This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Measurement of the branching fraction of the doubly Cabibbo-suppressed decay D𝟎K+ππ𝟎D^{0}\to K^{+}\pi^{-}\pi^{0} and search for D𝟎K+ππ𝟎π𝟎D^{0}\to K^{+}\pi^{-}\pi^{0}\pi^{0}

M. Ablikim1, M. N. Achasov10,b, P. Adlarson68, M. Albrecht4, R. Aliberti28, A. Amoroso67A,67C, M. R. An32, Q. An64,50, X. H. Bai58, Y. Bai49, O. Bakina29, R. Baldini Ferroli23A, I. Balossino24A, Y. Ban39,g, V. Batozskaya1,37, D. Becker28, K. Begzsuren26, N. Berger28, M. Bertani23A, D. Bettoni24A, F. Bianchi67A,67C, J. Bloms61, A. Bortone67A,67C, I. Boyko29, R. A. Briere5, A. Brueggemann61, H. Cai69, X. Cai1,50, A. Calcaterra23A, G. F. Cao1,55, N. Cao1,55, S. A. Cetin54A, J. F. Chang1,50, W. L. Chang1,55, G. Chelkov29,a, C. Chen36, G. Chen1, H. S. Chen1,55, M. L. Chen1,50, S. J. Chen35, T. Chen1, X. R. Chen25,55, X. T. Chen1, Y. B. Chen1,50, Z. J. Chen20,h, W. S. Cheng67C, G. Cibinetto24A, F. Cossio67C, J. J. Cui42, H. L. Dai1,50, J. P. Dai71, A. Dbeyssi14, R.  E. de Boer4, D. Dedovich29, Z. Y. Deng1, A. Denig28, I. Denysenko29, M. Destefanis67A,67C, F. De Mori67A,67C, Y. Ding33, J. Dong1,50, L. Y. Dong1,55, M. Y. Dong1,50,55, X. Dong69, S. X. Du73, P. Egorov29,a, Y. L. Fan69, J. Fang1,50, S. S. Fang1,55, Y. Fang1, R. Farinelli24A, L. Fava67B,67C, F. Feldbauer4, G. Felici23A, C. Q. Feng64,50, J. H. Feng51, K Fischer62, M. Fritsch4, C. D. Fu1, H. Gao55, Y. N. Gao39,g, Yang Gao64,50, S. Garbolino67C, I. Garzia24A,24B, P. T. Ge69, Z. W. Ge35, C. Geng51, E. M. Gersabeck59, A Gilman62, K. Goetzen11, L. Gong33, W. X. Gong1,50, W. Gradl28, M. Greco67A,67C, L. M. Gu35, M. H. Gu1,50, C. Y Guan1,55, A. Q. Guo25,55, L. B. Guo34, R. P. Guo41, Y. P. Guo9,f, A. Guskov29,a, T. T. Han42, W. Y. Han32, X. Q. Hao15, F. A. Harris57, K. K. He47, K. L. He1,55, F. H. Heinsius4, C. H. Heinz28, Y. K. Heng1,50,55, C. Herold52, M. Himmelreich11,d, T. Holtmann4, G. Y. Hou1,55, Y. R. Hou55, Z. L. Hou1, H. M. Hu1,55, J. F. Hu48,i, T. Hu1,50,55, Y. Hu1, G. S. Huang64,50, K. X. Huang51, L. Q. Huang65, L. Q. Huang25,55, X. T. Huang42, Y. P. Huang1, Z. Huang39,g, T. Hussain66, N Hüsken22,28, W. Imoehl22, M. Irshad64,50, J. Jackson22, S. Jaeger4, S. Janchiv26, Q. Ji1, Q. P. Ji15, X. B. Ji1,55, X. L. Ji1,50, Y. Y. Ji42, Z. K. Jia64,50, H. B. Jiang42, S. S. Jiang32, X. S. Jiang1,50,55, Y. Jiang55, J. B. Jiao42, Z. Jiao18, S. Jin35, Y. Jin58, M. Q. Jing1,55, T. Johansson68, N. Kalantar-Nayestanaki56, X. S. Kang33, R. Kappert56, M. Kavatsyuk56, B. C. Ke73, I. K. Keshk4, A. Khoukaz61, P.  Kiese28, R. Kiuchi1, R. Kliemt11, L. Koch30, O. B. Kolcu54A, B. Kopf4, M. Kuemmel4, M. Kuessner4, A. Kupsc37,68, W. Kühn30, J. J. Lane59, J. S. Lange30, P.  Larin14, A. Lavania21, L. Lavezzi67A,67C, Z. H. Lei64,50, H. Leithoff28, M. Lellmann28, T. Lenz28, C. Li40, C. Li36, C. H. Li32, Cheng Li64,50, D. M. Li73, F. Li1,50, G. Li1, H. Li44, H. Li64,50, H. B. Li1,55, H. J. Li15, H. N. Li48,i, J. Q. Li4, J. S. Li51, J. W. Li42, Ke Li1, L. J Li1, L. K. Li1, Lei Li3, M. H. Li36, P. R. Li31,j,k, S. X. Li9, S. Y. Li53, T.  Li42, W. D. Li1,55, W. G. Li1, X. H. Li64,50, X. L. Li42, Xiaoyu Li1,55, H. Liang1,55, H. Liang64,50, H. Liang27, Y. F. Liang46, Y. T. Liang25,55, G. R. Liao12, L. Z. Liao42, J. Libby21, A.  Limphirat52, C. X. Lin51, D. X. Lin25,55, T. Lin1, B. J. Liu1, C. X. Liu1, D.  Liu14,64, F. H. Liu45, Fang Liu1, Feng Liu6, G. M. Liu48,i, H. M. Liu1,55, Huanhuan Liu1, Huihui Liu16, J. B. Liu64,50, J. L. Liu65, J. Y. Liu1,55, K. Liu1, K. Y. Liu33, Ke Liu17, L. Liu64,50, M. H. Liu9,f, P. L. Liu1, Q. Liu55, S. B. Liu64,50, T. Liu9,f, W. K. Liu36, W. M. Liu64,50, X. Liu31,j,k, Y. Liu31,j,k, Y. B. Liu36, Z. A. Liu1,50,55, Z. Q. Liu42, X. C. Lou1,50,55, F. X. Lu51, H. J. Lu18, J. G. Lu1,50, X. L. Lu1, Y. Lu1, Y. P. Lu1,50, Z. H. Lu1, C. L. Luo34, M. X. Luo72, T. Luo9,f, X. L. Luo1,50, X. R. Lyu55, Y. F. Lyu36, F. C. Ma33, H. L. Ma1, L. L. Ma42, M. M. Ma1,55, Q. M. Ma1, R. Q. Ma1,55, R. T. Ma55, X. Y. Ma1,50, Y. Ma39,g, F. E. Maas14, M. Maggiora67A,67C, S. Maldaner4, S. Malde62, Q. A. Malik66, A. Mangoni23B, Y. J. Mao39,g, Z. P. Mao1, S. Marcello67A,67C, Z. X. Meng58, J. G. Messchendorp56,11, G. Mezzadri24A, H. Miao1, T. J. Min35, R. E. Mitchell22, X. H. Mo1,50,55, N. Yu. Muchnoi10,b, H. Muramatsu60, S. Nakhoul11,d, Y. Nefedov29, F. Nerling11,d, I. B. Nikolaev10,b, Z. Ning1,50, S. Nisar8,l, Y. Niu 42, S. L. Olsen55, Q. Ouyang1,50,55, S. Pacetti23B,23C, X. Pan9,f, Y. Pan59, A. Pathak1, A.  Pathak27, M. Pelizaeus4, H. P. Peng64,50, K. Peters11,d, J. Pettersson68, J. L. Ping34, R. G. Ping1,55, S. Plura28, S. Pogodin29, R. Poling60, V. Prasad64,50, H. Qi64,50, H. R. Qi53, M. Qi35, T. Y. Qi9,f, S. Qian1,50, W. B. Qian55, Z. Qian51, C. F. Qiao55, J. J. Qin65, L. Q. Qin12, X. P. Qin9,f, X. S. Qin42, Z. H. Qin1,50, J. F. Qiu1, S. Q. Qu36, S. Q. Qu53, K. H. Rashid66, K. Ravindran21, C. F. Redmer28, K. J. Ren32, A. Rivetti67C, V. Rodin56, M. Rolo67C, G. Rong1,55, Ch. Rosner14, M. Rump61, H. S. Sang64, A. Sarantsev29,c, Y. Schelhaas28, C. Schnier4, K. Schoenning68, M. Scodeggio24A,24B, K. Y. Shan9,f, W. Shan19, X. Y. Shan64,50, J. F. Shangguan47, L. G. Shao1,55, M. Shao64,50, C. P. Shen9,f, H. F. Shen1,55, X. Y. Shen1,55, B.-A. Shi55, H. C. Shi64,50, R. S. Shi1,55, X. Shi1,50, X. D Shi64,50, J. J. Song15, W. M. Song27,1, Y. X. Song39,g, S. Sosio67A,67C, S. Spataro67A,67C, F. Stieler28, K. X. Su69, P. P. Su47, Y.-J. Su55, G. X. Sun1, H. Sun55, H. K. Sun1, J. F. Sun15, L. Sun69, S. S. Sun1,55, T. Sun1,55, W. Y. Sun27, X Sun20,h, Y. J. Sun64,50, Y. Z. Sun1, Z. T. Sun42, Y. H. Tan69, Y. X. Tan64,50, C. J. Tang46, G. Y. Tang1, J. Tang51, L. Y Tao65, Q. T. Tao20,h, J. X. Teng64,50, V. Thoren68, W. H. Tian44, Y. Tian25,55, I. Uman54B, B. Wang1, B. L. Wang55, C. W. Wang35, D. Y. Wang39,g, F. Wang65, H. J. Wang31,j,k, H. P. Wang1,55, K. Wang1,50, L. L. Wang1, M. Wang42, M. Z. Wang39,g, Meng Wang1,55, S. Wang9,f, T.  Wang9,f, T. J. Wang36, W. Wang51, W. H. Wang69, W. P. Wang64,50, X. Wang39,g, X. F. Wang31,j,k, X. L. Wang9,f, Y. D. Wang38, Y. F. Wang1,50,55, Y. H. Wang40, Y. Q. Wang1, Z. Wang1,50, Z. Y. Wang1,55, Ziyi Wang55, D. H. Wei12, F. Weidner61, S. P. Wen1, D. J. White59, U. Wiedner4, G. Wilkinson62, M. Wolke68, L. Wollenberg4, J. F. Wu1,55, L. H. Wu1, L. J. Wu1,55, X. Wu9,f, X. H. Wu27, Y. Wu64, Z. Wu1,50, L. Xia64,50, T. Xiang39,g, G. Y. Xiao35, H. Xiao9,f, S. Y. Xiao1, Y.  L. Xiao9,f, Z. J. Xiao34, C. Xie35, X. H. Xie39,g, Y. Xie42, Y. G. Xie1,50, Y. H. Xie6, Z. P. Xie64,50, T. Y. Xing1,55, C. F. Xu1, C. J. Xu51, G. F. Xu1, H. Y. Xu58, Q. J. Xu13, S. Y. Xu63, X. P. Xu47, Y. C. Xu55, Z. P. Xu35, F. Yan9,f, L. Yan9,f, W. B. Yan64,50, W. C. Yan73, H. J. Yang43,e, H. L. Yang27, H. X. Yang1, L. Yang44, S. L. Yang55, Y. X. Yang1,55, Yifan Yang1,55, M. Ye1,50, M. H. Ye7, J. H. Yin1, Z. Y. You51, B. X. Yu1,50,55, C. X. Yu36, G. Yu1,55, J. S. Yu20,h, T. Yu65, C. Z. Yuan1,55, L. Yuan2, S. C. Yuan1, X. Q. Yuan1, Y. Yuan1,55, Z. Y. Yuan51, C. X. Yue32, A. A. Zafar66, F. R. Zeng42, X. Zeng Zeng6, Y. Zeng20,h, Y. H. Zhan51, A. Q. Zhang1, B. L. Zhang1, B. X. Zhang1, G. Y. Zhang15, H. Zhang64, H. H. Zhang51, H. H. Zhang27, H. Y. Zhang1,50, J. L. Zhang70, J. Q. Zhang34, J. W. Zhang1,50,55, J. Y. Zhang1, J. Z. Zhang1,55, Jianyu Zhang1,55, Jiawei Zhang1,55, L. M. Zhang53, L. Q. Zhang51, Lei Zhang35, P. Zhang1, Q. Y.  Zhang32,73, Shulei Zhang20,h, X. D. Zhang38, X. M. Zhang1, X. Y. Zhang42, X. Y. Zhang47, Y. Zhang62, Y.  T. Zhang73, Y. H. Zhang1,50, Yan Zhang64,50, Yao Zhang1, Z. H. Zhang1, Z. Y. Zhang69, Z. Y. Zhang36, G. Zhao1, J. Zhao32, J. Y. Zhao1,55, J. Z. Zhao1,50, Lei Zhao64,50, Ling Zhao1, M. G. Zhao36, Q. Zhao1, S. J. Zhao73, Y. B. Zhao1,50, Y. X. Zhao25,55, Z. G. Zhao64,50, A. Zhemchugov29,a, B. Zheng65, J. P. Zheng1,50, Y. H. Zheng55, B. Zhong34, C. Zhong65, X. Zhong51, H.  Zhou42, L. P. Zhou1,55, X. Zhou69, X. K. Zhou55, X. R. Zhou64,50, X. Y. Zhou32, Y. Z. Zhou9,f, J. Zhu36, K. Zhu1, K. J. Zhu1,50,55, L. X. Zhu55, S. H. Zhu63, S. Q. Zhu35, T. J. Zhu70, W. J. Zhu9,f, Y. C. Zhu64,50, Z. A. Zhu1,55, B. S. Zou1, J. H. Zou1
(BESIII Collaboration)
1 Institute of High Energy Physics, Beijing 100049, People’s Republic of China
2 Beihang University, Beijing 100191, People’s Republic of China
3 Beijing Institute of Petrochemical Technology, Beijing 102617, People’s Republic of China
4 Bochum Ruhr-University, D-44780 Bochum, Germany
5 Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
6 Central China Normal University, Wuhan 430079, People’s Republic of China
7 China Center of Advanced Science and Technology, Beijing 100190, People’s Republic of China
8 COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, 54000 Lahore, Pakistan
9 Fudan University, Shanghai 200433, People’s Republic of China
10 G.I. Budker Institute of Nuclear Physics SB RAS (BINP), Novosibirsk 630090, Russia
11 GSI Helmholtzcentre for Heavy Ion Research GmbH, D-64291 Darmstadt, Germany
12 Guangxi Normal University, Guilin 541004, People’s Republic of China
13 Hangzhou Normal University, Hangzhou 310036, People’s Republic of China
14 Helmholtz Institute Mainz, Staudinger Weg 18, D-55099 Mainz, Germany
15 Henan Normal University, Xinxiang 453007, People’s Republic of China
16 Henan University of Science and Technology, Luoyang 471003, People’s Republic of China
17 Henan University of Technology, Zhengzhou 450001, People’s Republic of China
18 Huangshan College, Huangshan 245000, People’s Republic of China
19 Hunan Normal University, Changsha 410081, People’s Republic of China
20 Hunan University, Changsha 410082, People’s Republic of China
21 Indian Institute of Technology Madras, Chennai 600036, India
22 Indiana University, Bloomington, Indiana 47405, USA
23 INFN Laboratori Nazionali di Frascati , (A)INFN Laboratori Nazionali di Frascati, I-00044, Frascati, Italy; (B)INFN Sezione di Perugia, I-06100, Perugia, Italy; (C)University of Perugia, I-06100, Perugia, Italy
24 INFN Sezione di Ferrara, (A)INFN Sezione di Ferrara, I-44122, Ferrara, Italy; (B)University of Ferrara, I-44122, Ferrara, Italy
25 Institute of Modern Physics, Lanzhou 730000, People’s Republic of China
26 Institute of Physics and Technology, Peace Ave. 54B, Ulaanbaatar 13330, Mongolia
27 Jilin University, Changchun 130012, People’s Republic of China
28 Johannes Gutenberg University of Mainz, Johann-Joachim-Becher-Weg 45, D-55099 Mainz, Germany
29 Joint Institute for Nuclear Research, 141980 Dubna, Moscow region, Russia
30 Justus-Liebig-Universitaet Giessen, II. Physikalisches Institut, Heinrich-Buff-Ring 16, D-35392 Giessen, Germany
31 Lanzhou University, Lanzhou 730000, People’s Republic of China
32 Liaoning Normal University, Dalian 116029, People’s Republic of China
33 Liaoning University, Shenyang 110036, People’s Republic of China
34 Nanjing Normal University, Nanjing 210023, People’s Republic of China
35 Nanjing University, Nanjing 210093, People’s Republic of China
36 Nankai University, Tianjin 300071, People’s Republic of China
37 National Centre for Nuclear Research, Warsaw 02-093, Poland
38 North China Electric Power University, Beijing 102206, People’s Republic of China
39 Peking University, Beijing 100871, People’s Republic of China
40 Qufu Normal University, Qufu 273165, People’s Republic of China
41 Shandong Normal University, Jinan 250014, People’s Republic of China
42 Shandong University, Jinan 250100, People’s Republic of China
43 Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
44 Shanxi Normal University, Linfen 041004, People’s Republic of China
45 Shanxi University, Taiyuan 030006, People’s Republic of China
46 Sichuan University, Chengdu 610064, People’s Republic of China
47 Soochow University, Suzhou 215006, People’s Republic of China
48 South China Normal University, Guangzhou 510006, People’s Republic of China
49 Southeast University, Nanjing 211100, People’s Republic of China
50 State Key Laboratory of Particle Detection and Electronics, Beijing 100049, Hefei 230026, People’s Republic of China
51 Sun Yat-Sen University, Guangzhou 510275, People’s Republic of China
52 Suranaree University of Technology, University Avenue 111, Nakhon Ratchasima 30000, Thailand
53 Tsinghua University, Beijing 100084, People’s Republic of China
54 Turkish Accelerator Center Particle Factory Group, (A)Istinye University, 34010, Istanbul, Turkey; (B)Near East University, Nicosia, North Cyprus, Mersin 10, Turkey
55 University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
56 University of Groningen, NL-9747 AA Groningen, The Netherlands
57 University of Hawaii, Honolulu, Hawaii 96822, USA
58 University of Jinan, Jinan 250022, People’s Republic of China
59 University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
60 University of Minnesota, Minneapolis, Minnesota 55455, USA
61 University of Muenster, Wilhelm-Klemm-Str. 9, 48149 Muenster, Germany
62 University of Oxford, Keble Rd, Oxford, UK OX13RH
63 University of Science and Technology Liaoning, Anshan 114051, People’s Republic of China
64 University of Science and Technology of China, Hefei 230026, People’s Republic of China
65 University of South China, Hengyang 421001, People’s Republic of China
66 University of the Punjab, Lahore-54590, Pakistan
67 University of Turin and INFN, (A)University of Turin, I-10125, Turin, Italy; (B)University of Eastern Piedmont, I-15121, Alessandria, Italy; (C)INFN, I-10125, Turin, Italy
68 Uppsala University, Box 516, SE-75120 Uppsala, Sweden
69 Wuhan University, Wuhan 430072, People’s Republic of China
70 Xinyang Normal University, Xinyang 464000, People’s Republic of China
71 Yunnan University, Kunming 650500, People’s Republic of China
72 Zhejiang University, Hangzhou 310027, People’s Republic of China
73 Zhengzhou University, Zhengzhou 450001, People’s Republic of China
a Also at the Moscow Institute of Physics and Technology, Moscow 141700, Russia
b Also at the Novosibirsk State University, Novosibirsk, 630090, Russia
c Also at the NRC ”Kurchatov Institute”, PNPI, 188300, Gatchina, Russia
d Also at Goethe University Frankfurt, 60323 Frankfurt am Main, Germany
e Also at Key Laboratory for Particle Physics, Astrophysics and Cosmology, Ministry of Education; Shanghai Key Laboratory for Particle Physics and Cosmology; Institute of Nuclear and Particle Physics, Shanghai 200240, People’s Republic of China
f Also at Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) and Institute of Modern Physics, Fudan University, Shanghai 200443, People’s Republic of China
g Also at State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, People’s Republic of China
h Also at School of Physics and Electronics, Hunan University, Changsha 410082, China
i Also at Guangdong Provincial Key Laboratory of Nuclear Science, Institute of Quantum Matter, South China Normal University, Guangzhou 510006, China
j Also at Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, People’s Republic of China
k Also at Lanzhou Center for Theoretical Physics, Lanzhou University, Lanzhou 730000, People’s Republic of China
l Also at the Department of Mathematical Sciences, IBA, Karachi , Pakistan
Abstract

Using 2.93fb12.93\,\rm fb^{-1} of e+ee^{+}e^{-} collision data collected at a center-of-mass energy of 3.773 GeV with the BESIII detector, we present a measurement of the branching fraction of the doubly Cabibbo-suppressed (DCS) decay D0K+ππ0D^{0}\to K^{+}\pi^{-}\pi^{0} and a search for the DCS decay D0K+ππ0π0D^{0}\to K^{+}\pi^{-}\pi^{0}\pi^{0}. The branching fraction of D0K+ππ0D^{0}\to K^{+}\pi^{-}\pi^{0} is determined to be [3.130.56+0.60(stat)±0.09(syst)]×104[3.13^{+0.60}_{-0.56}({\rm stat})\pm 0.09({\rm syst})]\times 10^{-4}. No signal is observed for D0K+ππ0π0D^{0}\to K^{+}\pi^{-}\pi^{0}\pi^{0} and an upper limit of 3.6×1043.6\times 10^{-4} is set on the branching fraction at the 90% C.L. We combine these results with the world-average branching fractions of their counterpart Cabibbo-favored decays to determine the ratios of the doubly Cabibbo-suppressed over the Cabibbo-favored branching fractions, (D0K+ππ0)/(D0Kπ+π0)=(0.22±0.04)%{\mathcal{B}}(D^{0}\to K^{+}\pi^{-}\pi^{0})/{\mathcal{B}}(D^{0}\to K^{-}\pi^{+}\pi^{0})=(0.22\pm 0.04)\% and (D0K+ππ0π0)/(D0Kπ+π0π0)<0.40%{\mathcal{B}}(D^{0}\to K^{+}\pi^{-}\pi^{0}\pi^{0})/{\mathcal{B}}(D^{0}\to K^{-}\pi^{+}\pi^{0}\pi^{0})<0.40\% at the 90% C.L., which correspond to (0.75±0.14)tan4θC(0.75\pm 0.14)\tan^{4}\theta_{C} and 1.37×tan4θC1.37\times\tan^{4}\theta_{C}, respectively, where θC\theta_{C} is the Cabibbo angle.

pacs:
13.20.Fc, 14.40.Lb

I Introduction

Studies of doubly Cabibbo-suppressed (DCS) decays of charmed mesons provide important information on charmed-hadron dynamics. The ratio of the branching fraction of a given DCS D0(+)D^{0(+)} decay relative to its Cabibbo-favored (CF) counterpart is naively expected to be about (0.52)×tan4θC(0.5-2)\times{\rm tan}^{4}\theta_{C} (θC\theta_{C} is the Cabibbo mixing angle) Lipkin ; theory_1 . Recently, BESIII reported the observation of the DCS decay D+K+π+ππ0D^{+}\to K^{+}\pi^{+}\pi^{-}\pi^{0} bes3_DCS_Kpipipi0 ; bes3-DCS-Dp-K3pi-v2 (charge conjugate processes are implied throughout this paper). The branching fraction of this decay averaged over the two measurements reported in Refs. bes3_DCS_Kpipipi0 ; bes3-DCS-Dp-K3pi-v2 is [1.13±0.08(stat)±0.03(syst)]×103[1.13\pm 0.08({\rm stat})\pm 0.03({\rm syst})]\times 10^{-3}, which gives a DCS/CF branching fraction ratio of (6.28±0.52)tan4θC(6.28\pm 0.52)\tan^{4}\theta_{C}. Comprehensive measurements of the DCS decays of other charmed mesons, especially for isospin symmetrical decays of D0D^{0}, may shed light on the origin of this anomalously large DCS/CF branching fraction ratio.

So far, only a few DCS D0D^{0} decays, namely D0K+πD^{0}\to K^{+}\pi^{-}, D0K+ππ0D^{0}\to K^{+}\pi^{-}\pi^{0} and D0K+πππ+D^{0}\to K^{+}\pi^{-}\pi^{-}\pi^{+}, have been observed, with decay branching fractions extracted from the ratio of DCS/CF decay branching fractions from the experiments determining D0D^{0}-D¯0\bar{D}^{0} mixing parameters or coherence parameters pdg2020 . In this paper, we present the first direct measurements of the branching fractions of D0K+ππ0D^{0}\to K^{+}\pi^{-}\pi^{0} and D0K+ππ0π0D^{0}\to K^{+}\pi^{-}\pi^{0}\pi^{0} by analyzing 2.93 fb-1 of e+ee^{+}e^{-} collision data lum_bes3 taken at a center-of-mass energy of 3.773 GeV with the BESIII detector. Because the traditional hadronic tag method suffers from complex quantum-correlation effects zzxing , this analysis is performed with the semileptonic tag method adopted in our previous work bes3-DCS-Dp-K3pi-v2 . Our direct measurements would benefit the constraint of the charm mixing parameters when combining with individual CF D0D^{0} decay branching fraction.

II Data and Monte Carlo

The BESIII detector is a magnetic spectrometer BESIII located at the Beijing Electron Positron Collider (BEPCII) Yu:IPAC2016-TUYA01 . The cylindrical core of the BESIII detector consists of a helium-based multilayer drift chamber (MDC{\rm MDC}), a plastic scintillator time-of-flight system (TOF{\rm TOF}), and a CsI(Tl) electromagnetic calorimeter (EMC{\rm EMC}), which are all enclosed in a superconducting solenoidal magnet providing a 1.0 T magnetic field. The solenoid is supported by an octagonal flux-return yoke with resistive plate counter muon-identifier modules interleaved with steel. The acceptance of charged particles and photons is 93% over the 4π4\pi solid angle. The charged-particle momentum resolution at 1GeV/c1~{}{\rm GeV}/c is 0.5%0.5\%, and the resolution of specific ionization energy loss (dEE/dxx) is 6%6\% for electrons from Bhabha scattering. The EMC measures photon energies with a resolution of 2.5%2.5\% (5%5\%) at 11 GeV in the barrel (end-cap) region. The time resolution of the TOF barrel part is 68 ps, while that of the end-cap part is 110 ps. Details about the design and performance of the BESIII detector are given in Ref. BESIII .

Simulated samples produced with the geant4-based geant4 Monte Carlo (MC) package, which includes the geometric description of the BESIII detector and the detector response, are used to determine the detection efficiency and to estimate the backgrounds. The simulation includes the beam-energy spread and initial-state radiation in the e+ee^{+}e^{-} annihilations modeled with the generator kkmc kkmc . The inclusive MC samples consist of the production of DD¯D\bar{D} pairs, the non-DD¯D\bar{D} decays of the ψ(3770)\psi(3770), the initial-state radiation production of the J/ψJ/\psi and ψ(3686)\psi(3686) states, and the continuum processes. The known decay modes are modelled with evtgen evtgen using the branching fractions taken from the Particle Data Group (PDG) pdg2020 , and the remaining unknown decays of the charmonium states are modeled by lundcharm lundcharm . Final-state radiation is incorporated using the photos package photos .

The D0K+ππ0D^{0}\to K^{+}\pi^{-}\pi^{0} decay is simulated using an MC generator which combines the resonant decays D0K(892)0π0D^{0}\to K^{*}(892)^{0}\pi^{0}, D0K(892)+πD^{0}\to K^{*}(892)^{+}\pi^{-}, D0K+ρ(770)D^{0}\to K^{+}\rho(770)^{-}, and a three-body phase-space model. The D0K+ππ0π0D^{0}\to K^{+}\pi^{-}\pi^{0}\pi^{0} decay is simulated with a four-body phase-space model. The D0Ke+νeD^{0}\to K^{-}e^{+}\nu_{e} decay is simulated with the modified pole model MPM with the pole mass fixed at the Ds+D_{s}^{*+} nominal mass pdg2020 and the other parameters quoted from bes3-D0-kev .

III Measurement method

The center-of-mass energy of 3.773 GeV lies above the DD¯D\bar{D} production threshold but below that of DD¯D^{*}\bar{D}. At this energy point, the D0D¯0D^{0}\bar{D}^{0} pairs are produced copiously and are not accompanied by additional hadrons. This allows DD decays to be studied with the double-tag method. In this analysis double-tag events refer to those in which the DCS decays D0K+ππ0D^{0}\to K^{+}\pi^{-}\pi^{0} or D0K+ππ0π0D^{0}\to K^{+}\pi^{-}\pi^{0}\pi^{0} are found on the recoiling side of the semileptonic decay D¯0K+eν¯e\bar{D}^{0}\to K^{+}e^{-}\bar{\nu}_{e}. The branching fraction of D0K+ππ0D^{0}\to K^{+}\pi^{-}\pi^{0} or D0K+ππ0π0D^{0}\to K^{+}\pi^{-}\pi^{0}\pi^{0} is determined by

DCS=NDT2ND0D¯0ϵDTSL,{\mathcal{B}}_{{\rm DCS}}=\frac{N_{\rm DT}}{2\cdot N_{D^{0}\bar{D}^{0}}\cdot\epsilon_{\rm DT}\cdot{\mathcal{B}}_{\rm SL}}, (1)

where ND0D¯0=(10597±28±98)×103N_{D^{0}\bar{D}^{0}}=(10597\pm 28\pm 98)\times 10^{3} is the total number of D0D¯0D^{0}\bar{D}^{0} pairs in the data sample determined in our previous work bes3-crsDD , NDTN_{\rm DT} is the signal yield of the double-tag events obtained from the data sample, ϵDT\epsilon_{\rm DT} is the effective efficiency of reconstructing the double-tag events, and SL{\mathcal{B}}_{\rm SL} is the branching fraction of the semileptonic decay D¯0K+eν¯e\bar{D}^{0}\to K^{+}e^{-}\bar{\nu}_{e} taken from the PDG pdg2020 .

IV Event selection

The double-tag candidates are required to contain at least two good photons for D0K+ππ0D^{0}\to K^{+}\pi^{-}\pi^{0} and four for D0K+ππ0π0D^{0}\to K^{+}\pi^{-}\pi^{0}\pi^{0} as well as exactly four charged tracks for both modes. We use the same selection criteria for K±K^{\pm}, π±\pi^{\pm}, ee^{-}, and π0\pi^{0} candidates as were used in our previous studies bes3_DCS_Kpipipi0 ; epjc76 ; cpc40 ; bes3-Dp-K1ev ; bes3-D-b1enu . All charged tracks are required to originate from a region within |cosθ|<0.93|\rm{cos\theta}|<0.93, |Vxy|<|V_{xy}|< 1 cm and |Vz|<|V_{z}|< 10 cm. Here, θ\theta is the polar angle of the charged track with respect to the MDC axis, |Vxy||V_{xy}| and |Vz||V_{z}| are the distances of closest approach of the charged track to the interaction point perpendicular to and along the MDC axis, respectively. Particle identification (PID) of kaons and pions is performed with the combined dEE/dxx and TOF information to calculate their corresponding confidence levels. Charged tracks with confidence level for kaon (pion) hypothesis greater than that for pion (kaon) hypothesis are assigned as kaon (pion) candidates.

Photon candidates are selected by using the information recorded by the EMC. The shower time is required to be within 700 ns of the event start time. The shower energy is required to be greater than 25 (50) MeV if the crystal with the maximum deposited energy in that cluster is in the barrel (end-cap) region BESIII . The opening angle between the shower direction and the extrapolated position on the EMC of the closest charged track must be greater than 1010^{\circ}. The π0\pi^{0} candidates are formed by photon pairs with invariant mass within (0.115, 0.150)(0.115,\,0.150) GeV/c2/c^{2}. To improve the resolution, a kinematic fit constraining the γγ\gamma\gamma invariant mass to the π0\pi^{0} known mass pdg2020 is imposed on the selected photon pair.

In the selection of the D0K+ππ0π0D^{0}\to K^{+}\pi^{-}\pi^{0}\pi^{0} candidates, the invariant mass of the π0π0\pi^{0}\pi^{0} combination is required to be outside of the interval (0.388,0.588)(0.388,0.588) GeV/c2c^{2} to reject the dominant peaking background from the singly Cabibbo-suppressed decay D0K+πKS0(π0π0)D^{0}\to K^{+}\pi^{-}K_{S}^{0}(\to\pi^{0}\pi^{0}). This requirement corresponds to about five standard deviations of the experimental KS0K_{S}^{0} mass resolution. The signal candidates for D0K+ππ0D^{0}\to K^{+}\pi^{-}\pi^{0} or D0K+ππ0π0D^{0}\to K^{+}\pi^{-}\pi^{0}\pi^{0} are identified with two variables: the energy difference

ΔEED0Ebeam\Delta E\equiv E_{D^{0}}-E_{\rm beam} (2)

and the beam-constrained mass

MBCEbeam2|pD0|2.M_{\rm BC}\equiv\sqrt{E^{2}_{\rm beam}-|\vec{p}_{D^{0}}|^{2}}. (3)

Here, EbeamE_{\rm beam} is the beam energy, pD0\vec{p}_{D^{0}} and ED0E_{D^{0}} are the momentum and energy of the D0D^{0} candidate in the e+ee^{+}e^{-} rest frame, respectively. If there are multiple candidates for the hadronic side, only the one with the minimum |ΔE||\Delta E| is kept. The correctly reconstructed D0D^{0} candidates concentrate around zero in the ΔE\Delta E distribution and around the D0D^{0} nominal mass in the MBCM_{\rm BC} distribution. The events satisfying ΔE(54,40)\Delta E\in(-54,40) MeV for D0K+ππ0D^{0}\to K^{+}\pi^{-}\pi^{0} and ΔE(60,30)\Delta E\in(-60,30) MeV for D0K+ππ0π0D^{0}\to K^{+}\pi^{-}\pi^{0}\pi^{0} are kept for further analysis.

After the hadronic D0D^{0} mesons are reconstructed, the candidates for D¯0K+eν¯e\bar{D}^{0}\to K^{+}e^{-}\bar{\nu}_{e} are selected from the remaining tracks that have not been used to select the hadronic side. Then, the number of extra charged tracks (NextrachargeN_{\rm extra}^{\rm charge}) is required to be zero. The charge of the electron candidate is required to be opposite to that of the kaon from the hadronic D0D^{0} decay. Electron PID uses the combined dEE/dxx, TOF, and EMC information, with which the combined confidence levels under the electron, pion, and kaon hypotheses (CLeCL_{e}, CLπCL_{\pi}, and CLKCL_{K}) are calculated. Electron candidates are required to satisfy CLe>0.001CL_{e}>0.001 and CLe/(CLe+CLπ+CLK)>0.8CL_{e}/(CL_{e}+CL_{\pi}+CL_{K})>0.8. To reduce the background due to mis-identification between hadrons and electrons, the energy of the electron candidate deposited in the EMC is further required to be greater than 0.8 times its measured momentum. Then, to partially compensate the effects of final-state radiation and bremsstrahlung (FSR recovery), the four-momenta of photon(s) within 55^{\circ} of the initial electron direction are added to the electron four-momentum measured by the MDC.

The charged kaons from the semileptonic decay are required to satisfy the same PID criteria as the kaons from the hadronic decays, and to have a charge opposite to that of the electron. To suppress potential backgrounds from hadronic decays with a misidentified electron, the invariant mass of the K+eK^{+}e^{-} combination, MK+eM_{K^{+}e^{-}}, is required to be less than 1.8 GeV/c2c^{2}. Furthermore, we require that the maximum energy of extra photons (EextraγmaxE^{\rm max}_{\rm extra\,\gamma}) which have not been used in the tag selection is less than 0.25 GeV and there is no extra π0\pi^{0} candidate (Nextraπ0N_{\rm extra\,\pi^{0}}).

The semileptonic D¯0\bar{D}^{0} decay is identified using a kinematic quantity defined as

UmissEmiss|pmiss|.U_{\mathrm{miss}}\equiv E_{\mathrm{miss}}-|\vec{p}_{\mathrm{miss}}|. (4)

Here, EmissEbeamEK+EeE_{\mathrm{miss}}\equiv E_{\mathrm{beam}}-E_{K^{+}}-E_{e^{-}} and pmisspD¯0pK+pe\vec{p}_{\mathrm{miss}}\equiv\vec{p}_{\bar{D}^{0}}-\vec{p}_{K^{+}}-\vec{p}_{e^{-}} are the missing energy and momentum of the double-tag event in the e+ee^{+}e^{-} center-of-mass system, in which EK+E_{K^{+}} and pK+\vec{p}_{K^{+}} are the energy and momentum of the K+K^{+}, and EeE_{e^{-}} and pe\vec{p}_{e^{-}} are the energy and momentum of the ee^{-} candidate. The UmissU_{\mathrm{miss}} resolution is improved by constraining the D0D^{0} energy to the beam energy and pD¯0p^D0Ebeam2MD02\vec{p}_{\bar{D}^{0}}\equiv{-\hat{p}_{D^{0}}}\cdot\sqrt{E_{\mathrm{beam}}^{2}-M_{D^{0}}^{2}}, where p^D0\hat{p}_{D^{0}} is the unit vector in the momentum direction of the D0D^{0} and MD0M_{D^{0}} is the D0D^{0} nominal mass pdg2020 .

Refer to caption
Fig. 1: Distributions of MBCM_{\rm BC} versus UmissU_{\mathrm{miss}} of the accepted double-tag candidate events for (a) D0K+ππ0D^{0}\to K^{+}\pi^{-}\pi^{0} and (b) D0K+ππ0π0D^{0}\to K^{+}\pi^{-}\pi^{0}\pi^{0} versus D¯0K+eν¯e\bar{D}^{0}\to K^{+}e^{-}\bar{\nu}_{e} decays in data. The area between dashed red lines show the MBCM_{\rm BC} signal region.

Figure 1 shows the distributions of MBCM_{\rm BC} versus UmissU_{\rm miss} of the double-tag candidate events in data. The clusters around the known D0D^{0} mass along the yy axis and zero along the xx axis are the signal double-tag candidate events. The signal region is selected around the known D0D^{0} mass: those candidates satisfying MBC(1.859,1.873)M_{\rm BC}\in(1.859,1.873) GeV/c2c^{2} are kept for further analysis. After the implementation of the above-mentioned requirements, the UmissU_{\rm miss} distributions of the surviving events are shown in Fig. 2.

The detection efficiencies ϵDT\epsilon_{{\rm DT}} obtained from signal MC samples are (19.49±0.14)%(19.49\pm 0.14)\% and (5.56±0.07)%(5.56\pm 0.07)\% for the double-tag events of D0K+ππ0D^{0}\to K^{+}\pi^{-}\pi^{0} and D0K+ππ0π0D^{0}\to K^{+}\pi^{-}\pi^{0}\pi^{0} versus D¯0K+eν¯e\bar{D}^{0}\to K^{+}e^{-}\bar{\nu}_{e}, respectively, where the efficiencies include the branching fraction of π0γγ\pi^{0}\to\gamma\gamma and the uncertainties are statistical only.

The background components and corresponding ratios in the total background are described below. For D0K+ππ0D^{0}\to K^{+}\pi^{-}\pi^{0} versus D¯0K+eν¯e\bar{D}^{0}\to K^{+}e^{-}\bar{\nu}_{e}, the peaking backgrounds are mainly from the CF modes D0Kπ+π0D^{0}\to K^{-}\pi^{+}\pi^{0} versus D¯0K+eν¯e\bar{D}^{0}\to K^{+}e^{-}\bar{\nu}_{e} due to the mis-identification between kaons and pions in the hadronic side (36.0%) and the mis-identification between kaons and electrons in the hadronic side (12.9%); while the residual backgrounds are D0Kπ+π0D^{0}\to K^{-}\pi^{+}\pi^{0} versus D¯0K+ππ0\bar{D}^{0}\to K^{+}\pi^{-}\pi^{0} (7.9%), D0K+KD^{0}\to K^{+}K^{-} versus D¯0K+eν¯e\bar{D}^{0}\to K^{+}e^{-}\bar{\nu}_{e} (6.5%), D0K¯0π+πD^{0}\to\bar{K}^{0}\pi^{+}\pi^{-} versus D¯0K+eν¯e\bar{D}^{0}\to K^{+}e^{-}\bar{\nu}_{e} (5.8%) and other decay modes (30.9%). For D0K+ππ0π0D^{0}\to K^{+}\pi^{-}\pi^{0}\pi^{0} versus D¯0K+eν¯e\bar{D}^{0}\to K^{+}e^{-}\bar{\nu}_{e}, the peaking backgrounds are mainly from D0Ke+νeD^{0}\to K^{-}e^{+}\nu_{e} versus D¯0K+ππ0π0\bar{D}^{0}\to K^{+}\pi^{-}\pi^{0}\pi^{0} (30.6%); while the residual backgrounds are D0KS0π+ππ0D^{0}\to K_{S}^{0}\pi^{+}\pi^{-}\pi^{0} versus D¯0K+eν¯e\bar{D}^{0}\to K^{+}e^{-}\bar{\nu}_{e}(8.2%), D0K+Kπ0D^{0}\to K^{+}K^{-}\pi^{0} versus D¯0K+eν¯e\bar{D}^{0}\to K^{+}e^{-}\bar{\nu}_{e} (8.2%), D0KL0π+πD^{0}\to K_{L}^{0}\pi^{+}\pi^{-} versus D¯0K+eν¯e\bar{D}^{0}\to K^{+}e^{-}\bar{\nu}_{e} (4.1%), and other decay modes (49.0%).

To measure the signal yields, unbinned maximum-likelihood fits are performed on the UmissU_{\mathrm{miss}} distributions. The non-peaking backgrounds (including a small contribution from wrongly reconstructed semileptonic candidates) are described by the corresponding MC-simulated shapes. The background shapes are derived from the inclusive MC sample and the signal shapes from the signal MC samples. The yield of the peaking background is fixed based on the known branching fractions and the mis-identification rates, and the yields of the signal and non-peaking backgrounds are free parameters of the fits. The fit results are shown in Fig. 2. From these fits, we measure 45.88.3+9.045.8^{+9.0}_{-8.3} signal events for the decay D0K+ππ0D^{0}\to K^{+}\pi^{-}\pi^{0} and 7.74.3+5.07.7^{+5.0}_{-4.3} signal events for D0K+ππ0π0D^{0}\to K^{+}\pi^{-}\pi^{0}\pi^{0}. These results give the product branching fractions to be (D0K+ππ0)(D¯0K+eν¯ν)=[1.110.20+0.21(stat)]×105{\mathcal{B}}(D^{0}\to K^{+}\pi^{-}\pi^{0})\cdot{\mathcal{B}}(\bar{D}^{0}\to K^{+}e^{-}\bar{\nu}_{\nu})=[1.11^{+0.21}_{-0.20}(\rm stat)]\times 10^{-5}, and (D0K+ππ0π0)(D¯0K+eν¯ν)=[6.533.65+4.24(stat)]×106{\mathcal{B}}(D^{0}\to K^{+}\pi^{-}\pi^{0}\pi^{0})\cdot{\mathcal{B}}(\bar{D}^{0}\to K^{+}e^{-}\bar{\nu}_{\nu})=[6.53^{+4.24}_{-3.65}(\rm stat)]\times 10^{-6}. Combining the world average of (D¯0K+eν¯ν)=(3.541±0.034)%{\mathcal{B}}(\bar{D}^{0}\to K^{+}e^{-}\bar{\nu}_{\nu})=(3.541\pm 0.034)\% pdg2020 , we obtain

(D0K+ππ0)=[3.130.56+0.60(stat)]×104,{\mathcal{B}}(D^{0}\to K^{+}\pi^{-}\pi^{0})=[3.13^{+0.60}_{-0.56}({\rm stat})]\times 10^{-4},

and

(D0K+ππ0π0)=[1.841.00+1.19(stat)]×104.{\mathcal{B}}(D^{0}\to K^{+}\pi^{-}\pi^{0}\pi^{0})=[1.84^{+1.19}_{-1.00}({\rm stat})]\times 10^{-4}.

The statistical significance of the signal is calculated by 2ln(0/max)\sqrt{-2{\rm ln({\mathcal{L}_{0}}/{\mathcal{L}_{\rm max}}})}, where max{\mathcal{L}}_{\rm max} and 0{\mathcal{L}}_{0} are the maximal likelihood of the fits with and without the signal contribution, respectively. These significances are determined to be 7.0σ7.0\sigma and 1.9σ1.9\sigma for D0K+ππ0D^{0}\to K^{+}\pi^{-}\pi^{0} and D0K+ππ0π0D^{0}\to K^{+}\pi^{-}\pi^{0}\pi^{0}, respectively.

Refer to caption
Fig. 2: Fits to the UmissU_{\mathrm{miss}} distributions of the accepted double-tag candidate events for (a) D0K+ππ0D^{0}\to K^{+}\pi^{-}\pi^{0} and (b) D0K+ππ0π0D^{0}\to K^{+}\pi^{-}\pi^{0}\pi^{0} versus D¯0K+eν¯e\bar{D}^{0}\to K^{+}e^{-}\bar{\nu}_{e} decays. The points with error bars are data. The blue solid curves are the total fit results (Total fit). The red dotted and black dashed curves are the fitted signal (Signal) and background (Total BKG) components, respectively. The component between the black dashed and pink dot-dashed curves is the peaking background and the pink dot-dashed curve represents the other background contributions (Other BKG).

The upper limit on the branching fraction of the decay D0K+ππ0π0D^{0}\to K^{+}\pi^{-}\pi^{0}\pi^{0} is determined to be 3.6×1043.6\times 10^{-4} at 90% confidence level, using the Bayesian approach UPM after incorporating the systematic uncertainty. The distribution of the likelihood versus the assumed branching fraction is shown in Fig. 3.

Refer to caption
Fig. 3: Distributions of normalized likelihood distributions versus the signal yield NsigN_{\rm sig} and branching fraction of D0K+ππ0π0D^{0}\to K^{+}\pi^{-}\pi^{0}\pi^{0}. The results obtained with and without incorporating the systematic uncertainty are shown by the red dashed and blue solid curves, respectively. The black arrow shows the result corresponding to 90% confidence level.

V Systematic uncertainties

The systematic uncertainties originating from ee^{-} tracking (PID) efficiencies are studied by using a control sample of e+eγe+ee^{+}e^{-}\to\gamma e^{+}e^{-} events. The efficiency ratios of data and MC simulation for ee^{-} tracking and ee^{-} PID are (101.0±0.2)%(101.0\pm 0.2)\% and (101.2±0.2)%(101.2\pm 0.2)\%, respectively. Here, the two dimensional (momentum and cosθ\cos\theta) ee^{-} tracking (PID) efficiencies from the control sample have been re-weighted to match those in the signal decays. The systematic uncertainties associated with the K+K^{+} and π\pi^{-} tracking (PID) efficiencies are investigated with D0Kπ+D^{0}\to K^{-}\pi^{+}, Kπ+π0K^{-}\pi^{+}\pi^{0}, Kπ+π+πK^{-}\pi^{+}\pi^{+}\pi^{-} versus D¯0K+π\bar{D}^{0}\to K^{+}\pi^{-}, K+ππ0K^{+}\pi^{-}\pi^{0}, K+πππ+K^{+}\pi^{-}\pi^{-}\pi^{+}, as well as D+Kπ+π+D^{+}\to K^{-}\pi^{+}\pi^{+} versus DK+ππD^{-}\to K^{+}\pi^{-}\pi^{-} double-tag hadronic DD¯D\bar{D} events, using a sample with a missing K+K^{+} or π\pi^{-}. The ratios of tracking or PID efficiencies for charged kaons and pions between data and MC simulation are listed in Table 1. Here, the momentum dependent K+(π)K^{+}(\pi^{-}) tracking (PID) efficiencies from control samples have been re-weighted to match those in the signal decays. After correcting the signal MC efficiencies by these factors, the residual uncertainties on the tracking (PID) efficiencies of ee^{-}, K+K^{+}, and π\pi^{-} are assigned as 0.2% (0.2%), 0.3% (0.2%), and 0.2% (0.2%), respectively.

Table 1: The ratios of efficiencies of K+K^{+} tracking, K+K^{+} PID, π\pi^{-} tracking, and π\pi^{-} PID between data and MC simulation.
Source D0K+ππ0D^{0}\to K^{+}\pi^{-}\pi^{0} (%) D0K+ππ0π0D^{0}\to K^{+}\pi^{-}\pi^{0}\pi^{0} (%)
Ktracking+K^{+}_{\rm tracking} 101.1±0.3101.1\pm 0.3 101.7±0.3101.7\pm 0.3
KPID+K^{+}_{\rm PID} 100.0±0.2100.0\pm 0.2 100.0±0.2100.0\pm 0.2
πtracking\pi^{-}_{\rm tracking} 100.1±0.2100.1\pm 0.2 100.2±0.2100.2\pm 0.2
πPID\pi^{-}_{\rm PID} 99.6±0.299.6\pm 0.2 99.8±0.299.8\pm 0.2

The systematic uncertainty of π0\pi^{0} reconstruction efficiency is investigated by using the double-tag hadronic DD¯D\bar{D} decays of D¯0K+ππ0\bar{D}^{0}\to K^{+}\pi^{-}\pi^{0} and D¯0KS0π0\bar{D}^{0}\to K^{0}_{S}\pi^{0} tagged by either D0Kπ+D^{0}\to K^{-}\pi^{+} or D0Kπ+π+πD^{0}\to K^{-}\pi^{+}\pi^{+}\pi^{-} epjc76 ; cpc40 . The systematic uncertainty on the π0\pi^{0} reconstruction efficiency is assigned as 0.8% for each π0\pi^{0}.

The systematic uncertainty associated with the UmissU_{\rm miss} fit is estimated by comparing the baseline branching-fraction result with the result obtained with alternative signal shapes and background shapes. The systematic uncertainty due to the assumed signal shape is estimated by replacing the nominal description with one convolved with a Gaussian resolution function. Here, the parameters used in the convolved Gaussian function representing the data-MC simulation difference are obtained from the CF decay D0Kπ+π0(π0)D^{0}\to K^{-}\pi^{+}\pi^{0}(\pi^{0}). The change in the branching fraction due to the assumed signal shape is found to be negligible. The systematic uncertainty from the simulated background shape is taken into account by varying the dominant peaking background component by ±1σ\pm 1\sigma. The change in the re-measured branching fraction, 1.0%, is assigned as the systematic uncertainty associated with the background shape for D0K+ππ0D^{0}\to K^{+}\pi^{-}\pi^{0} decays, while that for D0K+ππ0π0D^{0}\to K^{+}\pi^{-}\pi^{0}\pi^{0} decays, is found to be negligible. In addition, the effects of other background sources, examined by varying their size and shape, are also negligible.

The systematic uncertainties due to the requirements of ΔE\Delta E and MBCM_{\rm BC} for the hadronic side as well as the requirement of MK+eM_{K^{+}e^{-}} for the semileptonic side are studied by using control samples of the CF decay D0Kπ+π0(π0)D^{0}\to K^{-}\pi^{+}\pi^{0}(\pi^{0}) versus D¯0K+eν¯e\bar{D}^{0}\to K^{+}e^{-}\bar{\nu}_{e}. The corresponding uncertainties are taken to be the differences of the acceptance efficiencies between data and MC simulation. These uncertainties are all found to be 0.1%. The systematic uncertainty associated with the KS0K^{0}_{S} veto in the Mπ0π0M_{\pi^{0}\pi^{0}} distribution is assigned by varying the mass window by ±20\pm 20 MeV/c2c^{2}. The maximum relative change in the measured branching fraction is not significantly larger than the statistical uncertainty after considering the correlations between the signal yields, hence this uncertainty is ignored ksocut .

The systematic uncertainty due to MC modeling is assigned to be the difference between the nominal efficiency and the average efficiency based on the signal MC events of the various components. Besides individual phase-space decays, the resonant decays D0K(892)0π0D^{0}\to K^{*}(892)^{0}\pi^{0}, D0K(892)+πD^{0}\to K^{*}(892)^{+}\pi^{-}, and D0K+ρ(770)D^{0}\to K^{+}\rho(770)^{-} have been considered for D0K+ππ0D^{0}\to K^{+}\pi^{-}\pi^{0}; and the resonant decays D0K(892)0π0π0D^{0}\to K^{*}(892)^{0}\pi^{0}\pi^{0}, D0K(892)+ππ0D^{0}\to K^{*}(892)^{+}\pi^{-}\pi^{0}, and D0K+π0ρD^{0}\to K^{+}\pi^{0}\rho^{-} have been considered for D0K+ππ0π0D^{0}\to K^{+}\pi^{-}\pi^{0}\pi^{0}. The corresponding systematic uncertainties are assigned as 1.9% and 3.6% for D0K+ππ0D^{0}\to K^{+}\pi^{-}\pi^{0} and D0K+ππ0π0D^{0}\to K^{+}\pi^{-}\pi^{0}\pi^{0}, respectively. The uncertainty in the MC modeling of the semileptonic decay of D¯0K+eν¯e\bar{D}^{0}\to K^{+}e^{-}\bar{\nu}_{e} has been estimated in our previous work and is negligible bes3-D0-kev .

The systematic uncertainty due to the EextraγmaxE^{\rm max}_{\rm extra\,\gamma}, NextrachargeN_{\rm extra}^{\rm charge}, and Nextraπ0N_{\rm extra\,\pi^{0}} requirements is estimated by using a control sample of the CF decay D0Kπ+π0(π0)D^{0}\to K^{-}\pi^{+}\pi^{0}(\pi^{0}) versus D¯0K+eν¯e\bar{D}^{0}\to K^{+}e^{-}\bar{\nu}_{e}. The differences in the acceptance efficiencies between data and MC simulation, 0.2% and 0.8%, are taken as the corresponding systematic uncertainties for the D0K+ππ0D^{0}\to K^{+}\pi^{-}\pi^{0} and D0K+ππ0π0D^{0}\to K^{+}\pi^{-}\pi^{0}\pi^{0} decays, respectively.

The uncertainties due to MC sample sizes are 0.7% and 1.2% for D0K+ππ0D^{0}\to K^{+}\pi^{-}\pi^{0} and D0K+ππ0π0D^{0}\to K^{+}\pi^{-}\pi^{0}\pi^{0} decays, respectively. The uncertainty from FSR recovery is estimated as 0.3% as in D¯0K+eν¯e\bar{D}^{0}\to K^{+}e^{-}\bar{\nu}_{e} decays bes3-D0-kev . The total number of the D0D¯0D^{0}\bar{D}^{0} pairs in the data sample is cited from Ref. bes3-crsDD and is known with a precision that induces a systematic uncertainty of 0.9%. The branching fraction of D¯0K+eν¯e\bar{D}^{0}\to K^{+}e^{-}\bar{\nu}_{e} contributes a systematic uncertainty of 1.0% pdg2020 .

Adding all these uncertainties in quadrature yields a total systematic uncertainty of 2.9% for D0K+ππ0D^{0}\to K^{+}\pi^{-}\pi^{0} and 4.0% for D0K+ππ0π0D^{0}\to K^{+}\pi^{-}\pi^{0}\pi^{0}. The systematic uncertainties discussed above are summarized in Table 2.

Table 2: Systematic uncertainties (in %) in the determination of the branching fractions.
Source K+ππ0K^{+}\pi^{-}\pi^{0} K+ππ0π0K^{+}\pi^{-}\pi^{0}\pi^{0}
Tracking of K+K^{+}, ee^{-}, and π\pi^{-} 0.7 0.7
PID of K+K^{+}, ee^{-}, and π\pi^{-} 0.5 0.5
π0\pi^{0} reconstruction 0.8 1.6
KS0K_{S}^{0} veto N/A Ignored
MC model 1.9 3.6
UmissU_{\rm miss} fit 1.0 Negligible
ΔE\Delta E requirement 0.1 0.1
MBCM_{\rm BC} requirement 0.1 0.1
Eextraγmax&Nextraπ0&NextrachargeE^{\rm max}_{\rm extra\,\gamma}\&N_{\rm extra\,\pi^{0}}\&N_{\rm extra}^{\rm charge} 0.2 0.8
MC statistics 0.7 1.2
FSR recovery 0.3 0.3
ND0D¯0N_{D^{0}\bar{D}^{0}} 0.9 0.9
Quoted branching fraction 1.0 1.0
Total 2.9 4.0

VI Summary

In conclusion, using 2.93fb12.93\,\rm fb^{-1} of e+ee^{+}e^{-} collision data accumulated at a center-of-mass energy of 3.773 GeV with the BESIII detector, we have measured the branching fraction of the DCS decay of D0K+ππ0D^{0}\to K^{+}\pi^{-}\pi^{0} and performed a search for the DCS decay D0K+ππ0π0D^{0}\to K^{+}\pi^{-}\pi^{0}\pi^{0}. The branching fraction of D0K+ππ0D^{0}\to K^{+}\pi^{-}\pi^{0} is determined to be [3.130.56+0.60(stat)±0.09(syst)]×104[3.13^{+0.60}_{-0.56}({\rm stat})\pm 0.09({\rm syst})]\times 10^{-4}, which is consistent with the PDG value pdg2020 . No significant signal is seen for D0K+ππ0π0D^{0}\to K^{+}\pi^{-}\pi^{0}\pi^{0} and an upper limit of 3.6×1043.6\times 10^{-4} is set on the branching fraction at the 90% C.L. Using the world-average value of (D0Kπ+π0)=(14.4±0.5)%{\mathcal{B}}(D^{0}\to K^{-}\pi^{+}\pi^{0})=(14.4\pm 0.5)\% pdg2020 , we obtain the DCS/CF ratio (D0K+ππ0)/(D0Kπ+π0)={\mathcal{B}}(D^{0}\to K^{+}\pi^{-}\pi^{0})/{\mathcal{B}}(D^{0}\to K^{-}\pi^{+}\pi^{0})= (0.22±0.04)%(0.22\pm 0.04)\%, corresponding to (0.75±0.14)tan4θC(0.75\pm 0.14)\tan^{4}\theta_{C}. Our result for D0K+ππ0π0D^{0}\to K^{+}\pi^{-}\pi^{0}\pi^{0} and the world-average value of (D0Kπ+π0π0)=(8.86±0.23)%{\mathcal{B}}(D^{0}\to K^{-}\pi^{+}\pi^{0}\pi^{0})=(8.86\pm 0.23)\% pdg2020 leads to the upper limit (D0K+ππ0π0)/(D0Kπ+π0π0)<0.40%{\mathcal{B}}(D^{0}\to K^{+}\pi^{-}\pi^{0}\pi^{0})/{\mathcal{B}}(D^{0}\to K^{-}\pi^{+}\pi^{0}\pi^{0})<0.40\% at the 90% C.L., corresponding to 1.37×tan4θC1.37\times\tan^{4}\theta_{C}. In the future, amplitude analyses of these two decays with larger data samples taken by BESIII bes3-white-paper ; Li:2021iwf can be used to measure the decay rates of the intermediate two-body D0D^{0} decays, which are important for exploring quark SU(3)-flavor symmetry and its breaking effects, and thereby benefit the theoretical predictions of CPCP violation in hadronic DD decays Saur:2020rgd .

VII Acknowledgement

The BESIII collaboration thanks the staff of BEPCII and the IHEP computing center for their strong support. This work is supported in part by National Key Research and Development Program of China under Contracts Nos. 2020YFA0406400, 2020YFA0406300; National Natural Science Foundation of China (NSFC) under Contracts Nos. 12105076, 11705230, 11625523, 11635010, 11735014, 11822506, 11835012, 11935015, 11935016, 11935018, 11961141012, 12022510, 12025502, 12035009, 12035013, 12061131003, 12192260, 12192260, 12192261, 12192262, 12192263, 12192264, and 12192265; the Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Program; Joint Large-Scale Scientific Facility Funds of the NSFC and CAS under Contracts Nos. U1732263, U1832207; CAS Key Research Program of Frontier Sciences under Contract No. QYZDJ-SSW-SLH040; 100 Talents Program of CAS; INPAC and Shanghai Key Laboratory for Particle Physics and Cosmology; ERC under Contract No. 758462; European Union’s Horizon 2020 research and innovation programme under Marie Sklodowska-Curie grant agreement under Contract No. 894790;; German Research Foundation DFG under Contracts Nos. 443159800, Collaborative Research Center CRC 1044, FOR 2359, GRK 214; Istituto Nazionale di Fisica Nucleare, Italy; Ministry of Development of Turkey under Contract No. DPT2006K-120470; National Science and Technology fund; Olle Engkvist Foundation under Contract No. 200-0605; STFC (United Kingdom); The Knut and Alice Wallenberg Foundation (Sweden) under Contract No. 2016.0157; The Royal Society, UK under Contracts Nos. DH140054, DH160214; The Swedish Research Council; U. S. Department of Energy under Contracts Nos. DE-FG02-05ER41374, DE-SC-0012069.

References