This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Belle II Preprint 2023-006

KEK Preprint 2023-2

The Belle II Collaboration

Measurement of 𝑪𝑷C\!P violation in 𝑩𝟎𝑲𝐒𝟎𝝅𝟎B^{0}\rightarrow K^{0}_{\rm\scriptscriptstyle S}\pi^{0} decays at Belle II

I. Adachi  0000-0003-2287-0173    K. Adamczyk 0000-0001-6208-0876    L. Aggarwal 0000-0002-0909-7537    H. Ahmed  0000-0003-3976-7498    H. Aihara  0000-0002-1907-5964    N. Akopov 0000-0002-4425-2096    A. Aloisio 0000-0002-3883-6693    N. Anh Ky  0000-0003-0471-197X    D. M. Asner 0000-0002-1586-5790    H. Atmacan 0000-0003-2435-501X    T. Aushev  0000-0002-6347-7055    V. Aushev 0000-0002-8588-5308    M. Aversano 0000-0001-9980-0953    V. Babu  0000-0003-0419-6912    H. Bae  0000-0003-1393-8631    S. Bahinipati 0000-0002-3744-5332    P. Bambade  0000-0001-7378-4852    Sw. Banerjee 0000-0001-8852-2409    M. Barrett  0000-0002-2095-603X    J. Baudot  0000-0001-5585-0991    M. Bauer 0000-0002-0953-7387    A. Baur 0000-0003-1360-3292    A. Beaubien 0000-0001-9438-089X    J. Becker  0000-0002-5082-5487    P. K. Behera 0000-0002-1527-2266    J. V. Bennett 0000-0002-5440-2668    V. Bertacchi  0000-0001-9971-1176    M. Bertemes 0000-0001-5038-360X    E. Bertholet 0000-0002-3792-2450    M. Bessner 0000-0003-1776-0439    S. Bettarini  0000-0001-7742-2998    B. Bhuyan  0000-0001-6254-3594    F. Bianchi 0000-0002-1524-6236    T. Bilka 0000-0003-1449-6986    D. Biswas  0000-0002-7543-3471    D. Bodrov  0000-0001-5279-4787    A. Bondar  0000-0002-5089-5338    J. Borah  0000-0003-2990-1913    A. Bozek 0000-0002-5915-1319    M. Bračko 0000-0002-2495-0524    P. Branchini 0000-0002-2270-9673    R. A. Briere 0000-0001-5229-1039    T. E. Browder 0000-0001-7357-9007    A. Budano  0000-0002-0856-1131    S. Bussino 0000-0002-3829-9592    M. Campajola 0000-0003-2518-7134    L. Cao 0000-0001-8332-5668    G. Casarosa 0000-0003-4137-938X    C. Cecchi 0000-0002-2192-8233    J. Cerasoli  0000-0001-9777-881X    P. Chang  0000-0003-4064-388X    R. Cheaib 0000-0001-5729-8926    P. Cheema 0000-0001-8472-5727    V. Chekelian 0000-0001-8860-8288    C. Chen 0000-0003-1589-9955    B. G. Cheon  0000-0002-8803-4429    K. Chilikin 0000-0001-7620-2053    K. Chirapatpimol 0000-0003-2099-7760    H.-E. Cho 0000-0002-7008-3759    K. Cho 0000-0003-1705-7399    S.-J. Cho 0000-0002-1673-5664    S.-K. Choi 0000-0003-2747-8277    S. Choudhury 0000-0001-9841-0216    J. Cochran  0000-0002-1492-914X    L. Corona 0000-0002-2577-9909    L. M. Cremaldi 0000-0001-5550-7827    S. Das  0000-0001-6857-966X    F. Dattola 0000-0003-3316-8574    E. De La Cruz-Burelo 0000-0002-7469-6974    S. A. De La Motte 0000-0003-3905-6805    G. de Marino 0000-0002-6509-7793    M. De Nuccio  0000-0002-0972-9047    G. De Pietro 0000-0001-8442-107X    R. de Sangro 0000-0002-3808-5455    M. Destefanis  0000-0003-1997-6751    A. De Yta-Hernandez  0000-0002-2162-7334    R. Dhamija 0000-0001-7052-3163    A. Di Canto 0000-0003-1233-3876    F. Di Capua 0000-0001-9076-5936    J. Dingfelder 0000-0001-5767-2121    Z. Doležal 0000-0002-5662-3675    I. Domínguez Jiménez 0000-0001-6831-3159    T. V. Dong 0000-0003-3043-1939    M. Dorigo 0000-0002-0681-6946    K. Dort 0000-0003-0849-8774    S. Dreyer  0000-0002-6295-100X    S. Dubey 0000-0002-1345-0970    G. Dujany  0000-0002-1345-8163    P. Ecker 0000-0002-6817-6868    M. Eliachevitch 0000-0003-2033-537X    P. Feichtinger  0000-0003-3966-7497    T. Ferber 0000-0002-6849-0427    D. Ferlewicz 0000-0002-4374-1234    T. Fillinger 0000-0001-9795-7412    C. Finck 0000-0002-5068-5453    G. Finocchiaro 0000-0002-3936-2151    A. Fodor  0000-0002-2821-759X    F. Forti 0000-0001-6535-7965    B. G. Fulsom  0000-0002-5862-9739    A. Gabrielli 0000-0001-7695-0537    E. Ganiev  0000-0001-8346-8597    M. Garcia-Hernandez 0000-0003-2393-3367    R. Garg 0000-0002-7406-4707    A. Garmash 0000-0003-2599-1405    G. Gaudino 0000-0001-5983-1552    V. Gaur  0000-0002-8880-6134    A. Gaz 0000-0001-6754-3315    A. Gellrich  0000-0003-0974-6231    D. Ghosh  0000-0002-3458-9824    G. Giakoustidis 0000-0001-5982-1784    R. Giordano 0000-0002-5496-7247    A. Giri 0000-0002-8895-0128    A. Glazov 0000-0002-8553-7338    B. Gobbo 0000-0002-3147-4562    R. Godang 0000-0002-8317-0579    P. Goldenzweig 0000-0001-8785-847X    W. Gradl  0000-0002-9974-8320    T. Grammatico  0000-0002-2818-9744    S. Granderath 0000-0002-9945-463X    E. Graziani 0000-0001-8602-5652    D. Greenwald 0000-0001-6964-8399    Z. Gruberová 0000-0002-5691-1044    T. Gu 0000-0002-1470-6536    Y. Guan 0000-0002-5541-2278    K. Gudkova  0000-0002-5858-3187    S. Halder  0000-0002-6280-494X    Y. Han 0000-0001-6775-5932    K. Hara 0000-0002-5361-1871    T. Hara 0000-0002-4321-0417    K. Hayasaka  0000-0002-6347-433X    H. Hayashii 0000-0002-5138-5903    S. Hazra 0000-0001-6954-9593    C. Hearty 0000-0001-6568-0252    M. T. Hedges 0000-0001-6504-1872    I. Heredia de la Cruz 0000-0002-8133-6467    M. Hernández Villanueva 0000-0002-6322-5587    A. Hershenhorn 0000-0001-8753-5451    T. Higuchi 0000-0002-7761-3505    E. C. Hill 0000-0002-1725-7414    M. Hoek  0000-0002-1893-8764    M. Hohmann 0000-0001-5147-4781    C.-L. Hsu  0000-0002-1641-430X    T. Humair  0000-0002-2922-9779    T. Iijima 0000-0002-4271-711X    K. Inami  0000-0003-2765-7072    N. Ipsita  0000-0002-2927-3366    A. Ishikawa  0000-0002-3561-5633    S. Ito 0000-0003-2737-8145    R. Itoh 0000-0003-1590-0266    M. Iwasaki 0000-0002-9402-7559    P. Jackson  0000-0002-0847-402X    W. W. Jacobs 0000-0002-9996-6336    E.-J. Jang  0000-0002-1935-9887    Q. P. Ji  0000-0003-2963-2565    S. Jia 0000-0001-8176-8545    Y. Jin 0000-0002-7323-0830    A. Johnson 0000-0002-8366-1749    K. K. Joo 0000-0002-5515-0087    H. Junkerkalefeld 0000-0003-3987-9895    M. Kaleta  0000-0002-2863-5476    A. B. Kaliyar  0000-0002-2211-619X    J. Kandra 0000-0001-5635-1000    K. H. Kang 0000-0002-6816-0751    S. Kang 0000-0002-5320-7043    S. Kar  0009-0004-2435-4003    G. Karyan  0000-0001-5365-3716    T. Kawasaki  0000-0002-4089-5238    F. Keil 0000-0002-7278-2860    C. Ketter 0000-0002-5161-9722    C. Kiesling 0000-0002-2209-535X    C.-H. Kim 0000-0002-5743-7698    D. Y. Kim 0000-0001-8125-9070    K.-H. Kim  0000-0002-4659-1112    Y.-K. Kim  0000-0002-9695-8103    H. Kindo  0000-0002-6756-3591    P. Kodyš  0000-0002-8644-2349    T. Koga 0000-0002-1644-2001    S. Kohani 0000-0003-3869-6552    K. Kojima 0000-0002-3638-0266    A. Korobov  0000-0001-5959-8172    S. Korpar 0000-0003-0971-0968    E. Kovalenko  0000-0001-8084-1931    R. Kowalewski 0000-0002-7314-0990    T. M. G. Kraetzschmar 0000-0001-8395-2928    P. Križan 0000-0002-4967-7675    P. Krokovny  0000-0002-1236-4667    T. Kuhr  0000-0001-6251-8049    J. Kumar 0000-0002-8465-433X    M. Kumar 0000-0002-6627-9708    K. Kumara  0000-0003-1572-5365    T. Kunigo  0000-0001-9613-2849    A. Kuzmin  0000-0002-7011-5044    Y.-J. Kwon  0000-0001-9448-5691    S. Lacaprara 0000-0002-0551-7696    Y.-T. Lai 0000-0001-9553-3421    T. Lam  0000-0001-9128-6806    J. S. Lange  0000-0003-0234-0474    M. Laurenza 0000-0002-7400-6013    R. Leboucher  0000-0003-3097-6613    F. R. Le Diberder 0000-0002-9073-5689    P. Leitl  0000-0002-1336-9558    D. Levit 0000-0001-5789-6205    C. Li  0000-0002-3240-4523    L. K. Li 0000-0002-7366-1307    J. Libby  0000-0002-1219-3247    Q. Y. Liu  0000-0002-7684-0415    Z. Q. Liu  0000-0002-0290-3022    D. Liventsev 0000-0003-3416-0056    S. Longo 0000-0002-8124-8969    T. Lueck  0000-0003-3915-2506    T. Luo 0000-0001-5139-5784    C. Lyu 0000-0002-2275-0473    Y. Ma 0000-0001-8412-8308    M. Maggiora 0000-0003-4143-9127    S. P. Maharana 0000-0002-1746-4683    R. Maiti 0000-0001-5534-7149    S. Maity 0000-0003-3076-9243    G. Mancinelli 0000-0003-1144-3678    R. Manfredi 0000-0002-8552-6276    E. Manoni 0000-0002-9826-7947    M. Mantovano  0000-0002-5979-5050    D. Marcantonio  0000-0002-1315-8646    S. Marcello 0000-0003-4144-863X    C. Marinas 0000-0003-1903-3251    L. Martel 0000-0001-8562-0038    C. Martellini 0000-0002-7189-8343    T. Martinov  0000-0001-7846-1913    L. Massaccesi 0000-0003-1762-4699    M. Masuda 0000-0002-7109-5583    T. Matsuda 0000-0003-4673-570X    K. Matsuoka 0000-0003-1706-9365    D. Matvienko 0000-0002-2698-5448    S. K. Maurya 0000-0002-7764-5777    J. A. McKenna 0000-0001-9871-9002    R. Mehta  0000-0001-8670-3409    F. Meier 0000-0002-6088-0412    M. Merola 0000-0002-7082-8108    F. Metzner 0000-0002-0128-264X    M. Milesi 0000-0002-8805-1886    C. Miller 0000-0003-2631-1790    M. Mirra 0000-0002-1190-2961    K. Miyabayashi 0000-0003-4352-734X    R. Mizuk  0000-0002-2209-6969    G. B. Mohanty 0000-0001-6850-7666    N. Molina-Gonzalez 0000-0002-0903-1722    S. Mondal 0000-0002-3054-8400    S. Moneta 0000-0003-2184-7510    H.-G. Moser  0000-0003-3579-9951    M. Mrvar 0000-0001-6388-3005    R. Mussa  0000-0002-0294-9071    I. Nakamura 0000-0002-7640-5456    Y. Nakazawa  0000-0002-6271-5808    A. Narimani Charan 0000-0002-5975-550X    M. Naruki 0000-0003-1773-2999    A. Natochii  0000-0002-1076-814X    L. Nayak  0000-0002-7739-914X    M. Nayak 0000-0002-2572-4692    G. Nazaryan 0000-0002-9434-6197    N. K. Nisar  0000-0001-9562-1253    S. Nishida 0000-0001-6373-2346    H. Ono  0000-0003-4486-0064    Y. Onuki 0000-0002-1646-6847    P. Oskin 0000-0002-7524-0936    P. Pakhlov  0000-0001-7426-4824    G. Pakhlova 0000-0001-7518-3022    A. Paladino 0000-0002-3370-259X    E. Paoloni  0000-0001-5969-8712    S. Pardi  0000-0001-7994-0537    K. Parham 0000-0001-9556-2433    H. Park 0000-0001-6087-2052    S.-H. Park 0000-0001-6019-6218    A. Passeri  0000-0003-4864-3411    S. Patra  0000-0002-4114-1091    S. Paul 0000-0002-8813-0437    T. K. Pedlar 0000-0001-9839-7373    R. Peschke  0000-0002-2529-8515    R. Pestotnik 0000-0003-1804-9470    F. Pham 0000-0003-0608-2302    M. Piccolo 0000-0001-9750-0551    L. E. Piilonen 0000-0001-6836-0748    P. L. M. Podesta-Lerma  0000-0002-8152-9605    T. Podobnik 0000-0002-6131-819X    S. Pokharel 0000-0002-3367-738X    C. Praz  0000-0002-6154-885X    S. Prell 0000-0002-0195-8005    E. Prencipe 0000-0002-9465-2493    M. T. Prim  0000-0002-1407-7450    H. Purwar  0000-0002-3876-7069    N. Rad 0000-0002-5204-0851    P. Rados 0000-0003-0690-8100    G. Raeuber 0000-0003-2948-5155    S. Raiz 0000-0001-7010-8066    M. Reif  0000-0002-0706-0247    S. Reiter 0000-0002-6542-9954    M. Remnev 0000-0001-6975-1724    I. Ripp-Baudot 0000-0002-1897-8272    G. Rizzo  0000-0003-1788-2866    S. H. Robertson  0000-0003-4096-8393    M. Roehrken  0000-0003-0654-2866    J. M. Roney 0000-0001-7802-4617    A. Rostomyan  0000-0003-1839-8152    N. Rout 0000-0002-4310-3638    G. Russo  0000-0001-5823-4393    D. Sahoo 0000-0002-5600-9413    S. Sandilya  0000-0002-4199-4369    A. Sangal 0000-0001-5853-349X    L. Santelj 0000-0003-3904-2956    Y. Sato  0000-0003-3751-2803    V. Savinov 0000-0002-9184-2830    B. Scavino 0000-0003-1771-9161    C. Schmitt 0000-0002-3787-687X    C. Schwanda  0000-0003-4844-5028    A. J. Schwartz 0000-0002-7310-1983    Y. Seino  0000-0002-8378-4255    A. Selce 0000-0001-8228-9781    K. Senyo 0000-0002-1615-9118    J. Serrano 0000-0003-2489-7812    M. E. Sevior  0000-0002-4824-101X    C. Sfienti 0000-0002-5921-8819    W. Shan 0000-0003-2811-2218    C. Sharma 0000-0002-1312-0429    X. D. Shi  0000-0002-7006-6107    T. Shillington  0000-0003-3862-4380    J.-G. Shiu 0000-0002-8478-5639    D. Shtol 0000-0002-0622-6065    A. Sibidanov  0000-0001-8805-4895    F. Simon 0000-0002-5978-0289    J. B. Singh 0000-0001-9029-2462    J. Skorupa 0000-0002-8566-621X    R. J. Sobie  0000-0001-7430-7599    M. Sobotzik 0000-0002-1773-5455    A. Soffer 0000-0002-0749-2146    A. Sokolov 0000-0002-9420-0091    E. Solovieva  0000-0002-5735-4059    S. Spataro 0000-0001-9601-405X    B. Spruck 0000-0002-3060-2729    M. Starič  0000-0001-8751-5944    P. Stavroulakis 0000-0001-9914-7261    S. Stefkova 0000-0003-2628-530X    Z. S. Stottler 0000-0002-1898-5333    R. Stroili 0000-0002-3453-142X    M. Sumihama  0000-0002-8954-0585    K. Sumisawa 0000-0001-7003-7210    W. Sutcliffe 0000-0002-9795-3582    H. Svidras  0000-0003-4198-2517    M. Takahashi  0000-0003-1171-5960    M. Takizawa 0000-0001-8225-3973    U. Tamponi 0000-0001-6651-0706    S. Tanaka 0000-0002-6029-6216    K. Tanida 0000-0002-8255-3746    F. Tenchini  0000-0003-3469-9377    A. Thaller 0000-0003-4171-6219    O. Tittel  0000-0001-9128-6240    R. Tiwary 0000-0002-5887-1883    D. Tonelli 0000-0002-1494-7882    E. Torassa 0000-0003-2321-0599    K. Trabelsi  0000-0001-6567-3036    I. Tsaklidis 0000-0003-3584-4484    M. Uchida  0000-0003-4904-6168    I. Ueda 0000-0002-6833-4344    T. Uglov  0000-0002-4944-1830    K. Unger 0000-0001-7378-6671    Y. Unno 0000-0003-3355-765X    K. Uno 0000-0002-2209-8198    S. Uno 0000-0002-3401-0480    P. Urquijo 0000-0002-0887-7953    Y. Ushiroda 0000-0003-3174-403X    S. E. Vahsen  0000-0003-1685-9824    R. van Tonder 0000-0002-7448-4816    G. S. Varner 0000-0002-0302-8151    K. E. Varvell  0000-0003-1017-1295    A. Vinokurova 0000-0003-4220-8056    V. S. Vismaya 0000-0002-1606-5349    L. Vitale 0000-0003-3354-2300    B. Wach  0000-0003-3533-7669    M. Wakai  0000-0003-2818-3155    H. M. Wakeling 0000-0003-4606-7895    S. Wallner 0000-0002-9105-1625    E. Wang  0000-0001-6391-5118    M.-Z. Wang 0000-0002-0979-8341    Z. Wang  0000-0002-3536-4950    A. Warburton 0000-0002-2298-7315    M. Watanabe 0000-0001-6917-6694    S. Watanuki 0000-0002-5241-6628    M. Welsch  0000-0002-3026-1872    C. Wessel  0000-0003-0959-4784    E. Won  0000-0002-4245-7442    X. P. Xu  0000-0001-5096-1182    B. D. Yabsley 0000-0002-2680-0474    S. Yamada 0000-0002-8858-9336    W. Yan 0000-0003-0713-0871    S. B. Yang 0000-0002-9543-7971    J. H. Yin  0000-0002-1479-9349    K. Yoshihara  0000-0002-3656-2326    C. Z. Yuan 0000-0002-1652-6686    Y. Yusa 0000-0002-4001-9748    L. Zani 0000-0003-4957-805X    Y. Zhang  0000-0003-2961-2820    V. Zhilich  0000-0002-0907-5565    Q. D. Zhou  0000-0001-5968-6359    V. I. Zhukova  0000-0002-8253-641X
Abstract

We report a measurement of the CPC\!P-violating parameters AA and SS in B0KS0π0B^{0}\rightarrow K^{0}_{\rm\scriptscriptstyle S}\pi^{0} decays at Belle II using a sample of 387×106387\times 10^{6} BB¯B\kern 1.79993pt\overline{\kern-1.79993ptB}{} events recorded in e+ee^{+}e^{-} collisions at a center-of-mass energy corresponding to the Υ(4S)\Upsilon(4S) resonance. These parameters are determined by fitting the proper decay-time distribution of a sample of 415 signal events. We obtain A=0.040.15+0.14±0.05A=-0.04^{+0.14}_{-0.15}\pm 0.05 and S=0.750.23+0.20±0.04S=0.75^{+0.20}_{-0.23}\pm 0.04, where the first uncertainties are statistical and the second are systematic.

The B0K0π0B^{0}\rightarrow K^{0}\pi^{0} decay proceeds mainly via the bsdd¯b\rightarrow sd\overline{d} loop amplitude, involving emission and reabsorption of a virtual WW boson and a top quark, that carries a weak phase arg(VtbVts)\left(V_{tb}V_{ts}^{*}\right). Throughout this paper, charge-conjugate modes are implicitly included. Here, VijV_{ij} denotes Cabibbo–Kobayashi–Maskawa (CKM) matrix elements CKMmatrix1 ; CKMmatrix2 . The decay is suppressed in the Standard Model (SM) due to the smallness of |Vts||V_{ts}|. As non-SM particles can potentially propagate in the loop, studies of this decay provide sensitivity to physics beyond the SM. Such non-SM physics can manifest itself as an asymmetry in the rates of CPC\!P-conjugate decays, i.e., CPC\!P violation NewPhysics .

In the B0K0π0B^{0}\rightarrow K^{0}\pi^{0} channel, CPC\!P violation results from either interference between two B0B^{0} decay amplitudes, or interference between a B0B^{0} decay amplitude and that of a B¯0\kern 1.79993pt\overline{\kern-1.79993ptB}{}^{0} following B0B^{0}B¯0\kern 1.79993pt\overline{\kern-1.79993ptB}{}^{0} mixing. These two phenomena are quantified by the parameters AA and SS, respectively. The parameter AA is also denoted as A-A in the literature. Neglecting subleading amplitudes with a different weak phase and CPC\!P violation in mixing, we expect A=0A=0 and S=sin2ϕ1S=\sin 2\phi_{1}, where ϕ1\phi_{1}\equiv arg(VcdVcb/VtdVtb)\left(-V_{cd}V^{*}_{cb}/V_{td}V^{*}_{tb}\right). The parameter sin2ϕ1\sin 2\phi_{1} is measured to be 0.70±0.020.70\pm 0.02 HFLAV in decays mediated by bcc¯sb\rightarrow c\overline{c}s transitions such as B0J/ψKS0B^{0}\rightarrow J/\psi K^{0}_{\rm\scriptscriptstyle S}. However, the contribution from a color- and CKM-suppressed buu¯sb\rightarrow u\overline{u}s tree amplitude, involving the bottom-to-up-quark transition via a WW boson emission, introduces an extra weak phase BNpaper ; CGRZpaper ; Jchaipaper ; LSpaper ; GLNQpaper ; this shifts the SS value from sin2ϕ1\sin 2\phi_{1}. The resulting difference, ΔSSsin2ϕ1\Delta S\equiv S-\sin 2\phi_{1}, is estimated in a number of theoretical approaches. Predictions of ΔS\Delta S based on QCD factorization range between 0.010.01 and 0.120.12 BNpaper ; beneke , while those based on SU(3)SU(3) symmetry provide a less stringent lower bound of 0.06-0.06 CGRZpaper ; GLNQpaper ; GRZpaper . Similarly, the predicted value of AA due to the color-suppressed tree amplitude ranges from 0.01-0.01 to 0.070.07 BNpaper ; CGRZpaper . Deviations of ΔS\Delta S and AA from their expected values would indicate either large subleading amplitudes or non-SM physics Robert .

The parameters AA and SS are determined from the difference between the decay-time distributions of B0KS0π0B^{0}\rightarrow K^{0}_{\rm\scriptscriptstyle S}\pi^{0} and B¯0KS0π0\kern 1.79993pt\overline{\kern-1.79993ptB}{}^{0}\rightarrow K^{0}_{\rm\scriptscriptstyle S}\pi^{0} decays. The BABAR and Belle experiments have measured these CPC\!P asymmetries using 467×106467\times 10^{6} and 657×106657\times 10^{6} BB¯B\kern 1.79993pt\overline{\kern-1.79993ptB}{} (B=B0B=B^{0} or B+B^{+}) events, respectively Babar ; Belle . The corresponding AA (SS) values are 0.13±0.130.13\pm 0.13 (0.55±0.200.55\pm 0.20) and 0.14±0.14-0.14\pm 0.14 (0.67±0.320.67\pm 0.32).

In this Letter, we report the first measurement of AA and SS in the B0KS0π0B^{0}\rightarrow K^{0}_{\rm\scriptscriptstyle S}\pi^{0} decay from the Belle II experiment. We use a sample of (387±6)×106(387\pm 6)\times 10^{6} BB¯B\kern 1.79993pt\overline{\kern-1.79993ptB}{} events collected in e+ee^{+}e^{-} collisions at a center-of-mass (c.m.) energy corresponding to the Υ(4S)\Upsilon(4S) resonance.

At e+ee^{+}e^{-} experiments operating near the Υ(4S)\Upsilon(4S) resonance, pairs of neutral BB mesons are coherently produced in the process e+eΥ(4S)B0B¯0e^{+}e^{-}\rightarrow\Upsilon(4S)\rightarrow B^{0}\kern 1.79993pt\overline{\kern-1.79993ptB}{}^{0}. When one of these BB mesons decays to a CPC\!P eigenstate fCPf_{C\!P} such as KS0π0K^{0}_{\rm\scriptscriptstyle S}\pi^{0}, and the other to a flavor-specific final state ftagf_{\rm tag}, the time-dependent decay rate is given by

𝒫(Δt,q)=e|Δt|/τB04τB0{1+q[Ssin(ΔmdΔt)Acos(ΔmdΔt)]},\displaystyle\mathcal{P}(\Delta t,q)=\frac{{\rm e}^{-|\Delta t|/\tau_{B^{0}}}}{4\tau_{B^{0}}}\Bigl{\{}1+q\left[S\sin(\Delta m_{d}\Delta t)-A\cos(\Delta m_{d}\Delta t)\right]\Bigl{\}}, (1)

where Δt=tCPttag\Delta t=t_{C\!P}-t_{\rm tag} is the difference in proper times between the two decays, qq is the flavor of the tag-side BB meson (+1+1 for B0B^{0} and 1-1 for B¯0\kern 1.79993pt\overline{\kern-1.79993ptB}{}^{0}), τB0\tau_{B^{0}} is the B0B^{0} lifetime, and Δmd\Delta m_{d} is the B0B^{0}B¯0\kern 1.79993pt\overline{\kern-1.79993ptB}{}^{0} mixing frequency. This study employs a time-dependent CPC\!P analysis method similar to previous measurements Belle ; Babar . The important challenge is determining the location of the B0KS0π0B^{0}\rightarrow K^{0}_{\rm\scriptscriptstyle S}\pi^{0} decay vertex, which is essential for the Δt\Delta t determination, in the absence of any charged particle originating from the vertex. The analysis is developed and tested with simulation and validated with a control sample of B0J/ψKS0B^{0}\rightarrow J/\psi K^{0}_{\rm\scriptscriptstyle S} decays before examining the B0KS0π0B^{0}\rightarrow K^{0}_{\rm\scriptscriptstyle S}\pi^{0} candidates in the data.

The Belle II detector belle2tdr ; belle2ptp operates at the SuperKEKB asymmetric-energy (4GeV4\mathrm{\,Ge\kern-1.00006ptV} e+e^{+} on 7GeV7\mathrm{\,Ge\kern-1.00006ptV} ee^{-}) collider supkek . The detector consists of several subdetectors surrounding the interaction region in a cylindrical geometry and is divided into two sections depending on the coverage in polar angle θ\theta. The two sections are the barrel (32.2<θ<128.732.2^{\circ}<\theta<128.7^{\circ}) and endcap (12.4<θ<31.412.4^{\circ}<\theta<31.4^{\circ} or 130.7<θ<155.1130.7^{\circ}<\theta<155.1^{\circ}). The subdetectors most relevant for our study are a silicon-based vertex detector (VXD), a gas-based central drift chamber (CDC), and an electromagnetic calorimeter (ECL) made of CsI(Tl) crystals. The VXD is the innermost component, comprising two layers of pixel sensors surrounded by four layers of double-sided strip sensors svd-paper . The second pixel layer was incomplete, covering one-sixth of the azimuthal acceptance, for the data analyzed here. The VXD samples the trajectories of charged particles (“tracks”) near the interaction region to determine the decay positions of their parent particles. The CDC is the main device for track reconstruction and measurements of particle momenta and charges. The ECL measures photon energies.

We analyze collision data recorded at the Υ(4S)\Upsilon(4S) resonance, corresponding to an integrated luminosity of 362 fb1362\mbox{\,fb}^{-1}. We use large samples of simulated Υ(4S)BB¯\Upsilon(4S)\rightarrow B\kern 1.79993pt\overline{\kern-1.79993ptB}{} and e+eqq¯e^{+}e^{-}\rightarrow q\overline{q} (q=u,d,s,c)(q=u,d,s,c) events to optimize the event selection and study background distributions. Simulated B0KS0π0B^{0}\rightarrow K^{0}_{\rm\scriptscriptstyle S}\pi^{0} events are used to model signal decays and calculate the reconstruction efficiency. We use EvtGen evtgen to generate Υ(4S)BB¯\Upsilon(4S)\rightarrow B\kern 1.79993pt\overline{\kern-1.79993ptB}{} with the subsequent BB-meson decays and Photos photos to incorporate final-state radiation from charged particles. The simulation of qq¯q\overline{q} background relies on the Kkmc generator kkmc interfaced to Pythia pythia . The detector response for final-state particles is simulated with Geant4 geant . Events are reconstructed using the Belle II software BASF2 ; BASF2_link .

Candidate KS0K^{0}_{\rm\scriptscriptstyle S} mesons are reconstructed from pairs of oppositely charged tracks, which are assumed to be pions and fit to a common vertex. The resulting invariant mass is required to lie between 489MeV489\mathrm{\,Me\kern-1.00006ptV} and 507MeV507\mathrm{\,Me\kern-1.00006ptV}, corresponding to a ±3σ\pm 3\sigma range around the known KS0K^{0}_{\rm\scriptscriptstyle S} mass PDG , with σ\sigma being the resolution. We suppress contamination from prompt KS0K^{0}_{\rm\scriptscriptstyle S} candidates and Λ\Lambda decays using two boosted-decision-tree (BDT) classifiers bdt . These BDTs rely mostly on kinematic information from the KS0K^{0}_{\rm\scriptscriptstyle S} and its decay products.

Photons are identified as isolated energy deposits in the ECL that are not matched to any track in the CDC. We reconstruct π0\pi^{0} candidates from pairs of photons that have energies greater than 35 (153) MeV\mathrm{\,Me\kern-1.00006ptV} if reconstructed in the barrel (endcap) ECL. The different energy thresholds are used to suppress beam background, which is higher in the endcap than in the barrel section. We require the diphoton mass to lie between 116MeV116\mathrm{\,Me\kern-1.00006ptV} and 150MeV150\mathrm{\,Me\kern-1.00006ptV} (±3σ\pm 3\sigma range in resolution around the π0\pi^{0} mass PDG ). The absolute cosine of the angle between the higher-energy photon’s direction in the π0\pi^{0} rest frame and the π0\pi^{0} direction in the lab frame must also be less than 0.9720.972. These criteria reduce contributions from misreconstructed π0\pi^{0} candidates. To improve the momentum resolution, we perform a kinematic fit with the diphoton mass constrained to the known π0\pi^{0} mass PDG .

A neutral BB-meson candidate is reconstructed by combining a KS0K^{0}_{\rm\scriptscriptstyle S} candidate with a π0\pi^{0} candidate. Two kinematic variables are used to select signal BB candidates: the beam-energy-constrained mass (Mbc)(M_{\rm bc}) and the energy difference (ΔE)(\Delta E). These are calculated as

Mbc\displaystyle M_{\rm bc} =\displaystyle= Ebeam2|pB|2,\displaystyle\sqrt{E^{2}_{\rm beam}-|\vec{p}_{B}|^{2}}, (2)
ΔE\displaystyle\Delta E =\displaystyle= EBEbeam,\displaystyle E_{B}-E_{\rm beam},

where EbeamE_{\rm beam} is the beam energy, and pB\vec{p}_{B} and EBE_{B} are the momentum and energy, respectively, of the BB meson. All quantities are calculated in the c.m. frame. Correctly reconstructed signal candidates peak in MbcM_{\rm bc} at the known B0B^{0} mass PDG , and peak in ΔE\Delta E at zero.

For B0KS0π0B^{0}\rightarrow K^{0}_{\rm\scriptscriptstyle S}\pi^{0}, the higher-energy photon from the π0\pi^{0} decay causes a significant correlation between MbcM_{\rm bc} and ΔE\Delta E due to leakage of energy deposited in the ECL. To reduce this correlation, when calculating pB\vec{p}_{B} in Eq. (2) we replace the magnitude of the π0\pi^{0} momentum with (EbeamEKS0)2mπ02\sqrt{(E_{\rm beam}-E_{K^{0}_{\rm\scriptscriptstyle S}})^{2}-m_{\pi^{0}}^{2}}, where EKS0E_{K^{0}_{\rm\scriptscriptstyle S}} is the KS0K^{0}_{\rm\scriptscriptstyle S} momentum in the c.m. frame. Simulation shows that the modified MbcM_{\rm bc} (MbcM^{\prime}_{\rm bc}) reduces the linear correlation coefficient from 19%19\% to 1%-1\% and has an improved resolution over that of MbcM_{\rm bc}. We retain candidate events satisfying 5.24<Mbc<5.29GeV5.24<M^{\prime}_{\rm bc}<5.29~\mathrm{\,Ge\kern-1.00006ptV} and |ΔE|<0.30GeV|\Delta E|<0.30~\mathrm{\,Ge\kern-1.00006ptV}.

To measure the decay-time difference Δt\Delta t, we must determine the positions of the signal and tag-side BB decay vertices. These vertices are obtained using information from the position and spread of the e+ee^{+}e^{-} interaction region, which is modeled as a three-dimensional Gaussian distribution. The signal BB vertex position is obtained by projecting the KS0K^{0}_{\rm\scriptscriptstyle S} flight direction, determined from its decay vertex and momentum, back to the interaction region. The intersection of the KS0K^{0}_{\rm\scriptscriptstyle S} flight projection with the interaction region provides a good estimate of the signal BB decay vertex, since both the transverse flight-length of the B0B^{0} meson (40μm\approx 40\,\mu\rm m) and the transverse size of the interaction region (10μm\approx 10\,\mu\rm m) are small as compared to the B0B^{0} flight length along the boost direction (140μm\approx 140\,\mu\rm m). The tag-side vertex is reconstructed with tracks that are not associated with the B0KS0π0B^{0}\rightarrow K^{0}_{\rm\scriptscriptstyle S}\pi^{0} candidate. Such tracks must have a minimum momentum of 50 MeV\mathrm{\,Me\kern-1.00006ptV} and at least one hit in each of the PXD, SVD, and CDC subdetectors. We also apply a similar interaction-region constraint as that used for tracks on the signal side. We approximate Δt\Delta t to be Δ/βγγ{\Delta\ell}/\beta\gamma\gamma^{*}, where Δ\Delta\ell is the distance between signal and tag-side vertices along the ee^{-} beam direction, βγ\beta\gamma (0.28\approx 0.28) is the Lorentz boost of the Υ(4S)\mathchar 28935\relax{(4S)} in the lab frame, and γ\gamma^{*} (1.002\approx 1.002) is the Lorentz factor of the B0B^{0} meson in the c.m. frame.

We employ a BDT classifier that uses 32 event-topology variables to distinguish the qq¯q\overline{q} background from BB-meson decays. The following variables provide the most discrimination: modified Fox–Wolfram moments ksfw , CLEO cones cleo , the thrust value thrust of the rest of the event, and the cosine of the angle between the thrust axis of the signal BB and that of the rest of the event. The BDT is trained on samples of simulated e+eqq¯e^{+}e^{-}\rightarrow q\overline{q} and signal events, each equivalent to about three times the size of the dataset. The BDT outputs a single variable (CBDTC_{\rm BDT}) that ranges from zero for background-like events to one for signal-like events. We require CBDTC_{\rm BDT} to be greater than 0.60.6, which rejects about 93%93\% of the qq¯q\overline{q} background while preserving 80%80\% of the signal. The remainder of the CBDTC_{\rm BDT} distribution strongly peaks near 1.01.0 for signal, leading to difficulty in modeling it with an analytic function. We thus transform it into a new variable, CBDT=ln[(CBDT0.6)/(1.0CBDT)]C_{\rm BDT}^{\prime}={\rm ln}[(C_{\rm BDT}-0.6)/(1.0-C_{\rm BDT})], where 0.60.6 (1.01.0) is the minimum (maximum) possible value of the remaining CBDTC_{\rm BDT} distribution. The CBDTC_{\rm BDT}^{\prime} distribution can be parametrized with a sum of Gaussian functions, and CBDTC_{\rm BDT}^{\prime} is later used as a fit variable.

After applying all selection criteria, 3%3\% of the events have more than one BB candidate. Such multiple candidates come from random combinations of final-state particles. In events with multiple candidates, we choose that with the largest pp-value resulting from the π0\pi^{0}-mass-constrained fit; if that criterion is ambiguous, we select the candidate with the largest pp-value from the KS0K^{0}_{\rm\scriptscriptstyle S}-vertex fit. This selection retains the correct BB candidate in 87%87\% of simulated events that have multiple candidates. The signal efficiency after all selection criteria are applied (εrec\varepsilon_{\rm rec}) is 20%20\%. Simulation studies show that 1.7%1.7\% of signal candidates are incorrectly reconstructed by including a final-state particle from the tag-side BB meson. We consider this small component, arising mostly due to misreconstructed π0\pi^{0}, as part of the signal.

The flavor of the tag-side B0B^{0} meson, qq, is determined from the properties of final-state particles that are not associated with the reconstructed B0KS0π0B^{0}\rightarrow K^{0}_{\rm\scriptscriptstyle S}\pi^{0} decay. We use a category-based multivariate flavor-tagging algorithm for this purpose flavortagger . The algorithm outputs two parameters, the bb-flavor charge qq and rr, which is an event-by-event tagging quality factor ranging from zero for no flavor discrimination to one for unambiguous flavor assignment. The dataset is divided into seven rr bins that contain similar numbers of events, but have different signal-to-background ratios.

We select events in which Δt\Delta t is well-measured by requiring |Δt|<10.0ps|\Delta t|<10.0\,\rm ps and σΔt<2.5ps\sigma_{\Delta t}<2.5\,\rm ps, where σΔt\sigma_{\Delta t} is the uncertainty on Δt\Delta t, estimated event-by-event. The Δt\Delta t distribution of these events is fitted to determine AA and SS. For the remaining events, about 40%40\%, the Δt\Delta t distribution is not included in the fit. However, these events are still useful to constrain AA, which is sensitive to the relative yields of B0B^{0} and B¯0\kern 1.79993pt\overline{\kern-1.79993ptB}{}^{0} decays. We thus perform a simultaneous extended maximum-likelihood fit to both subsamples in seven rr bins Babar . For each subsample, the likelihood function includes one-dimensional probability density functions (PDFs) for MbcM^{\prime}_{\rm bc}, ΔE\Delta E, and CBDTC_{\rm BDT}^{\prime}; for the first subsample, the likelihood also includes a PDF for Δt\Delta t that depends on the flavor tag qq. The PDFs for MbcM^{\prime}_{\rm bc}, ΔE\Delta E, and CBDTC_{\rm BDT}^{\prime} are taken to be the same for both subsamples, as found in simulation.

The PDFs for the signal component are as follows: MbcM^{\prime}_{\rm bc} is modeled with the sum of a Crystal Ball function CB and a Gaussian function with a common mean; ΔE\Delta E with the sum of a Crystal Ball and two Gaussian functions, all three with a common mean; and CBDTC_{\rm BDT}^{\prime} with the sum of asymmetric and symmetric Gaussian functions. The Δt\Delta t PDF is given by

𝒫sig(Δt,q)=e|Δt|/τB04τB0{[1qΔwr+qΔεtag,r(12wr)]+[q(12wr)+Δεtag,r(1qΔwr)][Ssin(ΔmdΔt)\displaystyle\mathcal{P}_{\rm sig}(\Delta t,q)=\frac{{\rm e}^{-|\Delta t|/\tau_{B^{0}}}}{4\tau_{B^{0}}}\Bigl{\{}\left[1-q\Delta w_{r}+q\Delta\varepsilon_{{\rm tag},r}(1-2w_{r})\right]+\left[q(1-2w_{r})+\Delta\varepsilon_{{\rm tag},r}(1-q\Delta w_{r})\right]\bigr{[}S\sin(\Delta m_{d}\Delta t)-
Acos(ΔmdΔt)]}sig,\displaystyle\hskip 105.2751ptA\cos(\Delta m_{d}\Delta t)\bigr{]}\Bigl{\}}\otimes\mathcal{R}_{\rm sig}, (3)

where wrw_{r} is the fraction of wrongly tagged events; Δwr\Delta w_{r} is the difference in wrw_{r} between B0B^{0} and B¯0\kern 1.79993pt\overline{\kern-1.79993ptB}{}^{0}; Δεtag,r\Delta\varepsilon_{{\rm tag},r} is the asymmetry in their tagging efficiencies, which are the fractions of B0B^{0} or B¯0\kern 1.79993pt\overline{\kern-1.79993ptB}{}^{0} signal candidates to which a flavor tag is assigned; and sig\mathcal{R}_{\rm sig} is the Δt\Delta t resolution function. The resolution function is described by a double Gaussian convolved with an exponential function; the Gaussian means and widths are scaled by σΔt\sigma_{\Delta t}. The Δt\Delta t resolution is dominated by the signal-side KS0K^{0}_{\rm\scriptscriptstyle S}. Simulation shows that the σΔt\sigma_{\Delta t} distributions for signal and background are the same. We fix τB0\tau_{B^{0}} and Δmd\Delta m_{d} to the world averages of 1.519±0.0041.519\pm 0.004 ps and 0.5065±0.00190.5065\pm 0.0019ps1\rm{ps}^{-1}, respectively HFLAV . The tagging parameters (wrw_{r}, Δwr\Delta w_{r}, and Δεtag,r\Delta\varepsilon_{{\rm tag},r}) are fixed to values obtained from B0D()π+B^{0}\rightarrow D^{(*)-}\pi^{+} decays flavortagger . The effective tagging efficiency εeff=rεtag,r(12wr)2\varepsilon_{\rm eff}=\sum_{r}\varepsilon_{{\rm tag},r}(1-2w_{r})^{2} is (30.0±1.2)%(30.0\pm 1.2)\%, where εtag,r\varepsilon_{{\rm tag},r} is the tagging efficiency for the rr-th bin. The wrw_{r} and Δεtag,r\Delta\varepsilon_{{\rm tag},r} values are in the ranges 2%2\%48%48\% and 0.8%0.8\%3.6%3.6\%, respectively. All signal shape parameters are fixed to values obtained from simulation and calibrated with control samples as described below.

For the qq¯q\overline{q} background, an ARGUS function AG is used for MbcM^{\prime}_{\rm bc}, a straight line for ΔE\Delta E, and the sum of asymmetric and symmetric Gaussian functions for CBDTC_{\rm BDT}^{\prime}. The Δt\Delta t distribution is modeled with the signal resolution function sig\mathcal{R}_{\rm sig}, as this background is dominated by prompt KS0K^{0}_{\rm\scriptscriptstyle S} decays. We float the qq¯q\overline{q} background yield, ARGUS curvature parameter, and ΔE\Delta E slope, but fix the ARGUS endpoint, CBDTC_{\rm BDT}^{\prime} and Δt\Delta t shape parameters to the values obtained from the data sideband 5.24<Mbc<5.27GeV5.24<M^{\prime}_{\rm bc}<5.27~\mathrm{\,Ge\kern-1.00006ptV}. All qq¯q\overline{q} shape parameters are taken to be identical for all rr bins.

For the BB¯B\kern 1.79993pt\overline{\kern-1.79993ptB}{} background, a two-dimensional kernel density estimation PDF 2D is used to model the (MbcM^{\prime}_{\rm bc}, ΔE\Delta E) distribution, and the sum of asymmetric and symmetric Gaussian functions is used for CBDTC_{\rm BDT}^{\prime}. The Δt\Delta t distribution is modeled with an exponential function convolved with sig\mathcal{R}_{\rm sig}. We float the yield of BB¯B\kern 1.79993pt\overline{\kern-1.79993ptB}{} background and fix its shape parameters from a fit to the simulated sample.

We correct the common mean and core width of the signal MbcM^{\prime}_{\rm bc}, ΔE\Delta E, and CBDTC_{\rm BDT}^{\prime} PDF shapes for possible differences between data and simulation according to values obtained from a control sample of B+D¯(KS0π0)0π+B^{+}\rightarrow\kern 1.99997pt\overline{\kern-1.99997ptD}{}^{0}(\rightarrow K^{0}_{\rm\scriptscriptstyle S}\pi^{0})\pi^{+} decays. To select these events, we apply the same KS0K^{0}_{\rm\scriptscriptstyle S} and π0\pi^{0} criteria as used for the signal channel. To ensure the similar π0\pi^{0} momentum range for signal and control channels, we require a minimum π0\pi^{0} momentum of 1.5GeV1.5\mathrm{\,Ge\kern-1.00006ptV}. We perform an unbinned maximum-likelihood fit to the distributions of MbcM^{\prime}_{\rm bc}, ΔE\Delta E, and CBDTC^{\prime}_{\rm BDT}, using PDF shapes similar to those employed to describe the signal decay.

To validate the fitting procedure, we use a control sample of B0J/ψ(μ+μ)KS0B^{0}\rightarrow{J\mskip-3.0mu/\mskip-2.0mu\psi\mskip 2.0mu}(\rightarrow\mu^{+}\mu^{-})K^{0}_{\rm\scriptscriptstyle S} decays. To mimic the signal decay, we do not use information from the two muon tracks to reconstruct the signal BB decay-vertex. We perform an unbinned maximum-likelihood fit to the distributions of MbcM_{{\rm bc}} and Δt\Delta t, using PDF shapes and resolution functions similar to those employed in the fit to the signal sample. The measured B0B^{0} lifetime, AA, and SS are 1.46±0.051.46\pm 0.05 ps, 0.10±0.070.10\pm 0.07, and 0.76±0.120.76\pm 0.12, respectively, where the uncertainties are statistical only. These results are consistent with their world-average values HFLAV , thus validating our B0KS0π0B^{0}\rightarrow K^{0}_{\rm\scriptscriptstyle S}\pi^{0} fitting procedure. The above sample is also used to correct the common mean and core width of the resolution function for possible differences between data and simulation.

Figure 1 shows the MbcM^{\prime}_{\rm bc}, ΔE\Delta E, CBDTC^{\prime}_{\rm BDT}, and Δt\Delta t distributions in the data along with the fit projections overlaid. For these plots, the seven rr bins have been combined, and for all plots except Δt\Delta t, both data subsamples (described earlier) are included. In addition, for each plot the signal-enhancing criteria 5.27<Mbc<5.29GeV5.27<M^{\prime}_{\rm bc}<5.29\mathrm{\,Ge\kern-1.00006ptV}, 0.15<ΔE<0.10GeV-0.15<\Delta E<0.10\mathrm{\,Ge\kern-1.00006ptV}, |Δt|<|\Delta t|< 10.0 ps, and CBDT>0.0C^{\prime}_{\rm BDT}>0.0 have been applied except for the variable displayed. Distributions of Δt\Delta t with fit projections overlaid are shown in the Supplementary Material SupMat . The resulting signal yield NsigN_{\rm sig}, AA, and SS are 41525+26415^{+26}_{-25}, 0.040.15+0.14-0.04^{+0.14}_{-0.15}, and 0.750.23+0.200.75^{+0.20}_{-0.23}, respectively. The correlation coefficient between two asymmetries is 1.7%-1.7\%. From the signal yield, we determine the branching fraction as (B0KS0π0)=Nsig/(2NBB¯f+0εrec)=(11.150.67+0.69)×106\mathcal{B}(B^{0}\rightarrow K^{0}_{\rm\scriptscriptstyle S}\pi^{0})=N_{\rm sig}/(2N_{B\kern 1.47495pt\overline{\kern-1.47495ptB}{}}f^{+0}\varepsilon_{\rm rec})=(11.15^{+0.69}_{-0.67})\times 10^{-6}, which is consistent with the world average HFLAV . Here, f+0f^{+0} is the fraction of B0B¯0B^{0}\kern 1.79993pt\overline{\kern-1.79993ptB}{}^{0} or B+BB^{+}B^{-} production at the Υ(4S)\Upsilon(4S) resonance f+0belle and all quoted uncertainties are statistical.

Refer to caption
(a)
Refer to caption
(b)
Refer to caption
(c)
Refer to caption
(d)
Figure 1: Distributions of (a) MbcM^{\prime}_{\rm bc}, (b) ΔE\Delta E, and (c) CBDTC^{\prime}_{\rm BDT} with fit projections overlaid for both B0B^{0} and B¯0\kern 1.79993pt\overline{\kern-1.79993ptB}{}^{0} candidates satisfying the criteria 5.27<Mbc<5.29GeV5.27<M^{\prime}_{\rm bc}<5.29\mathrm{\,Ge\kern-1.00006ptV}, 0.15<ΔE<0.10GeV-0.15<\Delta E<0.10\mathrm{\,Ge\kern-1.00006ptV}, |Δt|<|\Delta t|< 10.0 ps, and CBDT>0.0C^{\prime}_{\rm BDT}>0.0 (except for the variable displayed). The solid curve shows the fit projection, while various fit components are explained in the legends. Distribution of (d) Δt\Delta t for tagged B0B^{0} and B¯0\kern 1.79993pt\overline{\kern-1.79993ptB}{}^{0} candidates after subtracting background with the 𝒫s{}_{s}{\mathcal{P}}lot method sPlot . The asymmetry, defined as [N(Btag0)N(B¯)tag0]/[N(Btag0)+N(B¯)tag0][N(B^{0}_{\rm tag})-N(\kern 1.79993pt\overline{\kern-1.79993ptB}{}^{0}_{\rm tag})]/[N(B^{0}_{\rm tag})+N(\kern 1.79993pt\overline{\kern-1.79993ptB}{}^{0}_{\rm tag})], is displayed underneath along with the fit projection.

The systematic uncertainties contributing to AA and SS are listed in Table 1. We estimate the systematic uncertainty due to flavor tagging by individually varying the (wr,Δwr,Δεtag,rw_{r},\Delta w_{r},\Delta\varepsilon_{{\rm tag},r}) parameters by their uncertainties for each rr bin, while considering correlations. The maximum deviations with respect to the nominal results are taken as systematic uncertainties. The uncertainty due to the Δt\Delta t resolution function is estimated in a similar fashion. In the nominal fit, we assume the BB¯B\kern 1.79993pt\overline{\kern-1.79993ptB}{} background to be CPC\!P symmetric. To account for a potential CPC\!P asymmetry in the BB¯B\kern 1.79993pt\overline{\kern-1.79993ptB}{} background, we perform a series of fits with the Δt\Delta t PDF formed by varying the AA and SS values for that background from 1-1 to +1+1 while fixing the effective lifetime value to that determined from simulation. We then calculate the deviations in signal AA and SS from their nominal values; the largest deviation is assigned as the systematic uncertainty. To evaluate the uncertainty due to a possible asymmetry in the qq¯q\overline{q} background, we perform an alternative fit by fixing the asymmetry to that obtained from the data sideband defined earlier. The uncertainty due to the signal PDF shape is estimated using an alternative model based on kernel-density estimation. Similarly, the uncertainty due to the background PDF shape is calculated by varying all fixed parameters by their uncertainties and taking the maximum deviation from nominal results as the uncertainty.

A potential fit bias is checked for by performing an ensemble test comprising 10001000 simulated experiments in which signal and BB¯B\kern 1.79993pt\overline{\kern-1.79993ptB}{} background events are drawn from simulated samples and qq¯q\overline{q} background events are generated according to their PDF shapes. We calculate the mean shifts of the fitted values of AA and SS from their input values and assign them as systematic uncertainties. The systematic uncertainty due to multiple candidate selection is evaluated by performing an alternative fit with all candidates and taking the difference with respect to the nominal value. The impact of misreconstructed signal candidates on AA and SS is negligible. Uncertainties due to fixed τB0\tau_{B^{0}} and Δmd\Delta m_{d} values are calculated by varying these quantities by their uncertainties and repeating the fit; the resulting maximum variations in AA and SS are assigned as systematic uncertainties. Tag-side interference can arise due to the presence of both CKM-favored and CKM-suppressed tree amplitudes contributing to the tag-side decay TSI . The resulting impact is conservatively estimated by positing that all events are tagged with such hadronic decays. The uncertainty due to VXD misalignment is evaluated by reconstructing events with various misalignment hypotheses as done in Ref. VXD . Assuming all systematic sources to be independent, we add their contributions in quadrature to obtain the total systematic uncertainty of ±0.047\pm 0.047 for AA and ±0.040\pm 0.040 for SS.

Table 1: Systematic uncertainties (absolute) contributing to the time-dependent CPC\!P asymmetries.
Source        δA\delta A δS\delta S
Flavor tagging 0.013 0.011
Δt\Delta t resolution function 0.014 0.022
BB¯B\kern 1.79993pt\overline{\kern-1.79993ptB}{} background asymmetry 0.030 0.018
qq¯q\overline{q} background asymmetry 0.028 < 0.001
Signal modeling 0.004 0.003
Background modeling 0.006 0.018
Fit bias 0.005 0.011
Multiple candidate selection 0.005 0.010
τB0\tau_{B^{0}} and Δmd\Delta m_{d} < 0.001 < 0.001
Tag-side interference 0.006 0.011
VXD misalignment 0.004 0.005
Total 0.047 0.040

In summary, we measure the CPC\!P-violating parameters AA and SS in B0KS0π0B^{0}\rightarrow K^{0}_{\rm\scriptscriptstyle S}\pi^{0} decays using a sample of 387×106387\times 10^{6} BB¯B\kern 1.79993pt\overline{\kern-1.79993ptB}{} events recorded by Belle II in e+ee^{+}e^{-} collisions at the Υ(4S)\Upsilon(4S) resonance. Based on a signal yield of 41525+26415_{-25}^{+26} events, we obtain

A=\displaystyle A= 0.040.15+0.14±0.05\displaystyle-0.04^{+0.14}_{-0.15}\pm 0.05 (4)

and

S=\displaystyle S= 0.750.23+0.20±0.04,\displaystyle 0.75^{+0.20}_{-0.23}\pm 0.04, (5)

where the first uncertainties are statistical and the second are systematic. This constitutes the first Belle II measurement of CPC\!P asymmetries in the decay. Our results agree with previous determinations Belle ; Babar , and the precision obtained for SS is better than (similar to) that achieved at Belle (BABAR), despite using a data sample only 606080%80\% the size of the samples used in those experiments. The results are consistent with SM predictions and can provide useful constraints on non-SM physics.

This work, based on data collected using the Belle II detector, which was built and commissioned prior to March 2019, was supported by Science Committee of the Republic of Armenia Grant No. 20TTCG-1C010; Australian Research Council and research Grants No. DP200101792, No. DP210101900, No. DP210102831, No. DE220100462, No. LE210100098, and No. LE230100085; Austrian Federal Ministry of Education, Science and Research, Austrian Science Fund No. P 31361-N36 and No. J4625-N, and Horizon 2020 ERC Starting Grant No. 947006 “InterLeptons”; Natural Sciences and Engineering Research Council of Canada, Compute Canada and CANARIE; National Key R&D Program of China under Contract No. 2022YFA1601903, National Natural Science Foundation of China and research Grants No. 11575017, No. 11761141009, No. 11705209, No. 11975076, No. 12135005, No. 12150004, No. 12161141008, and No. 12175041, and Shandong Provincial Natural Science Foundation Project ZR2022JQ02; the Ministry of Education, Youth, and Sports of the Czech Republic under Contract No. LTT17020 and Charles University Grant No. SVV 260448 and the Czech Science Foundation Grant No. 22-18469S; European Research Council, Seventh Framework PIEF-GA-2013-622527, Horizon 2020 ERC-Advanced Grants No. 267104 and No. 884719, Horizon 2020 ERC-Consolidator Grant No. 819127, Horizon 2020 Marie Sklodowska-Curie Grant Agreement No. 700525 "NIOBE" and No. 101026516, and Horizon 2020 Marie Sklodowska-Curie RISE project JENNIFER2 Grant Agreement No. 822070 (European grants); L’Institut National de Physique Nucléaire et de Physique des Particules (IN2P3) du CNRS (France); BMBF, DFG, HGF, MPG, and AvH Foundation (Germany); Department of Atomic Energy under Project Identification No. RTI 4002 and Department of Science and Technology (India); Israel Science Foundation Grant No. 2476/17, U.S.-Israel Binational Science Foundation Grant No. 2016113, and Israel Ministry of Science Grant No. 3-16543; Istituto Nazionale di Fisica Nucleare and the research grants BELLE2; Japan Society for the Promotion of Science, Grant-in-Aid for Scientific Research Grants No. 16H03968, No. 16H03993, No. 16H06492, No. 16K05323, No. 17H01133, No. 17H05405, No. 18K03621, No. 18H03710, No. 18H05226, No. 19H00682, No. 22H00144, No. 26220706, and No. 26400255, the National Institute of Informatics, and Science Information NETwork 5 (SINET5), and the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan; National Research Foundation (NRF) of Korea Grants No. 2016R1D1A1B02012900, No. 2018R1A2B3003643, No. 2018R1A6A1A06024970, No. 2018R1D1A1B07047294, No. 2019R1I1A3A01058933, No. 2022R1A2C1003993, and No. RS-2022-00197659, Radiation Science Research Institute, Foreign Large-size Research Facility Application Supporting project, the Global Science Experimental Data Hub Center of the Korea Institute of Science and Technology Information and KREONET/GLORIAD; Universiti Malaya RU grant, Akademi Sains Malaysia, and Ministry of Education Malaysia; Frontiers of Science Program Contracts No. FOINS-296, No. CB-221329, No. CB-236394, No. CB-254409, and No. CB-180023, and No. SEP-CINVESTAV research Grant No. 237 (Mexico); the Polish Ministry of Science and Higher Education and the National Science Center; the Ministry of Science and Higher Education of the Russian Federation, Agreement No. 14.W03.31.0026, and the HSE University Basic Research Program, Moscow; University of Tabuk research Grants No. S-0256-1438 and No. S-0280-1439 (Saudi Arabia); Slovenian Research Agency and research Grants No. J1-9124 and No. P1-0135; Agencia Estatal de Investigacion, Spain Grant No. RYC2020-029875-I and Generalitat Valenciana, Spain Grant No. CIDEGENT/2018/020 Ministry of Science and Technology and research Grants No. MOST106-2112-M-002-005-MY3 and No. MOST107-2119-M-002-035-MY3, and the Ministry of Education (Taiwan); Thailand Center of Excellence in Physics; TUBITAK ULAKBIM (Turkey); National Research Foundation of Ukraine, project No. 2020.02/0257, and Ministry of Education and Science of Ukraine; the U.S. National Science Foundation and research Grants No. PHY-1913789 and No. PHY-2111604, and the U.S. Department of Energy and research Awards No. DE-AC06-76RLO1830, No. DE-SC0007983, No. DE-SC0009824, No. DE-SC0009973, No. DE-SC0010007, No. DE-SC0010073, No. DE-SC0010118, No. DE-SC0010504, No. DE-SC0011784, No. DE-SC0012704, No. DE-SC0019230, No. DE-SC0021274, No. DE-SC0022350, No. DE-SC0023470; and the Vietnam Academy of Science and Technology (VAST) under Grant No. DL0000.05/21-23.

These acknowledgements are not to be interpreted as an endorsement of any statement made by any of our institutes, funding agencies, governments, or their representatives.

We thank the SuperKEKB team for delivering high-luminosity collisions; the KEK cryogenics group for the efficient operation of the detector solenoid magnet; the KEK computer group and the NII for on-site computing support and SINET6 network support; and the raw-data centers at BNL, DESY, GridKa, IN2P3, INFN, and the University of Victoria for offsite computing support.

References

  • (1) N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963).
  • (2) M. Kobayashi and T. Maskawa, Prog. Theo. Phys. 49, 652 (1973).
  • (3) Y. Grossman and M. P. Worah, Phys. Lett. B 395, 241 (1997).
  • (4) Y. Amhis et al. (Heavy Flavor Averaging Group), Phys. Rev. D 107, 052008 (2023).
  • (5) M. Beneke and M. Neubert, Nucl. Phys. B 675, 333 (2003).
  • (6) C.-W. Chiang, M. Gronau, and J. L. Rosner, Phys. Rev. D 68, 074012 (2003); M. Gronau, J. L. Rosner, and J. Zupan, Phys. Lett. B 596, 107 (2004).
  • (7) J. Chai, S. Cheng, Y.-h. Ju, D.-C. Yan, C.-D. Lü, and Z.-J. Xiao, Chin. Phys. C 46, 123103 (2022).
  • (8) D. London and A. Soni, Phys. Lett. B 407, 61 (1997).
  • (9) Y. Grossman, Z. Ligeti, Y. Nir, and H. Quinn, Phys. Rev. D 68, 015004 (2003).
  • (10) M. Beneke, Phys. Lett. B 620, 143 (2005).
  • (11) M. Gronau, J. L. Rosner, and J. Zupan, Phys. Rev. D 74, 093003 (2006).
  • (12) R. Fleischer, R. Jaarsma, and K. Keri Vos, Phys. Lett. B 785, 525 (2018).
  • (13) B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 79, 052003 (2009).
  • (14) M. Fujikawa et al. (Belle Collaboration), Phys. Rev. D 81, 011101(R) (2010).
  • (15) T. Abe et al. (Belle II Collaboration), KEK Report 2010-1, arXiv:1011.0352.
  • (16) E. Kou et al., Prog. Theor. Exp. Phys. 2019, 123C01 (2019).
  • (17) K. Akai, K. Furukawa, and H. Koiso (SuperKEKB Group), Nucl. Instrum. Meth. A 907, 188 (2018).
  • (18) K. Adamczyk et al. (Belle II SVD Collaboration), JINST 17, P11042 (2022).
  • (19) D. Lange, Nucl. Instrum. Meth. A 462, 152 (2001).
  • (20) E. Barberio, B. van Eijk, and Z. Was, Comp. Phys. Comm. 66, 115 (1991).
  • (21) B. Ward, S. Jadach, and Z. Was, Nucl. Phys. B Proc. Suppl. 116, 73 (2003).
  • (22) T. Sjöstrand, S. Mrenna, and P. Skands, Comp. Phys. Comm. 178, 852 (2008).
  • (23) S. Agostinelli et al. (Geant4 Collaboration), Nucl. Instrum. Meth. A 506, 250 (2003).
  • (24) T. Kuhr, C. Pulvermacher, M. Ritter, T. Hauth, and N. Braun (Belle II Framework Software Group), Comput. Software Big Sci. 3, 1 (2019).
  • (25) https://doi.org/10.5281/zenodo.5574115
  • (26) R. L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022).
  • (27) T. Keck, arXiv:1609.06119.
  • (28) G. C. Fox and S. Wolfram, Phys. Rev. Lett. 41, 1581 (1978).
  • (29) D. M. Asner et al. (CLEO Collaboration), Phys. Rev. D 53, 1039 (1996).
  • (30) S. Brandt, C. Peyrou, R. Sosnowski, and A. Wroblewski, Phys. Lett. 12, 57 (1964); E. Farhi, Phys. Rev. Lett. 39, 1587 (1977).
  • (31) F. Abudinén et al. (Belle II Collaboration), Eur. Phys. J. C 82, 283 (2022).
  • (32) T. Skwarnicki, PhD thesis, INP Krakow, DESY-F31-86-02 (1986).
  • (33) H. Albrecht et al. (ARGUS Collaboration), Phys. Lett. B 241, 278 (1990).
  • (34) K. S. Cranmer, Comp. Phys. Comm. 136, 198 (2001).
  • (35) M. Pivk and F. R. Le Diberder, Nucl. Instrum. Meth. A 555, 356 (2005).
  • (36) See the Supplementary Material at TO_BE_ADDED for the additional plot.
  • (37) S. Choudhury et al. (Belle Collaboration), Phys. Rev. D 107, L031102 (2023).
  • (38) O. Long, M. Baak, R. N. Cahn, and D. P. Kirkby , Phys. Rev. D 68, 034010 (2003).
  • (39) F. Abudinén et al. (Belle II Collaboration), Phys. Rev. Lett. 127, 211801 (2021).