H. Atmacan 4,60    V. Aulchenko 19    T. Aushev 74    R. Ayad 8    V. Babu, 22    S. Bahinipati 24    P. Behera, 49    J. Bennett, 16    M. Bessner, 5    T. Bilka, 32    J. Biswal, 4,60    A. Bobrov, 84    G. Bonvicini, 57    A. Bozek 47,32    M. Bračko 30    P. Branchini 16    T. E. Browder, 30    A. Budano 29,52    M. Campajola 5    D. Červenkov, 10    M.-C. Chang 56    P. Chang 48    V. Chekelian, 54    A. Chen 68    Y. Q. Chen, 15    B. G. Cheon, 41    K. Chilikin 15    H. E. Cho 36    K. Cho 86    S.-J. Cho 14    S.-K. Choi, 72    Y. Choi 23    S. Choudhury 84    D. Cinabro 8    S. Cunliffe, 46    S. Das, 24    N. Dash 29,52    G. De Nardo 30    G. De Pietro 23    R. Dhamija 29,52    F. Di Capua 5    Z. Doležal, 11    T. V. Dong 4,60,41    S. Eidelman, 4,60    D. Epifanov 8    T. Ferber, 62    B. G. Fulsom, 63    R. Garg 83    V. Gaur 23    A. Giri, 33    P. Goldenzweig 43,32    B. Golob 30    E. Graziani, 64    T. Gu, 7    Y. Guan 62    C. Hadjivasiliou, 75    S. Halder 59    K. Hayasaka, 56    W.-S. Hou, 51    K. Inami, 17,13    A. Ishikawa, 61    M. Iwasaki, 17    Y. Iwasaki 25    W. W. Jacobs, 14    E.-J. Jang, 11    S. Jia, 80    Y. Jin 6    K. K. Joo, 39    K. H. Kang, 8    G. Karyan, 48    C. Kiesling, 15    C. H. Kim, 71    D. Y. Kim 86    K.-H. Kim, 69    S. H. Kim, 86    Y.-K. Kim, 5    P. Kodyš, 35    T. Konno, 4,60    A. Korobov 47,32    S. Korpar 4,60    E. Kovalenko 43,32    P. Križan 49    R. Kroeger 4,60    P. Krokovny, 44    T. Kuhr, 46    M. Kumar, 84    K. Kumara, 4,60    A. Kuzmin, 86    Y.-J. Kwon, 46    K. Lalwani, 30,67    M. Laurenza, 39    S. C. Lee, 42    C. H. Li, 48    L. Li Gioi, 24    J. Libby, 44    K. Lieret 84,17    D. Liventsev, 79,65    M. Masuda, 4,60,41    D. Matvienko, 29,52    M. Merola, 33    F. Metzner 53    K. Miyabayashi 41,19    R. Mizuk, 75    G. B. Mohanty, 51    T. Mori, 17,13    M. Nakao, 57    Z. Natkaniec, 16    A. Natochii 23    L. Nayak 77    M. Nayak 38    M. Niiyama, 3    N. K. Nisar 17,13    S. Nishida 16    K. Nishimura 58,59    H. Ono, 41    P. Oskin, 41,50    P. Pakhlov, 19,41    G. Pakhlova 29    S. Pardi, 17    S.-H. Park, 30    A. Passeri 76,48    S. Paul, 45    T. K. Pedlar 32    R. Pestotnik, 83    L. E. Piilonen, 43,32    T. Podobnik 19    V. Popov 20    E. Prencipe, 2    M. T. Prim 24    N. Rout, 52    G. Russo, 75    D. Sahoo 17,13    Y. Sakai 23    S. Sandilya, 7    A. Sangal 43,32    L. Santelj, 78    T. Sanuki 64    V. Savinov, 1,21    G. Schnell, 28    C. Schwanda, 59    Y. Seino, 85    K. Senyo, 27    M. Shapkin, 46    C. Sharma 11    C. P. Shen, 56    J.-G. Shiu, 4,60    B. Shwartz 27    A. Sokolov, 41    E. Solovieva, 32    M. Starič, 83    Z. S. Stottler, 12    M. Sumihama, 82    T. Sumiyoshi, 70,18,66    M. Takizawa, 31    K. Tanida, 8    F. Tenchini, 81    M. Uchida, 41,19    T. Uglov, 15    Y. Unno 59    K. Uno 17,13    S. Uno 16    S. E. Vahsen, 2    R. Van Tonder, 16    G. Varner, 4,60    A. Vinokurova, 17    E. Waheed, 55    C. H. Wang, 56    M.-Z. Wang, 26    P. Wang 11    X. L. Wang 40    S. Watanuki, 37    E. Won, 73    B. D. Yabsley, 68    W. B. Yan, 37    S. B. Yang, 8    H. Ye, 9    J. Yelton 37    J. H. Yin 59    Y. Yusa, 68    Z. P. Zhang, 4,60    V. Zhilich, 41    V. Zhukova lilk@ucmail.uc.edu
Abstract

We measure the branching fractions and CPC\!P asymmetries for the singly Cabibbo-suppressed decays D0π+πηD^{0}\rightarrow\pi^{+}\pi^{-}\eta, D0K+KηD^{0}\rightarrow K^{+}K^{-}\eta, and D0ϕηD^{0}\rightarrow\phi\eta,t using 980 fb-1 of data from the Belle experiment at the KEKB e+ee^{+}e^{-} collider. We obtain

(D0π+πη)\displaystyle\mathcal{B}(D^{0}\rightarrow\pi^{+}\pi^{-}\eta) =\displaystyle= [1.22±0.02(stat)±0.02(syst)±0.03(ref)]×103,\displaystyle[1.22\pm 0.02\,({\rm stat})\pm 0.02\,({\rm syst})\pm 0.03\,(\mathcal{B}_{\rm ref})]\times 10^{-3}\,,
(D0K+Kη)\displaystyle\mathcal{B}(D^{0}\rightarrow K^{+}K^{-}\eta) =\displaystyle= [1.800.06+0.07(stat)±0.04(syst)±0.05(ref)]×104,\displaystyle[1.80\,^{+0.07}_{-0.06}\,({\rm stat})\pm 0.04\,({\rm syst})\pm 0.05\,(\mathcal{B}_{\rm ref})]\times 10^{-4}\,,
(D0ϕη)\displaystyle\mathcal{B}(D^{0}\rightarrow\phi\eta) =\displaystyle= [1.84±0.09(stat)±0.06(syst)±0.05(ref)]×104,\displaystyle[1.84\pm 0.09\,({\rm stat})\pm 0.06\,({\rm syst})\pm 0.05\,(\mathcal{B}_{\rm ref})]\times 10^{-4}\,,

where the third uncertainty (ref\mathcal{B}_{\rm ref}) is from the uncertainty in the branching fraction of the reference mode D0Kπ+ηD^{0}\rightarrow K^{-}\pi^{+}\eta. The color-suppressed decay D0ϕηD^{0}\rightarrow\phi\eta is observed for the first time, with very high significance. The results for the CPC\!P asymmetries are

ACP(D0π+πη)\displaystyle A_{C\!P}(D^{0}\rightarrow\pi^{+}\pi^{-}\eta) =\displaystyle= [0.9±1.2(stat)±0.5(syst)]%,\displaystyle[0.9\pm 1.2\,({\rm stat})\pm 0.5\,({\rm syst})]\%\,,
ACP(D0K+Kη)\displaystyle A_{C\!P}(D^{0}\rightarrow K^{+}K^{-}\eta) =\displaystyle= [1.4±3.3(stat)±1.1(syst)]%,\displaystyle[-1.4\pm 3.3\,({\rm stat})\pm 1.1\,({\rm syst})]\%\,,
ACP(D0ϕη)\displaystyle A_{C\!P}(D^{0}\rightarrow\phi\eta) =\displaystyle= [1.9±4.4(stat)±0.6(syst)]%.\displaystyle[-1.9\pm 4.4\,({\rm stat})\pm 0.6\,({\rm syst})]\%\,.

The results for D0π+πηD^{0}\rightarrow\pi^{+}\pi^{-}\eta are a significant improvement over previous results. The branching fraction and ACPA_{C\!P} results for D0K+KηD^{0}\rightarrow K^{+}K^{-}\eta, and the ACPA_{C\!P} result for D0ϕηD^{0}\rightarrow\phi\eta, are the first such measurements. No evidence for CPC\!P violation is found in any of these decays.

Keywords:
e+ee^{+}e^{-} Experiments, Charm physics, CPC\!P violation, Branching fraction
arxiv: 2106.04286preprint: Belle Preprint 2021-11 KEK Preprint 2021-8

1 Introduction

Singly Cabibbo-suppressed (SCS) decays of charmed mesons provide a promising opportunity to study CPC\!P violation in the charm sector. Within the Standard Model, CPC\!P violation in charm decays is expected to be of the order of 10310^{-3} or smaller bib:PRD85o034036 ; bib:PRD75d036008 , and thus challenging to observe. SCS decays are of special interest, as interference that includes a new physics amplitude could lead to large CPC\!P violation. The CPC\!P asymmetry between D0fD^{0}\rightarrow f and D¯0f¯\kern 1.99997pt\overline{\kern-1.99997ptD}{}^{0}\rightarrow\bar{f} decays (ACPA_{C\!P}) is defined as

ACP\displaystyle A_{C\!P} =\displaystyle= (D0f)(D¯0f¯)(D0f)+(D¯0f¯).\displaystyle\frac{\mathcal{B}(D^{0}\rightarrow f)-\mathcal{B}(\kern 1.99997pt\overline{\kern-1.99997ptD}{}^{0}\rightarrow\bar{f})}{\mathcal{B}(D^{0}\rightarrow f)+\mathcal{B}(\kern 1.99997pt\overline{\kern-1.99997ptD}{}^{0}\rightarrow\bar{f})}\,. (1)

The only observation of CPC\!P violation in the charm sector to date is from the LHCb experiment, where a difference in ACPA_{C\!P} between the SCS D0K+KD^{0}\rightarrow K^{+}K^{-} and D0π+πD^{0}\rightarrow\pi^{+}\pi^{-} decays bib:CPVobservation was observed: ΔACP=(15.4±2.9)×104\Delta A_{C\!P}=(-15.4\pm 2.9)\times 10^{-4}. In this paper, we investigate two analogous SCS decays, D0π+πηD^{0}\rightarrow\pi^{+}\pi^{-}\eta and D0K+KηD^{0}\rightarrow K^{+}K^{-}\eta. A search for a CPC\!P asymmetry in the first decay was performed by the BESIII experiment; the resulting precision was 6% bib:PRD101d052009 . There have been no results for D0K+KηD^{0}\rightarrow K^{+}K^{-}\eta decays to date. Theoretically, it is difficult to predict CPC\!P asymmetries for three-body decays, while some predictions exist for intermediate two-body processes: ACP(D0ρ0η)A_{C\!P}(D^{0}\rightarrow\rho^{0}\eta) is predicted to be 0.53×103-0.53\times 10^{-3} from tree amplitudes alone, and 0.23×103-0.23\times 10^{-3} after considering QCD-penguin and weak penguin-annihilation bib:PRD85o034036 . The asymmetry ACP(D0ϕη)A_{C\!P}(D^{0}\rightarrow\phi\eta) is predicted to be zero in several theoretical models bib:PRD85o034036 . A precise measurement of branching fractions (\mathcal{B}) for these three-body decays is an important step towards searching for CPC\!P violation in these channels.

In this paper we utilize the full Belle data sample of 980  fb1\mbox{\,fb}^{-1} to measure \mathcal{B} and ACPA_{C\!P} for three SCS decays: D0π+πηD^{0}\rightarrow\pi^{+}\pi^{-}\eta, D0K+KηD^{0}\rightarrow K^{+}K^{-}\eta, and D0ϕηD^{0}\rightarrow\phi\eta. All \mathcal{B} measurements are performed relative to the Cabibbo-favored (CF) decay D0Kπ+ηD^{0}\rightarrow K^{-}\pi^{+}\eta, which has been well-measured (with a fractional uncertainty δ/3%\delta\mathcal{B}/\mathcal{B}\sim 3\% bib:PDG2020 ) by both Belle bib:PRD102d012002 and BESIII bib:PRL124d241803 . The current world average for (D0π+πη)\mathcal{B}(D^{0}\rightarrow\pi^{+}\pi^{-}\eta) has a fractional uncertainty δ/6%\delta\mathcal{B}/\mathcal{B}\sim 6\% bib:PDG2020 . The branching fraction for D0ϕηD^{0}\rightarrow\phi\eta was previously measured by Belle with 78  fb1\mbox{\,fb}^{-1} of data bib:PRL92d101803 ; the measurement reported here uses an order of magnitude more data and supersedes that result. BESIII found evidence for D0ϕηD^{0}\rightarrow\phi\eta (4.2σ4.2\sigmabib:PLB798d135017 and observed a non-ϕ\phi D0K+KηD^{0}\rightarrow K^{+}K^{-}\eta component (5.2σ5.2\sigmabib:PRL124d241803 .

To identify the flavor of the neutral DD meson when produced, we reconstruct D+D0πs+D^{*+}\rightarrow D^{0}\pi^{+}_{s} and DD¯πs0D^{*-}\rightarrow\kern 1.99997pt\overline{\kern-1.99997ptD}{}^{0}\pi^{-}_{s} decays; the charge of the daughter πs±\pi^{\pm}_{s} (which has low momentum and is referred to as the “slow” pion) identifies whether the DD meson is D0D^{0} or D¯0\kern 1.99997pt\overline{\kern-1.99997ptD}{}^{0}. The raw asymmetry measured (ArawA_{\rm raw}) receives contributions from several sources:

Araw\displaystyle A_{\rm raw} =\displaystyle= ACPD0f+AFBD++Aεπs,\displaystyle A_{C\!P}^{D^{0}\rightarrow f}+A_{\rm FB}^{D^{*+}}+A_{\varepsilon}^{\pi_{s}}\,, (2)

where ACPD0fA_{C\!P}^{D^{0}\rightarrow f} is the CPC\!P asymmetry for D0fD^{0}\rightarrow f; AFBD+A_{\rm FB}^{D^{*+}} is the forward-backward asymmetry due to γ\gamma-Z0Z^{0} interference and higher-order QED effects bib:BROWN1973403 in e+ecc¯e^{+}e^{-}\rightarrow c\bar{c} collisions; and AεπsA_{\varepsilon}^{\pi_{s}} is the asymmetry resulting from a difference in reconstruction efficiencies between πs+\pi^{+}_{s} and πs\pi^{-}_{s}. This asymmetry depends on the transverse momentum pT(πs)p_{T}(\pi_{s}) and polar angle θ(πs)\theta(\pi_{s}) of the πs\pi_{s} in the laboratory frame. We correct for this by weighting signal events by a factor [1Aεπs(pT,cosθ)][1-A_{\varepsilon}^{\pi_{s}}(p_{T},\cos\theta)] for D0D^{0} decays, and by a factor [1+Aεπs(pT,cosθ)][1+A_{\varepsilon}^{\pi_{s}}(p_{T},\cos\theta)] for D¯0\kern 1.99997pt\overline{\kern-1.99997ptD}{}^{0} decays. After this weighting, we are left with the πs\pi_{s}-corrected asymmetry

Acorr(cosθ)\displaystyle A_{\rm corr}(\cos\theta^{*}) =\displaystyle= ACP+AFB(cosθ).\displaystyle A_{C\!P}+A_{\rm FB}(\cos\theta^{*})\,. (3)

Since AFBA_{\rm FB} is an odd function of the cosine of the D+D^{*+} polar angle θ\theta^{*} in the e+ee^{+}e^{-} center-of-mass (CM) frame, and ACPA_{C\!P} is independent of cosθ\cos\theta^{*}, we extract ACPA_{C\!P} and AFB(cosθ)A_{\rm FB}(\cos\theta^{*}) via

ACP\displaystyle A_{C\!P} =\displaystyle= Acorr(cosθ)+Acorr(cosθ)2,\displaystyle\dfrac{A_{\rm corr}(\cos\theta^{*})+A_{\rm corr}(-\cos\theta^{*})}{2}\,, (4)
AFB(cosθ)\displaystyle A_{\rm FB}(\cos\theta^{*}) =\displaystyle= Acorr(cosθ)Acorr(cosθ)2.\displaystyle\dfrac{A_{\rm corr}(\cos\theta^{*})-A_{\rm corr}(-\cos\theta^{*})}{2}\,. (5)

Fitting the values of ACPA_{C\!P} for different cosθ\cos\theta^{*} bins to a constant gives our final measurement of ACPA_{C\!P} for D0fD^{0}\rightarrow f.

2 Belle detector and data sets

This measurement is based on the full data set of the Belle experiment, which corresponds to a total integrated luminosity of 980  fb1\mbox{\,fb}^{-1} bib:BelleDetector2 collected at or near the Υ(nS)\Upsilon(nS) (n=1n=1, 2, 3, 4, 5) resonances. The Belle experiment ran at the KEKB energy-asymmetric collider bib:KEKB ; bib:KEKB2 . The Belle detector is a large-solid-angle magnetic spectrometer consisting of a silicon vertex detector (SVD), a 5050-layer central drift chamber (CDC), an array of aerogel threshold Cherenkov counters (ACC), a barrel-like arrangement of time-of-flight scintillation counters (TOF), and an electromagnetic calorimeter comprising CsI(Tl) crystals located inside a superconducting solenoid coil providing a 1.51.5 T magnetic field. An iron flux-return located outside the coil is instrumented to detect KL0K_{L}^{0} mesons and to identify muons. A detailed description of the detector is given in Refs. bib:BelleDetector ; bib:BelleDetector2 .

We use Monte Carlo (MC) simulated events to optimize selection criteria, study backgrounds, and evaluate the signal reconstruction efficiency. Signal MC events are generated by EVTGEN bib:evtgen and propagated through a detector simulation based on GEANT3 bib:geant3 . Final-state radiation from charged particles is simulated using the PHOTOS package bib:PHOTOS . Three-body decays are generated according to phase space. An MC sample of “generic” events, corresponding to an integrated luminosity four times that of the data, is used to develop selection criteria. It includes BB¯B\overline{B} events and continuum processes e+eqq¯e^{+}e^{-}\rightarrow q\bar{q}, where q=u,d,s,cq=u,d,s,c. At the Υ(5S)\Upsilon(5S) resonance, the MC includes Bs()0B¯s()0B^{(*)0}_{s}\,\overline{B}{}^{(*)0}_{s} events. Selection criteria are optimized by maximizing a figure-of-merit Nsig/Nsig+NbkgN_{\rm sig}/\sqrt{N_{\rm sig}+N_{\rm bkg}}, where NsigN_{\rm sig} and NbkgN_{\rm bkg} are the numbers of signal and background events, respectively, expected in a two-dimensional signal region in variables MM and QQ. The variable MM is the invariant mass of the h+hηh^{+}h^{-}\eta (h=π,Kh=\pi,K) combination, and Q=[M(h+hηπs+)M(h+hη)mπs+]c2Q=[M(h^{+}h^{-}\eta\,\pi^{+}_{s})-M(h^{+}h^{-}\eta)-m_{\pi^{+}_{s}}]\cdot c^{2} is the kinetic energy released in the D+D^{*+} decay.

3 Event selection and optimization

We reconstruct the signal decays D0π+πηD^{0}\rightarrow\pi^{+}\pi^{-}\eta and D0K+KηD^{0}\rightarrow K^{+}K^{-}\eta, and the reference decay D0Kπ+ηD^{0}\rightarrow K^{-}\pi^{+}\eta, in which the D0D^{0} originates from D+D0π+D^{*+}\rightarrow D^{0}\pi^{+}, as follows.111Throughout this paper, charge-conjugate modes are implicitly included unless stated otherwise. Charged tracks are identified as K±K^{\pm} or π±\pi^{\pm} candidates using a likelihood ratio KK/(K+π)\mathcal{R}_{K}\equiv\mathcal{L}_{K}/(\mathcal{L}_{K}+\mathcal{L}_{\pi}), where K\mathcal{L}_{K} (π\mathcal{L}_{\pi}) is the likelihood that a track is a K±K^{\pm} (π±\pi^{\pm}) based on the photon yield in the ACC, dE/dxdE/dx information in the CDC, and time-of-flight information from the TOF bib:PID . Tracks having K>0.60\mathcal{R}_{K}>0.60 are identified as K±K^{\pm} candidates; otherwise, they are considered as π±\pi^{\pm} candidates. The corresponding efficiencies are approximately 90%90\% for kaons and 95%95\% for pions. Tracks that are highly electron-like (e>0.95\mathcal{R}_{e}>0.95) or muon-like (μ>0.95\mathcal{R}_{\mu}>0.95) are rejected, where the electron and muon likelihood ratios e\mathcal{R}_{e} and μ\mathcal{R}_{\mu} are determined mainly using information from the ECL and KLM detectors, respectively bib:NIMA485d490 ; bib:NIMA491d69 . Charged tracks are required to have at least two SVD hits in the +z+z direction (defined as the direction opposite that of the positron beam), and at least two SVD hits in the xx-yy (transverse) plane. The nearest approach of the πs+\pi_{s}^{+} track to the e+ee^{+}e^{-} interaction point (IP) is required to be less than 1.0 cm in the xx-yy plane, and less than 3.0 cm along the zz axis.

Photon candidates are identified as energy clusters in the ECL that are not associated with any charged track. The photon energy (EγE_{\gamma}) is required to be greater than 50 MeV in the barrel region (covering the polar angle 32<θ<12932^{\circ}<\theta<129^{\circ}), and greater than 100 MeV in the endcap region (12<θ<3112^{\circ}<\theta<31^{\circ} or 132<θ<157132^{\circ}<\theta<157^{\circ}). The ratio of the energy deposited in the 3×33\times 3 array of crystals centered on the crystal with the highest energy, to the energy deposited in the corresponding 5×55\times 5 array of crystals, is required to be greater than 0.80.

Candidate ηγγ\eta\rightarrow\gamma\gamma decays are reconstructed from photon pairs having an invariant mass satisfying 500MeV/c2<M(γγ)<580MeV/c2500~{\rm MeV}/c^{2}<M(\gamma\gamma)<580~{\rm MeV}/c^{2}. This range corresponds to about 3σ3\sigma in M(γγ)M(\gamma\gamma) resolution. The absolute value of the cosine of the ηγ1γ2\eta\rightarrow\gamma_{1}\gamma_{2} decay angle, defined as cosθηE(η)/p(η)(Eγ1Eγ2)/(Eγ1+Eγ2)\cos\theta_{\eta}\equiv E(\eta)/p(\eta)\cdot(E_{\gamma_{1}}-E_{\gamma_{2}})/(E_{\gamma_{1}}+E_{\gamma_{2}}), is required to be less than 0.85. This retains around 89% of the signal while reducing backgrounds by a factor of two. To further suppress backgrounds, we remove η\eta candidates in which both photon daughters can be combined with other photons in the event to form π0γγ\pi^{0}\rightarrow\gamma\gamma candidate decays satisfying |Mγγmπ0|<10|M_{\gamma\gamma}-m_{\pi^{0}}|<10 MeV/c2c^{2}, where mπ0m_{\pi^{0}} is the nominal π0\pi^{0} mass bib:PDG2020 . This veto requirement has an efficiency of 95% while reducing backgrounds by a factor of three (D0K+KηD^{0}\rightarrow K^{+}K^{-}\eta) and four (D0π+πηD^{0}\rightarrow\pi^{+}\pi^{-}\eta).

Candidate D0π+πηD^{0}\rightarrow\pi^{+}\pi^{-}\eta, D0K+KηD^{0}\rightarrow K^{+}K^{-}\eta, and D0Kπ+ηD^{0}\rightarrow K^{-}\pi^{+}\eta decays are reconstructed by combining π±\pi^{\pm} and K±K^{\pm} tracks with η\eta candidates. A vertex fit is performed with the two charged tracks to obtain the D0D^{0} decay vertex position; the resulting fit quality is labeled χv2\chi^{2}_{v}. To improve the momentum resolution of the η\eta, the γ\gamma daughters are subjected to a fit in which the photons are required to originate from the D0D^{0} vertex position, and the invariant mass is constrained to be that of the η\eta meson bib:PDG2020 . The fit quality of this mass constraint (χm2\chi_{m}^{2}) is required to satisfy χm2<8\chi_{m}^{2}<8, and the resulting η\eta momentum is required to be greater than 0.70 GeV/cc. For D0π+πηD^{0}\rightarrow\pi^{+}\pi^{-}\eta candidates, we veto events in which |M(π+π)mKS0|<10|M(\pi^{+}\pi^{-})-m_{K^{0}_{\scriptscriptstyle\rm S}}|<10 MeV/c2c^{2}, where mKS0m_{K^{0}_{\scriptscriptstyle\rm S}} is the nominal KS0K^{0}_{\scriptscriptstyle\rm S} mass bib:PDG2020 , to suppress background from CF D0KS0ηD^{0}\rightarrow K^{0}_{\scriptscriptstyle\rm S}\,\eta decays. This veto range corresponds to about 3σ3\sigma in resolution. The D0D^{0} invariant mass MM is required to satisfy 1.850GeV/c2<M<1.878GeV/c21.850~{\rm GeV}/c^{2}<M<1.878~{\rm GeV}/c^{2} for D0K+KηD^{0}\rightarrow K^{+}K^{-}\eta candidates; 1.840GeV/c2<M<1.884GeV/c21.840~{\rm GeV}/c^{2}<M<1.884~{\rm GeV}/c^{2} for D0π+πηD^{0}\rightarrow\pi^{+}\pi^{-}\eta candidates; and 1.842GeV/c2<M<1.882GeV/c21.842~{\rm GeV}/c^{2}<M<1.882~{\rm GeV}/c^{2} for D0Kπ+ηD^{0}\rightarrow K^{-}\pi^{+}\eta candidates. These ranges correspond to about 2σ2\sigma in resolution.

Candidate D+D0πs+D^{*+}\rightarrow D^{0}\pi_{s}^{+} decays are reconstructed by combining D0D^{0} candidates with πs+\pi_{s}^{+} tracks. We first fit for D+D^{*+} decay vertex using the D0D^{0} momentum vector and decay vertex position, and the IP as a constraint (i.e., the D+D^{*+} nominally originates from the IP). The resulting goodness-of-fit is labeled χIP2\chi^{2}_{\rm IP}. To improve the resolution in QQ, another vertex fit is performed: in this case we constrain the πs+\pi_{s}^{+} daughter to originate from the D+D^{*+} decay vertex, and the resulting fit quality is labeled χs2\chi^{2}_{s}. The sum of the above three fit qualities, χvtx2=χv2+χIP2+χs2\sum\chi^{2}_{\rm vtx}=\chi^{2}_{v}+\chi^{2}_{\rm IP}+\chi^{2}_{s}, is required to be less than 50; this requirement has a signal efficiency of about 97%. Those D+D^{*+} candidates satisfying 0<Q<150<Q<15 MeV are retained for further analysis. To eliminate D+D^{*+} candidates originating from BB decays, and to also suppress combinatorial background, the D+D^{*+} momentum in the CM frame is required to be greater than 2.70 GeV/cc.

After the above selection criteria are applied, about 2.1% of D0π+πηD^{0}\rightarrow\pi^{+}\pi^{-}\eta events, 1.3% of D0Kπ+ηD^{0}\rightarrow K^{-}\pi^{+}\eta events, and <0.1<0.1% of D0K+KηD^{0}\rightarrow K^{+}K^{-}\eta events have two or more D+D^{*+} candidates. For such multi-candidate events, we choose a single candidate: that which has the smallest value of the sum χvtx2+χm2(η)\sum\chi^{2}_{\rm vtx}+\chi_{m}^{2}(\eta). This criterion, according to MC simulation, identifies the correct candidate 54% of the time.

4 Measurement of the branching fractions

4.1 Measurement of 𝓑(𝑫𝟎𝝅+𝝅𝜼)\mathcal{B}(D^{0}\rightarrow\pi^{+}\pi^{-}\eta) and 𝓑(𝑫𝟎𝑲+𝑲𝜼)\mathcal{B}(D^{0}\rightarrow K^{+}K^{-}\eta)

We extract the signal yield via an unbinned maximum-likelihood fit to the QQ distribution. The probability density function (PDF) used for signal events is taken to be the sum of a bifurcated Student’s t-function (SbifS_{\rm bif}), which is defined in appendix A, and one or two asymmetric Gaussians (GasymG_{\rm asym}), with all having a common mean. The PDF used for D0K+KηD^{0}\rightarrow K^{+}K^{-}\eta signal events is simply an SbifS_{\rm bif} function. These PDFs are explicitly

𝒫sigKπη\displaystyle\mathcal{P}_{\rm sig}^{K\pi\eta} =\displaystyle= f1[fsSbif(μ,σ0,δ0,nl,nh)+(1fs)Gasym(μ,r1σ0,δ1)]\displaystyle f_{1}[f_{s}S_{\rm bif}(\mu,\sigma_{0},\delta_{0},n_{l},n_{h})+(1-f_{s})G_{\rm asym}(\mu,r_{1}\sigma_{0},\delta_{1})] (6)
+(1f1)Gasym(μ,r2r1σ0,δ2),\displaystyle+(1-f_{1})G_{\rm asym}(\mu,r_{2}r_{1}\sigma_{0},\delta_{2})\,,
𝒫sigππη\displaystyle\mathcal{P}_{\rm sig}^{\pi\pi\eta} =\displaystyle= fsSbif(μ,σ0,δ0,nl,nh)+(1fs)Gasym(μ,r1σ0,δ1),\displaystyle f_{s}S_{\rm bif}(\mu,\sigma_{0},\delta_{0},n_{l},n_{h})+(1-f_{s})G_{\rm asym}(\mu,r_{1}\sigma_{0},\delta_{1})\,, (7)
𝒫sigKKη\displaystyle\mathcal{P}_{\rm sig}^{KK\eta} =\displaystyle= Sbif(μ,σ0,δ0,nl,nh).\displaystyle S_{\rm bif}(\mu,\sigma_{0},\delta_{0},n_{l},n_{h})\,. (8)

In these expressions, δi\delta_{i} is an asymmetry parameter characterizing the difference between left-side and right-side widths: σR,L=σ(1±δ)\sigma_{R,L}=\sigma(1\pm\delta). Most of these parameters are fixed to values obtained from MC simulation. However, the parameters μ\mu, σ0\sigma_{0}, and, for the higher-statistics D0Kπ+ηD^{0}\rightarrow K^{-}\pi^{+}\eta channel, nl,hn_{l,h}, are floated to account for possible differences in resolution between data and MC. For backgrounds, the PDF is taken to be a threshold function f(Q)=QαeβQf(Q)=Q^{\alpha}e^{-\beta Q}; for the CF mode D0Kπ+ηD^{0}\rightarrow K^{-}\pi^{+}\eta, we include an additional symmetric Gaussian to describe a small background component originating from misreconstructed D0Kπ+π0π0D^{0}\rightarrow K^{-}\pi^{+}\pi^{0}\pi^{0} decays. The parameters of this Gaussian are fixed to values obtained from MC simulation, while all other parameters are floated. No other peaking backgrounds, such as misreconstructed D0D^{0} decays or signal decays in which a pion from the D0D^{0} is swapped with that from the D+D^{*+} decay, are found in the MC simulation.

The results of the fit are shown in figure 1, along with the pull (NdataNfit)/σ(N_{\rm data}-N_{\rm fit})/\sigma, where σ\sigma is the error on NdataN_{\rm data}. All fit residuals look satisfactory. The signal yields in the fitted region 0<Q<150<Q<15 MeV, and in the signal region |Q5.86|<0.80|Q-5.86|<0.80 MeV, are listed in table 1.

Region Component D0Kπ+ηD^{0}\rightarrow K^{-}\pi^{+}\eta D0π+πηD^{0}\rightarrow\pi^{+}\pi^{-}\eta D0K+KηD^{0}\rightarrow K^{+}K^{-}\eta
Fitted region signal 180369±837180369\pm 837 12982±19812982\pm 198 1482±601482\pm 60
background 57752±76157752\pm 761 101011±357101011\pm 357 5681±885681\pm 88
Signal region signal 162456±754162456\pm 754 12053±18412053\pm 184 1343±541343\pm 54
background 7578±1007578\pm 100 11274±4011274\pm 40 678±11678\pm 11
Table 1: Yields of signal and background events in the fitted region 0<Q<150<Q<15 MeV, and in the signal region |Q5.86|<0.80|Q-5.86|<0.80 MeV.
\begin{overpic}[width=195.12767pt]{Qfit_DzToKPiEta_paper.eps}\put(22.0,62.0){(a)}\end{overpic}
\begin{overpic}[width=195.12767pt]{Qfit_DzToPiPiEta_paper.eps}\put(22.0,62.0){(b)}\end{overpic}
\begin{overpic}[width=195.12767pt]{Qfit_DzToKKEta_paper.eps}\put(22.0,62.0){(c)}\end{overpic}
\begin{overpic}[width=195.12767pt]{Qfit_DzToKKEta_nonphi_paper.eps}\put(22.0,62.0){(d)}\end{overpic}
Figure 1: Distributions of the released energy QQ in D+D0πs+D^{*+}\rightarrow D^{0}\pi^{+}_{s} decay for (a) D0Kπ+ηD^{0}\rightarrow K^{-}\pi^{+}\eta, (b) D0π+πηD^{0}\rightarrow\pi^{+}\pi^{-}\eta, (c) D0K+KηD^{0}\rightarrow K^{+}K^{-}\eta, and (d) D0K+KηD^{0}\rightarrow K^{+}K^{-}\eta with the ϕ\phi-peak excluded by requiring |MKKmϕ|>20|M_{KK}-m_{\phi}|>20 MeV/c2c^{2}. Points with error bars show the data; the dashed red curve shows the signal; the dashed blue curve shows the background; and the solid red curves show the overall fit result. The pull plots underneath the fit results show the residuals divided by the errors in the histogram.

To measure the branching fraction, we must divide these signal yields by their reconstruction efficiencies. However, the reconstruction efficiency for a decay can vary across the Dalitz plot of three-body phase space, and the Dalitz-plot distribution of D0π+πηD^{0}\rightarrow\pi^{+}\pi^{-}\eta and D0K+KηD^{0}\rightarrow K^{+}K^{-}\eta decays has not been previously measured. Thus, to avoid systematic uncertainty due to the unknown Dalitz distribution (or decay model), we correct our signal yields for reconstruction efficiencies as follows. We divide the Dalitz plot of the data into bins of M2(h+h)M^{2}(h^{+}h^{-}) and M2(hη)M^{2}(h^{-}\eta), where h=πh=\pi or KK, determine the reconstruction efficiency independently for each bin, and calculate the corrected signal yield via the formula

Ncor\displaystyle N^{\rm cor} =\displaystyle= iNitotNbkgfibkgεi,\displaystyle\sum_{i}\frac{N_{i}^{\text{tot}}-N^{\rm bkg}f_{i}^{\rm bkg}}{\varepsilon_{i}}\,, (9)

where ii runs over all bins. The values of M2(h+h)M^{2}(h^{+}h^{-}) and M2(hη)M^{2}(h^{-}\eta) are calculated subject to the constraint M(h+hη)=mD0M(h^{+}h^{-}\eta)=m_{D^{0}}. The formula (9) has the following terms:

  • εi\varepsilon_{i} is the signal reconstruction efficiency for bin ii, as determined from a large sample of MC events. The resolutions in QQ of the MC samples are adjusted to match those of the data. The efficiencies for D0π+πηD^{0}\rightarrow\pi^{+}\pi^{-}\eta are plotted in figure 2(a), and those for D0K+KηD^{0}\rightarrow K^{+}K^{-}\eta are plotted in figure 3(a). These efficiencies include a small (\sim 2%) correction for K±K^{\pm} and π±\pi^{\pm} particle identification (PID) efficiencies, to account for small differences observed between data and MC simulation. This correction is determined using a sample of D+[D0Kπ+]πs+D^{*+}\rightarrow[D^{0}\rightarrow K^{-}\pi^{+}]\pi^{+}_{s} decays.

  • NitotN_{i}^{\text{tot}} is the number of events in the QQ signal region and the ithi^{th} bin of the Dalitz plot. These yields are plotted in figure 2(b) for D0π+πηD^{0}\rightarrow\pi^{+}\pi^{-}\eta and in figure 3(b) for D0K+KηD^{0}\rightarrow K^{+}K^{-}\eta.

  • NbkgN^{\rm bkg} is the total background yield in the QQ signal region, as obtained from fitting the QQ distribution (see figure 1).

  • fibkgf_{i}^{\rm bkg} is the fraction of background in the ithi^{\rm th}-bin, with ifi=1\sum_{i}f_{i}=1. These fractions are obtained from the Dalitz plot distribution of events in the QQ sideband region 2.5MeV<|Q5.86|<4.9MeV2.5~{\rm MeV}<|Q-5.86|<4.9~{\rm MeV}. The distribution of sideband events is shown in figure 2(c) for D0π+πηD^{0}\rightarrow\pi^{+}\pi^{-}\eta and in figure 3(c) for D0K+KηD^{0}\rightarrow K^{+}K^{-}\eta.

There are 10×10=10010\times 10=100 bins in total for D0π+πηD^{0}\rightarrow\pi^{+}\pi^{-}\eta, and 5×5=255\times 5=25 bins total for D0K+KηD^{0}\rightarrow K^{+}K^{-}\eta. The final corrected yields obtained using eq. (9)  are Ncor=(1.5360.020+0.021)×105N^{\rm cor}=(1.536\,^{+0.021}_{-0.020})\times 10^{5} for D0π+πηD^{0}\rightarrow\pi^{+}\pi^{-}\eta, and Ncor=(2.2630.077+0.084)×104N^{\rm cor}=(2.263\,^{+0.084}_{-0.077})\times 10^{4} for D0K+KηD^{0}\rightarrow K^{+}K^{-}\eta.

\begin{overpic}[width=143.09538pt]{DPeff_DzToPiPiEta_PHSPsig_fitQ_PIDeffCor.eps}\put(70.0,62.0){(a)}\end{overpic}
\begin{overpic}[width=143.09538pt]{DPinMSR_DzToPiPiEta_unblind_Q.eps}\put(70.0,62.0){(b)}\end{overpic}
\begin{overpic}[width=143.09538pt]{DPinMSB_DzToPiPiEta_unblind_Q.eps}\put(70.0,62.0){(c)}\end{overpic}
\begin{overpic}[width=143.09538pt]{DPproj12_DzToPiPiEta_unblind_Q.eps}\put(70.0,57.0){(d)}\end{overpic}
\begin{overpic}[width=143.09538pt]{DPproj23_DzToPiPiEta_unblind_Q.eps}\put(70.0,57.0){(e)}\end{overpic}
\begin{overpic}[width=143.09538pt]{DPproj13_DzToPiPiEta_unblind_Q.eps}\put(70.0,57.0){(f)}\end{overpic}
Figure 2: For D0π+πηD^{0}\rightarrow\pi^{+}\pi^{-}\eta: (a) distribution of reconstruction efficiencies over the Dalitz plot, divided into 10×1010\times 10 bins of Mπ+π2M^{2}_{\pi^{+}\pi^{-}} vs Mπη2M^{2}_{\pi^{-}\eta}. The red lines indicate the Dalitz plot boundaries. (b) Dalitz plot for events in the QQ signal region |Q5.86|<0.80|Q-5.86|<0.80 MeV. (c) Dalitz plot for events in the sideband region 2.5<|Q5.86|<4.90MeV2.5<|Q-5.86|<4.90~{\rm MeV}, used to estimate the background shape. (d, e, f) Projections of Dalitz variables Mπ+π2M_{\pi^{+}\pi^{-}}^{2}, Mπη2M_{\pi^{-}\eta}^{2}, and Mπ+η2M_{\pi^{+}\eta}^{2}, respectively. Points with error bars show events in the signal region; blue-filled histograms show the estimated background (see text). The dip in Mπ+π2M^{2}_{\pi^{+}\pi^{-}} near 0.25GeV2/c40.25~{\rm GeV}^{2}/c^{4} is due to the KS0K^{0}_{\scriptscriptstyle\rm S} veto.
\begin{overpic}[width=143.09538pt]{DPeff_DzToKKEta_PHSPsig_fitQ_PIDeffCor.eps}\put(70.0,62.0){(a)}\end{overpic}
\begin{overpic}[width=143.09538pt]{DPinMSR_DzToKKEta_unblind_Q.eps}\put(70.0,62.0){(b)}\end{overpic}
\begin{overpic}[width=143.09538pt]{DPinMSB_DzToKKEta_unblind_Q.eps}\put(70.0,62.0){(c)}\end{overpic}
\begin{overpic}[width=143.09538pt]{DPproj12_DzToKKEta_unblind_Q.eps}\put(70.0,57.0){(d)}\end{overpic}
\begin{overpic}[width=143.09538pt]{DPproj23_DzToKKEta_unblind_Q.eps}\put(70.0,57.0){(e)}\end{overpic}
\begin{overpic}[width=143.09538pt]{DPproj13_DzToKKEta_unblind_Q.eps}\put(70.0,57.0){(f)}\end{overpic}
Figure 3: For D0K+KηD^{0}\rightarrow K^{+}K^{-}\eta: (a) distribution of reconstruction efficiencies over the Dalitz plot, divided into 5×55\times 5 bins of MK+K2M^{2}_{K^{+}K^{-}} vs MKη2M^{2}_{K^{-}\eta}. The red lines indicate the Dalitz plot boundaries. (b) Dalitz plot for events in the QQ signal region |Q5.86|<0.80|Q-5.86|<0.80 MeV. (c) Dalitz plot for events in the sideband region 2.5<|Q5.86|<4.902.5<|Q-5.86|<4.90 MeV, used to estimate the background shape. (d, e, f) Projections of Dalitz variables MK+K2M_{K^{+}K^{-}}^{2}, MKη2M_{K^{-}\eta}^{2}, and MK+η2M_{K^{+}\eta}^{2}, respectively. Points with error bars show events in the signal region; blue-filled histograms show the estimated background (see text).

The branching fraction of a signal mode relative to that of the normalization mode is determined from the ratio of their respective efficiency-corrected yields:

(D0h+hη)(D0Kπ+η)=Ncor(D0h+hη)Ncor(D0Kπ+η),\displaystyle\frac{\mathcal{B}(D^{0}\rightarrow h^{+}h^{-}\eta)}{\mathcal{B}(D^{0}\rightarrow K^{-}\pi^{+}\eta)}=\frac{N^{\rm cor}(D^{0}\rightarrow h^{+}h^{-}\eta)}{N^{\rm cor}(D^{0}\rightarrow K^{-}\pi^{+}\eta)}\,, (10)

where h=Kh=K or π\pi. The efficiency-corrected yield for the normalization channel D0Kπ+ηD^{0}\rightarrow K^{-}\pi^{+}\eta is evaluated in a different manner than those of the signal modes. As the Dalitz plot of D0Kπ+ηD^{0}\rightarrow K^{-}\pi^{+}\eta decays has been measured with high statistics bib:PRD102d012002 , we use the resulting decay model to generate an MC sample, and use that sample to evaluate the overall reconstruction efficiency. The result, including the small PID efficiency correction, is εKπη=(6.870±0.014)%\varepsilon_{K\pi\eta}=(6.870\pm 0.014)\%. Dividing the fitted yield for D0Kπ+ηD^{0}\rightarrow K^{-}\pi^{+}\eta (see table 1) by this value gives Ncor(D0Kπ+η)=(2.365±0.011)×106N^{\rm cor}(D^{0}\rightarrow K^{-}\pi^{+}\eta)=(2.365\pm 0.011)\times 10^{6}.

Inserting all efficiency-corrected yields into eq. (10) gives the ratios of branching fractions

(D0π+πη)(D0Kπ+η)\displaystyle\frac{\mathcal{B}(D^{0}\rightarrow\pi^{+}\pi^{-}\eta)}{\mathcal{B}(D^{0}\rightarrow K^{-}\pi^{+}\eta)} =\displaystyle= [6.49±0.09(stat)±0.12(syst)]×102,\displaystyle[6.49\pm 0.09\,({\rm stat})\pm 0.12\,({\rm syst})]\times 10^{-2}\,, (11)
(D0K+Kη)(D0Kπ+η)\displaystyle\frac{\mathcal{B}(D^{0}\rightarrow K^{+}K^{-}\eta)}{\mathcal{B}(D^{0}\rightarrow K^{-}\pi^{+}\eta)} =\displaystyle= [9.570.33+0.36(stat)±0.20(syst)]×103.\displaystyle[9.57^{+0.36}_{-0.33}\,({\rm stat})\pm 0.20\,({\rm syst})]\times 10^{-3}\,. (12)

The second error listed is the systematic uncertainty, which is evaluated below (section 4.3). Multiplying both sides of eqs. (11) and (12) by the world average value (D0Kπ+η)=(1.88±0.05)%\mathcal{B}(D^{0}\rightarrow K^{-}\pi^{+}\eta)=(1.88\pm 0.05)\% bib:PDG2020 gives

(D0π+πη)\displaystyle\mathcal{B}(D^{0}\rightarrow\pi^{+}\pi^{-}\eta) =\displaystyle= [1.22±0.02(stat)±0.02(syst)±0.03(ref)]×103,\displaystyle[1.22\pm 0.02\,({\rm stat})\pm 0.02\,({\rm syst})\pm 0.03\,(\mathcal{B}_{\rm ref})]\times 10^{-3}\,, (13)
(D0K+Kη)\displaystyle\mathcal{B}(D^{0}\rightarrow K^{+}K^{-}\eta) =\displaystyle= [1.800.06+0.07(stat)±0.04(syst)±0.05(ref)]×104,\displaystyle[1.80\,^{+0.07}_{-0.06}\,({\rm stat})\pm 0.04\,({\rm syst})\pm 0.05\,(\mathcal{B}_{\rm ref})]\times 10^{-4}\,, (14)

where the third uncertainty listed is due to the branching fraction for the reference mode D0Kπ+ηD^{0}\rightarrow K^{-}\pi^{+}\eta. The result (13) is consistent with the world average value (1.17±0.07)×103(1.17\pm 0.07)\times 10^{-3} bib:PDG2020 but has improved precision. The result (14) is the first such measurement.

The Dalitz plots and projections are shown in figure 2 for D0π+πηD^{0}\rightarrow\pi^{+}\pi^{-}\eta and in figure 3 for D0K+KηD^{0}\rightarrow K^{+}K^{-}\eta. The background plotted is taken from the QQ sideband region, with the entries scaled to match the background yield in the signal region obtained from the QQ fit (figure 1). Several intermediate structures are clearly visible. For D0π+πηD^{0}\rightarrow\pi^{+}\pi^{-}\eta events, the Mπ+π2M^{2}_{\pi^{+}\pi^{-}} projection in figure 2(d) shows the D0ρ0(770)η,ρ(770)π+πD^{0}\rightarrow\rho^{0}(770)\eta,\,\rho(770)\rightarrow\pi^{+}\pi^{-} decay process to be dominant. The M2(π+η)M^{2}(\pi^{+}\eta) distribution in figure 2(f) shows a sharp peak near 1.0 GeV2/c4c^{4}, which indicates D0a0(980)+π,a0(980)+π+ηD^{0}\rightarrow a_{0}(980)^{+}\pi^{-}\!,\,a_{0}(980)^{+}\rightarrow\pi^{+}\eta decay. In contrast, the M2(πη)M^{2}(\pi^{-}\eta) distribution in figure 2(e) shows no indication of D0a0(980)π+,a0(980)πηD^{0}\rightarrow a_{0}(980)^{-}\pi^{+}\!,\,a_{0}(980)^{-}\rightarrow\pi^{-}\eta. This is unexpected, as the branching fraction for D0a0(980)π+D^{0}\rightarrow a_{0}(980)^{-}\pi^{+} is predicted to be two orders of magnitude larger than that for D0a0(980)+πD^{0}\rightarrow a_{0}(980)^{+}\pi^{-} bib:PRD67d034024 .

For D0K+KηD^{0}\rightarrow K^{+}K^{-}\eta events, the MK+K2M^{2}_{K^{+}K^{-}} distribution shows the D0ϕη,ϕK+KD^{0}\rightarrow\phi\eta,\,\phi\rightarrow K^{+}K^{-} decay process to be dominant. However, a non-ϕ\phi contribution is also visible. We thus measure (D0K+Kη)ϕexcluded\mathcal{B}(D^{0}\rightarrow K^{+}K^{-}\eta)_{\phi{\rm-excluded}} by requiring |MK+Kmϕ|>20|M_{K^{+}K^{-}}\!-m_{\phi}|>20 MeV/c2c^{2}. The signal yield is obtained as before by fitting the QQ distribution. The result is 599±45599\pm 45 events in the signal region, as shown in figure 1(d). The change in likelihood, with and without including a signal component in such QQ fitting, is ΔlnL=214\Delta\ln L=214. As the number of degrees of freedom for the fit with no signal component is three less than that for the nominal fit (parameters NsigN_{\rm sig}, μ\mu, and σ0\sigma_{0} are dropped), this value of ΔlnL\Delta\ln L corresponds to a statistical significance for the signal of 20σ20\sigma.

We divide the signal yields obtained for bins of the Dalitz plot by the efficiencies for these bins [see eq. (9)] to obtain Ncor=12443893+1071N^{\rm cor}=12443\,^{+1071}_{-893} (for D0K+KηD^{0}\rightarrow K^{+}K^{-}\eta with the ϕ\phi excluded). Thus

(D0K+Kη)ϕexcluded(D0Kπ+η)\displaystyle\frac{\mathcal{B}(D^{0}\rightarrow K^{+}K^{-}\eta)_{\phi{\rm-excluded}}}{\mathcal{B}(D^{0}\rightarrow K^{-}\pi^{+}\eta)} =\displaystyle= [5.260.38+0.45(stat)±0.11(syst)]×103.\displaystyle[5.26\,^{+0.45}_{-0.38}\,(\rm{stat})\pm 0.11\,({\rm syst})]\times 10^{-3}\,. (15)

The second error listed is the systematic uncertainty, which is evaluated below (section 4.3). Multiplying each side of eq. (15) by (D0Kπ+η)=(1.88±0.05)%\mathcal{B}(D^{0}\rightarrow K^{-}\pi^{+}\eta)=(1.88\pm 0.05)\% bib:PDG2020 gives the branching fraction for D0K+KηD^{0}\rightarrow K^{+}K^{-}\eta with the ϕ\phi component excluded by requiring |MKKmϕ|>20MeV/c2|M_{KK}\!-m_{\phi}|>20~{\rm MeV}/c^{2}:

(D0K+Kη)ϕexcluded\displaystyle\thinspace\mathcal{B}(D^{0}\rightarrow K^{+}K^{-}\eta)_{\phi{\rm-excluded}} =\displaystyle= [0.990.07+0.08(stat)±0.02(syst)±0.03(ref)]×104.\displaystyle[0.99\,^{+0.08}_{-0.07}\,({\rm stat})\pm 0.02\,({\rm syst})\pm 0.03\,(\mathcal{B}_{\rm ref})]\times 10^{-4}. (16)

This result is somewhat higher (but more precise) than a similar measurement by BESIII, (0.59±0.19)×104(0.59\pm 0.19)\times 10^{-4} bib:PRL124d241803 .

4.2 Measurement of 𝓑(𝑫𝟎ϕ𝜼)\mathcal{B}(D^{0}\rightarrow\phi\eta)

As shown in figure 3, the decay D0K+KηD^{0}\rightarrow K^{+}K^{-}\eta is dominated by the Cabibbo- and color-suppressed decay D0ϕη,ϕK+KD^{0}\rightarrow\phi\eta,\,\phi\rightarrow K^{+}K^{-}. We thus measure the branching fraction for D0ϕηD^{0}\rightarrow\phi\eta by performing a two-dimensional fit to the MKKM_{KK} and QQ distributions of D0K+KηD^{0}\rightarrow K^{+}K^{-}\eta events. The fitted region is MKK<1.08M_{KK}<1.08 GeV/c2c^{2} and Q<15Q<15 MeV. In this region, signal decays and background are straightforward to identify: the non-ϕ\phi D0K+KηD^{0}\rightarrow K^{+}K^{-}\eta component peaks in QQ but not in MKKM_{KK}, whereas combinatorial background containing ϕK+K\phi\rightarrow K^{+}K^{-} decays peak in MKKM_{KK} but not in QQ. The signal PDF for MKKM_{KK} is taken to be the sum of a Gaussian and two asymmetric Gaussians, with a common mean for the M(ϕ)M(\phi) peak. The PDF for QQ is taken to be a bifurcated Student’s t-function:

𝒫sig(MKK)\displaystyle\mathcal{P}_{\rm sig}(M_{KK}) =\displaystyle= f2[f1G(μm,σm0)+(1f1)Gasym(μm,r1σm0,δ2)]\displaystyle f_{2}[f_{1}G(\mu_{m},\sigma_{m0})+(1-f_{1})G_{\rm asym}(\mu_{m},r_{1}\sigma_{m0},\delta_{2})] (17)
+(1f2)Gasym(μm,r2r1σm0,δ3),\displaystyle+(1-f_{2})G_{\rm asym}(\mu_{m},r_{2}r_{1}\sigma_{m0},\delta_{3})\,,
𝒫sig(Q)\displaystyle\mathcal{P}_{\rm sig}(Q) =\displaystyle= Sbif(μq,σ0,δ0,nl,nh),\displaystyle S_{\rm bif}(\mu_{q},\sigma_{0},\delta_{0},n_{l},n_{h})\,, (18)
𝒫sigD0ϕη(MKK,Q)\displaystyle\mathcal{P}_{\rm sig}^{D^{0}\rightarrow\phi\eta}(M_{KK},Q) =\displaystyle= 𝒫sig(MKK)𝒫sig(Q).\displaystyle\mathcal{P}_{\rm sig}(M_{KK})\cdot\mathcal{P}_{\rm sig}(Q)\,. (19)

Most of the signal shape parameters are fixed to MC values; the parameters μm,σm0\mu_{m},\,\sigma_{m0} for MKKM_{KK} and μq,σ0\mu_{q},\,\sigma_{0} for QQ are floated to account for possible differences in resolution between data and MC simulation.

The non-ϕ\phi D0K+KηD^{0}\rightarrow K^{+}K^{-}\eta component includes several processes such as D0a0(980)ηD^{0}\rightarrow a_{0}(980)\eta, D0K0(1430)±KD^{0}\rightarrow K_{0}^{*}(1430)^{\pm}K^{\mp}, and non-resonant D0K+KηD^{0}\rightarrow K^{+}K^{-}\eta decays. We parameterize this component in MKKM_{KK} by a threshold function, and in QQ by the same PDF as that used for the signal:

𝒫peak(MKK)\displaystyle\mathcal{P}_{\rm peak}(M_{KK}) =\displaystyle= MKKm0eβpeak(MKKm0),\displaystyle\sqrt{M_{KK}-m_{0}}\cdot e^{-\beta_{\rm peak}(M_{KK}-m_{0})}\,, (20)
𝒫peak(Q)\displaystyle\mathcal{P}_{\rm peak}(Q) =\displaystyle= 𝒫sig(Q),\displaystyle\mathcal{P}_{\rm sig}(Q)\,, (21)
𝒫peak(MKK,Q)\displaystyle\mathcal{P}_{\rm peak}(M_{KK},Q) =\displaystyle= 𝒫peak(MKK)𝒫peak(Q),\displaystyle\mathcal{P}_{\rm peak}(M_{KK})\cdot\mathcal{P}_{\rm peak}(Q)\,, (22)

where the threshold value m0=2mK=0.987354m_{0}=2m_{K}=0.987354 GeV/c2c^{2}. We consider possible interference between the non-ϕ\phi component and the D0ϕηD^{0}\rightarrow\phi\eta signal as a systematic uncertainty.

For combinatorial background, the QQ distribution is parameterized with a threshold function. The MKKM_{KK} distribution has two parts: (1) a ϕ\phi-peak, which is taken to be the same as that of signal decay, and (2) a threshold function. These PDFs take the forms

𝒫bkg(MKK)\displaystyle\mathcal{P}_{\rm bkg}(M_{KK}) =\displaystyle= fϕ𝒫sig(MKK)+(1fϕ)(MKKm0)αmeβm(MKKm0),\displaystyle f_{\phi}\mathcal{P}_{\rm sig}(M_{KK})+(1-f_{\phi})(M_{KK}-m_{0})^{\alpha_{m}}e^{-\beta_{m}(M_{KK}-m_{0})}\,, (23)
𝒫bkg(Q)\displaystyle\mathcal{P}_{\rm bkg}(Q) =\displaystyle= QαqeβqQ,\displaystyle Q^{\alpha_{q}}e^{-\beta_{q}Q}\,, (24)
𝒫bkg(MKK,Q)\displaystyle\mathcal{P}_{\rm bkg}(M_{KK},Q) =\displaystyle= 𝒫bkg(MKK)𝒫bkg(Q).\displaystyle\mathcal{P}_{\rm bkg}(M_{KK})\cdot\mathcal{P}_{\rm bkg}(Q)\,. (25)

The relative fraction fϕf_{\phi} and the QQ threshold parameters are floated; all other parameters are fixed to MC values.

The results of the two-dimensional likelihood fit are shown in figure 4. We obtain a signal yield Nsig=728±36N_{\rm sig}=728\pm 36 in the full fitted region, and Nsig=600±29N_{\rm sig}=600\pm 29 in the signal region |Q5.86|<0.8|Q-5.86|<0.8 MeV and |MK+Kmϕ|<10|M_{K^{+}K^{-}}-m_{\phi}|<10 MeV/c2c^{2}. The difference in likelihood, with and without including a signal component, is Δln=464.8\Delta\ln\mathcal{L}=464.8. As the number of degrees of freedom for the fit with no signal component is one less than that for the nominal fit (parameter NsigN_{\rm sig} is dropped), this value of ΔlnL\Delta\ln L corresponds to a statistical significance for D0ϕηD^{0}\rightarrow\phi\eta of 31σ31\sigma.

\begin{overpic}[width=368.57964pt]{MphiQ2D_PhiEta_FR_paper.eps}\put(10.0,40.0){(a)}\put(60.0,40.0){(b)}\end{overpic}
\begin{overpic}[width=368.57964pt]{MphiQ2D_PhiEta_SR_paper.eps}\put(10.0,40.0){(c)}\put(60.0,40.0){(d)}\end{overpic}
Figure 4: Projections of K+KK^{+}K^{-} invariant mass distributions in QQ (a) fit region and (c) signal region (|Q5.86|<0.8|Q-5.86|<0.8 MeV) and QQ distributions in MK+KM_{K^{+}K^{-}} (b) fit region and (d) signal region (|MK+Kmϕ|<10|M_{K^{+}K^{-}}-m_{\phi}|<10 MeV/c2c^{2}) from the MKKM_{KK}-QQ two-dimensional fit. Points with error bars are the data. The red solid line is total fit result. The red dashed curves are signal of D0ϕηD^{0}\rightarrow\phi\eta, and the magenta solid curves show the QQ-peaking background from non-ϕ\phi component in D0K+KηD^{0}\rightarrow K^{+}K^{-}\eta. The blue dash line is the non-ϕ\phi component of total non-QQ-peaking background (blue line).

We evaluate the signal reconstruction efficiency using a large MC sample of D0ϕηD^{0}\rightarrow\phi\eta decays. We obtain, for events in the MKKM_{KK}-QQ signal region, an efficiency ε=(5.262±0.021)%\varepsilon=(5.262\pm 0.021)\%. Thus, Ncor(D0ϕη,ϕK+K)=(1.140±0.055)×104N^{\rm cor}(D^{0}\rightarrow\phi\eta,\,\phi\rightarrow K^{+}K^{-})=(1.140\pm 0.055)\times 10^{4}, and

(D0ϕη,ϕK+K)(D0Kπ+η)=[4.82±0.23(stat)±0.16(syst)]×103.\displaystyle\frac{\mathcal{B}(D^{0}\rightarrow\phi\eta,\,\phi\rightarrow K^{+}K^{-})}{\mathcal{B}(D^{0}\rightarrow K^{-}\pi^{+}\eta)}=[4.82\pm 0.23\,({\rm stat})\pm 0.16\,({\rm syst})]\times 10^{-3}\,. (26)

The second error listed is the systematic uncertainty, which is evaluated below (section 4.3). Multiplying each side by the world average value (D0Kπ+η)=(1.88±0.05)%\mathcal{B}(D^{0}\rightarrow K^{-}\pi^{+}\eta)=(1.88\pm 0.05)\% bib:PDG2020 and dividing by (ϕK+K)=(49.2±0.5)%\mathcal{B}(\phi\rightarrow K^{+}K^{-})=(49.2\pm 0.5)\% bib:PDG2020 , we obtain

(D0ϕη)=[1.84±0.09(stat)±0.06(syst)±0.05(ref)]×104,\displaystyle\mathcal{B}(D^{0}\rightarrow\phi\eta)=[1.84\pm 0.09\,({\rm stat})\pm 0.06\,({\rm syst})\pm 0.05\,(\mathcal{B}_{\rm ref})]\times 10^{-4}\,, (27)

where the systematic uncertainty includes the small uncertainty on (ϕK+K)\mathcal{B}(\phi\rightarrow K^{+}K^{-}). This result is consistent with, but notably more precise than, the current world average of (1.8±0.5)×104(1.8\pm 0.5)\times 10^{-4} bib:PDG2020 . It is also consistent with theoretical predictions bib:PRD100d093002 ; bib:PRD89d054006 . As a consistency check, we calculate the branching fraction of the non-ϕ\phi D0K+KηD^{0}\rightarrow K^{+}K^{-}\eta component by subtracting the D0ϕηD^{0}\rightarrow\phi\eta branching fraction from the total D0K+KηD^{0}\rightarrow K^{+}K^{-}\eta result:

(D0K+Kη)(D0ϕη,ϕK+K)=(0.90±0.08)×104,\displaystyle\mathcal{B}(D^{0}\rightarrow K^{+}K^{-}\eta)-\mathcal{B}(D^{0}\rightarrow\phi\eta,\phi\rightarrow K^{+}K^{-})=(0.90\pm 0.08)\times 10^{-4}\,, (28)

which is very close to our measurement of (D0K+Kη)ϕexcluded\mathcal{B}(D^{0}\rightarrow K^{+}K^{-}\eta)_{\phi{\rm-excluded}} in eq. (16).

4.3 Systematic uncertainties

The sources of systematic uncertainty in measuring the branching fractions are listed in table 2. These uncertainties are evaluated as follows.

Systematic sources (D0π+πη)(D0Kπ+η)\frac{\mathcal{B}(D^{0}\rightarrow\pi^{+}\pi^{-}\eta)}{\mathcal{B}(D^{0}\rightarrow K^{-}\pi^{+}\eta)} (D0K+Kη)(D0Kπ+η)\frac{\mathcal{B}(D^{0}\rightarrow K^{+}K^{-}\eta)}{\mathcal{B}(D^{0}\rightarrow K^{-}\pi^{+}\eta)} (D0(ϕK+K)η)(D0Kπ+η)\frac{\mathcal{B}(D^{0}\rightarrow(\phi\rightarrow K^{+}K^{-})\eta)}{\mathcal{B}(D^{0}\rightarrow K^{-}\pi^{+}\eta)}
PID efficiency correction 1.8% 1.9% 1.9%
Signal PDF 0.3% 0.5% 0.9%
Background PDF 0.0% 0.0% 0.1%
Mass resolution calibration 0.1% 0.3% 0.0%
Yield correction with efficiency map 0.3% 0.7%
MC statistics 0.3% 0.4% 0.4%
KS0K_{S}^{0} veto 0.1%
Interference in MKKM_{KK} 2.5%
Total syst. error 1.9% 2.1% 3.3%
Table 2: Systematic uncertainties (fractional) for the branching ratio measurements.
  • A correction for PID efficiency is applied to K±K^{\pm} and π±\pi^{\pm} tracks, to account for a difference in efficiency between data and MC simulation. The correction depends on track momentum and is small; the uncertainty on the correction is even smaller, in the range (0.90-0.97)%. When evaluating this uncertainty for a ratio of branching fractions, we conservatively assume the efficiency corrections for K+K^{+} and π+\pi^{+} tracks (which appear separately in numerator and denominator, or vice-versa) are anticorrelated.

  • The uncertainty due to the parameters fixed in the fit for the signal yield is evaluated as follows. We sample these parameters simultaneously from Gaussian distributions, accounting for their correlations, and re-fit for the signal yield. The procedure is repeated 1000 times and these yields are plotted. The ratio of the root-mean-square (RMS) to the mean value of the resulting distribution of signal yields is taken as the systematic uncertainty due to the fixed parameters. The Gaussian distributions from which the parameters are sampled have mean values equal to the fixed values of the parameters, and widths equal to their respective uncertainties.

  • For background PDFs, all parameters are floated in the fits except for those describing the amount of background and its shape for D0Kπ+ηD^{0}\rightarrow K^{-}\pi^{+}\eta, which are taken from MC simulation. We evaluate this uncertainty due to these fixed parameters as done above, by simultaneously sampling these parameters from Gaussian distributions having mean values equal to the fixed values and widths equal to their respective uncertainties. The RMS of the resulting distribution of D0Kπ+ηD^{0}\rightarrow K^{-}\pi^{+}\eta yields is taken as the systematic uncertainty due to the peaking background.

  • We correct for differences in mass resolutions (including MM, QQ and MKKM_{KK}) between data and MC when calculating reconstruction efficiencies (in eq. (9) for D0π+πηD^{0}\rightarrow\pi^{+}\pi^{-}\eta and D0K+KηD^{0}\rightarrow K^{+}K^{-}\eta, as well as for D0ϕηD^{0}\rightarrow\phi\eta and the reference mode). We take the systematic uncertainty of this procedure to be the difference in the ratio of efficiency-corrected signal yields to that of the reference mode obtained both with and without this resolution correction.

  • The efficiency for D0π+πηD^{0}\rightarrow\pi^{+}\pi^{-}\eta and D0K+KηD^{0}\rightarrow K^{+}K^{-}\eta decays is evaluated in bins of the Dalitz plot; see eq. (9). This efficiency has uncertainty arising from the number of bins used, from the efficiency values εi\varepsilon_{i} for the various bins, and from the bin-by-bin background subtraction.

    • For the first uncertainty, we vary the numbers of bins used, and the corresponding change in the efficiency is taken as the systematic uncertainty. For D0π+πηD^{0}\rightarrow\pi^{+}\pi^{-}\eta decays, our nominal result uses 10×1010\times 10 bins; thus we also try 8×88\times 8 and 12×1212\times 12 bins. For D0K+KηD^{0}\rightarrow K^{+}K^{-}\eta decays, our nominal result uses 5×55\times 5 bins; thus we also try 3×33\times 3 and 7×77\times 7 bins. We obtain 0.25% for D0π+πηD^{0}\rightarrow\pi^{+}\pi^{-}\eta, and 0.50% for D0K+KηD^{0}\rightarrow K^{+}K^{-}\eta.

    • to evaluate the effect of uncertainties in εi\varepsilon_{i}, we sample the εi\varepsilon_{i} from Gaussian distributions having mean values equal to the nominal values, and widths equal to their uncertainties. For each sampling, we re-calculate the yield NcorN^{\rm cor} using eq. (9) and plot the result. The RMS of this distribution is taken as the systematic uncertainty: 0.21%0.21\% for D0π+πηD^{0}\rightarrow\pi^{+}\pi^{-}\eta, and 0.43%0.43\% for D0K+KηD^{0}\rightarrow K^{+}K^{-}\eta.

    • the background subtraction procedure depends on the distribution of background over the Dalitz plot. We take this distribution from a data QQ sideband region. To evaluate the uncertainty due to this Dalitz distribution, we shift the QQ sideband region used by ±0.4\pm 0.4 MeV and repeat the procedure. The change is assigned as the systematic uncertainty: 0.02%0.02\% for D0π+πηD^{0}\rightarrow\pi^{+}\pi^{-}\eta, and 0.03%0.03\% for D0K+KηD^{0}\rightarrow K^{+}K^{-}\eta.

  • The efficiency for D0Kπ+ηD^{0}\rightarrow K^{-}\pi^{+}\eta is evaluated from MC simulation using a Dalitz decay model. The uncertainty due to this model is evaluated by varying the model and re-calculating ε\varepsilon. Specifically, our nominal model uses eight intermediate resonances as measured in ref. bib:PRD102d012002 ; as an alternative, we include all thirteen intermediate resonances listed in ref. bib:PRD102d012002 . The resulting change in our reconstruction efficiency is very small (δε/ε<0.01%\delta\varepsilon/\varepsilon<0.01\%). As a cross check, we calculate NcorN^{\rm cor} for D0Kπ+ηD^{0}\rightarrow K^{-}\pi^{+}\eta using eq. (9); the result is (2.369±0.007)×106(2.369\pm 0.007)\times 10^{6}, which is almost identical with our nominal result (the difference is much smaller than the uncertainty).

  • There are small uncertainties in the reconstruction efficiencies ε\varepsilon, which are evaluated from MC simulation, due to the finite statistics of the MC samples used.

  • There is an uncertainty arising from the KS0K^{0}_{\scriptscriptstyle\rm S} veto required for D0π+πηD^{0}\rightarrow\pi^{+}\pi^{-}\eta decays. We evaluate this by changing the veto region from mKS0±10m_{K^{0}_{\scriptscriptstyle\rm S}}\pm 10 MeV/c2c^{2} (3σ\sim 3\sigma) to mKS0±15m_{K^{0}_{\scriptscriptstyle\rm S}}\pm 15 MeV/c2c^{2} (5σ\sim 5\sigma); the resulting change in the D0π+πηD^{0}\rightarrow\pi^{+}\pi^{-}\eta signal yield is taken as the systematic uncertainty.

  • We consider possible interference between the D0ϕηD^{0}\rightarrow\phi\eta amplitude and that of non-ϕ\phi D0K+KηD^{0}\rightarrow K^{+}K^{-}\eta. Such interference could alter the MKKM_{KK} distribution used to fit for the D0ϕηD^{0}\rightarrow\phi\eta yield. We evaluate this effect by introducing a relative phase θ\theta between the two amplitudes, which modifies the PDF to be

    𝒫total(MKK,Q)\displaystyle\thinspace\mathcal{P}_{\rm total}(M_{KK},Q) =\displaystyle= |Aϕ(MKK)+rei(θ+kπ)Fnonϕ(MKK)|2×Fsig(Q).\displaystyle\left|A_{\phi}(M_{KK})+re^{i\cdot(\theta+k\cdot\pi)}\sqrt{F_{{\rm non-}\phi}(M_{KK})}\right|^{2}\times F_{\rm sig}(Q)\,. (29)

    In this expression, AϕA_{\phi} is a relativistic Breit-Wigner function, FnonϕF_{{\rm non-}\phi} is the shape function used in the nominal fit to model non-ϕ\phi decays, and kk is a factor that adds a phase shift of π\pi depending on whether the cosine of the K+K^{+} helicity angle (θh\theta_{h}) is positive or negative, i.e., k=0k=0 for cosθh<0\cos\theta_{h}<0, and k=1k=1 otherwise bib:PRD71d092003 . The helicity angle θh\theta_{h} is defined as the angle between the momentum of the K+K^{+} and the η\eta in the K+KK^{+}K^{-} rest frame. After fitting with this PDF, we calculate the D0ϕηD^{0}\rightarrow\phi\eta yield as the product of the total yield obtained and the fraction fϕf_{\phi} given by

    fϕ\displaystyle f_{\phi} =\displaystyle= |Aϕ|2𝑑MKK/|Aϕ+rei(θ+kπ)Fnonϕ|2𝑑MKK.\displaystyle\int\left|A_{\phi}\right|^{2}dM_{KK}/\int\left|A_{\phi}+re^{i\cdot(\theta+k\cdot\pi)}\sqrt{F_{\rm{non-}\phi}}\right|^{2}dM_{KK}\,. (30)

    The result is that the D0ϕηD^{0}\rightarrow\phi\eta yield decreases by 2.5%, and thus we assign this value as the systematic uncertainty due to possible interference.

The total systematic uncertainty is obtained by adding in quadrature all the above contributions. The results are listed in table 2.

5 Measurement of 𝑪𝑷C\!P asymmetries

5.1 Measurement of 𝑨𝑪𝑷(𝑫𝟎𝝅+𝝅𝜼)A_{C\!P}(D^{0}\rightarrow\pi^{+}\pi^{-}\eta) and 𝑨𝑪𝑷(𝑫𝟎𝑲+𝑲𝜼)A_{C\!P}(D^{0}\rightarrow K^{+}K^{-}\eta)

To measure the CPC\!P asymmetries, we divide the sample for each channel into D0D^{0} and D¯0\kern 1.99997pt\overline{\kern-1.99997ptD}{}^{0} decays, where the flavor of the D0D^{0} or D¯0\kern 1.99997pt\overline{\kern-1.99997ptD}{}^{0} is tagged by the charge of the πs±\pi^{\pm}_{s} from the D+D0πs+D^{*+}\rightarrow D^{0}\pi^{+}_{s} or DD¯πs0D^{*-}\rightarrow\kern 1.99997pt\overline{\kern-1.99997ptD}{}^{0}\pi^{-}_{s} decay. To correct for an asymmetry in πs±\pi^{\pm}_{s} reconstruction efficiencies, we weight events according to the πs±\pi^{\pm}_{s} efficiency mapping of ref. bib:PRL112d211601 .

We simultaneously fit the QQ distributions of these weighted samples for D0D^{0} and D¯0\kern 1.99997pt\overline{\kern-1.99997ptD}{}^{0} decays with parameters fixed in the same way as done for the branching fraction measurements. The parameters NsigN_{\rm sig} and AcorrA_{\rm corr} are fitted, where the D0D^{0} and D¯0\kern 1.99997pt\overline{\kern-1.99997ptD}{}^{0} signal yields are given by Nsig(D0,D¯)0=(Nsig/2)(1±Acorr)N_{\rm sig}(D^{0},\kern 1.99997pt\overline{\kern-1.99997ptD}{}^{0})=(N_{\rm sig}/2)\cdot(1\pm A_{\rm corr}). The fit results are shown in figure 5. We obtain Nsig=12975±198N_{\rm sig}=12975\pm 198 and Acorr=(1.44±1.24)%A_{\rm corr}=(1.44\pm 1.24)\% for D0π+πηD^{0}\rightarrow\pi^{+}\pi^{-}\eta decays, and Nsig=1482±60N_{\rm sig}=1482\pm 60 and Acorr=(0.25±2.96)%A_{\rm corr}=(-0.25\pm 2.96)\% for D0K+KηD^{0}\rightarrow K^{+}K^{-}\eta decays.

\begin{overpic}[width=195.12767pt]{AcpQfit_DzToPiPiEta_unblind_Dz.eps}\put(25.0,60.0){(a)} \end{overpic}
\begin{overpic}[width=195.12767pt]{AcpQfit_DzToPiPiEta_unblind_Db.eps}\put(25.0,60.0){(b)} \end{overpic}
\begin{overpic}[width=195.12767pt]{AcpQfit_DzToKKEta_unblind_Dz.eps}\put(25.0,60.0){(c)} \end{overpic}
\begin{overpic}[width=195.12767pt]{AcpQfit_DzToKKEta_unblind_Db.eps}\put(25.0,60.0){(d)} \end{overpic}
Figure 5: Simultaneous fit for D0π+πηD^{0}\rightarrow\pi^{+}\pi^{-}\eta (a) and D¯0π+πη\kern 1.99997pt\overline{\kern-1.99997ptD}{}^{0}\rightarrow\pi^{+}\pi^{-}\eta (b) candidates; and D0K+KηD^{0}\rightarrow K^{+}K^{-}\eta (c) and D¯0K+Kη\kern 1.99997pt\overline{\kern-1.99997ptD}{}^{0}\rightarrow K^{+}K^{-}\eta (d) candidates.

These values for AcorrA_{\rm corr} include the forward-backward asymmetry AFBA_{\rm FB}. We correct for AFBA_{\rm FB} by calculating AcorrA_{\rm corr} in eight bins of cosθ\cos\theta^{*}, where θ\theta^{*} is the polar angle of the D+D^{*+} with respect to the +z+z axis in the e+ee^{+}e^{-} CM frame. The bins used are [1.0,0.6][-1.0,\,-0.6], [0.6,0.4][-0.6,\,-0.4], [0.4,0.2][-0.4,\,-0.2], [0.2, 0.0][-0.2,\,0.0], [0.0, 0.2][0.0,\,0.2], [0.2, 0.4][0.2,\,0.4], [0.4, 0.6][0.4,\,0.6], and [0.6, 1.0][0.6,\,1.0]. The asymmetries ACPA_{C\!P} and AFBA_{\rm FB} are then extracted via eqs. (4) and (5). The resulting four values of ACPA_{C\!P} and AFBA_{\rm FB} are plotted in figures 7(a, d) for D0π+πηD^{0}\rightarrow\pi^{+}\pi^{-}\eta and in figures 7(b, e) for D0K+KηD^{0}\rightarrow K^{+}K^{-}\eta. Fitting the ACPA_{C\!P} values to constants yields the final results

ACP(D0π+πη)\displaystyle A_{C\!P}(D^{0}\rightarrow\pi^{+}\pi^{-}\eta) =\displaystyle= [0.9±1.2(stat)±0.5(syst)]%,\displaystyle[0.9\pm 1.2\,({\rm stat})\pm 0.5\,({\rm syst})]\%\,, (31)
ACP(D0K+Kη)\displaystyle A_{C\!P}(D^{0}\rightarrow K^{+}K^{-}\eta) =\displaystyle= [1.4±3.3(stat)±1.1(syst)]%.\displaystyle[-1.4\pm 3.3\,({\rm stat})\pm 1.1\,({\rm syst})]\%\,. (32)

The second error listed is the systematic uncertainty, which is evaluated below (section 5.3). The first result is a factor of four more precise than a recent measurement by BESIII bib:PRD101d052009 , while the latter result is the first such measurement. The AFBA_{\rm FB} values plotted in figures 7(d-e) decrease with cosθ\cos\theta^{*} and are consistent with (somewhat lower in D0π+πηD^{0}\rightarrow\pi^{+}\pi^{-}\eta than) the leading-order prediction bib:ZPC30d124 at s=10.6\sqrt{s}=10.6 GeV of AFBcc¯=0.029cosθ/(1+cos2θ)A_{\rm FB}^{c\bar{c}}=-0.029\cdot\cos\theta^{*}/(1+\cos^{2}\theta^{*}), at the current level of statistics.

5.2 Measurement of 𝑨𝑪𝑷(𝑫𝟎ϕ𝜼)A_{C\!P}(D^{0}\rightarrow\phi\eta)

We repeat the above procedure to determine ACPA_{C\!P} for D0ϕηD^{0}\rightarrow\phi\eta decays. Here, to determine parameters NsigN_{\rm sig} and AcorrA_{\rm corr}, we perform a two-dimensional fit in [MKK,Q][M_{KK},Q] for the D0D^{0} and D¯0\kern 1.99997pt\overline{\kern-1.99997ptD}{}^{0} samples simultaneously. We allow NsigN_{\rm sig} and AcorrA_{\rm corr} to float separately for the ϕη\phi\eta and non-resonant K+KηK^{+}K^{-}\eta components. The projections of the fit result are shown in figure 6, and the results are Nsig=728±36N_{\rm sig}=728\pm 36 and Acorr=(0.17±4.44)%A_{\rm corr}=(-0.17\pm 4.44)\%. We perform this fit separately to obtain the AcorrA_{\rm corr} values for the eight bins of cosθ\cos\theta^{*} and use eqs. (4) and (5) to extract ACPA_{C\!P} and AFBA_{\rm FB}. The resulting four values of ACPA_{C\!P} and AFBA_{\rm FB} are plotted in figures 7(c, f). Fitting these ACPA_{C\!P} values to a constant gives

ACP(D0ϕη)\displaystyle A_{C\!P}(D^{0}\rightarrow\phi\eta) =\displaystyle= [1.9±4.4(stat)±0.6(syst)]%,\displaystyle[-1.9\pm 4.4\,({\rm stat})\pm 0.6\,({\rm syst})]\%\,, (33)

where the second error listed is the systematic uncertainty, evaluated below (section 5.3). This result is consistent with zero, as expected bib:PRD100d093002 .

\begin{overpic}[width=195.12767pt]{Acpfit_DzToPhiEta_unblind_Mphi_Dz_QSR.eps}\put(25.0,60.0){(a)} \end{overpic}
\begin{overpic}[width=195.12767pt]{Acpfit_DzToPhiEta_unblind_Q_Dz_MSR.eps}\put(25.0,60.0){(b)} \end{overpic}
\begin{overpic}[width=195.12767pt]{Acpfit_DzToPhiEta_unblind_Mphi_Db_QSR.eps}\put(25.0,60.0){(c)} \end{overpic}
\begin{overpic}[width=195.12767pt]{Acpfit_DzToPhiEta_unblind_Q_Db_MSR.eps}\put(25.0,60.0){(d)} \end{overpic}
Figure 6: Projections in MK+KM_{K^{+}K^{-}} (left) and QQ (right) of the two-dimensional (MK+K,Q)(M_{K^{+}K^{-}},Q) fit, for D0ϕηD^{0}\rightarrow\phi\eta (top) and D¯0ϕη\kern 1.99997pt\overline{\kern-1.99997ptD}{}^{0}\rightarrow\phi\eta (bottom). In both cases, the MK+KM_{K^{+}K^{-}} projection corresponds to the QQ signal region (|Q5.86|<0.8|Q-5.86|<0.8 MeV), and the QQ projection corresponds to the MK+KM_{K^{+}K^{-}} signal region (|MK+Kmϕ|<0.01|M_{K^{+}K^{-}}-m_{\phi}|<0.01 GeV/c2c^{2}).
\begin{overpic}[width=144.39223pt]{DrawAcpvsCosDst_DzToPiPiEta_unblind.eps}\put(75.0,55.0){(a)} \end{overpic}
\begin{overpic}[width=144.39223pt]{DrawAcpvsCosDst_DzToKKEta_unblind.eps}\put(75.0,55.0){(b)} \end{overpic}
\begin{overpic}[width=144.39223pt]{DrawAcpvsCosDst_DzToPhiEta_unblind.eps}\put(75.0,55.0){(c)} \end{overpic}
\begin{overpic}[width=144.39223pt]{DrawAfbvsCosDst_DzToPiPiEta_unblind.eps}\put(75.0,55.0){(d)} \end{overpic}
\begin{overpic}[width=144.39223pt]{DrawAfbvsCosDst_DzToKKEta_unblind.eps}\put(75.0,55.0){(e)} \end{overpic}
\begin{overpic}[width=144.39223pt]{DrawAfbvsCosDst_DzToPhiEta_unblind.eps}\put(75.0,55.0){(f)} \end{overpic}
Figure 7: CPC\!P-violating asymmetry ACPA_{C\!P} (top) and forward-backward asymmetry AFBA_{\rm FB} (bottom) values as a function of cosθ(D+)\cos\theta^{*}(D^{*+}) for (a, d) D0π+πηD^{0}\rightarrow\pi^{+}\pi^{-}\eta, (b, e) D0K+KηD^{0}\rightarrow K^{+}K^{-}\eta, and (c, f) D0ϕηD^{0}\rightarrow\phi\eta, respectively. The solid red lines with a band region are the averaged values with their uncertainties. The dashed red curves in the AFBA_{\rm FB} plots show the leading-order prediction for AFB(e+ecc¯)A_{\rm FB}(e^{+}e^{-}\rightarrow c\bar{c}).

5.3 Systematic uncertainties

Fortunately, most systematic uncertainties in measuring ACPA_{C\!P} cancel. The remaining sources of systematic uncertainty are listed in table 3 and are evaluated as follows.

Sources σACP(D0π+πη)\sigma_{A_{C\!P}}(D^{0}\rightarrow\pi^{+}\pi^{-}\eta) σACP(D0K+Kη)\sigma_{A_{C\!P}}(D^{0}\rightarrow K^{+}K^{-}\eta) σACP(D0ϕη)\sigma_{A_{C\!P}}(D^{0}\rightarrow\phi\eta)
Signal and bkg 0.0040.004 0.0100.010 0.0060.006
cosθ\cos\theta^{*} binning 0.0020.002 0.0040.004 0.0020.002
Aε(πs)A_{\varepsilon}(\pi_{s}) map 0.0010.001 0.0010.001 0.0010.001
Total syst. error 0.0050.005 0.0110.011 0.0060.006
Table 3: The absolute systematic uncertainties for ACPA_{C\!P} measurement in each SCS decay mode.
  • There is an uncertainty arising from fixed parameters in the fit used to describe signal and background shapes. We evaluate this uncertainty using the sampling method described previously to evaluate uncertainties for the branching fraction measurement. The resulting uncertainties for ACPA_{C\!P} are small: <0.001<0.001 for both D0π+πηD^{0}\rightarrow\pi^{+}\pi^{-}\eta and D0K+KηD^{0}\rightarrow K^{+}K^{-}\eta, and 0.0020.002 for D0ϕηD^{0}\rightarrow\phi\eta. We also consider different possible QQ and MKKM_{KK} resolutions for the D0D^{0} and D¯0\kern 1.99997pt\overline{\kern-1.99997ptD}{}^{0} samples by allowing the σ0\sigma_{0} parameter in eqs. (6 - 8) and the σm0\sigma_{m0} and σ0\sigma_{0} parameters in eqs. (17, 18) to vary between the two samples. The change in ACPA_{C\!P} is 0.0040.004 for D0π+πηD^{0}\rightarrow\pi^{+}\pi^{-}\eta, 0.0100.010 for D0K+KηD^{0}\rightarrow K^{+}K^{-}\eta, and 0.0060.006 for D0ϕηD^{0}\rightarrow\phi\eta. Combining these two uncertainties in quadrature gives the values listed in table 3.

  • We extract ACPA_{C\!P} via a binning procedure in cosθ\cos\theta^{*} [see eqs. (4)-(5)], and there is possible uncertainty arising from the choice of bins used. We thus change the number of bins from eight to six, with bin divisions (1.0-1.0, 0.55-0.55, 0.27-0.27, 0.00.0, 0.270.27, 0.550.55, 1.01.0). The resulting change in ACPA_{C\!P} is taken as the systematic uncertainty due to this source. There is a small uncertainty arising from a difference in the detector acceptance near the boundaries cosθ=±1\cos\theta^{*}=\pm 1; we evaluate this by considering only events with |cosθ|<0.90|\cos\theta^{*}|<0.90.

  • We correct for a possible asymmetry in πs±\pi^{\pm}_{s} reconstruction efficiencies by weighting events according to a mapping of efficiencies ε(πs)\varepsilon(\pi_{s}). There are 56 bins in this map, and the efficiencies for each bin has some uncertainty. We thus vary these efficiencies individually by their uncertainties to create 56 new efficiency maps with +1σ+1\sigma shifts and 56 maps with 1σ-1\sigma shifts. We subsequently weight the D0D^{0} and D¯0\kern 1.99997pt\overline{\kern-1.99997ptD}{}^{0} samples by these efficiency maps and repeat the fit for NsigN_{\rm sig} and ACPcorA_{C\!P}^{\rm cor}. The resulting deviations from the nominal fit result are summed in quadrature to give the systematic uncertainty arising from this source. We obtain %0.087+0.050{}^{+0.050}_{-0.087}\% for D0K+KηD^{0}\rightarrow K^{+}K^{-}\eta, %0.072+0.065{}^{+0.065}_{-0.072}\% for D0K+KηD^{0}\rightarrow K^{+}K^{-}\eta, and %0.100+0.043{}^{+0.043}_{-0.100}\% for D0ϕηD^{0}\rightarrow\phi\eta.

The total systematic uncertainty is obtained by adding in quadrature all the above contributions. The results are listed in table 3.

6 Conclusion

In summary, based on a data set corresponding to an integrated luminosity of 980 fb1\rm fb^{-1} recorded by the Belle experiment, we report measurements of the branching fractions of the SCS decays D0π+πηD^{0}\rightarrow\pi^{+}\pi^{-}\eta and D0K+KηD^{0}\rightarrow K^{+}K^{-}\eta relative to that for the CF decay D0Kπ+ηD^{0}\rightarrow K^{-}\pi^{+}\eta. We also measure the relative branching fraction for the resonant decay D0ϕηD^{0}\rightarrow\phi\eta; this measurement uses an order of magnitude more data than used for our previous measurement bib:PRL92d101803 and supersedes it. Our results are:

(D0π+πη)(D0Kπ+η)\displaystyle\frac{\mathcal{B}(D^{0}\rightarrow\pi^{+}\pi^{-}\eta)}{\mathcal{B}(D^{0}\rightarrow K^{-}\pi^{+}\eta)} =\displaystyle= [6.49±0.09(stat)±0.13(syst)]%,\displaystyle[6.49\pm 0.09\,({\rm stat})\pm 0.13\,({\rm syst})]\%\,, (34)
(D0K+Kη)(D0Kπ+η)\displaystyle\frac{\mathcal{B}(D^{0}\rightarrow K^{+}K^{-}\eta)}{\mathcal{B}(D^{0}\rightarrow K^{-}\pi^{+}\eta)} =\displaystyle= [0.9570.033+0.036(stat)±0.021(syst)]%,\displaystyle[0.957\,^{+0.036}_{-0.033}\,({\rm stat})\pm 0.021\,({\rm syst})]\%\,, (35)
(D0ϕη,ϕK+K)(D0Kπ+η)\displaystyle\frac{\mathcal{B}(D^{0}\rightarrow\phi\eta,\phi\rightarrow K^{+}K^{-})}{\mathcal{B}(D^{0}\rightarrow K^{-}\pi^{+}\eta)} =\displaystyle= [4.82±0.23(stat)±0.16(syst)]×103.\displaystyle[4.82\pm 0.23\,({\rm stat})\pm 0.16\,({\rm syst})]\times 10^{-3}\,. (36)

The color-suppressed decay D0ϕηD^{0}\rightarrow\phi\eta is observed for the first time, with high statistical significance. Multiplying the above results by the world average value (D0Kπ+η)=(1.88±0.05)%\mathcal{B}(D^{0}\rightarrow K^{-}\pi^{+}\eta)=(1.88\pm 0.05)\% bib:PDG2020 gives the following absolute branching fractions:

(D0π+πη)\displaystyle\mathcal{B}(D^{0}\rightarrow\pi^{+}\pi^{-}\eta) =\displaystyle= [1.22±0.02(stat)±0.02(syst)±0.03(ref)]×103,\displaystyle[1.22\pm 0.02\,({\rm stat})\pm 0.02\,({\rm syst})\pm 0.03\,(\mathcal{B}_{\rm ref})]\times 10^{-3}\,, (37)
(D0K+Kη)\displaystyle\mathcal{B}(D^{0}\rightarrow K^{+}K^{-}\eta) =\displaystyle= [1.800.06+0.07(stat)±0.04(syst)±0.05(ref)]×104,\displaystyle[1.80\,^{+0.07}_{-0.06}\,({\rm stat})\pm 0.04\,({\rm syst})\pm 0.05\,(\mathcal{B}_{\rm ref})]\times 10^{-4}\,, (38)
(D0ϕη)\displaystyle\mathcal{B}(D^{0}\rightarrow\phi\eta) =\displaystyle= [1.84±0.09(stat)±0.06(syst)±0.05(ref)]×104,\displaystyle[1.84\pm 0.09\,({\rm stat})\pm 0.06\,({\rm syst})\pm 0.05\,(\mathcal{B}_{\rm ref})]\times 10^{-4}\,, (39)

where the third uncertainty is due to the branching fraction for the reference mode D0Kπ+ηD^{0}\rightarrow K^{-}\pi^{+}\eta. These results are the most precise to date.

The time-integrated CPC\!P asymmetries are measured to be

ACP(D0π+πη)\displaystyle A_{C\!P}(D^{0}\rightarrow\pi^{+}\pi^{-}\eta) =\displaystyle= [0.9±1.2(stat)±0.4(syst)]%,\displaystyle[0.9\pm 1.2\,({\rm stat})\pm 0.4\,({\rm syst})]\%\,, (40)
ACP(D0K+Kη)\displaystyle A_{C\!P}(D^{0}\rightarrow K^{+}K^{-}\eta) =\displaystyle= [1.4±3.3(stat)±1.0(syst)]%,\displaystyle[-1.4\pm 3.3\,({\rm stat})\pm 1.0\,({\rm syst})]\%\,, (41)
ACP(D0ϕη)\displaystyle A_{C\!P}(D^{0}\rightarrow\phi\eta) =\displaystyle= [1.9±4.4(stat)±0.6(syst)]%.\displaystyle[-1.9\pm 4.4\,({\rm stat})\pm 0.6\,({\rm syst})]\%\,. (42)

The first result represents a significant improvement in precision over the previous result bib:PRD101d052009 . The latter two are the first such measurements. No evidence for CPC\!P violation is found.

Acknowledgements.
We thank the KEKB group for the excellent operation of the accelerator; the KEK cryogenics group for the efficient operation of the solenoid; and the KEK computer group, and the Pacific Northwest National Laboratory (PNNL) Environmental Molecular Sciences Laboratory (EMSL) computing group for strong computing support; and the National Institute of Informatics, and Science Information NETwork 5 (SINET5) for valuable network support. We acknowledge support from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan, the Japan Society for the Promotion of Science (JSPS), and the Tau-Lepton Physics Research Center of Nagoya University; the Australian Research Council including grants DP180102629, DP170102389, DP170102204, DP150103061, FT130100303; Austrian Federal Ministry of Education, Science and Research (FWF) and FWF Austrian Science Fund No. P 31361-N36; the National Natural Science Foundation of China under Contracts No. 11435013, No. 11475187, No. 11521505, No. 11575017, No. 11675166, No. 11705209; Key Research Program of Frontier Sciences, Chinese Academy of Sciences (CAS), Grant No. QYZDJ-SSW-SLH011; the CAS Center for Excellence in Particle Physics (CCEPP); the Shanghai Pujiang Program under Grant No. 18PJ1401000; the Shanghai Science and Technology Committee (STCSM) under Grant No. 19ZR1403000; the Ministry of Education, Youth and Sports of the Czech Republic under Contract No. LTT17020; Horizon 2020 ERC Advanced Grant No. 884719 and ERC Starting Grant No. 947006 “InterLeptons” (European Union); the Carl Zeiss Foundation, the Deutsche Forschungsgemeinschaft, the Excellence Cluster Universe, and the VolkswagenStiftung; the Department of Atomic Energy (Project Identification No. RTI 4002) and the Department of Science and Technology of India; the Istituto Nazionale di Fisica Nucleare of Italy; National Research Foundation (NRF) of Korea Grant Nos. 2016R1D1A1B01010135, 2016R1D1A1B02012900, 2018R1A2B3003643, 2018R1A6A1A06024970, 2018R1D1A1B07047294, 2019K1A3A7A09033840, 2019R1I1A3A01058933; Radiation Science Research Institute, Foreign Large-size Research Facility Application Supporting project, the Global Science Experimental Data Hub Center of the Korea Institute of Science and Technology Information and KREONET/GLORIAD; the Polish Ministry of Science and Higher Education and the National Science Center; the Ministry of Science and Higher Education of the Russian Federation, Agreement 14.W03.31.0026, and the HSE University Basic Research Program, Moscow; University of Tabuk research grants S-1440-0321, S-0256-1438, and S-0280-1439 (Saudi Arabia); the Slovenian Research Agency Grant Nos. J1-9124 and P1-0135; Ikerbasque, Basque Foundation for Science, Spain; the Swiss National Science Foundation; the Ministry of Education and the Ministry of Science and Technology of Taiwan; and the United States Department of Energy and the National Science Foundation.

Appendix A Bifurcated Student’s t-function

The bifurcated Student’s t-function is defined as:

Sbif(x;μ,σ,δ,nl,nh)\displaystyle S_{\rm bif}(x;\mu,\sigma,\delta,n_{l},n_{h}) =\displaystyle= 2PHPL(PH+PL)π{[1+1nh(xμσ(1+δ))2]nh+12,for xμ;[1+1nl(xμσ(1δ))2]nl+12,for others.\displaystyle\frac{2P_{H}P_{L}}{(P_{H}+P_{L})\sqrt{\pi}}\left\{\begin{array}[]{ll}\left[1+\frac{1}{n_{h}}\left(\frac{x-\mu}{\sigma(1+\delta)}\right)^{2}\right]^{-\frac{n_{h}+1}{2}},&\hbox{for $x\geq\mu$;}\\ \left[1+\frac{1}{n_{l}}\left(\frac{x-\mu}{\sigma(1-\delta)}\right)^{2}\right]^{-\frac{n_{l}+1}{2}},&\hbox{for others.}\end{array}\right. (45)

Here the factors PHP_{H} and PLP_{L} are calculated as: PH=Γ(nh+12)σ(1+δ)Γ(nh2)1nhP_{H}=\frac{\Gamma(\frac{n_{h}+1}{2})}{\sigma\cdot(1+\delta)\Gamma(\frac{n_{h}}{2})}\frac{1}{\sqrt{n_{h}}} and PL=Γ(nl+12)σ(1δ)Γ(nl2)1nlP_{L}=\frac{\Gamma(\frac{n_{l}+1}{2})}{\sigma\cdot(1-\delta)\Gamma(\frac{n_{l}}{2})}\frac{1}{\sqrt{n_{l}}}, where Γ\Gamma is the Gamma function.

References