This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

[Uncaptioned image]

BELLE2-CONF-PH-2021-037

August 6, 2025

The Belle II Collaboration


Measurement of the B0D+νB^{0}\rightarrow D^{*-}\ell^{+}\nu_{\ell} branching ratio and |Vcb||V_{cb}| with a fully reconstructed accompanying BB meson in 2019-2021 Belle II data

F. Abudinén    I. Adachi    K. Adamczyk    L. Aggarwal    P. Ahlburg    H. Ahmed    J. K. Ahn    H. Aihara    N. Akopov    A. Aloisio    F. Ameli    L. Andricek    N. Anh Ky    D. M. Asner    H. Atmacan    V. Aulchenko    T. Aushev    V. Aushev    T. Aziz    V. Babu    H. Bae    S. Baehr    S. Bahinipati    A. M. Bakich    P. Bambade    Sw. Banerjee    S. Bansal    M. Barrett    G. Batignani    J. Baudot    M. Bauer    A. Baur    A. Beaubien    A. Beaulieu    J. Becker    P. K. Behera    J. V. Bennett    E. Bernieri    F. U. Bernlochner    V. Bertacchi    M. Bertemes    E. Bertholet    M. Bessner    S. Bettarini    V. Bhardwaj    B. Bhuyan    F. Bianchi    T. Bilka    S. Bilokin    D. Biswas    A. Bobrov    D. Bodrov    A. Bolz    A. Bondar    G. Bonvicini    M. Bračko    P. Branchini    N. Braun    R. A. Briere    T. E. Browder    D. N. Brown    A. Budano    L. Burmistrov    S. Bussino    M. Campajola    L. Cao    G. Casarosa    C. Cecchi    D. Červenkov    M.-C. Chang    P. Chang    R. Cheaib    P. Cheema    V. Chekelian    C. Chen    Y. Q. Chen    Y. Q. Chen    Y.-T. Chen    B. G. Cheon    K. Chilikin    K. Chirapatpimol    H.-E. Cho    K. Cho    S.-J. Cho    S.-K. Choi    S. Choudhury    D. Cinabro    L. Corona    L. M. Cremaldi    S. Cunliffe    T. Czank    S. Das    N. Dash    F. Dattola    E. De La Cruz-Burelo    S. A. De La Motte    G. de Marino    G. De Nardo    M. De Nuccio    G. De Pietro    R. de Sangro    B. Deschamps    M. Destefanis    S. Dey    A. De Yta-Hernandez    R. Dhamija    A. Di Canto    F. Di Capua    S. Di Carlo    J. Dingfelder    Z. Doležal    I. Domínguez Jiménez    T. V. Dong    M. Dorigo    K. Dort    D. Dossett    S. Dreyer    S. Dubey    S. Duell    G. Dujany    P. Ecker    S. Eidelman    M. Eliachevitch    D. Epifanov    P. Feichtinger    T. Ferber    D. Ferlewicz    T. Fillinger    C. Finck    G. Finocchiaro    P. Fischer    K. Flood    A. Fodor    F. Forti    A. Frey    M. Friedl    B. G. Fulsom    M. Gabriel    A. Gabrielli    N. Gabyshev    E. Ganiev    M. Garcia-Hernandez    R. Garg    A. Garmash    V. Gaur    A. Gaz    U. Gebauer    A. Gellrich    J. Gemmler    T. Geßler    G. Ghevondyan    G. Giakoustidis    R. Giordano    A. Giri    A. Glazov    B. Gobbo    R. Godang    P. Goldenzweig    B. Golob    P. Gomis    G. Gong    P. Grace    W. Gradl    S. Granderath    E. Graziani    D. Greenwald    T. Gu    Y. Guan    K. Gudkova    J. Guilliams    C. Hadjivasiliou    S. Halder    K. Hara    T. Hara    O. Hartbrich    K. Hayasaka    H. Hayashii    S. Hazra    C. Hearty    M. T. Hedges    I. Heredia de la Cruz    M. Hernández Villanueva    A. Hershenhorn    T. Higuchi    E. C. Hill    H. Hirata    M. Hoek    M. Hohmann    S. Hollitt    T. Hotta    C.-L. Hsu    K. Huang    T. Humair    T. Iijima    K. Inami    G. Inguglia    N. Ipsita    J. Irakkathil Jabbar    A. Ishikawa    S. Ito    R. Itoh    M. Iwasaki    Y. Iwasaki    S. Iwata    P. Jackson    W. W. Jacobs    D. E. Jaffe    E.-J. Jang    M. Jeandron    H. B. Jeon    Q. P. Ji    S. Jia    Y. Jin    C. Joo    K. K. Joo    H. Junkerkalefeld    I. Kadenko    J. Kahn    H. Kakuno    A. B. Kaliyar    J. Kandra    K. H. Kang    S. Kang    R. Karl    G. Karyan    Y. Kato    H. Kawai    T. Kawasaki    C. Ketter    H. Kichimi    C. Kiesling    C.-H. Kim    D. Y. Kim    H. J. Kim    K.-H. Kim    K. Kim    S.-H. Kim    Y.-K. Kim    Y. Kim    T. D. Kimmel    H. Kindo    K. Kinoshita    C. Kleinwort    B. Knysh    P. Kodyš    T. Koga    S. Kohani    K. Kojima    I. Komarov    T. Konno    A. Korobov    S. Korpar    N. Kovalchuk    E. Kovalenko    R. Kowalewski    T. M. G. Kraetzschmar    F. Krinner    P. Križan    R. Kroeger    J. F. Krohn    P. Krokovny    H. Krüger    W. Kuehn    T. Kuhr    J. Kumar    M. Kumar    R. Kumar    K. Kumara    T. Kumita    T. Kunigo    M. Künzel    S. Kurz    A. Kuzmin    P. Kvasnička    Y.-J. Kwon    S. Lacaprara    Y.-T. Lai    C. La Licata    K. Lalwani    T. Lam    L. Lanceri    J. S. Lange    M. Laurenza    K. Lautenbach    P. J. Laycock    R. Leboucher    F. R. Le Diberder    I.-S. Lee    S. C. Lee    P. Leitl    D. Levit    P. M. Lewis    C. Li    L. K. Li    S. X. Li    Y. B. Li    J. Libby    K. Lieret    J. Lin    Z. Liptak    Q. Y. Liu    Z. A. Liu    D. Liventsev    S. Longo    A. Loos    A. Lozar    P. Lu    T. Lueck    F. Luetticke    T. Luo    C. Lyu    C. MacQueen    M. Maggiora    R. Maiti    S. Maity    R. Manfredi    E. Manoni    A. Manthei    S. Marcello    C. Marinas    L. Martel    A. Martini    L. Massaccesi    M. Masuda    T. Matsuda    K. Matsuoka    D. Matvienko    J. A. McKenna    J. McNeil    F. Meggendorfer    F. Meier    M. Merola    F. Metzner    M. Milesi    C. Miller    K. Miyabayashi    H. Miyake    H. Miyata    R. Mizuk    K. Azmi    G. B. Mohanty    N. Molina-Gonzalez    S. Moneta    H. Moon    T. Moon    J. A. Mora Grimaldo    T. Morii    H.-G. Moser    M. Mrvar    F. J. Müller    Th. Muller    G. Muroyama    C. Murphy    R. Mussa    I. Nakamura    K. R. Nakamura    E. Nakano    M. Nakao    H. Nakayama    H. Nakazawa    A. Narimani Charan    M. Naruki    A. Natochii    L. Nayak    M. Nayak    G. Nazaryan    D. Neverov    C. Niebuhr    M. Niiyama    J. Ninkovic    N. K. Nisar    S. Nishida    K. Nishimura    M. H. A. Nouxman    K. Ogawa    S. Ogawa    S. L. Olsen    Y. Onishchuk    H. Ono    Y. Onuki    P. Oskin    F. Otani    E. R. Oxford    H. Ozaki    P. Pakhlov    G. Pakhlova    A. Paladino    T. Pang    A. Panta    E. Paoloni    S. Pardi    K. Parham    H. Park    S.-H. Park    B. Paschen    A. Passeri    A. Pathak    S. Patra    S. Paul    T. K. Pedlar    I. Peruzzi    R. Peschke    R. Pestotnik    F. Pham    M. Piccolo    L. E. Piilonen    G. Pinna Angioni    P. L. M. Podesta-Lerma    T. Podobnik    S. Pokharel    L. Polat    V. Popov    C. Praz    S. Prell    E. Prencipe    M. T. Prim    M. V. Purohit    H. Purwar    N. Rad    P. Rados    S. Raiz    A. Ramirez Morales    R. Rasheed    N. Rauls    M. Reif    S. Reiter    M. Remnev    I. Ripp-Baudot    M. Ritter    M. Ritzert    G. Rizzo    L. B. Rizzuto    S. H. Robertson    D. Rodríguez Pérez    J. M. Roney    C. Rosenfeld    A. Rostomyan    N. Rout    G. Russo    D. Sahoo    Y. Sakai    D. A. Sanders    S. Sandilya    A. Sangal    L. Santelj    P. Sartori    Y. Sato    V. Savinov    B. Scavino    M. Schnepf    M. Schram    H. Schreeck    J. Schueler    C. Schwanda    A. J. Schwartz    B. Schwenker    M. Schwickardi    Y. Seino    A. Selce    K. Senyo    I. S. Seong    J. Serrano    M. E. Sevior    C. Sfienti    V. Shebalin    C. P. Shen    H. Shibuya    T. Shillington    T. Shimasaki    J.-G. Shiu    B. Shwartz    A. Sibidanov    F. Simon    J. B. Singh    S. Skambraks    J. Skorupa    K. Smith    R. J. Sobie    A. Soffer    A. Sokolov    Y. Soloviev    E. Solovieva    S. Spataro    B. Spruck    M. Starič    S. Stefkova    Z. S. Stottler    R. Stroili    J. Strube    Y. Sue    R. Sugiura    M. Sumihama    K. Sumisawa    T. Sumiyoshi    W. Sutcliffe    S. Y. Suzuki    H. Svidras    M. Tabata    M. Takahashi    M. Takizawa    U. Tamponi    S. Tanaka    K. Tanida    H. Tanigawa    N. Taniguchi    Y. Tao    P. Taras    F. Tenchini    R. Tiwary    D. Tonelli    E. Torassa    N. Toutounji    K. Trabelsi    I. Tsaklidis    T. Tsuboyama    N. Tsuzuki    M. Uchida    I. Ueda    S. Uehara    Y. Uematsu    T. Ueno    T. Uglov    K. Unger    Y. Unno    K. Uno    S. Uno    P. Urquijo    Y. Ushiroda    Y. V. Usov    S. E. Vahsen    R. van Tonder    G. S. Varner    K. E. Varvell    A. Vinokurova    L. Vitale    V. Vobbilisetti    V. Vorobyev    A. Vossen    B. Wach    E. Waheed    H. M. Wakeling    K. Wan    W. Wan Abdullah    B. Wang    C. H. Wang    E. Wang    M.-Z. Wang    X. L. Wang    A. Warburton    M. Watanabe    S. Watanuki    J. Webb    S. Wehle    M. Welsch    C. Wessel    P. Wieduwilt    H. Windel    E. Won    L. J. Wu    X. P. Xu    B. D. Yabsley    S. Yamada    W. Yan    S. B. Yang    H. Ye    J. Yelton    J. H. Yin    M. Yonenaga    Y. M. Yook    K. Yoshihara    T. Yoshinobu    C. Z. Yuan    Y. Yusa    L. Zani    Y. Zhai    J. Z. Zhang    Y. Zhang    Y. Zhang    Z. Zhang    V. Zhilich    J. Zhou    Q. D. Zhou    X. Y. Zhou    V. I. Zhukova    V. Zhulanov    R. Žlebčík
Abstract

We present a measurement of the B0D+νB^{0}\rightarrow D^{*-}\ell^{+}\nu_{\ell} (=e,μ\ell=e,\mu) branching ratio and of the CKM parameter |Vcb||V_{cb}| using signal decays accompanied by a fully reconstructed BB meson. The Belle II data set of electron-positron collisions at the Υ(4S)\mathchar 28935\relax{(4S)} resonance, corresponding to 189.3 fb-1 of integrated luminosity, is analyzed. With the Caprini-Lellouch-Neubert form factor parameterization, the parameters ηEWF(1)|Vcb|\eta_{\rm EW}F(1)|V_{cb}| and ρ2\rho^{2} are extracted, where ηEW\eta_{\rm EW} is an electroweak correction, F(1)F(1) is a normalization factor and ρ2\rho^{2} is a form factor shape parameter. We reconstruct 516 signal decays and thereby obtain (B0D+ν)=(5.27±0.22(stat)±0.38(syst))%\mathcal{B}(B^{0}\rightarrow D^{*-}\ell^{+}\nu_{\ell})=\left(5.27\pm 0.22~\rm{\left(stat\right)}\pm 0.38~\rm{\left(syst\right)}\right)\% , ηEWF(1)|Vcb|×103=34.6±1.8(stat)±1.7(syst)\eta_{EW}F(1)|V_{cb}|\times 10^{3}=34.6\pm 1.8~\rm{\left(stat\right)}\pm 1.7~\rm{\left(syst\right)}, and ρ2=0.94±0.18(stat)±0.11(syst)\rho^{2}=0.94\pm 0.18~\rm{\left(stat\right)}\pm 0.11~\rm{\left(syst\right)}.

Belle II, …

1 Introduction

A precise understanding of B0D+νB^{0}\rightarrow D^{*-}\ell^{+}\nu_{\ell} decays is important for future measurements of R(D)=(BDτν)/(BDν)R(D^{*})=\mathcal{B}(B\rightarrow D^{*}\tau\nu)/\mathcal{B}(B\rightarrow D^{*}\ell\nu) [1, 2] and of the magnitude of the Cabibbo-Kobayashi-Maskawa matrix element VcbV_{cb} [3, 4], where persistent tensions exist between inclusive BXcνB\rightarrow X_{c}\ell\nu and exclusive BDνB\rightarrow D^{*}\ell\nu measurements [1]. We study e+eΥ(4S)e^{+}e^{-}\rightarrow\mathchar 28935\relax{(4S)}\rightarrow B0B¯0B^{0}{\kern-1.60004pt\kern 1.79993pt\overline{\kern-1.79993ptB}{}^{0}} events, where the decay of the accompanying B0B^{0} or B¯0\kern 1.79993pt\overline{\kern-1.79993ptB}{}^{0} is reconstructed in a hadronic final state using the full event interpretation algorithm (FEI) [5] and the signal bottom meson of opposite flavor is then reconstructed in the D±±νD^{*\pm}\ell^{\pm}\nu_{\ell} final state.

2 Belle II experiment

Belle II [6] is an experiment at the SuperKEKB super BB factory [7], an energy-asymmetric e+e^{+} (4 GeV) ee^{-} (7 GeV) collider in Tsukuba, Japan. Collision data with an integrated luminosity corresponding to 189.3 fb-1 were collected from March 2019 to July 2021 at a center-of-mass (c.m.) energy of 10.58 GeV, corresponding to the mass of the Υ(4S)\mathchar 28935\relax{(4S)} resonance, as well as 18.0 fb-1 at 60 MeV below the nominal c.m. energy.

The Belle II detector consists of several nested detector subsystems arranged around the beam pipe in a cylindrical geometry. The innermost subsystem is the vertex detector, which includes one or two layers of silicon pixels and four outer layers of silicon strips. Outside the silicon, the central drift-chamber reconstructs charged-particles trajectories (tracks). Outside the chamber, a Cherenkov light-imaging and time-of-propagation detectors provide charged particle identification. Further out is an electromagnatic calorimeter with CsI(Tl) crystals. A uniform 1.5 T magnetic field aligned with the beam axis is provided by a superconducting solenoid. Multiple layers of scintillators and resistive plate chambers, located between the magnetic flux-return iron plates, detect KL0K^{0}_{L} and muons.

The analysis uses simulated Monte Carlo (MC) samples to determine the signal efficiency and background yields. These samples are generated using EvtGen [8] and consist of e+eΥ(4S)BB¯e^{+}e^{-}\rightarrow\mathchar 28935\relax{(4S)}\rightarrow B\kern 1.79993pt\overline{\kern-1.79993ptB}{} (generic) and e+eqq¯e^{+}e^{-}\rightarrow q\overline{q} processes, where BB indicates a B0B^{0} or a B+B^{+} meson and qq indicates an uu, dd, cc, or ss quark (continuum). The latter is simulated with KKMC [9] and PYTHIA [10]. The luminosity of the generic and continuum samples is 1 ab-1. The signal is modeled using the CLN form factor parameterization [11], and the time-integrated B0B¯0B^{0}{\kern-1.60004pt\kern 1.79993pt\overline{\kern-1.79993ptB}{}^{0}}-mixing parameter [12]. All samples are analyzed with the basf2 framework [13, 14]. In this paper, the natural system of units with c==1c=\hbar=1 is used. The inclusion of charge-conjugated decay modes is implied unless otherwise stated.

3 Event selection

The reconstruction begins by fully reconstructing a B0B^{0} or B¯0\kern 1.79993pt\overline{\kern-1.79993ptB}{}^{0} (BtagB_{\rm tag}) in hadronic decay modes with the FEI algorithm [5]. The algorithm starts by selecting candidates for stable particles, which include muons, electrons, pions, protons, kaons, and photons, from tracks and electromagnetic energy deposits in each event. Subsequently, the algorithm carries out several stages of reconstruction of intermediate particles such as π0\pi^{0}, KS0K^{0}_{S}, J/ψJ/\psi, DD and DD^{*} mesons, Σ\mathchar 28934\relax, Λ\mathchar 28931\relax, and Λc\mathchar 28931\relax_{c} baryons. Intermediate particles are reconstructed in specific decay modes from combinations of stable and other intermediate particle candidates. The final stage of the algorithm reconstructs the B0B^{0} mesons in 31 hadronic modes, using boosted decision trees (BDTs). The BtagB_{\rm{tag}} candidates are required to have a BDT classifier output greater than 0.001, a beam constrained mass Mbc=Ebeam2|pBtag|2>5.27M_{\rm{bc}}=\sqrt{E_{\rm{beam}}^{2}-|\vec{p}_{B_{\rm{tag}}}|^{2}}>5.27\,GeV , and an energy difference ΔE=EBtagEbeam\Delta E=E_{B_{\rm{tag}}}-E_{\rm{beam}} in the interval [-0.15, 0.1] GeV, where EbeamE_{\rm{beam}} is half of the collision energy, and pBtag\vec{p}_{B_{\rm{tag}}} and EBtagE_{B_{\rm{tag}}} are the momentum and energy of the BtagB_{\rm{tag}} candidate, all in the center-of-mass frame. The efficiency of the FEI is calibrated with BXνB\rightarrow X\ell\nu decays [5].

An event-level selection requires more than three tracks, between 2 and 7 GeV of total energy in the electromagnetic calorimeter, and a ratio of the second to zeroth order Fox Wolfram moments, R2 [15], to be smaller than 0.4. The remaining B0B^{0} or B¯0\kern 1.79993pt\overline{\kern-1.79993ptB}{}^{0} meson (the signal side BsigB_{\rm{sig}}) is reconstructed in its decay of B0D+νB^{0}\rightarrow D^{*-}\ell^{+}\nu_{\ell} ( DπD¯0D^{*-}\rightarrow\pi^{-}\kern 1.99997pt\overline{\kern-1.99997ptD}{}^{0}, D¯0K+π\kern 1.99997pt\overline{\kern-1.99997ptD}{}^{0}\rightarrow K^{+}\pi^{-}). Charged particles are required to originate from the interaction point and have a transverse momentum greater than 0.2 GeV. To identify electrons and muons, a likelihood-ratio like quantity for each particle hypothesis is calculated, which combines information from several detector subsystems. The likelihood performance is calibrated with well-known physics processes. In addition, electron and muon momenta are required to be greater than 1.0 GeV in the center-of-mass frame to reject continuum background. Kaon and pion candidates are combined to reconstruct D¯0K+π\kern 1.99997pt\overline{\kern-1.99997ptD}{}^{0}\rightarrow K^{+}\pi^{-} candidates whose invariant mass (m(Kπ))\left(m\left(K\pi\right)\right) is required to be within the interval [1.85, 1.88] GeV. The D¯0\kern 1.99997pt\overline{\kern-1.99997ptD}{}^{0} candidates are combined with an additional low-momentum pion to reconstruct DπD¯0D^{*-}\rightarrow\pi^{-}\kern 1.99997pt\overline{\kern-1.99997ptD}{}^{0} candidates restricted to the DD^{*-}- D¯0\kern 1.99997pt\overline{\kern-1.99997ptD}{}^{0} mass difference Δm\Delta m in the range [0.143, 0.149] GeV. Subsequently, BsigB_{\rm{sig}} candidates are reconstructed by combining DD^{*-} candidates with either e+e^{+} or μ+\mu^{+} candidates. At least one combination of BtagB_{\rm{tag}} and BsigB_{\rm{sig}} candidates is required with no remaining tracks. The missing neutrino mass squared (mmiss2=(PbeamPBtagPDP)2m^{2}_{\rm{miss}}=(P_{\rm{beam}}-P_{B_{\rm{tag}}}-P_{D^{*}}-P_{\ell})^{2}, where PP denotes a four vector) is required to be in the range [-0.5, 0.5] GeV2. If multiple combinations of BtagB_{\rm{tag}} and BsigB_{\rm{sig}} candidates are found in an event, the candidate with the largest BDT output for the BtagB_{\rm{tag}} and the best Δm\Delta m for the BsigB_{\rm{sig}} is selected. Figure 1 shows the m(Kπ)m\left(K\pi\right), Δm\Delta m, and mmiss2m_{\rm{miss}}^{2} distributions. The figures include data points with statistical uncertainties and histograms for simulated signal and background candidates scaled to the equivalent data luminosity. The signal yield is estimated by counting the number of selected events on data from which simulated background is subtracted. Checks based on data in the Δm\Delta m sidebands show good agreement between simulated and experimental background distributions.

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 1: Distributions of KπK\pi invariant mass (left), DD^{*}- D0D^{0} mass difference (middle), and missing neutrino mass squared (right) of B0De+B^{0}\rightarrow D^{*-}e^{+} νe\nu_{e} (top) and B0Dμ+νμB^{0}\rightarrow D^{*-}\mu^{+}\nu_{\mu} (bottom) candidates in data (points) and simulation (histograms). Vertical lines enclose the regions of the selected events.

4 Measurement of branching ratio

The branching ratio for the decay B0D+νB^{0}\rightarrow D^{*-}\ell^{+}\nu_{\ell} is estimated as

(B0D+ν)\displaystyle\mathcal{B}\left(B^{0}\rightarrow D^{*-}\ell^{+}\nu_{\ell}\right) =(NrecNbg)ϵ14NBB¯(1+f+0)1(DπD¯)0(D¯0K+π),\displaystyle=\frac{\left(N^{\rm{rec}}-N^{\rm{bg}}\right)\epsilon^{-1}}{4N_{B\kern 1.47495pt\overline{\kern-1.47495ptB}{}}\left(1+f_{+0}\right)^{-1}\mathcal{B}\left(D^{*-}\rightarrow\pi^{-}\kern 1.99997pt\overline{\kern-1.99997ptD}{}^{0}\right)\mathcal{B}\left(\kern 1.99997pt\overline{\kern-1.99997ptD}{}^{0}\rightarrow K^{+}\pi^{-}\right)}, (1)

where NrecN^{\rm{rec}} is the number of reconstructed events in data, NbgN^{\rm{bg}} is the number of reconstructed background events, ϵ\epsilon is the signal reconstruction efficiency, NBB¯N_{B\kern 1.47495pt\overline{\kern-1.47495ptB}{}} is the number of produced BB¯B\kern 1.79993pt\overline{\kern-1.79993ptB}{} pairs, and f+0f_{+0} is the ratio of the number of produced B+BB^{+}{\kern-1.60004ptB^{-}} and B0B¯0B^{0}{\kern-1.60004pt\kern 1.79993pt\overline{\kern-1.79993ptB}{}^{0}} pairs. In Eq. 1, the values corresponding to electron and muon modes are averaged. The values of NbgN^{\rm{bg}} and ϵ\epsilon are estimated from the background and signal simulation. The value of NBB¯N_{B\kern 1.47495pt\overline{\kern-1.47495ptB}{}} is determined using the R2 distribution after a subtraction of the continuum background using off-resonance data. The values for f+0f_{+0}, (DπD¯)0\mathcal{B}(D^{*-}\rightarrow\pi^{-}\kern 1.99997pt\overline{\kern-1.99997ptD}{}^{0}), (D¯0K+π)\mathcal{B}(\kern 1.99997pt\overline{\kern-1.99997ptD}{}^{0}\rightarrow K^{+}\pi^{-}), and fraction of mixed and unmixed B0B¯0B^{0}{\kern-1.60004pt\kern 1.79993pt\overline{\kern-1.79993ptB}{}^{0}} are taken from Ref. [12]. The input values for the branching fraction measurement are summarized in Table 1.

Table 1: Input values for the measurement of branching ratio with the systematic uncertainties, described in Sec. 6.
Variables Values
NrecN^{\rm{rec}} 545545 (data)
NbgN^{\rm{bg}} 29.4±11.229.4\pm 11.2
ϵ\epsilon (9.55±0.67)×104(9.55\pm 0.67)\times 10^{-4}
NBB¯N_{B\kern 1.47495pt\overline{\kern-1.47495ptB}{}} (197.17±5.72)×106(197.17\pm 5.72)\times 10^{6}
f+0f_{+0} 1.058±0.0241.058\pm 0.024
χd\chi_{d} 0.1875±0.00170.1875\pm 0.0017
(DπD¯)0\mathcal{B}(D^{*-}\rightarrow\pi^{-}\kern 1.99997pt\overline{\kern-1.99997ptD}{}^{0}) (67.7±0.5)%(67.7\pm 0.5)\%
(D¯0K+π)\mathcal{B}(\kern 1.99997pt\overline{\kern-1.99997ptD}{}^{0}\rightarrow K^{+}\pi^{-}) (3.950±0.031)%(3.950\pm 0.031)\%

5 Measurement of |Vcb||V_{cb}|

Figure 2 shows distribution of the recoil variable

w=PBPDmBmD=mB2+mD2q22mBmD,\displaystyle w=\frac{P_{B}\cdot P_{D^{*}}}{m_{B}m_{D^{*}}}=\frac{m^{2}_{B}+m^{2}_{D^{*}}-q^{2}}{2m_{B}m_{D^{*}}}, (2)

where q2=(P+Pν)2q^{2}=(P_{\ell}+P_{\nu_{\ell}})^{2} and mB,Dm_{B,D^{*}} are the known masses of the indicated particles. The B0D+νB^{0}\rightarrow D^{*-}\ell^{+}\nu_{\ell} decay-width differential in ww is as follows [4, 16]:

dΓdw=ηEW2GF248π3mD3(mBmD)2g(w)F2(w)|Vcb|2.\displaystyle\frac{d\Gamma}{dw}=\frac{\eta_{\rm EW}^{2}\color[rgb]{0,0,0}G^{2}_{F}}{48\pi^{3}}m^{3}_{D^{*}}(m_{B}-m_{D^{*}})^{2}g(w)F^{2}(w)|V_{cb}|^{2}. (3)

Here, ηEW\eta_{\rm EW} is an electroweak correction (calculated to be 1.00662±0.000161.00662\pm 0.00016 in Ref. [17]). From lattice QCD, F(1)F(1) is calculated as 0.906±0.004(stat)±0.012(syst)0.906\pm 0.004~\rm{(stat)}\pm 0.012~\rm{(syst)} [17]. The product g(w)F2(w)g(w)F^{2}(w) describes the phase-space factor and the form factor, which is parameterized with R1(1),R2(1),ρ2R_{1}(1),R_{2}(1),\rho^{2} in the CLN approach [11]. The CKM matrix element |Vcb||V_{cb}| is determined by fitting the ΔΓ/Δw\Delta\Gamma/\Delta w distribution with the form factor parameters. However, here the product ηEWF(1)|Vcb|\eta_{\rm EW}F(1)|V_{cb}| is measured instead, in order to separate theory uncertainty of ηEW\eta_{\rm EW} and F(1)F(1). In this paper, the R1(1)R_{1}(1) and R2(1)R_{2}(1) values are taken from external measurements [1], as shown in Table 2.

Refer to caption
Refer to caption
Figure 2: Distributions of ww for B0De+νeB^{0}\rightarrow D^{*-}e^{+}\nu_{e} (left) and B0Dμ+νμB^{0}\rightarrow D^{*-}\mu^{+}\nu_{\mu} (right) candidates in data (points) and simulation (histogram) after the event selection. The shaded band shows the systematic uncertainty of the simulation, which is summarized in Sec. 6.
Table 2: Input values for R1R_{1}(1) and R2R_{2}(1) [1].
R1(1)R_{1}(1) 1.270 ±\pm 0.026
R2(1)R_{2}(1) 0.852 ±\pm 0.018
Correlation coefficient of R1(1)R_{1}(1) and R2(1)R_{2}(1) -0.715

5.1 Unfolding method

In order to estimate the true ww distribution from the observed ww values, an iterative unfolding method is used [18]. The number of signal events populating ww bin, NiN_{i}, is estimated from the reconstructed variables as follows:

Ni=jUij(NjrecNjbg),\displaystyle N_{i}=\sum_{j}U_{ij}(N^{\rm{rec}}_{j}-N^{\rm{bg}}_{j}), (4)

where ii is the ww bin number. We define 10 bins in the range [1.0,1.5][1.0,1.5] each with a width of 0.05. The matrix Uij=P(witrue|wjrec)U_{ij}=P(w^{\rm{true}}_{i}|w^{\rm{rec}}_{j}) models the probability that events reconstructed in the ww bin jj are in the true-ww bin ii, which is calculated by Bayes’ theorem according to

Uij\displaystyle U_{ij} =P(witrue|wjrec)\displaystyle=P(w^{\rm true}_{i}|w^{\rm rec}_{j})
=P(wjrec|witrue)×P(witrue)/P(wjrec)\displaystyle=P(w^{\rm rec}_{j}|w^{\rm true}_{i})\times P(w^{\rm true}_{i})/P(w^{\rm rec}_{j})
=P(wjrec|witrue)×P(witrue)/kP(wjrec|wktrue)P(wktrue).\displaystyle=P(w^{\rm rec}_{j}|w^{\rm true}_{i})\times P(w^{\rm true}_{i})/\sum_{k}P(w^{\rm rec}_{j}|w^{\rm true}_{k})P(w^{\rm true}_{k}). (5)

Here, P(wjrec|witrue)P(w^{\rm{rec}}_{j}|w^{\rm{true}}_{i}) is estimated with simulation. To avoid bias from the simulated signal, P(wtrue)P(w^{\rm true}) is calculated using the reconstructed ww distribution on data as follows.

  1. 1.

    P(witrue)P(w^{\rm true}_{i}) is assumed uniform (P(witrue)=0.1P(w^{\rm true}_{i})=0.1 for all bins).

  2. 2.

    UijU_{ij} is calculated by using Eq.(5).

  3. 3.

    P(witrue)P(w^{\rm true}_{i}) is set to jUij(NjrecNjbg)/ijUij(NjrecNjbg)\sum_{j}U_{ij}(N^{\rm rec}_{j}-N^{\rm bg}_{j})/\sum_{ij}U_{ij}(N^{\rm rec}_{j}-N^{\rm bg}_{j}).

  4. 4.

    Steps 2. and 3. are repeated 10 times, until UijU_{ij} converges.

The unfolding performance is validated with the simulation.

5.2 Fitting method

To determine |Vcb||V_{cb}|, a binned maximum likelihood fit is performed using

Δχ2=2ln(L)=2i(NiexpNi+Niln(Ni/Niexp))+ijΔxiWij1Δxj,\displaystyle\Delta\chi^{2}=-2\ln\left(L\right)=2\sum_{i}\left(N^{\rm{exp}}_{i}-N_{i}+N_{i}\ln\left(N_{i}/N^{\rm{exp}}_{i}\right)\right)+\prod_{i}\prod_{j}\Delta x_{i}W^{-1}_{ij}\Delta x_{j}, (6)

where ii denotes the ww bin, NiN_{i} is the number of observed events in the iith bin, xix_{i} is a systematic parameter defined as the normalization uncertainty in the iith reconstructed-ww bin, Δxi\Delta x_{i} is the deviation of the systematic parameters from the nominal value, and WijW_{ij} is the covariance of the systematic parameters, modeled by multivariate Gaussians functions. Finally, NiexpN^{\rm{exp}}_{i} is the expected yield in the iith bin, which is written as follows:

Niexp(B0D+ν)\displaystyle N^{\rm{exp}}_{i}\left(B^{0}\rightarrow D^{*-}\ell^{+}\nu_{\ell}\right) =4ϵiNBB¯(1+f+0)1τ(B0)(DπD¯)0(D¯0K+π)\displaystyle=4\epsilon_{i}N_{B\kern 1.47495pt\overline{\kern-1.47495ptB}{}}\left(1+f_{+0}\right)^{-1}\tau\left(B^{0}\right)\mathcal{B}\left(D^{*-}\rightarrow\pi^{-}\kern 1.99997pt\overline{\kern-1.99997ptD}{}^{0}\right)\mathcal{B}\left(\kern 1.99997pt\overline{\kern-1.99997ptD}{}^{0}\rightarrow K^{+}\pi^{-}\right)
(1+jUijΔxj)wiminwimax𝑑wdΓdw(B0D+ν),\displaystyle\left(1+\sum_{j}U_{ij}\Delta x_{j}\right)\int^{w^{max}_{i}}_{w^{min}_{i}}dw\frac{d\Gamma}{dw}\left(B^{0}\rightarrow D^{*-}\ell^{+}\nu_{\ell}\right), (7)

where ϵi\epsilon_{i} is the signal reconstruction efficiency in the iith bin. The differential distribution is obtained using Eq.(3). In the fit there are two free parameters, ηEWF(1)|Vcb|\eta_{\rm EW}F(1)|V_{cb}| and ρ\rho, and ten nuisance parameters Δxi\Delta x_{i}. The two-dimensional contour of ηEWF(1)|Vcb|\eta_{EW}F(1)|V_{cb}| and ρ\rho is estimated by using a marginalized likelihood  [19],

Lmarg=1Jj=1Jexp(i(NijexpNi+Niln(Ni/Nijexp))),\displaystyle L_{\rm{marg}}=\frac{1}{J}\sum_{j=1}^{J}\exp\left(-\sum_{i}\left(N^{\rm{exp}}_{ij}-N_{i}+N_{i}\ln\left(N_{i}/N^{\rm{exp}}_{ij}\right)\right)\right), (8)

where J=10000J=10000 and NijexpN^{\rm{exp}}_{ij} is the expected yield in the iith bin with the jjth set of nuisance parameters, which is generated following the covariance matrix. The fitter performance is validated with simplified simulated experiments.

6 Systematic uncertainties

Systematic uncertainties are evaluated for several sources associated with the detector response, MC modeling, and physics inputs. For the branching ratio measurement, the systematic uncertainty of each source is propagated to the result based on Eq.(1) and summarized in Table 3. The BtagB_{\rm tag} reconstruction efficiency with the FEI algorithm is studied using BXνB\rightarrow X\ell\nu decays and a systematic uncertainty of 3.9% is assigned [5]. The tracking efficiency is studied with τ\tau decays and the maximum data-simulation difference of 0.3% is taken as systematic uncertainty for each track in the final state. The reconstruction efficiency of the low momentum π\pi^{-} is studied by using B0π+D(DπD¯)0B^{0}\rightarrow\pi^{+}D^{*-}(D^{*-}\rightarrow\pi^{-}\kern 1.99997pt\overline{\kern-1.99997ptD}{}^{0}) decays. The data-MC ratio of the π\pi momentum distribution is evaluated relative to the high momentum distribution; a 3–4% systematic uncertainty is assigned in each momentum bin, which is dominated by the statistical uncertainty of the control samples. Electron and muon identification efficiencies and misidentification rates are studied by using e+ee+e+e^{+}e^{-}\rightarrow e^{+}e^{-}\ell^{+}\ell^{-}, e+ee+e(γ)e^{+}e^{-}\rightarrow e^{+}e^{-}(\gamma), e+eμ+μγe^{+}e^{-}\rightarrow\mu^{+}\mu^{-}\gamma, decays of J/ψJ/\psi, DD^{*}, τ\tau, and Ks0K_{s}^{0}. The lepton identification and misidentification uncertainties associated with the size of the control samples, background contamination, modeling of the fitting function, trigger, and the difference of the results across samples are evaluated as a functions of each lepton angle and the absolute value of the lepton momentum. These uncertainties are propagated to the branching fraction measurement resulting in a total 2.0% systematic error. The potential variations in the amount of background from BDνB\rightarrow D^{**}\ell\nu decays, hadronic BB decays and misreconstructed DD^{*} mesons are evaluated to propagate the uncertainty of the branching fraction of the background processes and of beam backgrounds resulting in a 1.2% systematic uncertainty. The number of produced BB¯B\kern 1.79993pt\overline{\kern-1.79993ptB}{} pairs is estimated from the R2 distribution after a subtraction of the continuum background using off-resonance data. A systematic uncertainty of 2.9% is assigned to account for the limited statistics of off-resonance data, operation conditions of the detector and accelerator including beam energy, and selection efficiencies. A systematic uncertainty for the event-level selection is estimated to be 1.0%, to cover the maximum data-simulation difference of the total energy in the electromagnetic calorimeter. The uncertainty from the limited size of simulated samples is estimated to be 1.8%. The following sources of systematic uncertainty are from external measurements: the ratio of the number of produced B+BB^{+}{\kern-1.60004ptB^{-}} and B0B¯0B^{0}{\kern-1.60004pt\kern 1.79993pt\overline{\kern-1.79993ptB}{}^{0}} pairs (1.2%), the ratio of the number of mixed and unmixed B0B¯0B^{0}{\kern-1.60004pt\kern 1.79993pt\overline{\kern-1.79993ptB}{}^{0}} (0.9%), the branching fractions of DπD¯0D^{*-}\rightarrow\pi^{-}\kern 1.99997pt\overline{\kern-1.99997ptD}{}^{0} (0.7%) and D¯0K+π\kern 1.99997pt\overline{\kern-1.99997ptD}{}^{0}\rightarrow K^{+}\pi^{-} (0.8%), and form factors (0.1%) [12]. The uncertainties from the various sources are assumed to be independent and the quadratic sum is taken as a total systematic uncertainty. For the measurement of ηEWF(1)|Vcb|\eta_{EW}F(1)|V_{cb}| and ρ2\rho^{2}, the effect of the systematic uncertainty is included in the likelihood calculation (the second term in Eq.(6)) with the covariance matrix

Wij=k(Nikμi)(Njkμj)μiμj.\displaystyle W_{ij}=\sum_{k}\frac{\left(N_{i}^{k}-\mu_{i}\right)\left(N_{j}^{k}-\mu_{j}\right)}{\mu_{i}\mu_{j}}. (9)

Here, kk runs over the sources of uncertainties, μi\mu_{i} is the mean of the expected yield in the iith ww bin, NikN_{i}^{k} is the variation of the expected yield in the iith bin for the kkth source of uncertainties. Figure 3 shows the estimated covariance matrix.

Table 3: Summary of fractional systematic uncertainties on the branching ratio.
Systematic sources Relative uncertainty (%)
FEI efficiency 3.9
Low momentum π\pi efficiency 4.1
Tracking efficiency 0.9
Lepton particle identification 2.0
Background 1.2
NBB¯N_{B\kern 1.47495pt\overline{\kern-1.47495ptB}{}} 2.9
f+0f_{+0} 1.2
Number of mixed BB¯B\kern 1.79993pt\overline{\kern-1.79993ptB}{} 0.9
(DπD¯)0\mathcal{B}\left(D^{*-}\rightarrow\pi^{-}\kern 1.99997pt\overline{\kern-1.99997ptD}{}^{0}\right) 0.7
(D¯0K+π)\mathcal{B}\left(\kern 1.99997pt\overline{\kern-1.99997ptD}{}^{0}\rightarrow K^{+}\pi^{-}\right) 0.8
ECL energy 1.0
Form factor 0.1
MC sample size 1.8
Total 7.3
Refer to caption
Figure 3: Total covariance matrix for the ηEWF(1)|Vcb|\eta_{EW}F(1)|V_{cb}| and ρ2\rho^{2} measurement. The axes denote the ww bin intervals.

7 Results and conclusion

The result for the branching fraction is

(B0D+ν)\displaystyle\mathcal{B}\left(B^{0}\rightarrow D^{*-}\ell^{+}\nu_{\ell}\right) =(5.27±0.22(stat)±0.38(syst))%\displaystyle=\left(5.27\pm 0.22~\left(\rm{stat}\right)\pm 0.38~\left(\rm{syst}\right)\right)\% (10)

while the results for |Vcb||V_{cb}| are

ηEWF(1)|Vcb|×103\displaystyle\eta_{EW}F(1)|V_{cb}|\times 10^{3} =34.6±1.8(stat)±1.7(syst)\displaystyle=34.6\pm 1.8~\left(\rm{stat}\right)\pm 1.7~\left(\rm{syst}\right) (11)
ρ2\displaystyle\rho^{2} =0.94±0.18(stat)±0.11(syst).\displaystyle=0.94\pm 0.18~\left(\rm{stat}\right)\pm 0.11~\left(\rm{syst}\right). (12)

The two-dimensional probability contours for ηEWF(1)|Vcb|\eta_{EW}F(1)|V_{cb}| and ρ2\rho^{2} are shown in Fig. 4. The observed ΔΓ/Δw\ \Delta\Gamma/\Delta w values are shown in Fig. 5 with the best fit function overlaid. The reduced χ2\chi^{2} of the fit is 1.6 with p-value of 40.7%\,\%, which is estimated by simulation. Under the assumption that ηEW=1.00662±0.00016\eta_{\rm EW}=1.00662\pm 0.00016 and F(1)=0.906±0.004(stat)±0.012(syst)F(1)=0.906\pm 0.004~\rm{(stat)}\pm 0.012~\rm{(syst)} [17], we obtain |Vcb|×103=37.9±2.7|V_{cb}|\times 10^{3}=37.9\pm 2.7. The results are consistent with the world averages of (B0D+ν)=(5.06±0.12)%\mathcal{B}(B^{0}\rightarrow D^{*-}\ell^{+}\nu_{\ell})=(5.06\pm 0.12)\% and ηEWF(1)|Vcb|×103=35.27±0.38\eta_{EW}F(1)|V_{cb}|\times 10^{3}=35.27\pm 0.38 based on exclusive BDνB\rightarrow D^{*}\ell\nu_{\ell} decays within one standard deviation [1].

Refer to caption
Figure 4: Two dimensional probability contours for ηEWF(1)|Vcb|\eta_{EW}F(1)|V_{cb}| and ρ2\rho^{2} at the 68% (solid) and 90% (dashed) confidence level. The best fit point is also shown.
Refer to caption
Figure 5: Observed dΓ(B0Dν)/dwd\Gamma(B^{0}\rightarrow D^{*}\ell\nu)/dw distribution with the best fit function and one and two standard-deviation bands overlaid.

8 Acknowledgement

These acknowledgements are not to be interpreted as an endorsement of any statement made by any of our institutes, funding agencies, governments, or their representatives.

We thank the SuperKEKB team for delivering high-luminosity collisions; the KEK cryogenics group for the efficient operation of the detector solenoid magnet; the KEK computer group and the NII for on-site computing support and SINET6 network support; and the raw-data centers at BNL, DESY, GridKa, IN2P3, INFN, and the University of Victoria for offsite computing support.

References