This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

The Belle and Belle II Collaborations

Measurement of the D0D^{0} \rightarrow Kπ+e+eK^{-}\pi^{+}e^{+}e^{-} branching fraction and search for D0D^{0} \rightarrow π+πe+e\pi^{+}\pi^{-}e^{+}e^{-} and D0D^{0} \rightarrow K+Ke+eK^{+}K^{-}e^{+}e^{-} decays at Belle

I. Adachi  0000-0003-2287-0173    L. Aggarwal  0000-0002-0909-7537    H. Ahmed  0000-0003-3976-7498    Y. Ahn  0000-0001-6820-0576    H. Aihara 0000-0002-1907-5964    N. Akopov 0000-0002-4425-2096    S. Alghamdi 0000-0001-7609-112X    M. Alhakami 0000-0002-2234-8628    A. Aloisio 0000-0002-3883-6693    N. Althubiti  0000-0003-1513-0409    K. Amos 0000-0003-1757-5620    M. Angelsmark  0000-0003-4745-1020    N. Anh Ky 0000-0003-0471-197X    C. Antonioli 0009-0003-9088-3811    D. M. Asner  0000-0002-1586-5790    H. Atmacan 0000-0003-2435-501X    T. Aushev  0000-0002-6347-7055    V. Aushev 0000-0002-8588-5308    M. Aversano 0000-0001-9980-0953    R. Ayad 0000-0003-3466-9290    V. Babu  0000-0003-0419-6912    H. Bae  0000-0003-1393-8631    N. K. Baghel 0009-0008-7806-4422    S. Bahinipati 0000-0002-3744-5332    P. Bambade  0000-0001-7378-4852    Sw. Banerjee 0000-0001-8852-2409    S. Bansal 0000-0003-1992-0336    M. Barrett 0000-0002-2095-603X    M. Bartl 0009-0002-7835-0855    J. Baudot  0000-0001-5585-0991    A. Baur  0000-0003-1360-3292    A. Beaubien 0000-0001-9438-089X    F. Becherer 0000-0003-0562-4616    J. Becker  0000-0002-5082-5487    J. V. Bennett  0000-0002-5440-2668    F. U. Bernlochner  0000-0001-8153-2719    V. Bertacchi 0000-0001-9971-1176    M. Bertemes 0000-0001-5038-360X    E. Bertholet 0000-0002-3792-2450    M. Bessner 0000-0003-1776-0439    S. Bettarini  0000-0001-7742-2998    V. Bhardwaj 0000-0001-8857-8621    B. Bhuyan 0000-0001-6254-3594    F. Bianchi 0000-0002-1524-6236    L. Bierwirth 0009-0003-0192-9073    T. Bilka 0000-0003-1449-6986    D. Biswas  0000-0002-7543-3471    A. Bobrov  0000-0001-5735-8386    D. Bodrov 0000-0001-5279-4787    A. Bolz 0000-0002-4033-9223    A. Bondar 0000-0002-5089-5338    J. Borah  0000-0003-2990-1913    A. Boschetti 0000-0001-6030-3087    A. Bozek 0000-0002-5915-1319    M. Bračko 0000-0002-2495-0524    P. Branchini 0000-0002-2270-9673    N. Brenny 0009-0006-2917-9173    R. A. Briere 0000-0001-5229-1039    T. E. Browder 0000-0001-7357-9007    A. Budano  0000-0002-0856-1131    S. Bussino 0000-0002-3829-9592    Q. Campagna  0000-0002-3109-2046    M. Campajola 0000-0003-2518-7134    L. Cao 0000-0001-8332-5668    G. Casarosa 0000-0003-4137-938X    C. Cecchi 0000-0002-2192-8233    J. Cerasoli 0000-0001-9777-881X    M.-C. Chang 0000-0002-8650-6058    P. Chang 0000-0003-4064-388X    R. Cheaib 0000-0001-5729-8926    P. Cheema 0000-0001-8472-5727    C. Chen  0000-0003-1589-9955    L. Chen  0009-0003-6318-2008    B. G. Cheon  0000-0002-8803-4429    K. Chilikin 0000-0001-7620-2053    J. Chin 0009-0005-9210-8872    K. Chirapatpimol 0000-0003-2099-7760    H.-E. Cho 0000-0002-7008-3759    K. Cho 0000-0003-1705-7399    S.-J. Cho 0000-0002-1673-5664    S.-K. Choi 0000-0003-2747-8277    S. Choudhury 0000-0001-9841-0216    J. Cochran  0000-0002-1492-914X    I. Consigny 0009-0009-8755-6290    L. Corona 0000-0002-2577-9909    J. X. Cui  0000-0002-2398-3754    E. De La Cruz-Burelo  0000-0002-7469-6974    S. A. De La Motte 0000-0003-3905-6805    G. de Marino 0000-0002-6509-7793    G. De Nardo  0000-0002-2047-9675    G. De Pietro  0000-0001-8442-107X    R. de Sangro 0000-0002-3808-5455    M. Destefanis  0000-0003-1997-6751    S. Dey 0000-0003-2997-3829    R. Dhamija  0000-0001-7052-3163    A. Di Canto 0000-0003-1233-3876    F. Di Capua 0000-0001-9076-5936    J. Dingfelder 0000-0001-5767-2121    Z. Doležal 0000-0002-5662-3675    I. Domínguez Jiménez 0000-0001-6831-3159    T. V. Dong 0000-0003-3043-1939    X. Dong 0000-0001-8574-9624    K. Dort  0000-0003-0849-8774    D. Dossett 0000-0002-5670-5582    S. Dubey  0000-0002-1345-0970    K. Dugic  0009-0006-6056-546X    G. Dujany 0000-0002-1345-8163    P. Ecker  0000-0002-6817-6868    M. Eliachevitch 0000-0003-2033-537X    D. Epifanov 0000-0001-8656-2693    R. Farkas  0000-0002-7647-1429    P. Feichtinger 0000-0003-3966-7497    T. Ferber 0000-0002-6849-0427    T. Fillinger  0000-0001-9795-7412    C. Finck 0000-0002-5068-5453    G. Finocchiaro 0000-0002-3936-2151    A. Fodor  0000-0002-2821-759X    F. Forti 0000-0001-6535-7965    A. Frey 0000-0001-7470-3874    B. G. Fulsom  0000-0002-5862-9739    A. Gabrielli 0000-0001-7695-0537    E. Ganiev  0000-0001-8346-8597    M. Garcia-Hernandez 0000-0003-2393-3367    R. Garg 0000-0002-7406-4707    G. Gaudino  0000-0001-5983-1552    V. Gaur 0000-0002-8880-6134    V. Gautam 0009-0001-9817-8637    A. Gellrich  0000-0003-0974-6231    G. Ghevondyan 0000-0003-0096-3555    D. Ghosh 0000-0002-3458-9824    H. Ghumaryan 0000-0001-6775-8893    G. Giakoustidis 0000-0001-5982-1784    R. Giordano 0000-0002-5496-7247    A. Giri 0000-0002-8895-0128    P. Gironella Gironell 0000-0001-5603-4750    A. Glazov 0000-0002-8553-7338    B. Gobbo 0000-0002-3147-4562    R. Godang 0000-0002-8317-0579    O. Gogota 0000-0003-4108-7256    P. Goldenzweig 0000-0001-8785-847X    E. Graziani  0000-0001-8602-5652    D. Greenwald 0000-0001-6964-8399    Z. Gruberová 0000-0002-5691-1044    T. Gu 0000-0002-1470-6536    Y. Guan 0000-0002-5541-2278    K. Gudkova 0000-0002-5858-3187    I. Haide 0000-0003-0962-6344    S. Halder  0000-0002-6280-494X    Y. Han 0000-0001-6775-5932    T. Hara  0000-0002-4321-0417    C. Harris 0000-0003-0448-4244    K. Hayasaka  0000-0002-6347-433X    H. Hayashii 0000-0002-5138-5903    S. Hazra 0000-0001-6954-9593    M. T. Hedges  0000-0001-6504-1872    A. Heidelbach 0000-0002-6663-5469    I. Heredia de la Cruz  0000-0002-8133-6467    M. Hernández Villanueva 0000-0002-6322-5587    T. Higuchi  0000-0002-7761-3505    M. Hoek  0000-0002-1893-8764    M. Hohmann 0000-0001-5147-4781    R. Hoppe 0009-0005-8881-8935    P. Horak 0000-0001-9979-6501    C.-L. Hsu  0000-0002-1641-430X    A. Huang 0000-0003-1748-7348    T. Humair  0000-0002-2922-9779    T. Iijima 0000-0002-4271-711X    K. Inami 0000-0003-2765-7072    G. Inguglia 0000-0003-0331-8279    N. Ipsita 0000-0002-2927-3366    A. Ishikawa  0000-0002-3561-5633    R. Itoh  0000-0003-1590-0266    M. Iwasaki 0000-0002-9402-7559    P. Jackson  0000-0002-0847-402X    D. Jacobi  0000-0003-2399-9796    W. W. Jacobs 0000-0002-9996-6336    E.-J. Jang  0000-0002-1935-9887    Q. P. Ji 0000-0003-2963-2565    S. Jia  0000-0001-8176-8545    Y. Jin 0000-0002-7323-0830    A. Johnson 0000-0002-8366-1749    K. K. Joo 0000-0002-5515-0087    H. Junkerkalefeld 0000-0003-3987-9895    A. B. Kaliyar  0000-0002-2211-619X    J. Kandra 0000-0001-5635-1000    K. H. Kang 0000-0002-6816-0751    S. Kang 0000-0002-5320-7043    G. Karyan  0000-0001-5365-3716    T. Kawasaki  0000-0002-4089-5238    F. Keil 0000-0002-7278-2860    C. Ketter  0000-0002-5161-9722    C. Kiesling  0000-0002-2209-535X    C.-H. Kim  0000-0002-5743-7698    D. Y. Kim 0000-0001-8125-9070    J.-Y. Kim  0000-0001-7593-843X    K.-H. Kim  0000-0002-4659-1112    Y. J. Kim  0000-0001-9511-9634    Y.-K. Kim 0000-0002-9695-8103    H. Kindo 0000-0002-6756-3591    K. Kinoshita 0000-0001-7175-4182    P. Kodyš  0000-0002-8644-2349    T. Koga 0000-0002-1644-2001    S. Kohani 0000-0003-3869-6552    K. Kojima 0000-0002-3638-0266    A. Korobov  0000-0001-5959-8172    S. Korpar 0000-0003-0971-0968    E. Kovalenko  0000-0001-8084-1931    R. Kowalewski 0000-0002-7314-0990    P. Križan  0000-0002-4967-7675    P. Krokovny  0000-0002-1236-4667    T. Kuhr  0000-0001-6251-8049    Y. Kulii 0000-0001-6217-5162    D. Kumar 0000-0001-6585-7767    J. Kumar 0000-0002-8465-433X    M. Kumar 0000-0002-6627-9708    R. Kumar 0000-0002-6277-2626    K. Kumara 0000-0003-1572-5365    T. Kunigo  0000-0001-9613-2849    A. Kuzmin  0000-0002-7011-5044    Y.-J. Kwon  0000-0001-9448-5691    S. Lacaprara 0000-0002-0551-7696    Y.-T. Lai 0000-0001-9553-3421    K. Lalwani 0000-0002-7294-396X    T. Lam  0000-0001-9128-6806    L. Lanceri 0000-0001-8220-3095    J. S. Lange 0000-0003-0234-0474    T. S. Lau 0000-0001-7110-7823    M. Laurenza 0000-0002-7400-6013    K. Lautenbach 0000-0003-3762-694X    R. Leboucher  0000-0003-3097-6613    F. R. Le Diberder 0000-0002-9073-5689    M. J. Lee  0000-0003-4528-4601    C. Lemettais  0009-0008-5394-5100    P. Leo 0000-0003-3833-2900    D. Levit 0000-0001-5789-6205    P. M. Lewis 0000-0002-5991-622X    C. Li 0000-0002-3240-4523    H.-J. Li 0000-0001-9275-4739    L. K. Li 0000-0002-7366-1307    Q. M. Li 0009-0004-9425-2678    S. X. Li 0000-0003-4669-1495    W. Z. Li 0009-0002-8040-2546    Y. Li 0000-0002-4413-6247    Y. B. Li 0000-0002-9909-2851    Y. P. Liao  0009-0000-1981-0044    J. Libby 0000-0002-1219-3247    J. Lin  0000-0002-3653-2899    S. Lin 0000-0001-5922-9561    Z. Liptak 0000-0002-6491-8131    M. H. Liu  0000-0002-9376-1487    Q. Y. Liu 0000-0002-7684-0415    Y. Liu 0000-0002-8374-3947    Z. Q. Liu  0000-0002-0290-3022    D. Liventsev 0000-0003-3416-0056    S. Longo 0000-0002-8124-8969    A. Lozar  0000-0002-0569-6882    T. Lueck 0000-0003-3915-2506    C. Lyu  0000-0002-2275-0473    Y. Ma 0000-0001-8412-8308    C. Madaan 0009-0004-1205-5700    M. Maggiora  0000-0003-4143-9127    S. P. Maharana 0000-0002-1746-4683    R. Maiti  0000-0001-5534-7149    S. Maity 0000-0003-3076-9243    G. Mancinelli 0000-0003-1144-3678    R. Manfredi 0000-0002-8552-6276    E. Manoni 0000-0002-9826-7947    M. Mantovano  0000-0002-5979-5050    D. Marcantonio 0000-0002-1315-8646    S. Marcello 0000-0003-4144-863X    C. Marinas 0000-0003-1903-3251    C. Martellini  0000-0002-7189-8343    A. Martens 0000-0003-1544-4053    A. Martini 0000-0003-1161-4983    T. Martinov 0000-0001-7846-1913    L. Massaccesi 0000-0003-1762-4699    M. Masuda 0000-0002-7109-5583    T. Matsuda 0000-0003-4673-570X    D. Matvienko  0000-0002-2698-5448    S. K. Maurya 0000-0002-7764-5777    M. Maushart 0009-0004-1020-7299    J. A. McKenna  0000-0001-9871-9002    R. Mehta  0000-0001-8670-3409    F. Meier 0000-0002-6088-0412    D. Meleshko 0000-0002-0872-4623    M. Merola 0000-0002-7082-8108    C. Miller  0000-0003-2631-1790    M. Mirra 0000-0002-1190-2961    S. Mitra 0000-0002-1118-6344    K. Miyabayashi 0000-0003-4352-734X    H. Miyake 0000-0002-7079-8236    R. Mizuk 0000-0002-2209-6969    G. B. Mohanty 0000-0001-6850-7666    S. Mondal  0000-0002-3054-8400    S. Moneta 0000-0003-2184-7510    H.-G. Moser  0000-0003-3579-9951    M. Mrvar 0000-0001-6388-3005    R. Mussa  0000-0002-0294-9071    I. Nakamura 0000-0002-7640-5456    M. Nakao  0000-0001-8424-7075    Y. Nakazawa  0000-0002-6271-5808    M. Naruki  0000-0003-1773-2999    Z. Natkaniec 0000-0003-0486-9291    A. Natochii 0000-0002-1076-814X    M. Nayak  0000-0002-2572-4692    G. Nazaryan 0000-0002-9434-6197    M. Neu 0000-0002-4564-8009    C. Niebuhr 0000-0002-4375-9741    M. Niiyama 0000-0003-1746-586X    S. Nishida  0000-0001-6373-2346    S. Ogawa  0000-0002-7310-5079    Y. Onishchuk  0000-0002-8261-7543    H. Ono 0000-0003-4486-0064    Y. Onuki 0000-0002-1646-6847    F. Otani  0000-0001-6016-219X    E. R. Oxford 0000-0002-0813-4578    P. Pakhlov  0000-0001-7426-4824    G. Pakhlova 0000-0001-7518-3022    E. Paoloni  0000-0001-5969-8712    S. Pardi 0000-0001-7994-0537    K. Parham 0000-0001-9556-2433    H. Park 0000-0001-6087-2052    J. Park 0000-0001-6520-0028    K. Park 0000-0003-0567-3493    S.-H. Park 0000-0001-6019-6218    B. Paschen 0000-0003-1546-4548    A. Passeri 0000-0003-4864-3411    S. Patra 0000-0002-4114-1091    S. Paul 0000-0002-8813-0437    T. K. Pedlar 0000-0001-9839-7373    I. Peruzzi 0000-0001-6729-8436    R. Peschke  0000-0002-2529-8515    R. Pestotnik 0000-0003-1804-9470    M. Piccolo  0000-0001-9750-0551    L. E. Piilonen 0000-0001-6836-0748    G. Pinna Angioni 0000-0003-0808-8281    P. L. M. Podesta-Lerma 0000-0002-8152-9605    T. Podobnik 0000-0002-6131-819X    S. Pokharel 0000-0002-3367-738X    A. Prakash  0000-0002-6462-8142    C. Praz 0000-0002-6154-885X    S. Prell 0000-0002-0195-8005    E. Prencipe 0000-0002-9465-2493    M. T. Prim 0000-0002-1407-7450    S. Privalov 0009-0004-1681-3919    I. Prudiiev 0000-0002-0819-284X    H. Purwar  0000-0002-3876-7069    P. Rados  0000-0003-0690-8100    G. Raeuber 0000-0003-2948-5155    S. Raiz 0000-0001-7010-8066    N. Rauls  0000-0002-6583-4888    K. Ravindran 0000-0002-5584-2614    J. U. Rehman 0000-0002-2673-1982    M. Reif 0000-0002-0706-0247    S. Reiter 0000-0002-6542-9954    M. Remnev 0000-0001-6975-1724    L. Reuter 0000-0002-5930-6237    D. Ricalde Herrmann 0000-0001-9772-9989    I. Ripp-Baudot 0000-0002-1897-8272    G. Rizzo  0000-0003-1788-2866    S. H. Robertson  0000-0003-4096-8393    M. Roehrken  0000-0003-0654-2866    J. M. Roney 0000-0001-7802-4617    A. Rostomyan  0000-0003-1839-8152    N. Rout 0000-0002-4310-3638    L. Salutari  0009-0001-2822-6939    D. A. Sanders  0000-0002-4902-966X    S. Sandilya 0000-0002-4199-4369    L. Santelj  0000-0003-3904-2956    Y. Sato  0000-0003-3751-2803    V. Savinov 0000-0002-9184-2830    B. Scavino 0000-0003-1771-9161    C. Schmitt 0000-0002-3787-687X    J. Schmitz 0000-0001-8274-8124    S. Schneider 0009-0002-5899-0353    G. Schnell 0000-0002-7336-3246    M. Schnepf 0000-0003-0623-0184    C. Schwanda  0000-0003-4844-5028    A. J. Schwartz 0000-0002-7310-1983    Y. Seino  0000-0002-8378-4255    A. Selce  0000-0001-8228-9781    K. Senyo 0000-0002-1615-9118    J. Serrano 0000-0003-2489-7812    M. E. Sevior 0000-0002-4824-101X    C. Sfienti 0000-0002-5921-8819    W. Shan 0000-0003-2811-2218    C. Sharma  0000-0002-1312-0429    G. Sharma 0000-0002-5620-5334    C. P. Shen  0000-0002-9012-4618    X. D. Shi 0000-0002-7006-6107    T. Shillington  0000-0003-3862-4380    T. Shimasaki 0000-0003-3291-9532    J.-G. Shiu  0000-0002-8478-5639    D. Shtol 0000-0002-0622-6065    B. Shwartz 0000-0002-1456-1496    A. Sibidanov 0000-0001-8805-4895    F. Simon 0000-0002-5978-0289    J. B. Singh 0000-0001-9029-2462    J. Skorupa  0000-0002-8566-621X    M. Sobotzik  0000-0002-1773-5455    A. Soffer 0000-0002-0749-2146    A. Sokolov 0000-0002-9420-0091    E. Solovieva  0000-0002-5735-4059    W. Song 0000-0003-1376-2293    S. Spataro 0000-0001-9601-405X    B. Spruck 0000-0002-3060-2729    M. Starič  0000-0001-8751-5944    P. Stavroulakis 0000-0001-9914-7261    S. Stefkova 0000-0003-2628-530X    R. Stroili  0000-0002-3453-142X    J. Strube 0000-0001-7470-9301    Y. Sue  0000-0003-2430-8707    M. Sumihama  0000-0002-8954-0585    K. Sumisawa 0000-0001-7003-7210    W. Sutcliffe 0000-0002-9795-3582    N. Suwonjandee 0009-0000-2819-5020    H. Svidras  0000-0003-4198-2517    M. Takahashi  0000-0003-1171-5960    M. Takizawa 0000-0001-8225-3973    U. Tamponi 0000-0001-6651-0706    K. Tanida  0000-0002-8255-3746    F. Tenchini  0000-0003-3469-9377    A. Thaller  0000-0003-4171-6219    O. Tittel 0000-0001-9128-6240    R. Tiwary 0000-0002-5887-1883    E. Torassa  0000-0003-2321-0599    K. Trabelsi  0000-0001-6567-3036    F. F. Trantou 0000-0003-0517-9129    I. Tsaklidis 0000-0003-3584-4484    M. Uchida  0000-0003-4904-6168    I. Ueda  0000-0002-6833-4344    T. Uglov  0000-0002-4944-1830    K. Unger 0000-0001-7378-6671    Y. Unno 0000-0003-3355-765X    K. Uno 0000-0002-2209-8198    S. Uno 0000-0002-3401-0480    P. Urquijo 0000-0002-0887-7953    Y. Ushiroda 0000-0003-3174-403X    S. E. Vahsen  0000-0003-1685-9824    R. van Tonder 0000-0002-7448-4816    M. Veronesi  0000-0002-1916-3884    A. Vinokurova 0000-0003-4220-8056    V. S. Vismaya 0000-0002-1606-5349    L. Vitale 0000-0003-3354-2300    V. Vobbilisetti 0000-0002-4399-5082    R. Volpe 0000-0003-1782-2978    A. Vossen  0000-0003-0983-4936    B. Wach 0000-0003-3533-7669    M. Wakai  0000-0003-2818-3155    S. Wallner  0000-0002-9105-1625    E. Wang  0000-0001-6391-5118    M.-Z. Wang  0000-0002-0979-8341    X. L. Wang 0000-0001-5805-1255    Z. Wang 0000-0002-3536-4950    A. Warburton 0000-0002-2298-7315    M. Watanabe 0000-0001-6917-6694    S. Watanuki 0000-0002-5241-6628    C. Wessel  0000-0003-0959-4784    E. Won  0000-0002-4245-7442    X. P. Xu  0000-0001-5096-1182    B. D. Yabsley  0000-0002-2680-0474    S. Yamada 0000-0002-8858-9336    W. Yan  0000-0003-0713-0871    W. C. Yan 0000-0001-6721-9435    S. B. Yang 0000-0002-9543-7971    J. Yelton 0000-0001-8840-3346    K. Yi 0000-0002-2459-1824    J. H. Yin 0000-0002-1479-9349    K. Yoshihara  0000-0002-3656-2326    J. Yuan  0009-0005-0799-1630    L. Zani  0000-0003-4957-805X    F. Zeng 0009-0003-6474-3508    M. Zeyrek 0000-0002-9270-7403    B. Zhang 0000-0002-5065-8762    V. Zhilich  0000-0002-0907-5565    J. S. Zhou 0000-0002-6413-4687    Q. D. Zhou  0000-0001-5968-6359    L. Zhu  0009-0007-1127-5818    V. I. Zhukova 0000-0002-8253-641X    R. Žlebčík  0000-0003-1644-8523
Abstract

We present a study of the rare charm meson decays D0K+Ke+eD^{0}\rightarrow K^{+}K^{-}e^{+}e^{-}, π+πe+e\pi^{+}\pi^{-}e^{+}e^{-}, and Kπ+e+eK^{-}\pi^{+}e^{+}e^{-} using a 942  fb1\mbox{\,fb}^{-1} data set collected by the Belle detector at the KEKB asymmetric-energy e+ee^{+}e^{-} collider. We use D0D^{0} candidates identified by the charge of the pion in DD0πD^{*}\rightarrow D^{0}\pi decays and normalize the branching fractions to D0D^{0} \rightarrow Kπ+ππ+K^{-}\pi^{+}\pi^{-}\pi^{+} decays. The branching fraction for decay D0D^{0} \rightarrow Kπ+e+eK^{-}\pi^{+}e^{+}e^{-} is measured to be (39.6 ±\pm 4.5 (stat) ±\pm 2.9 (syst)) ×\times 10710^{-7}, with the dielectron mass in the ρ/ω\rho/\omega mass region 675<mee<875MeV/c2675<m_{ee}<875{\mathrm{\,Me\kern-1.00006ptV\!/}c^{2}}. We also search for D0D^{0} \rightarrow hh()+e+eh^{-}h^{(\prime)+}e^{+}e^{-} (h()=K,πh^{(\prime)}=K,\,\pi) decays with the dielectron mass near the η\eta and ϕ\phi resonances, and away from these resonances for the K+Ke+eK^{+}K^{-}e^{+}e^{-} and π+πe+e\pi^{+}\pi^{-}e^{+}e^{-} modes. For these modes, we find no significant signals and set 90% confidence level upper limits on their branching fractions at the 𝒪\mathcal{O}(10-7) level.

Electroweak penguin quark transitions mediated by flavor changing neutral currents (FCNCs) such as bs+b\rightarrow s\,\ell^{+}\ell^{-}, bd+b\rightarrow d\,\ell^{+}\ell^{-}, and cu+c\rightarrow u\,\ell^{+}\ell^{-} (where ±\ell^{\pm} is an electron or muon) are forbidden at tree level in the standard model (SM) 111The inclusion of the charge-conjugate decay mode is implemented throughout the letter unless otherwise stated.. The FCNCs proceed through electroweak box or loop diagrams and are thus highly suppressed, and thus cu+c\rightarrow u\,\ell^{+}\ell^{-} decays probe beyond the standard model (BSM) physics that could affect the decay rate and other variables. The BSM amplitudes can interfere with the SM amplitudes, altering physics observables from the SM predictions such as total and differential decay rates, and affecting tests of lepton flavor universality (LFU) [2, 3, 4, 5, 6].
The decays cu+c\rightarrow u\,\ell^{+}\ell^{-} are FCNC transitions of a charm quark to an up quark and a lepton pair. Compared to bs+b\rightarrow s\,\ell^{+}\ell^{-} and bd+b\rightarrow d\,\ell^{+}\ell^{-} decays, these transitions are further suppressed due to the Glashow–Iliopoulos–Maiani mechanism and the small quark masses relative to the top quark in the loop [7]. The decays D0X0+D^{0}\rightarrow X^{0}\ell^{+}\ell^{-}, where X0X^{0} is a light-quark system, can have contributions from both short-distance (SD) and long-distance (LD) amplitudes, as shown in Fig. 1. The SD decay amplitudes are suppressed, with branching fractions (\mathcal{B}) reaching only the 2×1092\times 10^{-9} level [8]. However, LD contributions from photon pole or vector meson dominance (VMD) amplitudes, which proceed through the decays D0X0(γ/V0)X0+D^{0}\rightarrow X^{0}(\gamma^{*}/V^{0})\rightarrow X^{0}\ell^{+}\ell^{-}, where γ\gamma^{*} is an off-shell virtual photon and V0V^{0} is an intermediate vector meson (ρ,ω,ϕ\rho,\,\omega,\,\phi), can reach values of up to 2 ×\times 10-6 [8] for the Cabibbo-favored decay D0D^{0} \rightarrow Kπ+e+eK^{-}\pi^{+}e^{+}e^{-}.

\begin{overpic}[width=433.62pt]{./DiagramSM/Diagram.png} \put(2.0,5.0){\text{$\overline{u}$}} \put(47.5,5.0){\text{$\overline{u}$}} \put(2.1,20.5){\text{$c$}} \put(23.0,14.0){\text{$W^{+}$}} \put(18.5,28.0){\text{$\gamma/Z^{0}$}} \put(47.5,27.3){\text{$l^{+}$}} \put(47.5,42.5){\text{$l^{-}$}} \put(47.5,20.5){\text{$u$}} \put(51.2,5.0){\text{$\overline{u}$}} \put(51.2,39.0){\text{$c$}} \put(96.7,39.0){\text{$d$}} \put(96.7,34.5){\text{$\overline{d}$}} \put(55.2,33.0){\text{$W^{+}$}} \put(62.5,20.5){\text{$u$}} \put(68.0,10.8){\text{$\rho$}} \put(78.5,15.0){\text{$\gamma$}} \put(78.5,15.0){\text{$\gamma$}} \put(96.7,16.3){\text{$l^{-}$}} \put(96.7,5.0){\text{$l^{+}$}} \end{overpic}
Figure 1: SD contributions to FCNC D0D^{0} decays through an electroweak penguin diagram (left). LD contributions to D0X0V0X0l+lD^{0}\rightarrow X^{0}V^{0}\rightarrow X^{0}l^{+}l^{-} decays through the VMD diagram (right).

Several BSM scenarios such as the minimal supersymmetric standard model, models including leptoquarks, little Higgs, ZZ^{\prime} models, and models with warped extra dimensions predict significantly enhanced rates for cu+c\rightarrow u\,\ell^{+}\ell^{-} decays [2, 3, 4, 5, 6, 9, 10, 11]. Thus, measurements of branching fractions for these decays allow us to probe for BSM physics and to characterize the LD contributions to the decay amplitudes.
The BABAR [12, 13, 14, 15], BES III [16], CLEO II [17], D0 [18], Fermilab E653 [19], E791 [20], and LHCb [21, 22, 23, 24, 25] Collaborations have searched for rare and forbidden Xch(h())+()X_{c}\rightarrow h\,(h^{(\prime)})\,\ell^{+}\ell^{-(\prime)} decays in several final states. BES III sets upper limits (UL) at the 90% confidence level (CL) in the range (1141)(11-41) ×\times 10-6 for D0D^{0}\rightarrow hh()+e+eh^{-}h^{(\prime)+}e^{+}e^{-} decays [16]. Recently, several four-body decays D0hh()+D^{0}\rightarrow hh^{(\prime)}\ell^{+}\ell^{-} (where hh()=KK,ππ,Kπhh^{(\prime)}=KK,\pi\pi,K\pi) have been observed. BABAR observed the decay D0Kπ+e+eD^{0}\rightarrow K^{-}\pi^{+}e^{+}e^{-} in the mass range 675 << meem_{ee} << 875 MeV/c2{\mathrm{\,Me\kern-1.00006ptV\!/}c^{2}} at a rate compatible with VMD contributions, and set a branching fraction upper limit on D0Kπ+e+eD^{0}\rightarrow K^{-}\pi^{+}e^{+}e^{-}, excluding e+ee^{+}e^{-} resonances with branching fractions above 3.1×1063.1\times 10^{-6} at the 90% confidence level [13]. LHCb observed the decay D0Kπ+μ+μD^{0}\rightarrow K^{-}\pi^{+}\mu^{+}\mu^{-} [21], and also observed the decays D0π+πμ+μD^{0}\rightarrow\pi^{+}\pi^{-}\mu^{+}\mu^{-} and D0K+Kμ+μD^{0}\rightarrow K^{+}K^{-}\mu^{+}\mu^{-} [22].
Here we search for the rare charm meson decays D0K+Ke+eD^{0}\rightarrow K^{+}K^{-}e^{+}e^{-}, π+πe+e\pi^{+}\pi^{-}e^{+}e^{-}, and Kπ+e+eK^{-}\pi^{+}e^{+}e^{-} using data collected by the Belle experiment. We analyze the e+ee^{+}e^{-} \rightarrow cc¯c\overline{c} data that has a total integrated luminosity of 942  fb1\mbox{\,fb}^{-1}. The data was collected at center-of-mass energies (EcmE_{\text{cm}}) at the Υ(4S)\mathchar 28935\relax{(4S)} resonances or 60 MeV\mathrm{\,Me\kern-1.00006ptV} below, at the Υ(5S)\mathchar 28935\relax{(5S)} resonance, and in the 10860<Ecm<1102010860<E_{\text{cm}}<11020 MeV\mathrm{\,Me\kern-1.00006ptV} energy scan. The data was recorded from 2000 to 2010 from the collision of 8 GeV electrons with 3.5 GeV positrons at the KEKB collider [26]. The Belle detector, a large-solid-angle magnetic spectrometer, is described in detail elsewhere [27]. The Belle inner detector consists of a four-layer silicon vertex detector, a 50-layer central drift chamber, an array of aerogel threshold Cerenkov counters, a barrel-like arrangement of time-of-flight scintillation counters, and an electromagnetic calorimeter composed of CsI (Tl) crystals, all located inside a superconducting solenoid coil that provides a 1.5 T magnetic field. An iron flux-return yoke placed outside the coil is instrumented with resistive plate chambers to detect KL0K^{0}_{\scriptscriptstyle L} mesons and muons.
We use Monte Carlo (MC) simulated events to optimize selection criteria, calculate reconstruction efficiencies, and study background sources. We generate the MC event samples using EvtGen [28], PYTHIA [29], and we use PHOTOS [30] and Geant3 [31] to simulate final state radiation and the detector response, respectively. For each signal channel we generate hh()hh^{(\prime)} and eeee resonant and non-resonant signal MC samples. We neglect interference between non-resonant and resonant decays. We use MC samples of e+ee^{+}e^{-} \rightarrow qq¯q\overline{q} (where q=u,d,sq=u,d,s or cc) and e+ee^{+}e^{-} \rightarrow BB¯B\kern 1.79993pt\overline{\kern-1.79993ptB}{} corresponding to six times that of the data to study the background composition.
We require at least five charged tracks in the event. Each track must have a momentum greater than 0.1GeV/c{\mathrm{\,Ge\kern-1.00006ptV\!/}c}. We require the distance of the closest approach to the origin to be less than 4.5 cm along the beam direction and less than 0.25 cm transverse to the beam direction to reduce beam-induced backgrounds and background from KS0K^{0}_{\scriptscriptstyle S} mesons. We perform particle identification (PID) based on information provided by detector subsystems in the form of likelihoods i\mathcal{L}_{i} for species ii, where i=e,μ,π,K,i=e,\,\mu,\,\pi,\,K, or pp for each track. Kaon candidates must have K=K/(K+π){\mathcal{R}}_{K}=\mathcal{L}_{K}/(\mathcal{L}_{K}+\mathcal{L}_{\pi}) >> 0.1 for the Kπ+e+eK^{-}\pi^{+}e^{+}e^{-} and K+Ke+eK^{+}K^{-}e^{+}e^{-} mode, and pion candidates are required to have K<{\mathcal{R}}_{K}< 0.4 for the π+πe+e\pi^{+}\pi^{-}e^{+}e^{-} mode. These requirements have kaon and pion identification efficiencies of about 97% and 91%, with misidentification rates of about 20% and 10%, respectively. The electron candidates must have e{\mathcal{R}}_{e} = e/(e+μ+K+π+p)\mathcal{L}_{e}/(\mathcal{L}_{e}+\mathcal{L}_{\mu}+\mathcal{L}_{K}+\mathcal{L}_{\pi}+\mathcal{L}_{p}) >> 0.8. To recover electron bremsstrahlung, we add photon(s) having a minimum energy of 20MeV\mathrm{\,Me\kern-1.00006ptV} and an angle within 5 degrees around the direction of the electron track at the IP to the four-momenta of the electron candidate. The electron identification efficiency is about 91%, with a misidentification rate of less than 3%. We use the B2BII software package [32] to convert the Belle data to Belle II data format and analyze the data with the Belle II analysis software framework (basf2[33].

We reconstruct D0Kπ+e+eD^{0}\rightarrow K^{-}\pi^{+}e^{+}e^{-}, π+πe+e\pi^{+}\pi^{-}e^{+}e^{-}, and K+Ke+eK^{+}K^{-}e^{+}e^{-} signal candidates from the selected kaon, pion, and electron candidates. Candidates with D0D^{0} invariant mass mhh()eem_{hh^{(\prime)}ee} in the range 1.80 <mhh()ee<<m_{hh^{(\prime)}ee}< 1.93 GeV/c2{\mathrm{\,Ge\kern-1.00006ptV\!/}c^{2}} are combined with a π+\pi^{+} candidate to form a D+D^{*+} candidate. The requirement of a D+D^{*+} tagged D0D^{0} suppresses the background from random track combinations. Candidates must have a D+D^{*+} momentum in the center-of-mass frame p(D+)>2.5p^{*}(D^{*+})>2.5 GeV/c{\mathrm{\,Ge\kern-1.00006ptV\!/}c} to reduce the combinatorial background from BB decays and a mass difference between D+D^{*+} and D0D^{0} candidates Δm\Delta m within 0.5 MeV/c2{\mathrm{\,Me\kern-1.00006ptV\!/}c^{2}} of the nominal value [34] to be consistent with the decay D+D0π+D^{*+}\rightarrow D^{0}\pi^{+}. We also apply a vertex fit to the decay chain D+D0π+D^{*+}\rightarrow D^{0}\pi^{+}, D0D^{0} \rightarrow hh()eehh^{(\prime)}ee, with the DD^{*} production vertex constrained to the interaction point. We discard candidates that fail this fit.

The decay π0/ηe+eγ\pi^{0}/\eta\rightarrow e^{+}e^{-}\gamma can produce a complicated background shape, which is difficult to model. The electron bremsstrahlung recovery can mistakenly include a photon originating from a π0/η\pi^{0}/\eta decay so that the reconstructed m(hh()eeγ)m(hh^{(\prime)}ee\gamma) will fake the signal. Such decays will also contribute to a background in the mhh()eem_{hh^{(\prime)}ee} region below the D0D^{0} mass, resulting in a non-linear background shape. To suppress these backgrounds, we apply the selection mee>200m_{ee}>200 MeV/c2{\mathrm{\,Me\kern-1.00006ptV\!/}c^{2}}. In addition, we do not apply electron bremsstrahlung recovery for candidates with meem_{ee} in the η\eta mass region (520, 560MeV/c2{\mathrm{\,Me\kern-1.00006ptV\!/}c^{2}}). The meem_{ee} >> 560 MeV/c2{\mathrm{\,Me\kern-1.00006ptV\!/}c^{2}} is applied to the Kπ+e+eK^{-}\pi^{+}e^{+}e^{-} for searching the signal not in the resonant region to suppress the D0Kπ+η[e+eγ]D^{0}\rightarrow K^{-}\pi^{+}\eta\,\,[\rightarrow e^{+}e^{-}\gamma] background.

Some candidates include electrons originating from photon conversions. In order to veto these events, we combine the e±e^{\pm} from the signal (D0D^{0}) candidate with another oppositely charged track from the event to form a candidate e+ee^{+}e^{-} pair. We require a converged vertex fit for the photon conversion candidates (e+e)(e^{+}e^{-}) and discard the corresponding D0D^{0} candidate if the angle between the e+ee^{+}e^{-} tracks in the lab frame is less than 0.07 radians or the invariant mass of e+ee^{+}e^{-} tracks is less than 100 MeV/c2{\mathrm{\,Me\kern-1.00006ptV\!/}c^{2}}.

Hadronic D0D^{0} decays in which one or more of the D0D^{0} daughters are misidentified as leptons also contribute to the background. In each event, we reconstruct D+D0πs+D^{*+}\rightarrow D^{0}\pi^{+}_{s} with D0Kπ+ππ+D^{0}\rightarrow K^{-}\pi^{+}\pi^{-}\pi^{+}, D0π+ππ+πD^{0}\rightarrow\pi^{+}\pi^{-}\pi^{+}\pi^{-}, and D0K+Kπ+πD^{0}\rightarrow K^{+}K^{-}\pi^{+}\pi^{-} decays in addition to the signal modes hh()e+ehh^{(\prime)}e^{+}e^{-}. We discard the corresponding signal candidate if any of the reconstructed hadronic D0D^{0} decay candidates have invariant mass and Δm\Delta m within 3 MeV/c2{\mathrm{\,Me\kern-1.00006ptV\!/}c^{2}} and 0.4 MeV/c2{\mathrm{\,Me\kern-1.00006ptV\!/}c^{2}}, respectively, of the corresponding nominal values.

For each signal mode, we optimize the selection criteria for p(D+)p^{*}(D^{*+}), Δm\Delta m, PID, photon conversion and hadronic D0D^{0} vetos in the η\eta (520, 560), ρ/ω\rho/\omega (675, 875), and ϕ\phi (990, 1035MeV/c2{\mathrm{\,Me\kern-1.00006ptV\!/}c^{2}}) mass regions in order to search for potential eeee resonant decays. We also search for D0D^{0} \rightarrow hh()+e+eh^{-}h^{(\prime)+}e^{+}e^{-} decays in the meem_{ee} spectrum not included in the resonant regions defined above which we refer to as ”non-resonant”. The meem_{ee} regions mentioned above are not individually optimized, with the meem_{ee} ranges covering about 80% of the corresponding eeee resonance regions. For events with more than one signal candidate, the candidate with Δm\Delta m closest to the known value is selected. We optimize the cuts by maximizing a figure-of-merit S/S+B{S}/{\sqrt{S+B}} for each meem_{ee} region, where SS and BB are the expected number of signal candidates in data estimated from PDG [34] branching fractions and background yields estimated using background MC samples, respectively. Since the D0D^{0} production rate is not precisely known, we measure the signal branching fractions relative to the normalization decay D0D^{0} \rightarrow Kπ+ππ+K^{-}\pi^{+}\pi^{-}\pi^{+}, with similar selections applied such as PID.

We calculate the signal branching fractions and upper limits using the equation

(hh()ee)=Nhh()eeNKπππϵKπππϵhh()ee(Kπ+ππ+),\mathcal{B}(hh^{(\prime)}ee)=\frac{N_{hh^{(\prime)}ee}}{N_{K\pi\pi\pi}}\frac{\epsilon_{K\pi\pi\pi}}{\epsilon_{hh^{(\prime)}ee}}\mathcal{B}(K^{-}\pi^{+}\pi^{-}\pi^{+}), (1)

where NN are the yields, and ϵ\epsilon are the reconstruction efficiencies. We measure the branching fractions or set branching fraction upper limits for various meem_{ee} regions in each hh()eehh^{(\prime)}ee mode.

We use a one-dimensional unbinned extended maximum likelihood fit to mhh()eem_{hh^{(\prime)}ee} to extract the signal yield for each decay mode in the η\eta (520, 560), ρ/ω\rho/\omega (675, 875), ϕ\phi (990, 1035MeV/c2{\mathrm{\,Me\kern-1.00006ptV\!/}c^{2}}), and remaining meem_{ee} regions. The signal probability density function (PDF) is a Gaussian-like function with different resolutions above and below the D0D^{0} mass 222The normalization mode signal PDF is a sum of the signal PDF used for the signal channels and a Gaussian with a shared mean for the D0D^{0} mass.. We obtain the signal PDF parameters from fits to the signal MC distributions, and we fix these parameters for the signal yield extraction. We model the background using a linear function, where the slope parameter is floated in the fit. We do not examine any signal mode distributions until the analysis procedure is finalized to minimize potential biases on the measured quantities.

We show the signal mode mhh()eem_{hh^{(\prime)}ee} distributions with projections of the fits superimposed for each meem_{ee} region in Fig. 2.

Events /(5MeV/c2)/(5{\mathrm{\,Me\kern-0.79727ptV\!/}c^{2}})
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
\begin{overpic}[width=433.62pt]{./Datafit/kpiee/KpieeRho_mD0fit.pdf} \put(46.6,-5.5){\text{\scriptsize{$m_{hh^{(\prime)}ee}$ $[{\mathrm{\,Ge\kern-0.79727ptV\!/}c^{2}}]$}}} \end{overpic}
\begin{overpic}[width=433.62pt]{./Datafit/kpiee/KpieePhi_mD0fit.pdf} \put(46.6,-5.5){\text{\scriptsize{$m_{hh^{(\prime)}ee}$ $[{\mathrm{\,Ge\kern-0.79727ptV\!/}c^{2}}]$}}} \end{overpic}
Refer to caption
Figure 2: D0D^{0} \rightarrow hh()eehh^{(\prime)}ee decays mhh()eem_{hh^{(\prime)}ee} distributions for meem_{ee} in the η\eta, ρ/ω\rho/\omega and ϕ\phi mass regions. The ηe+eγ\eta\rightarrow e^{+}e^{-}\gamma decay background is shown for D0D^{0} \rightarrow Kπ+e+eK^{-}\pi^{+}e^{+}e^{-} with meem_{ee} in the η\eta mass region (cyan dashed curve). These background PDF parameters are obtained from D0Kπ+η[e+eγ]D^{0}\rightarrow K^{-}\pi^{+}\eta\,\,[\rightarrow e^{+}e^{-}\gamma] MC simulation in which the γ\gamma is not reconstructed. The K+Ke+eK^{+}K^{-}e^{+}e^{-} mode with meem_{ee} in the η\eta mass region is not fitted since only one event is observed.

For each signal channel, we provide the branching fractions, and the corresponding significance S=2ΔlnS=\sqrt{-2\Delta\mathrm{ln}\mathcal{L}}, where Δ\Deltaln\mathcal{L} is the difference in the log-likelihood from the maximum value with respect to the value from the background-only hypothesis. We measure the branching fraction of D0D^{0} \rightarrow Kπ+e+eK^{-}\pi^{+}e^{+}e^{-} in the meem_{ee} range 675<mee<875675<m_{ee}<875 MeV/c2{\mathrm{\,Me\kern-1.00006ptV\!/}c^{2}} to be (39.6±4.5±2.9)(39.6\pm 4.5\pm 2.9) ×\times 10-7, where the first uncertainty is statistical and the second is systematic with a significance of 11.8σ\sigma. We set 90% CL upper limits using the CLs method [36] for the channels with no significant signal; these results are in the range from (2.38.1)(2.3-8.1) ×\times 10-7. The extracted signal yields, significances, efficiencies, and branching fractions, or branching fraction upper limits for each meem_{ee} region are given in Table 1.

Table 1: D0D^{0} \rightarrow hh()+e+eh^{-}h^{(\prime)+}e^{+}e^{-} yields, efficiencies, branching fractions, significances, and branching fraction upper limits @ 90% CL of each meem_{ee} region. A fitted yield and a branching fraction are not reported for the K+Ke+eK^{+}K^{-}e^{+}e^{-} mode with meem_{ee} in the mηm_{\eta} region since only one event is observed, and the significance is determined from the CLs distribution. The first uncertainty is statistical and the second is systematic.
Decay mode meem_{ee} region (MeV/c2)({\mathrm{\,Me\kern-1.00006ptV\!/}c^{2}}) Yield Efficiency (%) \mathcal{B} (×107(\times 10^{-7}) Significance UL (×107\times 10^{-7})
K+Ke+eK^{+}K^{-}e^{+}e^{-}
η\eta 520-560 11- 3.33 ±\pm 0.04 - 0.0σ0.0\sigma 2.3
ρ0/ω\rho^{0}/\omega >> 675 9 112.6 ±\pm11.8 5.68 ±\pm 0.06 11.2 ±\pm 0.9 ±\pm 0.1 2.0σ\sigma 3.0
non-resonant >200>200 333Excluding resonance regions, which are the same for all three modes. 113.5 ±\pm13.3 2.97 ±\pm 0.04 13.1 ±\pm 3.0 ±\pm 0.4 1.5σ\sigma 7.7
π+πe+e\pi^{+}\pi^{-}e^{+}e^{-}
η\eta 520-560 110.6 ±\pm12.3 4.61 ±\pm 0.05 10.4 ±\pm 1.4 ±\pm 0.2 0.3σ\sigma 3.2
ρ0/ω\rho^{0}/\omega 675-875 113.7 ±\pm14.1 4.99 ±\pm 0.05 12.0 ±\pm 2.2 ±\pm 0.8 0.9σ\sigma 6.1
ϕ\phi 9995-1035 113.6 ±\pm13.2 8.40 ±\pm 0.06 11.1 ±\pm 1.1 ±\pm 0.2 1.1σ\sigma 3.1
non-resonant >200>2009 111.4 ±\pm14.2 3.29 ±\pm 0.04 11.2 ±\pm 3.4 ±\pm 1.1 0.3σ\sigma 8.1
Kπ+e+eK^{-}\pi^{+}e^{+}e^{-}
η\eta 520-560 114.0 ±\pm12.7 4.91 ±\pm 0.04 12.2 ±\pm 1.5 ±\pm 0.5 1.6σ\sigma 5.6
ρ0/ω\rho^{0}/\omega 675-875 11110 ±\pm113 7.53 ±\pm 0.06 39.6 ±\pm 4.5 ±\pm 2.9 111.8σ\sigma -
ϕ\phi 9990-1034 114.6 ±\pm12.4 8.75 ±\pm 0.06 11.4 ±\pm 0.8 ±\pm 0.3 2.5σ\sigma 2.9

In the supplemental material, we show the projection of the fit on the D0D^{0} \rightarrow hh()+e+eh^{-}h^{(\prime)+}e^{+}e^{-} distribution as a function of mee2m_{ee}^{2} with the background subtracted using the s𝒫lots\mathcal{P}lot technique [37].
Systematic uncertainties can be divided into multiplicative and additive categories. The additive systematic uncertainties affect the determination of the signal and normalization mode yields and the corresponding significance. Multiplicative systematic uncertainties include PID and tracking efficiencies. The systematic uncertainty of tracking efficiency is 0.35% for each track, obtained from a study of a D+D0(π+πKS0)π+D^{*+}\rightarrow D^{0}(\pi^{+}\pi^{-}K^{0}_{\scriptscriptstyle S})\pi^{+} data control sample. The systematic uncertainty due to KK identification is 1.0%, determined from a study of a D+D0(Kπ+)π+D^{*+}\rightarrow D^{0}(K^{-}\pi^{+})\pi^{+} control sample. The electron identification efficiency uncertainty is determined from e+ee+ee+ee^{+}e^{-}\rightarrow e^{+}e^{-}e^{+}e^{-} processes and found to be 2.0% for each track. The PID efficiency corrections are applied for the normalization mode and for each signal channel, and the particle identification systematics are about 5%, which depend on the decay channel. We do not include a systematic uncertainty for the PID fake rates as the D0D^{0} candidate invariant mass of misidentified hh()+e+eh^{-}h^{(\prime)+}e^{+}e^{-} decays do not peak near the D0D^{0} mass after final selections according to MC simulations of hadronic D0D^{0} decays. To account for the potential non-resonant decay contribution in the meem_{ee} resonance regions, the signal efficiency differences obtained using the signal MC between non-resonant and resonant decays are included in the systematic uncertainty.
The uncertainty in yield extraction contributes to the additive systematic uncertainty, which affects the significance of the branching fraction. We obtain the PDF-related uncertainties by varying the PDF shapes and parameters for both signal and background. As alternative PDFs, we use two double-sided Crystal Ball functions [38] with a shared mean for the signal and a second-order Chebyshev polynomial for the background PDF functions to determine the signal yield systematics from the PDF shapes. In addition, the yield differences between the signal PDF parameters, fixed and floated, are incorporated into the systematic uncertainty. The additive systematic uncertainty for the background originating from the signal channel D0D^{0} \rightarrow hh()+e+eh^{-}h^{(\prime)+}e^{+}e^{-} with eeee from ρ\rho resonant decay is negligible for other eeee resonance regions. To incorporate the systematic uncertainties into the upper limits, the likelihood function is convolved with two Gaussian functions whose widths are the total multiplicative and additive systematic uncertainties and a third Gaussian with a width that is the sum in quadrature of the additive systematic uncertainties from the normalization mode.

In summary, we have measured the branching fraction of D0D^{0} \rightarrow Kπ+e+eK^{-}\pi^{+}e^{+}e^{-} in the meem_{ee} range 675<mee<875675<m_{ee}<875 MeV/c2{\mathrm{\,Me\kern-1.00006ptV\!/}c^{2}} to be

(39.6±4.5±2.9)×107(39.6\pm 4.5\pm 2.9)\times 10^{-7}

with a significance of 11.8σ\sigma using 942  fb1\mbox{\,fb}^{-1} of Belle data. The measured branching fraction is consistent with and more precise than the BABAR measurement [13]. For the other eeee resonant and non-resonant regions, we do not observe any significant signal and set 90% CL upper limits on the branching fractions. These limits range from 2.3 ×\times 10-7 to 8.1 ×\times 10-7. Our D0D^{0} \rightarrow Kπ+e+eK^{-}\pi^{+}e^{+}e^{-} limits are more restrictive than the BABAR [14] and BES III [16] limits.

Note added:
While this manuscript was being finalized, LHCb published new results on D0π+πe+eD^{0}\rightarrow\pi^{+}\pi^{-}e^{+}e^{-} and D0K+Ke+eD^{0}\rightarrow K^{+}K^{-}e^{+}e^{-} decays. They observe the former in two meem_{ee} mass regions and set upper limits on the latter that are 1.4–7.7 times more stringent than ours [25].

Acknowledgement

This work, based on data collected using the Belle II detector, which was built and commissioned prior to March 2019, and data collected using the Belle detector, which was operated until June 2010, was supported by Higher Education and Science Committee of the Republic of Armenia Grant No. 23LCG-1C011; Australian Research Council and Research Grants No. DP200101792, No. DP210101900, No. DP210102831, No. DE220100462, No. LE210100098, and No. LE230100085; Austrian Federal Ministry of Education, Science and Research, Austrian Science Fund (FWF) Grants DOI: 10.55776/P34529, DOI: 10.55776/J4731, DOI: 10.55776/J4625, DOI: 10.55776/M3153, and DOI: 10.55776/PAT1836324, and Horizon 2020 ERC Starting Grant No. 947006 “InterLeptons”; Natural Sciences and Engineering Research Council of Canada, Compute Canada and CANARIE; National Key R&D Program of China under Contract No. 2024YFA1610503, and No. 2024YFA1610504 National Natural Science Foundation of China and Research Grants No. 11575017, No. 11761141009, No. 11705209, No. 11975076, No. 12135005, No. 12150004, No. 12161141008, No. 12475093, and No. 12175041, and Shandong Provincial Natural Science Foundation Project ZR2022JQ02; the Czech Science Foundation Grant No. 22-18469S, Regional funds of EU/MEYS: OPJAK FORTE CZ.02.01.01/00/22_008/0004632 and Charles University Grant Agency project No. 246122; European Research Council, Seventh Framework PIEF-GA-2013-622527, Horizon 2020 ERC-Advanced Grants No. 267104 and No. 884719, Horizon 2020 ERC-Consolidator Grant No. 819127, Horizon 2020 Marie Sklodowska-Curie Grant Agreement No. 700525 “NIOBE” and No. 101026516, and Horizon 2020 Marie Sklodowska-Curie RISE project JENNIFER2 Grant Agreement No. 822070 (European grants); L’Institut National de Physique Nucléaire et de Physique des Particules (IN2P3) du CNRS and L’Agence Nationale de la Recherche (ANR) under Grant No. ANR-21-CE31-0009 (France); BMFTR, DFG, HGF, MPG, and AvH Foundation (Germany); Department of Atomic Energy under Project Identification No. RTI 4002, Department of Science and Technology, and UPES SEED funding programs No. UPES/R&D-SEED-INFRA/17052023/01 and No. UPES/R&D-SOE/20062022/06 (India); Israel Science Foundation Grant No. 2476/17, U.S.-Israel Binational Science Foundation Grant No. 2016113, and Israel Ministry of Science Grant No. 3-16543; Istituto Nazionale di Fisica Nucleare and the Research Grants BELLE2, and the ICSC – Centro Nazionale di Ricerca in High Performance Computing, Big Data and Quantum Computing, funded by European Union – NextGenerationEU; Japan Society for the Promotion of Science, Grant-in-Aid for Scientific Research Grants No. 16H03968, No. 16H03993, No. 16H06492, No. 16K05323, No. 17H01133, No. 17H05405, No. 18K03621, No. 18H03710, No. 18H05226, No. 19H00682, No. 20H05850, No. 20H05858, No. 22H00144, No. 22K14056, No. 22K21347, No. 23H05433, No. 26220706, and No. 26400255, and the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan; National Research Foundation (NRF) of Korea Grants No. 2021R1-F1A-1064008, No. 2022R1-A2C-1003993, No. 2022R1-A2C-1092335, No. RS-2016-NR017151, No. RS-2018-NR031074, No. RS-2021-NR060129, No. RS-2023-00208693, No. RS-2024-00354342 and No. RS-2025-02219521, Radiation Science Research Institute, Foreign Large-Size Research Facility Application Supporting project, the Global Science Experimental Data Hub Center, the Korea Institute of Science and Technology Information (K25L2M2C3 ) and KREONET/GLORIAD; Universiti Malaya RU grant, Akademi Sains Malaysia, and Ministry of Education Malaysia; Frontiers of Science Program Contracts No. FOINS-296, No. CB-221329, No. CB-236394, No. CB-254409, and No. CB-180023, and SEP-CINVESTAV Research Grant No. 237 (Mexico); the Polish Ministry of Science and Higher Education and the National Science Center; the Ministry of Science and Higher Education of the Russian Federation and the HSE University Basic Research Program, Moscow; University of Tabuk Research Grants No. S-0256-1438 and No. S-0280-1439 (Saudi Arabia), and Researchers Supporting Project number (RSPD2025R873), King Saud University, Riyadh, Saudi Arabia; Slovenian Research Agency and Research Grants No. J1-50010 and No. P1-0135; Ikerbasque, Basque Foundation for Science, State Agency for Research of the Spanish Ministry of Science and Innovation through Grant No. PID2022-136510NB-C33, Spain, Agencia Estatal de Investigacion, Spain Grant No. RYC2020-029875-I and Generalitat Valenciana, Spain Grant No. CIDEGENT/2018/020; the Swiss National Science Foundation; The Knut and Alice Wallenberg Foundation (Sweden), Contracts No. 2021.0174 and No. 2021.0299; National Science and Technology Council, and Ministry of Education (Taiwan); Thailand Center of Excellence in Physics; TUBITAK ULAKBIM (Turkey); National Research Foundation of Ukraine, Project No. 2020.02/0257, and Ministry of Education and Science of Ukraine; the U.S. National Science Foundation and Research Grants No. PHY-1913789 and No. PHY-2111604, and the U.S. Department of Energy and Research Awards No. DE-AC06-76RLO1830, No. DE-SC0007983, No. DE-SC0009824, No. DE-SC0009973, No. DE-SC0010007, No. DE-SC0010073, No. DE-SC0010118, No. DE-SC0010504, No. DE-SC0011784, No. DE-SC0012704, No. DE-SC0019230, No. DE-SC0021274, No. DE-SC0021616, No. DE-SC0022350, No. DE-SC0023470; and the Vietnam Academy of Science and Technology (VAST) under Grants No. NVCC.05.12/22-23 and No. DL0000.02/24-25.

These acknowledgements are not to be interpreted as an endorsement of any statement made by any of our institutes, funding agencies, governments, or their representatives.

We thank the SuperKEKB team for delivering high-luminosity collisions; the KEK cryogenics group for the efficient operation of the detector solenoid magnet and IBBelle on site; the KEK Computer Research Center for on-site computing support; the NII for SINET6 network support; and the raw-data centers hosted by BNL, DESY, GridKa, IN2P3, INFN, PNNL/EMSL, and the University of Victoria.

References

Supplemental material to D0hh()+e+eD^{0}\rightarrow h^{-}h^{(\prime)+}e^{+}e^{-}

D0D^{0} \rightarrow hh()+e+eh^{-}h^{(\prime)+}e^{+}e^{-} modes dN/dmee2dN/dm_{ee}^{2} vs mee2m_{ee}^{2} distributions

Figure 1 (below) shows the D0D^{0} \rightarrow hh()+e+eh^{-}h^{(\prime)+}e^{+}e^{-} modes dN/dmee2dN/dm_{ee}^{2} vs mee2m_{ee}^{2} distributions with background subtracted using the s𝒫lots\mathcal{P}lot technique.

Refer to caption
Refer to caption
Refer to caption
Figure 1: dN/dmee2dN/dm_{ee}^{2} vs mee2m_{ee}^{2} distributions for D0D^{0} \rightarrow hh()+e+eh^{-}h^{(\prime)+}e^{+}e^{-} candidates. The background has been subtracted using the s𝒫lots\mathcal{P}lot technique. A significant D0D^{0} \rightarrow Kπ+e+eK^{-}\pi^{+}e^{+}e^{-} signal with meem_{ee} in ρ/ω\rho/\omega mass region is visible in the (0.4, 0.8GeV2/c4{{\mathrm{\,Ge\kern-1.00006ptV}^{2}\!/}c^{4}}) mee2m_{ee}^{2} bins. The negative bins are due to low statistics after final selections. In the analysis, the selections are optimized separately in each resonance region and in the combined non-resonant regions. For these plots, the p(D+)p^{*}(D^{*+}), Δm\Delta m, and PID selections for the non-resonant region are applied to all meem_{ee} regions.