This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Measurement of the 𝒆+𝒆𝚲𝚲¯e^{+}e^{-}\rightarrow\Lambda\bar{\Lambda} cross section from threshold to 3.00 GeV using events with initial-state radiation

M. Ablikim1, M. N. Achasov13,b, P. Adlarson73, R. Aliberti34, A. Amoroso72A,72C, M. R. An38, Q. An69,56, Y. Bai55, O. Bakina35, I. Balossino29A, Y. Ban45,g, V. Batozskaya1,43, K. Begzsuren31, N. Berger34, M. Berlowski43, M. Bertani28A, D. Bettoni29A, F. Bianchi72A,72C, E. Bianco72A,72C, J. Bloms66, A. Bortone72A,72C, I. Boyko35, R. A. Briere5, A. Brueggemann66, H. Cai74, X. Cai1,56, A. Calcaterra28A, G. F. Cao1,61, N. Cao1,61, S. A. Cetin60A, J. F. Chang1,56, T. T. Chang75, W. L. Chang1,61, G. R. Che42, G. Chelkov35,a, C. Chen42, Chao Chen53, G. Chen1, H. S. Chen1,61, M. L. Chen1,56,61, S. J. Chen41, S. M. Chen59, T. Chen1,61, X. R. Chen30,61, X. T. Chen1,61, Y. B. Chen1,56, Y. Q. Chen33, Z. J. Chen25,h, W. S. Cheng72C, S. K. Choi10A, X. Chu42, G. Cibinetto29A, S. C. Coen4, F. Cossio72C, J. J. Cui48, H. L. Dai1,56, J. P. Dai77, A. Dbeyssi19, R.  E. de Boer4, D. Dedovich35, Z. Y. Deng1, A. Denig34, I. Denysenko35, M. Destefanis72A,72C, F. De Mori72A,72C, B. Ding64,1, X. X. Ding45,g, Y. Ding33, Y. Ding39, J. Dong1,56, L. Y. Dong1,61, M. Y. Dong1,56,61, X. Dong74, S. X. Du79, Z. H. Duan41, P. Egorov35,a, Y. L. Fan74, J. Fang1,56, S. S. Fang1,61, W. X. Fang1, Y. Fang1, R. Farinelli29A, L. Fava72B,72C, F. Feldbauer4, G. Felici28A, C. Q. Feng69,56, J. H. Feng57, K Fischer67, M. Fritsch4, C. Fritzsch66, C. D. Fu1, J. L. Fu61, Y. W. Fu1, H. Gao61, Y. N. Gao45,g, Yang Gao69,56, S. Garbolino72C, I. Garzia29A,29B, P. T. Ge74, Z. W. Ge41, C. Geng57, E. M. Gersabeck65, A Gilman67, K. Goetzen14, L. Gong39, W. X. Gong1,56, W. Gradl34, S. Gramigna29A,29B, M. Greco72A,72C, M. H. Gu1,56, Y. T. Gu16, C. Y Guan1,61, Z. L. Guan22, A. Q. Guo30,61, L. B. Guo40, R. P. Guo47, Y. P. Guo12,f, A. Guskov35,a, X. T. H.1,61, T. T. Han48, W. Y. Han38, X. Q. Hao20, F. A. Harris63, K. K. He53, K. L. He1,61, F. H H.. Heinsius4, C. H. Heinz34, Y. K. Heng1,56,61, C. Herold58, T. Holtmann4, P. C. Hong12,f, G. Y. Hou1,61, Y. R. Hou61, Z. L. Hou1, H. M. Hu1,61, J. F. Hu54,i, T. Hu1,56,61, Y. Hu1, G. S. Huang69,56, K. X. Huang57, L. Q. Huang30,61, X. T. Huang48, Y. P. Huang1, T. Hussain71, N Hüsken27,34, W. Imoehl27, M. Irshad69,56, J. Jackson27, S. Jaeger4, S. Janchiv31, J. H. Jeong10A, Q. Ji1, Q. P. Ji20, X. B. Ji1,61, X. L. Ji1,56, Y. Y. Ji48, Z. K. Jia69,56, P. C. Jiang45,g, S. S. Jiang38, T. J. Jiang17, X. S. Jiang1,56,61, Y. Jiang61, J. B. Jiao48, Z. Jiao23, S. Jin41, Y. Jin64, M. Q. Jing1,61, T. Johansson73, X. K.1, S. Kabana32, N. Kalantar-Nayestanaki62, X. L. Kang9, X. S. Kang39, R. Kappert62, M. Kavatsyuk62, B. C. Ke79, A. Khoukaz66, R. Kiuchi1, R. Kliemt14, L. Koch36, O. B. Kolcu60A, B. Kopf4, M. K. Kuessner4, A. Kupsc43,73, W. Kühn36, J. J. Lane65, J. S. Lange36, P.  Larin19, A. Lavania26, L. Lavezzi72A,72C, T. T. Lei69,k, Z. H. Lei69,56, H. Leithoff34, M. Lellmann34, T. Lenz34, C. Li46, C. Li42, C. H. Li38, Cheng Li69,56, D. M. Li79, F. Li1,56, G. Li1, H. Li69,56, H. B. Li1,61, H. J. Li20, H. N. Li54,i, Hui Li42, J. R. Li59, J. S. Li57, J. W. Li48, Ke Li1, L. J Li1,61, L. K. Li1, Lei Li3, M. H. Li42, P. R. Li37,j,k, S. X. Li12, T.  Li48, W. D. Li1,61, W. G. Li1, X. H. Li69,56, X. L. Li48, Xiaoyu Li1,61, Y. G. Li45,g, Z. J. Li57, Z. X. Li16, Z. Y. Li57, C. Liang41, H. Liang69,56, H. Liang1,61, H. Liang33, Y. F. Liang52, Y. T. Liang30,61, G. R. Liao15, L. Z. Liao48, J. Libby26, A.  Limphirat58, D. X. Lin30,61, T. Lin1, B. J. Liu1, B. X. Liu74, C. Liu33, C. X. Liu1, D.  Liu19,69, F. H. Liu51, Fang Liu1, Feng Liu6, G. M. Liu54,i, H. Liu37,j,k, H. B. Liu16, H. M. Liu1,61, Huanhuan Liu1, Huihui Liu21, J. B. Liu69,56, J. L. Liu70, J. Y. Liu1,61, K. Liu1, K. Y. Liu39, Ke Liu22, L. Liu69,56, L. C. Liu42, Lu Liu42, M. H. Liu12,f, P. L. Liu1, Q. Liu61, S. B. Liu69,56, T. Liu12,f, W. K. Liu42, W. M. Liu69,56, X. Liu37,j,k, Y. Liu37,j,k, Y. B. Liu42, Z. A. Liu1,56,61, Z. Q. Liu48, X. C. Lou1,56,61, F. X. Lu57, H. J. Lu23, J. G. Lu1,56, X. L. Lu1, Y. Lu7, Y. P. Lu1,56, Z. H. Lu1,61, C. L. Luo40, M. X. Luo78, T. Luo12,f, X. L. Luo1,56, X. R. Lyu61, Y. F. Lyu42, F. C. Ma39, H. L. Ma1, J. L. Ma1,61, L. L. Ma48, M. M. Ma1,61, Q. M. Ma1, R. Q. Ma1,61, R. T. Ma61, X. Y. Ma1,56, Y. Ma45,g, F. E. Maas19, M. Maggiora72A,72C, S. Maldaner4, S. Malde67, A. Mangoni28B, Y. J. Mao45,g, Z. P. Mao1, S. Marcello72A,72C, Z. X. Meng64, J. G. Messchendorp14,62, G. Mezzadri29A, H. Miao1,61, T. J. Min41, R. E. Mitchell27, X. H. Mo1,56,61, N. Yu. Muchnoi13,b, Y. Nefedov35, F. Nerling19,d, I. B. Nikolaev13,b, Z. Ning1,56, S. Nisar11,l, Y. Niu 48, S. L. Olsen61, Q. Ouyang1,56,61, S. Pacetti28B,28C, X. Pan53, Y. Pan55, A.  Pathak33, P. Patteri28A, Y. P. Pei69,56, M. Pelizaeus4, H. P. Peng69,56, K. Peters14,d, J. L. Ping40, R. G. Ping1,61, S. Plura34, S. Pogodin35, V. Prasad32, F. Z. Qi1, H. Qi69,56, H. R. Qi59, M. Qi41, T. Y. Qi12,f, S. Qian1,56, W. B. Qian61, C. F. Qiao61, J. J. Qin70, L. Q. Qin15, X. P. Qin12,f, X. S. Qin48, Z. H. Qin1,56, J. F. Qiu1, S. Q. Qu59, C. F. Redmer34, K. J. Ren38, A. Rivetti72C, V. Rodin62, M. Rolo72C, G. Rong1,61, Ch. Rosner19, S. N. Ruan42, N. Salone43, A. Sarantsev35,c, Y. Schelhaas34, K. Schoenning73, M. Scodeggio29A,29B, K. Y. Shan12,f, W. Shan24, X. Y. Shan69,56, J. F. Shangguan53, L. G. Shao1,61, M. Shao69,56, C. P. Shen12,f, H. F. Shen1,61, W. H. Shen61, X. Y. Shen1,61, B. A. Shi61, H. C. Shi69,56, J. L. Shi12, J. Y. Shi1, Q. Q. Shi53, R. S. Shi1,61, X. Shi1,56, J. J. Song20, T. Z. Song57, W. M. Song33,1, Y.  J. Song12, Y. X. Song45,g, S. Sosio72A,72C, S. Spataro72A,72C, F. Stieler34, Y. J. Su61, G. B. Sun74, G. X. Sun1, H. Sun61, H. K. Sun1, J. F. Sun20, K. Sun59, L. Sun74, S. S. Sun1,61, T. Sun1,61, W. Y. Sun33, Y. Sun9, Y. J. Sun69,56, Y. Z. Sun1, Z. T. Sun48, Y. X. Tan69,56, C. J. Tang52, G. Y. Tang1, J. Tang57, Y. A. Tang74, L. Y Tao70, Q. T. Tao25,h, M. Tat67, J. X. Teng69,56, V. Thoren73, W. H. Tian57, W. H. Tian50, Z. F. Tian74, I. Uman60B, B. Wang1, B. L. Wang61, Bo Wang69,56, C. W. Wang41, D. Y. Wang45,g, F. Wang70, H. J. Wang37,j,k, H. P. Wang1,61, K. Wang1,56, L. L. Wang1, M. Wang48, Meng Wang1,61, S. Wang37,j,k, S. Wang12,f, T.  Wang12,f, T. J. Wang42, W. Wang57, W. Wang70, W. H. Wang74, W. P. Wang69,56, X. Wang45,g, X. F. Wang37,j,k, X. J. Wang38, X. L. Wang12,f, Y. Wang59, Y. D. Wang44, Y. F. Wang1,56,61, Y. H. Wang46, Y. N. Wang44, Y. Q. Wang1, Yaqian Wang18,1, Yi Wang59, Z. Wang1,56, Z. L.  Wang70, Z. Y. Wang1,61, Ziyi Wang61, D. Wei68, D. H. Wei15, F. Weidner66, S. P. Wen1, C. W. Wenzel4, U. W. Wiedner4, G. Wilkinson67, M. Wolke73, L. Wollenberg4, C. Wu38, J. F. Wu1,61, L. H. Wu1, L. J. Wu1,61, X. Wu12,f, X. H. Wu33, Y. Wu69, Y. J. Wu30,61, Z. Wu1,56, L. Xia69,56, X. M. Xian38, T. Xiang45,g, D. Xiao37,j,k, G. Y. Xiao41, H. Xiao12,f, S. Y. Xiao1, Y.  L. Xiao12,f, Z. J. Xiao40, C. Xie41, X. H. Xie45,g, Y. Xie48, Y. G. Xie1,56, Y. H. Xie6, Z. P. Xie69,56, T. Y. Xing1,61, C. F. Xu1,61, C. J. Xu57, G. F. Xu1, H. Y. Xu64, Q. J. Xu17, W. Xu1,61, W. L. Xu64, X. P. Xu53, Y. C. Xu76, Z. P. Xu41, Z. S. Xu61, F. Yan12,f, L. Yan12,f, W. B. Yan69,56, W. C. Yan79, X. Q. Yan1, H. J. Yang49,e, H. L. Yang33, H. X. Yang1, Tao Yang1, Y. Yang12,f, Y. F. Yang42, Y. X. Yang1,61, Yifan Yang1,61, Z. W. Yang37,j,k, M. Ye1,56, M. H. Ye8, J. H. Yin1, Z. Y. You57, B. X. Yu1,56,61, C. X. Yu42, G. Yu1,61, T. Yu70, X. D. Yu45,g, C. Z. Yuan1,61, L. Yuan2, S. C. Yuan1, X. Q. Yuan1, Y. Yuan1,61, Z. Y. Yuan57, C. X. Yue38, A. A. Zafar71, F. R. Zeng48, X. Zeng12,f, Y. Zeng25,h, Y. J. Zeng1,61, X. Y. Zhai33, Y. H. Zhan57, A. Q. Zhang1,61, B. L. Zhang1,61, B. X. Zhang1, D. H. Zhang42, G. Y. Zhang20, H. Zhang69, H. H. Zhang57, H. H. Zhang33, H. Q. Zhang1,56,61, H. Y. Zhang1,56, J. J. Zhang50, J. Q. Zhang40, J. W. Zhang1,56,61, J. X. Zhang37,j,k, J. Y. Zhang1, J. Z. Zhang1,61, Jianyu Zhang61, Jiawei Zhang1,61, L. M. Zhang59, L. Q. Zhang57, Lei Zhang41, P. Zhang1, Q. Y.  Zhang38,79, Shuihan Zhang1,61, Shulei Zhang25,h, X. D. Zhang44, X. M. Zhang1, X. Y. Zhang48, X. Y. Zhang53, Y.  Zhang70, Y. Zhang67, Y.  T. Zhang79, Y. H. Zhang1,56, Yan Zhang69,56, Yao Zhang1, Z. H. Zhang1, Z. L. Zhang33, Z. Y. Zhang42, Z. Y. Zhang74, G. Zhao1, J. Zhao38, J. Y. Zhao1,61, J. Z. Zhao1,56, Lei Zhao69,56, Ling Zhao1, M. G. Zhao42, S. J. Zhao79, Y. B. Zhao1,56, Y. X. Zhao30,61, Z. G. Zhao69,56, A. Zhemchugov35,a, B. Zheng70, J. P. Zheng1,56, W. J. Zheng1,61, Y. H. Zheng61, B. Zhong40, X. Zhong57, H.  Zhou48, L. P. Zhou1,61, X. Zhou74, X. K. Zhou6, X. R. Zhou69,56, X. Y. Zhou38, Y. Z. Zhou12,f, J. Zhu42, K. Zhu1, K. J. Zhu1,56,61, L. Zhu33, L. X. Zhu61, S. H. Zhu68, S. Q. Zhu41, T. J. Zhu12,f, W. J. Zhu12,f, Y. C. Zhu69,56, Z. A. Zhu1,61, J. H. Zou1, J. Zu69,56
(BESIII Collaboration)
1 Institute of High Energy Physics, Beijing 100049, People’s Republic of China
2 Beihang University, Beijing 100191, People’s Republic of China
3 Beijing Institute of Petrochemical Technology, Beijing 102617, People’s Republic of China
4 Bochum Ruhr-University, D-44780 Bochum, Germany
5 Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
6 Central China Normal University, Wuhan 430079, People’s Republic of China
7 Central South University, Changsha 410083, People’s Republic of China
8 China Center of Advanced Science and Technology, Beijing 100190, People’s Republic of China
9 China University of Geosciences, Wuhan 430074, People’s Republic of China
10 Chung-Ang University, Seoul, 06974, Republic of Korea
11 COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, 54000 Lahore, Pakistan
12 Fudan University, Shanghai 200433, People’s Republic of China
13 G.I. Budker Institute of Nuclear Physics SB RAS (BINP), Novosibirsk 630090, Russia
14 GSI Helmholtzcentre for Heavy Ion Research GmbH, D-64291 Darmstadt, Germany
15 Guangxi Normal University, Guilin 541004, People’s Republic of China
16 Guangxi University, Nanning 530004, People’s Republic of China
17 Hangzhou Normal University, Hangzhou 310036, People’s Republic of China
18 Hebei University, Baoding 071002, People’s Republic of China
19 Helmholtz Institute Mainz, Staudinger Weg 18, D-55099 Mainz, Germany
20 Henan Normal University, Xinxiang 453007, People’s Republic of China
21 Henan University of Science and Technology, Luoyang 471003, People’s Republic of China
22 Henan University of Technology, Zhengzhou 450001, People’s Republic of China
23 Huangshan College, Huangshan 245000, People’s Republic of China
24 Hunan Normal University, Changsha 410081, People’s Republic of China
25 Hunan University, Changsha 410082, People’s Republic of China
26 Indian Institute of Technology Madras, Chennai 600036, India
27 Indiana University, Bloomington, Indiana 47405, USA
28 INFN Laboratori Nazionali di Frascati , (A)INFN Laboratori Nazionali di Frascati, I-00044, Frascati, Italy; (B)INFN Sezione di Perugia, I-06100, Perugia, Italy; (C)University of Perugia, I-06100, Perugia, Italy
29 INFN Sezione di Ferrara, (A)INFN Sezione di Ferrara, I-44122, Ferrara, Italy; (B)University of Ferrara, I-44122, Ferrara, Italy
30 Institute of Modern Physics, Lanzhou 730000, People’s Republic of China
31 Institute of Physics and Technology, Peace Avenue 54B, Ulaanbaatar 13330, Mongolia
32 Instituto de Alta Investigación, Universidad de Tarapacá, Casilla 7D, Arica, Chile
33 Jilin University, Changchun 130012, People’s Republic of China
34 Johannes Gutenberg University of Mainz, Johann-Joachim-Becher-Weg 45, D-55099 Mainz, Germany
35 Joint Institute for Nuclear Research, 141980 Dubna, Moscow region, Russia
36 Justus-Liebig-Universitaet Giessen, II. Physikalisches Institut, Heinrich-Buff-Ring 16, D-35392 Giessen, Germany
37 Lanzhou University, Lanzhou 730000, People’s Republic of China
38 Liaoning Normal University, Dalian 116029, People’s Republic of China
39 Liaoning University, Shenyang 110036, People’s Republic of China
40 Nanjing Normal University, Nanjing 210023, People’s Republic of China
41 Nanjing University, Nanjing 210093, People’s Republic of China
42 Nankai University, Tianjin 300071, People’s Republic of China
43 National Centre for Nuclear Research, Warsaw 02-093, Poland
44 North China Electric Power University, Beijing 102206, People’s Republic of China
45 Peking University, Beijing 100871, People’s Republic of China
46 Qufu Normal University, Qufu 273165, People’s Republic of China
47 Shandong Normal University, Jinan 250014, People’s Republic of China
48 Shandong University, Jinan 250100, People’s Republic of China
49 Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
50 Shanxi Normal University, Linfen 041004, People’s Republic of China
51 Shanxi University, Taiyuan 030006, People’s Republic of China
52 Sichuan University, Chengdu 610064, People’s Republic of China
53 Soochow University, Suzhou 215006, People’s Republic of China
54 South China Normal University, Guangzhou 510006, People’s Republic of China
55 Southeast University, Nanjing 211100, People’s Republic of China
56 State Key Laboratory of Particle Detection and Electronics, Beijing 100049, Hefei 230026, People’s Republic of China
57 Sun Yat-Sen University, Guangzhou 510275, People’s Republic of China
58 Suranaree University of Technology, University Avenue 111, Nakhon Ratchasima 30000, Thailand
59 Tsinghua University, Beijing 100084, People’s Republic of China
60 Turkish Accelerator Center Particle Factory Group, (A)Istinye University, 34010, Istanbul, Turkey; (B)Near East University, Nicosia, North Cyprus, 99138, Mersin 10, Turkey
61 University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
62 University of Groningen, NL-9747 AA Groningen, The Netherlands
63 University of Hawaii, Honolulu, Hawaii 96822, USA
64 University of Jinan, Jinan 250022, People’s Republic of China
65 University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
66 University of Muenster, Wilhelm-Klemm-Strasse 9, 48149 Muenster, Germany
67 University of Oxford, Keble Road, Oxford OX13RH, United Kingdom
68 University of Science and Technology Liaoning, Anshan 114051, People’s Republic of China
69 University of Science and Technology of China, Hefei 230026, People’s Republic of China
70 University of South China, Hengyang 421001, People’s Republic of China
71 University of the Punjab, Lahore-54590, Pakistan
72 University of Turin and INFN, (A)University of Turin, I-10125, Turin, Italy; (B)University of Eastern Piedmont, I-15121, Alessandria, Italy; (C)INFN, I-10125, Turin, Italy
73 Uppsala University, Box 516, SE-75120 Uppsala, Sweden
74 Wuhan University, Wuhan 430072, People’s Republic of China
75 Xinyang Normal University, Xinyang 464000, People’s Republic of China
76 Yantai University, Yantai 264005, People’s Republic of China
77 Yunnan University, Kunming 650500, People’s Republic of China
78 Zhejiang University, Hangzhou 310027, People’s Republic of China
79 Zhengzhou University, Zhengzhou 450001, People’s Republic of China
a Also at the Moscow Institute of Physics and Technology, Moscow 141700, Russia
b Also at the Novosibirsk State University, Novosibirsk, 630090, Russia
c Also at the NRC ”Kurchatov Institute”, PNPI, 188300, Gatchina, Russia
d Also at Goethe University Frankfurt, 60323 Frankfurt am Main, Germany
e Also at Key Laboratory for Particle Physics, Astrophysics and Cosmology, Ministry of Education; Shanghai Key Laboratory for Particle Physics and Cosmology; Institute of Nuclear and Particle Physics, Shanghai 200240, People’s Republic of China
f Also at Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) and Institute of Modern Physics, Fudan University, Shanghai 200443, People’s Republic of China
g Also at State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, People’s Republic of China
h Also at School of Physics and Electronics, Hunan University, Changsha 410082, China
i Also at Guangdong Provincial Key Laboratory of Nuclear Science, Institute of Quantum Matter, South China Normal University, Guangzhou 510006, China
j Also at Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, People’s Republic of China
k Also at Lanzhou Center for Theoretical Physics, Lanzhou University, Lanzhou 730000, People’s Republic of China
l Also at the Department of Mathematical Sciences, IBA, Karachi 75270, Pakistan

Using initial-state radiation events from a total integrated luminosity of 11.957 fb-1 of e+ee^{+}e^{-} collision data collected at center-of-mass energies between 3.773 and 4.258 GeV with the BESIII detector at BEPCII, the cross section for the process e+eΛΛ¯e^{+}e^{-}\rightarrow\Lambda\bar{\Lambda} is measured in 16 ΛΛ¯\Lambda\bar{\Lambda} invariant mass intervals from the production threshold up to 3.00 GeV/c2/c^{2}. The results are consistent with previous results from BaBar and BESIII, but with better precision and with narrower ΛΛ¯\Lambda\bar{\Lambda} invariant mass intervals than BaBar.

I INTRODUCTION

Electromagnetic form factors (EMFFs), which parametrize the inner structure of hadrons, are fundamental observables for understanding the strong interaction. In the timelike region, EMFFs are extensively studied in electron-positron collisions by measuring hadron pair production cross sections. For a spin-1/21/2 baryon (BB), the cross section in the Born approximation of the one-photon-exchange process e+eBB¯e^{+}e^{-}\to B\bar{B} is parameterized in terms of electric and magnetic form factors GEG_{E} and GMG_{M} by Cabibbo and Gatto (1961):

σB(s)=4πα2Cβ3s[|GM(s)|2+2mB2c2s|GE(s)|2],\sigma^{B}(s)=\frac{4\pi\alpha^{2}C\beta}{3s}\left[\left|G_{M}(s)\right|^{2}+\frac{2m^{2}_{B}c^{2}}{s}\left|G_{E}(s)\right|^{2}\right], (1)

where α\alpha is the fine-structure constant, CC is the Coulomb correction factor Brodsky and Lebed (2009), β=14mB2c4/s\beta=\sqrt{1-4m^{2}_{B}c^{4}/s} is a phase-space (PHSP) factor, ss is the square of the center-of-mass (c.m.) energy, mBm_{B} is the mass of the baryon, and cc is the speed of light. CC accounts for the electromagnetic interaction of the fermions in the final state, and in the point-like approximation, it is 1 for neutral baryons and y/(1ey)y/(1-e^{-y}) with y=πα1β2/βy=\pi\alpha\sqrt{1-\beta^{2}}/\beta for charged baryons. Therefore, for charged baryon-pairs, the factor of β\beta due to PHSP is canceled by the Coulomb factor, which results in a non-zero cross section at the threshold when β=0\beta=0. However, there is no cancelation in the neutral baryon-pair case, so the cross section is zero.

There have been many experimental studies on the charged and neutral baryon-pair production cross sections in the past decades, such as e+epp¯e^{+}e^{-}\rightarrow p\bar{p} Ablikim et al. (2020a); Lees et al. (2013), e+enn¯e^{+}e^{-}\rightarrow n\bar{n} Ablikim et al. (2021a), e+eΛΛ¯e^{+}e^{-}\rightarrow\Lambda\bar{\Lambda} Aubert et al. (2007); Ablikim et al. (2018a, 2019a); Bisello et al. (1990), e+eΣΣ¯e^{+}e^{-}\rightarrow\Sigma\bar{\Sigma} Ablikim et al. (2021b, 2022a), e+eΞΞ¯e^{+}e^{-}\rightarrow\Xi\bar{\Xi} Ablikim et al. (2021c, d), and e+eΛc+Λ¯ce^{+}e^{-}\rightarrow\Lambda_{c}^{+}\bar{\Lambda}_{c}^{-} Ablikim et al. (2018b). Although the conclusions for some channels are questionable due to large uncertainties, there is a general tendency in the production cross sections for these baryon pairs to have a step near the threshold, which then decreases with the increase of the c.m. energy of the baryon pair Huang and Ferroli (2021).

The cross section of the process e+eΛΛ¯e^{+}e^{-}\rightarrow\Lambda\bar{\Lambda} very close to the threshold has been measured in both the BaBar and the BESIII experiments. In the BaBar experiment, the cross section from the ΛΛ¯\Lambda\bar{\Lambda} production threshold up to MΛΛ¯=M_{\Lambda\bar{\Lambda}}= 2.27 GeV/c2/c^{2} was measured as 20460+62±22204_{-60}^{+62}\pm 22 pb Aubert et al. (2007). This result indicates a possible non-zero cross section at threshold which is in conflict with Eq. (1). However, due to the wide ΛΛ¯\Lambda\bar{\Lambda} mass interval and large uncertainties, a solid conclusion cannot be drawn. The BESIII experiment also measured the cross section at the c.m. energy (s\sqrt{s}) of 2.23242.2324 GeV, which is only 1.01.0 MeV above the ΛΛ¯\Lambda\bar{\Lambda} production threshold, to be 305±4536+66305\pm 45_{-36}^{+66} pb Ablikim et al. (2018a). This indicates a threshold enhancement phenomenon in the process e+eΛΛ¯e^{+}e^{-}\rightarrow\Lambda\bar{\Lambda}. Interestingly, in both the BaBar and BESIII experiments, a jump was observed in the process e+eK+KK+Ke^{+}e^{-}\rightarrow K^{+}K^{-}K^{+}K^{-} near the ΛΛ¯\Lambda\bar{\Lambda} production threshold Lees et al. (2012); Ablikim et al. (2019b).

To explain the near threshold enhancement, some theoretical studies have been performed, in which the effects of final-state radiation Haidenbauer and Meißner (2016) and vector-meson resonances Cao et al. (2018); Yang et al. (2019) have been taken into account. The enhancement in the case of neutral baryons may also be explained by an electromagnetic interaction occurring at the quark level Baldini et al. (2009). However, experimentally, the cross section measurements of e+eΛΛ¯e^{+}e^{-}\rightarrow\Lambda\bar{\Lambda} near threshold are still limited and more measurements are needed to further understand this phenomenon.

The cross section and EMFFs of the Λ\Lambda hyperon have been measured via the annihilation channel e+eΛΛ¯e^{+}e^{-}\rightarrow\Lambda\bar{\Lambda} using the energy scan technique Ablikim et al. (2018a, 2019a); Bisello et al. (1990), in which the c.m. energy of the collider is varied according to the experimental plan and the cross section is measured at each c.m. energy. In addition, the radiative return channel e+eγΛΛ¯e^{+}e^{-}\rightarrow\gamma\Lambda\bar{\Lambda} as illustrated in Fig. 1, where γ\gamma is a hard photon from the initial-state radiation (ISR) process, offers a technique complementary to the energy scan technique for the Λ\Lambda hyperon cross section measurement. This technique has been used in the BaBar experiment to measure the cross section and effective form factor of the Λ\Lambda hyperon Aubert et al. (2007).

The differential Born cross section for the e+eγΛΛ¯e^{+}e^{-}\rightarrow\gamma\Lambda\bar{\Lambda} process, integrated over the Λ(Λ¯)\Lambda(\bar{\Lambda}) momenta and the photon polar angle, is written as Druzhinin et al. (2011):

dσe+eγΛΛ¯(q2)dq2=1sW(s,x)σΛΛ¯(q2),\frac{d\sigma_{e^{+}e^{-}\rightarrow\gamma\Lambda\bar{\Lambda}}\left(q^{2}\right)}{dq^{2}}=\frac{1}{s}W(s,x)\sigma_{\Lambda\bar{\Lambda}}\left(q^{2}\right), (2)

where σΛΛ¯(q2)\sigma_{\Lambda\bar{\Lambda}}(q^{2}) is the cross section for the e+eΛΛ¯e^{+}e^{-}\rightarrow\Lambda\bar{\Lambda} process, qq is the momentum transfer of the virtual photon whose squared value represents the invariant mass squared of ΛΛ¯\Lambda\bar{\Lambda}, x=2Eγs=1q2sx=\frac{2E_{\gamma}^{*}}{\sqrt{s}}=1-\frac{q^{2}}{s}, and EγE_{\gamma}^{*} is the energy of the ISR photon in the e+ee^{+}e^{-} c.m. system. The function Kuraev and Fadin (1985)

W(s,x)=kxk1[1+απ(π2312)+34k+k2(3796π212172lnsme2)]k(112x)\displaystyle W(s,x)=kx^{k-1}\left[1+\frac{\alpha}{\pi}\left(\frac{\pi^{2}}{3}-\frac{1}{2}\right)+\frac{3}{4}k+k^{2}\left(\frac{37}{96}-\frac{\pi^{2}}{12}-\frac{1}{72}\ln\frac{s}{m_{e}^{2}}\right)\right]-k\left(1-\frac{1}{2}x\right) (3)
+18k2[4(2x)ln1x1+3(1x)2xln(1x)6+x],k=2απ[lnsme21],\displaystyle+\frac{1}{8}k^{2}\left[4\left(2-x\right)\ln\frac{1}{x}-\frac{1+3\left(1-x\right)^{2}}{x}\ln\left(1-x\right)-6+x\right],k=\frac{2\alpha}{\pi}\left[\ln\frac{s}{m_{e}^{2}}-1\right],

describes the probability for the emission of an ISR photon with energy fraction xx, and mem_{e} is the electron mass.

Refer to caption
Figure 1: The leading-order Feynman diagram for the ISR process e+eγΛΛ¯e^{+}e^{-}\rightarrow\gamma\Lambda\bar{\Lambda}. The ISR photon can be emitted from the electron or the positron.

In this analysis, we present the measurement of the e+eΛΛ¯e^{+}e^{-}\rightarrow\Lambda\bar{\Lambda} cross section from the production threshold up to 3.00 GeV/c2/c^{2} using the ISR process e+eγΛΛ¯e^{+}e^{-}\rightarrow\gamma\Lambda\bar{\Lambda}. The used data sets, corresponding to a total integrated luminosity of 11.957 fb-1, are collected at twelve c.m. energies between 3.773 and 4.258 GeV with the BESIII detector Ablikim et al. (2010) at the BEPCII Collider  Wang (2006).

II THE BESIII DETECTOR AND DATA SAMPLES

The BESIII detector Ablikim et al. (2010) records symmetric e+ee^{+}e^{-} collisions provided by the BEPCII storage ring Wang (2006) in the c.m. energy range from 2.00 up to 4.95 GeV, with a peak luminosity of 1×10331\times 10^{33} cm-2s-1 achieved at s=3.77GeV\sqrt{s}=3.77\;\text{GeV}. BESIII has collected large data samples in this energy region Ablikim et al. (2020b). The cylindrical core of the BESIII detector covers 93% of the full solid angle and consists of a helium-based multilayer drift chamber (MDC), a plastic scintillator time-of-flight system (TOF), and a CsI(Tl) electromagnetic calorimeter (EMC), which are all enclosed in a superconducting solenoidal magnet providing a 1.0 T magnetic field Huang et al. (2022). The solenoid is supported by an octagonal flux-return yoke with resistive plate counter muon identification modules interleaved with steel. The charged particle momentum resolution at 1 GeV/c/c is 0.5%, and the dE/E/dxx resolution is 6% for electrons from Bhabha scattering. The EMC measures photon energies with a resolution of 2.5% (5%) at 1 GeV in the barrel (end cap) region. The time resolution in the TOF barrel region is 68 ps, while that in the end cap region used to be 110 ps. The end cap TOF system was updated in 2015 using multi-gap resistive plate chamber technology, providing a time resolution of 60 ps Li et al. ; Guo et al. ; Cao et al. (2020).

The experimental data sets used in this analysis are listed in Table 1. To optimize the event selection criteria, Monte Carlo (MC) simulations are performed with Geant4-based Agostinelli et al. (2003) software, which includes the description of geometry and material, the detector response and the digitization model, as well as a database for the detector running conditions and performances. In this analysis, the event generator ConExc Ping (2014) is used to generate the signal process e+eγΛΛ¯e^{+}e^{-}\rightarrow\gamma\Lambda\bar{\Lambda} (Λpπ\Lambda{\rightarrow}p\pi^{-} Λ¯p¯π+\bar{\Lambda}\rightarrow\bar{p}\pi^{+}) with 1 million events at the different c.m. energies up to ISR leading order (LO), i.e. with only one ISR photon, and vacuum polarization (VP) is included. The selection efficiencies are estimated by the signal MC samples. An alternative event generator, PHOKHARA10.0 pho , is used to study the systematic uncertainty of the MC model. The cross section lineshape used for the generation of the signal MC samples is from Ref. Li et al. (2022). Inclusive MC samples at s=3.773\sqrt{s}=3.773 and 4.1784.178 GeV are used to investigate possible background contamination. They consist of inclusive hadronic processes (e+eqq¯e^{+}e^{-}\rightarrow q\bar{q}, q=u,d,sq=u,d,s) modeled with the LUARLW Ablikim et al. (2022b) at s=3.773\sqrt{s}=3.773 GeV and KKMC Jadach et al. (2001, 2000) at s=4.178\sqrt{s}=4.178 GeV, and the ISR production of vector charmonium states (e+eγJ/ψe^{+}e^{-}\rightarrow\gamma J/\psi, γψ(2S)\gamma\psi(2S), γψ(3773)\gamma\psi(3773)) generated with BesEvtGen Ping (2008) using the VECTORISR model Bonneau and Martin (1971); Lange (2001). In addition, several exclusive MC samples are generated to study the background, with different event generators and models.

Table 1: The c.m. energy s\sqrt{s} Ablikim et al. (2016a, 2021e) and the integrated luminosity int\mathcal{L}_{\rm int} Ablikim et al. (2016b, 2015a, 2022c) of the data sets used in the present analysis.
s\sqrt{s} ((GeV)) int\mathcal{L}_{\rm int} ((pb)1{}^{-1})
3.773 2931.8
4.128 401.5
4.157 408.7
4.178 3189.0
4.189 526.7
4.199 526.0
4.209 517.1
4.219 514.6
4.226 1047.3
4.236 530.3
4.244 538.1
4.258 825.7

III EVENT SELECTION

The complete process we study is e+eγΛΛ¯γ(pπ)(p¯π+)e^{+}e^{-}\rightarrow\gamma\Lambda\bar{\Lambda}\rightarrow\gamma(p\pi^{-})(\bar{p}\pi^{+}), with the final state γpπp¯π+\gamma p\pi^{-}\bar{p}\pi^{+}, where γ\gamma is the ISR photon. To provide a clean sample in the threshold region, the ISR photon is detected (tagged). However, the differential cross section of the ISR reaction (such as e+eγΛΛ¯e^{+}e^{-}\rightarrow\gamma\Lambda\bar{\Lambda}) as a function of the ISR photon polar angle reaches its highest value when the photon is emitted at a small angle relative to the direction of the electron (or positron) beam Druzhinin et al. (2011). Since this is out of the angular acceptance of the EMC, photons falling in this region cannot be detected, resulting in a reduction of signal efficiency. Moreover, the detection efficiency is further reduced by the low momenta of the pions, which, according to the study of the signal MC samples, are mostly less than 0.2 GeV/c/c. We categorize the reconstruction of signal candidates into two modes: mode I corresponds to fully reconstructed events, i.e. all particles in the final state are identified; in mode II, a partial reconstruction method with a missing pion is used to increase the efficiency.

Charged tracks detected in the MDC are required to be within |cosθ|<0.93\left|\cos\theta\right|<0.93, where θ\theta is the polar angle with respect to the zz axis, which is the symmetry axis of the MDC. The distance of closest approach of each charged track to the interaction point must be less than 30 cm along the zz direction and less than 10 cm in the transverse plane. For each signal candidate, at least three charged tracks are required.

The combined information of dE/E/dxx and TOF is used to calculate particle identification (PID) probabilities for the pion, kaon, and proton hypotheses, and the particle type with the highest probability is assigned to the track.

A secondary vertex fit is performed to obtain the decay vertex of the Λ(Λ¯)\Lambda(\bar{\Lambda}) candidate, and the Λ(Λ¯)\Lambda(\bar{\Lambda}) candidate is reconstructed by fitting the pπ(p¯π+)p\pi^{-}(\bar{p}\pi^{+}) tracks to a common decay vertex. If there is more than one Λ(Λ¯)\Lambda(\bar{\Lambda}) candidate, the one with the minimum chi-square value of the secondary vertex fit is selected. The reconstructed mass of Λ(Λ¯)\Lambda(\bar{\Lambda}) candidate (MΛ(Λ¯))\left(M_{\Lambda(\bar{\Lambda})}\right) is required to be within 6.4 MeV/c2/c^{2} of the nominal Λ\Lambda mass (mΛm_{\Lambda}Workman et al. (2022), as shown in Fig. 2. There is no requirement on the decay length of Λ(Λ¯)\Lambda(\bar{\Lambda}). Both a Λ\Lambda and a Λ¯\bar{\Lambda} are required in mode I, while either a Λ\Lambda or a Λ¯\bar{\Lambda} is required in mode II.

Refer to caption
Figure 2: Distribution of MΛ¯M_{\bar{\Lambda}} versus MΛM_{\Lambda} of the accepted candidates in mode I from all data sets. The dashed red box encloses the signal region, while the black boxes show the sideband regions.

Information on the electromagnetic showers in the EMC is used to select the photon candidates. It is required that the shower time is within 700 ns of the event’s start time to suppress electronic noise and energy deposits unrelated to the events. A photon candidate is selected if its deposited energy is greater than 0.4 GeV. For each candidate signal event, at least one photon is required which is considered as the ISR photon.

A kinematic fit is applied to further suppress background. For mode I, a four-constraint (4C) kinematic fit requiring energy-momentum conservation under the hypothesis of a γΛΛ¯\gamma\Lambda\bar{\Lambda} final state is applied to the signal candidates. If there is more than one photon candidate, the combination with the minimum χ4C2\chi^{2}_{\rm 4C} is selected. To suppress the background with one more photon than the signal process, we require χ4C2χ4C,γγ2\chi^{2}_{\rm 4C}\leq\chi^{2}_{\rm 4C,\gamma\gamma}, where χ4C2\chi^{2}_{\rm 4C} and χ4C,γγ2\chi^{2}_{\rm 4C,\gamma\gamma} are the chi-square values under the hypotheses of γΛΛ¯\gamma\Lambda\bar{\Lambda} and γγΛΛ¯\gamma\gamma\Lambda\bar{\Lambda} final states. For mode II, a one-constraint (1C) kinematic fit with a missing π+(π)\pi^{+}(\pi^{-}) under the hypothesis of a γΛp¯π+(γΛ¯pπ)\gamma\Lambda\bar{p}\pi^{+}(\gamma\bar{\Lambda}p\pi^{-}) final state is applied to the signal candidates. Combining all γp¯(γp)\gamma\bar{p}(\gamma p) pairs with the reconstructed Λ(Λ¯)\Lambda(\bar{\Lambda}), 1C kinematic fits are applied with the invariant mass of p¯π+(pπ)\bar{p}\pi^{+}(p\pi^{-}) being constrained to the nominal Λ\Lambda mass Workman et al. (2022) and the mass of π+(π)\pi^{+}(\pi^{-}) being unconstrained. The γp¯(γp)\gamma\bar{p}(\gamma p) combination with the minimum χ1C2\chi^{2}_{\rm 1C} is selected, where χ1C2\chi_{\rm 1C}^{2} is the chi-square of the 1C kinematic fit. A requirement of χ4C250\chi^{2}_{\rm 4C}\leq 50 (χ1C25\chi^{2}_{\rm 1C}\leq 5) is optimized for the signal candidates for mode I (mode II).

For the candidates of mode II, the distribution of the mass squared of the missing π\pi (Mπ2M_{\pi}^{2}), obtained from energy-momentum conservation, is shown in Fig. 3. To suppress background, a requirement of 0.012Mπ20.0250.012\leq{M_{\pi}^{2}}\leq 0.025 GeV/2c4{}^{2}/c^{4} is applied.

Refer to caption
Figure 3: The Mπ2M_{\pi}^{2} spectrum of the accepted candidates in mode II from all data sets. The region between the red arrows is the signal region, and the regions between the blue arrows are the sideband regions.

The distribution of the selection efficiencies obtained from signal MC samples as a function of invariant mass of ΛΛ¯\Lambda\bar{\Lambda} (MΛΛ¯M_{\Lambda\bar{\Lambda}}) is shown in Fig. 4, where the efficiencies at the c.m. energies between 4.128 and 4.258 GeV are combined and weighted according to the effective luminosity of the ISR process. It should be noted that to improve the mass resolution of MΛΛ¯M_{\Lambda\bar{\Lambda}}, we correct MΛΛ¯M_{\Lambda\bar{\Lambda}} to (MΛΛ¯MΛMΛ¯+2×mΛ)\left(M_{\Lambda\bar{\Lambda}}-M_{\Lambda}-M_{\bar{\Lambda}}+2\times m_{\Lambda}\right). The mass resolution is given by the root-mean-square deviation of (MΛΛ¯MΛΛ¯truth)\left(M_{\Lambda\bar{\Lambda}}-M_{\Lambda\bar{\Lambda}}^{\rm truth}\right) of the signal MC sample, where MΛΛ¯truthM_{\Lambda\bar{\Lambda}}^{\rm truth} is the set value of the invariant mass of ΛΛ¯\Lambda\bar{\Lambda} when generating the MC events. In this paper, the correction of the MΛΛ¯M_{\Lambda\bar{\Lambda}} is implied unless specified. The MΛΛ¯M_{\Lambda\bar{\Lambda}} spectrum of the accepted candidates from all data sets is shown in Fig. 5, in which 817 events are retained. The contributions from J/ψΛΛ¯J/\psi\rightarrow\Lambda\bar{\Lambda} and ψ(2S)ΛΛ¯\psi(2S)\rightarrow\Lambda\bar{\Lambda} decays are clearly seen. About 60% of the signal candidates have MΛΛ¯M_{\Lambda\bar{\Lambda}} below 3.00 GeV/c2c^{2}, and the number of signal candidates (NobsN_{\rm obs}) in each MΛΛ¯M_{\Lambda\bar{\Lambda}} interval is listed in the first column of Table 2.

Refer to caption
Figure 4: The MΛΛ¯M_{\Lambda\bar{\Lambda}}-dependent selection efficiencies obtained from MC simulation. Squares (blue), triangles (black), and circles (red) with error bars represent the data sets at s=\sqrt{s}= 3.773, 4.178-4.258, and 3.773-4.258 GeV, respectively. The combined efficiency is weighted according to the effective luminosity of the ISR process.
Refer to caption
Figure 5: The MΛΛ¯M_{\Lambda\bar{\Lambda}} spectrum for events satisfying the γΛΛ¯\gamma\Lambda\bar{\Lambda} selection criteria from all data sets. Contributions from J/ψΛΛ¯J/\psi\rightarrow\Lambda\bar{\Lambda} and ψ(2S)ΛΛ¯\psi(2S)\rightarrow\Lambda\bar{\Lambda} decays are clearly seen.

IV BACKGROUND ANALYSIS

Potential background channels are investigated in the inclusive MC samples with a topology analysis Zhou et al. (2021); they consist of channels containing ΛΛ¯\Lambda\bar{\Lambda} and channels without ΛΛ¯\Lambda\bar{\Lambda}. The background channels containing ΛΛ¯\Lambda\bar{\Lambda}, such as the processes of e+eπ0ΛΛ¯e^{+}e^{-}\rightarrow\pi^{0}\Lambda\bar{\Lambda}, e+eγ(ΛΣ¯0+c.c.)e^{+}e^{-}\rightarrow\gamma(\Lambda\bar{\Sigma}^{0}+c.c.), and e+eγJ/ψ(ψ(2S))e^{+}e^{-}\rightarrow\gamma J/\psi(\psi(2S)) with J/ψ(ψ(2S))J/\psi(\psi(2S)) decaying to γΛΛ¯\gamma\Lambda\bar{\Lambda}, are studied individually, while the non-ΛΛ¯\Lambda\bar{\Lambda} background is estimated with the sideband method.

Events of e+eπ0ΛΛ¯e^{+}e^{-}\rightarrow\pi^{0}\Lambda\bar{\Lambda} are easily mistaken as signal events if a soft photon from the high-energy π0\pi^{0} is missing. A data-driven method is used to estimate their contribution. A sample of π0ΛΛ¯\pi^{0}\Lambda\bar{\Lambda} events is selected from data, and its background is estimated with the sideband method. The sideband regions are chosen in the distribution of the invariant mass of γγ\gamma\gamma (MγγM_{\gamma\gamma}). The number of events of this sample is calculated by Nπ0data=Nπ0SigRegNπ0Side/2N_{\pi^{0}}^{\rm data}=N_{\pi^{0}}^{\rm SigReg}-N_{\pi^{0}}^{\rm Side}/2, where Nπ0SigRegN_{\pi^{0}}^{\rm SigReg} and Nπ0SideN_{\pi^{0}}^{\rm Side} are the numbers of events from the signal and the sideband regions of the π0ΛΛ¯\pi^{0}\Lambda\bar{\Lambda} sample, respectively. Next, the contribution from the remaining π0ΛΛ¯\pi^{0}\Lambda\bar{\Lambda} background (Nπ0bkgN_{\pi^{0}}^{\rm bkg}) in the signal candidates is determined by:

Nπ0bkg=Nπ0data×NISRMCNπ0MC,N_{\pi^{0}}^{\rm bkg}=N_{\pi^{0}}^{\rm data}\times\frac{N_{\rm ISR}^{\rm MC}}{N_{\pi^{0}}^{\rm MC}}, (4)

where NISRMCN_{\rm ISR}^{\rm MC} and Nπ0MCN_{\pi^{0}}^{\rm MC} are the numbers of the events selected by the signal and π0ΛΛ¯\pi^{0}\Lambda\bar{\Lambda} selection criteria from the π0ΛΛ¯\pi^{0}\Lambda\bar{\Lambda} MC sample. The π0ΛΛ¯\pi^{0}\Lambda\bar{\Lambda} MC sample is generated with the ConExc Ping (2014) event generator up to ISR LO, and the lineshape is obtained with the data sets collected at c.m. energies from 2.644 GeV to 3.080 GeV by BESIII.

In the reaction e+eγ(ΛΣ¯0+c.c.)e^{+}e^{-}\rightarrow\gamma(\Lambda\bar{\Sigma}^{0}+c.c.), the Σ0(Σ¯0)\Sigma^{0}(\bar{\Sigma}^{0}) decays to γΛ(Λ¯)\gamma\Lambda(\bar{\Lambda}) with a branching ratio of 100% Workman et al. (2022), where the γ\gamma has low energy. Therefore, if the photon from the Σ0(Σ¯0)\Sigma^{0}(\bar{\Sigma}^{0}) decay is missing, this event can be misidentified as signal. To estimate the background from this reaction, a MC sample with a total of 2 million events is generated with the ConExc Ping (2014) event generator up to ISR LO, and the lineshape used to generate the MC events is determined with the data sets collected at c.m. energies from 2.309 GeV to 3.080 GeV by BESIII. After applying the signal (γΛΛ¯\gamma\Lambda\bar{\Lambda}) selection criteria to this sample, we obtain the number of the surviving γ(ΛΣ¯0+c.c.)\gamma(\Lambda\bar{\Sigma}^{0}+c.c.) events (NΛΣMCN_{\Lambda\Sigma}^{\rm MC}). A scaling factor is obtained by f=Nexp/Ngenf=N_{\rm exp}/N_{\rm gen}, where NexpN_{\rm exp} is the expected number of the γ(ΛΣ¯0+c.c.)\gamma(\Lambda\bar{\Sigma}^{0}+c.c.) events estimated with the (ΛΣ¯0+c.c.)(\Lambda\bar{\Sigma}^{0}+c.c.) cross section lineshape, and NgenN_{\rm gen} is the number of MC simulated events. Finally, the number of γ(ΛΣ¯0+c.c.)\gamma(\Lambda\bar{\Sigma}^{0}+c.c.) background events (NΛΣbkgN_{\Lambda\Sigma}^{\rm bkg}) is estimated by NΛΣbkg=f×NΛΣMCN_{\Lambda\Sigma}^{\rm bkg}=f\times N_{\Lambda\Sigma}^{\rm MC}. Some other background channels, such as the processes e+eηΛΛ¯e^{+}e^{-}\rightarrow\eta\Lambda\bar{\Lambda} and e+eγJ/ψ(ψ(2S))e^{+}e^{-}\rightarrow\gamma J/\psi(\psi(2S)), are negligible.

Next, the sideband method is used to study the non-ΛΛ¯\Lambda\bar{\Lambda} background. For mode I, two-dimensional (2D) sideband regions of MΛM_{\Lambda} versus MΛ¯M_{\bar{\Lambda}} are adopted, and for mode II, one-dimensional (1D) sideband regions in the distribution of Mπ2M_{\pi}^{2} are used. The distributions of MΛ(Λ¯)M_{\Lambda(\bar{\Lambda})} and Mπ2M_{\pi}^{2} of inclusive MC samples after removing the channels containing the ΛΛ¯\Lambda\bar{\Lambda} pair are nearly flat, so it is reasonable to use the sideband method. The 2D sideband regions (shown in Fig. 2) are chosen as: B1: 1.0901MΛ1.10291.0901\leq M_{\Lambda}\leq 1.1029 GeV/c2/c^{2} and 1.1285MΛ¯1.14131.1285\leq M_{\bar{\Lambda}}\leq 1.1413 GeV/c2/c^{2}; B2: 1.1285MΛ1.14131.1285\leq M_{\Lambda}\leq 1.1413 GeV/c2/c^{2} and 1.1285MΛ¯1.14131.1285\leq M_{\bar{\Lambda}}\leq 1.1413 GeV/c2/c^{2}; B3: 1.0901MΛ1.10291.0901\leq M_{\Lambda}\leq 1.1029 GeV/c2/c^{2} and 1.0901MΛ¯1.10291.0901\leq M_{\bar{\Lambda}}\leq 1.1029 GeV/c2/c^{2}; and B4: 1.1285MΛ1.14131.1285\leq M_{\Lambda}\leq 1.1413 GeV/c2/c^{2} and 1.0901MΛ¯1.10291.0901\leq M_{\bar{\Lambda}}\leq 1.1029 GeV/c2/c^{2}. The 1D sideband regions (shown in Fig. 3) are chosen as 0.024Mπ20-0.024\leq M_{\pi}^{2}\leq 0 GeV/2c4{}^{2}/c^{4} and 0.029Mπ20.0310.029\leq M_{\pi}^{2}\leq 0.031 GeV/2c4{}^{2}/c^{4}. The numbers of events from sideband regions of data (NnonΛΛ¯dataN_{\rm non-\Lambda\bar{\Lambda}}^{\rm data}) are calculated by:

NnonΛΛ¯data=14×N2D+12×N1D,N_{\rm non-\Lambda\bar{\Lambda}}^{\rm data}=\frac{1}{4}\times N_{\rm 2D}+\frac{1}{2}\times N_{\rm 1D}, (5)

where N2DN_{\rm 2D} and N1DN_{\rm 1D} are the numbers of the events from the 2D and 1D sideband regions of data, respectively. The same sideband regions are used for the π0ΛΛ¯\pi^{0}\Lambda\bar{\Lambda} and γ(ΛΣ¯0+c.c.)\gamma(\Lambda\bar{\Sigma}^{0}+c.c.) MC samples, and the numbers of events from sideband regions of these MC samples (NnonΛΛ¯MCN_{\rm non-\Lambda\bar{\Lambda}}^{\rm MC}) are obtained with Eq. (5). The number of non-ΛΛ¯\Lambda\bar{\Lambda} background events (NnonΛΛ¯bkgN_{\rm non-\Lambda\bar{\Lambda}}^{\rm bkg}) is estimated by:

NnonΛΛ¯bkg=NnonΛΛ¯dataNnonΛΛ¯MC.N_{\rm non-\Lambda\bar{\Lambda}}^{\rm bkg}=N_{\rm non-\Lambda\bar{\Lambda}}^{\rm data}-N_{\rm non-\Lambda\bar{\Lambda}}^{\rm MC}. (6)

The numbers of events for the three main background channels above (Nπ0bkgN_{\pi^{0}}^{\rm bkg}, NΛΣbkgN_{\Lambda\Sigma}^{\rm bkg}, NnonΛΛ¯bkgN_{\rm non-\Lambda\bar{\Lambda}}^{\rm bkg}) are calculated in each MΛΛ¯M_{\Lambda\bar{\Lambda}} interval when measuring the Born cross section.

The distributions of MΛΛ¯M_{\Lambda\bar{\Lambda}} of the main background events from all data sets are shown in Fig. 6, and the numbers of background events over all data sets for the three main background channels in each MΛΛ¯M_{\Lambda\bar{\Lambda}} interval are listed in Table 2.

Refer to caption
Figure 6: The distributions of MΛΛ¯M_{\Lambda\bar{\Lambda}} for the signal candidates and the main background events from all data sets. Black dots with error bars refer to the signal candidates, and blue, green, and magenta histograms represent the π0ΛΛ¯\pi^{0}\Lambda\bar{\Lambda}, γ(ΛΣ¯0+c.c.)\gamma(\Lambda\bar{\Sigma}^{0}+c.c.), and non-ΛΛ¯\Lambda\bar{\Lambda} background events, respectively.
Table 2: The number of signal candidates (NobsN_{\rm obs}), number of π0ΛΛ¯\pi^{0}\Lambda\bar{\Lambda} events (Nπ0bkgN_{\pi^{0}}^{\rm bkg}), number of γ(ΛΣ¯0+c.c.)\gamma(\Lambda\bar{\Sigma}^{0}+c.c.) events (NΛΣbkgN_{\Lambda\Sigma}^{\rm bkg}), and number of non-ΛΛ¯\Lambda\bar{\Lambda} events (NnonΛΛ¯bkgN_{\rm non-\Lambda\bar{\Lambda}}^{\rm bkg}), in each MΛΛ¯M_{\Lambda\bar{\Lambda}} interval, for the whole data set. The uncertainties are statistical.
MΛΛ¯M_{\Lambda\bar{\Lambda}} (GeV/c2/c^{2}) NobsN_{\rm obs} Nπ0bkgN_{\pi^{0}}^{\rm bkg} NΛΣbkgN_{\Lambda\Sigma}^{\rm bkg} NnonΛΛ¯bkgN_{\rm non-\Lambda\bar{\Lambda}}^{\rm bkg}
2.231-2.250 28.0 ±\pm 5.3 1.9 ±\pm 1.2 1.28 ±\pm 0.05 0.63 ±\pm 0.70
2.25-2.27 32.0 ±\pm 5.7 0.7+0.60.5{}_{-0.5}^{+0.6} 1.35 ±\pm 0.05 -0.41+1.610.02{}_{-0.02}^{+1.61}
2.27-2.29 25.0 ±\pm 5.0 1.4 ±\pm 0.6 1.36 ±\pm 0.05 2.67 ±\pm 1.22
2.29-2.31 24.0 ±\pm 4.9 1.3 ±\pm 0.6 1.37 ±\pm 0.05 0.69 ±\pm 0.71
2.31-2.34 28.0 ±\pm 5.3 2.4 ±\pm 0.7 2.00 ±\pm 0.07 0.08+1.240.50{}_{-0.50}^{+1.24}
2.34-2.37 27.0 ±\pm 5.2 4.2 ±\pm 0.9 1.83 ±\pm 0.05 0.11+1.240.50{}_{-0.50}^{+1.24}
2.37-2.40 34.0 ±\pm 5.8 5.2 ±\pm 0.9 1.54 ±\pm 0.05 -0.32+1.610.02{}_{-0.02}^{+1.61}
2.40-2.44 28.0 ±\pm 5.3 3.5 ±\pm 0.8 1.74 ±\pm 0.05 0.10+1.240.50{}_{-0.50}^{+1.24}
2.44-2.48 23.0 ±\pm 4.8 3.3 ±\pm 0.7 1.53 ±\pm 0.05 -0.32+1.610.02{}_{-0.02}^{+1.61}
2.48-2.52 16.0 ±\pm 4.0 3.3 ±\pm 0.7 1.28 ±\pm 0.05 1.22+1.430.87{}_{-0.87}^{+1.43}
2.52-2.56 19.0 ±\pm 4.4 1.7 ±\pm 0.5 1.01 ±\pm 0.05 1.51 ±\pm 0.90
2.56-2.60 18.0 ±\pm 4.2 1.4 ±\pm 0.5 0.87 ±\pm 0.05 -0.21+1.610.02{}_{-0.02}^{+1.61}
2.60-2.70 24.0 ±\pm 4.9 1.4 ±\pm 0.5 1.74 ±\pm 0.05 -0.39+1.610.02{}_{-0.02}^{+1.61}
2.70-2.80 15.0 ±\pm 3.9 1.5 ±\pm 0.5 1.12 ±\pm 0.04 3.00 ±\pm 1.25
2.80-2.90 15.0 ±\pm 3.9 2.3 ±\pm 0.6 0.73 ±\pm 0.03 0.07+1.170.25{}_{-0.25}^{+1.17}
2.90-3.00 18.0 ±\pm 4.2 2.6 ±\pm 0.7 0.49 ±\pm 0.03 0.36+1.240.50{}_{-0.50}^{+1.24}

V SYSTEMATIC UNCERTAINTY

Several sources of systematic uncertainties are considered in the cross section measurement. The combined results of different reconstructed methods and different data sets are summarized in Tables 3 and 4 for the correlated and uncorrelated parts, respectively. The correlated and uncorrelated parts are summed in quadrature to determine the total uncertainty.

Table 3: The correlated systematic uncertainties (in %) on the cross section measurement. (Λpπ)\mathcal{B}\left(\Lambda\rightarrow p\pi\right) is the branching ratio of Λ(Λ¯)pπ(p¯π+)\Lambda\left(\bar{\Lambda}\right)\rightarrow p\pi^{-}\left(\bar{p}\pi^{+}\right).
Source Uncertainty
Luminosity 1.1
Λ\Lambda reconstruction 2.1
Λ¯\bar{\Lambda} reconstruction 2.8
(Λpπ)\mathcal{B}\left(\Lambda\rightarrow p\pi\right) 1.6
p(p¯)p(\bar{p}) tracking and PID 0.7
Mπ2M^{2}_{\pi} window 0.6
ISR photon detection 1.0
Kinematic fit 1.7
Neglected background 1.5
Total 4.7
Table 4: The uncorrelated systematic uncertainties (in %) in each MΛΛ¯M_{\Lambda\bar{\Lambda}} interval on the cross section measurement: the uncertainty associated with the π0ΛΛ¯\pi^{0}\Lambda\bar{\Lambda} channel (π0ΛΛ¯\pi^{0}\Lambda\bar{\Lambda}), γ(ΛΣ¯0+c.c.)\gamma(\Lambda\bar{\Sigma}^{0}+c.c.) channel (γΛΣ0\gamma\Lambda\Sigma^{0}), non-ΛΛ¯\Lambda\bar{\Lambda} background (non-ΛΛ¯\Lambda\bar{\Lambda}), Λ\Lambda angular distribution (Ang), and signal MC model (MC). The last column is the total uncorrelated systematic uncertainty.
MΛΛ¯M_{\Lambda\bar{\Lambda}} (GeV/c2/c^{2}) π0ΛΛ¯\pi^{0}\Lambda\bar{\Lambda} γΛΣ0\gamma\Lambda\Sigma^{0} non-ΛΛ¯\Lambda\bar{\Lambda} Ang MC Total
2.231-2.250 0.3 0.6 0.4 2.7 1.6 3.2
2.25-2.27 0.1 0.9 1.4 0.6 1.4 2.2
2.27-2.29 0.7 1.8 0.5 2.3 4.1 5.1
2.29-2.31 0.9 1.9 0.4 2.2 0.7 3.1
2.31-2.34 1.3 3.6 0.5 2.7 1.5 4.9
2.34-2.37 0.8 3.0 0.4 1.6 0.9 3.6
2.37-2.40 1.0 2.0 3.3 0.3 0.9 4.1
2.40-2.44 0.6 3.0 0.4 0.8 0.8 3.2
2.44-2.48 0.5 2.4 0.5 1.7 2.2 3.6
2.48-2.52 1.6 5.2 5.2 2.2 2.2 8.2
2.52-2.56 1.0 5.4 0.9 1.7 3.3 6.7
2.56-2.60 0.5 2.9 0.4 0.8 1.8 3.6
2.60-2.70 0.9 3.2 0.9 2.5 1.4 4.4
2.70-2.80 7.1 9.3 24.8 2.1 1.9 27.5
2.80-2.90 1.7 2.3 2.3 2.1 1.5 4.4
2.90-3.00 1.2 1.5 0.3 1.9 5.4 6.0

The integrated luminosity is measured with an uncertainty of 0.5% at s=3.773\sqrt{s}=3.773 GeV and an uncertainty of 1.0% at other c.m. energies Ablikim et al. (2016b, 2015a, 2022c). In this analysis, the effective luminosity of the ISR process is calculated based on Eq. (3), and a 0.5% uncertainty is estimated Noh (2021). Thus, the total systematic uncertainty on the luminosity is 0.8% at s=3.773\sqrt{s}=3.773 GeV and 1.2% at other energy points.

The uncertainties from the reconstruction of Λ\Lambda and Λ¯\bar{\Lambda} are studied by a control sample of J/ψpKΛ¯+c.c.J/\psi\rightarrow\ pK^{-}\bar{\Lambda}+c.c., and determined to be 2.8% and 3.8% at s=3.773\sqrt{s}=3.773 GeV, and 2.6% and 3.4% at other energy points, respectively. A 1.0% uncertainty is taken for the ISR photon detection Ablikim et al. (2019c).

For mode II, the uncertainties due to the p(p¯)p(\bar{p}) tracking and PID are 1.0% for each Ablikim et al. (2015b). The uncertainty due to the Mπ2(Mπ+2)M^{2}_{\pi^{-}}(M^{2}_{\pi^{+}}) window is also studied by the control sample of J/ψpKΛ¯+c.c.J/\psi\rightarrow\ pK^{-}\bar{\Lambda}+c.c., and estimated as 1.4% (0.8%) at s=3.773\sqrt{s}=3.773 GeV, and 1.5% (0.9%) at other energy points. The uncertainty due to the branching fraction of Λ(Λ¯)pπ(p¯π+)\Lambda\left(\bar{\Lambda}\right)\rightarrow p\pi^{-}\left(\bar{p}\pi^{+}\right), (Λpπ)\mathcal{B}\left(\Lambda\rightarrow p\pi\right), is obtained from the PDG Workman et al. (2022) to be 1.6%.

The uncertainty from the kinematic fit is divided into two parts: the contribution of the ISR photon and the contribution of the remainder. The former is determined by a control sample of the radiative Bhabha process e+eγe+ee^{+}e^{-}\rightarrow\gamma e^{+}e^{-}, and estimated as 0.4%, 0.2% and 1.1% for the cases of full reconstruction, missing π\pi^{-} and missing π+\pi^{+}, respectively. The later is studied by a control sample of J/ψΛΛ¯J/\psi\rightarrow\Lambda\bar{\Lambda}, and is 0.2% (0.2%), 2.4% (2.2%) and 2.2% (2.2%) at s=3.773\sqrt{s}=3.773 GeV (other energy points), for the cases of full reconstruction, missing π\pi^{-} and missing π+\pi^{+}, respectively. Thus, the uncertainty due to the kinematic fit at s=3.773\sqrt{s}=3.773 GeV (other energy points) is 0.6% (0.6%), 2.6% (2.4%) and 3.3% (3.3%) for the cases of full reconstruction, missing π\pi^{-} and missing π+\pi^{+}, respectively.

The signal MC samples are generated with PHSP. The angular distribution of the ΛΛ¯\Lambda\bar{\Lambda} pair, the spin correlation between Λ\Lambda and Λ¯\bar{\Lambda}, and the polarization of Λ(Λ¯)\Lambda(\bar{\Lambda}) decay are not taken into account. To estimate the uncertainty due to these factors, signal MC samples with an angular amplitude including these effects are generated. The parameterization of the angular amplitude is the same as that in Ref. Ablikim et al. (2019a), and the corresponding parameters are cited from it when MΛΛ¯2.52M_{\Lambda\bar{\Lambda}}\leq 2.52 GeV/c2/c^{2} and obtained with the data set at s=2.900\sqrt{s}=2.900 GeV when MΛΛ¯2.52M_{\Lambda\bar{\Lambda}}\geq 2.52 GeV/c2/c^{2}. The relative difference of the detection efficiency to that of the PHSP mode is regarded as the uncertainty.

The uncertainty from the MC model is considered by changing the event generator from ConExc Ping (2014) to PHOKHARA10.0 pho . The relative difference of the detection efficiency of these two event generators is taken as the uncertainty.

For the channel of e+eπ0ΛΛ¯e^{+}e^{-}\rightarrow\pi^{0}\Lambda\bar{\Lambda}, the sideband regions on the MγγM_{\gamma\gamma} spectrum are used to estimate the background of the π0ΛΛ¯\pi^{0}\Lambda\bar{\Lambda} sample. Here, the 2D sideband regions (sideband of MΛM_{\Lambda} and MΛ¯M_{\bar{\Lambda}}) and 3D sideband regions (sideband of MΛM_{\Lambda}, MΛ¯M_{\bar{\Lambda}} and MγγM_{\gamma\gamma}) are also used. The values of |NMγγN2DNsig|\left|\frac{N_{M_{\gamma\gamma}}-N_{\rm 2D}}{N_{\rm sig}}\right| and |NMγγN3DNsig|\left|\frac{N_{M_{\gamma\gamma}}-N_{\rm 3D}}{N_{\rm sig}}\right| are obtained, where NsigN_{\rm sig} is the number of signal events, NMγγN_{M_{\gamma\gamma}}, N2DN_{\rm 2D} and N3DN_{\rm 3D} are the estimated numbers of π0ΛΛ¯\pi^{0}\Lambda\bar{\Lambda} events based on MγγM_{\gamma\gamma}, 2D and 3D sidebands, respectively. The larger of the two values is taken as the uncertainty of this channel.

For the channel of e+eγ(ΛΣ¯0+c.c.)e^{+}e^{-}\rightarrow\gamma(\Lambda\bar{\Sigma}^{0}+c.c.), one of the parameters of the lineshape is changed by adding and subtracting a standard deviation (±1σ\pm 1\sigma). Based on the different lineshapes, different estimated numbers of γ(ΛΣ¯0+c.c.)\gamma(\Lambda\bar{\Sigma}^{0}+c.c.) events are obtained. Further, the same method as for the e+eπ0ΛΛ¯e^{+}e^{-}\rightarrow\pi^{0}\Lambda\bar{\Lambda} channel is used here to obtain the uncertainty of this channel.

For the non-ΛΛ¯\Lambda\bar{\Lambda} background, we move the sideband regions by 0.002 GeV/c2c^{2} and 0.002 GeV/2c4{}^{2}/c^{4} towards the signal for the 2D and the 1D sidebands, respectively, and obtain the new estimated numbers of non-ΛΛ¯\Lambda\bar{\Lambda} background events. The relative difference between the old and new results is regarded as the uncertainty. For the MΛΛ¯M_{\Lambda\bar{\Lambda}} interval of 2.70-2.80 GeV/c2/c^{2}, since NsigN_{\rm sig} is extremely small (0.8±2.30.8\pm 2.3) at s=3.773\sqrt{s}=3.773 GeV, the estimation of this uncertainty at s=3.773\sqrt{s}=3.773 GeV is significantly larger than that in other intervals. Except for the three main background sources mentioned above, several other background channels are neglected, and their contribution is considered as a systematic uncertainty, which is 2.2% at s=3.773\sqrt{s}=3.773 GeV and 1.1% at other energy points.

In this analysis, twelve data sets are used and three reconstruction methods (full reconstruction, and partial reconstruction with missing π\pi^{-} or π+\pi^{+}) are applied. We divide the data sets into two groups, where the first group only includes the data set at s=\sqrt{s}= 3.773 GeV and the second group includes the other data sets at c.m. energies from 4.128 to 4.258 GeV. The uncertainties of the second group are studied together or inherited from the result at s=4.178\sqrt{s}=4.178 GeV. Thus, the systematic uncertainties are combined in two steps, where the first step combines the three reconstruction methods in each group and the second step combines the two groups. Uncertainties of the three reconstruction methods (two data set groups) are combined as the average value weighted by detection efficiencies (products of detection efficiency and effective luminosity). The weighted average formula is:

σtot2=i=13(2)ωi2σi2+i,j=1;ij3(2)ρijωiωjσiσj,\sigma_{\rm tot}^{2}=\sum_{i=1}^{3(2)}\omega_{i}^{2}\sigma_{i}^{2}+\sum_{i,j=1;i\neq j}^{3(2)}\rho_{ij}\omega_{i}\omega_{j}\sigma_{i}\sigma_{j}, (7)

with

ωi=εii=13εi(ωi=εiii=12εii),\omega_{i}=\frac{\varepsilon_{i}}{\sum_{i=1}^{3}\varepsilon_{i}}~{}\left(\omega_{i}=\frac{\varepsilon_{i}\mathcal{L}_{i}}{\sum_{i=1}^{2}\varepsilon_{i}\mathcal{L}_{i}}\right), (8)

where ωi\omega_{i}, σi\sigma_{i} and εi\varepsilon_{i} with i=1,2,3i=1,2,3 (i=1,2i=1,2) are the weight, systematic uncertainty and efficiency for the reconstruction method (data set group) ii, and ρij\rho_{ij} is the correlation parameter for two different reconstruction methods (data set groups) ii and jj, and i\mathcal{L}_{i} is the effective luminosity for the data set group ii. For the systematic uncertainties arising from background the ρij\rho_{ij} values are set to 0, and for other systematic uncertainties the ρij\rho_{ij} are set to 1.

VI Results of the Cross section

The cross section for e+eΛΛ¯e^{+}e^{-}\rightarrow\Lambda\bar{\Lambda} is calculated from the MΛΛ¯M_{\Lambda\bar{\Lambda}} spectrum by:

σΛΛ¯(MΛΛ¯)=(dNsig/dMΛΛ¯)ε2(Λpπ)dint/dMΛΛ¯,\sigma_{\Lambda\bar{\Lambda}}\left(M_{\Lambda\bar{\Lambda}}\right)=\frac{\left(dN_{\rm sig}/dM_{\Lambda\bar{\Lambda}}\right)}{\varepsilon\cdot\mathcal{B}^{2}\left(\Lambda\rightarrow p\pi\right)\cdot d\mathcal{L}_{\rm int}/dM_{\Lambda\bar{\Lambda}}}, (9)

where (dNsig/dMΛΛ¯)\left(dN_{\rm sig}/dM_{\Lambda\bar{\Lambda}}\right) is the MΛΛ¯M_{\Lambda\bar{\Lambda}} spectrum of data corrected for resolution effects after subtracting the background, ε\varepsilon is the detection efficiency from MC simulation as a function of MΛΛ¯M_{\Lambda\bar{\Lambda}}, and (Λpπ)=0.639±0.005\mathcal{B}\left(\Lambda\rightarrow p\pi\right)=0.639\pm 0.005 Workman et al. (2022). The effective ISR luminosity dint/dMΛΛ¯d\mathcal{L}_{\rm int}/dM_{\Lambda\bar{\Lambda}} is calculated by dint/dMΛΛ¯=W(s,x)intd\mathcal{L}_{\rm int}/dM_{\Lambda\bar{\Lambda}}=W(s,x)\cdot\mathcal{L}_{\rm int}, where W(s,x)W(s,x) is described by Eq. (3). This effective luminosity includes the first-order radiative correction but does not take into account VP, so the obtained cross section is the “dressed” cross section.

The dependence of the mass resolution on MΛΛ¯M_{\Lambda\bar{\Lambda}} is determined, and accordingly the MΛΛ¯M_{\Lambda\bar{\Lambda}} is divided into 16 intervals from the threshold up to 3.00 GeV/c2/c^{2}. To reduce the impact of the mass resolution, the width of the MΛΛ¯M_{\Lambda\bar{\Lambda}} bin is at least 5 times larger than the mass resolution, so we do not correct the mass spectrum for resolution effects. The measured cross sections for the process e+eΛΛ¯e^{+}e^{-}\rightarrow\Lambda\bar{\Lambda} in these intervals are listed in Table 5. A comparison between the results of this work and those of previous ones Ablikim et al. (2018a, 2019a); Bisello et al. (1990); Aubert et al. (2007) is displayed in Fig. 7.

Table 5: The cross section (σ\sigma) of the whole data set. NsigN_{\rm sig} is the total number of signal events, ε¯\bar{\varepsilon} is the average detection efficiency of twelve energy points weighted by the effective ISR luminosity, and \mathcal{L} is the total effective ISR luminosity. The uncertainties for NsigN_{\rm sig} are statistical. For σ\sigma, the first uncertainties are statistical, and the second are systematic.
MΛΛ¯M_{\Lambda\bar{\Lambda}} (GeV/c2c^{2}) NsigN_{\rm sig} ε¯\bar{\varepsilon} \mathcal{L} (pb-1) σ\sigma (pb)
2.231-2.250 24.1 ±\pm 5.5 0.061 3.95 245 ±\pm 56 ±\pm 14
2.25-2.27 30.3+5.75.9{}_{-5.9}^{+5.7} 0.062 4.24 283+5355{}_{-55}^{+53} ±\pm 15
2.27-2.29 19.5 ±\pm 5.2 0.062 4.32 179 ±\pm 48 ±\pm 13
2.29-2.31 20.7 ±\pm 5.0 0.061 4.41 190 ±\pm 46 ±\pm 11
2.31-2.34 23.5+5.45.5{}_{-5.5}^{+5.4} 0.059 6.78 144+32.733.5{}_{-33.5}^{+32.7} ±\pm 9.8
2.34-2.37 20.8+5.35.4{}_{-5.4}^{+5.3} 0.058 6.99 126.6+32.132.9{}_{-32.9}^{+32.1} ±\pm 7.5
2.37-2.40 27.6+5.96.1{}_{-6.1}^{+5.9} 0.057 7.20 165+3537{}_{-37}^{+35} ±\pm 11
2.40-2.44 22.7+5.45.5{}_{-5.5}^{+5.4} 0.057 9.95 98.1+23.223.7{}_{-23.7}^{+23.2} ±\pm 5.6
2.44-2.48 18.5+4.95.1{}_{-5.1}^{+4.9} 0.058 10.37 75.2+19.720.8{}_{-20.8}^{+19.7} ±\pm 4.5
2.48-2.52 10.2+4.24.3{}_{-4.3}^{+4.2} 0.059 10.82 38.9+15.916.5{}_{-16.5}^{+15.9} ±\pm 3.7
2.52-2.56 14.7 ±\pm 4.5 0.061 11.30 52.4 ±\pm 16.0 ±\pm 4.3
2.56-2.60 15.9+4.34.6{}_{-4.6}^{+4.3} 0.063 11.80 52.1+14.014.9{}_{-14.9}^{+14.0} ±\pm 3.1
2.60-2.70 21.2+4.95.2{}_{-5.2}^{+4.9} 0.066 31.96 24.6+5.76.0{}_{-6.0}^{+5.7} ±\pm 1.6
2.70-2.80 9.4 ±\pm 4.1 0.070 35.96 9.1 ±\pm 4.0 ±\pm 2.6
2.80-2.90 11.9+3.94.1{}_{-4.1}^{+3.9} 0.072 40.76 9.9+3.33.4{}_{-3.4}^{+3.3} ±\pm 0.7
2.90-3.00 14.5+4.34.5{}_{-4.5}^{+4.3} 0.073 46.59 10.5+3.13.2{}_{-3.2}^{+3.1} ±\pm 0.8
Refer to caption
Figure 7: The cross section for the e+eΛΛ¯e^{+}e^{-}\rightarrow\Lambda\bar{\Lambda} process from this analysis (black dots with error bars) with comparison to previous works (see the legend in the figure) Ablikim et al. (2018a, 2019a); Bisello et al. (1990); Aubert et al. (2007). Both statistical and systematic uncertainties are included. The blue dashed line is the fit result using Eq. (10), and the red solid line is the fit result using Eq. (11). The vertical dashed line is the production threshold for e+eΛΛ¯e^{+}e^{-}\rightarrow\Lambda\bar{\Lambda}. The χ\chi distributions of the two fits are shown in the bottom panel, where the blue and red triangles represent the results of Eqs. (10) and (11), respectively.

A search for a threshold effect is made by performing a least chi-square fit to the cross section from the production threshold up to 3.00 GeV with different assumed functions. The systematic uncertainty is included in the fit with the correlated and uncorrelated parts considered separately.

The first fit function is a perturbative QCD (pQCD) driven energy power function Pacetti et al. (2015)

σ(s)=c0β(s)C(sc1)10,\sigma(s)=\frac{c_{0}\cdot\beta(s)\cdot C}{\left(\sqrt{s}-c_{1}\right)^{10}}, (10)

where c0c_{0} and c1c_{1} are free parameters and the Coulomb correction factor is C=1C=1 for neutral baryons. The fit result is shown as the blue dashed line in Fig. 7, with c0=(1.07±0.74)×103c_{0}=(1.07\pm 0.74)\times 10^{3} pb\cdotGeV10, c1=1.27±0.08c_{1}=1.27\pm 0.08 GeV and the fit quality χ2/d.o.f=19.06/14\chi^{2}/d.o.f=19.06/14.

In Fig. 7, the pQCD prediction does not describe the anomalous enhancement well near threshold. Therefore, inspired by the results of cross section measurements of e+enn¯e^{+}e^{-}\rightarrow n\bar{n} and e+epp¯e^{+}e^{-}\rightarrow p\bar{p} Ablikim et al. (2021a, 2020a), it is assumed that there is a step near the threshold for the e+eΛΛ¯e^{+}e^{-}\rightarrow\Lambda\bar{\Lambda} cross section, the threshold enhancement effect. By taking into account the strong interaction near the threshold instead of using the formula of Eq. (10), which contains the Coulomb factor, the cross section can be expressed as Ablikim et al. (2020a):

σ(s)=ea0π2α3s[1eπαsβ][1+(s2mΛa1)a2],\sigma(s)=\frac{e^{a_{0}}\pi^{2}\alpha^{3}}{s\left[1-e^{-\frac{\pi\alpha_{s}}{\beta}}\right]\left[1+\left(\frac{\sqrt{s}-2m_{\Lambda}}{a_{1}}\right)^{a_{2}}\right]}, (11)

where a0a_{0}, a1a_{1}, and a2a_{2} are three free parameters. The symbol αs\alpha_{s} represents the strong running coupling constant and is parameterized as:

αs=[1αs(mZ2)+74πln(smZ2)]1,\alpha_{s}=\left[\frac{1}{\alpha_{s}(m_{Z}^{2})}+\frac{7}{4\pi}\ln\left(\frac{s}{m_{Z}^{2}}\right)\right]^{-1}, (12)

where mZ=m_{Z}= 91.1876 GeV/c2/c^{2} Workman et al. (2022) is the mass of ZZ boson and αs(mZ2)=\alpha_{s}(m_{Z}^{2})= 0.11856. This fit has χ2/d.o.f=9.83/13\chi^{2}/d.o.f=9.83/13, with a0=19.5±0.16a_{0}=19.5\pm 0.16, a1=0.17±0.04a_{1}=0.17\pm 0.04 GeV and a2=1.98±0.34a_{2}=1.98\pm 0.34, and the fit result is shown as the red solid line in Fig. 7.

VII Study of the 𝑱/𝝍𝚲𝚲¯J/\psi\rightarrow\Lambda\bar{\Lambda} decay

The branching fraction of J/ψΛΛ¯J/\psi\rightarrow\Lambda\bar{\Lambda}, (J/ψΛΛ¯)\mathcal{B}\left(J/\psi\rightarrow\Lambda\bar{\Lambda}\right), is determined via the ISR process e+eγJ/ψγΛΛ¯e^{+}e^{-}\rightarrow\gamma J/\psi\rightarrow\gamma\Lambda\bar{\Lambda} at s=3.773\sqrt{s}=3.773 and 4.1784.178 GeV. After integrating over the photon polar angle, the cross section for ISR production of a narrow resonance (vector meson VV), such as J/ψJ/\psi, decaying into the final state ff is given by Benayoun et al. (1999):

σ(s)=12π2Γ(Ve+e)(Vf)mVsW(s,x0),\sigma(s)=\frac{12\pi^{2}\Gamma\left(V\rightarrow e^{+}e^{-}\right)\mathcal{B}(V\rightarrow f)}{m_{V}s}W(s,x_{0}), (13)

where mVm_{V} and Γ(Ve+e)\Gamma(V\rightarrow e^{+}e^{-}) are the mass and electronic width of the vector meson VV, x0=1mV2/sx_{0}=1-m_{V}^{2}/s, (Vf)\mathcal{B}(V\rightarrow f) is the branching fraction of VfV\rightarrow\ f, and W(s,x0)W(s,x_{0}) is calculated by Eq. (3). If the cross section is measured, the branching fraction can be calculated by Eq. (13). The cross section can also be written as:

σ(s)=NJ/ψε2(Λpπ)int,\sigma(s)=\frac{N_{J/\psi}}{\varepsilon\cdot\mathcal{B}^{2}\left(\Lambda\rightarrow\ p\pi\right)\cdot\mathcal{L}_{\rm int}}, (14)

where NJ/ψN_{J/\psi} is the number of J/ψJ/\psi events, ε\varepsilon is the detection efficiency, and int\mathcal{L}_{\rm int} is the integrated luminosity of data, whose values are listed in Table 1. The detection efficiency is estimated from MC simulation as 7.2% at s=3.773\sqrt{s}=3.773 GeV and 7.1% at s=4.178\sqrt{s}=4.178 GeV. The angular distribution of Λ\Lambda in J/ψΛΛ¯J/\psi\rightarrow\Lambda\bar{\Lambda} decay is described by 1+αcos2θΛ1+\alpha\cos^{2}\theta_{\Lambda} with α=0.469\alpha=0.469 Ablikim et al. (2017). To determine NJ/ψN_{J/\psi}, using (J/ψΛΛ¯)\mathcal{B}\left(J/\psi\rightarrow\Lambda\bar{\Lambda}\right) as a shared parameter, a simultaneous fit is performed with a double Gaussian function for the resonance and a linear function for the background and the continuum contribution, and the result is shown in Fig. 8

Refer to caption
Figure 8: Simultaneous fit (blue curve) with a double Gaussian function (red dashed curve) for the resonance and a linear function (green dashed curve) for background of the MΛΛ¯M_{\Lambda\bar{\Lambda}} spectra at s=3.773\sqrt{s}=3.773 and 4.1784.178 GeV. Black dots with error bars represent data.

For the systematic uncertainties on the measurement of (J/ψΛΛ¯)\mathcal{B}\left(J/\psi\rightarrow\Lambda\bar{\Lambda}\right), the uncertainties of the luminosity, Λ\Lambda and Λ¯\bar{\Lambda} reconstruction, p(p¯)p(\bar{p}) tracking and PID, Mπ2M^{2}_{\pi} window, ISR photon detection, (Λpπ)\mathcal{B}\left(\Lambda\rightarrow p\pi\right), and kinematic fit are the same as the cross section measurement. The uncertainty due to the MC model is assigned as 1.3%, by changing the model for the generation of the J/ψΛΛ¯J/\psi\rightarrow\Lambda\bar{\Lambda} decay. The uncertainty of the fit region is determined by changing the fit region from (2.90, 3.30) GeV/c2/c^{2} to a wider (2.80, 3.30) GeV/c2/c^{2} and a narrower interval (3.00, 3.20) GeV/c2/c^{2} to be 1.3%. The uncertainty from the signal model of the fit is estimated by changing the model from the double Gaussian function to the MC-shape-convolved Gaussian function as 1.3%. The uncertainty of the background model of the fit is estimated by changing the model from a linear function to a constant as 0.5%. Finally, we consider a systematic uncertainty due to the non-ΛΛ¯\Lambda\bar{\Lambda} background. The non-ΛΛ¯\Lambda\bar{\Lambda} background is treated as a peaking background, instead of a non-peaking one as default. The relative difference between the results of the two strategies, 1.9%, is regarded as the uncertainty. The total uncertainty is obtained to be 5.6% by summing all uncertainties in quadrature.

(J/ψΛΛ¯)\mathcal{B}\left(J/\psi\rightarrow\Lambda\bar{\Lambda}\right) is determined to be (1.64±0.12±0.09)×103(1.64\pm 0.12\pm 0.09)\times 10^{-3}, where the first uncertainty is statistical and the second is systematic. It is consistent with the PDG value (1.89±0.09)×103(1.89\pm 0.09)\times 10^{-3} Workman et al. (2022) within 2σ\sigma.

VIII Summary and discussion

Based on data sets corresponding to a total integrated luminosity of 11.957 fb-1 collected at twelve c.m. energies between 3.773 and 4.258 GeV with the BESIII detector at BEPCII, the cross section for the process e+eΛΛ¯e^{+}e^{-}\rightarrow\Lambda\bar{\Lambda} is measured as the function of MΛΛ¯M_{\Lambda\bar{\Lambda}} in 16 intervals from the production threshold up to 3.00 GeV/c2/c^{2} using ISR events with the ISR photon tagged. A partial reconstruction method allowing a charged π\pi to be missing is used in addition to the full reconstruction method to increase the efficiency. In the first MΛΛ¯M_{\Lambda\bar{\Lambda}} interval ranging from the threshold up to 2.25 GeV/c2/c^{2} (with the width of 19 MeV/c2/c^{2}), the cross section is determined to be 245±56±13245\pm 56\pm 13 pb, where the first uncertainty is statistical and the second is systematic. It is a non-zero value with a statistical significance of 4.3σ\sigma and larger than the pQCD prediction by 2.3σ\sigma. In the region from 2.23 GeV/c2/c^{2} up to 3.00 GeV/c2/c^{2}, the cross section is measured in 15 intervals. The results are consistent with previous measurements at BaBar and BESIII. The spectrum of the cross section is fitted with the pQCD assumption and with the assumption of a step existing near threshold, with the latter being a better description of the data.

Acknowledgements.
The BESIII Collaboration thanks the staff of BEPCII, the IHEP computing center and the supercomputing center of USTC for their strong support. This work is supported in part by National Key R&D Program of China under Contracts Nos. 2020YFA0406400, 2020YFA0406300; National Natural Science Foundation of China (NSFC) under Contracts Nos. 11635010, 11735014, 11835012, 11935015, 11935016, 11935018, 11961141012, 12022510, 12025502, 12035009, 12035013, 12192260, 12192261, 12192262, 12192263, 12192264, 12192265, 12275320, 11625523, 11705192, 11950410506, 12061131003, 12105276, 12122509; the Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Program; the CAS Center for Excellence in Particle Physics (CCEPP); Joint Large-Scale Scientific Facility Funds of the NSFC and CAS under Contracts Nos. U1832207, U1732263, U1832103, U2032111; CAS Key Research Program of Frontier Sciences under Contracts Nos. QYZDJ-SSW-SLH003, QYZDJ-SSW-SLH040; 100 Talents Program of CAS; The Institute of Nuclear and Particle Physics (INPAC) and Shanghai Key Laboratory for Particle Physics and Cosmology; ERC under Contract No. 758462; European Union’s Horizon 2020 research and innovation programme under Marie Sklodowska-Curie grant agreement under Contract No. 894790; German Research Foundation DFG under Contracts Nos. 443159800, 455635585, Collaborative Research Center CRC 1044, FOR5327, GRK 2149; Istituto Nazionale di Fisica Nucleare, Italy; Ministry of Development of Turkey under Contract No. DPT2006K-120470; National Research Foundation of Korea under Contract No. NRF-2022R1A2C1092335; National Science and Technology fund; National Science Research and Innovation Fund (NSRF) via the Program Management Unit for Human Resources & Institutional Development, Research and Innovation under Contract No. B16F640076; Polish National Science Centre under Contract No. 2019/35/O/ST2/02907; The Royal Society, UK under Contracts Nos. DH140054, DH160214; The Swedish Research Council; U. S. Department of Energy under Contract No. DE-FG02-05ER41374.

References