This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Jefferson Lab E97-110 Collaboration

Measurement of the generalized spin polarizabilities of the neutron in the low Q2Q^{2} region

Vincent Sulkosky William & Mary, Williamsburg, Virginia 23187-8795, USA Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA University of Virginia, Charlottesville, Virginia 22904, USA    Chao Peng Duke University, Durham, North Carolina 27708, USA Argonne National Laboratory, Lemont, Illinois 60439, USA    Jian-ping Chen Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA    Alexandre Deur111Corresponding author; E-mail: deurpam@jlab.org. University of Virginia, Charlottesville, Virginia 22904, USA Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA    Sergey Abrahamyan Yerevan Physics Institute, Yerevan 375036, Armenia    Konrad A. Aniol California State University, Los Angeles, Los Angeles, California 90032, USA    David S. Armstrong William & Mary, Williamsburg, Virginia 23187-8795, USA    Todd Averett William & Mary, Williamsburg, Virginia 23187-8795, USA    Stephanie L. Bailey William & Mary, Williamsburg, Virginia 23187-8795, USA    Arie Beck Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA    Pierre Bertin LPC Clermont-Ferrand, Université Blaise Pascal, CNRS/IN2P3, F-63177 Aubière, France    Florentin Butaru Temple University, Philadelphia, Pennsylvania 19122, USA    Werner Boeglin Florida International University, Miami, Florida 33199, USA    Alexandre Camsonne LPC Clermont-Ferrand, Université Blaise Pascal, CNRS/IN2P3, F-63177 Aubière, France    Gordon D. Cates University of Virginia, Charlottesville, Virginia 22904, USA    Chia-Cheh Chang University of Maryland, College Park, Maryland 20742, USA    Seonho Choi Temple University, Philadelphia, Pennsylvania 19122, USA    Eugene Chudakov Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA    Luminita Coman Florida International University, Miami, Florida 33199, USA    Juan C. Cornejo California State University, Los Angeles, Los Angeles, California 90032, USA    Brandon Craver University of Virginia, Charlottesville, Virginia 22904, USA    Francesco Cusanno Istituto Nazionale di Fisica Nucleare, Sezione di Roma, I-00185 Rome, Italy    Raffaele De Leo Istituto Nazionale di Fisica Nucleare, Sezione di Bari and University of Bari, I-70126 Bari, Italy    Cornelis W. de Jager222Deceased. Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA    Joseph D. Denton Longwood University, Farmville, VA 23909, USA    Seema Dhamija University of Kentucky, Lexington, Kentucky 40506, USA    Robert Feuerbach Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA    John M. Finn William & Mary, Williamsburg, Virginia 23187-8795, USA    Salvatore Frullani Istituto Nazionale di Fisica Nucleare, Sezione di Roma, I-00185 Rome, Italy Istituto Superiore di Sanità, I-00161 Rome, Italy    Kirsten Fuoti William & Mary, Williamsburg, Virginia 23187-8795, USA    Haiyan Gao Duke University and Triangle Universities Nuclear Laboratory, Durham, NC, USA    Franco Garibaldi Istituto Nazionale di Fisica Nucleare, Sezione di Roma, I-00185 Rome, Italy Istituto Superiore di Sanità, I-00161 Rome, Italy    Olivier Gayou Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA    Ronald Gilman Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA Rutgers, The State University of New Jersey, Piscataway, New Jersey 08855, USA    Alexander Glamazdin Kharkov Institute of Physics and Technology, Kharkov 310108, Ukraine    Charles Glashausser Rutgers, The State University of New Jersey, Piscataway, New Jersey 08855, USA    Javier Gomez Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA    Jens-Ole Hansen Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA    David Hayes Old Dominion University, Norfolk, Virginia 23529, USA    F. William Hersman University of New Hampshire, Durham, New Hamphsire 03824, USA    Douglas W. Higinbotham Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA    Timothy Holmstrom William & Mary, Williamsburg, Virginia 23187-8795, USA Longwood University, Farmville, VA 23909, USA    Thomas B. Humensky University of Virginia, Charlottesville, Virginia 22904, USA    Charles E. Hyde Old Dominion University, Norfolk, Virginia 23529, USA    Hassan Ibrahim Old Dominion University, Norfolk, Virginia 23529, USA Cairo University, Cairo, Giza 12613, Egypt    Mauro Iodice Istituto Nazionale di Fisica Nucleare, Sezione di Roma, I-00185 Rome, Italy    Xiandong Jiang Rutgers, The State University of New Jersey, Piscataway, New Jersey 08855, USA    Lisa J. Kaufman University of Massachusetts-Amherst, Amherst, Massachusetts 01003, USA    Aidan Kelleher William & Mary, Williamsburg, Virginia 23187-8795, USA    Kathryn E. Keister William & Mary, Williamsburg, Virginia 23187-8795, USA    Wooyoung Kim Kyungpook National University, Taegu City, South Korea    Ameya Kolarkar University of Kentucky, Lexington, Kentucky 40506, USA    Norm Kolb University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada    Wolfgang Korsch University of Kentucky, Lexington, Kentucky 40506, USA    Kevin Kramer William & Mary, Williamsburg, Virginia 23187-8795, USA Duke University, Durham, North Carolina 27708, USA    Gerfried Kumbartzki Rutgers, The State University of New Jersey, Piscataway, New Jersey 08855, USA    Luigi Lagamba Istituto Nazionale di Fisica Nucleare, Sezione di Bari and University of Bari, I-70126 Bari, Italy    Vivien Lainé Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA LPC Clermont-Ferrand, Université Blaise Pascal, CNRS/IN2P3, F-63177 Aubière, France    Geraud Laveissiere LPC Clermont-Ferrand, Université Blaise Pascal, CNRS/IN2P3, F-63177 Aubière, France    John J. Lerose Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA    David Lhuillier DAPNIA/SPhN, CEA Saclay, F-91191 Gif-sur-Yvette, France    Richard Lindgren University of Virginia, Charlottesville, Virginia 22904, USA    Nilanga Liyanage University of Virginia, Charlottesville, Virginia 22904, USA Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA    Hai-Jiang Lu Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China    Bin Ma Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA    Demetrius J. Margaziotis California State University, Los Angeles, Los Angeles, California 90032, USA    Peter Markowitz Florida International University, Miami, Florida 33199, USA    Kathleen R. McCormick Rutgers, The State University of New Jersey, Piscataway, New Jersey 08855, USA    Mehdi Meziane Duke University, Durham, North Carolina 27708, USA    Zein-Eddine Meziani Temple University, Philadelphia, Pennsylvania 19122, USA    Robert Michaels Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA    Bryan Moffit William & Mary, Williamsburg, Virginia 23187-8795, USA    Peter Monaghan Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA    Sirish Nanda Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA    Jennifer Niedziela University of Massachusetts-Amherst, Amherst, Massachusetts 01003, USA    Mikhail Niskin Florida International University, Miami, Florida 33199, USA    Ronald Pandolfi Randolph-Macon College, Ashland, Virginia 23005, USA    Kent D. Paschke University of Massachusetts-Amherst, Amherst, Massachusetts 01003, USA    Milan Potokar Institut Jozef Stefan, University of Ljubljana, Ljubljana, Slovenia    Andrew Puckett University of Virginia, Charlottesville, Virginia 22904, USA    Vina A. Punjabi Norfolk State University, Norfolk, Virginia 23504, USA    Yi Qiang Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA    Ronald D. Ransome Rutgers, The State University of New Jersey, Piscataway, New Jersey 08855, USA    Bodo Reitz Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA    Rikki Roché Florida State University, Tallahassee, Florida 32306, USA    Arun Saha Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA    Alexander Shabetai Rutgers, The State University of New Jersey, Piscataway, New Jersey 08855, USA    Simon Širca Faculty of Mathematics and Physics, University of Ljubljana, Slovenia    Jaideep T. Singh University of Virginia, Charlottesville, Virginia 22904, USA    Karl Slifer Temple University, Philadelphia, Pennsylvania 19122, USA    Ryan Snyder University of Virginia, Charlottesville, Virginia 22904, USA    Patricia Solvignon Temple University, Philadelphia, Pennsylvania 19122, USA    Ronald Stringer Duke University, Durham, North Carolina 27708, USA    Ramesh Subedi Kent State University, Kent, Ohio 44242, USA    William A. Tobias University of Virginia, Charlottesville, Virginia 22904, USA    Ngyen Ton University of Virginia, Charlottesville, Virginia 22904, USA    Paul E. Ulmer Old Dominion University, Norfolk, Virginia 23529, USA    Guido Maria Urciuoli Istituto Nazionale di Fisica Nucleare, Sezione di Roma, I-00185 Rome, Italy    Antonin Vacheret DAPNIA/SPhN, CEA Saclay, F-91191 Gif-sur-Yvette, France    Eric Voutier LPSC, Université Joseph Fourier, CNRS/IN2P3, INPG, F-38026 Grenoble, France    Kebin Wang University of Virginia, Charlottesville, Virginia 22904, USA    Lu Wan Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA    Bogdan Wojtsekhowski Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA    Seungtae Woo Kyungpook National University, Taegu City, South Korea    Huan Yao Temple University, Philadelphia, Pennsylvania 19122, USA    Jing Yuan Rutgers, The State University of New Jersey, Piscataway, New Jersey 08855, USA    Xiaohui Zhan Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA    Xiaochao Zheng Argonne National Laboratory, Lemont, Illinois 60439, USA University of Virginia, Charlottesville, Virginia 22904, USA    Lingyan Zhu Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
(September 7, 2025)
Abstract

Understanding the nucleon spin structure in the regime where the strong interaction becomes truly strong poses a challenge to both experiment and theory. At energy scales below the nucleon mass of about 1 GeV, the intense interaction among the quarks and gluons inside the nucleon makes them highly correlated. Their coherent behaviour causes the emergence of effective degrees of freedom, requiring the application of non-perturbative techniques, such as chiral effective field theory [1]. Here, we present measurements of the neutron’s generalized spin-polarizabilities that quantify the neutron’s spin precession under electromagnetic fields at very low energy-momentum transfer squared down to 0.035 GeV2. In this regime, chiral effective field theory calculations [2, 3, 4] are expected to be applicable. Our data, however, show a strong discrepancy with these predictions, presenting a challenge to the current description of the neutron’s spin properties.

The nucleon is the basic building block of nature, accounting for about 99% of the universe’s visible mass. Understanding its properties, e.g., mass and spin, is thus crucial. Those are mainly determined by the Strong Interaction, which is described by Quantum Chromodynamics (QCD) with quarks and gluons as the fundamental degrees of freedom. The nucleon structure is satisfactorily understood at high Q2Q^{2} (short space-time scales, see Fig. 1 for the definition of kinematic variables), since there QCD is calculable using perturbation methods (perturbative QCD) and tested by numerous experimental measurements. At lower Q2Q^{2}, the strong coupling αs\alpha_{s} becomes too large for perturbative QCD to be applicable [5]. Yet, calculations are critically needed since the Strong Interaction’s chiral symmetry breaks in this region. Chiral symmetry and its breaking is one of the most important properties of the Strong Interaction and is believed to lead to the emergence of the nucleon’s global properties. To understand how the underlying structure leads to the emergence of these global properties, non-perturbative methods must be used. A method using the fundamental quark and gluon degrees of freedom is lattice QCD. However, calculations from this method are often intractable for spin observables at low Q2Q^{2} [6]. Another solution is to employ effective theories. Chiral effective field theory (χ\chiEFT) capitalizes on QCD’s approximate chiral symmetry and uses the emergent hadronic degrees of freedom. Therein lies χ\chiEFT’s strengths and challenges: while the nucleon and the pion are used for first-order calculations, this is often insufficient to describe the data, and heavier hadrons, such as the nucleon’s first excited state Δ(1232)\Delta(1232), become needed. This complicates χ\chiEFT calculations, and theorists are still seeking the best way to include the Δ(1232)\Delta(1232) in their calculations. It is therefore crucial to perform precision measurements at low enough Q2Q^{2} to test χ\chiEFT calculations. Spin observables, among them the generalized spin-polarizabilities that are reported here, provide an extensive set of tests to benchmark χ\chiEFT calculations [6].

Polarizabilities describe how the components of an object collectively react to external electromagnetic fields. In particular, spin-polarizabilities quantify the object’s spin precession under an electromagnetic field. The spin-polarizabilities, initially defined with real photons, can be generalized to virtual photons such as those used to probe the neutron in our experiment. Accordingly, generalized spin-polarizabilities are extracted by scattering polarized electrons off polarized nucleons and measuring how the cross-section changes when the relative orientation between the electron and nucleon spins is varied (see Fig. 1).

Refer to caption
Figure 1: Electron scattering off a neutron by the one-photon exchange process. The 4-momenta of the incident and the scattered electrons are kμ=(E,𝐤)k^{\mu}=(E,\mathbf{k}) and kμ=(E,𝐤)k^{\prime\mu}=(E^{\prime},\mathbf{k^{\prime}}), respectively, and that of the photon is qμ=(ν,𝐪)q^{\mu}=(\nu,\mathbf{q}). The neutron, at rest in the laboratory frame, has a 4-momentum Pμ=(M,𝟎)P^{\mu}=(M,\mathbf{0}) The arrows \uparrow\downarrow represent the spin direction of the incident electron and \Uparrow that of the neutron. The generalized spin-polarizabilities of the neutron can be measured when both the incident electron and the neutron are polarized.

The energy-momentum transferred between the electron and neutron is (ν,𝒒)(\nu,\bm{q}), with Q2=𝒒2ν2Q^{2}=\bm{q}^{2}-\nu^{2} characterizing the space-time scale at which we probe the neutron. While real photons (Q2=0Q^{2}=0) only have transverse polarizations, mediating virtual photons (Q20Q^{2}\neq 0) are transversely (T\mathrm{T}) or longitudinally (L\mathrm{L}) polarized. Thus, two contributions to the spin-polarizability arise: one from the transverse-transverse (TT\mathrm{TT}) interference called the forward spin-polarizability γ0(Q2)\gamma_{0}(Q^{2}), and the other from the longitudinal-transverse (LT\mathrm{LT}) interference, called the Longitudinal-Transverse interference polarizability δLT(Q2)\delta_{\mathrm{LT}}(Q^{2}), which is available only with virtual photons. The additional longitudinal polarization direction and the ensuing interference term offer extra latitude to test theories describing the Strong Interaction.

The theoretical basis to measure δLT(Q2)\delta_{\mathrm{LT}}(Q^{2}) originates from a work of Gell-Mann, Goldberger and Thirring [7, 8]. This work led to relations between the cross-sections measured in polarized electron-nucleon scattering (Fig. 1) and the spin-polarizabilities:

γ0(Q2)=12π2ν0κγν2σTT(ν,Q2)ν2𝑑ν,\displaystyle\gamma_{0}(Q^{2})=\frac{1}{2\pi^{2}}\int_{\nu_{0}}^{\infty}\frac{\kappa_{\gamma}}{\nu^{2}}\frac{\sigma_{\mathrm{TT}}(\nu,Q^{2})}{\nu^{2}}d\nu, (1)
δLT(Q2)=(12π2)ν0κγνQσLT(ν,Q2)ν2𝑑ν,\displaystyle\delta_{\mathrm{LT}}(Q^{2})=\left(\frac{1}{2\pi^{2}}\right)\int_{\nu_{0}}^{\infty}\frac{\kappa_{\gamma}}{\nu Q}\frac{\sigma_{\mathrm{LT}}(\nu,Q^{2})}{\nu^{2}}d\nu, (2)

where κγ=νQ2/2M\kappa_{\gamma}=\nu-\nicefrac{{Q^{2}}}{{2M}} [9] is the photon flux factor, ν0\nu_{0} the photoproduction threshold, and σTT\sigma_{\mathrm{TT}} and σLT\sigma_{\mathrm{LT}} are respectively the TT\mathrm{TT} and LT\mathrm{LT} interference cross-sections. They are obtained from [6, 10]:

σTT(ν,Q2)=π2EQ2(1ϵ)ακγE(1ϵE/E)(1+ηζ)(2ϵ1+ϵΔσ(ν,Q2)ηΔσ(ν,Q2)),\displaystyle\sigma_{TT}(\nu,Q^{2})=\frac{\pi^{2}EQ^{2}(1-\epsilon)}{\alpha\kappa_{\gamma}E^{\prime}(1-\epsilon E^{\prime}/E)(1+\eta\zeta)}\left(\sqrt{\frac{2\epsilon}{1+\epsilon}}\Delta\sigma_{\parallel}(\nu,Q^{2})-\eta\Delta\sigma_{\perp}(\nu,Q^{2})\right), (3)
σLT(ν,Q2)=π2EQ2(1ϵ)ακγE(1ϵE/E)(1+ηζ)(2ϵ1+ϵζΔσ(ν,Q2)+Δσ(ν,Q2)),\displaystyle\sigma_{LT}(\nu,Q^{2})=\frac{\pi^{2}EQ^{2}(1-\epsilon)}{\alpha\kappa_{\gamma}E^{\prime}(1-\epsilon E^{\prime}/E)(1+\eta\zeta)}\left(\sqrt{\frac{2\epsilon}{1+\epsilon}}\zeta\Delta\sigma_{\parallel}(\nu,Q^{2})+\Delta\sigma_{\perp}(\nu,Q^{2})\right), (4)

where Δσ||\Delta\sigma_{||} (Δσ\Delta\sigma_{\bot}) is the difference between the cross sections when the beam and target spin directions are parallel and antiparallel (perpendicular), α\alpha is the electromagnetic coupling constant, ϵ=1/[1+2(1+Q2/4M2x2)tan2(θ/2)]\epsilon=1/[1+2(1+\nicefrac{{Q^{2}}}{{4M^{2}x^{2}}})\tan^{2}(\nicefrac{{\theta}}{{2}})] with x=Q2/2mνx=\nicefrac{{Q^{2}}}{{2m\nu}} the Bjorken scaling variable and θ\theta the electron scattering angle in the laboratory frame, η=ϵQ/(EEϵ)\eta=\nicefrac{{\epsilon Q}}{{(E-E^{\prime}\epsilon)}} and ζ=η(1+ϵ)/2ϵ\zeta=\nicefrac{{\eta(1+\epsilon)}}{{2\epsilon}}. The σTT\sigma_{\mathrm{TT}} and σLT\sigma_{\mathrm{LT}}, shown in Figs. 2 and 3,

Refer to caption
Figure 2: The transverse-transverse cross-section σTT(ν,Q2)\sigma_{\mathrm{TT}}(\nu,Q^{2}) for 3He. The data are displayed at the Q2Q^{2} values at which they are integrated to form γ0\gamma_{0} (Eq. 1). The error bars, sometimes too small to be visible, represent the statistical uncertainties. The systematic uncertainty is indicated by the band at the bottom of each panel. The nuclear corrections providing the neutron information from the 3He data are applied after the integration. The prominent negative peak at small-ν\nu is the Δ(1232)\Delta(1232) contribution.
Refer to caption
Figure 3: The longitudinal-transverse interference cross-section σLT(ν,Q2)\sigma_{\mathrm{LT}}(\nu,Q^{2}) for 3He. The data are displayed at the Q2Q^{2} values at which they are integrated into δLT(Q2)\delta_{\mathrm{LT}}(Q^{2}) (Eq. 2) or ILT(Q2)I_{\mathrm{LT}}(Q^{2}) (Eq. 5). The error bars represent the statistical uncertainties. The systematic uncertainty is indicated by the band at the bottom of each panel. The nuclear corrections [18] necessary to obtain the neutron information from the 3He data are applied after the integration. The prominent Δ(1232)\Delta(1232) contribution seen for σTT(ν,Q2)\sigma_{\mathrm{TT}}(\nu,Q^{2}) in Fig. 2 is not present here, in agreement with the expectation that the role of Δ(1232)\Delta(1232) is suppressed in LT\mathrm{LT}-interference quantities.

were integrated according to Eqs. (1) and (2) to obtain γ0(Q2)\gamma_{0}(Q^{2}) and δLT(Q2)\delta_{\mathrm{LT}}(Q^{2}). The unmeasured part of the integrals at large ν\nu is often negligible due to the ν\nu-weighting.

An outstanding feature of δLT(Q2)\delta_{\mathrm{LT}}(Q^{2}) at low Q2Q^{2} is that the Δ(1232)\Delta(1232) is not expected to appreciably contribute to the LT-interference cross section, since exciting the Δ(1232)\Delta(1232) overwhelmingly involves transverse photons. This should alleviate the difficulty of including the Δ(1232)\Delta(1232) in χ\chiEFT calculations, making them more robust. However, the first measurement of δLT(Q2)\delta_{\mathrm{LT}}(Q^{2}) from JLab experiment E94-010 [11] done at Q20.1Q^{2}\geq 0.1 GeV2 strongly disagreed with χ\chiEFT calculations [12, 13]. This surprising result, known as the “δLT\delta_{\mathrm{LT}} puzzle” [10], triggered improved χ\chiEFT calculations [14] which now explicitly include the Δ(1232)\Delta(1232) [2, 3, 4], and measurements of δLT\delta_{\mathrm{LT}} at lower Q2Q^{2} where χ\chiEFT can be best tested. New data of δLT\delta_{\mathrm{LT}} on the neutron at very low Q2Q^{2} are presented next, which were taken during experiment JLab E97-110.

Eq. (2) allows measuring δLTn(Q2)\delta_{\mathrm{LT}}^{n}(Q^{2}) (the superscript nn indicates neutron quantities) by scattering polarized electrons off polarized neutrons in 3He nuclei. The data were acquired in Hall A [15] of Jefferson Lab (JLab) during experiment E97-110 [16]. The probing virtual photons were produced by a longitudinally polarized electron beam during its scattering off a polarized 3He target [15]. The beam polarization, flipped pseudo-randomly at 30 Hz and monitored by Møller and Compton polarimeters, was (75.0 ±\pm 2.3)%. The beam energies ranged from 1.1 to 4.4 GeV, and the beam current was typically a few μ\muA. Since free neutrons are unstable, we used 3He nuclei as an effective polarized neutron target. To first-order, polarized 3He nuclei can be treated as effective polarized neutrons together with unpolarized protons because the 3He’s nucleons (two protons and one neutron) are mostly in an SS-state, and so the Pauli exclusion principle dictates that in the S-state the proton spins point oppositely, yielding no net contribution to the 3He spin. The gaseous (12\approx 12 atm) 3He was contained in a 40 cm-long glass cylinder and polarized by spin-exchange optical pumping of Rubidium atoms. Helmholtz coils provided a longitudinal or transverse 2.5 mT field used to maintain the polarization, to orient it longitudinally or transversely (in-plane) to the beam direction, and to aid in performing polarimetry. The average target polarization in-beam was (39.0 ±\pm 1.6)%. The scattered electrons from the reaction He3\vec{\rm{{}^{3}He}}(e,e\vec{\rm{e}},\rm{e^{\prime}}) were detected by a High Resolution Spectrometer (HRS) [15] supplemented by a dipole magnet [17] allowing us to detect electrons scattered at angles down to 6. Behind the HRS, drift chambers provided particle tracking, scintillator planes enabled the data acquisition trigger, and a gas Cherenkov counter and electromagnetic calorimeters ensured the identification of the particle type.

The measured σTT\sigma_{\mathrm{TT}} (σLT\sigma_{\mathrm{LT}}) on 3He is shown in Fig. 2 (Fig. 3). Its values with their uncertainties are available in the Supplementary Data Files. While polarized 3He nuclei are effectively polarized neutrons to good approximation, nuclear corrections are needed to obtain genuine neutron information. The prescription of Ref. [18] was used for the correction. The effect of the nuclear correction, which can be obtained from Tables I-III in the Supplementary Data Files, is relatively small. In particular it does not appreciably affect the Q2Q^{2} trend seen for the uncorrected 3He integrals. The relative uncertainty on this correction is estimated to be 6 to 14% relative to the correction, the higher uncertainties corresponding to our lowest Q2Q^{2} values. The quasi-elastic contamination was corrected following the procedure described in [16]. The correction is small for δLTn\delta_{\mathrm{LT}}^{n}, but important for γ0n\gamma_{0}^{n} and was estimated using [19]. No calculation uncertainty is provided in [19] and using another quasi-elastic calculation [20] may shift the lowest-Q2Q^{2} γ0n\gamma_{0}^{n} data points by as much as our total systematic uncertainty. The other main systematic uncertainties come from the absolute cross-sections (3.5 to 4.5%), target and beam polarizations (3 to 5% and 3.5%, respectively), and radiative corrections (3 to 7%).

Our δLTn(Q2)\delta_{\mathrm{LT}}^{n}(Q^{2}) data are shown in the left panel of Fig. 4. They agree with earlier data from E94-010 at larger Q2Q^{2} [11] while reaching much lower Q2Q^{2} where the χ\chiEFT is expected to work well. The measurement can be compared to χ\chiEFT calculations [12, 13, 2, 4] and a model parameterization of the world photo- and electro-production data called MAID [21].

Refer to caption
Figure 4: The generalized spin polarizabilities δLTn(Q2)\delta_{\mathrm{LT}}^{n}(Q^{2}) and γ0n(Q2)\gamma_{0}^{n}(Q^{2}). Left: The generalized spin-polarizability δLTn(Q2)\delta_{\mathrm{LT}}^{n}(Q^{2}). The circles represent the results from experiment E97-110. They can be compared to earlier E94-010 data [11] (triangles) and theoretical calculations: the older χ\chiEFT calculations [12] (dot-dashed line) and [13] (dashed line) in which the Δ\Delta resonance contribution is not included or included phenomenologically, the state-of-the-art calculations [2] (cyan band) and [4] (magenta band) that include the Δ\Delta, as well as the MAID model [21] (black curve) which is a fit to world resonance data. For the E97-110 data, the inner error bars, sometimes too small to be visible, represent the statistical uncertainties. The outer error bars show the statistical and uncorrelated systematic uncertainties. The correlated systematic uncertainty is indicated by the band at the bottom. For the other experimental data, the error bars show the statistical and systematic uncertainties added in quadrature. Right: The generalized forward spin-polarizability γ0n(Q2)\gamma_{0}^{n}(Q^{2}), using the same symbols as in the left panel. The asterisks represent the CLAS data [22].

Earlier χ\chiEFT calculations [12, 13] used different approaches (Heavy Baryon and Relativistic Baryon chiral perturbation theory: HBχ\chiPT and RBχ\chiPT, respectively), and furthermore either neglected the Δ(1232)\Delta(1232) degrees of freedom, or included it approximately. Newer calculations [2, 3, 4], which are all fully relativistic, account for the Δ(1232)\Delta(1232) explicitly by using a perturbative expansion, but they differ in their choice of expansion parameter. Despite this theoretical improvement and the small-Q2Q^{2} reach that places our data well in the validity domain of χ\chiEFT, our δLTn(Q2)\delta_{\mathrm{LT}}^{n}(Q^{2}) starkly disagrees with the predictions. This is even more surprising because the latest χ\chiEFT calculations of δLTn\delta_{\mathrm{LT}}^{n} agree with each other, suggesting that calculations for this particular observable should be under control. However, our data reveal an opposite trend with Q2Q^{2} to that of all the χ\chiEFT calculations.

This startling discrepancy demanded further scrutinization of our data. They are compatible with the E94-010 data where they overlap. This is also true for γ0n(Q2)\gamma_{0}^{n}(Q^{2}), which we measured concurrently and show in the right panel of Fig. 4. The measured γ0n(Q2)\gamma_{0}^{n}(Q^{2}) also agrees with data from CLAS experiment EG1 [22], which used a target and detectors that are very different from E97-110 and E94-010. Our γ0n(Q2)\gamma_{0}^{n}(Q^{2}) data generally disagree with χ\chiEFT calculations. Since γ0(Q2)\gamma_{0}(Q^{2}) does not benefit from the suppression of the Δ(1232)\Delta(1232) contribution, and since γ0n(Q2)\gamma^{n}_{0}(Q^{2}) predictions do not reach a consensus, this disagreement is not entirely surprising, in contrast to the unexpected δLTn(Q2)\delta_{\mathrm{LT}}^{n}(Q^{2}) disagreement. Interestingly, we can also study with our data the Schwinger relation [23], which has a similar definition but without ν2\nu^{-2} weighting in its integrand:

ILT(Q2)\displaystyle I_{\mathrm{LT}}(Q^{2}) \displaystyle\equiv (M2απ2)ν0[κγσLT(ν,Q2)Qν]Q=0𝑑ν.\displaystyle\left(\frac{M^{2}}{\alpha\pi^{2}}\right)\int_{\nu_{0}}^{\infty}\Bigl{[}\kappa_{\gamma}\frac{\sigma_{\mathrm{LT}}(\nu,Q^{2})}{Q\nu}\Bigr{]}_{Q=0}d\nu. (5)

Schwinger predicted that ILT(Q2)Q20κetI_{\mathrm{LT}}(Q^{2})\xrightarrow[Q^{2}\to 0]{~}\kappa e_{t}, with κ\kappa the anomalous magnetic moment of the target particle and ete_{t} its electric charge. This prediction is general, e.g. it does not use χ\chiEFT. ILT(Q2)I_{\mathrm{LT}}(Q^{2}) having no 1/ν2\nicefrac{{1}}{{\nu^{2}}}-weighting, the large ν\nu contribution to the integral is not negligible. Since this contribution to the integral cannot be measured, a parameterization based on the model described in [24] completed by a Regge-based parameterization [25] for the largest ν\nu part was used to extrapolate it. Our measurement of ILTn(Q2)I^{n}_{\mathrm{LT}}(Q^{2}) is shown in Fig. 5. Our measurement of ILTn(Q2)I^{n}_{\mathrm{LT}}(Q^{2}) without the Regge-based parameterization [25] for the large-ν\nu part (open symbols), which is suppressed in δLT(Q2)\delta_{\mathrm{LT}}(Q^{2}), displays a similar pattern as δLTn(Q2)\delta_{\mathrm{LT}}^{n}(Q^{2}). The Gerasimov-Drell-Hearn (GDH) relation [28, 29] can be used to extrapolate our ILTn(Q2)I^{n}_{\mathrm{LT}}(Q^{2}) to Q2=0Q^{2}=0; and provided that the GDH relation is valid, which is widely expected and supported by dedicated experimental studies [30], our data satisfy Schwinger’s prediction that ILTn(0)=0I^{n}_{\mathrm{LT}}(0)=0 [23]. Our trend contrasts with the MAID model and presumably the χ\chiEFT calculations, since MAID tracks those (see Fig. 4). This suggests that the problem lies in the theoretical description of the neutron structure.

Refer to caption
Figure 5: The Schwinger integral ILTn(Q2)I_{\mathrm{LT}}^{n}(Q^{2}). The open symbols are our results without the large ν\nu part of ILTI_{\mathrm{LT}}. The filled blue circles are our results for the full ILTI_{\mathrm{LT}}, using an estimate for the large ν\nu contribution. The inner error bars represent the statistical uncertainties. The outer error bars show the combined statistical and uncorrelated systematic uncertainties. The correlated systematic uncertainty is indicated by the band. The Schwinger relation [23] for the neutron predicts ILTn(0)=0I_{\mathrm{LT}}^{n}(0)=0 at Q2=0Q^{2}=0. The plain line shows the MAID model [21], which is a fit to world resonance data (to be compared to the open symbols). The dashed line uses the GDH (Γ1\Gamma_{1}[28, 29] and Burkhardt-Cottingham [26] relations, together with an elastic form factor (FF) parameterization [27], to obtain ILTn(Q2)I_{\mathrm{LT}}^{n}(Q^{2}) for Q20Q^{2}\to 0.

The measured ILT(Q2)I_{\mathrm{LT}}(Q^{2}) displays a similar Q2Q^{2}-behavior as δLT\delta_{\mathrm{LT}}, irrespective of the different ν\nu-weighting. Other integrals without ν2\nu^{-2} weighting formed using our data and reported in [16] did not display the surprisingly strong disagreement with the predictions seen here. The values of γ0n\gamma_{0}^{n}, δLTn\delta_{\mathrm{LT}}^{n} and ILTnI_{\mathrm{LT}}^{n} with their uncertainties are available in the Supplementary Data Files.

Our data indicate that both the TT and LT interferences of the electromagnetic field’s components induce a clear spin precession of the neutron. While it was predicted by all calculations and models that the LT term influence should intensify at small Q2Q^{2}, our data reveal the opposite trend. This notable disagreement is perplexing since our measurements were done well into the domain where χ\chiEFT is expected to describe reliably the nucleon properties, especially the “gold-plated” δLT\delta_{\mathrm{LT}}. Lattice QCD calculations of δLT(Q2)\delta_{\mathrm{LT}}(Q^{2}) are possible [31], but not yet available. Our data motivate such calculations since the measured generalized spin-polarizabilities underline a current lack of reliable quantitative descriptions of the Strong Interaction at the nucleon-size scale.


Data availability All experimental data that support the findings of this study are provided in the Supplementary Data Files or are available from J.P. Chen (jpchen@jlab.org), A. Deur (deurpam@jlab.org), C. Peng (cpeng@jlab.org) or V. Sulkosky (vasulk@jlab.org) upon request.


Code availability The computer codes that support the plots within this paper and the findings of this study are available from J.P. Chen (jpchen@jlab.org), A. Deur (deurpam@jlab.org), C. Peng (cpeng@jlab.org) or V. Sulkosky (vasulk@jlab.org) upon request.


Author contributions The members of the Jefferson Lab E97-110 Collaboration constructed and operated the experimental equipment used in this experiment. All authors contributed to the data collection, experiment design and commissioning, data processing, data analysis or Monte Carlo simulations. The following authors especially contributed to the main data analysis: J.P Chen, A. Deur, C. Peng and V. Sulkosky.


Competing interests The authors declare no competing interests.

Acknowledgements.
We acknowledge the outstanding support of the Jefferson Lab Hall A technical staff and the Physics and Accelerator Divisions that made this work possible. We thank A. Deltuva, J. Golak, F. Hagelstein, H. Krebs, V. Lensky, U.-G. Meißner, V. Pascalutsa, G. Salmè, S. Scopetta and M. Vanderhaeghen for useful discussions and for sharing their calculations. We are grateful to V. Pascalutsa and M. Vanderhaeghen for suggesting to compare the data to the Schwinger relation. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract DE-AC05-06OR23177, and by the NSF under grant PHY-0099557.

References

Data tables

Q2Q^{2} νmax\nu_{max} (WmaxW_{max}) δLTH3e,res(Q2)±\delta_{\mathrm{LT}}^{{}^{3}He,~res}(Q^{2})\pm(stat)±\pm(syst) δLTn,res(Q2)±\delta_{\mathrm{LT}}^{n,~res}(Q^{2})\pm(stat)±\pm(syst) δLTn(Q2)±\delta_{\mathrm{LT}}^{n}(Q^{2})\pm(stat)±\pm(syst)
[[GeV]2{}^{2}] [GeV] [10410^{-4} fm4] [10410^{-4} fm4] [10410^{-4} fm4]
0.035 1.690 (2.00) 0.356±0.280±0.583-0.356\pm 0.280\pm 0.583 0.379±0.326±0.677-0.379\pm 0.326\pm 0.677 0.383±0.326±0.677-0.383\pm 0.326\pm 0.677
0.057 1.700 (2.00) 0.174±0.061±0.1690.174\pm 0.061\pm 0.169 0.229±0.071±0.1970.229\pm 0.071\pm 0.197 0.225±0.071±0.1970.225\pm 0.071\pm 0.197
0.079 1.710 (2.00) 0.360±0.084±0.1680.360\pm 0.084\pm 0.168 0.439±0.098±0.1950.439\pm 0.098\pm 0.195 0.435±0.098±0.1950.435\pm 0.098\pm 0.195
0.100 2.885 (2.49) 0.410±0.072±0.1800.410\pm 0.072\pm 0.180 0.493±0.083±0.2090.493\pm 0.083\pm 0.209 0.491±0.083±0.2090.491\pm 0.083\pm 0.209
0.150 2.910 (2.48) 0.178±0.045±0.1490.178\pm 0.045\pm 0.149 0.216±0.053±0.1730.216\pm 0.053\pm 0.173 0.215±0.053±0.1730.215\pm 0.053\pm 0.173
0.200 2.655 (2.38) 0.091±0.024±0.0780.091\pm 0.024\pm 0.078 0.112±0.028±0.0910.112\pm 0.028\pm 0.091 0.111±0.028±0.0910.111\pm 0.028\pm 0.091
0.240 2.320 (2.23) 0.090±0.017±0.0410.090\pm 0.017\pm 0.041 0.110±0.020±0.0430.110\pm 0.020\pm 0.043 0.108±0.020±0.0430.108\pm 0.020\pm 0.043
Table 1: Data and kinematics for δLT(Q2)\delta_{\mathrm{LT}}(Q^{2}). From left to right: Four-momentum transfer squared; Maximum ν\nu value experimentally covered (equivalent maximum invariant WW (W=(M2+2MνQ2)1/2W=(M^{2}+2M\nu-Q^{2})^{\nicefrac{{1}}{{2}}}; δLTH3e,res(Q2)\delta_{\mathrm{LT}}^{{}^{3}He,~res}(Q^{2}) measured over the ν\nu (WW) range from pion threshold up to maximum ν\nu (WW) covered experimentally (mostly the nucleon resonance region) and before applying the nuclear corrections to extract the neutron information. (stat) denotes the statistical uncertainty and (syst) the systematic uncertainty; Extracted neutron δLTn,res\delta_{\mathrm{LT}}^{n,~res} (resonance) after applying nuclear corrections to the previous column; Total δLTn(Q2)\delta_{\mathrm{LT}}^{n}(Q^{2}). Comparing the two last columns shows that the unmeasured parts of δLTn(Q2)\delta_{\mathrm{LT}}^{n}(Q^{2}), i.e, the contributions for ν>νmax\nu>\nu_{max}, are negligible.
Q2Q^{2} νmax\nu_{max} (WmaxW_{max}) γ0H3e,res(Q2)±\gamma_{0}^{{}^{3}He,~res}(Q^{2})\pm(stat)±\pm(syst) γ0n,res(Q2)±\gamma_{0}^{n,~res}(Q^{2})\pm(stat)±\pm(syst) γ0n(Q2)±\gamma_{0}^{n}(Q^{2})\pm(stat)±\pm(syst)
[[GeV]2{}^{2}] [GeV] [10410^{-4} fm4] [10410^{-4} fm4] [10410^{-4} fm4]
0.035 1.690 (2.00) 2.590±0.111±0.225-2.590\pm 0.111\pm 0.225 3.092±0.129±0.270-3.092\pm 0.129\pm 0.270 3.094±0.129±0.270-3.094\pm 0.129\pm 0.270
0.057 1.700 (2.00) 2.613±0.121±0.215-2.613\pm 0.121\pm 0.215 3.115±0.141±0.259-3.115\pm 0.141\pm 0.259 3.117±0.141±0.259-3.117\pm 0.141\pm 0.259
0.079 1.710 (2.00) 2.274±0.121±0.226-2.274\pm 0.121\pm 0.226 2.715±0.140±0.270-2.715\pm 0.140\pm 0.270 2.717±0.140±0.270-2.717\pm 0.140\pm 0.270
0.100 2.885 (2.49) 1.725±0.063±0.143-1.725\pm 0.063\pm 0.143 2.070±0.074±0.170-2.070\pm 0.074\pm 0.170 2.070±0.074±0.170-2.070\pm 0.074\pm 0.170
0.150 2.910 (2.48) 1.135±0.044±0.105-1.135\pm 0.044\pm 0.105 1.370±0.051±0.125-1.370\pm 0.051\pm 0.125 1.370±0.051±0.125-1.370\pm 0.051\pm 0.125
0.200 2.655 (2.38) 0.798±0.027±0.056-0.798\pm 0.027\pm 0.056 0.964±0.032±0.065-0.964\pm 0.032\pm 0.065 0.965±0.032±0.065-0.965\pm 0.032\pm 0.065
0.240 2.320 (2.23) 0.612±0.022±0.043-0.612\pm 0.022\pm 0.043 0.740±0.026±0.050-0.740\pm 0.026\pm 0.050 0.742±0.026±0.050-0.742\pm 0.026\pm 0.050
Table 2: Data and kinematics for γ0(Q2)\gamma_{0}(Q^{2}). From left to right: Four-momentum transfer squared; Maximum ν\nu value experimentally covered (equivalent maximum invariant WW (W=(M2+2MνQ2)1/2W=(M^{2}+2M\nu-Q^{2})^{\nicefrac{{1}}{{2}}}; γ0H3e,res(Q2)\gamma_{0}^{{}^{3}He,~res}(Q^{2}) measured over the ν\nu (WW) range from pion threshold up to maximum ν\nu (WW) covered experimentally (mostly the nucleon resonance region) and before applying the nuclear corrections to extract the neutron information. (stat) denotes the statistical uncertainty and (syst) the systematic uncertainty; Extracted neutron γ0n,res\gamma_{0}^{n,~res} (resonance) after applying nuclear corrections to the previous column; Total γ0n(Q2)\gamma_{0}^{n}(Q^{2}); Comparing the two last columns shows that the unmeasured parts of γ0n(Q2)\gamma_{0}^{n}(Q^{2}), i.e, the contributions for ν>νmax\nu>\nu_{max}, are negligible.
Q2Q^{2} νmax\nu_{max} (WmaxW_{max}) ILTH3e,res(Q2)±I_{\mathrm{LT}}^{{}^{3}He,~res}(Q^{2})\pm(stat)±\pm(syst) ILTn,res(Q2)±I_{\mathrm{LT}}^{n,~res}(Q^{2})\pm(stat)±\pm(syst) ILT(Q2)n±I_{\mathrm{LT}}(Q^{2})^{n}\pm(stat)±\pm(syst)
[[GeV]2{}^{2}] [GeV]
0.035 1.690 (2.00) 0.326±0.272±0.520-0.326\pm 0.272\pm 0.520 0.294±0.316±0.604-0.294\pm 0.316\pm 0.604 1.112±0.316±0.606-1.112\pm 0.316\pm 0.606
0.057 1.700 (2.00) 0.285±0.117±0.3330.285\pm 0.117\pm 0.333 0.413±0.136±0.3870.413\pm 0.136\pm 0.387 0.862±0.136±0.389-0.862\pm 0.136\pm 0.389
0.079 1.710 (2.00) 0.610±0.128±0.2680.610\pm 0.128\pm 0.268 0.786±0.149±0.3120.786\pm 0.149\pm 0.312 0.721±0.149±0.314-0.721\pm 0.149\pm 0.314
0.100 2.885 (2.49) 0.879±0.098±0.2800.879\pm 0.098\pm 0.280 1.092±0.114±0.3271.092\pm 0.114\pm 0.327 0.126±0.114±0.329-0.126\pm 0.114\pm 0.329
0.150 2.910 (2.48) 0.339±0.049±0.1980.339\pm 0.049\pm 0.198 0.458±0.057±0.2310.458\pm 0.057\pm 0.231 0.266±0.057±0.233-0.266\pm 0.057\pm 0.233
0.200 2.655 (2.38) 0.289±0.047±0.2280.289\pm 0.047\pm 0.228 0.389±0.055±0.2650.389\pm 0.055\pm 0.265 0.345±0.055±0.267-0.345\pm 0.055\pm 0.267
0.240 2.320 (2.23) 0.391±0.057±0.1630.391\pm 0.057\pm 0.163 0.511±0.067±0.1900.511\pm 0.067\pm 0.190 0.267±0.067±0.192-0.267\pm 0.067\pm 0.192
Table 3: Data and kinematics for ILT(Q2)I_{\mathrm{LT}}(Q^{2}). From left to right: Four-momentum transfer squared; Maximum ν\nu value experimentally covered (equivalent maximum invariant WW (W=(M2+2MνQ2)1/2W=(M^{2}+2M\nu-Q^{2})^{\nicefrac{{1}}{{2}}}; ILTH3e,res(Q2)I_{\mathrm{LT}}^{{}^{3}He,~res}(Q^{2}) measured over the ν\nu (WW) range from pion threshold up to maximum ν\nu (WW) covered experimentally (mostly the nucleon resonance region) and before applying the nuclear corrections to extract the neutron information. (stat) denotes the statistical uncertainty and (syst) the systematic uncertainty; Extracted neutron ILTn,resI_{\mathrm{LT}}^{n,~res} (resonance) after applying nuclear corrections to the previous column; Total ILTn(Q2)I_{\mathrm{LT}}^{n}(Q^{2}), including an estimate for the unmeasured contribution above νmax\nu_{max}.
Q2Q^{2} ν\nu WW xx σLT\sigma_{\mathrm{LT}} Stat. Uncor. syst. Cor. syst. σTT\sigma_{\mathrm{TT}} Stat. Uncor. syst. Cor. syst.
[[GeV]2{}^{2}] [MeV] [MeV] [μ\mub] [μ\mub] [μ\mub] [μ\mub] [μ\mub] [μ\mub] [μ\mub] [μ\mub]
0.035 167.5 1076.9 0.1114 -29.593 7.821 4.430 6.567 -50.779 8.849 4.803 7.200
0.035 210.0 1113.3 0.0888 -9.283 8.641 4.463 2.718 -60.029 9.257 4.828 3.067
0.035 250.0 1146.5 0.0746 5.012 7.507 7.804 4.201 -70.097 7.608 10.592 5.505
0.035 290.0 1178.8 0.0643 -4.189 8.133 4.768 4.598 -144.587 7.398 6.008 5.937
0.035 330.0 1210.2 0.0565 -11.970 7.757 5.264 4.145 -180.197 6.794 8.238 5.752
0.035 370.0 1240.8 0.0504 3.328 7.025 5.624 3.348 -159.284 6.028 7.449 5.188
0.035 410.0 1270.7 0.0455 7.802 6.144 4.136 2.339 -102.038 5.192 5.252 3.146
0.035 450.0 1299.9 0.0414 2.569 6.034 1.754 1.333 -56.856 4.689 3.063 1.734
0.035 490.0 1328.5 0.0381 -2.776 6.006 1.077 1.003 -36.599 4.210 2.488 1.797
0.035 530.0 1356.4 0.0352 -0.849 5.748 0.699 2.120 -22.279 3.827 1.881 2.340
0.035 570.0 1383.8 0.0327 4.796 6.483 0.646 0.845 -17.020 4.317 1.184 2.026
0.035 610.0 1410.7 0.0306 7.627 9.229 0.833 0.899 -19.965 7.244 1.079 2.128
0.035 650.0 1437.0 0.0287 11.711 10.295 0.878 0.757 -13.732 8.808 0.690 1.336
0.035 690.0 1462.9 0.0270 22.036 10.449 1.301 1.731 -18.433 8.192 0.832 1.271
0.035 730.0 1488.4 0.0256 10.433 10.676 1.255 3.585 -17.674 6.646 0.939 1.543
0.035 770.0 1513.4 0.0242 -16.164 9.879 0.690 2.002 -9.317 5.897 0.830 1.388
0.035 810.0 1538.0 0.0230 -3.384 10.144 0.905 2.704 -13.691 5.873 1.137 1.231
0.035 850.0 1562.2 0.0219 6.799 11.135 0.939 3.434 -16.569 6.153 1.448 2.080
0.035 890.0 1586.0 0.0210 -5.700 10.532 0.600 3.009 -9.035 5.791 0.515 2.530
0.035 930.0 1609.5 0.0201 17.363 10.209 0.852 1.794 -18.818 5.628 0.690 1.982
0.035 970.0 1632.7 0.0192 8.494 9.638 0.846 1.477 -21.969 4.806 1.291 0.844
0.035 1010.0 1655.5 0.0185 -8.975 8.213 0.660 1.582 -25.754 4.428 1.639 1.197
0.035 1050.0 1678.0 0.0178 -14.309 7.307 0.924 1.935 -15.582 4.476 1.424 1.432
0.035 1090.0 1700.2 0.0171 3.170 8.109 0.537 2.119 -13.869 4.743 0.862 0.833
0.035 1130.0 1722.2 0.0165 -8.033 9.470 0.818 2.159 -8.614 5.365 0.660 0.765
0.035 1170.0 1743.8 0.0159 -15.669 9.088 0.909 2.006 -14.402 5.160 2.370 1.013
0.035 1210.0 1765.2 0.0154 -3.340 9.120    0.257     0.488 -20.220 5.268      1.405   2.551
0.035 1250.0 1786.3 0.0149 8.626 9.670 0.657 1.584 -17.874 5.217 0.934 1.967
0.035 1290.0 1807.2 0.0145 6.658 9.509 0.504 0.796 -22.003 5.059 1.209 1.012
0.035 1330.0 1827.9 0.0140 10.562 9.728 0.755 1.773 -17.263 5.284 0.894 0.558
0.035 1370.0 1848.3 0.0136 -6.227 10.036 0.190 1.003 -15.983 5.941 0.877 0.438
0.035 1410.0 1868.5 0.0132 -0.496 10.253 0.396 1.494 -17.223 6.110 0.925 0.429
0.035 1450.0 1888.5 0.0129 9.730 10.555 0.963 2.563 -17.723 6.335 0.921 0.561
0.035 1490.0 1908.2 0.0125 -16.688 10.365 0.758 1.789 -15.680 6.315 0.938 0.887
0.035 1530.0 1927.8 0.0122 -6.735 10.420 0.298 0.434 -26.546 6.354 1.474 1.010
0.035 1570.0 1947.2 0.0119 -3.131 11.567 0.146 0.590 -16.390 6.927 0.895 0.547
0.035 1610.0 1966.4 0.0116 -12.388 12.041 0.576 1.025 -15.621 7.166 0.876 0.443
0.035 1650.0 1985.4 0.0113 -25.057 12.833 1.492 2.250 -11.943 7.797 0.939 0.488
0.035 1690.0 2004.2 0.0110 12.734 13.111 0.708 1.519 -16.559 8.754 2.147 0.546
0.035 1730.0 2022.8 0.0108 -3.404 12.912 0.180 0.339 -23.472 8.469 1.405 0.496
0.035 1770.0 2041.3 0.0105 -18.275 10.605 0.945 0.752 -10.813 8.329 0.977 0.719
0.035 1810.0 2059.6 0.0103 -6.756 11.453 0.312 1.048 -23.516 7.914 1.303 1.315
0.035 1850.0 2077.7 0.0101 -18.357 14.142 1.001 0.658 -1.761 10.219 0.197 0.559
0.057 177.5 1075.4 0.1712 7.220 15.736 3.537 8.714 -92.373 19.571 4.724 11.368
0.057 220.0 1111.8 0.1381 8.333 7.607 3.298 3.970 -85.011 9.007 3.795 4.741
0.057 260.0 1145.1 0.1168 4.145 6.307 3.452 5.860 -85.636 6.975 3.884 6.973
0.057 300.0 1177.4 0.1013 -11.320 6.279 4.864 6.505 -136.987 6.600 5.833 7.964
0.057 340.0 1208.9 0.0893 3.996 6.344 5.770 5.386 -179.319 6.447 7.269 6.118
0.057 380.0 1239.5 0.0799 16.750 5.973 6.692 6.489 -159.668 5.916 7.136 6.346
0.057 420.0 1269.5 0.0723 14.794 5.623 4.770 4.507 -104.990 5.277 4.722 3.989
0.057 460.0 1298.7 0.0660 16.454 5.864 2.330 2.421 -64.416 5.024 3.446 3.120
0.057 500.0 1327.3 0.0608 13.597 5.883 1.659 4.063 -36.795 4.674 2.493 2.566
0.057 540.0 1355.2 0.0562 4.128 5.647     0.697     2.973 -15.701 4.370      0.971   2.064
0.057 580.0 1382.7 0.0524 -3.473 5.804 0.581 4.200 -11.937 4.380 0.789 2.328
0.057 620.0 1409.5 0.0490 -3.249 6.656 0.632 1.316 -20.045 4.979 1.075 1.765
0.057 660.0 1435.9 0.0460 2.172 7.360 0.474 2.020 -12.806 5.690 0.642 2.699
0.057 700.0 1461.8 0.0434 13.961 7.318 0.966 1.970 -11.075 5.491 0.483 2.133
0.057 740.0 1487.3 0.0410 14.570 7.427 1.118 2.889 -20.931 5.619 0.900 1.405
0.057 780.0 1512.3 0.0389 3.221 7.617 0.675 2.554 -16.318 5.599 0.791 1.357
0.057 820.0 1536.9 0.0370 5.563 7.585 0.637 1.174 -14.062 5.286 0.659 0.750
0.057 860.0 1561.2 0.0353 0.817 7.583 0.307 0.947 -12.846 5.180 0.696 0.753
0.057 900.0 1585.0 0.0338 4.921 7.582 0.588 1.167 -17.092 5.121 0.806 1.163
0.057 940.0 1608.5 0.0323 16.944 8.508 0.796 1.911 -22.979 5.428 1.003 1.584
0.057 980.0 1631.7 0.0310 11.996 9.503 1.179 2.745 -15.319 5.418 1.004 1.096
0.057 1020.0 1654.5 0.0298 -23.536 9.559 1.079 1.610 -9.656 5.365 1.281 0.666
0.057 1060.0 1677.0 0.0287 -26.072 9.871 1.414 3.111 -5.177 5.518 0.649 0.900
0.057 1100.0 1699.3 0.0276 -0.363 10.045 0.119 1.423 -8.255 5.946 0.430 0.809
0.057 1140.0 1721.2 0.0266 -1.114 10.216 0.145 0.423 -13.182 6.421 0.699 0.462
0.057 1180.0 1742.9 0.0257 0.422 10.433 0.162 0.878 -13.824 6.438 0.720 0.435
0.057 1220.0 1764.3 0.0249 3.185 10.857 0.291 0.661 -13.149 6.460 0.667 0.883
0.057 1260.0 1785.4 0.0241 -0.032 11.082 0.142 0.533 -9.820 6.050 0.562 0.857
0.057 1300.0 1806.3 0.0234 3.530 10.636 0.393 0.546 -19.872 5.708 1.107 1.144
0.057 1340.0 1827.0 0.0227 7.619 10.962 0.596 1.217 -16.451 5.826 0.862 1.034
0.057 1380.0 1847.4 0.0220 -3.622 11.395 0.246 0.806 -15.794 6.415 0.868 1.215
0.057 1420.0 1867.6 0.0214 -0.549 11.656 0.357 1.057 -16.219 6.442 0.876 0.915
0.057 1460.0 1887.6 0.0208 7.762 11.952 0.710 1.369 -16.017 6.482 0.825 0.515
0.057 1500.0 1907.4 0.0203 -10.832 11.640 0.617 0.986 -13.847 6.253 0.836 0.717
0.057 1540.0 1927.0 0.0197 -5.680 11.515 0.254 0.371 -21.179 6.064 1.181 0.650
0.057 1580.0 1946.3 0.0192 -1.858 12.504     0.162     0.468 -14.862 6.311     0.812   0.678
0.057 1620.0 1965.5 0.0188 -5.926 12.726 0.461 0.789 -14.826 6.284 0.829 0.619
0.057 1660.0 1984.5 0.0183 -15.284 13.152 1.151 2.330 -11.164 6.518 0.793 0.594
0.057 1700.0 2003.4 0.0179 5.253 13.024 0.574 1.241 -16.632 6.962 1.697 1.296
0.057 1740.0 2022.0 0.0175 -2.795 12.474 0.177 0.293 -21.069 6.512 1.227 0.648
0.057 1780.0 2040.5 0.0171 -11.946 9.985 0.612 1.899 -11.633 6.119 0.893 0.878
0.057 1820.0 2058.8 0.0167 -4.724 10.712 0.237 0.985 -18.421 5.839 1.025 1.079
0.057 1860.0 2076.9 0.0163 -11.979 13.047 0.712 2.817 -4.903 7.290 0.348 0.752
0.079 187.5 1073.9 0.2246 34.143 18.241 3.088 7.411 -64.904 24.672 5.429 10.679
0.079 230.0 1110.4 0.1830 17.772 12.184 3.035 3.783 -92.997 15.691 4.322 5.277
0.079 270.0 1143.7 0.1559 -2.744 8.866 3.869 4.971 -111.705 10.617 4.587 5.878
0.079 310.0 1176.0 0.1358 -12.400 7.942 5.274 5.393 -154.179 9.071 6.282 6.244
0.079 350.0 1207.5 0.1203 11.408 8.144 6.164 5.841 -177.788 9.089 7.241 6.483
0.079 390.0 1238.2 0.1079 34.764 7.864 6.817 4.885 -157.234 8.585 7.005 4.887
0.079 430.0 1268.2 0.0979 33.358 7.078 4.791 2.725 -105.957 7.208 4.616 2.363
0.079 470.0 1297.4 0.0896 22.314 6.960 2.869 1.047 -66.394 6.410 3.677 1.380
0.079 510.0 1326.0 0.0825 18.464 6.282 1.899 1.063 -36.957 5.451 2.386 1.736
0.079 550.0 1354.0 0.0765 13.599 5.490 1.138 0.957 -17.115 4.625 0.778 1.702
0.079 590.0 1381.5 0.0714 -5.347 6.480 0.826 1.173 -11.003 5.262 0.910 1.139
0.079 630.0 1408.4 0.0668 -9.027 6.974 0.677 2.375 -17.658 5.457 1.287 1.825
0.079 670.0 1434.8 0.0628 -3.163 7.671 0.457 2.089 -15.417 5.870 0.967 2.565
0.079 710.0 1460.7 0.0593 6.803 7.476 0.640 2.526 -7.954 5.633 0.483 2.015
0.079 750.0 1486.2 0.0561 14.630 7.207 1.060 2.058 -18.739 5.307 1.055 1.122
0.079 790.0 1511.2 0.0533 9.856 7.011 0.892 1.908 -16.028 4.978 1.029 1.266
0.079 830.0 1535.9 0.0507 9.177 6.570 0.857 1.488 -13.424 4.470 1.107 0.843
0.079 870.0 1560.1 0.0484 0.695 6.005 0.333 1.137 -9.367 4.057 0.889 0.881
0.079 910.0 1584.0 0.0463 5.882 5.417     0.564     0.961 -12.198 3.555     1.055   0.818
0.079 950.0 1607.5 0.0443 11.564 6.316 4.244 0.788 -13.436 4.176 1.958 1.268
0.079 990.0 1630.7 0.0425 12.303 10.534 1.106 2.812 -12.655 5.667 0.773 1.305
0.079 1030.0 1653.5 0.0409 -21.372 10.231 0.955 2.364 -6.450 5.427 1.054 1.287
0.079 1070.0 1676.1 0.0393 -26.240 10.201 1.367 3.819 -3.708 5.380 0.610 1.147
0.079 1110.0 1698.3 0.0379 -2.104 10.257 0.121 1.186 -7.792 5.619 0.419 1.100
0.079 1150.0 1720.3 0.0366 0.965 10.455 0.200 2.524 -14.070 5.978 0.712 1.339
0.079 1190.0 1742.0 0.0354 2.804 10.560 0.224 3.987 -14.248 5.945 0.702 1.186
0.079 1230.0 1763.4 0.0342 5.423 10.901 0.392 1.310 -13.352 5.970 0.643 2.508
0.079 1270.0 1784.5 0.0331 2.133 11.226 0.318 1.516 -10.841 5.678 0.639 0.856
0.079 1310.0 1805.4 0.0321 1.789 9.723 0.412 0.904 -23.168 4.838 1.335 2.538
0.079 1350.0 1826.1 0.0312 5.894 9.835 0.557 1.305 -19.972 4.818 1.087 2.263
0.079 1390.0 1846.5 0.0303 0.030 10.081 0.415 1.938 -19.555 5.131 1.049 2.583
0.079 1430.0 1866.8 0.0294 1.654 10.405 0.479 1.437 -19.315 5.292 1.035 1.709
0.079 1470.0 1886.8 0.0286 6.673 10.523 0.579 1.348 -16.243 5.254 0.834 0.761
0.079 1510.0 1906.5 0.0279 -4.686 10.171 0.596 1.309 -13.888 5.054 0.809 0.828
0.079 1550.0 1926.1 0.0272 -4.896 9.978 0.225 0.786 -17.706 4.908 0.988 0.511
0.079 1590.0 1945.5 0.0265 -0.354 10.333 0.202 0.455 -14.538 4.777 0.786 0.801
0.079 1630.0 1964.7 0.0258 -0.897 10.428 0.442 1.642 -15.400 4.767 0.838 0.931
0.079 1670.0 1983.7 0.0252 -6.199 10.704 0.993 2.901 -11.479 4.933 0.721 0.804
0.079 1710.0 2002.6 0.0246 -1.247 10.500 0.496 1.681 -16.864 5.130 1.390 1.502
0.079 1750.0 2021.2 0.0241 -2.692 9.746 0.187 0.367 -19.326 4.745 1.113 0.728
0.079 1790.0 2039.7 0.0235 -6.890 8.195 0.376 1.963 -13.116 4.471 0.863 0.913
0.079 1830.0 2058.0 0.0230 -3.057 9.057 0.200 0.908 -14.979 4.587 0.833 0.936
0.079 1870.0 2076.2 0.0225 -7.990 10.082 0.521 2.570 -7.945 5.094 0.497 0.747
0.100 202.5 1077.2 0.2632 15.456 8.022 3.954 3.871 -76.998 11.594 6.669 7.076
0.100 245.0 1113.6 0.2175 19.384 7.195     4.030     3.331 -65.123 9.686     5.755   5.130
0.100 285.0 1146.8 0.1870 26.126 5.169 3.594 3.967 -101.549 6.431 4.671 5.009
0.100 325.0 1179.1 0.1640 9.181 5.267 5.300 4.472 -145.831 6.295 6.330 5.300
0.100 365.0 1210.5 0.1460 15.938 5.842 8.753 4.948 -185.663 6.703 9.835 5.651
0.100 405.0 1241.1 0.1316 9.510 5.673 5.847 4.029 -138.361 6.112 6.834 4.482
0.100 445.0 1271.0 0.1198 21.309 5.085 3.680 1.449 -84.572 5.254 4.195 1.821
0.100 485.0 1300.2 0.1099 21.822 4.835 2.374 1.142 -45.411 4.819 2.345 1.578
0.100 525.0 1328.7 0.1015 5.873 5.348 0.828 3.050 -17.056 5.058 0.906 2.513
0.100 565.0 1356.7 0.0943 11.819 4.088 1.243 2.111 -17.313 3.736 1.101 1.720
0.100 605.0 1384.1 0.0881 10.628 3.602 1.331 2.131 -20.914 3.192 1.446 1.485
0.100 645.0 1410.9 0.0826 6.652 4.049 1.041 1.367 -22.418 3.365 1.561 1.095
0.100 685.0 1437.3 0.0778 10.810 4.650 1.263 0.900 -21.760 3.758 1.737 1.250
0.100 725.0 1463.2 0.0735 7.994 4.797 0.884 0.550 -14.369 3.857 1.624 0.831
0.100 765.0 1488.6 0.0697 4.631 4.649 0.766 0.824 -13.315 3.650 1.297 0.902
0.100 805.0 1513.6 0.0662 8.032 4.672 1.190 0.631 -12.766 3.494 1.563 0.877
0.100 845.0 1538.2 0.0631 6.553 4.473 1.124 0.330 -11.851 3.606 1.709 0.640
0.100 885.0 1562.4 0.0602 4.063 4.603 0.570 0.354 -7.306 3.889 1.272 0.615
0.100 925.0 1586.2 0.0576 3.901 4.887 0.682 0.339 -7.039 3.701 1.351 0.521
0.100 965.0 1609.7 0.0552 7.498 10.407 9.152 0.687 -3.231 7.243 3.668 0.847
0.100 1005.0 1632.9 0.0530 8.199 6.938 0.583 0.580 -8.522 4.879 0.443 0.958
0.100 1045.0 1655.7 0.0510 3.330 6.326 1.012 2.855 -19.256 4.404 2.984 1.133
0.100 1085.0 1678.2 0.0491 -5.996 6.643 1.041 3.084 -13.311 4.487 1.578 1.626
0.100 1125.0 1700.4 0.0474 5.958 5.880 0.558 0.716 -14.852 3.817 0.716 0.856
0.100 1165.0 1722.4 0.0457 5.983 6.420 0.522 3.161 -21.348 3.982 1.217 1.772
0.100 1205.0 1744.0 0.0442 -1.774 6.282 0.583 2.308 -19.196 3.834 2.291 1.536
0.100 1245.0 1765.4 0.0428 0.367 6.886 0.344 0.767 -16.672 4.099 1.209 2.685
0.100 1285.0 1786.5 0.0415 8.289   6.606     0.901     2.520   -28.115 3.851     1.665   1.862
0.100 1325.0 1807.4 0.0402 -2.222 9.184 0.268 3.484 -10.811 4.707 0.642 1.507
0.100 1365.0 1828.1 0.0390 1.185 9.278 0.396 1.450 -9.927 4.728 0.561 0.632
0.100 1405.0 1848.5 0.0379 -3.194 9.330 0.228 0.502 -12.630 4.945 0.778 0.957
0.100 1445.0 1868.7 0.0369 -3.062 9.625 0.281 1.343 -4.770 4.941 0.309 3.315
0.100 1485.0 1888.7 0.0359 1.817 9.708 0.369 1.398 -10.809 4.950 0.625 0.566
0.100 1525.0 1908.4 0.0349 -14.830 9.162 0.684 2.861 -19.837 4.816 1.353 3.762
0.100 1565.0 1928.0 0.0341 -2.055 9.173 0.206 0.802 -12.951 4.850 0.779 0.856
0.100 1605.0 1947.4 0.0332 -4.243 9.530 0.193 1.135 -9.340 4.905 0.600 0.611
0.100 1645.0 1966.5 0.0324 2.988 9.658 0.687 1.475 -17.478 5.030 1.073 1.227
0.100 1685.0 1985.5 0.0316 0.209 7.303 0.857 1.807 -12.793 3.697 0.748 0.948
0.100 1725.0 2004.3 0.0309 -6.303 7.199 0.399 1.489 -17.072 3.758 1.158 0.984
0.100 1765.0 2023.0 0.0302 -2.988 7.012 0.190 0.278 -17.894 3.704 1.000 0.489
0.100 1805.0 2041.5 0.0295 -2.567 6.152 0.222 0.989 -14.275 3.386 0.827 0.351
0.100 1845.0 2059.8 0.0289 -2.509 7.388 0.206 0.900 -12.301 3.916 0.688 0.376
0.100 1885.0 2077.9 0.0283 -4.084 7.543 0.436 1.750 -9.504 3.958 0.560 0.562
0.100 2005.0 2131.4 0.0266 3.842 4.597 0.274 0.536 -12.950 2.610 0.675 0.322
0.100 2045.0 2148.9 0.0261 3.536 4.544 0.289 0.070 -12.664 2.563 0.671 0.119
0.100 2085.0 2166.3 0.0256 3.312 4.672 0.275 0.081 -12.602 2.601 0.669 0.123
0.100 2125.0 2183.6 0.0251 3.729 4.758 0.291 0.203 -12.564 2.613 0.666 0.132
0.100 2165.0 2200.7 0.0246 3.467 6.179 0.425 1.015 -12.002 3.365 0.643 0.216
0.100 2205.0 2217.7 0.0242 -7.082 9.019 0.380 0.589 -11.031 4.931 0.664 0.175
0.100 2245.0 2234.6 0.0237 3.104 7.672 0.268 0.255 -15.142 4.189 0.852 0.169
0.100 2285.0 2251.3 0.0233 1.188 7.367 0.201 0.225 -14.907 4.014 0.850 0.208
0.100 2325.0 2267.9 0.0229 0.464 4.258 0.150 0.231 -12.881 2.418 0.662 0.364
0.100 2365.0 2284.4 0.0225 3.874 4.411 0.287 0.739 -10.969 2.221 0.630 0.435
0.100 2405.0 2300.8 0.0222 -3.542   4.432     0.404     1.238 -11.716 2.166     0.681   0.430
0.100 2445.0 2317.0 0.0218 -2.553 4.665 0.329 1.321 -10.259 2.300 0.588 0.452
0.100 2485.0 2333.2 0.0214 -0.625 5.832 0.631 1.708 -8.202 3.259 0.638 0.364
0.100 2525.0 2349.2 0.0211 -4.785 5.523 0.537 1.282 -12.208 3.150 0.733 0.456
0.100 2565.0 2365.1 0.0208 -5.088 5.431 0.310 1.000 -8.565 2.863 0.495 0.953
0.100 2605.0 2380.9 0.0205 -4.249 6.307 0.211 0.465 -7.268 3.132 0.448 1.061
0.100 2645.0 2396.6 0.0201 -1.454 6.765 0.106 0.354 -12.333 3.318 0.730 0.448
0.100 2685.0 2412.2 0.0198 -3.477 7.573 0.214 0.650 -13.003 3.659 0.759 0.300
0.100 2725.0 2427.7 0.0196 -8.275 8.178 0.403 0.726 -13.838 4.016 0.831 0.316
0.100 2765.0 2443.2 0.0193 -5.867 7.309 0.298 0.926 -15.363 4.422 0.968 1.116
0.100 2805.0 2458.5 0.0190 -2.355 7.693 0.229 0.668 -15.399 5.141 1.072 1.665
0.100 2845.0 2473.7 0.0187 -5.013 6.881 0.306 0.212 -12.836 4.092 0.743 0.682
0.100 2885.0 2488.8 0.0185 -4.007 7.609 0.178 1.216 -15.019 4.365 0.880 1.561
0.150 227.5 1075.8 0.3514 3.537 6.103 9.555 8.491 -61.256 10.170 11.998 11.833
0.150 270.0 1112.2 0.2961 12.933 5.666 2.324 5.877 -50.296 8.559 3.450 9.452
0.150 310.0 1145.5 0.2579 25.440 4.679 2.025 7.919 -94.374 6.515 3.322 9.936
0.150 350.0 1177.8 0.2284 10.614 4.508 3.682 6.815 -143.747 5.921 4.929 8.771
0.150 390.0 1209.2 0.2050 4.516 4.762 5.869 6.254 -172.890 5.986 7.373 7.870
0.150 430.0 1239.9 0.1859 5.435 5.039 4.319 4.480 -131.759 6.205 5.353 5.498
0.150 470.0 1269.8 0.1701 9.906 4.742 3.185 1.466 -84.240 5.769 4.149 1.659
0.150 510.0 1299.0 0.1567 8.116 4.447 2.427 0.564 -49.114 5.182 3.235 0.789
0.150 550.0 1327.6 0.1453 7.676 3.913 1.581 0.962 -28.701 4.284 2.042 1.501
0.150 590.0 1355.5 0.1355 8.485 3.482 1.581 0.894 -20.635 3.634 1.832 1.424
0.150 630.0 1383.0 0.1269 8.687 3.196 1.663 0.799 -18.807 3.235 2.089 1.208
0.150 670.0 1409.8 0.1193 8.416 3.141 1.160 1.107 -16.606 3.148 1.882 1.194
0.150 710.0 1436.2 0.1126 6.033 3.297 0.852 0.856 -14.093 3.397 1.168 1.285
0.150 750.0 1462.1 0.1066 7.997 3.653     0.433     0.693 -10.516   3.717     0.663   1.011
0.150 790.0 1487.6 0.1012 9.738 4.130 0.866 1.523 -8.556 3.763 1.072 1.499
0.150 830.0 1512.6 0.0963 2.912 4.650 1.160 2.293 -3.873 3.830 0.970 2.076
0.150 870.0 1537.2 0.0919 3.913 4.955 1.031 1.372 -5.819 4.151 1.259 1.293
0.150 910.0 1561.4 0.0878 1.937 5.032 0.322 1.756 -2.842 4.165 0.739 2.246
0.150 950.0 1585.3 0.0841 0.456 4.813 0.523 2.733 -6.978 3.791 0.905 1.895
0.150 990.0 1608.8 0.0807 14.691 8.089 1.680 1.313 -16.938 5.876 1.031 1.181
0.150 1030.0 1631.9 0.0776 3.467 4.850 0.282 1.390 -6.773 3.744 0.312 0.817
0.150 1070.0 1654.8 0.0747 1.026 4.520 0.336 3.396 -12.652 3.690 0.675 1.371
0.150 1110.0 1677.3 0.0720 -9.527 4.579 0.439 0.637 -8.883 3.715 0.701 0.726
0.150 1150.0 1699.5 0.0695 -2.496 4.546 0.339 1.135 -10.505 3.456 0.620 0.495
0.150 1190.0 1721.5 0.0672 2.371 4.692 0.317 2.825 -13.350 3.472 0.673 1.156
0.150 1230.0 1743.1 0.0650 -1.243 4.488 0.380 1.791 -13.722 3.419 1.102 0.724
0.150 1270.0 1764.5 0.0629 6.832 5.027 0.665 1.436 -16.786 3.863 0.914 1.377
0.150 1310.0 1785.7 0.0610 10.278 6.246 1.002 1.441 -17.229 4.181 0.953 0.635
0.150 1350.0 1806.6 0.0592 -5.703 6.405 0.230 1.623 -6.508 4.207 0.473 0.739
0.150 1390.0 1827.2 0.0575 -3.262 6.414 0.275 0.385 -6.172 4.219 0.424 0.589
0.150 1430.0 1847.7 0.0559 -1.099 6.157 0.284 0.697 -12.787 4.285 0.806 0.952
0.150 1470.0 1867.8 0.0544 -4.573 7.312 0.282 0.403 -0.691 4.506 0.127 0.559
0.150 1510.0 1887.8 0.0529 -1.400 7.457 0.157 0.385 -7.804 4.531 0.507 0.342
0.150 1550.0 1907.6 0.0516 -13.139 6.321 0.736 0.198 -20.054 4.098 1.409 0.202
0.150 1590.0 1927.2 0.0503 2.114 6.761 0.262 0.327 -9.427 4.236 0.565 0.139
0.150 1630.0 1946.6 0.0490 -2.797 6.089 0.247 0.319 -7.940 3.750 0.528 0.207
0.150 1670.0 1965.8 0.0479 9.262 6.393 0.764 0.528 -17.845 3.881 1.020 0.214
0.150 1710.0 1984.8 0.0467 3.543 4.445 0.773 2.983 -12.193 2.476 0.661 0.843
0.150 1750.0 2003.6 0.0457 -10.549 4.368 0.358 1.964 -12.722 2.418 0.789 0.593
0.150 1790.0 2022.2 0.0447 -1.536 4.307     0.243     0.227 -14.143   2.386     0.781   0.312
0.150 1830.0 2040.7 0.0437 3.487 3.931 0.384 0.864 -14.068 2.187 0.743 0.288
0.150 1870.0 2059.0 0.0427 1.752 4.319 0.330 0.782 -13.281 2.276 0.725 0.529
0.150 1910.0 2077.2 0.0419 -1.936 4.157 0.259 1.197 -11.872 2.187 0.679 0.343
0.150 1950.0 2095.1 0.0410 3.002 4.098 0.427 1.225 -10.719 2.254 0.594 0.517
0.150 1990.0 2113.0 0.0402 -5.769 4.182 0.278 0.932 -8.489 2.467 0.518 0.451
0.150 2030.0 2130.7 0.0394 0.327 4.132 0.156 0.364 -12.323 3.232 0.679 0.221
0.150 2070.0 2148.2 0.0386 -0.294 4.412 0.145 0.286 -12.112 3.424 0.675 0.137
0.150 2110.0 2165.6 0.0379 -0.836 4.747 0.136 0.261 -12.090 3.619 0.679 0.139
0.150 2150.0 2182.9 0.0372 -1.796 6.129 0.163 0.305 -11.343 3.367 0.646 0.148
0.150 2190.0 2200.0 0.0365 7.273 6.624 0.496 0.202 -11.858 3.544 0.630 0.145
0.150 2230.0 2217.0 0.0358 0.350 6.497 0.130 0.355 -10.022 3.422 0.565 0.160
0.150 2270.0 2233.9 0.0352 -2.228 5.215 0.119 0.253 -11.921 3.702 0.679 0.179
0.150 2310.0 2250.6 0.0346 -1.973 5.038 0.124 0.367 -12.010 3.503 0.729 0.237
0.150 2350.0 2267.2 0.0340 -2.392 4.845 0.146 0.486 -11.864 3.313 0.873 0.550
0.150 2390.0 2283.7 0.0334 6.938 5.780 0.460 1.499 -9.429 2.599 0.548 0.737
0.150 2430.0 2300.1 0.0329 -7.159 5.875 0.716 2.450 -9.369 2.500 0.612 0.803
0.150 2470.0 2316.3 0.0324 -7.662 5.669 0.419 2.665 -8.457 2.455 0.526 0.718
0.150 2510.0 2332.5 0.0318 -11.704 5.834 0.413 3.805 -6.864 2.889 0.452 0.703
0.150 2550.0 2348.5 0.0313 -12.251 5.803 0.497 3.442 -8.156 2.970 0.566 0.695
0.150 2590.0 2364.4 0.0309 -2.773 6.027 0.516 2.832 -5.731 2.812 0.359 1.226
0.150 2630.0 2380.3 0.0304 -1.879 6.743 0.276 1.265 -6.109 3.010 0.386 1.347
0.150 2670.0 2396.0 0.0299 0.356 6.534 0.110 0.490 -11.304 2.891 0.655 0.434
0.150 2710.0 2411.6 0.0295 -0.429 6.377 0.185 0.460 -11.109 2.753 0.643 0.483
0.150 2750.0 2427.1 0.0291 -4.804 7.336 0.277 4.534 -9.701 2.939 0.590 0.729
0.150 2790.0 2442.5 0.0287 0.726 6.995 0.418 2.757 -12.856 3.135 0.705 2.397
0.150 2830.0 2457.8 0.0282 6.860 6.432     0.509     0.653 -13.259   3.183     0.774   2.246
0.150 2870.0 2473.1 0.0279 1.415 5.449 0.366 0.752 -10.079 2.562 0.629 0.588
0.150 2910.0 2488.2 0.0275 -3.242 5.784 0.087 1.329 -7.754 2.637 0.496 0.747
0.200 252.5 1074.3 0.4221 13.790 3.318 10.709 7.560 -38.694 6.467 14.450 11.419
0.200 295.0 1110.8 0.3613 9.440 3.819 1.772 3.899 -67.255 6.461 2.727 7.448
0.200 335.0 1144.1 0.3181 6.040 3.367 1.457 4.517 -93.382 5.187 2.519 7.215
0.200 375.0 1176.5 0.2842 2.222 3.248 2.957 5.386 -135.555 4.669 4.306 7.699
0.200 415.0 1207.9 0.2568 1.626 3.529 3.853 5.221 -150.585 4.786 5.154 6.992
0.200 455.0 1238.6 0.2342 6.285 3.749 3.791 3.749 -132.563 4.892 4.953 4.900
0.200 495.0 1268.6 0.2153 12.098 3.308 2.779 1.806 -83.584 4.189 3.587 2.171
0.200 535.0 1297.8 0.1992 7.023 4.035 1.809 1.064 -48.229 4.965 2.323 1.226
0.200 575.0 1326.4 0.1854 6.935 5.100 1.208 0.692 -30.576 6.097 1.489 0.859
0.200 615.0 1354.4 0.1733 7.341 4.967 1.082 0.486 -24.222 5.800 1.276 0.729
0.200 655.0 1381.8 0.1627 4.639 4.694 0.865 1.129 -18.166 5.372 1.073 1.064
0.200 695.0 1408.7 0.1534 3.931 4.665 0.465 1.293 -9.967 5.240 0.648 1.100
0.200 735.0 1435.1 0.1450 3.131 4.572 0.514 0.634 -13.385 5.003 0.670 0.769
0.200 775.0 1461.0 0.1375 8.223 4.833 0.548 0.294 -11.448 4.895 0.505 0.480
0.200 815.0 1486.5 0.1308 5.739 4.748 0.399 0.370 -6.351 4.691 0.421 0.376
0.200 855.0 1511.6 0.1247 -6.748 4.703 0.476 0.971 0.020 4.560 0.362 0.646
0.200 895.0 1536.2 0.1191 -2.512 4.395 0.310 1.484 -2.180 4.243 0.223 0.887
0.200 935.0 1560.4 0.1140 1.714 3.861 0.168 0.450 -5.796 3.710 0.240 0.312
0.200 975.0 1584.3 0.1093 -2.916 3.869 0.225 0.645 -3.320 3.575 0.233 0.430
0.200 1015.0 1607.8 0.1050 0.873 3.603 0.197 0.730 -2.289 3.234 0.138 0.436
0.200 1055.0 1631.0 0.1010 3.411 3.369 0.260 0.408 -6.416 2.977 0.303 0.442
0.200 1095.0 1653.8 0.0973 0.917 3.160 0.313 0.612 -8.377 2.874 0.424 0.417
0.200 1135.0 1676.4 0.0939 -5.114 3.164 0.227 0.571 -6.155 2.851 0.423 0.278
0.200 1175.0 1698.6 0.0907 -1.376 3.306     0.289     0.562 -8.777   2.679     0.469   0.309
0.200 1215.0 1720.6 0.0877 -0.408 3.322 0.192 0.583 -7.995 2.632 0.402 0.504
0.200 1255.0 1742.2 0.0849 -2.934 3.316 0.269 0.652 -10.711 2.603 0.594 0.281
0.200 1295.0 1763.7 0.0823 6.539 3.535 0.628 0.385 -15.119 2.762 0.751 0.232
0.200 1335.0 1784.8 0.0798 4.969 4.095 0.587 0.663 -14.784 2.905 0.781 0.283
0.200 1375.0 1805.7 0.0775 8.241 4.053 0.696 0.874 -17.368 3.007 0.870 1.131
0.200 1415.0 1826.4 0.0753 0.926 3.820 0.250 0.803 -10.907 2.816 0.584 1.000
0.200 1455.0 1846.8 0.0733 3.559 3.600 0.372 0.670 -12.090 2.645 0.596 0.728
0.200 1495.0 1867.0 0.0713 0.530 3.654 0.316 0.729 -15.627 2.638 0.827 0.344
0.200 1535.0 1887.0 0.0694 -4.291 3.955 0.254 0.595 -10.485 2.692 0.618 0.387
0.200 1575.0 1906.8 0.0677 3.464 4.031 0.439 0.637 -10.308 2.640 0.540 0.265
0.200 1615.0 1926.4 0.0660 8.330 3.991 0.567 0.499 -10.810 2.576 0.524 0.186
0.200 1655.0 1945.8 0.0644 3.729 4.024 0.344 0.748 -10.536 2.561 0.545 0.262
0.200 1695.0 1965.0 0.0629 6.435 4.111 0.493 1.400 -12.606 2.557 0.635 0.403
0.200 1735.0 1984.0 0.0614 -0.882 4.177 0.696 2.282 -9.990 2.533 0.611 0.659
0.200 1775.0 2002.8 0.0600 -8.126 4.105 0.369 1.713 -8.385 2.429 0.567 0.547
0.200 1815.0 2021.5 0.0587 0.684 4.115 0.317 0.175 -11.252 2.415 0.613 0.357
0.200 1855.0 2039.9 0.0575 4.958 4.019 0.557 0.802 -12.005 2.325 0.633 0.385
0.200 1895.0 2058.2 0.0562 3.502 3.838 0.377 1.037 -13.349 2.130 0.708 0.566
0.200 1935.0 2076.4 0.0551 0.067 3.829 0.229 0.877 -11.955 2.073 0.659 0.348
0.200 1975.0 2094.4 0.0540 1.574 3.852 0.309 0.829 -12.275 2.045 0.673 0.556
0.200 2015.0 2112.2 0.0529 -3.076 3.872 0.163 0.606 -9.834 2.166 0.562 0.458
0.200 2055.0 2129.9 0.0519 -0.166 3.756 0.144 0.447 -10.504 2.661 0.580 0.251
0.200 2095.0 2147.5 0.0509 0.521 3.764 0.190 0.628 -12.039 2.622 0.655 0.304
0.200 2135.0 2164.9 0.0499 -0.129 3.769 0.174 0.766 -12.558 2.555 0.687 0.374
0.200 2175.0 2182.2 0.0490 -2.033 4.404 0.130 0.701 -10.399 2.292 0.585 0.248
0.200 2215.0 2199.3 0.0481 3.207 4.469     0.320     0.843 -10.564   2.364     0.558   0.220
0.200 2255.0 2216.3 0.0473 -1.724 4.238 0.166 1.127 -8.273 2.255 0.465 0.276
0.200 2295.0 2233.2 0.0464 -4.587 3.704 0.186 0.530 -8.809 2.296 0.508 0.191
0.200 2335.0 2249.9 0.0456 -0.694 3.681 0.140 0.571 -8.788 2.071 0.722 0.258
0.200 2375.0 2266.5 0.0449 -1.545 4.021 0.248 0.394 -7.649 2.309 1.340 0.537
0.200 2415.0 2283.0 0.0441 1.542 4.321 0.191 0.822 -10.287 2.297 0.533 0.464
0.200 2455.0 2299.4 0.0434 0.391 5.027 0.110 0.113 -8.194 2.753 0.445 0.151
0.200 2495.0 2315.7 0.0427 3.748 4.711 0.295 0.214 -9.663 2.251 0.516 0.150
0.200 2535.0 2331.8 0.0420 -3.462 5.315 0.176 0.098 -8.667 2.675 0.512 0.156
0.200 2575.0 2347.9 0.0414 -4.257 5.050 0.185 0.200 -8.722 2.502 0.549 0.173
0.200 2615.0 2363.8 0.0408 8.723 4.601 0.583 0.728 -8.317 2.103 0.429 0.275
0.200 2655.0 2379.6 0.0401 3.937 5.560 0.269 0.943 -9.021 2.691 0.494 0.336
0.240 277.5 1077.6 0.4609 14.650 4.723 4.956 2.176 -58.830 9.270 11.761 6.767
0.240 320.0 1113.9 0.3997 12.332 5.068 3.379 2.528 -70.081 8.721 6.884 5.335
0.240 360.0 1147.1 0.3553 7.192 3.694 2.159 2.890 -88.335 5.967 3.823 4.975
0.240 400.0 1179.4 0.3197 2.021 3.783 3.169 3.019 -120.832 5.717 4.758 4.737
0.240 440.0 1210.8 0.2907 4.501 3.909 3.769 3.340 -137.414 5.594 5.342 4.805
0.240 480.0 1241.4 0.2664 6.774 3.906 3.661 3.144 -128.423 5.340 4.992 4.292
0.240 520.0 1271.3 0.2460 14.674 3.778 2.474 1.586 -80.133 4.966 3.240 2.040
0.240 560.0 1300.5 0.2284 7.420 4.538 1.556 0.935 -49.234 5.786 1.970 1.101
0.240 600.0 1329.0 0.2132 7.277 5.292 1.062 0.343 -31.454 6.538 1.279 0.407
0.240 640.0 1357.0 0.1998 7.134 4.791 0.877 0.302 -25.574 5.755 1.026 0.413
0.240 680.0 1384.3 0.1881 5.395 4.392 0.649 0.732 -19.033 5.145 0.738 0.730
0.240 720.0 1411.2 0.1776 5.324 4.210 0.398 0.796 -8.635 4.816 0.359 0.743
0.240 760.0 1437.5 0.1683 5.075 3.738 0.433 0.466 -9.629 4.143 0.443 0.651
0.240 800.0 1463.4 0.1599 11.109 3.709 0.816 0.378 -9.196 3.833 0.620 0.465
0.240 840.0 1488.8 0.1523 8.491 3.343     0.508     0.572 -3.113   3.381     0.434   0.539
0.240 880.0 1513.8 0.1453 -1.176 3.047 0.373 1.171 -0.789 3.030 0.312 0.940
0.240 920.0 1538.4 0.1390 0.851 2.695 0.282 0.745 -6.161 2.672 0.281 0.580
0.240 960.0 1562.6 0.1332 0.765 2.565 0.229 0.344 -7.973 2.506 0.365 0.296
0.240 1000.0 1586.5 0.1279 2.504 2.841 0.333 0.620 -4.932 2.610 0.266 0.657
0.240 1040.0 1610.0 0.1230 7.956 3.699 0.488 0.925 -5.591 3.240 0.376 0.993
0.240 1080.0 1633.1 0.1184 8.457 3.690 0.610 1.337 -10.510 3.174 0.581 0.804
0.240 1120.0 1655.9 0.1142 7.155 3.552 0.714 1.814 -8.929 2.983 0.686 0.918
0.240 1160.0 1678.4 0.1103 -2.486 3.677 0.271 1.572 -4.796 3.045 0.353 0.780
0.240 1200.0 1700.7 0.1066 3.012 4.048 0.286 0.734 -8.299 3.277 0.380 0.531
0.240 1240.0 1722.6 0.1031 -0.472 4.318 0.124 0.329 -4.527 3.370 0.244 0.461
0.240 1280.0 1744.2 0.0999 -2.042 4.252 0.242 0.593 -8.851 3.259 0.499 0.351
0.240 1320.0 1765.6 0.0969 5.330 4.242 0.478 0.522 -11.534 3.199 0.539 0.244
0.240 1360.0 1786.7 0.0940 1.181 4.249 0.345 0.447 -12.226 3.152 0.633 0.312
0.240 1400.0 1807.6 0.0914 10.185 4.394 0.741 1.519 -13.575 3.332 0.628 0.599
0.240 1440.0 1828.3 0.0888 1.459 4.292 0.188 0.128 -7.033 3.187 0.365 0.150
0.240 1480.0 1848.7 0.0864 2.829 4.054 0.323 0.300 -8.625 2.967 0.439 0.308
0.240 1520.0 1868.9 0.0841 -1.767 3.848 0.250 0.831 -13.948 2.755 0.781 1.197
0.240 1560.0 1888.8 0.0820 -4.030 4.057 0.270 0.714 -9.832 2.685 0.603 0.357
0.240 1600.0 1908.6 0.0799 5.364 3.852 0.389 1.677 -9.721 2.455 0.478 1.420
0.240 1640.0 1928.2 0.0780 6.050 3.600 0.506 1.492 -10.500 2.293 0.543 0.503
0.240 1680.0 1947.5 0.0761 3.945 3.470 0.354 0.943 -10.827 2.190 0.613 0.329
0.240 1720.0 1966.7 0.0744 3.671 3.498 0.356 1.263 -10.053 2.174 0.515 0.443
0.240 1760.0 1985.7 0.0727 -0.841 3.164 0.523 1.685 -8.908 1.963 0.560 0.538
0.240 1800.0 2004.5 0.0711 -2.307 3.086 0.324 1.077 -8.801 1.749 0.512 0.415
0.240 1840.0 2023.2 0.0695 3.159 3.330 0.376 0.155 -10.280 2.061 0.531 0.255
0.240 1880.0 2041.6 0.0680 2.450 3.275     0.338     0.899 -10.236   2.031     0.549   0.319
0.240 1920.0 2059.9 0.0666 0.830 3.171 0.200 0.731 -9.732 1.944 0.521 0.482
0.240 1960.0 2078.1 0.0653 3.365 3.127 0.333 0.535 -11.821 1.916 0.607 0.291
0.240 2000.0 2096.1 0.0639 0.102 2.949 0.204 0.575 -11.153 1.617 0.600 0.391
0.240 2040.0 2113.9 0.0627 -1.216 2.907 0.134 0.449 -9.477 1.765 0.520 0.254
0.240 2080.0 2131.6 0.0615 1.361 3.078 0.192 0.110 -8.447 1.934 0.440 0.203
0.240 2120.0 2149.1 0.0603 3.651 3.059 0.350 0.350 -13.124 1.902 0.668 0.527
0.240 2160.0 2166.5 0.0592 1.622 3.051 0.244 0.600 -12.831 1.743 0.668 0.624
0.240 2200.0 2183.8 0.0581 -0.408 3.305 0.128 0.444 -10.021 1.960 0.535 0.308
0.240 2240.0 2200.9 0.0571 -1.516 3.507 0.153 0.317 -8.893 2.203 0.486 0.206
0.240 2280.0 2217.8 0.0561 -5.569 3.579 0.245 0.334 -6.705 2.221 0.405 0.214
0.240 2320.0 2234.7 0.0551 -4.849 3.695 0.278 0.720 -7.365 2.189 0.426 0.198
Table 4: Table of σLT(ν,Q2)\sigma_{\mathrm{LT}}(\nu,Q^{2}) and σTT(ν,Q2)\sigma_{\mathrm{TT}}(\nu,Q^{2}) on 3He. From left to right: Four-momentum transfer squared; energy transfer ν\nu; Invariant mass WW; Bjorken scaling variable xx; Cross-section, statistical uncertainty, uncorrelated systematic uncertainty, and correlated uncertainty for σLT\sigma_{\mathrm{LT}} and σTT\sigma_{\mathrm{TT}}, respectively.