This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

The Belle Collaboration

Measurement of branching fractions of 𝚲𝒄+𝒑𝑲𝑺𝟎𝑲𝑺𝟎\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}K_{S}^{0} and 𝚲𝒄+𝒑𝑲𝑺𝟎𝜼\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}\eta at Belle

L. K. Li  0000-0002-7366-1307    K. Kinoshita 0000-0001-7175-4182    I. Adachi 0000-0003-2287-0173    J. K. Ahn  0000-0002-5795-2243    H. Aihara 0000-0002-1907-5964    S. Al Said 0000-0002-4895-3869    D. M. Asner 0000-0002-1586-5790    T. Aushev  0000-0002-6347-7055    R. Ayad 0000-0003-3466-9290    V. Babu  0000-0003-0419-6912    S. Bahinipati 0000-0002-3744-5332    Sw. Banerjee  0000-0001-8852-2409    P. Behera  0000-0002-1527-2266    K. Belous 0000-0003-0014-2589    J. Bennett 0000-0002-5440-2668    M. Bessner  0000-0003-1776-0439    B. Bhuyan  0000-0001-6254-3594    T. Bilka 0000-0003-1449-6986    D. Biswas  0000-0002-7543-3471    A. Bobrov 0000-0001-5735-8386    D. Bodrov 0000-0001-5279-4787    G. Bonvicini  0000-0003-4861-7918    J. Borah 0000-0003-2990-1913    A. Bozek 0000-0002-5915-1319    M. Bračko  0000-0002-2495-0524    P. Branchini 0000-0002-2270-9673    T. E. Browder 0000-0001-7357-9007    A. Budano 0000-0002-0856-1131    M. Campajola 0000-0003-2518-7134    D. Červenkov  0000-0002-1865-741X    M.-C. Chang 0000-0002-8650-6058    A. Chen  0000-0002-8544-9274    B. G. Cheon  0000-0002-8803-4429    K. Chilikin 0000-0001-7620-2053    K. Cho  0000-0003-1705-7399    S.-J. Cho 0000-0002-1673-5664    Y. Choi  0000-0003-3499-7948    S. Choudhury 0000-0001-9841-0216    D. Cinabro 0000-0001-7347-6585    S. Das  0000-0001-6857-966X    G. De Nardo  0000-0002-2047-9675    G. De Pietro 0000-0001-8442-107X    R. Dhamija 0000-0001-7052-3163    F. Di Capua 0000-0001-9076-5936    J. Dingfelder 0000-0001-5767-2121    Z. Doležal 0000-0002-5662-3675    T. V. Dong 0000-0003-3043-1939    D. Epifanov  0000-0001-8656-2693    T. Ferber  0000-0002-6849-0427    D. Ferlewicz 0000-0002-4374-1234    B. G. Fulsom  0000-0002-5862-9739    R. Garg 0000-0002-7406-4707    V. Gaur 0000-0002-8880-6134    A. Garmash  0000-0003-2599-1405    A. Giri 0000-0002-8895-0128    P. Goldenzweig  0000-0001-8785-847X    B. Golob 0000-0001-9632-5616    G. Gong 0000-0001-7192-1833    E. Graziani 0000-0001-8602-5652    Y. Guan  0000-0002-5541-2278    K. Gudkova 0000-0002-5858-3187    C. Hadjivasiliou 0000-0002-2234-0001    S. Halder 0000-0002-6280-494X    X. Han 0000-0003-1656-9413    K. Hayasaka  0000-0002-6347-433X    H. Hayashii 0000-0002-5138-5903    M. T. Hedges  0000-0001-6504-1872    W.-S. Hou  0000-0002-4260-5118    C.-L. Hsu 0000-0002-1641-430X    K. Inami  0000-0003-2765-7072    N. Ipsita  0000-0002-2927-3366    A. Ishikawa 0000-0002-3561-5633    R. Itoh 0000-0003-1590-0266    M. Iwasaki 0000-0002-9402-7559    W. W. Jacobs  0000-0002-9996-6336    E.-J. Jang 0000-0002-1935-9887    Q. P. Ji  0000-0003-2963-2565    S. Jia 0000-0001-8176-8545    Y. Jin 0000-0002-7323-0830    K. K. Joo 0000-0002-5515-0087    K. H. Kang  0000-0002-6816-0751    T. Kawasaki  0000-0002-4089-5238    C. H. Kim  0000-0002-5743-7698    D. Y. Kim 0000-0001-8125-9070    K.-H. Kim  0000-0002-4659-1112    Y.-K. Kim  0000-0002-9695-8103    P. Kodyš  0000-0002-8644-2349    A. Korobov  0000-0001-5959-8172    S. Korpar 0000-0003-0971-0968    E. Kovalenko 0000-0001-8084-1931    P. Križan 0000-0002-4967-7675    P. Krokovny  0000-0002-1236-4667    T. Kuhr 0000-0001-6251-8049    M. Kumar  0000-0002-6627-9708    R. Kumar 0000-0002-6277-2626    K. Kumara 0000-0003-1572-5365    Y.-J. Kwon  0000-0001-9448-5691    T. Lam  0000-0001-9128-6806    J. S. Lange 0000-0003-0234-0474    S. C. Lee  0000-0002-9835-1006    C. H. Li  0000-0002-3240-4523    S. X. Li  0000-0003-4669-1495    Y. Li 0000-0002-4413-6247    Y. B. Li 0000-0002-9909-2851    L. Li Gioi 0000-0003-2024-5649    J. Libby 0000-0002-1219-3247    K. Lieret  0000-0003-2792-7511    Y.-R. Lin 0000-0003-0864-6693    D. Liventsev  0000-0003-3416-0056    T. Luo 0000-0001-5139-5784    M. Masuda  0000-0002-7109-5583    T. Matsuda 0000-0003-4673-570X    D. Matvienko 0000-0002-2698-5448    S. K. Maurya 0000-0002-7764-5777    F. Meier 0000-0002-6088-0412    M. Merola 0000-0002-7082-8108    F. Metzner 0000-0002-0128-264X    K. Miyabayashi 0000-0003-4352-734X    R. Mizuk  0000-0002-2209-6969    R. Mussa  0000-0002-0294-9071    I. Nakamura  0000-0002-7640-5456    T. Nakano  0000-0003-3157-5328    M. Nakao 0000-0001-8424-7075    Z. Natkaniec  0000-0003-0486-9291    A. Natochii 0000-0002-1076-814X    L. Nayak 0000-0002-7739-914X    M. Nayak 0000-0002-2572-4692    N. K. Nisar  0000-0001-9562-1253    S. Nishida 0000-0001-6373-2346    S. Ogawa  0000-0002-7310-5079    H. Ono  0000-0003-4486-0064    P. Pakhlov  0000-0001-7426-4824    G. Pakhlova 0000-0001-7518-3022    S. Pardi  0000-0001-7994-0537    H. Park 0000-0001-6087-2052    J. Park 0000-0001-6520-0028    A. Passeri  0000-0003-4864-3411    S. Patra 0000-0002-4114-1091    S. Paul 0000-0002-8813-0437    R. Pestotnik  0000-0003-1804-9470    L. E. Piilonen  0000-0001-6836-0748    T. Podobnik 0000-0002-6131-819X    E. Prencipe  0000-0002-9465-2493    M. T. Prim 0000-0002-1407-7450    A. Rostomyan  0000-0003-1839-8152    N. Rout 0000-0002-4310-3638    G. Russo  0000-0001-5823-4393    Y. Sakai  0000-0001-9163-3409    S. Sandilya  0000-0002-4199-4369    V. Savinov  0000-0002-9184-2830    G. Schnell  0000-0002-7336-3246    J. Schueler 0000-0002-2722-6953    C. Schwanda 0000-0003-4844-5028    A. J. Schwartz 0000-0002-7310-1983    Y. Seino  0000-0002-8378-4255    K. Senyo 0000-0002-1615-9118    M. E. Sevior  0000-0002-4824-101X    W. Shan 0000-0003-2811-2218    M. Shapkin 0000-0002-4098-9592    C. Sharma 0000-0002-1312-0429    C. P. Shen  0000-0002-9012-4618    J.-G. Shiu  0000-0002-8478-5639    F. Simon  0000-0002-5978-0289    J. B. Singh 0000-0001-9029-2462    E. Solovieva  0000-0002-5735-4059    M. Starič  0000-0001-8751-5944    J. F. Strube  0000-0001-7470-9301    M. Sumihama  0000-0002-8954-0585    T. Sumiyoshi  0000-0002-0486-3896    M. Takizawa  0000-0001-8225-3973    U. Tamponi 0000-0001-6651-0706    S. S. Tang  0000-0001-6564-0445    K. Tanida 0000-0002-8255-3746    F. Tenchini  0000-0003-3469-9377    M. Uchida  0000-0003-4904-6168    T. Uglov  0000-0002-4944-1830    Y. Unno 0000-0003-3355-765X    K. Uno 0000-0002-2209-8198    S. Uno 0000-0002-3401-0480    P. Urquijo 0000-0002-0887-7953    S. E. Vahsen  0000-0003-1685-9824    R. van Tonder 0000-0002-7448-4816    G. Varner 0000-0002-0302-8151    K. E. Varvell  0000-0003-1017-1295    A. Vinokurova 0000-0003-4220-8056    A. Vossen  0000-0003-0983-4936    D. Wang  0000-0003-1485-2143    M.-Z. Wang  0000-0002-0979-8341    X. L. Wang 0000-0001-5805-1255    M. Watanabe 0000-0001-6917-6694    S. Watanuki  0000-0002-5241-6628    O. Werbycka  0000-0002-0614-8773    J. Wiechczynski  0000-0002-3151-6072    E. Won 0000-0002-4245-7442    X. Xu 0000-0001-5096-1182    B. D. Yabsley 0000-0002-2680-0474    W. Yan  0000-0003-0713-0871    S. B. Yang 0000-0002-9543-7971    J. Yelton  0000-0001-8840-3346    J. H. Yin 0000-0002-1479-9349    C. Z. Yuan  0000-0002-1652-6686    L. Yuan 0000-0002-6719-5397    Y. Yusa 0000-0002-4001-9748    Z. P. Zhang  0000-0001-6140-2044    V. Zhilich 0000-0002-0907-5565    V. Zhukova 0000-0002-8253-641X
Abstract

We present a study of a singly Cabibbo-suppressed decay Λc+pKS0KS0{\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}K_{S}^{0}} and a Cabibbo-favored decay Λc+pKS0η{\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}\eta} based on 980 fb1980~{}\mbox{\,fb}^{-1} of data collected by the Belle detector, operating at the KEKB energy-asymmetric e+ee^{+}e^{-} collider. We measure their branching fractions relative to Λc+pKS0{\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}}: (Λc+pKS0KS0)/(Λc+pKS0)=(1.48±0.08±0.04)×102\mathcal{B}({\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}K_{S}^{0}})/\mathcal{B}({\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}})=(1.48\pm 0.08\pm 0.04)\times 10^{-2} and (Λc+pKS0η)/(Λc+pKS0)=(2.73±0.06±0.13)×101\mathcal{B}({\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}\eta})/\mathcal{B}({\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}})=(2.73\pm 0.06\pm 0.13)\times 10^{-1}. Combining with the world average (Λc+pKS0)\mathcal{B}({\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}}), we have the absolute branching fractions, (Λc+pKS0KS0)=(2.35±0.12±0.07±0.12)×104\mathcal{B}({\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}K_{S}^{0}})=(2.35\pm 0.12\pm 0.07\pm 0.12)\times 10^{-4} and (Λc+pKS0η)=(4.35±0.10±0.20±0.22)×103\mathcal{B}({\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}\eta})=(4.35\pm 0.10\pm 0.20\pm 0.22)\times 10^{-3}. The first and second uncertainties are statistical and systematic, respectively, while the third ones arise from the uncertainty on (Λc+pKS0)\mathcal{B}({\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}}). The mode Λc+pKS0KS0{\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}K_{S}^{0}} is observed for the first time and has a statistical significance of >10σ>\!10\sigma. The branching fraction of Λc+pKS0η{\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}\eta} has been measured with a threefold improvement in precision over previous results and is found to be consistent with the world average.

I Introduction

The weak decays of charmed baryons provide an excellent platform for understanding Quantum Chromodynamics with transitions involving the charm quark. The decay amplitudes consist of factorizable and non-factorizable contributions. The latter may play a non-trivial or essential role and are approached in various ways, including the pole model [1, 2], the covariant confined quark model [3, 4], current algebra [5, 6, 7] and SU(3)F symmetry [8, 9, 10]. To date, there is no established phenomenological model that consistently describes baryon decays. Precise measurements of branching fractions of charmed baryon weak decays are useful for studying the dynamics of charmed baryons and testing the predictions of theoretical models. In addition, the singly Cabibbo-suppressed (SCS) charm decays are essential probes of CPC\!P violation in the charm sector [11, 12, 13] and new physics beyond the standard model [14, 15, 16].

Experimentally, the investigation of charmed baryons is more challenging than that of charmed mesons, mainly due to lower production rates. For the lightest state, Λc+\mathchar 28931\relax_{c}^{+}, hadronic modes have been studied at several experiments, but some have yet to be observed or are measured with low precision [17]. For the Cabibbo-favored (CF) channel Λc+pKS0η{\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}\eta} 111Throughout this paper charge-conjugate modes are implied., the world average branching fraction, (Λc+pKS0η)=(4.15±0.90)×103\mathcal{B}({\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}\eta})\!=\!{(4.15\pm 0.90)\times 10^{-3}} [17], still has a large uncertainty (22%22\%). The SCS mode Λc+pKS0KS0{\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}K_{S}^{0}}, for which the predicted branching fraction is (Λc+pKS0KS0)=(1.9±0.4)×103\mathcal{B}({\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}K_{S}^{0}})\!=\!{(1.9\pm 0.4)\times 10^{-3}} based on SU(3)F symmetry [19], has not previously been observed.

In this paper, we present a precise measurement of (Λc+pKS0KS0)\mathcal{B}({\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}K_{S}^{0}}) and (Λc+pKS0η)\mathcal{B}({\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}\eta}) based on the full Belle data set. For both of these three-body decays, the Dalitz plot is of interest for the study intermediate resonances. Understanding the nature of N(1535)N^{*}(1535) is very challenging and important for hadronic physics. The mass of N(1535)N^{*}(1535), with spin parity JP=1/2J^{P}\!=\!1/2^{-}, is larger than that of the radial excitation N(1440)N^{*}(1440), in opposition to predictions of classical constituent quark models [20]. The N(1535)N^{*}(1535) also couples strongly to channels with strangeness, such as ηN\eta{}N and KΛK\mathchar 28931\relax, which is difficult to explain within the naive constituent quark models [21, 22]. The inclusion of five-quark components gives a natural explanation for these properties [23]. The Λc+pKS0η{\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}\eta} decay, in which the final-state pηp\eta is in a pure isospin I=1/2I\!=\!1/2 state, is an ideal process for studying the N(1535)N^{*}(1535) resonance, as N(1535)N^{*}(1535) has a large branching ratio to pηp\eta, in SS-wave. Other intermediate resonances of interest are the light scalars a0(980)a_{0}(980) and f0(980)f_{0}(980), which both couple to KK¯K\overline{K} in Λc+pKS0KS0{\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}K_{S}^{0}}. They contribute to the SCS Λc+\mathchar 28931\relax_{c}^{+} decays Λc+pKK¯\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK\overline{K} and Λc+pππ\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}p\pi\pi, as predicted in Ref. [24], and likely contribute to Λc+pKS0KS0{\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}K_{S}^{0}}, based on isospin symmetry. The nature of f0(980)f_{0}(980) and a0(980)a_{0}(980) remains poorly understood and continues to be controversial [25, 26, 27]. They are often interpreted as compact tetraquark states [28, 29, 30] or KK¯K\overline{K} bound states [31, 32]. Therefore, we reconstruct the Dalitz plots of Λc+pKS0KS0{\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}K_{S}^{0}} and Λc+pKS0η{\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}\eta} decays to check such interesting intermediate resonances.

II Detector and data set

This analysis uses the full dataset recorded by the Belle detector [33] operating at the KEKB energy-asymmetric e+ee^{+}e^{-} collider [34]. This data sample corresponds to a total integrated luminosity of 980 fb1980~{}\mbox{\,fb}^{-1} collected at or near the Υ(nS)\Upsilon(nS) (n=1, 2, 3, 4, 5n\!=\!1,\,2,\,3,\,4,\,5) resonances. The Belle detector is a large-solid-angle magnetic spectrometer consisting of a silicon vertex detector, a central drift chamber (CDC), an array of aerogel threshold Cherenkov counters (ACC), a barrel-like arrangement of time-of-flight scintillation counters (TOF), and an electromagnetic calorimeter (ECL) consisting of CsI(Tl) crystals. These components are all located inside a superconducting solenoid coil that provides a 1.5 T magnetic field. The iron flux-return of the magnet is instrumented to detect KL0K^{0}_{L} mesons and to identify muons. The detector is described in detail elsewhere [33].

Monte Carlo (MC) simulated events are generated with evtgen [35] and pythia [36], and are subsequently processed through the full detector simulation based on geant3 [37]. Final-state radiation from charged particles is included at the event generation stage using photos [38]. “Generic” MC samples include BB¯B\overline{B} events and continuum processes e+eqq¯e^{+}e^{-}\!\rightarrow\!{}q\bar{q} (q=u,d,s,c)q\!=\!u,\,d,\,s,\,c) corresponding to an integrated luminosity three times that of the data. Samples of MC events of Λc+\mathchar 28931\relax_{c}^{+} signal decay modes are produced in the e+ecc¯e^{+}e^{-}\!\rightarrow\!{}c\overline{c} process, decayed uniformly in three-body phase space, and used to study the efficiency.

III Event selection

We reconstruct the two signal modes Λc+pKS0KS0{\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}K_{S}^{0}} and Λc+pKS0η{\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}\eta} and their reference mode Λc+pKS0{\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}}. The event selections are optimized based on a figure of merit (FOM), defined as FOM=εS/NB{\rm FOM}\!=\!\varepsilon_{\scriptscriptstyle{S}}/\sqrt{N_{B}} for Λc+pKS0KS0{\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}K_{S}^{0}} due to its branching fraction having not yet been measured, and FOM=NS/NS+NB{\rm FOM}\!=\!N_{S}/\sqrt{N_{S}+N_{B}} for Λc+pKS0η{\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}\eta} assuming its current world average branching fraction [17]. Here εS\varepsilon_{\scriptscriptstyle{S}} is the selection efficiency of signal, NSN_{S} and NBN_{B} are the expected yields of signal and background, respectively, based on numbers of candidates in the M(Λc+)M(\mathchar 28931\relax_{c}^{+}) signal regions, where M(Λc+)M(\mathchar 28931\relax_{c}^{+}) is the invariant mass of reconstructed Λc+\mathchar 28931\relax_{c}^{+} candidates. These signal regions are defined to be within 10, 22, and 18 MeV/c2c^{2} of the nominal Λc+\mathchar 28931\relax_{c}^{+} mass [17] for the Λc+pKS0KS0{\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}K_{S}^{0}}, Λc+pKS0η{\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}\eta}, and Λc+pKS0{\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}} channels, respectively; each signal band includes \approx98% of the signal. For the expected background, NBN_{B}, the number found in MC is multiplied by the data/MC yield ratio in the M(Λc+)M(\mathchar 28931\relax_{c}^{+}) sideband region (30<|M(Λc+)mΛc+|<50MeV/c230<|M(\mathchar 28931\relax_{c}^{+})-m_{\mathchar 28931\relax_{c}^{+}}|\!<\!{50~{}{\rm MeV}/c^{2}}), where mΛc+m_{\mathchar 28931\relax_{c}^{+}} is the nominal Λc+\mathchar 28931\relax_{c}^{+} mass [17].

The particle identification (PID) likelihood for a given particle hypothesis, i\mathcal{L}_{i} (i=π,K,pi\!=\!\pi,\,K,\,p), is calculated from the Cherenkov photon yield in the ACC, energy-loss measurements in the CDC, and time-of-flight information from the TOF [39]. Charged tracks satisfying (p|K)=p/(p+K)>0.6\mathcal{R}(p|K)\!=\!\mathcal{L}_{p}/(\mathcal{L}_{p}+\mathcal{L}_{K})\!>\!0.6 and (p|π)=p/(p+π)>0.6\mathcal{R}(p|\pi)\!=\!\mathcal{L}_{p}/(\mathcal{L}_{p}+\mathcal{L}_{\pi})\!>\!0.6, are identified as protons. These PID requirements have signal efficiencies of 94% for Λc+pKS0KS0{\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}K_{S}^{0}} and 97% for Λc+pKS0η{\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}\eta}.

For proton candidates, the point on the track nearest to the axis defined by the positron beam and in the direction opposite to it (“zz-axis”) is required to be within 3.0 cm of the interaction point in the zz-direction and within 1.0 cm on the transverse (xx-yy) plane. This requirement rejects tracks not originating at the interaction point (IP) and introduces a negligible signal efficiency loss (<0.01%<0.01\%).

Candidate KS0K_{S}^{0}’s are reconstructed from pairs of oppositely-charged tracks, treated as pions, using an artificial neural network (NN) [40]. The NN utilizes the following 13 input variables: the KS0K_{S}^{0} momentum in the laboratory frame; the separation in zz between the two π±\pi^{\pm} tracks at their intersection in the xx-yy plane; for each track, the nearest distance to the IP in the xx-yy plane; the KS0K_{S}^{0} flight length in the xx-yy plane; the angle between the KS0K_{S}^{0} momentum and the vector joining the IP to the KS0K_{S}^{0} decay vertex; in the KS0K_{S}^{0} rest frame, the angle between the π+\pi^{+} momentum and the laboratory-frame boost direction; and, for each π±\pi^{\pm} track, the number of CDC hits in both stereo and axial views, and the presence or absence of SVD hits. Detailed information is provided elsewhere [41]. The invariant mass of the reconstructed KS0π+πK_{S}^{0}\!\rightarrow\!\pi^{+}\pi^{-} candidate is required to lie within 10MeV/c210~{}{\rm MeV}/c^{2} of the nominal KS0K_{S}^{0} mass [17]; this includes 99.9% of the KS0K_{S}^{0} signal. The two pion tracks from each KS0K_{S}^{0} candidate are refitted to originate from a common vertex and constrained to have invariant mass equal to the nominal KS0K_{S}^{0} mass [17]. The corresponding fit quality χmv2(KS0)\chi_{\rm mv}^{2}(K_{S}^{0}) is required to be smaller than 100. The selected KS0K_{S}^{0} sample has a purity of greater than 98%.

Photon candidates are identified as energy clusters in the ECL that are not associated with any charged track. The ratio of the energy deposited in the 3×\times3 array of crystals centered on the crystal with the highest energy, to the energy deposited in the corresponding 5×\times5 array of crystals, is required to be greater than 0.8. The photon energy is required to be greater than 50 MeV in the barrel region (covering the polar angle 32<θ<12932^{\circ}\!<\!\theta\!<\!129^{\circ}), and greater than 100 MeV in the endcap region (12<θ<3112^{\circ}\!<\!\theta\!<\!31^{\circ} or 132<θ<157132^{\circ}\!<\!\theta\!<\!157^{\circ}).

Candidate ηγγ\eta\!\rightarrow\!\gamma\gamma decays are reconstructed from photon pairs having an invariant mass satisfying 500MeV/c2<M(γγ)<580MeV/c2500~{}{\rm MeV}/c^{2}\!<\!M(\gamma\gamma)\!<\!580~{}{\rm MeV}/c^{2} (3σ3\sigma in Mη(γγ)M_{\eta}(\gamma\gamma) resolution). The invariant mass of each η\eta candidate is constrained to the nominal η\eta mass [17] at the Λc+\mathchar 28931\relax_{c}^{+} decay vertex (described below). The fit quality of this mass constraint is required to satisfy χm2(η)<8\chi_{m}^{2}(\eta)\!<\!8, and the resulting η\eta momentum in the laboratory frame is required to be greater than 0.4 GeV/cc. To further suppress the background, η\eta candidates are vetoed if either of daughters can be paired with another photon such that the γγ\gamma\gamma pair has an invariant mass within 2.5σ2.5\sigma of the nominal π0\pi^{0} mass (σ=5\sigma\!=\!5 MeV/c2c^{2}). This π0\pi^{0}-veto results in a signal loss of 28% and removes 72% of background.

The Λc+\mathchar 28931\relax_{c}^{+} candidates are assembled by forming combinations of the final-state particles for each mode. The pp and KS0K_{S}^{0} are required to originate from a common vertex (denoted the Λc+\mathchar 28931\relax_{c}^{+} decay vertex and the KS0K_{S}^{0} production vertex) with a fit quality χvtx2<24\chi_{\rm vtx}^{2}\!<\!24. To reduce combinatorial background, the scaled momentum of the Λc+\mathchar 28931\relax_{c}^{+} candidate, defined as xp=pc/s/4M2(Λc+)c4x_{p}\!=\!p^{*}c/\sqrt{s/4-M^{2}(\mathchar 28931\relax_{c}^{+})\cdot c^{4}}, is required to be greater than 0.48, where ss is the square of the center-of-mass energy and pp^{*} is the momentum of reconstructed Λc+\mathchar 28931\relax_{c}^{+} candidates in the e+ee^{+}e^{-} center-of-mass frame.

For the SCS decay Λc+pKS0KS0{\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}K_{S}^{0}}, a non-KS0K_{S}^{0} peaking background from the CF decay Λc+pKS0π+π\mathchar 28931\relax_{c}^{+}\!\rightarrow\!pK_{S}^{0}\pi^{+}\pi^{-} exists, even though it is suppressed by the vertex fit and KS0K_{S}^{0} selection. The KS0K_{S}^{0} decay length LL is determined by the projection of the vector joining the KS0K_{S}^{0} production and decay vertices onto the KS0K_{S}^{0} momentum direction, and its corresponding uncertainty σL\sigma_{L} is calculated by propagating uncertainties in the vertices and the KS0K_{S}^{0} momentum, including their correlations. To suppress the non-KS0K_{S}^{0} peaking CF background, we require the significance of the KS0K_{S}^{0} decay length L/σL(KS0)>10L/\sigma_{L}(K_{S}^{0})\!>\!10 for the slower of the two KS0K_{S}^{0}’s in Λc+pKS0KS0{\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}K_{S}^{0}}. This requirement reduces the signal efficiency by 3%, and rejects 80% of non-KS0K_{S}^{0} peaking background. The remaining non-KS0K_{S}^{0} peaking background is ignored in the M(Λc+)M(\mathchar 28931\relax_{c}^{+}) fits because it has a tiny ratio 0.4% to signal based on the MC studies with the branching fraction (1.6±0.12)%(1.6\pm 0.12)\% [17], but considered in the systematic uncertainty.

After applying all selection criteria to the data, we find 1.03, 1.06, and 1.01 candidates per event for Λc+pKS0KS0{\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}K_{S}^{0}}, Λc+pKS0η{\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}\eta}, and Λc+pKS0{\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}}, respectively, in candidates selected from the entire M(Λc+)M(\mathchar 28931\relax_{c}^{+}) fit region (|M(Λc+)mΛc+|<0.05GeV/c2|M(\mathchar 28931\relax_{c}^{+})-m_{\mathchar 28931\relax_{c}^{+}}|\!<\!0.05~{}{\rm GeV}/c^{2}). Correspondingly, about 3.1%, 5.7% and 1.2% of events have multiple signal candidates, which do not introduce any peaking background. We retain all candidates for this branching fraction measurement.

IV Yield extraction

The signal yield is extracted by an unbinned extended maximum likelihood fit to the M(Λc+)M(\mathchar 28931\relax_{c}^{+}) distribution. The signal probability density function (PDF) is a sum of three symmetric Gaussian functions for the Λc+pKS0KS0{\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}}K_{S}^{0} mode, a sum of one symmetric Gaussian and two asymmetric Gaussians for the Λc+pKS0η{\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}\eta} mode, and a sum of one symmetric Gaussian and three asymmetric Gaussians for the Λc+pKS0{\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}} mode. The Gaussian functions share a common mean parameter but have different width parameters. The fit is first performed on truth-matched signal MC events.

In fitting data, the mean is allowed a common shift (δμ\delta_{\mu}) from the value found in MC, and the widths are those found in MC, multiplied by a common scaling factor (kσk_{\sigma}). The background PDF is a first-order polynomial function for Λc+pKS0KS0{\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}K_{S}^{0}} and a second-order polynomial function for Λc+pKS0η{\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}\eta} and Λc+pKS0{\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}}. The background parameters are floated to account for differences between the experimental data and MC simulated samples. The results are shown in Fig. 1, along with the pulls (NdataNfit)/σdata(N_{\rm data}-N_{\rm fit})/\sigma_{\rm data} where σdata\sigma_{\rm data} is the error on NdataN_{\rm data}. The pull distributions demonstrate that the data are statistically consistent with the fitted shapes. The signal and background yields are listed in Table 1.

For the Λc+pKS0KS0{\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}K_{S}^{0}} mode, we obtain the difference in the log likelihoods obtained from fits performed with and without a signal PDF, Δln=524{\Delta\ln\mathcal{L}\!=\!524}; as the number of degrees of freedom without a signal component is three less than that with a signal component (parameters NsigN_{\rm sig}, δμ\delta_{\mu} and kσk_{\sigma} are dropped), and this value of Δln{\Delta\ln\mathcal{L}} corresponds to a statistical significance greater than 10σ10\sigma. This measurement constitutes the first observation of this SCS Λc+\mathchar 28931\relax_{c}^{+} decay.

Table 1: The fitted yields of signal and background in the overall fit region (FR) and the signal region (SR) for the Λc+pKS0KS0{\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}K_{S}^{0}}, Λc+pKS0η{\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}\eta}, and Λc+pKS0{\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}} modes. For the definition of these regions, see the text. The yields in signal region, NbkgSRN_{\rm bkg}^{\rm SR} of Λc+pKS0(KS0,η)\mathchar 28931\relax_{c}^{+}\!\rightarrow\!pK_{S}^{0}(K_{S}^{0},\eta) and NsigSRN_{\rm sig}^{\rm SR} of Λc+pKS0{\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}}, are used to measure the branching fractions.
Yields Λc+pKS0KS0{\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}K_{S}^{0}} Λc+pKS0η{\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}\eta} Λc+pKS0{\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}}
NsigFRN_{\rm sig}^{\rm FR}   2442±103\,\,2442\pm 103 12877±31712877\pm 317 515296±1129515296\pm 1129
NbkgFRN_{\rm bkg}^{\rm FR} 41138±22241138\pm 222 75144±40375144\pm 403 627427±1177627427\pm 1177
NsigSRN_{\rm sig}^{\rm SR} 2391±1012391\pm 101 12641±31112641\pm 311 500457±1096500457\pm 1096
NbkgSRN_{\rm bkg}^{\rm SR} 8228±448228\pm 44 32935±17732935\pm 177 226055±424226055\pm 424\,\,
\begin{overpic}[width=144.39223pt]{MassLc_LcTopKsKs_data.eps}\put(78.0,65.0){\large(a)}\end{overpic}
\begin{overpic}[width=144.39223pt]{MassLc_LcTopKsEta_data.eps}\put(78.0,65.0){\large(b)}\end{overpic}
\begin{overpic}[width=144.39223pt]{MassLc_LcTopKs_data.eps}\put(78.0,65.0){\large(c)}\end{overpic}
Figure 1: The distributions of invariant mass of Λc+\mathchar 28931\relax_{c}^{+} candidates (points with error bars) and corresponding fit results (red curves) for (a) Λc+pKS0KS0{\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}K_{S}^{0}}, (b) Λc+pKS0η{\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}\eta}, and (c) Λc+pKS0{\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}}, respectively. The red (blue) dashed histograms show the signal (background).

V Branching fraction

For the three-body decay modes, the Dalitz plots for candidates in the M(Λc+)M(\mathchar 28931\relax_{c}^{+}) signal region and sideband region are shown in Figs. 2(a, b) for Λc+pKS0KS0{\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}K_{S}^{0}} and Figs. 2(d, e) for Λc+pKS0η{\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}\eta}. For Λc+pKS0KS0{\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}K_{S}^{0}}, Bose symmetry requires invariance under the exchange of the two KS0K_{S}^{0}’s, hence the Dalitz plot for two pKS0pK_{S}^{0} masses is symmetric. We plot M2(pKS0)maxM^{2}(pK_{S}^{0})_{\rm max} versus M2(pKS0)minM^{2}(pK_{S}^{0})_{\rm min} in half of the Dalitz plot, as shown in Figs. 2(a–c), and use it to measure the branching fraction.

For each mode, a large MC sample of signal events, generated uniformly across the decay phase space, is used to determine the reconstruction efficiency. For Λc+pKS0KS0{\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}K_{S}^{0}} and Λc+pKS0η{\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}\eta}, the efficiencies are calculated in bins across the phase space, based on truth-matched signal yield in the M(Λc+)M(\mathchar 28931\relax_{c}^{+}) signal region. The results are shown in Fig. 2(c) for Λc+pKS0KS0{\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}K_{S}^{0}} and Fig. 2(f) for Λc+pKS0η{\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}\eta}.

\begin{overpic}[width=144.39223pt]{DPinMSR_LcTopKsKs_unblind_halfDP.eps}\put(72.0,62.0){\large(a)}\end{overpic}
\begin{overpic}[width=144.39223pt]{DPinMSB_LcTopKsKs_unblind_halfDP.eps}\put(72.0,62.0){\large(b)}\end{overpic}
\begin{overpic}[width=144.39223pt]{DPeff_pKsVspKs_LcTopKsKs.eps}\put(72.0,62.0){\large(c)}\end{overpic}
\begin{overpic}[width=144.39223pt]{DPinMSR_LcTopKsEta_unblind_final.eps}\put(72.0,62.0){\large(d)}\end{overpic}
\begin{overpic}[width=144.39223pt]{DPinMSB_LcTopKsEta_unblind_final.eps}\put(72.0,62.0){\large(e)}\end{overpic}
\begin{overpic}[width=144.39223pt]{DPeff_LcTopKsEta.eps}\put(72.0,62.0){\large(f)}\end{overpic}
Figure 2: Plots (a, d) show the Dalitz plots in the M(Λc+)M(\mathchar 28931\relax_{c}^{+}) signal region, and (b, e) show the Dalitz plots in the M(Λc+)M(\mathchar 28931\relax_{c}^{+}) sideband region for Λc+pKS0KS0{\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}K_{S}^{0}} (top) and Λc+pKS0η{\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}\eta} (bottom). Plots (c, f) show the average signal efficiency in bins across the Dalitz plane. The red curves show the edges of kinematic phase-space region of the decays.

In order to calculate the efficiency-corrected yield, properly taking into account the variations in efficiency and uncertainties in signal yield over the Dalitz plot, we make a bin-by-bin correction. The Dalitz plots are divided uniformly into 7×\times7 bins for Λc+pKS0KS0{\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}K_{S}^{0}} and 5×\times5 bins for Λc+pKS0η{\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}\eta}, as shown in Figs. 2(c, f) respectively. The efficiency-corrected yields are

Ncorr\displaystyle N_{\rm{corr}} =\displaystyle= i(NitotNbkgSRfibkg)/εi,\displaystyle\sum_{i}(N_{i}^{\rm tot}-N_{\rm bkg}^{\rm SR}f_{i}^{\rm{bkg}})/\varepsilon_{i}\,, (1)

where NitotN_{i}^{\rm{tot}} is the raw yield in the ithi^{\rm th} bin of the Dalitz plot in M(Λc+)M(\mathchar 28931\relax_{c}^{+}) signal region, NbkgSRN_{\rm bkg}^{\rm SR} is the fitted background yield as listed in Table 1, fibkgf_{i}^{\rm{bkg}} is the fraction of background in the ithi^{\rm th}-bin, with ifi=1\sum_{i}{}f_{i}\!=\!1. These fractions are obtained from the Dalitz plot distribution of events in the M(Λc+)M(\mathchar 28931\relax_{c}^{+}) sideband region, shown in Fig. 2(b) for Λc+pKS0KS0{\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}K_{S}^{0}} and Fig. 2(e) for Λc+pKS0η{\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}\eta}. Using the generic MC sample, we find that the Dalitz plot in the chosen M(Λc+)M(\mathchar 28931\relax_{c}^{+}) sideband region is consistent with the generic background in the M(Λc+)M(\mathchar 28931\relax_{c}^{+}) signal region. The uncertainties on each variable in Eq. (1) have been considered and are propagated into the efficiency-corrected yields, NcorrN_{\rm corr}. We obtain

Ncorr(Λc+pKS0KS0)\displaystyle N_{\rm{corr}}({\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}K_{S}^{0}}) =\displaystyle= (1.55±0.08)×104,\displaystyle(1.55\pm 0.08)\times 10^{4}\,, (2)
Ncorr(Λc+pKS0η)\displaystyle N_{\rm{corr}}({\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}\eta}) =\displaystyle= (1.63±0.04)×105.\displaystyle(1.63\pm 0.04)\times 10^{5}\,. (3)

The relative branching fractions of signal modes to reference mode are determined by Eqs. (4, 5).

(Λc+pKS0KS0)(Λc+pKS0)\displaystyle\hskip-20.0pt\frac{\mathcal{B}({\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}K_{S}^{0}})}{\mathcal{B}({\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}})} =\displaystyle= Ncorr(Λc+pKS0KS0)(KS0π+π)NsigSR(Λc+pKS0)/ε0,\displaystyle\frac{N_{\rm{corr}}({\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}K_{S}^{0}})}{\mathcal{B}(K_{S}^{0}\!\rightarrow\!\pi^{+}\pi^{-})N^{\rm SR}_{\rm{sig}}({\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}})/\varepsilon_{0}}\,, (4)
(Λc+pKS0η)(Λc+pKS0)\displaystyle\hskip-20.0pt\frac{\mathcal{B}({\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}\eta})}{\mathcal{B}({\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}})} =\displaystyle= Ncorr(Λc+pKS0η)(ηγγ)NsigSR(Λc+pKS0)/ε0.\displaystyle\frac{N_{\rm{corr}}({\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}\eta})}{\mathcal{B}(\eta\!\rightarrow\!\gamma\gamma)N^{\rm SR}_{\rm{sig}}({\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}})/\varepsilon_{0}}\,. (5)

Here, ε0=(33.09±0.05)%\varepsilon_{0}\!=\!(33.09\pm 0.05)\% is the efficiency of the reference mode Λc+pKS0{\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}} in the M(Λc+)M(\mathchar 28931\relax_{c}^{+}) signal region. Inserting the efficiency-corrected yields in Eqs. (2, 3), NsigSR(Λc+pKS0)N^{\rm SR}_{\rm{sig}}({\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}}) in Table 1, and the world averages (KS0π+π)=(69.20±0.05)%\mathcal{B}(K_{S}^{0}\!\rightarrow\!\pi^{+}\pi^{-})\!=\!(69.20\pm 0.05)\% and (ηγγ)=(39.41±0.20)%\mathcal{B}(\eta\!\rightarrow\!\gamma\gamma)\!=\!(39.41\pm 0.20)\% [17], we find

(Λc+pKS0KS0)(Λc+pKS0)\displaystyle\frac{\mathcal{B}({\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}K_{S}^{0}})}{\mathcal{B}({\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}})} =\displaystyle= (1.48±0.08)×102,\displaystyle(1.48\pm 0.08)\times 10^{-2}\,, (6)
(Λc+pKS0η)(Λc+pKS0)\displaystyle\frac{\mathcal{B}({\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}\eta})}{\mathcal{B}({\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}})} =\displaystyle= (2.73±0.06)×101,\displaystyle(2.73\pm 0.06)\times 10^{-1}\,, (7)

Combining with the world average branching fraction of reference mode (Λc+pKS0)=(1.59±0.08)%\mathcal{B}({\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}})\!=\!(1.59\pm 0.08)\% [17], we have the absolute branching fractions:

(Λc+pKS0KS0)\displaystyle\hskip-10.0pt\mathcal{B}({\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}K_{S}^{0}}) =\displaystyle= (2.35±0.12±0.12)×104,\displaystyle(2.35\pm 0.12\pm 0.12)\times 10^{-4}\,, (8)
(Λc+pKS0η)\displaystyle\hskip-10.0pt\mathcal{B}({\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}\eta}) =\displaystyle= (4.35±0.10±0.22)×103,\displaystyle(4.35\pm 0.10\pm 0.22)\times 10^{-3}\,, (9)

where the uncertainties are statistical and from the uncertainty on (Λc+pKS0)\mathcal{B}({\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}}).

We examine the Dalitz plots for Λc+pKS0KS0{\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}K_{S}^{0}} and Λc+pKS0η{\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}\eta}, after background subtraction and efficiency correction, for intermediate resonances. In Λc+pKS0KS0{\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}K_{S}^{0}}, clear evidence for f0(980)f_{0}(980) or a0(980)0a_{0}(980)^{0} (labeled as S0(980)S_{0}(980)) near the KS0KS0K_{S}^{0}K_{S}^{0} threshold is seen, as shown in Fig. 3. In Λc+pKS0η{\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}\eta}, a significant enhancement consistent with N(1535)N^{*}(1535) is found near the pηp\eta threshold, as shown in Fig. 4. In the future, amplitude analyses of these decays can be expected to improve our understanding of the nature of S0(980)S_{0}(980) and N(1535)N^{*}(1535).

\begin{overpic}[width=108.405pt]{DPinMSR_LcTopKsKs_unblind_sig.eps}\put(71.0,61.0){\large(a)}\end{overpic}
\begin{overpic}[width=108.405pt]{DPproj12_LcTopKsKs_unblind_sig.eps}\put(75.0,58.0){\large(b)}\end{overpic}
\begin{overpic}[width=108.405pt]{DPproj23_LcTopKsKs_unblind_sig.eps}\put(75.0,58.0){\large(c)}\end{overpic}
Figure 3: For Λc+pKS0KS0{\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}K_{S}^{0}}, the Dalitz plot after background subtraction and efficiency correction bin-by-bin and its projections superimposing with signal MC produced by phase space mode (blue histograms). This symmetric Dalitz plot and its projections show two entries per candidate, one for each possible pKS0pK_{S}^{0} combination. A dominant structure near the KS0KS0K_{S}^{0}K_{S}^{0} threshold, which we identify with f0(980)f_{0}(980) or a0(980)0a_{0}(980)^{0}, is clearly seen.
\begin{overpic}[width=108.405pt]{DPinMSR_LcTopKsEta_unblind_sig.eps}\put(71.0,61.0){\large(a)}\end{overpic}
\begin{overpic}[width=108.405pt]{DPproj23_LcTopKsEta_unblind_sig.eps}\put(75.0,58.0){\large(b)}\end{overpic}
\begin{overpic}[width=108.405pt]{DPproj12_LcTopKsEta_unblind_sig.eps}\put(75.0,58.0){\large(c)}\end{overpic}
\begin{overpic}[width=108.405pt]{DPproj13_LcTopKsEta_unblind_sig.eps}\put(75.0,58.0){\large(d)}\end{overpic}
Figure 4: For Λc+pKS0η{\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}\eta}, the Dalitz plot after background subtraction and efficiency correction bin-by-bin and its projections superimposing with signal MC produced by phase space mode (blue histograms). A significant structure of N(1535)N^{*}(1535) near the pηp\eta threshold is found.

VI Systematic uncertainty

In measuring the ratio of branching fractions, many systematic uncertainties cancel, as they affect both the signal and reference modes. The remaining systematic uncertainties are summarized in Table 2 and introduced in detail below.

Table 2: Relative systematic uncertainties of the branching fractions of Λc+pKS0KS0{\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}K_{S}^{0}} and Λc+pKS0η{\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}\eta}, and the uncertainty from the branching fraction of the reference mode.
sources Λc+pKS0KS0\mathcal{B}_{{\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}K_{S}^{0}}} Λc+pKS0η\mathcal{B}_{{\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}\eta}}
KS0K_{S}^{0} reconstruction 1.4% 0.4%
proton PID efficiency 0.9% 0.5%
η\eta reconstruction 4.0%
M(Λc+)M(\mathchar 28931\relax_{c}^{+}) fit procedure 1.9% 2.3%
efficiency-correction procedure 0.8% 0.4%
non-KS0K_{S}^{0} peaking background 0.8%
δ/(KS0π+π,ηγγ)\delta\mathcal{B}/\mathcal{B}(K_{S}^{0}\!\rightarrow\!\pi^{+}\pi^{-},\,\eta\!\rightarrow\!\gamma\gamma) 0.1% 0.5%
total syst. uncertainty 2.8% 4.7%
δ/(Λc+pKS0)\delta\mathcal{B}/\mathcal{B}({\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}}) 5.0% 5.0%

The systematic uncertainty associated with the KS0K_{S}^{0} reconstruction is considered as follows. A table of KS0K_{S}^{0} efficiency ratios of data to MC in eight bins of the KS0K_{S}^{0} momentum distribution, RεKS0R{}_{\varepsilon}^{K_{S}^{0}}, is determined based on a control sample D±(D0KS0π0)π±{D^{*\pm}\!\rightarrow\!(D^{0}\!\rightarrow\!K_{S}^{0}\pi^{0})\pi^{\pm}}. The unfolded momentum distribution in data of KS0K_{S}^{0} from signal is obtained using the 𝒫slot{}_{s}\mathcal{P}lot technique [42]. From one RεKS0R{}_{\varepsilon}^{K_{S}^{0}} table, we can determine the average ratios: (1) for Λc+pKS,fast0KS,slow0\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK^{0}_{S,{\rm fast}}K^{0}_{S,{\rm slow}} where the subscript ‘fast’ (‘slow’) indicates the faster (slower) of two KS0K_{S}^{0}’s in the final state, R¯=εKS0i8j8Nij(RRε,iKS,fast0)ε,jKS,slow0/i8j8Nij\overline{R}{}_{\varepsilon}^{K_{S}^{0}}\!=\!\sum_{i}^{8}\sum_{j}^{8}N_{ij}(R{}_{\varepsilon,i}^{K^{0}_{S,{\rm fast}}}R{}_{\varepsilon,j}^{K^{0}_{S,{\rm slow}}})/\sum_{i}^{8}\sum_{j}^{8}N_{ij} calculated on the two-dimensional (pKS,fast0,pKS,slow0)(p_{\scriptscriptstyle{K^{0}_{S,{\rm fast}}}},\,p_{\scriptscriptstyle{K^{0}_{S,{\rm slow}}}}) distribution due to the correlations between the momenta of two KS0K_{S}^{0}’s. Here NijN_{ij} and (RRε,iKS,fast0)ε,jKS,slow0(R{}_{\varepsilon,i}^{K^{0}_{S,{\rm fast}}}R{}_{\varepsilon,j}^{K^{0}_{S,{\rm slow}}}) are the yield and the averaged RεKS0R{}_{\varepsilon}^{K_{S}^{0}}, respectively, in the bin of ithi^{\rm th} raw and jthj^{\rm th} column of such two-dimensional momenta distribution; (2) for Λc+pKS0(η){\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}}(\eta), R¯=εKS0i8NiR/ε,iKS0i8Ni{\overline{R}{}_{\varepsilon}^{K_{S}^{0}}\!=\!\sum_{i}^{8}N_{i}R{}_{\varepsilon,i}^{K_{S}^{0}}/\sum_{i}^{8}N_{i}} calculated on the one-dimensional pKS0p_{\scriptscriptstyle K_{S}^{0}} distribution. Here NiN_{i} and Rε,iKS0R{}_{\varepsilon,i}^{K_{S}^{0}} are the yield and the averaged RεKS0R{}_{\varepsilon}^{K_{S}^{0}}, respectively, in the ithi^{\rm th} bin of such one-dimensional distribution. We build 10000 RεKS0R{}_{\varepsilon}^{K_{S}^{0}} tables by randomly fluctuating Rε,iKS0R{}_{\varepsilon,i}^{K_{S}^{0}} in each bin according to its uncertainty and calculate R¯εKS0\overline{R}{}_{\varepsilon}^{K_{S}^{0}} for each. We take the mean and root-mean-square (RMS) values from the distribution of R¯/ε,sig.KS0R¯ε,ref.KS01\overline{R}{}_{\varepsilon,\,{\rm sig.}}^{K_{S}^{0}}/\overline{R}{}_{\varepsilon,\,{\rm ref.}}^{K_{S}^{0}}-1, where the subscripts ‘sig.’ and ‘ref.’ refer to the signal and reference modes, respectively, and add in quadrature as the estimate of the systematic uncertainty.

Since the protons in the signal and reference modes have different kinematic distributions, the systematic effects due to PID do not cancel completely. The data/MC ratio of proton PID efficiency depends on the proton momentum and polar angle: R(p,cosθ)εpR{}_{\varepsilon}^{p}(p,\cos\theta). Such a RεpR{}_{\varepsilon}^{p} map is determined based on an inclusive sample of Λpπ\mathchar 28931\relax\!\rightarrow\!{}p\pi^{-}. Following steps similar to those used above for KS0K_{S}^{0} efficiency, we obtain the unfolded (p,cosθp,\,\cos\theta) two-dimensional distribution for protons using the 𝒫slot{}_{s}\mathcal{P}lot technique [42], and plot the R¯/ε,sig.pR¯ε,ref.p1\overline{R}{}_{\varepsilon,\,{\rm sig.}}^{p}/\overline{R}{}_{\varepsilon,\,{\rm ref.}}^{p}\!-\!1 values based on 10000 maps of Rεp(p,cosθ)R_{\varepsilon}^{p}(p,\,\cos\theta). The systematic uncertainty due to PID is obtained by adding in quadrature the mean and RMS values of the R¯/ε,sig.pR¯ε,ref.p1\overline{R}{}_{\varepsilon,\,{\rm sig.}}^{p}/\overline{R}{}_{\varepsilon,\,{\rm ref.}}^{p}-1 distribution.

The uncertainty due to ηγγ\eta\!\rightarrow\!\gamma\gamma reconstruction is estimated to be 4%, considering 2% per photon according to a study of radiative Bhabha events.

The systematic uncertainties from the M(Λc+)M(\mathchar 28931\relax_{c}^{+}) fits for Λc+pKS0KS0{\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}K_{S}^{0}} and Λc+pKS0η{\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}\eta} channels are evaluated to be 1.8% and 2.3%, respectively, after considering two sources below. (a) The uncertainty due to fixing the signal parameters in the fits is estimated by randomly varying them via a multiple-dimensional Gaussian function (including these parameters’ uncertainties and their correlation matrix from the M(Λc+)M(\mathchar 28931\relax_{c}^{+}) fit of truth-matched signals). We produce 1000 sets of such signal parameters and repeat the M(Λc+)M(\mathchar 28931\relax_{c}^{+}) fits. We take the ratio of RMS to mean value of the distribution of fitted yield as the relative systematic uncertainty: 0.2% for Λc+pKS0KS0{\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}K_{S}^{0}}, 0.4% for Λc+pKS0η{\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}\eta}, and 0.2% for Λc+pKS0{\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}}. (b) To evaluate the potential fit bias, we perform a bias check for the fitted signal yield based on 1000 sets of MC samples, of which the signals are randomly sampled from a large signal MC sample and the backgrounds from the generic BB¯B\overline{B} and continuum MC samples. Their sampled yields are equal to the fitted yields in Table 1. We perform M(Λc+)M(\mathchar 28931\relax_{c}^{+}) fits for these samples. The fitted signal yields are plotted and fitted with a Gaussian function. The shifts of the fitted mean values of the Gaussian functions from the corresponding input values are assigned as systematic uncertainties: 1.9% for Λc+pKS0KS0{\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}K_{S}^{0}}, 2.3% for Λc+pKS0η{\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}\eta}, and 0.1% for Λc+pKS0{\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}}. The uncertainties for signal modes and reference mode are added in quadrature, as listed in Table 2.

The systematic effects from the efficiency corrections for the Λc+pKS0KS0{\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}K_{S}^{0}} and Λc+pKS0η{\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}\eta} channels are evaluated to be 0.8% and 0.4%, respectively, which are obtained by taking the quadratic sum of the following sources: (a) Varying bin size: the 7×\times7 bins are changed to 6×\times6 and 8×\times8 bins for Λc+pKS0KS0{\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}K_{S}^{0}} and the 5×\times5 bins are changed to 4×\times4 and 6×\times6 bins for Λc+pKS0η{\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}\eta}. The changes of efficiency-corrected yields, 0.2%0.2\% for Λc+pKS0KS0{\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}K_{S}^{0}} and 0.1%0.1\% for Λc+pKS0η{\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}\eta}, are assigned as the systematic uncertainties. (b) To estimate the uncertainties due to the background Dalitz plot, we shift the M(Λc+)M(\mathchar 28931\relax_{c}^{+}) sideband region by ±5\pm 5 MeV, and repeat the efficiency correction. The resulting changes of efficiency-corrected yields, 0.1% for both channels, are assigned as systematic uncertainty. (c) The signal efficiency effects due to the additional requirements in the signal mode with respect to the reference mode, such as p(η)p(\eta), χm2(η)\chi^{2}_{m}(\eta), and L/σL(KS0)L/\sigma_{L}(K_{S}^{0}), are neglected, as the signal distributions unfolded from data using the 𝒫slot{}_{s}\mathcal{P}lot technique [42] and truth-matched signal distributions from MC are consistent. (d) Systematic effects from the χvtx2\chi_{\rm vtx}^{2} requirement are considered, since the signal and reference modes have different χvtx2\chi_{\rm vtx}^{2} distributions. We change the requirement to χvtx2<21\chi_{\rm vtx}^{2}\!<\!21 and repeat our measurement. The resulting changes to the nominal results, 0.6% and 0.3%, are small as expected and assigned as the corresponding systematic uncertainties. (e) The uncertainty due to the π0\pi^{0} veto for η\eta candidates in Λc+pKS0η{\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}\eta} is estimated by enlarging the veto region from ±12.5\pm 12.5 MeV/c2c^{2} to be ±15\pm 15 MeV/c2c^{2}. The resulting change on the branching fraction is 0.2%, and is assigned as a systematic uncertainty. (f) The uncertainty due to possible data/MC differences in M(Λc+)M(\mathchar 28931\relax_{c}^{+}) resolution is estimated as follows. Defining RR as the ratio of the signal yield in the M(Λc+)M(\mathchar 28931\relax_{c}^{+}) signal region to that in the fit region, we calculate r=Rdata/RMCr\!=\!R_{\rm data}/R_{\rm MC} for the signal and reference modes. The fractional difference in rr between signal and reference modes and the uncertainty thereon are summed in quadrature and taken as the systematic uncertainty, which we find to be 0.5% for (Λc+pKS0KS0)/(Λc+pKS0)\mathcal{B}({\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}K_{S}^{0}})/\mathcal{B}({\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}}) and 0.1% for (Λc+pKS0η)/(Λc+pKS0)\mathcal{B}({\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}\eta})/\mathcal{B}({\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}}). (g) The uncertainty due to limited MC statistics for the efficiency value is 0.1%.

The uncertainty due to the non-KS0K_{S}^{0} peaking background is estimated based on the generic MC sample aforementioned. As the rate of this background may depend on intermediate processes, we double its size, and take the resulting ratio with the signal yield, 0.8%, as the associated systematic uncertainty. The uncertainties on (KS0π+π)=(69.20±0.05)%\mathcal{B}(K_{S}^{0}\!\rightarrow\!\pi^{+}\pi^{-})\!=\!{(69.20\pm 0.05)\%} (δ/=0.1%\delta\mathcal{B}/\mathcal{B}=0.1\%) and (ηγγ)=(39.41±0.20)%\mathcal{B}(\eta\!\rightarrow\!\gamma\gamma)\!=\!{(39.41\pm 0.20)\%} (δ/=0.5%\delta\mathcal{B}/\mathcal{B}=0.5\%) are also considered. All uncertainties above are added in quadrature to give an overall systematic uncertainty, as listed in Table 2. Additionally, the uncertainty from the world average branching fraction of the reference mode (5.0%5.0\%) is considered.

VII Summary

In summary, based on the entire dataset with integrated luminosity 980 fb1980~{}\mbox{\,fb}^{-1} collected by the Belle detector at the KEKB energy-asymmetric e+ee^{+}e^{-} collider, we present the first observation of the SCS decay Λc+pKS0KS0{\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}K_{S}^{0}} with a statistical significance of >10σ{>\!10\sigma} and measure the branching fractions of Λc+pKS0KS0{\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}K_{S}^{0}} and Λc+pKS0η{\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}\eta} relative to Λc+pKS0{\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}}:

(Λc+pKS0KS0)(Λc+pKS0)\displaystyle\hskip-20.0pt\frac{\mathcal{B}({\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}K_{S}^{0}})}{\mathcal{B}({\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}})} =\displaystyle= (1.48±0.08±0.04)×102,\displaystyle(1.48\pm 0.08\pm 0.04)\times 10^{-2}\,, (10)
(Λc+pKS0η)(Λc+pKS0)\displaystyle\hskip-20.0pt\frac{\mathcal{B}({\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}\eta})}{\mathcal{B}({\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}})} =\displaystyle= (2.73±0.06±0.13)×101,\displaystyle(2.73\pm 0.06\pm 0.13)\times 10^{-1}\,, (11)

where the uncertainties are statistical and systematic, respectively, Using the world average (Λc+pKS0)=(1.59±0.08)%\mathcal{B}({\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}})=(1.59\pm 0.08)\% [17], we obtain the absolute branching fractions

(Λc+pKS0KS0)=\displaystyle\mathcal{B}({\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}K_{S}^{0}})=\hskip 120.0pt
(2.35±0.12±0.07±0.12)×104,\displaystyle\hskip 40.0pt(2.35\pm 0.12\pm 0.07\pm 0.12)\times 10^{-4}\,, (12)
(Λc+pKS0η)=\displaystyle\mathcal{B}({\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}\eta})=\hskip 129.0pt
(4.35±0.10±0.20±0.22)×103,\displaystyle\hskip 40.0pt(4.35\pm 0.10\pm 0.20\pm 0.22)\times 10^{-3}\,, (13)

where the first uncertainties are statistical, the second systematic, and the third from the uncertainty on (Λc+pKS0)\mathcal{B}({\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}}). The first of these branching fractions is measured for the first time and found to be much smaller than the theoretical prediction of (1.9±0.4)×103(1.9\pm 0.4)\!\times\!10^{-3} [19]. The latter is consistent with the world average, (4.15±0.90)×103(4.15\pm 0.90)\!\times\!10^{-3} [17], with a threefold improvement in precision.

We reconstruct the Dalitz plots for Λc+pKS0KS0{\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}K_{S}^{0}} and Λc+pKS0η{\mathchar 28931\relax_{c}^{+}\!\rightarrow\!{}pK_{S}^{0}\eta}, with background subtractions and efficiency corrections. We note two clear structures that are consistent with f0(980)KS0KS0f_{0}(980)\!\rightarrow\!K_{S}^{0}K_{S}^{0} or a0(980)KS0KS0a_{0}(980)\!\rightarrow\!K_{S}^{0}K_{S}^{0} and N(1535)pηN^{*}(1535)\!\rightarrow\!p\eta, raising the expectation that the nature of these intermediate resonances will be probed in the future with amplitude analyses on the larger data sets anticipated from BESIII [43] and Belle II [44].

Acknowledgments

This work, based on data collected using the Belle detector, which was operated until June 2010, was supported by the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan, the Japan Society for the Promotion of Science (JSPS), and the Tau-Lepton Physics Research Center of Nagoya University; the Australian Research Council including grants DP180102629, DP170102389, DP170102204, DE220100462, DP150103061, FT130100303; Austrian Federal Ministry of Education, Science and Research (FWF) and FWF Austrian Science Fund No. P 31361-N36; the National Natural Science Foundation of China under Contracts No. 11675166, No. 11705209; No. 11975076; No. 12135005; No. 12175041; No. 12161141008; Key Research Program of Frontier Sciences, Chinese Academy of Sciences (CAS), Grant No. QYZDJ-SSW-SLH011; the Ministry of Education, Youth and Sports of the Czech Republic under Contract No. LTT17020; the Czech Science Foundation Grant No. 22-18469S; Horizon 2020 ERC Advanced Grant No. 884719 and ERC Starting Grant No. 947006 “InterLeptons” (European Union); the Carl Zeiss Foundation, the Deutsche Forschungsgemeinschaft, the Excellence Cluster Universe, and the VolkswagenStiftung; the Department of Atomic Energy (Project Identification No. RTI 4002) and the Department of Science and Technology of India; the Istituto Nazionale di Fisica Nucleare of Italy; National Research Foundation (NRF) of Korea Grant Nos. 2016R1D1A1B02012900, 2018R1A2B3003643, 2018R1A6A1A06024970, RS202200197659, 2019R1I1A3A01058933, 2021R1A6A1A03043957, 2021R1F1A1060423, 2021R1F1A1064008, 2022R1A2C1003993; Radiation Science Research Institute, Foreign Large-size Research Facility Application Supporting project, the Global Science Experimental Data Hub Center of the Korea Institute of Science and Technology Information and KREONET/GLORIAD; the Polish Ministry of Science and Higher Education and the National Science Center; the Ministry of Science and Higher Education of the Russian Federation, Agreement 14.W03.31.0026, and the HSE University Basic Research Program, Moscow; University of Tabuk research grants S-1440-0321, S-0256-1438, and S-0280-1439 (Saudi Arabia); the Slovenian Research Agency Grant Nos. J1-9124 and P1-0135; Ikerbasque, Basque Foundation for Science, Spain; the Swiss National Science Foundation; the Ministry of Education and the Ministry of Science and Technology of Taiwan; and the United States Department of Energy and the National Science Foundation. These acknowledgements are not to be interpreted as an endorsement of any statement made by any of our institutes, funding agencies, governments, or their representatives. We thank the KEKB group for the excellent operation of the accelerator; the KEK cryogenics group for the efficient operation of the solenoid; and the KEK computer group and the Pacific Northwest National Laboratory (PNNL) Environmental Molecular Sciences Laboratory (EMSL) computing group for strong computing support; and the National Institute of Informatics, and Science Information NETwork 6 (SINET6) for valuable network support. We thank Li-Sheng Geng and Ju-Jun Xie for helpful discussions on the N(1535)N^{*}(1535).

References