This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Measurements of the branching fractions of ψ(𝟑𝟔𝟖𝟔)𝚺¯𝟎𝚲+c.c.\psi(3686)\rightarrow\bar{\Sigma}^{0}\Lambda+c.c. and χcJ(J=𝟎,𝟏,𝟐)𝚲𝚲¯\chi_{cJ(J=0,1,2)}\rightarrow\Lambda\bar{\Lambda}

M. Ablikim1, M. N. Achasov10,c, P. Adlarson67, S.  Ahmed15, M. Albrecht4, R. Aliberti28, A. Amoroso66A,66C, M. R. An32, Q. An63,49, X. H. Bai57, Y. Bai48, O. Bakina29, R. Baldini Ferroli23A, I. Balossino24A, Y. Ban38,k, K. Begzsuren26, N. Berger28, M. Bertani23A, D. Bettoni24A, F. Bianchi66A,66C, J. Bloms60, A. Bortone66A,66C, I. Boyko29, R. A. Briere5, H. Cai68, X. Cai1,49, A. Calcaterra23A, G. F. Cao1,54, N. Cao1,54, S. A. Cetin53A, J. F. Chang1,49, W. L. Chang1,54, G. Chelkov29,b, D. Y. Chen6, G. Chen1, H. S. Chen1,54, M. L. Chen1,49, S. J. Chen35, X. R. Chen25, Y. B. Chen1,49, Z. J Chen20,l, W. S. Cheng66C, G. Cibinetto24A, F. Cossio66C, X. F. Cui36, H. L. Dai1,49, X. C. Dai1,54, A. Dbeyssi15, R.  E. de Boer4, D. Dedovich29, Z. Y. Deng1, A. Denig28, I. Denysenko29, M. Destefanis66A,66C, F. De Mori66A,66C, Y. Ding33, C. Dong36, J. Dong1,49, L. Y. Dong1,54, M. Y. Dong1,49,54, X. Dong68, S. X. Du71, Y. L. Fan68, J. Fang1,49, S. S. Fang1,54, Y. Fang1, R. Farinelli24A, L. Fava66B,66C, F. Feldbauer4, G. Felici23A, C. Q. Feng63,49, J. H. Feng50, M. Fritsch4, C. D. Fu1, Y. Gao63,49, Y. Gao38,k, Y. Gao64, Y. G. Gao6, I. Garzia24A,24B, P. T. Ge68, C. Geng50, E. M. Gersabeck58, A Gilman61, K. Goetzen11, L. Gong33, W. X. Gong1,49, W. Gradl28, M. Greco66A,66C, L. M. Gu35, M. H. Gu1,49, S. Gu2, Y. T. Gu13, C. Y Guan1,54, A. Q. Guo22, L. B. Guo34, R. P. Guo40, Y. P. Guo9,h, A. Guskov29, T. T. Han41, W. Y. Han32, X. Q. Hao16, F. A. Harris56, N Hüsken22,28, K. L. He1,54, F. H. Heinsius4, C. H. Heinz28, T. Held4, Y. K. Heng1,49,54, C. Herold51, M. Himmelreich11,f, T. Holtmann4, Y. R. Hou54, Z. L. Hou1, H. M. Hu1,54, J. F. Hu47,m, T. Hu1,49,54, Y. Hu1, G. S. Huang63,49, L. Q. Huang64, X. T. Huang41, Y. P. Huang1, Z. Huang38,k, T. Hussain65, W. Ikegami Andersson67, W. Imoehl22, M. Irshad63,49, S. Jaeger4, S. Janchiv26,j, Q. Ji1, Q. P. Ji16, X. B. Ji1,54, X. L. Ji1,49, Y. Y. Ji41, H. B. Jiang41, X. S. Jiang1,49,54, J. B. Jiao41, Z. Jiao18, S. Jin35, Y. Jin57, T. Johansson67, N. Kalantar-Nayestanaki55, X. S. Kang33, R. Kappert55, M. Kavatsyuk55, B. C. Ke43,1, I. K. Keshk4, A. Khoukaz60, P.  Kiese28, R. Kiuchi1, R. Kliemt11, L. Koch30, O. B. Kolcu53A,e, B. Kopf4, M. Kuemmel4, M. Kuessner4, A. Kupsc67, M.  G. Kurth1,54, W. Kühn30, J. J. Lane58, J. S. Lange30, P.  Larin15, A. Lavania21, L. Lavezzi66A,66C, Z. H. Lei63,49, H. Leithoff28, M. Lellmann28, T. Lenz28, C. Li39, C. H. Li32, Cheng Li63,49, D. M. Li71, F. Li1,49, G. Li1, H. Li63,49, H. Li43, H. B. Li1,54, H. J. Li16, J. L. Li41, J. Q. Li4, J. S. Li50, Ke Li1, L. K. Li1, Lei Li3, P. R. Li31, S. Y. Li52, W. D. Li1,54, W. G. Li1, X. H. Li63,49, X. L. Li41, Xiaoyu Li1,54, Z. Y. Li50, H. Liang1,54, H. Liang63,49, H.  Liang27, Y. F. Liang45, Y. T. Liang25, G. R. Liao12, L. Z. Liao1,54, J. Libby21, C. X. Lin50, B. J. Liu1, C. X. Liu1, D. Liu63,49, F. H. Liu44, Fang Liu1, Feng Liu6, H. B. Liu13, H. M. Liu1,54, Huanhuan Liu1, Huihui Liu17, J. B. Liu63,49, J. L. Liu64, J. Y. Liu1,54, K. Liu1, K. Y. Liu33, Ke Liu6, L. Liu63,49, M. H. Liu9,h, P. L. Liu1, Q. Liu54, Q. Liu68, S. B. Liu63,49, Shuai Liu46, T. Liu1,54, W. M. Liu63,49, X. Liu31, Y. Liu31, Y. B. Liu36, Z. A. Liu1,49,54, Z. Q. Liu41, X. C. Lou1,49,54, F. X. Lu50, H. J. Lu18, J. D. Lu1,54, J. G. Lu1,49, X. L. Lu1, Y. Lu1, Y. P. Lu1,49, C. L. Luo34, M. X. Luo70, P. W. Luo50, T. Luo9,h, X. L. Luo1,49, X. R. Lyu54, F. C. Ma33, H. L. Ma1, L. L.  Ma41, M. M. Ma1,54, Q. M. Ma1, R. Q. Ma1,54, R. T. Ma54, X. X. Ma1,54, X. Y. Ma1,49, F. E. Maas15, M. Maggiora66A,66C, S. Maldaner4, S. Malde61, Q. A. Malik65, A. Mangoni23B, Y. J. Mao38,k, Z. P. Mao1, S. Marcello66A,66C, Z. X. Meng57, J. G. Messchendorp55, G. Mezzadri24A, T. J. Min35, R. E. Mitchell22, X. H. Mo1,49,54, Y. J. Mo6, N. Yu. Muchnoi10,c, H. Muramatsu59, S. Nakhoul11,f, Y. Nefedov29, F. Nerling11,f, I. B. Nikolaev10,c, Z. Ning1,49, S. Nisar8,i, S. L. Olsen54, Q. Ouyang1,49,54, S. Pacetti23B,23C, X. Pan9,h, Y. Pan58, A. Pathak1, P. Patteri23A, M. Pelizaeus4, H. P. Peng63,49, K. Peters11,f, J. Pettersson67, J. L. Ping34, R. G. Ping1,54, R. Poling59, V. Prasad63,49, H. Qi63,49, H. R. Qi52, K. H. Qi25, M. Qi35, T. Y. Qi9, T. Y. Qi2, S. Qian1,49, W. B. Qian54, Z. Qian50, C. F. Qiao54, L. Q. Qin12, X. P. Qin9, X. S. Qin41, Z. H. Qin1,49, J. F. Qiu1, S. Q. Qu36, K. H. Rashid65, K. Ravindran21, C. F. Redmer28, A. Rivetti66C, V. Rodin55, M. Rolo66C, G. Rong1,54, Ch. Rosner15, M. Rump60, H. S. Sang63, A. Sarantsev29,d, Y. Schelhaas28, C. Schnier4, K. Schoenning67, M. Scodeggio24A,24B, D. C. Shan46, W. Shan19, X. Y. Shan63,49, J. F. Shangguan46, M. Shao63,49, C. P. Shen9, P. X. Shen36, X. Y. Shen1,54, H. C. Shi63,49, R. S. Shi1,54, X. Shi1,49, X. D Shi63,49, J. J. Song41, W. M. Song27,1, Y. X. Song38,k, S. Sosio66A,66C, S. Spataro66A,66C, K. X. Su68, P. P. Su46, F. F.  Sui41, G. X. Sun1, H. K. Sun1, J. F. Sun16, L. Sun68, S. S. Sun1,54, T. Sun1,54, W. Y. Sun34, W. Y. Sun27, X Sun20,l, Y. J. Sun63,49, Y. K. Sun63,49, Y. Z. Sun1, Z. T. Sun1, Y. H. Tan68, Y. X. Tan63,49, C. J. Tang45, G. Y. Tang1, J. Tang50, J. X. Teng63,49, V. Thoren67, W. H. Tian43, Y. T. Tian25, I. Uman53B, B. Wang1, C. W. Wang35, D. Y. Wang38,k, H. J. Wang31, H. P. Wang1,54, K. Wang1,49, L. L. Wang1, M. Wang41, M. Z. Wang38,k, Meng Wang1,54, T. Wang12, W. Wang50, W. H. Wang68, W. P. Wang63,49, X. Wang38,k, X. F. Wang31, X. L. Wang9,h, Y. Wang50, Y. Wang63,49, Y. D. Wang37, Y. F. Wang1,49,54, Y. Q. Wang1, Y. Y. Wang31, Z. Wang1,49, Z. Y. Wang1, Ziyi Wang54, Zongyuan Wang1,54, D. H. Wei12, F. Weidner60, S. P. Wen1, D. J. White58, U. Wiedner4, G. Wilkinson61, M. Wolke67, L. Wollenberg4, J. F. Wu1,54, L. H. Wu1, L. J. Wu1,54, X. Wu9,h, Z. Wu1,49, L. Xia63,49, H. Xiao9,h, S. Y. Xiao1, Z. J. Xiao34, X. H. Xie38,k, Y. G. Xie1,49, Y. H. Xie6, T. Y. Xing1,54, G. F. Xu1, Q. J. Xu14, W. Xu1,54, X. P. Xu46, Y. C. Xu54, F. Yan9,h, L. Yan9,h, W. B. Yan63,49, W. C. Yan71, Xu Yan46, H. J. Yang42,g, H. X. Yang1, L. Yang43, S. L. Yang54, Y. X. Yang12, Yifan Yang1,54, Zhi Yang25, M. Ye1,49, M. H. Ye7, J. H. Yin1, Z. Y. You50, B. X. Yu1,49,54, C. X. Yu36, G. Yu1,54, J. S. Yu20,l, T. Yu64, C. Z. Yuan1,54, L. Yuan2, X. Q. Yuan38,k, Y. Yuan1, Z. Y. Yuan50, C. X. Yue32, A. Yuncu53A,a, A. A. Zafar65, Y. Zeng20,l, B. X. Zhang1, Guangyi Zhang16, H. Zhang63, H. H. Zhang50, H. H. Zhang27, H. Y. Zhang1,49, J. J. Zhang43, J. L. Zhang69, J. Q. Zhang34, J. W. Zhang1,49,54, J. Y. Zhang1, J. Z. Zhang1,54, Jianyu Zhang1,54, Jiawei Zhang1,54, L. M. Zhang52, L. Q. Zhang50, Lei Zhang35, S. Zhang50, S. F. Zhang35, Shulei Zhang20,l, X. D. Zhang37, X. Y. Zhang41, Y. Zhang61, Y. H. Zhang1,49, Y. T. Zhang63,49, Yan Zhang63,49, Yao Zhang1, Yi Zhang9,h, Z. H. Zhang6, Z. Y. Zhang68, G. Zhao1, J. Zhao32, J. Y. Zhao1,54, J. Z. Zhao1,49, Lei Zhao63,49, Ling Zhao1, M. G. Zhao36, Q. Zhao1, S. J. Zhao71, Y. B. Zhao1,49, Y. X. Zhao25, Z. G. Zhao63,49, A. Zhemchugov29,b, B. Zheng64, J. P. Zheng1,49, Y. Zheng38,k, Y. H. Zheng54, B. Zhong34, C. Zhong64, L. P. Zhou1,54, Q. Zhou1,54, X. Zhou68, X. K. Zhou54, X. R. Zhou63,49, X. Y. Zhou32, A. N. Zhu1,54, J. Zhu36, K. Zhu1, K. J. Zhu1,49,54, S. H. Zhu62, T. J. Zhu69, W. J. Zhu9,h, W. J. Zhu36, Y. C. Zhu63,49, Z. A. Zhu1,54, B. S. Zou1, J. H. Zou1
(BESIII Collaboration)
1 Institute of High Energy Physics, Beijing 100049, People’s Republic of China
2 Beihang University, Beijing 100191, People’s Republic of China
3 Beijing Institute of Petrochemical Technology, Beijing 102617, People’s Republic of China
4 Bochum Ruhr-University, D-44780 Bochum, Germany
5 Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
6 Central China Normal University, Wuhan 430079, People’s Republic of China
7 China Center of Advanced Science and Technology, Beijing 100190, People’s Republic of China
8 COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, 54000 Lahore, Pakistan
9 Fudan University, Shanghai 200443, People’s Republic of China
10 G.I. Budker Institute of Nuclear Physics SB RAS (BINP), Novosibirsk 630090, Russia
11 GSI Helmholtzcentre for Heavy Ion Research GmbH, D-64291 Darmstadt, Germany
12 Guangxi Normal University, Guilin 541004, People’s Republic of China
13 Guangxi University, Nanning 530004, People’s Republic of China
14 Hangzhou Normal University, Hangzhou 310036, People’s Republic of China
15 Helmholtz Institute Mainz, Staudinger Weg 18, D-55099 Mainz, Germany
16 Henan Normal University, Xinxiang 453007, People’s Republic of China
17 Henan University of Science and Technology, Luoyang 471003, People’s Republic of China
18 Huangshan College, Huangshan 245000, People’s Republic of China
19 Hunan Normal University, Changsha 410081, People’s Republic of China
20 Hunan University, Changsha 410082, People’s Republic of China
21 Indian Institute of Technology Madras, Chennai 600036, India
22 Indiana University, Bloomington, Indiana 47405, USA
23 INFN Laboratori Nazionali di Frascati , (A)INFN Laboratori Nazionali di Frascati, I-00044, Frascati, Italy; (B)INFN Sezione di Perugia, I-06100, Perugia, Italy; (C)University of Perugia, I-06100, Perugia, Italy
24 INFN Sezione di Ferrara, (A)INFN Sezione di Ferrara, I-44122, Ferrara, Italy; (B)University of Ferrara, I-44122, Ferrara, Italy
25 Institute of Modern Physics, Lanzhou 730000, People’s Republic of China
26 Institute of Physics and Technology, Peace Ave. 54B, Ulaanbaatar 13330, Mongolia
27 Jilin University, Changchun 130012, People’s Republic of China
28 Johannes Gutenberg University of Mainz, Johann-Joachim-Becher-Weg 45, D-55099 Mainz, Germany
29 Joint Institute for Nuclear Research, 141980 Dubna, Moscow region, Russia
30 Justus-Liebig-Universitaet Giessen, II. Physikalisches Institut, Heinrich-Buff-Ring 16, D-35392 Giessen, Germany
31 Lanzhou University, Lanzhou 730000, People’s Republic of China
32 Liaoning Normal University, Dalian 116029, People’s Republic of China
33 Liaoning University, Shenyang 110036, People’s Republic of China
34 Nanjing Normal University, Nanjing 210023, People’s Republic of China
35 Nanjing University, Nanjing 210093, People’s Republic of China
36 Nankai University, Tianjin 300071, People’s Republic of China
37 North China Electric Power University, Beijing 102206, People’s Republic of China
38 Peking University, Beijing 100871, People’s Republic of China
39 Qufu Normal University, Qufu 273165, People’s Republic of China
40 Shandong Normal University, Jinan 250014, People’s Republic of China
41 Shandong University, Jinan 250100, People’s Republic of China
42 Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
43 Shanxi Normal University, Linfen 041004, People’s Republic of China
44 Shanxi University, Taiyuan 030006, People’s Republic of China
45 Sichuan University, Chengdu 610064, People’s Republic of China
46 Soochow University, Suzhou 215006, People’s Republic of China
47 South China Normal University, Guangzhou 510006, People’s Republic of China
48 Southeast University, Nanjing 211100, People’s Republic of China
49 State Key Laboratory of Particle Detection and Electronics, Beijing 100049, Hefei 230026, People’s Republic of China
50 Sun Yat-Sen University, Guangzhou 510275, People’s Republic of China
51 Suranaree University of Technology, University Avenue 111, Nakhon Ratchasima 30000, Thailand
52 Tsinghua University, Beijing 100084, People’s Republic of China
53 Turkish Accelerator Center Particle Factory Group, (A)Istanbul Bilgi University, 34060 Eyup, Istanbul, Turkey; (B)Near East University, Nicosia, North Cyprus, Mersin 10, Turkey
54 University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
55 University of Groningen, NL-9747 AA Groningen, The Netherlands
56 University of Hawaii, Honolulu, Hawaii 96822, USA
57 University of Jinan, Jinan 250022, People’s Republic of China
58 University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
59 University of Minnesota, Minneapolis, Minnesota 55455, USA
60 University of Muenster, Wilhelm-Klemm-Str. 9, 48149 Muenster, Germany
61 University of Oxford, Keble Rd, Oxford, UK OX13RH
62 University of Science and Technology Liaoning, Anshan 114051, People’s Republic of China
63 University of Science and Technology of China, Hefei 230026, People’s Republic of China
64 University of South China, Hengyang 421001, People’s Republic of China
65 University of the Punjab, Lahore-54590, Pakistan
66 University of Turin and INFN, (A)University of Turin, I-10125, Turin, Italy; (B)University of Eastern Piedmont, I-15121, Alessandria, Italy; (C)INFN, I-10125, Turin, Italy
67 Uppsala University, Box 516, SE-75120 Uppsala, Sweden
68 Wuhan University, Wuhan 430072, People’s Republic of China
69 Xinyang Normal University, Xinyang 464000, People’s Republic of China
70 Zhejiang University, Hangzhou 310027, People’s Republic of China
71 Zhengzhou University, Zhengzhou 450001, People’s Republic of China
a Also at Bogazici University, 34342 Istanbul, Turkey
b Also at the Moscow Institute of Physics and Technology, Moscow 141700, Russia
c Also at the Novosibirsk State University, Novosibirsk, 630090, Russia
d Also at the NRC ”Kurchatov Institute”, PNPI, 188300, Gatchina, Russia
e Also at Istanbul Arel University, 34295 Istanbul, Turkey
f Also at Goethe University Frankfurt, 60323 Frankfurt am Main, Germany
g Also at Key Laboratory for Particle Physics, Astrophysics and Cosmology, Ministry of Education; Shanghai Key Laboratory for Particle Physics and Cosmology; Institute of Nuclear and Particle Physics, Shanghai 200240, People’s Republic of China
h Also at Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) and Institute of Modern Physics, Fudan University, Shanghai 200443, People’s Republic of China
i Also at Harvard University, Department of Physics, Cambridge, MA, 02138, USA
j Currently at: Institute of Physics and Technology, Peace Ave.54B, Ulaanbaatar 13330, Mongolia
k Also at State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, People’s Republic of China
l School of Physics and Electronics, Hunan University, Changsha 410082, China
m Also at Guangdong Provincial Key Laboratory of Nuclear Science, Institute of Quantum Matter, South China Normal University, Guangzhou 510006, China
Abstract

Based on 4.481×1084.481\times 10^{8} ψ(3686)\psi(3686) events collected with the BESIII detector at BEPCII, the branching fraction of the isospin violating decay ψ(3686)Σ¯0Λ+c.c.\psi(3686)\rightarrow\bar{\Sigma}^{0}\Lambda+c.c. is measured to be (1.60±0.31±0.13±0.58)×106(1.60\pm 0.31\pm 0.13~{}\pm~{}0.58)\times 10^{-6}, where the first uncertainty is statistical, the second is systematic, and the third is the uncertainty arising from interference with the continuum. This result is significantly smaller than the measurement based on CLEO-c data sets. The decays χcJΛΛ¯\chi_{cJ}\rightarrow\Lambda\bar{\Lambda} are measured via ψ(3686)γχcJ\psi(3686)\rightarrow\gamma\chi_{cJ}, and the branching fractions are determined to be (χc0ΛΛ¯)=(3.64±0.10±0.10±0.07)×104\mathcal{B}\left(\chi_{c0}\rightarrow\Lambda\bar{\Lambda}\right)=(3.64\pm 0.10\pm 0.10\pm 0.07)\times 10^{-4}, (χc1ΛΛ¯)=(1.31±0.06±0.06±0.03)×104\mathcal{B}\left(\chi_{c1}\rightarrow\Lambda\bar{\Lambda}\right)=(1.31\pm 0.06\pm 0.06\pm 0.03)\times 10^{-4}, (χc2ΛΛ¯)=(1.91±0.08±0.17±0.04)×104\mathcal{B}\left(\chi_{c2}\rightarrow\Lambda\bar{\Lambda}\right)=(1.91\pm 0.08\pm 0.17\pm 0.04)\times 10^{-4}, where the third uncertainties are systematic due to the ψ(3686)γχcJ\psi(3686)\rightarrow\gamma\chi_{cJ} branching fractions.

pacs:
Valid PACS appear here
preprint: APS/123-QED

I Introduction

Experimental studies of charmonium decays are essential for understanding the structures and decay mechanisms of charmonium states. These measurements enable tests of non-perturbative Quantum Chromodynamics (QCD) models. Further, charmonium decays to baryon pairs provide a novel method to explore the properties of baryons a3 ; polarization . In recent years, there have been searches for missing decays and measurements of angular distributions and polarizations of many J/ψJ/\psi and ψ(3686)\psi(3686) two-body decays to baryon and anti-baryon final states with much improved precision by the CLEO, BESII, and BESIII collaborations CLEO-measurement ; BES-measurement1 ; BES-measurement2 ; BES-measurement3 ; BESIII-measurement1 ; BESIII-measurement2 ; BESIII-measurement3 ; 1803.02039 ; 1907.13041 ; 1911.06669 ; 2004.07701 ; 2007.03679 . In addition, these measurements also provide the possibility to determine the relative phase between strong and electro-magnetic amplitudes a4 .

In spite of the significant improvements achieved on J/ψJ/\psi and ψ(3686)\psi(3686) decays into baryon pairs, information on isospin symmetry breaking decays is still limited due to their low decay rates. Recently, a measurement of the isospin violating decay ψ(3686)Σ¯0Λ+c.c.\psi(3686)\rightarrow\bar{\Sigma}^{0}\Lambda+c.c. is reported and obtained a branching fraction of (ψ(3686)Σ¯0Λ+c.c.)=(12.3±2.4)×106\mathcal{B}\left(\psi(3686)\rightarrow\bar{\Sigma}^{0}\Lambda+c.c.\right)=(12.3~{}\pm~{}2.4)\times 10^{-6} based on 2.45×107ψ(3686)2.45\times 10^{7}~{}\psi(3686) decay events collected with CLEO-c detector a2 . This result is much larger than theoretical predictions a4 , and a specific mechanism is proposed by the authors of Ferroli:2020xnv to explain its abnormal largeness. In our analysis, we use a sample of 4.481×1084.481\times 10^{8} ψ(3686)\psi(3686) events collected at BESIII to measure the branching fraction of ψ(3686)Σ¯0Λ+c.c.\psi(3686)\rightarrow\bar{\Sigma}^{0}\Lambda+c.c., with Σ¯0γΛ¯\bar{\Sigma}^{0}\rightarrow\gamma\bar{\Lambda}Λ¯(Λ)p¯π+(pπ)\bar{\Lambda}~{}(\Lambda)\rightarrow\bar{p}\pi^{+}(p\pi^{-}).

With the same final states, we can also study the ΛΛ¯\Lambda\bar{\Lambda} pair decay from the P-wave charmonium χcJ\chi_{cJ} states, which are produced via a radiative transition from the ψ(3686)\psi(3686). Using 1.068×108ψ(3686)1.068\times 10^{8}~{}\psi(3686) events collected in 2009,2009, BESIII previously reported the branching-fraction measurements of (χc0ΛΛ¯)=(33.3±2.0±2.6)×105\mathcal{B}\left(\chi_{c0}\rightarrow\Lambda\bar{\Lambda}\right)=(33.3\pm 2.0\pm 2.6)\times 10^{-5} (χc1ΛΛ¯)=(12.2±1.1±1.1)×105,\mathcal{B}\left(\chi_{c1}\rightarrow\Lambda\bar{\Lambda}\right)=(12.2\pm 1.1\pm 1.1)\times 10^{-5}, and (χc2\mathcal{B}\left(\chi_{c2}\rightarrow\right. ΛΛ¯)=(20.8±1.6±2.3)×105\Lambda\bar{\Lambda})=(20.8\pm 1.6\pm 2.3)\times 10^{-5} Beschicj .

II Detector and Monte Carlo simulation

The BESIII detector Ablikim:2009aa records symmetric e+ee^{+}e^{-} collisions provided by the BEPCII storage ring Yu:IPAC2016-TUYA01 , which operates with a peak luminosity of 1×10331\times 10^{33} cm-2s-1 in the center-of-mass energy range from 2.0 to 4.7 GeV. BESIII has collected large data samples in this energy region Ablikim:2019hff . The cylindrical core of the BESIII detector covers 93% of the full solid angle and consists of a helium-based multilayer drift chamber (MDC), a plastic scintillator time-of-flight system (TOF), and a CsI(Tl) electromagnetic calorimeter (EMC), which are all enclosed in a superconducting solenoidal magnet providing a 1.0 T magnetic field. The solenoid is supported by an octagonal flux-return yoke with resistive plate counter muon identification modules interleaved with steel. The acceptance of charged particles and photons is 93% of the 4π\pi solid angle. The charged-particle momentum resolution at 1GeV/c1~{}{\rm GeV}/c is 0.5%0.5\%, and the dE/dxdE/dx resolution is 6%6\% for electrons from Bhabha scattering. The EMC measures photon energies with a resolution of 2.5%2.5\% (5%5\%) at 11 GeV in the barrel (end cap) region. The time resolution in the TOF barrel region is 68 ps, while that in the end cap region is 110 ps.

Simulated Monte Carlo (MC) samples produced with geant4-based geant4 software, which includes the geometric description of the BESIII detector and the detector response, are used to determine detection efficiencies, estimate background contributions, and study systematic uncertainties. The simulation models the beam energy spread and initial state radiation (ISR) in the e+ee^{+}e^{-} annihilations with the generator kkmc ref:kkmc . The inclusive MC sample simulates every possible process, who includes the production of the ψ(3686)\psi(3686) resonance, the ISR production of the J/ψJ/\psi, and the continuum processes incorporated in kkmc ref:kkmc . The known decay modes are modeled with evtgen ref:evtgen using branching fractions taken from the Particle Data Group PDG , and the remaining unknown charmonium decays are modeled with lundcharm ref:lundcharm . Final state radiation (FSR) from charged particles is incorporated using photos photos . For the signal processes, we use MC samples of ψ(3686)Σ¯0Λ+c.c.\psi(3686)\rightarrow\bar{\Sigma}^{0}\Lambda+c.c. decays generated with uniform phase space (PHSP), while ψ(3686)γχcJ\psi(3686)\rightarrow\gamma\chi_{cJ} decays are generated according to helicity amplitudes angleUncer and χcJΛΛ¯\chi_{cJ}\to\Lambda\bar{\Lambda} with PHSP.

III 𝝍(𝟑𝟔𝟖𝟔)𝚺¯𝟎𝚲+𝒄.𝒄.\psi(3686)\rightarrow\bar{\Sigma}^{0}\Lambda+c.c.

III.1 Event selection

Since the final state of interest is γpp¯π+π,\gamma p\bar{p}\pi^{+}\pi^{-}, we require each ψ(3686)\psi(3686) candidate to contain four charged tracks with zero net charge, and at least one photon. Each charged track, detected in the MDC is required to satisfy |cosθ|<0.93|\rm{cos\theta}|<0.93, where θ\theta is defined with respect to the zz-axis, which is the symmetry axis of the MDC. The distance of closest approach to the interaction point (IP) must be less than 30 cm along the zz-axis, and less than 10 cm in the transverse plane. Pions and protons are identified by the magnitude of their momentum, and charged tracks with momentum larger than 0.7 GeV/c\mathrm{GeV}/c in the lab frame are identified as protons. Other tracks are identified as pions. An isolated cluster in the EMC is considered to be a photon if the following requirements are satisfied: 1) the deposited energy of each shower must be more than 25 MeV in the barrel region (|cosθ|<0.80|\!\cos\theta|<0.80) and more than 50 MeV in the end cap region (0.86<|cosθ|<0.920.86<|\!\cos\theta|<0.92); 2) to suppress electronic noise and showers unrelated to the event, the difference between the EMC time and the event start time is required to be within (0, 700) ns; 3) to exclude showers that originate from charged tracks, the angle between the position of each shower in the EMC and the closest extrapolated charged track of p,π+,p,\pi^{+}, or π\pi^{-} must be greater than 10 degrees, and greater than 20 degrees for the p¯\bar{p} track.

The Λ(Λ¯)\Lambda(\bar{\Lambda}) candidate is reconstructed with any pπp\pi^{-} (p¯π+)(\bar{p}\pi^{+}) combination satisfying a secondary vertex fit secondvertex . The secondary vertex fit is required to be successful, but no additional requirements are placed on the fit χ2\chi^{2}. To improve the momentum and energy resolution and to reduce background contributions, a six-constraint (6C) kinematic fit is applied to the event candidates with constraints on the total four-momentum and the invariant masses of the Λ\Lambda and Λ¯\bar{\Lambda} candidates. The χ6C2\chi_{6C}^{2} of the kinematic fit is required to be less than 25.

To further suppress background, we require: 1) the χ6C2\chi_{6C}^{2} for the γpp¯π+π\gamma p\bar{p}\pi^{+}\pi^{-} hypothesis is less than those for any γγpp¯π+π\gamma\gamma p\bar{p}\pi^{+}\pi^{-} or pp¯π+πp\bar{p}\pi^{+}\pi^{-} hypothesis: χγpp¯π+π2<χγγpp¯π+π2\chi_{\gamma p\bar{p}\pi^{+}\pi^{-}}^{2}<\chi_{\gamma\gamma p\bar{p}\pi^{+}\pi^{-}}^{2}, χγpp¯π+π2<χpp¯π+π2\chi_{\gamma p\bar{p}\pi^{+}\pi^{-}}^{2}<\chi_{p\bar{p}\pi^{+}\pi^{-}}^{2}; 2) the Λ\Lambda(Λ¯)\bar{\Lambda}) lifetime must satisfy LΛ(Λ¯)/σ>2L_{\Lambda(\bar{\Lambda})}/\sigma>2 where LL and σ\sigma are the decay length and its uncertainty obtained from the secondary vertex fit; 3) the invariant mass of the ΛΛ¯\Lambda\bar{\Lambda}, MΛΛ¯M_{\Lambda\bar{\Lambda}} is required to be greater than 3.48 GeV/c2\mathrm{GeV}/c^{2} in order to suppress the ψ(3686)γχc0,χc0ΛΛ¯\psi(3686)\rightarrow\gamma\chi_{c0},~{}\chi_{c0}\rightarrow\Lambda\bar{\Lambda} background; 4) MγΛ>1.15\rm M_{\gamma\Lambda}>1.15 GeV/c2\mathrm{GeV}/c^{2} and MγΛ¯>1.15\rm M_{\gamma\bar{\Lambda}}>1.15 GeV/c2\mathrm{GeV}/c^{2} are required to suppress background from ψ(3686)ΛΛ¯\psi(3686)\rightarrow\Lambda\bar{\Lambda}.

After imposing the above requirements, Fig. 1 shows the scatter plots of MγΛ¯\rm M_{\gamma\bar{\Lambda}} versus MγΛ\rm M_{\gamma\Lambda} for data, inclusive MC samples, and signal MC samples of ψ(3686)Σ¯0Λ\psi(3686)\rightarrow\bar{\Sigma}^{0}\Lambda and ψ(3686)Σ0Λ¯\psi(3686)\rightarrow\Sigma^{0}\bar{\Lambda} processes. The ψ(3686)Σ¯0Λ+c.c.\psi(3686)\rightarrow\bar{\Sigma}^{0}\Lambda+c.c. signals are clearly visible in Fig. 1 (a). The two sloped bands are backgrounds from ψ(3686)γχc1,2,χc1,2ΛΛ¯\psi(3686)\rightarrow\gamma\chi_{c1,2},\chi_{c1,2}\rightarrow\Lambda\bar{\Lambda}, which are well simulated by the inclusive MC samples as shown in Fig. 1 (b). The inclusive MC indicates that the only peaking background is from ψ(3686)Σ¯0Σ0\psi(3686)\rightarrow\bar{\Sigma}^{0}\Sigma^{0}. Figures 1 (c) and (d) are the signal shapes of ψ(3686)Σ¯0Λ\psi(3686)\rightarrow\bar{\Sigma}^{0}\Lambda and ψ(3686)Σ0Λ¯\psi(3686)\rightarrow\Sigma^{0}\bar{\Lambda}, which are vertical and horizonal bands in the scatter plot distributions, respectively.

(a)(b) (c)(d)

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 1: Scatter distributions of MγΛ¯\rm M_{\gamma\bar{\Lambda}} versus MγΛ\rm M_{\gamma\Lambda} at the ψ(3686)\psi(3686) resonance. (a), (b), (c) and (d) are distributions from data, inclusive MC samples, and signal MC samples of ψ(3686)Σ¯0Λ\psi(3686)\rightarrow\bar{\Sigma}^{0}\Lambda and ψ(3686)Σ0Λ¯\psi(3686)\rightarrow\Sigma^{0}\bar{\Lambda} decays, respectively.

III.2 Signal yields and branching fraction calculation

We determine the signal yields by an unbinned maximum likelihood fit to the two-dimensional distributions of the γΛ\gamma\Lambda and γΛ¯\gamma\bar{\Lambda} invariant masses. The signal shapes are determined from signal MC simulation for the Σ0Λ¯\Sigma^{0}\bar{\Lambda} and Σ¯0Λ\bar{\Sigma}^{0}\Lambda processes. The background shape includes five items: ψ(3686)Σ0Σ¯0\psi(3686)\rightarrow\Sigma^{0}\bar{\Sigma}^{0}, ψ(3686)γχcJ(χcJΛΛ¯)\psi(3686)\rightarrow\gamma\chi_{cJ}(\chi_{cJ}\rightarrow\Lambda\bar{\Lambda}) with JJ = 0, 1, 2, and other background contributions. The shapes of the first four items are determined from MC simulation while the last one is described by a two-variable first-order polynomial function f(mγΛ,mγΛ¯)=amγΛ+bmγΛ¯+cf(m_{\gamma\Lambda},m_{\gamma\bar{\Lambda}})=am_{\gamma\Lambda}+bm_{\gamma\bar{\Lambda}}+c where aa, bb, cc are constant parameters that are determined in the fit. The background yields are floated in the fit except the peaking background ψ(3686)Σ0Σ¯0\psi(3686)\to\Sigma^{0}\bar{\Sigma}^{0} which is included with its magnitude determined from previous measurements a2 . The χcJ\chi_{cJ} background yields are consistent with expectation after considering branching fractions PDG and efficiencies. Figure 2 shows the projections of the two-dimensional fitting results. The numbers of signal events are determined to be NγΛ¯sig=26.1±6.6N^{\textrm{sig}}_{\gamma\bar{\Lambda}}=26.1\pm 6.6, NγΛsig=37.2±7.7N^{\textrm{sig}}_{\gamma\Lambda}=37.2\pm 7.7 from the fit.

The contribution from the continuum process, i.e.i.e. e+eγΣ¯0Λ+c.c.e^{+}e^{-}\rightarrow\gamma^{*}\rightarrow\bar{\Sigma}^{0}\Lambda+c.c. is estimated from the collision data at 3.773 GeV with integrated luminosity of 2931.8 pb-1 taken during 2010 and 2011. The same event selection criteria as for the ψ(3686)Σ¯0Λ+c.c.\psi(3686)\rightarrow\bar{\Sigma}^{0}\Lambda+c.c. decay is applied. In addition, |MΛΛ¯3.686|\rm M_{\Lambda\bar{\Lambda}}-3.686 GeV/c2|>0.01c^{2}|>0.01 GeV/c2c^{2} is required to suppress background from the e+eγISRe^{+}e^{-}\rightarrow\gamma_{ISR} ψ(3686)\psi(3686), ψ(3686)ΛΛ¯\psi(3686)\rightarrow\Lambda\bar{\Lambda} process. An unbinned one dimensional maximum likelihood fit is done to determine signal yields, where the peaking background e+eΣ¯0Σ0e^{+}e^{-}\rightarrow\bar{\Sigma}^{0}\Sigma^{0} has been considered with its shape from MC simulation and magnitude from previous measurements a2 . The other backgrounds are described with a second order polynomial function. To account for the difference of the integrated luminosity and cross sections between the two energy points 3.686 GeV and 3.773 GeV, a scaling factor f=0.24f=0.24 is applied. The continuum contributions at 3.686 GeV are determined to be: NγΛ¯cont=6.2±1.2N_{\gamma\bar{\Lambda}}^{\rm{cont}}=6.2~{}\pm~{}1.2 and NγΛcont=3.9±1.0N_{\gamma\Lambda}^{\rm{cont}}=3.9~{}\pm~{}1.0 in the Σ0Λ¯\Sigma^{0}\bar{\Lambda} and Σ¯0Λ\bar{\Sigma}^{0}\Lambda processes, respectively, where the contributions from e+eψ(3770)Σ¯0Λ+c.c.e^{+}e^{-}\rightarrow\psi(3770)\rightarrow\bar{\Sigma}^{0}\Lambda+c.c. decay have been ignored due to its low production.

The branching fraction of ψ(3686)Σ¯0Λ\psi(3686)\rightarrow\bar{\Sigma}^{0}\Lambda is calculated by

(ψ(3686)Σ¯0Λ)=NγΛ¯sigNγΛ¯contNψ(3686)ϵΣ¯0ΛBr.\mathcal{B}\left(\psi(3686)\rightarrow\bar{\Sigma}^{0}\Lambda\right)=\frac{N^{\textrm{sig}}_{\gamma\bar{\Lambda}}-N_{\gamma\bar{\Lambda}}^{\textrm{cont}}}{N_{\psi(3686)}\cdot\epsilon_{\bar{\Sigma}^{0}\Lambda}\cdot Br}. (1)

Here, Nψ(3686)N_{\psi(3686)} is the total number of ψ(3686)\psi(3686) events totalnumber , Br=(Λ¯p¯π+)(Λpπ)(Σ¯0γΛ¯)Br~{}=~{}\mathcal{B}\left(\bar{\Lambda}\rightarrow\bar{p}\pi^{+}\right)\cdot\mathcal{B}\left(\Lambda\rightarrow p\pi^{-}\right)\cdot\mathcal{B}\left(\bar{\Sigma}^{0}\rightarrow\gamma\bar{\Lambda}\right) PDG , and the efficiency ϵΣ¯0Λ=16.52%\epsilon_{\bar{\Sigma}^{0}\Lambda}=16.52\% is determined from simulation. The branching fraction of ψ(3686)Σ¯0Λ\psi(3686)\rightarrow\bar{\Sigma}^{0}\Lambda is determined to be (0.66±0.22)×106(0.66\pm 0.22)\times 10^{-6}. Similarly, the branching fraction of ψ(3686)Σ0Λ¯\psi(3686)\rightarrow\Sigma^{0}\bar{\Lambda} is calculated to be (0.94±0.22)×106(0.94\pm 0.22)\times 10^{-6}, with ϵΣ0Λ¯=19.44%\epsilon_{\Sigma^{0}\bar{\Lambda}}=19.44\%. The clear difference between ϵΣ0Λ¯\epsilon_{\Sigma^{0}\bar{\Lambda}} and ϵΣ¯0Λ\epsilon_{\bar{\Sigma}^{0}\Lambda} comes from the different selection criteria on the open angle between photon and (anti-)proton. The combined branching fraction of ψ(3686)Σ¯0Λ+c.c.\psi(3686)\rightarrow\bar{\Sigma}^{0}\Lambda+c.c. is (ψ(3686)Σ¯0Λ+c.c.)=(1.60±0.31)×106\mathcal{B}\left(\psi(3686)\!\rightarrow\!\bar{\Sigma}^{0}\Lambda\!+\!c.c.\right)\!=(1.60\pm 0.31)\times 10^{-6}, where the uncertainty is statistical only.

Refer to caption

(a)(b)

Refer to caption
Figure 2: The projections from the two-dimensional fit to MγΛ\rm M_{\gamma\Lambda} and MγΛ¯\rm M_{\gamma\bar{\Lambda}}. Dots with error bars are data, blue solid curves are fitting results, red and pink curves are the signals, blue dotted lines are from normalized ψ(3686)Σ¯0Σ0\psi(3686)\rightarrow\bar{\Sigma}^{0}\Sigma^{0} background contributions, green lines show the ψ(3686)γχcJ\psi(3686)\rightarrow\gamma\chi_{cJ} background contributions, the contributions from other backgrounds are too small to be drawn on the plots.

III.3 Systematic uncertainties

The systematic uncertainties on the branching-fraction measurement include those from track and photon reconstruction efficiencies, kinematic fit, angle requirement, Λ(Λ¯)\Lambda(\bar{\Lambda}) reconstruction efficiency, signal and background shapes, and the branching fraction of Λ(Λ¯)\Lambda(\bar{\Lambda}) decay.

The uncertainty due to photon detection efficiency is 1%1\% per photon, which is determined from a study of the control sample J/ψρπJ/\psi\rightarrow\rho\pi photonEfficiency .

The efficiency of Λ(Λ¯)\Lambda(\bar{\Lambda}) reconstruction is studied using the control sample of ψ(3686)\psi(3686)\rightarrow ΛΛ¯\Lambda\bar{\Lambda} decays, and a correction factor 0.980±0.0110.980\pm 0.011 trackEfficiency is applied to the efficiencies obtained from MC simulation. The uncertainty of the correction factor, 1.1% already includes the uncertainties of MDC tracking and Λ(Λ¯)\Lambda(\bar{\Lambda}) reconstruction, and 1.1% is taken as the uncertainty of the efficiency of Λ(Λ¯)\Lambda(\bar{\Lambda}) reconstruction.

To study the uncertainty caused by the requirement on the angle between the position of each shower in the EMC and the closest extrapolated charged track, we utilize the processes ψ(3686)γχcJ,χcJΛΛ¯\psi(3686)\rightarrow\gamma\chi_{cJ},\chi_{cJ}\rightarrow\Lambda\bar{\Lambda} due to their large statistics. Two sets of branching fractions are obtained. One is with the nominal requirement, i.e. the angle of each shower is at least 1010^{\circ} away from p,π+,πp,\pi^{+},\pi^{-} tracks and 2020^{\circ} away from p¯\bar{p} track; the other one requires the angle of each shower is at least 2020^{\circ} away from p,π+,πp,\pi^{+},\pi^{-} tracks and 3030^{\circ} away from p¯\bar{p} track. The difference of the branching fractions obtained with the nominal and modified requirements is 1.6%1.6\%, which is taken as the associated systematic uncertainty.

To study the uncertainty associated with the kinematic fit, the track helix parameters are corrected in the MC simulation kfitUncer . The resulting 0.3%0.3\% efficiency difference before and after the correction is taken as the systematic uncertainty related to the kinematic fit.

The systematic uncertainty associated with the signal shape is mainly due to the resolution difference between data and MC simulation. It is estimated by smearing the signal shape with a resolution of 5%5\% of the one determined from MC simulation according to the study using the control sample of ψ(3686)Σ¯0Σ0\psi(3686)\rightarrow\bar{\Sigma}^{0}\Sigma^{0}. The difference is 0.4% and is taken as the corresponding systematic uncertainty due to the signal shape.

For the peaking background, we fixed the shape and number of events in the fitting. We vary the number of background events by its uncertainty. A difference of 1.9% is assigned as systematic uncertainty.

The uncertainty associated with the χc0\chi_{c0}, χc1\chi_{c1}, and χc2\chi_{c2} backgrounds is estimated by fixing their contributions to the world average values PDG instead of floating them in the nominal fit. The differences between fixing and floating are 0.7%, 0.4%, and 2.1% for χc0\chi_{c0}, χc1\chi_{c1}, and χc2\chi_{c2}, respectively, and are taken as the systematic uncertainties.

The systematic uncertainty for the description of the other background contributions is estimated by changing from a two-variable first-order polynomial to a two-variable second-order polynomial to describe the shape of the other backgrounds. The systematic uncertainty is determined to be 0.1%.

In the signal MC sample, ψ(3686)Σ¯0Λ+c.c.\psi(3686)\rightarrow\bar{\Sigma}^{0}\Lambda+c.c. is simulated with an uniform distribution over phase space. However, the angular distribution should be described as dN/dcosθ1+αcos2θ\mathrm{d}N/\mathrm{d}\cos\theta\propto 1+\alpha\cos^{2}\theta physicsmode where θ\theta is the polar angle of the (anti) baryon. Since the observed number of events does not allow the determination of the angular distribution in our analysis, we generate MC samples with α=1.0\alpha=-1.0 and α=1.0\alpha=1.0, the two extreme scenarios. The efficiency difference between them is divided by 12\sqrt{12} under the assumption that the prior distribution of α\alpha is uniform, and the result 6.9%6.9\% is taken as the uncertainty associated to the angular distribution.

The uncertainty on the total number of ψ(3686)\psi(3686) events is 0.6%0.6\% totalnumber . The uncertainty of the Λ\Lambda decay branching fraction is taken from the world average value PDG . Table 1 lists all sources and values of systematic uncertainties, and the total systematic uncertainty is determined by adding them in quadrature.

Table 1: Systematic uncertainties for the branching fraction of ψ(3686)Σ¯0Λ+c.c.\psi(3686)\rightarrow\bar{\Sigma}^{0}\Lambda+c.c. decay.
Source ψ(3686)Σ¯0Λ+\psi(3686)\rightarrow\bar{\Sigma}^{0}\Lambda+ c.c. (%)(\%)
Photon efficiency 1.0
Λ\Lambda efficiency correction 1.1
Angle requirement 1.6
Kinematic fit 0.3
Signal shape 0.4
Peaking background 1.9
Background of ψ(3686)γχc0\psi(3686)\to\gamma\chi_{c0} 0.7
Background of ψ(3686)γχc1\psi(3686)\to\gamma\chi_{c1} 0.4
Background of ψ(3686)γχc2\psi(3686)\to\gamma\chi_{c2} 2.1
Other non-resonance background 0.1
Physics model 6.9
(Λpπ)\mathcal{B}\left(\Lambda\rightarrow p\pi\right) 1.1
Number of ψ(3686)\psi(3686) 0.6
Total 7.9

III.4 Discussion and result

So far, we have not considered possible interference between the ψ(3686)\psi(3686) decay and the continuum process, which is described by

|Acont+eiθAψ|2NγΛ¯sig(NγΛsig),\left|A_{\textrm{cont}}+e^{i\theta}A_{\psi^{\prime}}\right|^{2}\propto N^{\textrm{sig}}_{\gamma\bar{\Lambda}}(N^{\textrm{sig}}_{\gamma\Lambda}), (2)

where AψA_{\psi^{\prime}} and AcontA_{\textrm{cont}} are the amplitudes of ψ(3686)Σ¯0Λ+c.c.\psi(3686)\rightarrow\bar{\Sigma}^{0}\Lambda+c.c. and the continuum contribution, respectively. The difference between θ=0\theta=0^{\circ} and θ=180\theta=180^{\circ}, corresponding to the extreme constructive and destructive cases respectively, is adopted as the uncertainty associated with the interference. This difference is divided by 12\sqrt{12}, since the prior distribution of the interference angle is assumed to be uniform. Finally, the branching fractions are (ψ(3686)Σ0Λ¯)=(0.94±0.39)×106\mathcal{B}\left(\psi(3686)\rightarrow\Sigma^{0}\bar{\Lambda}\right)=(0.94~{}\pm~{}0.39)\times 10^{-6} and (ψ(3686)Σ¯0Λ)=(0.66±0.49)×106\mathcal{B}\left(\psi(3686)\rightarrow\bar{\Sigma}^{0}\Lambda\right)=(0.66~{}\pm~{}0.49)\times 10^{-6}, where the uncertainties are only the systematic arising from interference. The combined branching fraction of ψ(3686)Σ¯0Λ+c.c.\psi(3686)\rightarrow\bar{\Sigma}^{0}\Lambda+c.c. is (ψ(3686)Σ¯0Λ+c.c.)=(1.60±0.31±0.13±0.58)×106\mathcal{B}\left(\psi(3686)\rightarrow\bar{\Sigma}^{0}\Lambda+c.c.\right)=(1.60~{}\pm~{}0.31~{}\pm~{}0.13~{}\pm~{}0.58)\times 10^{-6}, where the first uncertainty is statistic, the second is systematic, and the third is the uncertainty due to interference with the continuum.

IV 𝝌𝒄𝑱𝚲𝚲¯\chi_{cJ}\rightarrow\Lambda\bar{\Lambda}

IV.1 Event selection and background study

The initial selection criteria for charged tracks and photons and the Λ(Λ¯)\Lambda(\bar{\Lambda}) reconstruction are the same as those described above for ψ(3686)Σ¯0Λ+c.c.\psi(3686)\rightarrow\bar{\Sigma}^{0}\Lambda+c.c.. Additional selection criteria are 1.) the χ2\chi^{2} from the 6C6\mathrm{C} kinematic fit is required to be less than 50, and 2.) to veto ψ(3686)Σ0Σ¯0\psi(3686)\rightarrow\Sigma^{0}\bar{\Sigma}^{0} background, the γΛ(γΛ¯)\gamma\Lambda(\gamma\bar{\Lambda}) combination is required to be outside of the Σ0(Σ¯0)\Sigma^{0}\left(\bar{\Sigma}^{0}\right) region, that is defined as within 1212 MeV to the Σ0\Sigma^{0} nominal mass PDG . The χc0\chi_{c0} veto is also removed.

After all selection requirements have been applied, Fig. 3 shows all background contributions according to the inclusive MC sample, which include two parts: non-flat Σ0Σ¯0\Sigma^{0}\bar{\Sigma}^{0} background contributions that tend to accumulate in the χc2\chi_{c2} region and flat non- Σ0\Sigma^{0} background contributions. Both background levels are quite low compared with the signal.

Refer to caption
Figure 3: The χcJΛΛ¯\chi_{cJ}\rightarrow\Lambda\bar{\Lambda} background distributions from the inclusive MC samples. The green histogram is the Σ0Σ¯0\Sigma^{0}\bar{\Sigma}^{0} background, and the blue one is all the other background contributions.

IV.2 Signal yields and branching fractions

To determine the χcJ\chi_{cJ} signal yields, we fit the ΛΛ¯\Lambda\bar{\Lambda} invariant mass distribution with an unbinned maximum likelihood fit. Each χcJ\chi_{cJ} signal shape is described by a Breit-Wigner function convolved with a Gaussian function, and the parameters of the Breit-Wigner functions are fixed to the world average values PDG . The Gaussian function represents the resolutions, whose parameters are floated in the fit but shared with all three χcJ\chi_{cJ} resonances. The background shape is composed of two parts: a MC simulation of ψ(3686)Σ0Σ¯0\psi(3686)\rightarrow\Sigma^{0}\bar{\Sigma}^{0} events with both shape and number fixed and a second-order polynomial with floating parameters to describe other background contributions. The results are shown in Fig. 4. The amount of other backgrounds from the fit is obvious larger than that simulated in inclusive MC as shown in Fig. 3. It indicates the inclusive MC simulation is not perfect yet. The fitted χcJ\chi_{cJ} signal yields are Nχc0=1486±42N_{\chi_{c0}}=1486\pm 42, Nχc1=528±24N_{\chi_{c1}}=528\pm 24, Nχc2=670±27N_{\chi_{c2}}=670\pm 27.

Refer to caption
Figure 4: Fitting results of the ΛΛ¯\Lambda\bar{\Lambda} invariant mass distribution. Dots with error bars are data, the red solid line is the fitting curve, the blue dashed line is Σ0Σ¯0\Sigma^{0}\bar{\Sigma}^{0} background and the green dashed line is all other background contributions.

The product branching fractions of (χcJΛΛ¯)(ψ(3686)γχcJ)\mathcal{B}\left(\chi_{cJ}\rightarrow\Lambda\bar{\Lambda}\right)\cdot\mathcal{B}\left(\psi(3686)\rightarrow\gamma\chi_{cJ}\right) are determined by

(χcJΛΛ¯)(ψ(3686)γχcJ)=\displaystyle\mathcal{B}\left(\chi_{cJ}\rightarrow\Lambda\bar{\Lambda}\right)\cdot\mathcal{B}\left(\psi(3686)\rightarrow\gamma\chi_{cJ}\right)= (3)
NχcJNψ(3686)ϵ(Λpπ)(Λ¯p¯π+),\displaystyle\frac{N_{\chi_{cJ}}}{N_{\psi(3686)}\cdot\epsilon\cdot\mathcal{B}\left(\Lambda\rightarrow p\pi^{-}\right)\cdot\mathcal{B}\left(\bar{\Lambda}\rightarrow\bar{p}\pi^{+}\right)},

where ϵ\epsilon is the efficiency. We calculate the branching fractions of χcJΛΛ¯\chi_{cJ}\rightarrow\Lambda\bar{\Lambda} decays based on world averaged values of (ψ(3686)γχcJ)\mathcal{B}\left(\psi(3686)\rightarrow\gamma\chi_{cJ}\right) PDG . The results are listed in Table 3.

IV.3 Systematic uncertainties

The uncertainties in the branching-fraction measurement include photon and Λ(Λ¯)\Lambda(\bar{\Lambda}) reconstruction efficiencies, kinematic fit, signal and background shapes, fitting range, and the branching fraction of Λ(Λ¯)\Lambda(\bar{\Lambda}) decay.

The uncertainties due to the photon detection and Λ¯\bar{\Lambda} reconstruction efficiencies, the requirement on the angle between the position of each shower in the EMC and the closest extrapolated charged tracks, the Λ\Lambda branching fraction, and the number of ψ(3686)\psi(3686) events are the same as in the study of ψ(3686)Σ¯0Λ+c.c.\psi(3686)\rightarrow\bar{\Sigma}^{0}\Lambda+c.c., while that due to the kinematic fit is calculated in the same manner.

For the signal shapes, the single Gaussian is changed to a double Gaussian, and the differences in the yields of signal events, 0.6%,0.3%,0.6\%,0.3\%, and 0.1%0.1\% for χc0,χc1,\chi_{c0},\chi_{c1}, and χc2,\chi_{c2}, respectively, are taken as the systematic uncertainties associated with the signal shapes. We study the uncertainty associated with other backgrounds shape by changing description from the second-order polynomial function to the third-order polynomial function. It turns out the difference is negligible.

Table 2: Systematic uncertainties of the branching fractions for χcJΛΛ¯\chi_{cJ}\rightarrow\Lambda\bar{\Lambda} decays.
Source χc0(%)\chi_{c0}(\%) χc1(%)\chi_{c1}(\%) χc2(%)\chi_{c2}(\%)
Photon efficiency 1.0 1.0 1.0
Λ\Lambda efficiency correction 1.1 1.1 1.1
Kinematic fit 0.5 0.8 0.8
Angle requirement 1.6 1.6 1.6
Signal shape 0.6 0.3 0.1
Peaking background 0.0 0.2 0.4
Fitting range 0.6 1.8 0.7
Angular distribution 0.0 3.0 8.7
(Λpπ)\mathcal{B}\left(\Lambda\rightarrow p\pi\right) 1.1 1.1 1.1
Number of ψ(3686)\psi(3686) 0.6 0.6 0.6
sum 2.7 4.4 9.1
(ψ(3686)γχcJ)\mathcal{B}\left(\psi(3686)\rightarrow\gamma\chi_{cJ}\right) 2.0 2.5 2.1
Total 3.4 5.1 9.4

The uncertainty associated with the fitting range is estimated by varying it from [3.30, 3.60] GeV\mathrm{GeV} to [3.32, 3.62] GeV.\mathrm{GeV}. The differences 0.6%, 1.8%, and 0.7% for χc0\chi_{c0}, χc1\chi_{c1}, and χc2\chi_{c2} are taken as the uncertainty due to the fitting range.

Table 3: The number of observed events NχcJN_{\chi_{cJ}}, efficiencies (ϵ\epsilon), product branching fractions, and the branching fractions of χcJΛΛ¯\chi_{cJ}\rightarrow\Lambda\bar{\Lambda} decays compared with the world average values, where the third uncertainties for (χcJΛΛ¯)\mathcal{B}\left(\chi_{cJ}\rightarrow\Lambda\bar{\Lambda}\right) are the uncertainties due to the branching fractions of ψ(3686)γχcJ\psi(3686)\rightarrow\gamma\chi_{cJ} decays.
Mode NχcJN_{\chi_{cJ}} ϵ\epsilon (ψ(3686)γχcJ)\mathcal{B}\left(\psi(3686)\rightarrow\gamma\chi_{cJ}\right) (χcJΛΛ¯)(×104)\mathcal{B}\left(\chi_{cJ}\rightarrow\Lambda\bar{\Lambda}\right)\left(\times 10^{-4}\right)
×(χcJΛΛ¯)(105)\times\mathcal{B}\left(\chi_{cJ}\rightarrow\Lambda\bar{\Lambda}\right)\left(10^{-5}\right) This work PDG\mathrm{PDG}
χc0\chi_{c0} 1486±421486\pm 42 22.80% 3.56±0.10±0.103.56\pm 0.10\pm 0.10 3.64±0.10±0.10±0.073.64\pm 0.10\pm 0.10\pm 0.07 3.27±0.243.27\pm 0.24
χc1\chi_{c1} 528±24528\pm 24 22.61% 1.28±0.06±0.061.28\pm 0.06\pm 0.06 1.31±0.06±0.06±0.031.31\pm 0.06\pm 0.06\pm 0.03 1.14±0.111.14\pm 0.11
χc2\chi_{c2} 670±27670\pm 27 20.16% 1.82±0.08±0.171.82\pm 0.08\pm 0.17 1.91±0.08±0.17±0.041.91\pm 0.08\pm 0.17\pm 0.04 1.84±0.151.84\pm 0.15

The angular distributions of ψ(3686)γχc1,2\psi(3686)\rightarrow\gamma\chi_{c1,2} are known. However, knowledge of the χc1,2ΛΛ¯\chi_{c1,2}\rightarrow\Lambda\bar{\Lambda} angular distributions is still limited. We generate signal MC samples with an uniform distribution over phase space. To estimate the uncertainty caused by the angular distribution, we adopt the method used in Ref. Beschicj . We regenerate the signal MC samples according to the helicity amplitudes Bλ3,λ¯3B_{\lambda_{3},\bar{\lambda}_{3}} defined in Ref. angleUncer , where λ3(λ¯3)\lambda_{3}(\bar{\lambda}_{3}) is the helicity of Λ(Λ¯)\Lambda(\bar{\Lambda}) in the rest frame of χcJ\chi_{cJ}. The amplitudes B12,12B_{\frac{1}{2},\frac{1}{2}} and B12,12B_{\frac{1}{2},-\frac{1}{2}} are both set to be 1.01.0 to obtain the efficiency again, and the differences of 3.0%3.0\% and 8.7%8.7\% between these two models are taken as the associated systematic uncertainties.

Table 2 lists all sources of systematic uncertainty and the values for each decay channel. The total systematic uncertainties are determined by adding each contribution in quadrature.

IV.4 Result

The branching fractions, compared with the world averaged values, are listed in Table 3, where the third uncertainties for (χcJΛΛ¯)\mathcal{B}\left(\chi_{cJ}\rightarrow\Lambda\bar{\Lambda}\right) are the uncertainties due to the branching fractions of ψ(3686)γχcJ\psi(3686)\rightarrow\gamma\chi_{cJ}.

V summary

The branching fraction of the isospin symmetry breaking decay ψ(3686)Σ¯0Λ+c.c.\psi(3686)\rightarrow\bar{\Sigma}^{0}\Lambda+c.c. is measured to be (ψ(3686)Σ¯0Λ+c.c.)=(1.60±0.31±0.13±0.58)×106\mathcal{B}\left(\psi(3686)\rightarrow\bar{\Sigma}^{0}\Lambda+c.c.\right)=(1.60\pm 0.31\pm 0.13\pm 0.58)\times 10^{-6}, where the first uncertainty is statistical, the second is systematic, the third one is the uncertainty due to interference with the continuum. Compared with the result using CLEO-c data a2 , (12.3±2.4)×106(12.3\pm 2.4)\times 10^{-6}, our result is significantly smaller. Our measurement is consistent with the theoretical prediction a4 , (4.0±2.3)×106(4.0\pm 2.3)\times 10^{-6}, within 1σ\sigma. However our branching fraction is measured under the assumption of no interference which corresponds to an angle of θ=90\theta=90^{\circ}, while the angle is assumed to be 00^{\circ} in Ref. a4 . If θ=0\theta=0^{\circ} is adopted, the branching fraction is measured to be (ψ(3686)Σ¯0Λ+c.c.)=(1.02±0.31±0.13)×106\mathcal{B}\left(\psi(3686)\rightarrow\bar{\Sigma}^{0}\Lambda+c.c.\right)=(1.02\pm 0.31\pm 0.13)\times 10^{-6}, and the difference between our measurement and the theoretical prediction is larger than 1σ\sigma but still smaller than 2σ\sigma.

With the increased data sample collected at the BESIII detector, the branching fractions of χcJΛΛ¯\chi_{cJ}\to\Lambda\bar{\Lambda} are measured via ψ(3686)γχcJ\psi(3686)\rightarrow\gamma\chi_{cJ} with improved precision. The branching fractions are determined to be (χc0ΛΛ¯)=(3.64±0.10±0.10±0.07)×104\mathcal{B}\left(\chi_{c0}\to\Lambda\bar{\Lambda}\right)=(3.64\pm 0.10\pm 0.10\pm 0.07)\times 10^{-4}, (χc1ΛΛ¯)=(1.31±0.06±0.06±0.03)×104\mathcal{B}\left(\chi_{c1}\rightarrow\Lambda\bar{\Lambda}\right)=(1.31\pm 0.06\pm 0.06\pm 0.03)\times 10^{-4}, (χc2ΛΛ¯)=(1.91±0.08±0.17±0.04)×104\mathcal{B}\left(\chi_{c2}\rightarrow\Lambda\bar{\Lambda}\right)=(1.91\pm 0.08\pm 0.17\pm 0.04)\times 10^{-4}, where the first and second uncertainties are statistical and systematic, and the third ones are the systematic uncertainties due to the uncertainties on the ψ(3686)γχcJ\psi(3686)\to\gamma\chi_{cJ} branching fractions. These results, which supersede the previous BESIII measurements of branching fractions (χcJΛΛ¯\chi_{cJ}\to\Lambda\bar{\Lambda}) in Ref. Beschicj , are consistent with the world average values PDG , but not with the theoretical predictions 36 ; 37 ; 38 . This should be understood.

Acknowledgements.
The BESIII collaboration thanks the staff of BEPCII and the IHEP computing center for their strong support. This work is supported in part by National Key Research and Development Program of China under Contracts Nos. 2020YFA0406300, 2020YFA0406400; National Natural Science Foundation of China (NSFC) under Contracts Nos. 11875115, 11625523, 11635010, 11735014, 11822506, 11835012, 11935015, 11935016, 11935018, 11961141012; the Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Program; Joint Large-Scale Scientific Facility Funds of the NSFC and CAS under Contracts Nos. U1732263, U1832207,U2032110; CAS Key Research Program of Frontier Sciences under Contracts Nos. QYZDJ-SSW-SLH003, QYZDJ-SSW-SLH040; 100 Talents Program of CAS; INPAC and Shanghai Key Laboratory for Particle Physics and Cosmology; ERC under Contract No. 758462; European Union Horizon 2020 research and innovation programme under Contract No. Marie Sklodowska-Curie grant agreement No 894790; German Research Foundation DFG under Contracts Nos. 443159800, Collaborative Research Center CRC 1044, FOR 2359, FOR 2359, GRK 214; Istituto Nazionale di Fisica Nucleare, Italy; Ministry of Development of Turkey under Contract No. DPT2006K-120470; National Science and Technology fund; Olle Engkvist Foundation under Contract No. 200-0605; STFC (United Kingdom); The Knut and Alice Wallenberg Foundation (Sweden) under Contract No. 2016.0157; The Royal Society, UK under Contracts Nos. DH140054, DH160214; The Swedish Research Council; U. S. Department of Energy under Contracts Nos. DE-FG02-05ER41374, DE-SC-0012069.

References

  • (1) D. M. Asner etalet~{}al., Int. J. Mod. Phys. A 24, 499 (2009).
  • (2) M. Ablikim et al., [BESIII Collaboration], Nature Phys. 15, 631-634 (2019).
  • (3) T. K. Pedlar et al., [CLEO Collaboration], Phys. Rev. D 72, 051108 (2005).
  • (4) M. Ablikim et al., [BESIII Collaboration], Phys. Lett. B 648, 149 (2007).
  • (5) M. Ablikim et al., [BESIII Collaboration], Phys. Lett. B 632, 181 (2006).
  • (6) M. Ablikim et al., [BESIII Collaboration], Phys. Rev. D 78, 092005 (2008).
  • (7) M. Ablikim et al., [BESIII Collaboration], Phys. Rev. D 86, 032014 (2012).
  • (8) M. Ablikim et al., [BESIII Collaboration], Phys. Rev. D 86, 032008 (2012).
  • (9) M. Ablikim et al., [BESIII Collaboration], Phys. Rev. D 93, 072003 (2016).
  • (10) M. Ablikim et al., [BESIII Collaboration], Phys. Rev. D 98, 032006 (2018).
  • (11) M. Ablikim et al., [BESIII Collaboration], Phys. Rev. D 100, 051101 (2019).
  • (12) M. Ablikim et al., [BESIII Collaboration], Phys. Rev. D 101, 012004 (2020).
  • (13) M. Ablikim et al., [BESIII Collaboration], Phys. Rev. Lett. 125, 052004 (2020).
  • (14) M. Ablikim et al., [BESIII Collaboration], arXiv:2007.03679 [hep-ex].
  • (15) K. Zhu, X. H. Mo, C. Z. Yuan, P. Wang, Int. J. Mod. Phys. A 30, 1550148 (2015).
  • (16) S. Dobbs, Kamal K. Seth, A. Tomaradze, T. Xiao, and G. Bonvicini, Phys. Rev. D 96, 092004 (2017).
  • (17) R. B. Ferroli, A. Mangoni and S. Pacetti, Eur. Phys. J. C 80, 903 (2020)
  • (18) M. Ablikim et al., [BESIII Collaboration], Phys. Rev. D 87, 032007 (2013).
  • (19) M. Ablikim et al., [BESIII Collaboration], Nucl. Instrum. Meth. A 614, 345 (2010).
  • (20) C. H. Yu et al., Proceedings of IPAC2016, Busan, Korea, (2016).
  • (21) M. Ablikim et al., [BESIII Collaboration], Chin. Phys. C 44, 040001 (2020).
  • (22) S. Agostinelli et al., [Geant4 Collaboration], Nucl. Instrum. Meth. A 506, 250 (2003).
  • (23) S. Jadach, B. F. L. Ward and Z. Was, Phys. Rev. D 63, 113009 (2001); Comput. Phys. Commun.  130, 260 (2000).
  • (24) D. J. Lange, Nucl. Instrum. Meth. A 462, 152 (2001); R. G. Ping, Chin. Phys. C 32, 599 (2008).
  • (25) P. A. Zyla et al., [Particle Data Group], Prog. Theor. Exp. Phys. 2020, 083C01 (2020).
  • (26) J. C. Chen, G. S. Huang, X. R. Qi, D. H. Zhang and Y. S. Zhu, Phys. Rev. D 62, 034003 (2000); R. L. Yang, R. G. Ping and H. Chen, Chin. Phys. Lett  31, 061301 (2014).
  • (27) E. Richter-Was, Phys. Lett. B 303, 163 (1993).
  • (28) G. R. Liao, R. G. Ping, and Y. X. Yang, Chin. Phys. Lett 26, 051101 (2009).
  • (29) M. Xu et al., Chin. Phys. C 33, 428 (2009).
  • (30) M. Ablikim etalet~{}al., [BESIII Collaboration], Chin. Phys. C 42, 023001 (2018).
  • (31) M. Ablikim et al., [BESIII Collaboration], Phys. Rev. D 83, 112005 (2011).
  • (32) M. Ablikim et al., [BESIII Collaboration], Phys. Rev. D 95, 052003 (2017).
  • (33) M. Ablikim et al., [BESIII Collaboration], Phys. Rev. D 87, 012002 (2013).
  • (34) P. Kessler, Nucl. Phys. B 15, 253-266 (1970).
  • (35) R. G. Ping, B. S. Zou, and H. C. Chiang, Eur. Phys. J. A 23, 129 (2005).
  • (36) X. H. Liu and Q. Zhao, J. Phys. G 38, 035007 (2011).
  • (37) S. M. Wong, Eur. Phys. J. C 14, 643 (2000).