This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Metrical properties of weighted products of consecutive Lüroth digits

Adam Brown-Sarre Adam Brown-Sarre, Department of Mathematical and Physical Sciences, La Trobe University, Bendigo 3552, Australia. 20356213@students.latrobe.edu.au Gerardo González Robert Gerardo González Robert, Department of Mathematical and Physical Sciences, La Trobe University, Bendigo 3552, Australia. G.Robert@latrobe.edu.au  and  Mumtaz Hussain Mumtaz Hussain, Department of Mathematical and Physical Sciences, La Trobe University, Bendigo 3552, Australia. m.hussain@latrobe.edu.au
Abstract.

The Lüroth expansion of a real number x(0,1]x\in(0,1] is the series

x=1d1+1d1(d11)d2+1d1(d11)d2(d21)d3+,x=\frac{1}{d_{1}}+\frac{1}{d_{1}(d_{1}-1)d_{2}}+\frac{1}{d_{1}(d_{1}-1)d_{2}(d_{2}-1)d_{3}}+\cdots,

with dj2d_{j}\in\mathbb{N}_{\geq 2} for all jj\in\mathbb{N}. Given mm\in\mathbb{N}, 𝐭=(t0,,tm1)>0m1\mathbf{t}=(t_{0},\ldots,t_{m-1})\in\mathbb{R}_{>0}^{m-1} and any function Ψ:(1,)\Psi:\mathbb{N}\to(1,\infty), define

𝐭(Ψ):={x(0,1]:dnt0dn+mtm1Ψ(n) for infinitely manyn}.\mathcal{E}_{\mathbf{t}}(\Psi)\colon=\left\{x\in(0,1]:d_{n}^{t_{0}}\cdots d_{n+m}^{t_{m-1}}\geq\Psi(n)\text{ for infinitely many}\ n\in\mathbb{N}\right\}.

We establish a Lebesgue measure dichotomy statement (a zero-one law) for 𝐭(Ψ)\mathcal{E}_{\mathbf{t}}(\Psi) under a natural non-removable condition lim infnΨ(n)> 1\liminf_{n\to\infty}\Psi(n)>\leavevmode\nobreak\ 1. Let BB be given by

logB:=lim infnlog(Ψ(n))n.\log B\colon=\liminf_{n\to\infty}\frac{\log(\Psi(n))}{n}.

For any mm\in\mathbb{N}, we compute the Hausdorff dimension of 𝐭(Ψ)\mathcal{E}_{\mathbf{t}}(\Psi) when either B=1B=1 or B=B=\infty. We also compute the Hausdorff dimension of 𝐭(Ψ)\mathcal{E}_{\mathbf{t}}(\Psi) when 1<B<1<B<\infty for m=2m=2.

1. Introduction

J. Lüroth showed in 1883 that every x(0,1]x\in(0,1] can be uniquely expressed as a series of the form

x=1d1(x)+1d1(x)(d1(x)1)d2(x)+1d1(x)(d1(x)1)d2(x)(d2(x)1)d3(x)+,x=\frac{1}{d_{1}(x)}+\frac{1}{d_{1}(x)(d_{1}(x)-1)d_{2}(x)}+\frac{1}{d_{1}(x)(d_{1}(x)-1)d_{2}(x)(d_{2}(x)-1)d_{3}(x)}+\cdots,

where each dj(x)d_{j}(x) is an integer at least 22. Analogous to regular continued fractions with the Gauss map, Lüroth series can be interpreted through dynamical means using the Lüroth map \mathscr{L} (see Section 2 for its definition).

The metrical theory of Lüroth expansions has been thoroughly studied. In [9], H. Jager and C. de Vroedt showed that the Lebesgue measure λ\lambda on (0,1](0,1] is \mathscr{L}-ergodic. They also noted that the digits in the Lüroth expansion are independent when regarded as random variables. Hence, the Lüroth series analogue of the Borel-Bernstein Theorem (for regular continued fractions) [11, Theorem 30] is an immediate consequence of the classical Borel-Cantelli Lemma (see, for example, [10, Theorem 4.18]) and the following observation:

λ({x(0,1]:dn(x)m})=1m for all n and all m2.\lambda\left(\left\{x\in(0,1]:d_{n}(x)\geq m\right\}\right)=\frac{1}{m}\quad\text{ for all }n\in\mathbb{N}\text{ and all }m\in\mathbb{N}_{\geq 2}.

Throughout this paper, Ψ:>0\Psi:\mathbb{N}\to\mathbb{R}_{>0} denotes a positive function. The Borel-Bernstein Theorem for Lüroth series provides the Lebesgue measure λ\lambda of the set

(Ψ):={x(0,1]:dn(x)Ψ(n)for infinitely many n}.\mathcal{E}(\Psi)\colon=\left\{x\in(0,1]:d_{n}(x)\geq\Psi(n)\ \text{\rm for infinitely many }n\in\mathbb{N}\right\}.
Theorem 1.1 ([9, Theorem 2.1]).

The Lebesgue measure of (Ψ)\mathcal{E}(\Psi) is given by

λ((Ψ))={0,if n=1Ψ(n)1<,1,if n=1Ψ(n)1=.\lambda\left(\mathcal{E}(\Psi)\right)=\begin{cases}0,&\text{\rm if }\quad\displaystyle\sum_{n=1}^{\infty}\Psi(n)^{-1}<\infty,\\[8.61108pt] 1,&\text{\rm if }\quad\displaystyle\sum_{n=1}^{\infty}\Psi(n)^{-1}=\infty.\end{cases}

Theorem 1.1 appeared first in [9], although Ψ\Psi was unnecessarily assumed to be increasing.

It is well-known that to Hausdorff dimension is an appropriate notion to distinguish between the null sets (Lebesgue measure zero sets). L. Shen [15] calculated the Hausdorff dimension of the set (Ψ)\mathcal{E}(\Psi) which is the Lüroth analogue of a celebrated theorem of B. Wang and J. Wu [19]. To analyse the Hausdorff dimension of (Ψ)\mathcal{E}(\Psi) and related sets, define

(1) logB=lim infnlogΨ(n)n and logb=lim infnloglogΨ(n)n.\log B=\liminf_{n\to\infty}\frac{\log\Psi(n)}{n}\;\text{ and }\;\log b=\liminf_{n\to\infty}\frac{\log\log\Psi(n)}{n}.
Theorem 1.2 ([15, Theorem 4.2] ).

The Hausdorff dimension of (Ψ)\mathcal{E}(\Psi) is as follows:

  1. 1.

    If B=1B=1, then dimH(Ψ)=1\dim_{\operatorname{H}}\mathcal{E}(\Psi)=1.

  2. 2.

    If 1<B<1<B<\infty, then dimH(Ψ)=s(B)\dim_{\operatorname{H}}\mathcal{E}(\Psi)=s(B), where s=s(B)s=s(B) is the solution of

    k=2(1Bk(k1))s=1.\sum_{k=2}^{\infty}\left(\frac{1}{Bk(k-1)}\right)^{s}=1.
  3. 3.

    When B=B=\infty, we have three cases:

    1. (i)

      If b=1b=1, then dimH(Ψ)=12\dim_{\operatorname{H}}\mathcal{E}(\Psi)=\frac{1}{2}.

    2. (ii)

      If 1<b<1<b<\infty, then dimH(Ψ)=11+b\dim_{\operatorname{H}}\mathcal{E}(\Psi)=\frac{1}{1+b}.

    3. (iii)

      If b=b=\infty, then dimH(Ψ)=0\dim_{\operatorname{H}}\mathcal{E}(\Psi)=0.

In [18], B. Tan and Q. Zhou extended Shen’s result by considering the product of two consecutive partial quotients. Define the set

(1,1)(Ψ):={x(0,1]:dn(x)dn+1(x)Ψ(n)for infinitely many n}.\mathcal{E}_{(1,1)}(\Psi)\colon=\left\{x\in(0,1]:d_{n}(x)d_{n+1}(x)\geq\Psi(n)\ \text{\rm for infinitely many }n\in\mathbb{N}\right\}.
Theorem 1.3 ([18, Lemma 3.1]).

Let t=t(B)t=t(B) be the unique solution of the equation

d=21B2sds(d1)s=1.\sum_{d=2}^{\infty}\frac{1}{B^{2s}d^{s}(d-1)^{s}}=1.

If BB and bb are given by (1), then

dimH(1,1)(ϕ)={1,if B=1,t(B),if 1<B<,11+b,if B=.\dim_{\operatorname{H}}\mathcal{E}_{(1,1)}(\phi)=\begin{cases}1,&\text{\rm if }\quad B=1,\\ t(B),&\text{\rm if }\quad 1<B<\infty,\\ \frac{1}{1+b},&\text{\rm if }\quad B=\infty.\end{cases}

In this paper, we consider the weighted product of consecutive partial quotients and establish the Lebesgue measure and Hausdorff dimension for the corresponding limsup set. Given mm\in\mathbb{N} and 𝐭=(t0,,tm1)>0m\mathbf{t}=(t_{0},\ldots,t_{m-1})\in\mathbb{R}_{>0}^{m}, define the set

𝐭(Ψ):={x(0,1]:i=0m1dn+iti(x)Ψ(n) for infinitely many n},\mathcal{E}_{\mathbf{t}}(\Psi)\colon=\left\{x\in(0,1]:\prod_{i=0}^{m-1}d_{n+i}^{t_{i}}(x)\geq\Psi(n)\text{ for infinitely many }n\in\mathbb{N}\right\},

and the numbers

t:=min{t0,t1,,tm1},T:=max{t0,t1,,tm1},(𝐭):=#{j{0,,m}:tj=T}.t\colon=\min\{t_{0},t_{1},\ldots,t_{m-1}\},\quad T\colon=\max\{t_{0},t_{1},\ldots,t_{m-1}\},\quad\ell(\mathbf{t})\colon=\#\{j\in\{0,\ldots,m\}:t_{j}=T\}.
Theorem 1.4.

Let mm\in\mathbb{N} and 𝐭>0m\mathbf{t}\in\mathbb{R}_{>0}^{m} be arbitrary. If

(2) lim infnΨ(n)>1,\liminf_{n\to\infty}\Psi(n)>1,

then, for BB and bb given by (1), we have

(3) λ(𝐭(Ψ))={0,if n=1(logΨ(n))(𝐭)1Ψ(n)1T<,1,if n=1(logΨ(n))(𝐭)1Ψ(n)1T=.\lambda\left(\mathcal{E}_{\mathbf{t}}(\Psi)\right)=\begin{cases}0,&\text{\rm if }\quad\displaystyle\sum_{n=1}^{\infty}\frac{\left(\log\Psi(n)\right)^{\ell(\mathbf{t})-1}}{\Psi(n)^{\frac{1}{T}}}<\infty,\\[8.61108pt] 1,&\text{\rm if }\quad\displaystyle\sum_{n=1}^{\infty}\frac{\left(\log\Psi(n)\right)^{\ell(\mathbf{t})-1}}{\Psi(n)^{\frac{1}{T}}}=\infty.\end{cases}

Assumption (2) essentially says that there exists some n0>1n_{0}\in\mathbb{R}_{>1} such that Ψ(n)n0\Psi(n)\geq n_{0} for all nn\in\mathbb{N}. Theorem 1.4 might fail without this condition (see Section 3 for the justification).

Theorem 1.5.

Take any mm\in\mathbb{N} and 𝐭>0m\mathbf{t}\in\mathbb{R}_{>0}^{m} and let BB and bb be given by (1). Then

dimH𝐭(Ψ)={1,if B=1,1b+1,if B=.\dim_{\operatorname{H}}\mathcal{E}_{\mathbf{t}}(\Psi)=\begin{cases}1,&\text{\rm if }\quad B=1,\\ \frac{1}{b+1},&\text{\rm if }\quad B=\infty.\end{cases}

If m=2m=2, we can compute the dimH𝐭(Ψ)\dim_{\operatorname{H}}\mathcal{E}_{\mathbf{t}}(\Psi) when 1<B<1<B<\infty.

Theorem 1.6.

Let BB and bb be given by (1) and assume that 1<B<1<B<\infty. For a given 𝐭=(t0,t1)>02\mathbf{t}=(t_{0},t_{1})\in\mathbb{R}_{>0}^{2}, define

ft0,t1(s):=s2t0t1max{st1+1st0,st0}.f_{t_{0},t_{1}}(s)\colon=\frac{s^{2}}{t_{0}t_{1}\max\left\{\frac{s}{t_{1}}+\frac{1-s}{t_{0}},\frac{s}{t_{0}}\right\}}.

The Hausdorff dimension of 𝐭(Ψ)\mathcal{E}_{\mathbf{t}}(\Psi) is the unique solution of

d=21ds(d1)sBft0,t1(s)=1.\sum_{d=2}^{\infty}\frac{1}{d^{s}(d-1)^{s}B^{f_{t_{0},t_{1}}(s)}}=1.

For completeness, it is worth mentioning that there have been abundance of work regarding the metrical properties of product of consecutive partial quotients. The results of the paper provide full Lüroth analogues of very recent work of Bakhtawar-Hussain-Kleinbock-Wang [2]. Note that paper [2] was a generalisation of previous works [3, 7, 8, 12, 19].

The organization of the paper is as follows. In Section 2, we recall some basic facts on Lüroth series. In Section 3, we prove Theorem 1.4. Section 4 is dedicated to the proof of Theorem 1.5. In Section 5, we prove Theorem 1.6. Lastly, in Section 6, we give some final remarks and a conjecture.

Notation.

We adopt the Vinogradov symbol \ll for asymptotic behavior. If (xn)n1(x_{n})_{n\geq 1} and (yn)n1(y_{n})_{n\geq 1} are two sequences of positive real numbers, we write xnynx_{n}\ll y_{n} if there exists a constant C>0C>0 such that xnCynx_{n}\leq Cy_{n} holds for all nn\in\mathbb{N}. When the constant CC depends on some parameter mm, we write xnmynx_{n}\ll_{m}y_{n}. If we have xnynx_{n}\ll y_{n} and ynxny_{n}\ll x_{n}, we write xnynx_{n}\asymp y_{n}. If the implied constants depend of some parameter mm, we write xnmynx_{n}\asymp_{m}y_{n}. We write 𝒟:=2\mathscr{D}\colon=\mathbb{N}_{\geq 2}. If 𝐚=(a1,,an)𝒟n\mathbf{a}=(a_{1},\ldots,a_{n})\in\mathscr{D}^{n} and 𝐛=(b1,,bm)𝒟m\mathbf{b}=(b_{1},\ldots,b_{m})\in\mathscr{D}^{m}, then 𝐚𝐛𝒟n+m\mathbf{a}\mathbf{b}\in\mathscr{D}^{n+m} is 𝐚𝐛:=(a1,,an,b1,,bm)\mathbf{a}\mathbf{b}\colon=(a_{1},\ldots,a_{n},b_{1},\ldots,b_{m}). We denote by λ\lambda the Lebesgue measure on \mathbb{R}.

Acknowledgements The research of Mumtaz Hussain and Gerardo González Robert is supported by the Australian Research Council Discovery Project (200100994).

2. Elements of Lüroth series

Let d1:(0,1]𝒟:=2d_{1}:(0,1]\to\mathscr{D}\colon=\mathbb{N}_{\geq 2} be the function associating to each x(0,1]x\in(0,1] the natural number d1(x)2d_{1}(x)\geq 2 determined by

1d1(x)<x1d1(x)1.\frac{1}{d_{1}(x)}<x\leq\frac{1}{d_{1}(x)-1}.

That is, if \lfloor\,\cdot\,\rfloor represents the floor function, we define d1(x):=1x+1d_{1}(x)\colon=\lfloor\frac{1}{x}\rfloor+1. The Lüroth map is the function (x):[0,1][0,1]\mathscr{L}(x):[0,1]\to[0,1] given by

(x)={d1(x)(d1(x)1)x(d1(x)1), if x(0,1],0, if x=0.\mathscr{L}(x)=\begin{cases}d_{1}(x)(d_{1}(x)-1)x-(d_{1}(x)-1),\text{ if }x\in(0,1],\\ 0,\text{ if }x=0.\end{cases}

For any x(0,1]x\in(0,1] and n2n\geq 2, we define dn(x):=d1(n1(x))d_{n}(x)\colon=d_{1}(\mathscr{L}^{n-1}(x)), the exponent denotes iteration. For any 𝐝:=(d1,,dn)𝒟n\mathbf{d}:=(d_{1},\ldots,d_{n})\in\mathscr{D}^{n}, the cylinder of level nn based at 𝐝\mathbf{d} is the set

In(𝐝):={x(0,1]:d1(x)=d1,,dn(x)=dn}.I_{n}(\mathbf{d})\colon=\left\{x\in(0,1]:d_{1}(x)=d_{1},\ldots,d_{n}(x)=d_{n}\right\}.

The cylinders are intervals of the formaaaSome authors, for example [4], define the Lüroth map in a slightly different manner. For any x(0,1)x\in(0,1) they choose nn\in\mathbb{N} such that n1x<(n1)1n^{-1}\leq x<(n-1)^{-1}, they map xx to n(n1)x(n1)n(n-1)x-(n-1), and they leave 0 as a fixed point. Under this definition, cylinders are intervals of the for [α,β)[\alpha,\beta). Our definition follows [6, 9] among others. The difference between these two approaches is irrelevant for our purposes, because it only affects the countable set [0,1]\mathbb{Q}\cap[0,1]. (α,β](\alpha,\beta] for 0<α<β10<\alpha<\beta\leq 1.

Lüroth series induce a continuous map Λ:𝒟(0,1]\Lambda:\mathscr{D}^{\mathbb{N}}\to(0,1] given by

Λ(d1,d2,d3,)\displaystyle\Lambda(d_{1},d_{2},d_{3},\ldots) :=d1,d2,d3,\displaystyle\colon=\langle d_{1},d_{2},d_{3},\ldots\rangle
:=1d1+1d1(d11)d2+1d1(d11)d2(d21)d3+.\displaystyle\colon=\frac{1}{d_{1}}+\frac{1}{d_{1}(d_{1}-1)d_{2}}+\frac{1}{d_{1}(d_{1}-1)d_{2}(d_{2}-1)d_{3}}+\cdots.

Denote by σ\sigma the left shift on 𝒟\mathscr{D}^{\mathbb{N}}. Then, the dynamical system (𝒟,σ)(\mathscr{D}^{\mathbb{N}},\sigma) is an extension of ((0,1],)((0,1],\mathscr{L}) in the sense that Λ:𝒟(0,1]\Lambda:\mathscr{D}^{\mathbb{N}}\to(0,1] is a continuous onto map satisfying Λσ=Λ\Lambda\circ\sigma=\mathscr{L}\circ\Lambda. Clearly, these systems cannot be topologically conjugated, because 𝒟\mathscr{D}^{\mathbb{N}} is totally disconnected and (0,1](0,1] is connected (see [1, Proposition 2.1]).

For each (d1,,dn)𝒟n(d_{1},\ldots,d_{n})\in\mathscr{D}^{n}, write

d1,,dn:=1d1+1d1(d11)d2++1d1(d11)d2(d21)dn1(dn11)dn.\langle d_{1},\ldots,d_{n}\rangle\colon=\frac{1}{d_{1}}+\frac{1}{d_{1}(d_{1}-1)d_{2}}+\cdots+\frac{1}{d_{1}(d_{1}-1)d_{2}(d_{2}-1)\cdots d_{n-1}(d_{n-1}-1)d_{n}}.
Proposition 2.1.

For every nn\in\mathbb{N} and every 𝐜=(c1,,cn)𝒟n\mathbf{c}=(c_{1},\ldots,c_{n})\in\mathscr{D}^{n}, we have

In(𝐜)=(c1,,cn,c1,,cn1);I_{n}(\mathbf{c})=\left(\langle c_{1},\ldots,c_{n}\rangle,\langle c_{1},\ldots,c_{n}-1\rangle\right);

and therefore,

|In(𝐜)|=j=1n1cj(cj1).|I_{n}(\mathbf{c})|=\prod_{j=1}^{n}\frac{1}{c_{j}(c_{j}-1)}.
Proof.

The proof follows from applying mathematical induction on nn. ∎

3. Proof of Theorem 1.4

In 1967, W. Philipp published a quantitative version of the Borel-Cantelli Lemma [14, Theorem 3]. As noted by D. Kleinbock and N. Wadleigh [12, Remark 3.2], Philipp’s theorem can be strengthened to obtain Lemma 3.1. In this lemma and afterwards, we denote the number of elements in a given set YY by #Y\#Y.

Lemma 3.1.

Let (X,,μ)(X,\mathscr{B},\mu) be a probability space and let (En)n1(E_{n})_{n\geq 1} be a sequence of measurable sets. For each NN\in\mathbb{N} and each tXt\in X, define

A(N,t):=#{n{1,,N}:tEn}A(N,t)\colon=\#\left\{n\in\{1,\ldots,N\}\colon t\in E_{n}\right\}

and

φ(N):=n=1Nμ(En).\varphi(N)\colon=\sum_{n=1}^{N}\mu(E_{n}).

Suppose that there is a summable sequence of non-negative real numbers (Cj)j1(C_{j})_{j\geq 1} such that for any k,m,nk,m,n\in\mathbb{N} satisfying n+k<mn+k<m we have

μ(EnEm)μ(En)μ(Em)+μ(Em)Cmn.\mu(E_{n}\cap E_{m})\leq\mu(E_{n})\mu(E_{m})+\mu(E_{m})C_{m-n}.

Then, μ\mu-almost every tXt\in X satisfies

A(N,t)=φ(N)+𝒪(φ(N)log32+εφ(N)) for all ε>0.A(N,t)=\varphi(N)+\mathscr{O}\left(\sqrt{\varphi(N)}\log^{\frac{3}{2}+\varepsilon}\varphi(N)\right)\quad\text{ for all }\varepsilon>0.
Lemma 3.2.

Fix kk\in\mathbb{N}. Let (An)n1(A_{n})_{n\geq 1} be a sequence of at most countable unions of cylinders of level kk. We have

λ(lim supnn[An])={0,if n=1λ(An)<,1,if n=1λ(An)=.\lambda\left(\limsup_{n\to\infty}\mathscr{L}^{-n}[A_{n}]\right)=\begin{cases}0,&\text{\rm if }\quad\displaystyle\sum_{n=1}^{\infty}\lambda(A_{n})<\infty,\\ 1,&\text{\rm if }\quad\displaystyle\sum_{n=1}^{\infty}\lambda(A_{n})=\infty.\end{cases}
Proof.

The convergence case follows from the convergence part of the Borel-Cantelli Lemma. Assume that

(4) n=1λ(An)=.\sum_{n=1}^{\infty}\lambda\left(A_{n}\right)=\infty.

The \mathscr{L}-invariance of λ\lambda and (4) imply

n=1λ(n[A])=.\sum_{n=1}^{\infty}\lambda\left(\mathscr{L}^{-n}[A]\right)=\infty.

Let \mathscr{B} be the Borel σ\sigma-algebra of (0,1](0,1]. It is shown in [9, Equation (3.4)] that any cylinder II of level kk satisfies

(5) λ(u[B]I)=λ(B)λ(I) for all B and uk.\lambda\left(\mathscr{L}^{-u}[B]\cap I\right)=\lambda(B)\lambda(I)\;\text{ for all }B\in\mathscr{B}\text{ and }u\in\mathbb{N}_{\geq k}.

Pick an arbitrary nn\in\mathbb{N} and write AnA_{n} as an at most countable and disjoint union of cylinders of level kk, say

An=jIjn.A_{n}=\bigcup_{j}I_{j}^{n}.

By (5) and the \mathscr{L}-invariance of λ\lambda, for any m>n+km\in\mathbb{N}_{>n+k} we have

λ(n[An]m[Am])\displaystyle\lambda\left(\mathscr{L}^{-n}[A_{n}]\cap\mathscr{L}^{-m}[A_{m}]\right) =λ(An(mn)[Am])\displaystyle=\lambda\left(A_{n}\cap\mathscr{L}^{-(m-n)}[A_{m}]\right)
=λ(jIjn(mn)[Am])\displaystyle=\lambda\left(\bigcup_{j}I_{j}^{n}\cap\mathscr{L}^{-(m-n)}[A_{m}]\right)
=jλ(Ijn(mn)[Am])\displaystyle=\sum_{j}\lambda\left(I_{j}^{n}\cap\mathscr{L}^{-(m-n)}[A_{m}]\right)
=j=1λ(Ijn)λ(Am)=λ(An)λ(Am).\displaystyle=\sum_{j=1}^{\infty}\lambda\left(I_{j}^{n}\right)\lambda(A_{m})=\lambda(A_{n})\lambda(A_{m}).

The result now follows from Lemma 3.1. ∎

We start with an estimate in the spirit of A. Khinchin’s proof of the existence of the Lévy-Khinchin constant [11, Theorem 31].

Lemma 3.3.

If mm\in\mathbb{N} and g2mg\geq 2^{m}, then

∫⋯∫x1xm>gx1,,xm2dx1dxmx12xm2mlogm1gg.\idotsint\limits_{\begin{subarray}{c}x_{1}\cdots x_{m}>g\\ x_{1},\ldots,x_{m}\geq 2\end{subarray}}\frac{\,\mathrm{d}x_{1}\cdots\,\mathrm{d}x_{m}}{x_{1}^{2}\cdots x_{m}^{2}}\asymp_{m}\frac{\log^{m-1}g}{g}.
Proof.

The proof is by induction on mm. The base m=1m=1 is clear: if g>2g>2, then

x1>gdx1x12=1g.\int\limits_{x_{1}>g}\frac{\,\mathrm{d}x_{1}}{x_{1}^{2}}=\frac{1}{g}.

Assume that for m=Mm=M\in\mathbb{N}, we have

∫⋯∫x1xM>gx1,,xM2dx1dxMx12xM2MlogM1gg for all g>2M.\idotsint\limits_{\begin{subarray}{c}x_{1}\cdots x_{M}>g\\ x_{1},\ldots,x_{M}\geq 2\end{subarray}}\frac{\,\mathrm{d}x_{1}\cdots\,\mathrm{d}x_{M}}{x_{1}^{2}\cdots x_{M}^{2}}\asymp_{M}\frac{\log^{M-1}g}{g}\;\text{ for all }g>2^{M}.

Let g>2M+1g>2^{M+1} be a real number. Then,

∫⋯∫x1xMxM+1>gx1,,xM,xM+12dx1dxMdxM+1x12xM2xM+12=\displaystyle\idotsint\limits_{\begin{subarray}{c}x_{1}\cdots x_{M}x_{M+1}>g\\ x_{1},\ldots,x_{M},x_{M+1}\geq 2\end{subarray}}\frac{\,\mathrm{d}x_{1}\cdots\,\mathrm{d}x_{M}\,\mathrm{d}x_{M+1}}{x_{1}^{2}\cdots x_{M}^{2}x_{M+1}^{2}}=
(6) =2g2M1xM+12∫⋯∫x1xM>gxM+1x1,,xM2dx1dxMx12xM2dxM+1+g2M1xM+12∫⋯∫x1xM>gxM+1x1,,xM2dx1dxMx12xM2dxM+1.\displaystyle=\int_{2}^{\frac{g}{2^{M}}}\frac{1}{x_{M+1}^{2}}\idotsint\limits_{\begin{subarray}{c}x_{1}\cdots x_{M}>\frac{g}{x_{M+1}}\\ x_{1},\ldots,x_{M}\geq 2\end{subarray}}\frac{\,\mathrm{d}x_{1}\cdots\,\mathrm{d}x_{M}}{x_{1}^{2}\cdots x_{M}^{2}}\,\mathrm{d}x_{M+1}+\int_{\frac{g}{2^{M}}}^{\infty}\frac{1}{x_{M+1}^{2}}\idotsint\limits_{\begin{subarray}{c}x_{1}\cdots x_{M}>\frac{g}{x_{M+1}}\\ x_{1},\ldots,x_{M}\geq 2\end{subarray}}\frac{\,\mathrm{d}x_{1}\cdots\,\mathrm{d}x_{M}}{x_{1}^{2}\cdots x_{M}^{2}}\,\mathrm{d}x_{M+1}.

When g2M<xM+1\frac{g}{2^{M}}<x_{M+1} and min{x1,,xM}2\min\{x_{1},\ldots,x_{M}\}\geq 2, we have x1xMxM+12M>gxM+1x_{1}\cdots x_{M}x_{M+1}\geq 2^{M}>\frac{g}{x_{M+1}}, so the second term in (6) is

(7) g2M1xM+12∫⋯∫x1xM>gxM+1x1,,xM2dx1dxMx12xM2dxM+1=12Mg2M1xM+12dxM+1=1g.\int_{\frac{g}{2^{M}}}^{\infty}\frac{1}{x_{M+1}^{2}}\idotsint\limits_{\begin{subarray}{c}x_{1}\cdots x_{M}>\frac{g}{x_{M+1}}\\ x_{1},\ldots,x_{M}\geq 2\end{subarray}}\frac{\,\mathrm{d}x_{1}\cdots\,\mathrm{d}x_{M}}{x_{1}^{2}\cdots x_{M}^{2}}\,\mathrm{d}x_{M+1}=\frac{1}{2^{M}}\int_{\frac{g}{2^{M}}}^{\infty}\frac{1}{x_{M+1}^{2}}\,\mathrm{d}x_{M+1}=\frac{1}{g}.

If 2xM+1g2M2\leq x_{M+1}\leq\frac{g}{2^{M}}, then 2M<gxM+12^{M}<\frac{g}{x_{M+1}} and the induction hypothesis leads us to

2g2M1xM+12∫⋯∫x1xM>gxM+1x1,,xM2dx1dxMx12xM2dxM+1\displaystyle\int_{2}^{\frac{g}{2^{M}}}\frac{1}{x_{M+1}^{2}}\idotsint\limits_{\begin{subarray}{c}x_{1}\cdots x_{M}>\frac{g}{x_{M+1}}\\ x_{1},\ldots,x_{M}\geq 2\end{subarray}}\frac{\,\mathrm{d}x_{1}\cdots\,\mathrm{d}x_{M}}{x_{1}^{2}\cdots x_{M}^{2}}\,\mathrm{d}x_{M+1} M2g2M1xM+12logM1(gxM+1)(gxM+1)dxM+1\displaystyle\asymp_{M}\int_{2}^{\frac{g}{2^{M}}}\frac{1}{x_{M+1}^{2}}\frac{\log^{M-1}\left(\frac{g}{x_{M+1}}\right)}{\left(\frac{g}{x_{M+1}}\right)}\,\mathrm{d}x_{M+1}
=1g2g2M(logglogxM+1)M1xM+1dxM+1\displaystyle=\frac{1}{g}\int_{2}^{\frac{g}{2^{M}}}\frac{(\log g-\log x_{M+1})^{M-1}}{x_{M+1}}\,\mathrm{d}x_{M+1}
=logM1gg2g2M1xM+1(1logxM+1logg)M1dxM+1.\displaystyle=\frac{\log^{M-1}g}{g}\int_{2}^{\frac{g}{2^{M}}}\frac{1}{x_{M+1}}\left(1-\frac{\log x_{M+1}}{\log g}\right)^{M-1}\,\mathrm{d}x_{M+1}.

The inequality 0<1logxM+1logg<10<1-\frac{\log x_{M+1}}{\log g}<1 holds when 2xM+1g2M2\leq x_{M+1}\leq\frac{g}{2^{M}}, then

logM1gg2g2M1xM+12∫⋯∫x1xM>gxM+1x1,,xM2dx1dxMx12xM2dxM+1M+1logMglogg.\frac{\log^{M-1}g}{g}\int_{2}^{\frac{g}{2^{M}}}\frac{1}{x_{M+1}^{2}}\idotsint\limits_{\begin{subarray}{c}x_{1}\cdots x_{M}>\frac{g}{x_{M+1}}\\ x_{1},\ldots,x_{M}\geq 2\end{subarray}}\frac{\,\mathrm{d}x_{1}\cdots\,\mathrm{d}x_{M}}{x_{1}^{2}\cdots x_{M}^{2}}\,\mathrm{d}x_{M+1}\ll_{M+1}\frac{\log^{M}g}{\log g}.

Observe that

(8) 2xM+1g12 implies 121logxM+1logg.2\leq x_{M+1}\leq g^{\frac{1}{2}}\quad\text{ implies }\quad\frac{1}{2}\leq 1-\frac{\log x_{M+1}}{\log g}.

We consider two cases for the lower bound: 22M<g2^{2M}<g and 22Mg2^{2M}\geq g. If 22Mg2^{2M}\leq g, then g12g2Mg^{\frac{1}{2}}\leq\frac{g}{2^{M}}, so

1g2g2M(logglogxM+1)M1xM+1dxM+1\displaystyle\frac{1}{g}\int_{2}^{\frac{g}{2^{M}}}\frac{(\log g-\log x_{M+1})^{M-1}}{x_{M+1}}\,\mathrm{d}x_{M+1} logM1gg2g1xM+1(1logxM+1logg)M1dxM+1\displaystyle\geq\frac{\log^{M-1}g}{g}\int_{2}^{\sqrt{g}}\frac{1}{x_{M+1}}\left(1-\frac{\log x_{M+1}}{\log g}\right)^{M-1}\,\mathrm{d}x_{M+1}
12M1(12logglog2)logM1gg\displaystyle\geq\frac{1}{2^{M-1}}\left(\frac{1}{2}\log g-\log 2\right)\frac{\log^{M-1}g}{g}
=12M1(12log2logg)logMgg\displaystyle=\frac{1}{2^{M-1}}\left(\frac{1}{2}-\frac{\log 2}{\log g}\right)\frac{\log^{M}g}{g}
12M(11M)logMgg.\displaystyle\geq\frac{1}{2^{M}}\left(1-\frac{1}{M}\right)\frac{\log^{M}g}{g}.

We have used 22Mg2^{2M}\leq g in the last inequality.

For the second case, observe that 2M+1<g22M2^{M+1}<g\leq 2^{2M} yields g2Mg12\frac{g}{2^{M}}\leq g^{\frac{1}{2}}. This means that 2xM+1g2M2\leq x_{M+1}\leq\frac{g}{2^{M}} implies 2xM+1g122\leq x_{M+1}\leq g^{\frac{1}{2}} and, by (8),

1g2g2M(logglogxM+1)MxM+1dxM+1\displaystyle\frac{1}{g}\int_{2}^{\frac{g}{2^{M}}}\frac{(\log g-\log x_{M+1})^{M}}{x_{M+1}}\,\mathrm{d}x_{M+1} 12MlogM1gg2g2M1xM+1dxM+1\displaystyle\geq\frac{1}{2^{M}}\frac{\log^{M-1}g}{g}\int_{2}^{\frac{g}{2^{M}}}\,\frac{1}{x_{M+1}}\,\mathrm{d}x_{M+1}
12MlogMgg(1(M+1)log2logg)>0.\displaystyle\geq\frac{1}{2^{M}}\frac{\log^{M}g}{g}\left(1-\frac{(M+1)\log 2}{\log g}\right)>0.

These estimates along with (7) yield

∫⋯∫x1xM+1>gx1,,xM+12dx1dxM+1x12xM+12\displaystyle\idotsint\limits_{\begin{subarray}{c}x_{1}\cdots x_{M+1}>g\\ x_{1},\ldots,x_{M+1}\geq 2\end{subarray}}\frac{\,\mathrm{d}x_{1}\cdots\,\mathrm{d}x_{M+1}}{x_{1}^{2}\cdots x_{M+1}^{2}} M+1logMgg(min{1(M+1)log2logg,11M}+1glogMg)\displaystyle\asymp_{M+1}\frac{\log^{M}g}{g}\left(\min\left\{1-\frac{(M+1)\log 2}{\log g},1-\frac{1}{M}\right\}+\frac{1}{g\log^{M}g}\right)
M+1logMgg.\displaystyle\asymp_{M+1}\frac{\log^{M}g}{g}.

Lemma 3.4.

If mm\in\mathbb{N}, 𝐭>0m\mathbf{t}\in\mathbb{R}_{>0}^{m}, and g2mtg\geq 2^{mt}, then

d1t0dmtm1gd1,,dm2j=1m1dj(dj1)m,𝐭log1gg1/T.\sum_{\begin{subarray}{c}d_{1}^{t_{0}}\cdots d_{m}^{t_{m-1}}\geq g\\ d_{1},\ldots,d_{m}\geq 2\end{subarray}}\;\prod_{j=1}^{m}\frac{1}{d_{j}(d_{j}-1)}\asymp_{m,\mathbf{t}}\frac{\log^{\ell-1}g}{g^{1/T}}.
Proof.

Without loss of generality, we may assume that t=tm1t1t0=Tt=t_{m-1}\leq\ldots\leq t_{1}\leq t_{0}=T, then

g1/t0g1/tm2g1/tm1.g^{1/t_{0}}\leq\ldots\leq g^{1/t_{m-2}}\leq g^{1/t_{m-1}}.

Under this assumption on 𝐭\mathbf{t}, the function \ell has the following properties:

  1. i.

    If (t0,,tm2,tm1)=m\ell(t_{0},\ldots,t_{m-2},t_{m-1})=m, then (t0,,tm2)=m1\ell(t_{0},\ldots,t_{m-2})=m-1.

  2. ii.

    If 1(t0,,tm2,tm1)m11\leq\ell(t_{0},\ldots,t_{m-2},t_{m-1})\leq m-1, then (t0,,tm2,tm1)=(t0,,tm2)\ell(t_{0},\ldots,t_{m-2},t_{m-1})=\ell(t_{0},\ldots,t_{m-2}).

For every mm, 𝐭\mathbf{t}, and gg as in the statement, define

Sm(𝐭;g):=d1t0dmtm1gd1,,dm2j=1m1dj(dj1).S_{m}(\mathbf{t};g)\colon=\sum_{\begin{subarray}{c}d_{1}^{t_{0}}\cdots d_{m}^{t_{m-1}}\geq g\\ d_{1},\ldots,d_{m}\geq 2\end{subarray}}\;\prod_{j=1}^{m}\frac{1}{d_{j}(d_{j}-1)}.

As such, we aim to show that Sm(𝐭;g)m,𝐭(log(𝐭)1g)/g1/TS_{m}(\mathbf{t};g)\asymp_{m,\mathbf{t}}(\log^{\ell(\mathbf{t})-1}g)/g^{1/T}. The proof is by induction on mm. For m=1m=1 and g>2t0g>2^{t_{0}}, we have

g1/t02g1/t01<g1/t0\frac{g^{1/t_{0}}}{2}\leq\lceil g^{1/t_{0}}\rceil-1<g^{1/t_{0}}

and so

S1(t0;g)=d1t0>g1d1(d11)=d1>g1/t01d1(d11)=1g1/t011g1/t0S_{1}(t_{0};g)=\sum_{d_{1}^{t_{0}}>g}\frac{1}{d_{1}(d_{1}-1)}=\sum_{d_{1}>\lceil g^{1/t_{0}}\rceil}\frac{1}{d_{1}(d_{1}-1)}=\frac{1}{\lceil g^{1/t_{0}}\rceil-1}\asymp\frac{1}{g^{1/t_{0}}}

Assume that for some m=Mm=M\in\mathbb{N}, every 𝐭>0m\mathbf{t}\in\mathbb{R}_{>0}^{m} satisfies

(9) SM(𝐭;g)𝐭,Mlog(𝐭)1gg1/T for all g2mtM1.S_{M}(\mathbf{t};g)\asymp_{\mathbf{t},M}\frac{\log^{\ell(\mathbf{t})-1}g}{g^{1/T}}\;\text{ for all }g\geq 2^{mt_{M-1}}.

If (𝐭)=M+1\ell(\mathbf{t})=M+1, then SM+1(𝐭;g)=Sm((1,,1);g1/t)S_{M+1}(\mathbf{t};g)=S_{m}((1,\ldots,1);g^{1/t}) and Lemma 3.3 gives the result. Suppose that 1(𝐭)M1\leq\ell(\mathbf{t})\leq M. Write

u(M+1,g):={g1/tM2MtM1/tM, if g1/tM2MtM1/tM,g1/tM2MtM1/tM1, otherwise.u(M+1,g)\colon=\begin{cases}\left\lfloor\frac{g^{1/t_{M}}}{2^{Mt_{M-1}/t_{M}}}\right\rfloor,\text{ if }\frac{g^{1/t_{M}}}{2^{Mt_{M-1}/t_{M}}}\not\in\mathbb{N},\\[8.61108pt] \frac{g^{1/t_{M}}}{2^{Mt_{M-1}/t_{M}}}-1,\text{ otherwise.}\end{cases}

On the one hand, when dM+1u(M+1,g)+1d_{M+1}\geq u(M+1,g)+1, every (d1,,dM)𝒟M(d_{1},\ldots,d_{M})\in\mathscr{D}^{M} satisfies

d1t0dMtM12MtM1>g(u(M+1,g)+1)tMgdM+1tM.d_{1}^{t_{0}}\cdots d_{M}^{t_{M-1}}\geq 2^{Mt_{M-1}}>\frac{g}{(u(M+1,g)+1)^{t_{M}}}\geq\frac{g}{d_{M+1}^{t_{M}}}.

As a consequence, we may express SM+1(𝐭;g)S_{M+1}(\mathbf{t};g) as follows:

SM+1(𝐭;g)\displaystyle S_{M+1}(\mathbf{t};g) =dM+1=2u(M+1,g)1dM+1(dM+11)SM((t0,,tM1),gdMtM+1)+\displaystyle=\sum_{d_{M+1}=2}^{u(M+1,g)}\frac{1}{d_{M+1}(d_{M+1}-1)}S_{M}\left((t_{0},\ldots,t_{M-1}),\frac{g}{d_{M}^{t_{M+1}}}\right)+
(10) +dM+1=u(M+1,g)+11dM+1(dM+11)d1,,dM2j=1M1dj(dj1).\displaystyle\quad+\sum_{d_{M+1}=u(M+1,g)+1}^{\infty}\frac{1}{d_{M+1}(d_{M+1}-1)}\sum_{d_{1},\ldots,d_{M}\geq 2}\prod_{j=1}^{M}\frac{1}{d_{j}(d_{j}-1)}.

We apply the induction hypothesis (9) on the first term in (10) and use (𝐭)=(t0,,tM1)\ell(\mathbf{t})=\ell(t_{0},\ldots,t_{M-1}) to get

dM+1=2u(M+1,g)\displaystyle\sum_{d_{M+1}=2}^{u(M+1,g)} 1dM+1(dM+11)SM((t0,,tM1),gdM+1tM)𝐭,M\displaystyle\frac{1}{d_{M+1}(d_{M+1}-1)}S_{M}\left((t_{0},\ldots,t_{M-1}),\frac{g}{d_{M+1}^{t_{M}}}\right)\asymp_{\mathbf{t},M}
𝐭,MdM+1=2u(M+1,g)log(𝐭)1(g)(1tMlogdM+1logg)(𝐭)1dM+1(dM+11)(gdM+1tM)1/T\displaystyle\asymp_{\mathbf{t},M}\sum_{d_{M+1}=2}^{u(M+1,g)}\frac{\log^{\ell(\mathbf{t})-1}(g)\left(1-\frac{t_{M}\log d_{M+1}}{\log g}\right)^{\ell(\mathbf{t})-1}}{d_{M+1}(d_{M+1}-1)\left(\frac{g}{d_{M+1}^{t_{M}}}\right)^{1/T}}
𝐭,Mlog(𝐭)1(g)g1/TdM+1=2u(M+1,g)1dM+12tM/T(1tMlogdM+1logg)(𝐭)1.\displaystyle\asymp_{\mathbf{t},M}\frac{\log^{\ell(\mathbf{t})-1}(g)}{g^{1/T}}\sum_{d_{M+1}=2}^{u(M+1,g)}\frac{1}{d_{M+1}^{2-t_{M}/T}}\left(1-\frac{t_{M}\log d_{M+1}}{\log g}\right)^{\ell(\mathbf{t})-1}.

Since 2tM/T>12-t_{M}/T>1, the last expression satisfies

log(𝐭)1(g)g1/TdM+1=2u(M+1,g)1dM+12tM/T(1tMlogdM+1logg)(𝐭)1\displaystyle\frac{\log^{\ell(\mathbf{t})-1}(g)}{g^{1/T}}\sum_{d_{M+1}=2}^{u(M+1,g)}\frac{1}{d_{M+1}^{2-t_{M}/T}}\left(1-\frac{t_{M}\log d_{M+1}}{\log g}\right)^{\ell(\mathbf{t})-1} log(𝐭)1(g)g1/TdM+1=2u(M+1,g)1dM+12tM/T\displaystyle\leq\frac{\log^{\ell(\mathbf{t})-1}(g)}{g^{1/T}}\sum_{d_{M+1}=2}^{u(M+1,g)}\frac{1}{d_{M+1}^{2-t_{M}/T}}
𝐭,Mlog(𝐭)1(g)g1/T.\displaystyle\asymp_{\mathbf{t},M}\frac{\log^{\ell(\mathbf{t})-1}(g)}{g^{1/T}}.

We now obtain the lower estimate. If g22MtM1+2tMg\leq 2^{2Mt_{M-1}+2t_{M}}, then

logg(2MtM1+2tM)log2.\log g\leq(2Mt_{M-1}+2t_{M})\log 2.

Therefore, since dM+1u(M+1;g)d_{M+1}\leq u(M+1;g), we have

tMlogdM+1logg<1MtM1log2logg1MtM1log2(2MtM1+2tM)log2,\frac{t_{M}\log d_{M+1}}{\log g}<1-\frac{Mt_{M-1}\log 2}{\log g}\leq 1-\frac{Mt_{M-1}\log 2}{(2Mt_{M-1}+2t_{M})\log 2},

which means

MtM12MtM1+2tM1tMlogdM+1logg\frac{Mt_{M-1}}{2Mt_{M-1}+2t_{M}}\leq 1-\frac{t_{M}\log d_{M+1}}{\log g}

and we conclude

log(𝐭)1(g)g1/TdM+1=2u(M+1,g)1dM+12tM/T(1tMlogdM+1logg)(𝐭)1𝐭,M+114log(𝐭)1(g)g1/T.\frac{\log^{\ell(\mathbf{t})-1}(g)}{g^{1/T}}\sum_{d_{M+1}=2}^{u(M+1,g)}\frac{1}{d_{M+1}^{2-t_{M}/T}}\left(1-\frac{t_{M}\log d_{M+1}}{\log g}\right)^{\ell(\mathbf{t})-1}\gg_{\mathbf{t},M+1}\frac{1}{4}\frac{\log^{\ell(\mathbf{t})-1}(g)}{g^{1/T}}.

If g22MtM1+2tMg\geq 2^{2Mt_{M-1}+2t_{M}}, then g1/(2tM)21+MtM1/tMg^{1/(2t_{M})}\geq 2^{1+Mt_{M-1}/t_{M}} and 2<u(M+1,g1/2)<u(M+1,g)2<u(M+1,g^{1/2})<u(M+1,g), so

log(𝐭)1(g)g1/TdM+1=2u(M+1,g)1dM+12tM/T(1tMlogdM+1logg)(𝐭)1\displaystyle\frac{\log^{\ell(\mathbf{t})-1}(g)}{g^{1/T}}\sum_{d_{M+1}=2}^{u(M+1,g)}\frac{1}{d_{M+1}^{2-t_{M}/T}}\left(1-\frac{t_{M}\log d_{M+1}}{\log g}\right)^{\ell(\mathbf{t})-1} 12(𝐭)1log(𝐭)1(g)g1/TdM+1=2u(M+1,g1/2)1dM+12tM/T\displaystyle\geq\frac{1}{2^{\ell(\mathbf{t})-1}}\frac{\log^{\ell(\mathbf{t})-1}(g)}{g^{1/T}}\sum_{d_{M+1}=2}^{u(M+1,g^{1/2})}\frac{1}{d_{M+1}^{2-t_{M}/T}}
12(𝐭)+1log(𝐭)1(g)g1/T(cfr.(8)).\displaystyle\geq\frac{1}{2^{\ell(\mathbf{t})+1}}\frac{\log^{\ell(\mathbf{t})-1}(g)}{g^{1/T}}\quad(cfr.\eqref{EQ:LEM:KHIN:02}).

Proof of Theorem 1.4.

If there are infinitely many nn\in\mathbb{N} such that 1<Ψ(n)2mt1<\Psi(n)\leq 2^{mt}, we can pick a real number xx and a strictly increasing sequence of natural numbers (nj)j1(n_{j})_{j\geq 1} such that

1<x<Ψ(nj)2mt for all j.1<x<\Psi(n_{j})\leq 2^{mt}\;\text{ for all }j\in\mathbb{N}.

Then,

log1x<log(𝐭)1Ψ(nj) and 2mt/T<Ψ(nj)1/T for all j\log^{\ell-1}x<\log^{\ell(\mathbf{t})-1}\Psi(n_{j})\quad\text{ and }\quad 2^{-mt/T}<\Psi(n_{j})^{-1/T}\quad\text{ for all }j\in\mathbb{N}

and, therefore,

n=1log1Ψ(n)Ψ(n)1/Tj=1log1Ψ(nj)Ψ(nj)1/T= and 𝐭(Ψ)=(0,1].\sum_{n=1}^{\infty}\frac{\log^{\ell-1}\Psi(n)}{\Psi(n)^{1/T}}\geq\sum_{j=1}^{\infty}\frac{\log^{\ell-1}\Psi(n_{j})}{\Psi(n_{j})^{1/T}}=\infty\quad\text{ and }\quad\mathcal{E}_{\mathbf{t}}(\Psi)=(0,1].

Assume that Ψ(n)>2mt\Psi(n)>2^{mt} holds for all nn\in\mathbb{N}. For each nn\in\mathbb{N}, define

Gn𝐭(Ψ):={𝐝𝒟m:d1t0dm1tmΨ(n)} and An:=𝐝Gn(Ψ)Im(𝐝).G_{n}^{\mathbf{t}}(\Psi)\colon=\left\{\mathbf{d}\in\mathscr{D}^{m}:d_{1}^{t_{0}}\cdots d_{m-1}^{t_{m}}\geq\Psi(n)\right\}\quad\text{ and }\quad A_{n}\colon=\bigcup_{\mathbf{d}\in G_{n}(\Psi)}I_{m}(\mathbf{d}).

In view of Proposition 2.1, we have

λ(An)=𝐝Gn(Ψ)λ(Im(𝐝))=𝐝Gn(Ψ)j=1m1dj(dj1)\lambda(A_{n})=\sum_{\mathbf{d}\in G_{n}(\Psi)}\lambda(I_{m}(\mathbf{d}))=\sum_{\mathbf{d}\in G_{n}(\Psi)}\prod_{j=1}^{m}\frac{1}{d_{j}(d_{j}-1)}

and, by Lemma 3.4,

(11) λ(An)mlogΨ(𝐭)1(n)Ψ(n)1T.\lambda(A_{n})\asymp_{m}\frac{\log\Psi^{\ell(\mathbf{t})-1}(n)}{\Psi(n)^{\frac{1}{T}}}.

The definitions of 𝐭(Ψ)\mathcal{E}_{\mathbf{t}}(\Psi) and (An)n=1(A_{n})_{n=1}^{\infty} entail

𝐭(Ψ)\displaystyle\mathcal{E}_{\mathbf{t}}(\Psi) ={x(0,1]:n1(x)An for infinitely many n}\displaystyle=\left\{x\in(0,1]:\mathscr{L}^{n-1}(x)\in A_{n}\text{ for infinitely many }n\in\mathbb{N}\right\}
=lim supnn(An).\displaystyle=\limsup_{n\to\infty}\mathscr{L}^{-n}(A_{n}).

We deduce (3) from the \mathscr{L}-invariance of λ\lambda, Lemma 3.2, and (11).

Finally, we show that Theorem 1.4 may fail if (2) is dropped. Let t>0t>0 and mm\in\mathbb{N} be arbitrary and put 𝐭=(t,,t)>0m\mathbf{t}=(t,\ldots,t)\in\mathbb{R}_{>0}^{m}. Choose a real number rr such that

0<r<min{1,1tlog2}.0<r<\min\left\{1,\frac{1}{t}\log 2\right\}.

Define Ψt:1\Psi_{t}:\mathbb{N}\to\mathbb{R}_{\geq 1} by

Ψt(n):=exp(rn) for all n.\quad\Psi_{t}(n)\colon=\exp\left(r^{n}\right)\quad\text{ for all }n\in\mathbb{N}.

Then, Ψt(n)>1\Psi_{t}(n)>1 for all nn\in\mathbb{N}, Ψt(n)1\Psi_{t}(n)\to 1 as nn\to\infty, and

n=0logm1Ψt(n)Ψt(n)1t=n=0rn(m1)Ψt(n)1t<.\sum_{n=0}^{\infty}\frac{\log^{m-1}\Psi_{t}(n)}{\Psi_{t}(n)^{\frac{1}{t}}}=\sum_{n=0}^{\infty}\frac{r^{n(m-1)}}{\Psi_{t}(n)^{\frac{1}{t}}}<\infty.

However, the definition of Ψt\Psi_{t} implies Ψt(n)=exp(rn)<2t\Psi_{t}(n)=\exp(r^{n})<2^{t} for all nn\in\mathbb{N}, so every 𝐝=(dn)n1𝒟\mathbf{d}=(d_{n})_{n\geq 1}\in\mathscr{D}^{\mathbb{N}} satisfies

dntdn+1tdn+m1t2mt>Ψt(n) for all n.d_{n}^{t}d_{n+1}^{t}\cdots d_{n+m-1}^{t}\geq 2^{mt}>\Psi_{t}(n)\quad\text{ for all }n\in\mathbb{N}.

In other words, t(Ψt)=(0,1]\mathcal{E}_{t}(\Psi_{t})=(0,1] and λ(𝐭(Ψt))=1\lambda(\mathcal{E}_{\mathbf{t}}(\Psi_{t}))=1. ∎

4. Proof of Theorem 1.5

We recall two results on Lüroth series. The first one is an analogue of T. Łuczak’s Theorem on the Hausdorff dimension of sets of continued fractions with rapidly growing partial quotients [13]. The second result is the Lüroth analogue of a theorem by B. Wang and J. Wu [19, Theorem 3.1].

For every pair of real numbers a,ba,b strictly larger than 11, define the sets

E(a,b)\displaystyle E(a,b) :={x(0,1]:dn(x)abn for all n},\displaystyle\colon=\left\{x\in(0,1]:d_{n}(x)\geq a^{b^{n}}\text{ for all }n\in\mathbb{N}\right\},
E~(a,b),\displaystyle\widetilde{E}(a,b), :={x(0,1]:dn(x)abn for infinitely many n}.\displaystyle\colon=\left\{x\in(0,1]:d_{n}(x)\geq a^{b^{n}}\text{ for infinitely many }n\in\mathbb{N}\right\}.
Lemma 4.1 ([16, Theorem 3.1]).

For any a>1a>1 and b>1b>1, we have

dimHE(a,b)=dimHE~(a,b)=1b+1.\dim_{\operatorname{H}}E(a,b)=\dim_{\operatorname{H}}\widetilde{E}(a,b)=\frac{1}{b+1}.

For every B>1B>1, define the number

s(B):=dimH{x(0,1]:dn(x)>Bn for infinitely many n}.s(B)\colon=\dim_{\operatorname{H}}\left\{x\in(0,1]:d_{n}(x)>B^{n}\text{ for infinitely many }n\in\mathbb{N}\right\}.
Lemma 4.2 ([15, Lemma 2.3]).

The function s:>1s:\mathbb{R}_{>1}\to\mathbb{R} is continuous, limBs(B)=12\displaystyle\lim_{B\to\infty}s(B)=\frac{1}{2}, and s=s(B)s=s(B) is the only solution of

k=2(1Bk(k1))s=1.\sum_{k=2}^{\infty}\left(\frac{1}{Bk(k-1)}\right)^{s}=1.
Proof of Theorem 1.5.

First, assume that B=1B=1. From

{x(0,1]:dn(x)Ψ(n)1/t0 for infinitely many n}𝐭(Ψ),\left\{x\in(0,1]:d_{n}(x)\geq\Psi(n)^{1/t_{0}}\text{ for infinitely many }n\in\mathbb{N}\right\}\subseteq\mathcal{E}_{\mathbf{t}}(\Psi),

B=1B=1, and Theorem 1.2, we conclude dimH𝐭(Ψ)=1\dim_{\operatorname{H}}\mathcal{E}_{\mathbf{t}}(\Psi)=1.

Suppose that B=B=\infty. Assume that b>1b>1. Every number c(1,b)c\in(1,b) satisfies loglogΨ(n)nlogc\frac{\log\log\Psi(n)}{n}\geq\log c or, equivalently, Ψ(n)ecn\Psi(n)\geq e^{c^{n}} for every large nn. Then,

𝐭(Ψ)\displaystyle\mathcal{E}_{\mathbf{t}}(\Psi) {x(0,1]:i=1mdn+iti(x)ecn for infinitely many n}\displaystyle\subseteq\left\{x\in(0,1]:\prod_{i=1}^{m}d_{n+i}^{t_{i}}(x)\geq e^{c^{n}}\text{ for infinitely many }n\right\}
{x(0,1]:dn+iti(x)ecnm for some i{1,,m} and infinitely many n}\displaystyle\subseteq\left\{x\in(0,1]:d_{n+i}^{\,t_{i}}(x)\geq e^{\frac{c^{n}}{m}}\text{ for some }i\in\{1,\ldots,m\}\text{ and infinitely many }n\right\}
{x(0,1]:dn+i(x)(e1mT)cn for some i{1,,m} and infinitely many n}\displaystyle\subseteq\left\{x\in(0,1]:d_{n+i}(x)\geq(e^{\frac{1}{mT}})^{c^{n}}\text{ for some }i\in\{1,\ldots,m\}\text{ and infinitely many }n\right\}

and, by Lemma 4.1,

dimH𝐭(Ψ)11+c.\dim_{\operatorname{H}}\mathcal{E}_{\mathbf{t}}(\Psi)\leq\frac{1}{1+c}.

The previous inequality give us two implications:

 if b<, then dimH𝐭(Ψ)1b+1,\text{ if }b<\infty,\text{ then }\dim_{\operatorname{H}}\mathcal{E}_{\mathbf{t}}(\Psi)\leq\frac{1}{b+1},
 if b=, then dimH𝐭(Ψ)=0.\text{ if }b=\infty,\text{ then }\dim_{\operatorname{H}}\mathcal{E}_{\mathbf{t}}(\Psi)=0.

Now we obtain the lower bound for dimH𝐭(Ψ)\dim_{\operatorname{H}}\mathcal{E}_{\mathbf{t}}(\Psi) when 1<b<1<b<\infty. For all c>bc>b, we have

{x(0,1]:dn(x)t0ecn for all n}={x(0,1]:dn(x)(e1t0)cn for all n}𝐭(Ψ).\left\{x\in(0,1]:d_{n}(x)^{t_{0}}\geq e^{c^{n}}\text{ for all }n\in\mathbb{N}\right\}=\left\{x\in(0,1]:d_{n}(x)\geq(e^{\frac{1}{t_{0}}})^{c^{n}}\text{ for all }n\in\mathbb{N}\right\}\subseteq\mathcal{E}_{\mathbf{t}}(\Psi).

Thus, applying Lemma 4.1,

dimH𝐭(Ψ)11+c11+b when cb.\dim_{\operatorname{H}}\mathcal{E}_{\mathbf{t}}(\Psi)\geq\frac{1}{1+c}\to\frac{1}{1+b}\quad\text{ when }\quad c\to b.

Lastly, assume that b=1b=1. Then, for any ε>0\varepsilon>0, we have Ψ(n)e(1+ε)n\Psi(n)\leq e^{(1+\varepsilon)^{n}} infinitely often, which gives

𝐭(Ψ){x(0,1]:dnt0(x)e(1+ε)n for infinitely many n}\mathcal{E}_{\mathbf{t}}(\Psi)\supseteq\left\{x\in(0,1]:d_{n}^{t_{0}}(x)\geq e^{(1+\varepsilon)^{n}}\text{ for infinitely many }n\in\mathbb{N}\right\}

and, by Lemma 4.1,

dimH𝐭(Ψ)12+ε12 when ε0.\dim_{\operatorname{H}}\mathcal{E}_{\mathbf{t}}(\Psi)\geq\frac{1}{2+\varepsilon}\to\frac{1}{2}\quad\text{ when }\quad\varepsilon\to 0.

For the upper bound, note that B=B=\infty implies that for each A>0A>0 there is some N(A)N(A)\in\mathbb{N} such that An<Ψ(n)A^{n}<\Psi(n) whenever nN(A)n\geq N(A). Hence, for all x𝐭(Ψ)x\in\mathcal{E}_{\mathbf{t}}(\Psi) we have

i=0m1dn+iti(x)An for infinitely many nN(A),\prod_{i=0}^{m-1}d_{n+i}^{t_{i}}(x)\geq A^{n}\;\text{ for infinitely many }n\in\mathbb{N}_{\geq N(A)},

and, thus,

dn+1tiA1m for some 0im1 and infinitely many nN(A).d_{n+1}^{t_{i}}\geq A^{\frac{1}{m}}\;\text{ for some }0\leq i\leq m-1\;\text{ and infinitely many }n\in\mathbb{N}_{\geq N(A)}.

As a consequence,

𝐭(Ψ){x(0,1]:dn(x)(A1Tm)n for infinitely many n},\mathcal{E}_{\mathbf{t}}(\Psi)\subseteq\left\{x\in(0,1]:d_{n}(x)\geq(A^{\frac{1}{Tm}})^{n}\text{ for infinitely many }n\in\mathbb{N}\right\},

and Lemma 4.2 guarantees

dimH𝐭(Ψ)s(A1Tm)12 as A.\dim_{\operatorname{H}}\mathcal{E}_{\mathbf{t}}(\Psi)\leq s\left(A^{\frac{1}{Tm}}\right)\to\frac{1}{2}\;\text{ as }\;A\to\infty.

5. Proof of Theorem 1.6

We obtain Theorem 1.6 from Theorem 5.1 below and its proof. In Theorem 5.1, we compute the Hausdorff dimension of 𝐭(Ψ)\mathcal{E}_{\mathbf{t}}(\Psi) for any 𝐭>02\mathbf{t}\in\mathbb{R}_{>0}^{2} and a particular choice of Ψ\Psi. For each B(1,)B\in(1,\infty), define the set

𝐭(B):={x(0,1]:dnt0(x)dn+1t1(x)Bn for infinitely many n}.\mathcal{E}_{\mathbf{t}}(B)\colon=\left\{x\in(0,1]:d_{n}^{t_{0}}(x)d_{n+1}^{t_{1}}(x)\geq B^{n}\text{ for infinitely many }n\in\mathbb{N}\right\}.
Theorem 5.1.

Take any B>1B>1, 𝐭=(t0,t1)>02\mathbf{t}=(t_{0},t_{1})\in\mathbb{R}_{>0}^{2}, and let ft0,t1f_{t_{0},t_{1}} be as in Theorem 1.6. The Hausdorff dimension of 𝐭(B)\mathcal{E}_{\mathbf{t}}(B) is the unique solution s=s0(B)s=s_{0}(B) of the equation

d=21ds(d1)sBft0,t1(s)=1.\sum_{d=2}^{\infty}\frac{1}{d^{s}(d-1)^{s}B^{f_{t_{0},t_{1}}(s)}}=1.

Moreover, the map Bs0(B)B\mapsto s_{0}(B) is continuous.

5.1. Continuity of Bs0(B)B\mapsto s_{0}(B)

Lemma 5.2.

For any (t0,t1)>02(t_{0},t_{1})\in\mathbb{R}_{>0}^{2}, the function ft0,t1f_{t_{0},t_{1}} is strictly increasing.

Proof.

Let (t0,t1)>02(t_{0},t_{1})\in\mathbb{R}_{>0}^{2} be given. For any s0s\geq 0 we have

ft0,t1(s)=min{s2t0s+(1s)t1,st1}.f_{t_{0},t_{1}}(s)=\min\left\{\frac{s^{2}}{t_{0}s+(1-s)t_{1}},\frac{s}{t_{1}}\right\}.

Thus, it suffices to show that the functions sst1s\mapsto\frac{s}{t_{1}} and ss2t0s+(1s)t1s\mapsto\frac{s^{2}}{t_{0}s+(1-s)t_{1}} are strictly increasing. This is obvious for sst1s\mapsto\frac{s}{t_{1}}. When t0t1t_{0}\leq t_{1}, the function st0s+(1s)t1s\mapsto t_{0}s+(1-s)t_{1} is non-increasing, so ss2t0s+(1s)t1s\mapsto\frac{s^{2}}{t_{0}s+(1-s)t_{1}} is strictly increasing. If t1<t0t_{1}<t_{0}, then the derivative of

ss2(t0t1)s+t1s\mapsto\frac{s^{2}}{(t_{0}-t_{1})s+t_{1}}

is positive for s>0s>0 and it is 0 for s=0s=0. Therefore, the function ss2(t0t1)s+t1s\mapsto\frac{s^{2}}{(t_{0}-t_{1})s+t_{1}} is strictly increasing. ∎

For each nn\in\mathbb{N}, 𝐭=(t0,t1)>02\mathbf{t}=(t_{0},t_{1})\in\mathbb{R}_{>0}^{2}, and B>1B>1, define the map gn𝐭(;B):0>0g_{n}^{\mathbf{t}}(\,\cdot\,;B):\mathbb{R}_{\geq 0}\to\mathbb{R}_{>0} by

gn𝐭(ρ;B):=d=2n1dρ(d1)ρBft0,t1(ρ) for all ρ>0g_{n}^{\mathbf{t}}(\rho;B)\colon=\sum_{d=2}^{n}\frac{1}{d^{\rho}(d-1)^{\rho}B^{f_{t_{0},t_{1}}(\rho)}}\;\text{ for all }\rho\in\mathbb{R}_{>0}

and g𝐭(;B):0>0{}g^{\mathbf{t}}(\,\cdot\,;B):\mathbb{R}_{\geq 0}\to\mathbb{R}_{>0}\cup\{\infty\} by

g(ρ;B):=d=21dρ(d1)ρBft0,t1(ρ) for all ρ>0.g(\rho;B)\colon=\sum_{d=2}^{\infty}\frac{1}{d^{\rho}(d-1)^{\rho}B^{f_{t_{0},t_{1}}(\rho)}}\;\text{ for all }\rho\in\mathbb{R}_{>0}.

Observe that for all B>1B>1 we have

g𝐭(1;B)=d=21d(d1)B1/t1<d=21d(d1)=1g^{\mathbf{t}}(1;B)=\sum_{d=2}^{\infty}\frac{1}{d(d-1)B^{1/t_{1}}}<\sum_{d=2}^{\infty}\frac{1}{d(d-1)}=1

and

g𝐭(12;B)=d=21d1/2(d1)1/2Bft0,t1(1/2)=1Bft0,t1(1/2)d=21d1/2(d1)1/2=,g^{\mathbf{t}}\left(\frac{1}{2};B\right)=\sum_{d=2}^{\infty}\frac{1}{d^{1/2}(d-1)^{1/2}B^{f_{t_{0},t_{1}}(1/2)}}=\frac{1}{B^{f_{t_{0},t_{1}}(1/2)}}\sum_{d=2}^{\infty}\frac{1}{d^{1/2}(d-1)^{1/2}}=\infty,

hence 12<s0(B)<1\frac{1}{2}<s_{0}(B)<1. Also, every m,nm,n\in\mathbb{N} with m<nm<n and every ρ>0\rho>0 satisfy

gm𝐭(ρ;B)<gn𝐭(ρ;B)<g𝐭(ρ;B).g_{m}^{\mathbf{t}}(\rho;B)<g_{n}^{\mathbf{t}}(\rho;B)<g^{\mathbf{t}}(\rho;B).

As a consequence, the sequence (sn(B))n1(s_{n}(B))_{n\geq 1} is strictly increasing and each of its terms is bounded above by s0(B)s_{0}(B).

Lemma 5.3.

We have

limnsn(B)=s0(B).\lim_{n\to\infty}s_{n}(B)=s_{0}(B).
Proof.

The discussion preceding the lemma implies

limnsn(B)s0(B).\lim_{n\to\infty}s_{n}(B)\leq s_{0}(B).

Pick any positive number t<s0(B)t<s_{0}(B). Then, g(t;B)>1g(t;B)>1 and every large nn\in\mathbb{N} satisfies gn(t;B)>1g_{n}(t;B)>1, so t<sn(B)t<s_{n}(B) and

s0(B)limnsn(B).s_{0}(B)\leq\lim_{n\to\infty}s_{n}(B).

Lemma 5.4.

The function Bs0(B)B\mapsto s_{0}(B) is continuous.

Proof.

Fix B>1B>1. Take nn\in\mathbb{N}. Let ε>0\varepsilon>0 be arbitrary and

0<δ=12min{BBft0,t1(sn(B))ft0,t1(sn(B)+ε),Bft0,t1(sn(B))ft0,t1(sn(B)ε)B}.0<\delta=\frac{1}{2}\min\left\{B-B^{\frac{f_{t_{0},t_{1}}(s_{n}(B))}{f_{t_{0},t_{1}}(s_{n}(B)+\varepsilon)}},B^{\frac{f_{t_{0},t_{1}}(s_{n}(B))}{f_{t_{0},t_{1}}(s_{n}(B)-\varepsilon)}}-B\right\}.

Then, we have

gn(sn(B)+ε;Bδ)\displaystyle g_{n}(s_{n}(B)+\varepsilon;B-\delta) =d=2n1dsn(B)+ε(d1)sn(B)+ε(Bδ)ft0,t1(sn(B)+ε)\displaystyle=\sum_{d=2}^{n}\frac{1}{d^{s_{n}(B)+\varepsilon}(d-1)^{s_{n}(B)+\varepsilon}(B-\delta)^{f_{t_{0},t_{1}}(s_{n}(B)+\varepsilon)}}
Bft0,t1(sn(B))(Bδ)ft0,t1(sn(B)+ε)d=2n1dsn(B)(d1)sn(B)Bft0,t1(sn(B))\displaystyle\leq\frac{B^{f_{t_{0},t_{1}}(s_{n}(B))}}{(B-\delta)^{f_{t_{0},t_{1}}(s_{n}(B)+\varepsilon)}}\sum_{d=2}^{n}\frac{1}{d^{s_{n}(B)}(d-1)^{s_{n}(B)}B^{f_{t_{0},t_{1}}(s_{n}(B))}}
=Bft0,t1(sn(B))(Bδ)ft0,t1(sn(B)+ε)<1.\displaystyle=\frac{B^{f_{t_{0},t_{1}}(s_{n}(B))}}{(B-\delta)^{f_{t_{0},t_{1}}(s_{n}(B)+\varepsilon)}}<1.

Since sns_{n} is non-increasing on BB, we conclude

sn(B)sn(Bδ)<sn(B)+ε.s_{n}(B)\leq s_{n}(B-\delta)<s_{n}(B)+\varepsilon.

Similarly, we can show gn(sn(B)ε;B+δ)>1g_{n}(s_{n}(B)-\varepsilon;B+\delta)>1 and, hence,

sn(B+δ)sn(B)<sn(B+δ)+ε.s_{n}(B+\delta)\leq s_{n}(B)<s_{n}(B+\delta)+\varepsilon.

As a consequence, sns_{n} is continuous.

Since sn(B)s0(B)s_{n}(B)\to s_{0}(B) as nn\to\infty and since ft0,t1f_{t_{0},t_{1}} is continuous and strictly increasing, we may pick δ>0\delta>0 such that every large mm\in\mathbb{N} verifies

0<δ=12min{BBft0,t1(sm(B))ft0,t1(sm(B)+ε),Bft0,t1(sm(B))ft0,t1(sm(B)ε)B}.0<\delta=\frac{1}{2}\min\left\{B-B^{\frac{f_{t_{0},t_{1}}(s_{m}(B))}{f_{t_{0},t_{1}}(s_{m}(B)+\varepsilon)}},B^{\frac{f_{t_{0},t_{1}}(s_{m}(B))}{f_{t_{0},t_{1}}(s_{m}(B)-\varepsilon)}}-B\right\}.

For such mm\in\mathbb{N}, every B>1B^{\prime}\in\mathbb{R}_{>1} with the property |BB|<δ|B-B^{\prime}|<\delta satisfies |sm(B)sm(B)|<ε|s_{m}(B)-s_{m}(B^{\prime})|<\varepsilon. Letting mm\to\infty, we conclude |s0(B)s0(B)|ε|s_{0}(B)-s_{0}(B^{\prime})|\leq\varepsilon. Therefore, s0s_{0} is continuous. ∎

Our argument actually proves the next result.

Theorem 5.5.

Let f:>0>0f:\mathbb{R}_{>0}\to\mathbb{R}_{>0} be a strictly increasing continuous function. For each nn\in\mathbb{N}, let s=sn(B,f)s=s_{n}(B,f) be the unique solution ss of

d=2n1ds(d1)sBf(s)=1.\sum_{d=2}^{n}\frac{1}{d^{s}(d-1)^{s}B^{f(s)}}=1.

Call s0(B,f)s_{0}(B,f) the unique solution ss of

d=21ds(d1)sBf(s)=1.\sum_{d=2}^{\infty}\frac{1}{d^{s}(d-1)^{s}B^{f(s)}}=1.

Then, sn(B,f)s0(B,f)s_{n}(B,f)\to s_{0}(B,f) as nn\to\infty.

5.2. Hausdorff dimension estimates

We split the proof of Theorem 5.1 into two parts. First, we use a particular family of coverings of 𝐭(Ψ)\mathcal{E}_{\mathbf{t}}(\Psi) to obtain an upper bound for dimH𝐭(Ψ)\dim_{\operatorname{H}}\mathcal{E}_{\mathbf{t}}(\Psi). The lower bound is proved considering two cases. In one of them, we use Lemma 4.2. In the other case, we apply the Mass Distribution Principle (Lemma 5.8).

The hypothesis B>1B>1 implies lim infnΨ(n)=\liminf_{n}\Psi(n)=\infty. Then, without loss of generality, we may assume that

Ψ(n)2mt for all n.\Psi(n)\geq 2^{mt}\quad\text{ for all }n\in\mathbb{N}.

5.2.1. Upper bound

Proof of Lemma 5.1. Upper bound..

For each real number AA satisfying 1<A<B1<A<B, define the sets

𝐭(A)\displaystyle\mathcal{E}_{\mathbf{t}}^{\prime}(A) :={x(0,1]:dnt0(x)An and dn+1t1(x)Bndnt0(x) for infinitely many n},\displaystyle\colon=\left\{x\in(0,1]:d_{n}^{t_{0}}(x)\leq A^{n}\text{ and }d_{n+1}^{t_{1}}(x)\geq\frac{B^{n}}{d_{n}^{t_{0}}(x)}\text{ for infinitely many }n\in\mathbb{N}\right\},
𝐭′′(A)\displaystyle\mathcal{E}_{\mathbf{t}}^{\prime\prime}(A) :={x(0,1]:dnt0(x)An for infinitely many n}.\displaystyle\colon=\left\{x\in(0,1]:d_{n}^{t_{0}}(x)\geq A^{n}\text{ for infinitely many }n\in\mathbb{N}\right\}.

Then, 𝐭(B)𝐭(A)𝐭′′(A)\mathcal{E}_{\mathbf{t}}(B)\subseteq\mathcal{E}_{\mathbf{t}}^{\prime}(A)\cup\mathcal{E}_{\mathbf{t}}^{\prime\prime}(A), so

dimH𝐭(B)max{dimH𝐭(A),dimH𝐭′′(A)}.\dim_{\operatorname{H}}\mathcal{E}_{\mathbf{t}}(B)\leq\max\left\{\dim_{\operatorname{H}}\mathcal{E}_{\mathbf{t}}^{\prime}(A),\dim_{\operatorname{H}}\mathcal{E}_{\mathbf{t}}^{\prime\prime}(A)\right\}.

Lemma 4.2 implies

dimH𝐭′′(A)=s(A1/t0).\dim_{\operatorname{H}}\mathcal{E}_{\mathbf{t}}^{\prime\prime}(A)=s\left(A^{1/t_{0}}\right).

We take advantage of 𝐭(A)\mathcal{E}_{\mathbf{t}}^{\prime}(A) being a limsup-set to give an upper estimate for its dimension. For each 𝐝=(d1,,dn)𝒟n\mathbf{d}=(d_{1},\ldots,d_{n})\in\mathscr{D}^{n}, define

Jn(𝐝):={In+1(𝐝dn+1):dn+1max{2,(Bndnt0)1/t1}}J_{n}(\mathbf{d})\colon=\bigcup\left\{I_{n+1}(\mathbf{d}d_{n+1}):d_{n+1}\geq\max\left\{2,\left(\frac{B^{n}}{d_{n}^{t_{0}}}\right)^{1/t_{1}}\right\}\right\}

Observe that dnt0And_{n}^{t_{0}}\leq A^{n} and dn+1t1Bn/dnt0d_{n+1}^{t_{1}}\geq B^{n}/d_{n}^{t_{0}} imply

dn+1(BA)n/t1,d_{n+1}\geq\left(\frac{B}{A}\right)^{n/t_{1}},

and (B/A)n/t1>2(B/A)^{n/t_{1}}>2 for every large nn (depending on BB, AA, and t1t_{1}). For such nn\in\mathbb{N}, we have

|Jn(𝐝)|\displaystyle|J_{n}(\mathbf{d})| =(j=1n1dj(dj1))1Bndnt0/t11\displaystyle=\left(\prod_{j=1}^{n}\frac{1}{d_{j}(d_{j}-1)}\right)\frac{1}{\left\lceil\frac{B^{n}}{d_{n}^{t_{0}/t_{1}}}\right\rceil-1}
(j=1n1dj(dj1))dnt0/t1Bn/t1\displaystyle\asymp\left(\prod_{j=1}^{n}\frac{1}{d_{j}(d_{j}-1)}\right)\frac{d_{n}^{t_{0}/t_{1}}}{B^{n/t_{1}}}
1dn2t0t1Bnt1j=1n11dj(dj1)=|In1(d1,,dn1)|dn2t0t1Bnt1.\displaystyle\asymp\frac{1}{d_{n}^{2-\frac{t_{0}}{t_{1}}}B^{\frac{n}{t_{1}}}}\prod_{j=1}^{n-1}\frac{1}{d_{j}(d_{j}-1)}=\frac{|I_{n-1}(d_{1},\ldots,d_{n-1})|}{d_{n}^{2-\frac{t_{0}}{t_{1}}}B^{\frac{n}{t_{1}}}}.

Take any s>0s>0 and let s\mathcal{H}^{s} be the ss-Hausdorff measure on \mathbb{R}. From the inequality

𝐭(A)=N=1n=N𝐝𝒟n1dn=2An/t0Jn(𝐝dn)\mathcal{E}^{\prime}_{\mathbf{t}}(A)=\bigcap_{N=1}^{\infty}\bigcup_{n=N}^{\infty}\bigcup_{\mathbf{d}\in\mathscr{D}^{n-1}}\bigcup_{d_{n}=2}^{\lfloor A^{n/t_{0}}\rfloor}J_{n}(\mathbf{d}\,d_{n})

we conclude that

s(𝐭(A))\displaystyle\mathcal{H}^{s}(\mathcal{E}_{\mathbf{t}}^{\prime}(A)) lim infNnN𝐝𝒟n1dn=2An/t0|Jn(𝐝dn)|s\displaystyle\leq\liminf_{N\to\infty}\sum_{n\geq N}\sum_{\mathbf{d}\in\mathscr{D}^{n-1}}\sum_{d_{n}=2}^{\lfloor A^{n/t_{0}}\rfloor}|J_{n}(\mathbf{d}\,d_{n})|^{s}
lim infNnN𝐝𝒟n1dn=2An/t0|In1(𝐝)|sdns(2t0t1)Bsnt1\displaystyle\asymp\liminf_{N\to\infty}\sum_{n\geq N}\sum_{\mathbf{d}\in\mathscr{D}^{n-1}}\sum_{d_{n}=2}^{\lfloor A^{n/t_{0}}\rfloor}|I_{n-1}(\mathbf{d})|^{s}d_{n}^{-s\left(2-\frac{t_{0}}{t_{1}}\right)}B^{-\frac{sn}{t_{1}}}
=lim infNnN𝐝𝒟n1|In1(𝐝)|sBsnt1dn=2An/t0dns(2t0t1)\displaystyle=\liminf_{N\to\infty}\sum_{n\geq N}\sum_{\mathbf{d}\in\mathscr{D}^{n-1}}\frac{|I_{n-1}(\mathbf{d})|^{s}}{B^{\frac{sn}{t_{1}}}}\sum_{d_{n}=2}^{\lfloor A^{n/t_{0}}\rfloor}d_{n}^{-s\left(2-\frac{t_{0}}{t_{1}}\right)}
=lim infNnN(d𝒟(B1t1d(d1))s)ndn=2An/t0dns(2t0t1)\displaystyle=\liminf_{N\to\infty}\sum_{n\geq N}\left(\sum_{d\in\mathscr{D}}\left(B^{\frac{1}{t_{1}}}d(d-1)\right)^{-s}\right)^{n}\sum_{d_{n}=2}^{\lfloor A^{n/t_{0}}\rfloor}d_{n}^{-s\left(2-\frac{t_{0}}{t_{1}}\right)}
lim infNnN(d𝒟(B1t1d(d1))s)nmax{1,Ant0(1s(2t0t1))}\displaystyle\ll\liminf_{N\to\infty}\sum_{n\geq N}\left(\sum_{d\in\mathscr{D}}\left(B^{\frac{1}{t_{1}}}d(d-1)\right)^{-s}\right)^{n}\max\left\{1,A^{\frac{n}{t_{0}}\left(1-s\left(2-\frac{t_{0}}{t_{1}}\right)\right)}\right\}
=lim infNnN(d𝒟(B1t1d(d1))smax{1,A1t0(1s(2t0t1))})n.\displaystyle=\liminf_{N\to\infty}\sum_{n\geq N}\left(\sum_{d\in\mathscr{D}}\left(B^{\frac{1}{t_{1}}}d(d-1)\right)^{-s}\max\left\{1,A^{\frac{1}{t_{0}}\left(1-s\left(2-\frac{t_{0}}{t_{1}}\right)\right)}\right\}\right)^{n}.

Therefore, if S(A)S(A) is the solution of

d=2(B1t1d(d1))smax{1,A1t0(1s(2t0t1))}=1,\sum_{d=2}^{\infty}\left(B^{\frac{1}{t_{1}}}d(d-1)\right)^{-s}\max\left\{1,A^{\frac{1}{t_{0}}\left(1-s\left(2-\frac{t_{0}}{t_{1}}\right)\right)}\right\}=1,

we conclude that dimH𝐭(B)S(A)\dim_{\operatorname{H}}\mathcal{E}_{\mathbf{t}}(B)\leq S(A). Let A>1A>1 be such that S(A)=s(A)S(A)=s(A), which occurs precisely when

1As/t0=max{1,A(1s(2t0/t1))/t0}Bs/t1,\frac{1}{A^{s/t_{0}}}=\frac{\max\{1,A^{(1-s(2-t_{0}/t_{1}))/t_{0}}\}}{B^{s/t_{1}}},

or equivalently

ft0(s)logA=max{0,12st0+st1}logAft1(s)logB,-f_{t_{0}}(s)\log A=\max\left\{0,\frac{1-2s}{t_{0}}+\frac{s}{t_{1}}\right\}\log A-f_{t_{1}}(s)\log B,

which is

ft0,t1(s)logB=ft0(s)logA.f_{t_{0},t_{1}}(s)\log B=f_{t_{0}}(s)\log A.

Using the exact same argument as in [2, Lemma 5.1], we conclude 1<A<B1<A<B and, therefore, dimH𝐭(B)s(A)=s0(B)\dim_{\operatorname{H}}\mathcal{E}_{\mathbf{t}}(B)\leq s(A)=s_{0}(B). ∎

5.2.2. Lower bound

We consider two cases:

s0(B)t12s0(B)1t00 and s0(B)t12s0(B)1t0>0.\frac{s_{0}(B)}{t_{1}}-\frac{2s_{0}(B)-1}{t_{0}}\leq 0\quad\text{ and }\quad\frac{s_{0}(B)}{t_{1}}-\frac{2s_{0}(B)-1}{t_{0}}>0.

5.2.3. Lower bound: first case

Assume that s0(B)t12s0(B)1t00\frac{s_{0}(B)}{t_{1}}-\frac{2s_{0}(B)-1}{t_{0}}\leq 0.

Lemma 5.6.

If s0(B)t12s0(B)1t00\frac{s_{0}(B)}{t_{1}}-\frac{2s_{0}(B)-1}{t_{0}}\leq 0, then s=s0(B)s=s_{0}(B) is the unique solution of

d=2(1d(d1)B1/t1)s=1.\sum_{d=2}^{\infty}\left(\frac{1}{d(d-1)B^{1/t_{1}}}\right)^{s}=1.
Proof.

Since ft0,t1(s)st1f_{t_{0},t_{1}}(s)\leq\frac{s}{t_{1}} for all s>0s>0, we have

d=2(1d(d1)B1/t1)sd=21ds(d1)sBft0,t1(s).\sum_{d=2}^{\infty}\left(\frac{1}{d(d-1)B^{1/t_{1}}}\right)^{s}\leq\sum_{d=2}^{\infty}\frac{1}{d^{s}(d-1)^{s}B^{f_{t_{0},t_{1}}(s)}}.

Therefore, for all ε>0\varepsilon>0, the inequality

d=2(1d(d1)B1/t1)s0(B)+ε<1,\sum_{d=2}^{\infty}\left(\frac{1}{d(d-1)B^{1/t_{1}}}\right)^{s_{0}(B)+\varepsilon}<1,

holds and we conclude s(B1/t1)s0(B)s(B^{1/t_{1}})\leq s_{0}(B).

We consider two further sub-cases. First, if s0(B)t12s0(B)1t0<0\frac{s_{0}(B)}{t_{1}}-\frac{2s_{0}(B)-1}{t_{0}}<0, then ft0,t1(s)=st1f_{t_{0},t_{1}}(s)=\frac{s}{t_{1}} for every ss sufficiently close to s0s_{0} and for any sufficiently small ε>0\varepsilon>0 we have

1<d=2(1d(d1)B1/t1)s0(B)ε=d=21ds(d1)sBft0,t1(s0(B)ε).1<\sum_{d=2}^{\infty}\left(\frac{1}{d(d-1)B^{1/t_{1}}}\right)^{s_{0}(B)-\varepsilon}=\sum_{d=2}^{\infty}\frac{1}{d^{s}(d-1)^{s}B^{f_{t_{0},t_{1}}(s_{0}(B)-\varepsilon)}}.

This implies s0(B)s(B1/t1)+εs_{0}(B)\leq s(B^{1/t_{1}})+\varepsilon and, letting ε0\varepsilon\to 0, we get s0(B)s(B1/t1)s_{0}(B)\leq s(B^{1/t_{1}}). Second, assume that s0(B)t12s0(B)1t0=0\frac{s_{0}(B)}{t_{1}}-\frac{2s_{0}(B)-1}{t_{0}}=0. Let δ>0\delta^{\prime}>0 be arbitrary. Since ft0,t1f_{t_{0},t_{1}} is continuous, for any ε>0\varepsilon>0, there is δ′′>0\delta^{\prime\prime}>0 such that, for all ss\in\mathbb{R},

s0(B)δ′′<s<s0(B) implies ft0,t1(s)>s0(B)t1ε.s_{0}(B)-\delta^{\prime\prime}<s<s_{0}(B)\quad\text{ implies }\quad f_{t_{0},t_{1}}(s)>\frac{s_{0}(B)}{t_{1}}-\varepsilon.

As a consequence, for δ=min{δ,δ′′}\delta=\min\{\delta^{\prime},\delta^{\prime\prime}\} and any ss such that s0(B)δ<s<s0(B)s_{0}(B)-\delta<s<s_{0}(B), we have

1d=21ds(d1)sBft0,t1(s)d=21ds(d1)sBs0(B)t1ε.1\leq\sum_{d=2}^{\infty}\frac{1}{d^{s}(d-1)^{s}B^{f_{t_{0},t_{1}}(s)}}\leq\sum_{d=2}^{\infty}\frac{1}{d^{s}(d-1)^{s}B^{\frac{s_{0}(B)}{t_{1}}-\varepsilon}}.

Hence, s(B1/t1)δs0(B)s(B^{1/t_{1}})-\delta\geq s_{0}(B). Letting δ0\delta^{\prime}\to 0, we have δ0\delta\to 0 and, thus, s0(B)s(B1/t1)s_{0}(B)\leq s(B^{1/t_{1}}). ∎

Lemma 5.7.

If s0(B)t12s0(B)1t00\frac{s_{0}(B)}{t_{1}}-\frac{2s_{0}(B)-1}{t_{0}}\leq 0, then dimH𝐭(B)s0(B)\dim_{\operatorname{H}}\mathcal{E}_{\mathbf{t}}(B)\geq s_{0}(B).

Proof.

The definition of 𝐭(B)\mathcal{E}_{\mathbf{t}}(B) yields

{x(0,1]:dn+1t1(x)Bn for infinitely many n}𝐭(B).\left\{x\in(0,1]:d_{n+1}^{t_{1}}(x)\geq B^{n}\text{ for infinitely many }n\right\}\subseteq\mathcal{E}_{\mathbf{t}}(B).

Then, by Lemmas 4.2 and 5.6, we conclude dimH𝐭(B)s(B1/t1)=s0(B)\dim_{\operatorname{H}}\mathcal{E}_{\mathbf{t}}(B)\geq s(B^{1/t_{1}})=s_{0}(B). ∎

5.2.4. Lower bound: second case

Assume that

(12) s0(B)t12s0(B)1t0>0.\frac{s_{0}(B)}{t_{1}}-\frac{2s_{0}(B)-1}{t_{0}}>0.

In what follows, for all xx\in\mathbb{R} and all r>0r>0, we write B(x;r):=(xr,x+r)B(x;r)\colon=(x-r,x+r).

Lemma 5.8 (Mass Distribution Principle).

Let FF\subseteq\mathbb{R} be a non-empty set and let μ\mu be a finite measure satisfying μ(F)>0\mu(F)>0. If there are constants c>0c>0, r0>0r_{0}>0, and s0s\geq 0 such that

μ(B(x;r))crs for all xF and r(0,r0),\mu\left(B(x;r)\right)\leq cr^{s}\;\text{ for all }\;x\in F\;\text{ and }\;r\in(0,r_{0}),

then dimHFs\dim_{\operatorname{H}}F\geq s.

Proof.

see [5, Proposition 2.1]. ∎

Construction of the Cantor set.

By Lemma 5.3 and (12), we may take an M3M\in\mathbb{N}_{\geq 3} such that s:=sM(B)s\colon=s_{M}(B) is so close to s0(B)s_{0}(B) that

12<s<1 and ft0,t1(s)=sft0(s)t1(ft0(s)+st12s1t0).\frac{1}{2}<s<1\quad\text{ and }\quad f_{t_{0},t_{1}}(s)=\frac{sf_{t_{0}}(s)}{t_{1}\left(f_{t_{0}}(s)+\frac{s}{t_{1}}-\frac{2s-1}{t_{0}}\right)}.

Let AA be such that

ft0,t1(s)logA=ft0(s)logB;f_{t_{0},t_{1}}(s)\log A=f_{t_{0}}(s)\log B;

as above, 1<A<B1<A<B. Let (k)k1(\ell_{k})_{k\geq 1} be a sequence in \mathbb{N} such that ke1++k1\ell_{k}\gg e^{\ell_{1}+\ldots+\ell_{k-1}} for all kk\in\mathbb{N}. Write

α0:=A1/t0 and α1:=(BA)1/t1\alpha_{0}\colon=A^{1/t_{0}}\quad\text{ and }\quad\alpha_{1}\colon=\left(\frac{B}{A}\right)^{1/t_{1}}

and let NN\in\mathbb{N} be such that 2<α0N2<\alpha_{0}^{N}. Define the sequence (nj)j1(n_{j})_{j\geq 1} by

n1=1N+1 and nk+1nk=k+1N+2 for all k.n_{1}=\ell_{1}N+1\quad\text{ and }\quad n_{k+1}-n_{k}=\ell_{k+1}N+2\;\text{ for all }k\in\mathbb{N}.

We can take the sequence (k)k1(\ell_{k})_{k\geq 1} so sparse that (nk)k1(n_{k})_{k\geq 1} satisfies

(13) (2k1)logα0logα1<n1++nk for all k2.\frac{(2k-1)\log\alpha_{0}}{\log\alpha_{1}}<n_{1}+\ldots+n_{k}\quad\text{ for all }k\in\mathbb{N}_{\geq 2}.

Let EE be the set formed by the real numbers x=d1,d2,d3,x=\langle d_{1},d_{2},d_{3},\ldots\rangle satisfying the following conditions:

  1. i.

    For every kk\in\mathbb{N}, we have

    α0nkAnk/t0dnk2α0nk and α1nkdnk+12α1nk.\alpha_{0}^{n_{k}}A^{n_{k}/t_{0}}\leq d_{n_{k}}\leq 2\alpha_{0}^{n_{k}}\;\text{ and }\;\alpha_{1}^{n_{k}}\leq d_{n_{k}+1}\leq 2\alpha_{1}^{n_{k}}.
  2. ii.

    If n{nk:k}n\in\mathbb{N}\setminus\{n_{k}:k\in\mathbb{N}\}, then 2dnM2\leq d_{n}\leq M.

Let us exhibit the Cantor structure of EE. Define D:=Λ1[E]D\colon=\Lambda^{-1}[E] (see Section 2) and for all nn\in\mathbb{N} define

Dn:={(d1,,dn)𝒟n:(dj)j1D}.D_{n}\colon=\left\{(d_{1},\ldots,d_{n})\in\mathscr{D}^{n}:(d_{j})_{j\geq 1}\in D\right\}.

For each 𝐝Dn\mathbf{d}\in D_{n} define the compact interval

Jn(𝐝):=dn+1𝒟𝐝dDn+1I¯n+1(𝐝dn+1).J_{n}(\mathbf{d})\colon=\bigcup_{\begin{subarray}{c}d_{n+1}\in\mathscr{D}\\ \mathbf{d}d\in D_{n+1}\end{subarray}}\overline{I}_{n+1}(\mathbf{d}d_{n+1}).

We refer to the sets of the form Jn(𝐝)J_{n}(\mathbf{d}) as fundamental intervals of order nn. Clearly,

E=n𝐝DnJn(𝐝).E=\bigcap_{n\in\mathbb{N}}\bigcup_{\mathbf{d}\in D_{n}}J_{n}(\mathbf{d}).

A probability measure. Observe that for every 𝐝=(dj)j1D\mathbf{d}=(d_{j})_{j\geq 1}\in D there is a finite collection of words 𝐰1j\mathbf{w}_{1}^{j}, \ldots, 𝐰jj\mathbf{w}_{\ell_{j}}^{j} in {2,,M}N\{2,\ldots,M\}^{N} for jj\in\mathbb{N} such that, writing 𝐖j:=𝐰1j𝐰jj\mathbf{W}_{j}\colon=\mathbf{w}_{1}^{j}\cdots\mathbf{w}_{\ell_{j}}^{j},

𝐝\displaystyle\mathbf{d} =𝐰11𝐰21𝐰11dn1dn1+1𝐰12𝐰22𝐰22dn2dn2+1𝐰1k𝐰2k𝐰kkdnkdnk+1\displaystyle=\mathbf{w}_{1}^{1}\mathbf{w}_{2}^{1}\ldots\mathbf{w}_{\ell_{1}}^{1}d_{n_{1}}d_{n_{1}+1}\mathbf{w}_{1}^{2}\mathbf{w}_{2}^{2}\ldots\mathbf{w}_{\ell_{2}}^{2}d_{n_{2}}d_{n_{2}+1}\cdots\mathbf{w}_{1}^{k}\mathbf{w}_{2}^{k}\ldots\mathbf{w}_{\ell_{k}}^{k}d_{n_{k}}d_{n_{k}+1}\cdots
=𝐖1dn1dn1+1𝐖2dn2dn2+1𝐖kdnkdnk+1.\displaystyle=\mathbf{W}_{1}d_{n_{1}}d_{n_{1}+1}\mathbf{W}_{2}d_{n_{2}}d_{n_{2}+1}\ldots\mathbf{W}_{k}d_{n_{k}}d_{n_{k}+1}\ldots.

Take nn\in\mathbb{N} and 𝐝Dn\mathbf{d}\in D_{n}. First, assume that nn1+1n\leq n_{1}+1.

  1. i.

    If n=Nn=N\ell for some {1,,1}\ell\in\{1,\ldots,\ell_{1}\}, define

    μ(JN(𝐝)):=|IN(𝐝)|sα0Ns.\mu\left(J_{\ell N}(\mathbf{d})\right)\colon=\frac{|I_{N\ell}(\mathbf{d})|^{s}}{\alpha_{0}^{\ell Ns}}.
  2. ii.

    If there is some {1,,1}\ell\in\{1,\ldots,\ell_{1}\} such that (1)N+1nN1(\ell-1)N+1\leq n\leq\ell N-1, put

    μ(Jn(𝐝)):=𝐛𝒟Nn𝐝𝐛DNμ(JN(𝐝𝐛)).\mu\left(J_{n}(\mathbf{d})\right)\colon=\sum_{\begin{subarray}{c}\mathbf{b}\in\mathscr{D}^{\ell N-n}\\ \mathbf{d}\mathbf{b}\in D_{\ell N}\end{subarray}}\mu\left(J_{\ell N}(\mathbf{d}\mathbf{b})\right).
  3. iii.

    If n=n1n=n_{1}, then

    μ(Jn1(𝐝)):=μ(Jn11(d1,,dn11))2α0n1α0n1.\mu\left(J_{n_{1}}(\mathbf{d})\right)\colon=\frac{\mu\left(J_{n_{1}-1}(d_{1},\ldots,d_{n_{1}-1})\right)}{\lfloor 2\alpha_{0}^{n_{1}}\rfloor-\lceil\alpha_{0}^{n_{1}}\rceil}.
  4. iv.

    If n=n1+1n=n_{1}+1, define

    μ(Jn1+1(𝐝)):=μ(Jn11(d1,,dn11))(2α1n1α1n1)(2α0n1α0n1)\mu\left(J_{n_{1}+1}(\mathbf{d})\right)\colon=\frac{\mu\left(J_{n_{1}-1}(d_{1},\ldots,d_{n_{1}-1})\right)}{\left(\lfloor 2\alpha_{1}^{n_{1}}\rfloor-\lceil\alpha_{1}^{n-1}\rceil\right)\left(\lfloor 2\alpha_{0}^{n_{1}}\rfloor-\lceil\alpha_{0}^{n-1}\rceil\right)}

Assume that we have defined μ\mu on the fundamental sets of level 1,,nk+11,\ldots,n_{k}+1 for some kk\in\mathbb{N}. Suppose that n{nk+2,,nk+1+1}n\in\{n_{k}+2,\ldots,n_{k+1}+1\}.

  1. i.

    If n=nk+1+Nn=n_{k}+1+N\ell for some {1,,k+1}\ell\in\{1,\ldots,\ell_{k+1}\}, write

    μ(Jnk+1+N(𝐝)):=μ(Jnk+1(d1,,dnk+1)))|IN(𝐰1k+1𝐰k+1)|sα0sN.\mu\left(J_{n_{k}+1+N\ell}(\mathbf{d})\right)\colon=\mu\left(J_{n_{k}+1}(d_{1},\ldots,d_{n_{k}+1}))\right)\frac{\left|I_{N\ell}(\mathbf{w}_{1}^{k+1}\cdots\mathbf{w}_{\ell}^{k+1})\right|^{s}}{\alpha_{0}^{sN\ell}}.
  2. ii.

    When nk+1+(1)N<n<nkj+1+Nn_{k}+1+(\ell-1)N<n<n_{k}j+1+\ell N for some {1,,k+1}\ell\in\{1,\ldots,\ell_{k+1}\}, define

    μ(Jn(𝐝)):=𝐛μ(Jnk+1+N(𝐝𝐛)),\mu\left(J_{n}(\mathbf{d})\right)\colon=\sum_{\mathbf{b}}\mu\left(J_{n_{k}+1+\ell N}(\mathbf{d}\mathbf{b})\right),

    where the sum runs along those words 𝐛\mathbf{b} such that 𝐝𝐛Dnk+1+N\mathbf{d}\mathbf{b}\in D_{n_{k}+1+\ell N}.

  3. iii.

    When n=nk+1n=n_{k+1}, put

    μ(Jnk+1(𝐝)):=μ(Jnk+11(𝐝))2α0nk+1α0nk+1.\mu\left(J_{n_{k+1}}(\mathbf{d})\right)\colon=\frac{\mu\left(J_{n_{k+1}-1}(\mathbf{d})\right)}{\lfloor 2\alpha_{0}^{n_{k+1}}\rfloor-\lceil\alpha_{0}^{n_{k+1}}\rceil}.
  4. iv.

    Whenever n=nk+1+1n=n_{k+1}+1, put

    μ(Jnk+1+1(𝐝)):=μ(Jnk+11(d1,,dnk+11))(2α1nk+1α1nk+1)(2α0nk+1α0nk+1)\mu\left(J_{n_{k+1}+1}(\mathbf{d})\right)\colon=\frac{\mu\left(J_{n_{k+1}-1}(d_{1},\ldots,d_{n_{k+1}-1})\right)}{\left(\lfloor 2\alpha_{1}^{n_{k+1}}\rfloor-\lceil\alpha_{1}^{n_{k+1}}\rceil\right)\left(\lfloor 2\alpha_{0}^{n_{k+1}}\rfloor-\lceil\alpha_{0}^{n_{k+1}}\rceil\right)}

The procedure defines a probability measure on the fundamental sets of a given level. The choice of AA and BB and the definition of μ\mu ensure the consistency conditions. Hence, by the Daniell-Kolmogorov Consistency Theorem [10, Theorem 8.23], the function μ\mu is indeed a probability measure on EE.

Gap estimates.

For nn\in\mathbb{N} and 𝐝Dn\mathbf{d}\in D_{n}, let Gn(𝐝)G_{n}(\mathbf{d}) be the distance between Jn(𝐝)J_{n}(\mathbf{d}) and the fundamental interval of level nn closest to it; that is,

Gn(𝐝):=inf{d(Jn(𝐝),Jn(𝐞)):𝐞Dn,𝐞𝐝}.G_{n}(\mathbf{d})\colon=\inf\left\{d\left(J_{n}(\mathbf{d}),J_{n}(\mathbf{e})\right):\mathbf{e}\in D_{n},\,\mathbf{e}\neq\mathbf{d}\right\}.
Lemma 5.9.

For any nn\in\mathbb{N} and any 𝐝Dn\mathbf{d}\in D_{n}, we have

Gn(𝐝)1M|In(𝐝)|.G_{n}(\mathbf{d})\geq\frac{1}{M}|I_{n}(\mathbf{d})|.
Proof.

The proof is by induction on nn. Pick d{2,,M}d\in\{2,\ldots,M\}. If 2dM12\leq d\leq M-1, then

infJ1(d)supJ1(d+1)=infJ1(d)supI1(d+1)=|I1(d)|M.\inf J_{1}(d)-\sup J_{1}(d+1)=\inf J_{1}(d)-\sup I_{1}(d+1)=\frac{\left|I_{1}(d)\right|}{M}.

If 3dM3\leq d\leq M, then

supI1(d)infJ1(d1)=1M|I1(d1)|>1M|I1(d)|.\sup I_{1}(d)-\inf J_{1}(d-1)=\frac{1}{M}\left|I_{1}(d-1)\right|>\frac{1}{M}\left|I_{1}(d)\right|.

This shows the result for n=1n=1. Assume that the lemma holds for n=n~1n=\tilde{n}-1\in\mathbb{N}. Suppose that either

(14) 1<n~N11 or nk+1n~nk+1+(kN1) for some k1<\tilde{n}\leq N\ell_{1}-1\;\text{ or }\;n_{k}+1\leq\tilde{n}\leq n_{k}+1+(\ell_{k}N-1)\;\text{ for some }k\in\mathbb{N}

and consider 𝐝=(d1,,dn~)Dn~\mathbf{d}=(d_{1},\ldots,d_{\tilde{n}})\in D_{\tilde{n}}. When 2dn~M12\leq d_{\tilde{n}}\leq M-1, we have

infJn~(𝐝)supJn~(d1,,dn~+1)\displaystyle\inf J_{\tilde{n}}(\mathbf{d})-\sup J_{\tilde{n}}\left(d_{1},\ldots,d_{\tilde{n}}+1\right) =infJn~(𝐝)supIn~(d1,,dn~+1)\displaystyle=\inf J_{\tilde{n}}(\mathbf{d})-\sup I_{\tilde{n}}\left(d_{1},\ldots,d_{\tilde{n}}+1\right)
=infJn~(𝐝)infIn~(𝐝)\displaystyle=\inf J_{\tilde{n}}(\mathbf{d})-\inf I_{\tilde{n}}\left(\mathbf{d}\right)
=1M|In~(𝐝)|.\displaystyle=\frac{1}{M}\left|I_{\tilde{n}}\left(\mathbf{d}\right)\right|.

If 3dn~M3\leq d_{\tilde{n}}\leq M, then

infJn~(d1,,dn~1)supJn~(𝐝)\displaystyle\inf J_{\tilde{n}}(d_{1},\ldots,d_{\tilde{n}}-1)-\sup J_{\tilde{n}}(\mathbf{d}) =infJn~(d1,,dn~1)supIn~(𝐝)\displaystyle=\inf J_{\tilde{n}}(d_{1},\ldots,d_{\tilde{n}}-1)-\sup I_{\tilde{n}}(\mathbf{d})
=infJn~(d1,,dn~1)infIn~(d1,,dn~1)\displaystyle=\inf J_{\tilde{n}}(d_{1},\ldots,d_{\tilde{n}}-1)-\inf I_{\tilde{n}}(d_{1},\ldots,d_{\tilde{n}}-1)
=1M|In~(d1,,dn~1)|\displaystyle=\frac{1}{M}\left|I_{\tilde{n}}(d_{1},\ldots,d_{\tilde{n}}-1)\right|
>1M|In~(𝐝)|.\displaystyle>\frac{1}{M}\left|I_{\tilde{n}}(\mathbf{d})\right|.

We conclude that, provided 3dn~M13\leq d_{\tilde{n}}\leq M-1 or 𝐝=(2,2,,2)\mathbf{d}=(2,2,\ldots,2), we have Gn~(𝐝)>M1|In~(𝐝)|G_{\tilde{n}}(\mathbf{d})>M^{-1}|I_{\tilde{n}}(\mathbf{d})|. Assume that dn~=2d_{\tilde{n}}=2 and let j{1,,n~1}j\in\{1,\ldots,\tilde{n}-1\} be the largest index such that dj3d_{j}\geq 3. Then, the neighbor to the right of Jn~(𝐝)J_{\tilde{n}}(\mathbf{d}) is Jn~(d1,,dj1,M,,M)J_{\tilde{n}}(d_{1},\ldots,d_{j-1},M,\ldots,M) and, using the induction hypothesis on the second inequality, we have

infJn~(d1,,dj1,M,,M)supJn~(𝐝)\displaystyle\inf J_{\tilde{n}}(d_{1},\ldots,d_{j-1},M,\ldots,M)-\sup J_{\tilde{n}}(\mathbf{d}) >infJj(d1,,dj1)supJj(d1,,dj)\displaystyle>\inf J_{j}(d_{1},\ldots,d_{j-1})-\sup J_{j}(d_{1},\ldots,d_{j})
>1M|Ij(d1,,dj)|\displaystyle>\frac{1}{M}\left|I_{j}(d_{1},\ldots,d_{j})\right|
>1M|In~(𝐝)|.\displaystyle>\frac{1}{M}\left|I_{\tilde{n}}(\mathbf{d})\right|.

A similar argument holds when dn~=Md_{\tilde{n}}=M. This proves the result for n~\tilde{n} assuming (14).

Suppose that n~=nk1\tilde{n}=n_{k}-1 for some kk\in\mathbb{N}. If 2dn~M12\leq d_{\tilde{n}}\leq M-1, then

infJn~(𝐝)\displaystyle\inf J_{\tilde{n}}(\mathbf{d}) supJn~(d1,,dn~+1)=\displaystyle-\sup J_{\tilde{n}}(d_{1},\ldots,d_{\tilde{n}}+1)=
=(infJn~(𝐝)infIn~(𝐝))+(supIn~(d1,,dn~+1)supJn~(d1,,dn~+1))\displaystyle=\left(\inf J_{\tilde{n}}(\mathbf{d})-\inf I_{\tilde{n}}(\mathbf{d})\right)+\left(\sup I_{\tilde{n}}(d_{1},\ldots,d_{\tilde{n}}+1)-\sup J_{\tilde{n}}(d_{1},\ldots,d_{\tilde{n}}+1)\right)
=12α0nj|In~(𝐝)|+(11α0nj1)|In~(d1,,dn~+1)|\displaystyle=\frac{1}{\lceil 2\alpha_{0}^{n_{j}}\rceil}\left|I_{\tilde{n}}(\mathbf{d})\right|+\left(1-\frac{1}{\lfloor\alpha_{0}^{n_{j}}\rfloor-1}\right)\left|I_{\tilde{n}}(d_{1},\ldots,d_{\tilde{n}}+1)\right|
>(11α0nj1)dn~1dn~+1|In~(𝐝)|\displaystyle>\left(1-\frac{1}{\lfloor\alpha_{0}^{n_{j}}\rfloor-1}\right)\frac{d_{\tilde{n}}-1}{d_{\tilde{n}}+1}\left|I_{\tilde{n}}(\mathbf{d})\right|
=(11α0nj1)(12dn~+1)|In~(𝐝)|\displaystyle=\left(1-\frac{1}{\lfloor\alpha_{0}^{n_{j}}\rfloor-1}\right)\left(1-\frac{2}{d_{\tilde{n}}+1}\right)\left|I_{\tilde{n}}(\mathbf{d})\right|
>(11α0nj1)(12M)|In~(𝐝)|>1M|In~(𝐝)|.\displaystyle>\left(1-\frac{1}{\lfloor\alpha_{0}^{n_{j}}\rfloor-1}\right)\left(1-\frac{2}{M}\right)\left|I_{\tilde{n}}(\mathbf{d})\right|>\frac{1}{M}\left|I_{\tilde{n}}(\mathbf{d})\right|.

The last inequality follows from M>4M>4. A similar argument shows that, when 3dn~M3\leq d_{\tilde{n}}\leq M,

infJn~(d1,,dn~1)supJn~(𝐝)>1M|In~(d1,,dn~1)|>1M|In~(𝐝)|.\inf J_{\tilde{n}}(d_{1},\ldots,d_{\tilde{n}}-1)-\sup J_{\tilde{n}}(\mathbf{d})>\frac{1}{M}\left|I_{\tilde{n}}(d_{1},\ldots,d_{\tilde{n}}-1)\right|\\ >\frac{1}{M}\left|I_{\tilde{n}}(\mathbf{d})\right|.

A slight modification of this argument yields the result for n~=nk\tilde{n}=n_{k}. ∎

Length estimates.

For any nn\in\mathbb{N}, let cnc_{n} and CnC_{n} be

cn:=min{dn:(dj)j1D} and Cn:=max{dn:(dj)j1D}.c_{n}\colon=\min\{d_{n}:(d_{j})_{j\geq 1}\in D\}\quad\text{ and }\quad C_{n}\colon=\max\{d_{n}:(d_{j})_{j\geq 1}\in D\}.

Hence, when 𝐝=(d1,,dn)Dn\mathbf{d}=(d_{1},\ldots,d_{n})\in D_{n}, we have

|Jn(𝐝)|=(1cn+111Cn+1)j=1n1dj(dj1)=(1cn+111Cn+1)|In(𝐝)||J_{n}(\mathbf{d})|=\left(\frac{1}{c_{n+1}-1}-\frac{1}{C_{n+1}}\right)\prod_{j=1}^{n}\frac{1}{d_{j}(d_{j}-1)}=\left(\frac{1}{c_{n+1}-1}-\frac{1}{C_{n+1}}\right)|I_{n}(\mathbf{d})|

In particular, when nnk1n\neq n_{k}-1 and nnkn\neq n_{k} for all kk\in\mathbb{N},

|Jn(𝐝)|=(11M)j=1n1dj(dj1)=(11M)|In(𝐝)|,|J_{n}(\mathbf{d})|=\left(1-\frac{1}{M}\right)\prod_{j=1}^{n}\frac{1}{d_{j}(d_{j}-1)}=\left(1-\frac{1}{M}\right)|I_{n}(\mathbf{d})|,

which gives

(15) 12|In(𝐝)||Jn(𝐝)|(11M)|In(𝐝)|.\frac{1}{2}|I_{n}(\mathbf{d})|\leq|J_{n}(\mathbf{d})|\leq\left(1-\frac{1}{M}\right)|I_{n}(\mathbf{d})|.

For n=nk1n=n_{k}-1, we have

|Jnk1(𝐝)|=(1α0nk112α0nk)j=1nk11dj(dj1)=(1α0nk112α0nk)|Ink1(𝐝)|,|J_{n_{k}-1}(\mathbf{d})|=\left(\frac{1}{\lceil\alpha_{0}^{n_{k}}\rceil-1}-\frac{1}{\lfloor 2\alpha_{0}^{n_{k}}\rfloor}\right)\prod_{j=1}^{n_{k}-1}\frac{1}{d_{j}(d_{j}-1)}=\left(\frac{1}{\lceil\alpha_{0}^{n_{k}}\rceil-1}-\frac{1}{\lfloor 2\alpha_{0}^{n_{k}}\rfloor}\right)\left|I_{n_{k}-1}(\mathbf{d})\right|,

so

(16) 12α0nk|Ink1(𝐝)||Jnk1(𝐝)|1α0nk|Ink1(𝐝)|.\frac{1}{2\alpha_{0}^{n_{k}}}|I_{n_{k}-1}(\mathbf{d})|\leq|J_{n_{k}-1}(\mathbf{d})|\leq\frac{1}{\alpha_{0}^{n_{k}}}|I_{n_{k}-1}(\mathbf{d})|.

We can replace the constant 11 in the upper bound with an arbitrary constant strictly larger than 12\frac{1}{2}, but we would have to consider larger values of NN.

Similarly, for n=nkn=n_{k},

|Jnk(𝐝)|=(1α1nk112α1nk)j=1nk1dj(dj1)=(1α1nk112α1nk)|Ink(𝐝)||J_{n_{k}}(\mathbf{d})|=\left(\frac{1}{\lceil\alpha_{1}^{n_{k}}\rceil-1}-\frac{1}{\lfloor 2\alpha_{1}^{n_{k}}\rfloor}\right)\prod_{j=1}^{n_{k}}\frac{1}{d_{j}(d_{j}-1)}=\left(\frac{1}{\lceil\alpha_{1}^{n_{k}}\rceil-1}-\frac{1}{\lfloor 2\alpha_{1}^{n_{k}}\rfloor}\right)\left|I_{n_{k}}(\mathbf{d})\right|

so

12α1nk|Ink(𝐝)||Jnk(𝐝)|1α1nk|Ink(𝐝)|.\frac{1}{2\alpha_{1}^{n_{k}}}|I_{n_{k}}(\mathbf{d})|\leq|J_{n_{k}}(\mathbf{d})|\leq\frac{1}{\alpha_{1}^{n_{k}}}|I_{n_{k}}(\mathbf{d})|.

Again, we can replace the constant 11 in the upper bound with an arbitrary constant strictly larger than 12\frac{1}{2} at the expense of a larger NN.

Lemma 5.10.

Let kk\in\mathbb{N} be arbitrary.

  1. 1.

    For any 𝐝=(d1,,dnk)Dnk\mathbf{d}=(d_{1},\ldots,d_{n_{k}})\in D_{n_{k}}, we have

    18α0nkα1nk|Jnk1(d1,,dnk1)|<|Jnk(𝐝)|.\frac{1}{8\alpha_{0}^{n_{k}}\alpha_{1}^{n_{k}}}\left|J_{n_{k}-1}(d_{1},\ldots,d_{n_{k}-1})\right|<\left|J_{n_{k}}(\mathbf{d})\right|.
  2. 2.

    For any 𝐝=(d1,,dnk+1)Dnk+1\mathbf{d}=(d_{1},\ldots,d_{n_{k}+1})\in D_{n_{k}+1}, we have

    126α0nkα12nk|Jnk1(d1,,dnk1)|<|Jnk+1(𝐝)|.\frac{1}{2^{6}\alpha_{0}^{n_{k}}\alpha_{1}^{2n_{k}}}\left|J_{n_{k}-1}(d_{1},\ldots,d_{n_{k}-1})\right|<\left|J_{n_{k}+1}(\mathbf{d})\right|.
Proof.
  1. 1.

    By our previous discussion,

    |Jnk(𝐝)|\displaystyle\left|J_{n_{k}}(\mathbf{d})\right| =(1α1nk112α1nk)|Ink(𝐝)|\displaystyle=\left(\frac{1}{\lceil\alpha_{1}^{n_{k}}\rceil-1}-\frac{1}{\lfloor 2\alpha_{1}^{n_{k}}\rfloor}\right)\left|I_{n_{k}}(\mathbf{d})\right|
    =(1α1nk112α1nk)|Ink1(d1,,dnk1)|dnk(dnk1)\displaystyle=\left(\frac{1}{\lceil\alpha_{1}^{n_{k}}\rceil-1}-\frac{1}{\lfloor 2\alpha_{1}^{n_{k}}\rfloor}\right)\frac{\left|I_{n_{k}-1}(d_{1},\ldots,d_{n_{k}-1})\right|}{d_{n_{k}}(d_{n_{k}}-1)}
    >18α1nkα0nkα0nk|Ink1(d1,,dnk1)|\displaystyle>\frac{1}{8\alpha_{1}^{n_{k}}\alpha_{0}^{n_{k}}\alpha_{0}^{n_{k}}}\left|I_{n_{k}-1}(d_{1},\ldots,d_{n_{k}-1})\right|
    >18α1nkα0nk|Jnk1(d1,,dnk1)|\displaystyle>\frac{1}{8\alpha_{1}^{n_{k}}\alpha_{0}^{n_{k}}}\left|J_{n_{k}-1}(d_{1},\ldots,d_{n_{k}-1})\right| (by (16)).\displaystyle\text{(by \eqref{Ec:LEST:02})}.
  2. 2.

    Similarly,

    |Jnk+1(𝐝)|\displaystyle\left|J_{n_{k}+1}(\mathbf{d})\right| =(11M)|Ink+1(𝐝)|\displaystyle=\left(1-\frac{1}{M}\right)\left|I_{n_{k}+1}(\mathbf{d})\right|
    =(11M)|Ink1(d1,,dnk1)|dnk(dnk1)dnk+1(dnk+11)\displaystyle=\left(1-\frac{1}{M}\right)\frac{\left|I_{n_{k}-1}(d_{1},\ldots,d_{n_{k}-1})\right|}{d_{n_{k}}(d_{n_{k}}-1)d_{n_{k}+1}(d_{n_{k}+1}-1)}
    >126|Ink1(d1,,dnk1)|α02nkα12nk\displaystyle>\frac{1}{2^{6}}\frac{\left|I_{n_{k}-1}(d_{1},\ldots,d_{n_{k}-1})\right|}{\alpha_{0}^{2n_{k}}\alpha_{1}^{2n_{k}}}
    >126|Jnk1(d1,,dnk1)|α0nkα12nk\displaystyle>\frac{1}{2^{6}}\frac{\left|J_{n_{k}-1}(d_{1},\ldots,d_{n_{k}-1})\right|}{\alpha_{0}^{n_{k}}\alpha_{1}^{2n_{k}}} (by (16)).\displaystyle\text{(by \eqref{Ec:LEST:02})}.

Measure of the fundamental intervals.

We now compute upper estimates of μ(Jn(𝐝))\mu(J_{n}(\mathbf{d})) for all nn\in\mathbb{N} and 𝐝Dn\mathbf{d}\in D_{n}.

Lemma 5.11.

The following statements hold:

1α0=(1α0α1)s and 1α0α1(1α0α12)s.\frac{1}{\alpha_{0}}=\left(\frac{1}{\alpha_{0}\alpha_{1}}\right)^{s}\quad\text{ and }\quad\frac{1}{\alpha_{0}\alpha_{1}}\leq\left(\frac{1}{\alpha_{0}\alpha_{1}^{2}}\right)^{s}.
Proof.

See [2, Lemma 6.6]. ∎

For each kk\in\mathbb{N}, define the number γk>0\gamma_{k}>0 by

γk1:=(12α0nk)(12α1nk).\gamma_{k}^{-1}\colon=\left(1-\frac{2}{\alpha_{0}^{n_{k}}}\right)\left(1-\frac{2}{\alpha_{1}^{n_{k}}}\right).

We will use the following obvious facts:

  1. 1.

    Since α0>1\alpha_{0}>1 and α1>1\alpha_{1}>1, the series kα0nk\sum_{k}\alpha_{0}^{-n_{k}} and kα0nk\sum_{k}\alpha_{0}^{-n_{k}} are convergent and, thus, so is the product C:=kγkC^{\prime}\colon=\prod_{k\in\mathbb{N}}\gamma_{k} (see [17, Theorem 7.32]).

  2. 2.

    For each kk\in\mathbb{N},

    1(2α1nk1α1nk1)(2α0nk1α0nk1)<γkα0nkα0nk.\frac{1}{\left(\lfloor 2\alpha_{1}^{n_{k-1}}\rfloor-\lceil\alpha_{1}^{n_{k-1}}\rceil\right)\left(\lfloor 2\alpha_{0}^{n_{k-1}}\rfloor-\lceil\alpha_{0}^{n_{k-1}}\rceil\right)}<\frac{\gamma_{k}}{\alpha_{0}^{n_{k}}\alpha_{0}^{n_{k}}}.
Lemma 5.12.

For every k2k\in\mathbb{N}_{\geq 2} and every 𝐝Dnk1\mathbf{d}\in D_{n_{k}-1}, we have

μ(Jnk1(𝐝))<γk1(1α0Nkα1nk1)s(|INk(𝐖k)|α0nk1α1nk1)sμ(Jnk11(d1,,dnk11)).\mu\left(J_{n_{k}-1}(\mathbf{d})\right)<\gamma_{k-1}\left(\frac{1}{\alpha_{0}^{N\ell_{k}}\alpha_{1}^{n_{k-1}}}\right)^{s}\left(\frac{\left|I_{N\ell_{k}}(\mathbf{W}_{k})\right|}{\alpha_{0}^{n_{k-1}}\alpha_{1}^{n_{k-1}}}\right)^{s}\mu\left(J_{n_{k-1}-1}(d_{1},\ldots,d_{n_{k-1}-1})\right).
Proof.

Take kk and 𝐝\mathbf{d} as in the statement. The lemma follows from the definition of μ\mu and nk1=nk1+Nk+1n_{k}-1=n_{k-1}+N\ell_{k}+1:

μ(Jnk1(𝐝))\displaystyle\mu\left(J_{n_{k}-1}(\mathbf{d})\right) =|INk(𝐖k)|sα0Nksμ(Jnk1+1(d1,,dnk1+1))\displaystyle=\frac{\left|I_{N\ell_{k}}\left(\mathbf{W}_{k}\right)\right|^{s}}{\alpha_{0}^{N\ell_{k}s}}\mu\left(J_{n_{k-1}+1}(d_{1},\ldots,d_{n_{k-1}+1})\right)
=|INk(𝐖k)|sα0Nksμ(Jnk11(d1,,dnk11))(2α1nk1α1nk1)(2α0nk1α0nk1)\displaystyle=\frac{\left|I_{N\ell_{k}}\left(\mathbf{W}_{k}\right)\right|^{s}}{\alpha_{0}^{N\ell_{k}s}}\frac{\mu\left(J_{n_{k-1}-1}(d_{1},\ldots,d_{n_{k-1}-1})\right)}{\left(\lfloor 2\alpha_{1}^{n_{k-1}}\rfloor-\lceil\alpha_{1}^{n_{k-1}}\rceil\right)\left(\lfloor 2\alpha_{0}^{n_{k-1}}\rfloor-\lceil\alpha_{0}^{n_{k-1}}\rceil\right)}
<γk1α0Nks|INk(𝐖k)|sα0nk1α1nk1μ(Jnk11(d1,,dnk11))\displaystyle<\frac{\gamma_{k-1}}{\alpha_{0}^{N\ell_{k}s}}\frac{\left|I_{N\ell_{k}}\left(\mathbf{W}_{k}\right)\right|^{s}}{\alpha_{0}^{n_{k-1}}\alpha_{1}^{n_{k-1}}}\mu\left(J_{n_{k-1}-1}(d_{1},\ldots,d_{n_{k-1}-1})\right)
<γk1α0Nks|INk(𝐖k)|sα0snk1α12snk1μ(Jnk11(d1,,dnk11)).\displaystyle<\frac{\gamma_{k-1}}{\alpha_{0}^{N\ell_{k}s}}\frac{\left|I_{N\ell_{k}}\left(\mathbf{W}_{k}\right)\right|^{s}}{\alpha_{0}^{sn_{k-1}}\alpha_{1}^{2sn_{k-1}}}\mu\left(J_{n_{k-1}-1}(d_{1},\ldots,d_{n_{k-1}-1})\right).

Lemma 5.13.

There exists a constant C=C(B,M,N,s,𝐭)>0C=C(B,M,N,s,\mathbf{t})>0 such that

μ(Jn(𝐝))C|Jn(𝐝)|s for all n and all 𝐝Dn.\mu\left(J_{n}(\mathbf{d})\right)\leq C|J_{n}(\mathbf{d})|^{s}\quad\text{ for all }n\in\mathbb{N}\text{ and all }\mathbf{d}\in D_{n}.
Proof.

Pick nn\in\mathbb{N}. First, we further assume that 1nn1+11\leq n\leq n_{1}+1.

  1. i.

    Suppose that n=Nn=\ell N for some {1,,1}\ell\in\{1,\ldots,\ell_{1}\}. When 1111\leq\ell\leq\ell_{1}-1, using (15) we get

    μ(JN(𝐝))=1α0Ns|IN(𝐝)|s=2sα0Ns|IN(𝐝)|s2s<2sα0Ns|JN(𝐝)|s<|JN(𝐝)|s.\mu\left(J_{\ell N}(\mathbf{d})\right)=\frac{1}{\alpha_{0}^{N\ell s}}\,|I_{\ell N}(\mathbf{d})|^{s}=\frac{2^{s}}{\alpha_{0}^{N\ell s}}\,\frac{|I_{\ell N}(\mathbf{d})|^{s}}{2^{s}}<\frac{2^{s}}{\alpha_{0}^{N\ell s}}\,|J_{\ell N}(\mathbf{d})|^{s}<|J_{\ell N}(\mathbf{d})|^{s}.

    When =1\ell=\ell_{1}, we have n=1N=n11n=\ell_{1}N=n_{1}-1 and, by (16),

    μ(J1N(𝐝))=2sα0s|In11(𝐝)|s2sα0sn1<2sα0s|J1N(𝐝)|s<2α0|J1N(𝐝)|s.\mu(J_{\ell_{1}N}(\mathbf{d}))=2^{s}\alpha_{0}^{s}\,\frac{|I_{n_{1}-1}(\mathbf{d})|^{s}}{2^{s}\alpha_{0}^{sn_{1}}}<2^{s}\alpha_{0}^{s}\,|J_{\ell_{1}N}(\mathbf{d})|^{s}<2\alpha_{0}\,|J_{\ell_{1}N}(\mathbf{d})|^{s}.
  2. ii.

    If (1)N+1nN1(\ell-1)N+1\leq n\leq\ell N-1 for some {1,,1}\ell\in\{1,\ldots,\ell_{1}\}, then

    μ(Jn(𝐝))\displaystyle\mu\left(J_{n}(\mathbf{d})\right) =1α0Ns𝐛𝒟Nn𝐝𝐛DN|IN(𝐝𝐛)|s\displaystyle=\frac{1}{\alpha_{0}^{N\ell s}}\,\sum_{\begin{subarray}{c}\mathbf{b}\in\mathscr{D}^{\ell N-n}\\ \mathbf{d}\mathbf{b}\in D_{\ell N}\end{subarray}}\left|I_{\ell N}(\mathbf{d}\mathbf{b})\right|^{s}
    =|In(𝐝)|sα0ns𝐛𝒟Nn𝐝𝐛DN|INn(𝐛)|sα0(Nn)s\displaystyle=\frac{|I_{n}(\mathbf{d})|^{s}}{\alpha_{0}^{ns}}\,\sum_{\begin{subarray}{c}\mathbf{b}\in\mathscr{D}^{\ell N-n}\\ \mathbf{d}\mathbf{b}\in D_{\ell N}\end{subarray}}\frac{\left|I_{\ell N-n}(\mathbf{b})\right|^{s}}{\alpha_{0}^{(N\ell-n)s}}
    =|In(𝐝)|sα0ns(d=2M1ds(d1)sα0s)Nn\displaystyle=\frac{|I_{n}(\mathbf{d})|^{s}}{\alpha_{0}^{ns}}\,\left(\sum_{d=2}^{M}\frac{1}{d^{s}(d-1)^{s}\alpha_{0}^{s}}\right)^{\ell N-n}
    =|In(𝐝)|sα0ns=2sα0ns|In(𝐝)|s2s<2sα0ns|Jn(𝐝)|s<|Jn(𝐝)|s.\displaystyle=\frac{|I_{n}(\mathbf{d})|^{s}}{\alpha_{0}^{ns}}\,=\frac{2^{s}}{\alpha_{0}^{ns}}\,\frac{|I_{n}(\mathbf{d})|^{s}}{2^{s}}<\frac{2^{s}}{\alpha_{0}^{ns}}\,|J_{n}(\mathbf{d})|^{s}<|J_{n}(\mathbf{d})|^{s}.
  3. iii.

    If n=n1n=n_{1}, then

    μ(Jn1(𝐝))\displaystyle\mu\left(J_{n_{1}}(\mathbf{d})\right) =μ(Jn11(d1,,dn11))2α0n1α0n1\displaystyle=\frac{\mu\left(J_{n_{1}-1}(d_{1},\ldots,d_{n_{1}-1})\right)}{\lfloor 2\alpha_{0}^{n_{1}}\rfloor-\lceil\alpha_{0}^{n_{1}}\rceil}
    <2α0n1μ(Jn11(d1,,dn11))\displaystyle<\frac{2}{\alpha_{0}^{n_{1}}}\mu\left(J_{n_{1}-1}(d_{1},\ldots,d_{n_{1}-1})\right)
    <2α0n1 2α0|Jn11(d1,,dn11)|s\displaystyle<\frac{2}{\alpha_{0}^{n_{1}}}\,2\alpha_{0}|J_{n_{1}-1}(d_{1},\ldots,d_{n_{1}-1})|^{s}
    =22α08|Jn11(d1,,dn11)|s8(α0n1α1n1)s<25α0|Jn1(𝐝)|s.\displaystyle=2^{2}\,\alpha_{0}8\frac{|J_{n_{1}-1}(d_{1},\ldots,d_{n_{1}-1})|^{s}}{8\left(\alpha_{0}^{n_{1}}\alpha_{1}^{n_{1}}\right)^{s}}<2^{5}\alpha_{0}|J_{n_{1}}(\mathbf{d})|^{s}.

    We used Lemma 5.11 in the last inequality.

  4. iv.

    When n=n1+1n=n_{1}+1, we have

    μ(Jn1+1(𝐝))\displaystyle\mu\left(J_{n_{1}+1}(\mathbf{d})\right) <22μ(Jn1+1(d1,,dnk1))α0n1α1n1\displaystyle<2^{2}\frac{\mu\left(J_{n_{1}+1}(d_{1},\ldots,d_{n_{k}-1})\right)}{\alpha_{0}^{n_{1}}\alpha_{1}^{n_{1}}}
    22μ(Jn1+1(d1,,dnk1))α0n1sα12n1s\displaystyle\leq 2^{2}\frac{\mu\left(J_{n_{1}+1}(d_{1},\ldots,d_{n_{k}-1})\right)}{\alpha_{0}^{n_{1}s}\alpha_{1}^{2n_{1}s}}
    <23α0|Jn1+1(d1,,dnk1)|sα0n1sα12n1s<29α0|Jn1+1(𝐝)|s.\displaystyle<2^{3}\alpha_{0}\,\frac{\left|J_{n_{1}+1}(d_{1},\ldots,d_{n_{k}-1})\right|^{s}}{\alpha_{0}^{n_{1}s}\alpha_{1}^{2n_{1}s}}<2^{9}\alpha_{0}\,\left|J_{n_{1}+1}(\mathbf{d})\right|^{s}.

Assume now that n1+1<nn_{1}+1<n and pick k2k\in\mathbb{N}_{\geq 2} such that nk+1<n<nk+1+1n_{k}+1<n<n_{k+1}+1.

  1. i.

    If n=nk1n=n_{k}-1, we apply Lemma 5.12 repeatedly to obtain

    μ(Jnk1(𝐝))\displaystyle\mu\left(J_{n_{k}-1}(\mathbf{d})\right) <γk1(1α0Nkα1nk1)s(|INk(𝐖k)|α0nk1α1nk1)sμ(Jnk11(d1,,dnk11))\displaystyle<\gamma_{k-1}\left(\frac{1}{\alpha_{0}^{N\ell_{k}}\alpha_{1}^{n_{k-1}}}\right)^{s}\left(\frac{\left|I_{N\ell_{k}}(\mathbf{W}_{k})\right|}{\alpha_{0}^{n_{k-1}}\alpha_{1}^{n_{k-1}}}\right)^{s}\mu\left(J_{n_{k-1}-1}(d_{1},\ldots,d_{n_{k-1}-1})\right)
    <γ1γk1(1α0N(1++k)α1n1++nk1)s(|IN1(𝐖1)||INk(𝐖k)|α0n1α1n1α0nk1α1nk1)s\displaystyle<\gamma_{1}\cdots\gamma_{k-1}\left(\frac{1}{\alpha_{0}^{N\left(\ell_{1}+\ldots+\ell_{k}\right)}\alpha_{1}^{n_{1}+\ldots+n_{k-1}}}\right)^{s}\left(\frac{\left|I_{N\ell_{1}}(\mathbf{W}_{1})\right|\cdots\left|I_{N\ell_{k}}(\mathbf{W}_{k})\right|}{\alpha_{0}^{n_{1}}\alpha_{1}^{n_{1}}\cdots\alpha_{0}^{n_{k-1}}\alpha_{1}^{n_{k-1}}}\right)^{s}
    <C(1α0N(1++k)α1n1++nk1)s|Ink1(𝐝)|s\displaystyle<C^{\prime}\left(\frac{1}{\alpha_{0}^{N\left(\ell_{1}+\ldots+\ell_{k}\right)}\alpha_{1}^{n_{1}+\ldots+n_{k-1}}}\right)^{s}\left|I_{n_{k}-1}(\mathbf{d})\right|^{s}
    C(2α0nkα0N(1++k)α1n1++nk1)s|Jnk1(𝐝)|s\displaystyle\leq C^{\prime}\left(\frac{2\alpha_{0}^{n_{k}}}{\alpha_{0}^{N\left(\ell_{1}+\ldots+\ell_{k}\right)}\alpha_{1}^{n_{1}+\ldots+n_{k-1}}}\right)^{s}\left|J_{n_{k}-1}(\mathbf{d})\right|^{s}
    <2C(1α0N(1++k)nkα1n1++nk1)s|Jnk1(𝐝)|s\displaystyle<2C^{\prime}\left(\frac{1}{\alpha_{0}^{N\left(\ell_{1}+\ldots+\ell_{k}\right)-n_{k}}\alpha_{1}^{n_{1}+\ldots+n_{k-1}}}\right)^{s}\left|J_{n_{k}-1}(\mathbf{d})\right|^{s}
    =2C(α02k1α1n1++nk1)s|Jnk1(𝐝)|s\displaystyle=2C^{\prime}\left(\frac{\alpha_{0}^{2k-1}}{\alpha_{1}^{n_{1}+\ldots+n_{k-1}}}\right)^{s}\left|J_{n_{k}-1}(\mathbf{d})\right|^{s}
    <C|Jnk1(𝐝)|s\displaystyle<C^{\prime}\left|J_{n_{k}-1}(\mathbf{d})\right|^{s} (by (13)) .\displaystyle\text{ (by \eqref{EQ:LWEtB:00}) }.
  2. ii.

    Suppose we had n=nkn=n_{k}, then

    μ(Jnk(𝐝))\displaystyle\mu\left(J_{n_{k}}(\mathbf{d})\right) <2α0nkμ(Jnk1(d1,,dnk1))\displaystyle<\frac{2}{\alpha_{0}^{n_{k}}}\mu\left(J_{n_{k}-1}(d_{1},\ldots,d_{n_{k}-1})\right)
    <2α0nkC|Jnk1(d1,,dnk1)|s\displaystyle<\frac{2}{\alpha_{0}^{n_{k}}}C^{\prime}\left|J_{n_{k}-1}(d_{1},\ldots,d_{n_{k}-1})\right|^{s}
    <2C|Jnk1(d1,,dnk1)|sα02nksα12nks\displaystyle<2C^{\prime}\frac{\left|J_{n_{k}-1}(d_{1},\ldots,d_{n_{k}-1})\right|^{s}}{\alpha_{0}^{2n_{k}s}\alpha_{1}^{2n_{k}s}} (by Lemma 5.11)
    <24C|Jnk(𝐝)|s\displaystyle<2^{4}C^{\prime}\left|J_{n_{k}}(\mathbf{d})\right|^{s} (by Lemma 5.10).
  3. iii.

    If n=nk+1n=n_{k}+1, then

    μ(Jnk+1(𝐝))\displaystyle\mu\left(J_{n_{k}+1}(\mathbf{d})\right) <22α0nkα1nkμ(Jnk1(d1,,dnk1))\displaystyle<\frac{2^{2}}{\alpha_{0}^{n_{k}}\alpha_{1}^{n_{k}}}\mu\left(J_{n_{k}-1}(d_{1},\ldots,d_{n_{k}-1})\right)
    <22α0nkα1nkC|Jnk1(d1,,dnk1)|s\displaystyle<\frac{2^{2}}{\alpha_{0}^{n_{k}}\alpha_{1}^{n_{k}}}C^{\prime}\left|J_{n_{k}-1}(d_{1},\ldots,d_{n_{k}-1})\right|^{s}
    <22C(|Jnk1(d1,,dnk1)|α0nkα12nk)s\displaystyle<2^{2}C^{\prime}\left(\frac{\left|J_{n_{k}-1}(d_{1},\ldots,d_{n_{k}-1})\right|}{\alpha_{0}^{n_{k}}\alpha_{1}^{2n_{k}}}\right)^{s}
    <22 26sC|Jnk+1(𝐝)|s\displaystyle<2^{2}\,2^{6s}\,C^{\prime}\left|J_{n_{k}+1}(\mathbf{d})\right|^{s} (by Lemma 5.11)
    <28C|Jnk+1(𝐝)|s.\displaystyle<2^{8}\,C^{\prime}\left|J_{n_{k}+1}(\mathbf{d})\right|^{s}.
  4. iv.

    If n=nk+1+Nn=n_{k}+1+\ell N for some 1<k+11\leq\ell<\ell_{k+1}, then

    μ(Jnk+1+N(𝐝))\displaystyle\mu\left(J_{n_{k}+1+\ell N}(\mathbf{d})\right) =|IN(𝐰1k+1𝐰k+1)|sα0Nsμ(Jnk+1(d1,,dnk+1))\displaystyle=\frac{\left|I_{N\ell}(\mathbf{w}_{1}^{k+1}\cdots\mathbf{w}_{\ell}^{k+1})\right|^{s}}{\alpha_{0}^{N\ell s}}\mu\left(J_{n_{k}+1}(d_{1},\ldots,d_{n_{k}+1})\right)
    =28Cα0Ns|IN(𝐰1k+1𝐰k+1)|s|Jnk+1(d1,,dnk+1)|s\displaystyle=\frac{2^{8}\,C^{\prime}}{\alpha_{0}^{N\ell s}}\left|I_{N\ell}(\mathbf{w}_{1}^{k+1}\cdots\mathbf{w}_{\ell}^{k+1})\right|^{s}\left|J_{n_{k}+1}(d_{1},\ldots,d_{n_{k}+1})\right|^{s}
    <28C|Ink+1(d1,,dnk+1)|s|IN(𝐰1k+1𝐰k+1)|sα0Ns\displaystyle<2^{8}\,C^{\prime}\left|I_{n_{k}+1}(d_{1},\ldots,d_{n_{k}+1})\right|^{s}\frac{\left|I_{N\ell}(\mathbf{w}_{1}^{k+1}\cdots\mathbf{w}_{\ell}^{k+1})\right|^{s}}{\alpha_{0}^{N\ell s}}
    <28C|Jnk+1+N(𝐝)|s.\displaystyle<2^{8}\,C^{\prime}\left|J_{n_{k}+1+N\ell}(\mathbf{d})\right|^{s}.

    The last inequality is shown as in the case k=1k=1.

  5. v.

    Assume that nk+2+(1)Nn<nk+1+Nn_{k}+2+(\ell-1)N\leq n<n_{k}+1+\ell N with 1k1\leq\ell\leq\ell_{k}, then

    μ(Jn(𝐝))\displaystyle\mu(J_{n}(\mathbf{d})) <μ(Jnk+1+(1)N(d1,,dnk+1+(1)N))\displaystyle<\mu\left(J_{n_{k}+1+(\ell-1)N}(d_{1},\ldots,d_{n_{k}+1+(\ell-1)N})\right)
    <28C|Jnk+1+(1)N(d1,,dnk+1+(1)N)|s.\displaystyle<2^{8}\,C^{\prime}\left|J_{n_{k}+1+(\ell-1)N}(d_{1},\ldots,d_{n_{k}+1+(\ell-1)N})\right|^{s}.

    The discussion preceding Lemma 5.10 tells us that

    |Jnk+1+(1)N(d1,,dnk+1+(1)N)|\displaystyle\left|J_{n_{k}+1+(\ell-1)N}(d_{1},\ldots,d_{n_{k}+1+(\ell-1)N})\right| (11M)|Ink+1+(1)N(d1,,dnk+1+(1)N)|\displaystyle\leq\left(1-\frac{1}{M}\right)\left|I_{n_{k}+1+(\ell-1)N}(d_{1},\ldots,d_{n_{k}+1+(\ell-1)N})\right|
    =(11M)|In(𝐝)|j=nk+2+(1)Nndj(dj1)\displaystyle=\left(1-\frac{1}{M}\right)\left|I_{n}(\mathbf{d})\right|\prod_{j=n_{k}+2+(\ell-1)N}^{n}d_{j}(d_{j}-1)
    <(11M)M2N|In(𝐝)|\displaystyle<\left(1-\frac{1}{M}\right)M^{2N}\left|I_{n}(\mathbf{d})\right|
    <2(11M)M2N|Jn(𝐝)|.\displaystyle<2\left(1-\frac{1}{M}\right)M^{2N}\left|J_{n}(\mathbf{d})\right|.

    As a consequence, we have

    μ(Jn(𝐚))<29C(11M)M2N|Jn(𝐝)|s.\mu(J_{n}(\mathbf{a}))<2^{9}C^{\prime}\left(1-\frac{1}{M}\right)M^{2N}\left|J_{n}(\mathbf{d})\right|^{s}.

Measure of balls. We now estimate the measure of balls with center on EE and small radius. Define

r0:=min{G1(d):2dM}.r_{0}\colon=\min\left\{G_{1}(d):2\leq d\leq M\right\}.
Lemma 5.14.

There is a constant C′′>0C^{\prime\prime}>0 such that

μ(B(x;r))C′′r for all xE and all r(0,r0).\mu\left(B(x;r)\right)\leq C^{\prime\prime}r\quad\text{ for all }x\in E\text{ and all }r\in(0,r_{0}).

Take any x=d1,d2,x=\langle d_{1},d_{2},\ldots\rangle and any r(0,r0)r\in(0,r_{0}). Pick nn\in\mathbb{N} such that

Gn+1(d1,,dn+1)r<Gn(d1,,dn).G_{n+1}(d_{1},\ldots,d_{n+1})\leq r<G_{n}(d_{1},\ldots,d_{n}).

By definition of GnG_{n}, the ball B(x;r)B(x;r) intersects exactly one fundamental interval of order nn, namely Jn(d1,,dn)J_{n}(d_{1},\ldots,d_{n}).

Let us further assume that nk+1nnk+11n_{k}+1\leq n\leq n_{k+1}-1 for some kk\in\mathbb{N}. Taking CC as in Lemma 5.13,

μ(B(x;r))\displaystyle\mu\left(B(x;r)\right) μ(Jn(d1,,dn))\displaystyle\leq\mu\left(J_{n}(d_{1},\ldots,d_{n})\right)
C|Jn(d1,,dn)|s\displaystyle\leq C\left|J_{n}(d_{1},\ldots,d_{n})\right|^{s}
=C|In(d1,,dn)|s(M1M)s\displaystyle=C\left|I_{n}(d_{1},\ldots,d_{n})\right|^{s}\left(\frac{M-1}{M}\right)^{s}
=C|In+1(d1,,dn,dn+1)|s(M1M)sdn+1s(dn+11)s\displaystyle=C\left|I_{n+1}(d_{1},\ldots,d_{n},d_{n+1})\right|^{s}\left(\frac{M-1}{M}\right)^{s}d_{n+1}^{s}(d_{n+1}-1)^{s}
<CM3Gn+1(d1,,dn+1)s\displaystyle<CM^{3}G_{n+1}(d_{1},\ldots,d_{n+1})^{s} (by lemma (5.9))
<CM3rs.\displaystyle<CM^{3}r^{s}.

Suppose now that n=nk1n=n_{k}-1. We consider two cases:

(17) r<|Ink1(d1,,dnk1)|α02nk and r|Ink1(d1,,dnk1)|α02nk.r<\frac{\left|I_{n_{k}-1}(d_{1},\ldots,d_{n_{k}-1})\right|}{\alpha_{0}^{2n_{k}}}\quad\text{ and }\quad r\geq\frac{\left|I_{n_{k}-1}(d_{1},\ldots,d_{n_{k}-1})\right|}{\alpha_{0}^{2n_{k}}}.

In the first case, B(x;r)B(x;r) intersects at most three fundamentals intervals of level nkn_{k}. As a consequence, we have

μ(B(x;r))\displaystyle\mu\left(B(x;r)\right) 3μ(Jnk(d1,,dnk))\displaystyle\leq 3\mu\left(J_{n_{k}}(d_{1},\ldots,d_{n_{k}})\right)
3C|Jnk(d1,,dnk)|s3CMGnk(d1,,dnk)s3CMrs.\displaystyle\leq 3C\left|J_{n_{k}}(d_{1},\ldots,d_{n_{k}})\right|^{s}\leq 3CMG_{n_{k}}(d_{1},\ldots,d_{n_{k}})^{s}\leq 3CMr^{s}.

Assume the second inequality in (17). All the cylinders of level nkn_{k} contained in Jnj1(d1,,dnk1)J_{n_{j}-1}(d_{1},\ldots,d_{n_{k}-1}) are of the form

Ink(d1,,dnk1,a) with a{α0nk,,2α0nk},I_{n_{k}}(d_{1},\ldots,d_{n_{k}-1},a)\quad\text{ with }\quad a\in\{\lceil\alpha_{0}^{n_{k}}\rceil,\ldots,\lfloor 2\alpha_{0}^{n_{k}}\rfloor\},

so

|Ink(d1,,dnk1,a)|=|Ink1(d1,,dnk1)|a(a1)|Ink1(d1,,dnk1)|α02nk;\left|I_{n_{k}}(d_{1},\ldots,d_{n_{k}-1},a)\right|=\frac{\left|I_{n_{k}-1}(d_{1},\ldots,d_{n_{k}-1})\right|}{a(a-1)}\geq\frac{\left|I_{n_{k}-1}(d_{1},\ldots,d_{n_{k}-1})\right|}{\alpha_{0}^{2n_{k}}};

If TT is the total amount of cylinders of level nkn_{k} contained in B(x;r)B(x;r), then

Tα02nk|Ink1(d1,,dnk1)| 2rT\leq\frac{\alpha_{0}^{2n_{k}}}{\left|I_{n_{k-1}}(d_{1},\ldots,d_{n_{k-1}})\right|}\,2r

and the total amount of cylinders of level nkn_{k} intersecting B(x;r)B(x;r) is at most

2rα02nk|Ink1(d1,,dnk1)|+2<4rα02nk|Ink1(d1,,dnk1)|.\frac{2r\alpha_{0}^{2n_{k}}}{\left|I_{n_{k-1}}(d_{1},\ldots,d_{n_{k-1}})\right|}+2<\frac{4r\alpha_{0}^{2n_{k}}}{\left|I_{n_{k-1}}(d_{1},\ldots,d_{n_{k-1}})\right|}.

Since each cylinder of level nkn_{k} contains at most one fundamental interval of level nkn_{k}, we have

μ(B(x;r))\displaystyle\mu\left(B(x;r)\right) <4rα02nk|Ink1(d1,,dnk1)|μ(Jnk(d1,,dnk1,dnk))\displaystyle<\frac{4r\alpha_{0}^{2n_{k}}}{\left|I_{n_{k-1}}(d_{1},\ldots,d_{n_{k-1}})\right|}\mu\left(J_{n_{k}}(d_{1},\ldots,d_{n_{k}-1},d_{n_{k}})\right)
<8rα02nk|Ink1(d1,,dnk1)|μ(Jnk1(d1,,dnk1)).\displaystyle<\frac{8r\alpha_{0}^{2n_{k}}}{\left|I_{n_{k-1}}(d_{1},\ldots,d_{n_{k-1}})\right|}\mu\left(J_{n_{k}-1}(d_{1},\ldots,d_{n_{k}-1})\right).

The second inequality follows from the definition of μ(Jnk(d1,,dnk1,dnk))\mu\left(J_{n_{k}}(d_{1},\ldots,d_{n_{k}-1},d_{n_{k}})\right). Take CC as in Lemma 5.13. Then, since min{a,b}a1sbs\min\{a,b\}\leq a^{1-s}b^{s} for all positive a,ba,b,

μ(B(x;r))\displaystyle\mu\left(B(x;r)\right) min{μ(Jnk1(d1,,dnk1)),8rα02nkμ(Jnk1(d1,,dnk1))|Ink1(d1,,dnk1)|}\displaystyle\leq\min\left\{\mu(J_{n_{k-1}}(d_{1},\ldots,d_{n_{k-1}})),8r\alpha_{0}^{2n_{k}}\,\frac{\mu\left(J_{n_{k}-1}(d_{1},\ldots,d_{n_{k}-1})\right)}{\left|I_{n_{k-1}}(d_{1},\ldots,d_{n_{k-1}})\right|}\right\}
=μ(Jnk1(d1,,dnk1))min{1,8rα02nk|Ink1(d1,,dnk1)|}\displaystyle=\mu(J_{n_{k-1}}(d_{1},\ldots,d_{n_{k-1}}))\min\left\{1,\frac{8r\alpha_{0}^{2n_{k}}}{\left|I_{n_{k-1}}(d_{1},\ldots,d_{n_{k-1}})\right|}\right\}
<8srsα02snkμ(Jnk1(d1,,dnk1))|Ink1(d1,,dnk1)|s\displaystyle<8^{s}r^{s}\alpha_{0}^{2sn_{k}}\,\frac{\mu(J_{n_{k-1}}(d_{1},\ldots,d_{n_{k-1}}))}{\left|I_{n_{k-1}}(d_{1},\ldots,d_{n_{k-1}})\right|^{s}}
<8Crs.\displaystyle<8Cr^{s}.

In the last inequality, we have used (16). A similar argument holds for n=nkn=n_{k}, since we have distributed uniformly the mass μ(Jnk1(d1,,dnk1))\mu(J_{n_{k-1}}(d_{1},\ldots,d_{n_{k}-1})) among the 2α1nkα1nk\lfloor 2\alpha_{1}^{n_{k}}\rfloor-\lceil\alpha_{1}^{n_{k}}\rceil fundamental intervals of level nkn_{k} contained in Jnk1(d1,,dnk1)J_{n_{k-1}}(d_{1},\ldots,d_{n_{k}-1}) when defining μ\mu.

Proof of Theorem 1.6. Lower bound.

The Mass Distribution Principle tells us that dimHEs\dim_{\operatorname{H}}E\geq s, so dimH𝐭(B)s\dim_{\operatorname{H}}\mathcal{E}_{\mathbf{t}}(B)\geq s. Letting ss0(B)s\to s_{0}(B), we conclude dimH𝐭(B)s0(B)\dim_{\operatorname{H}}\mathcal{E}_{\mathbf{t}}(B)\geq s_{0}(B). ∎

5.3. Proof of Theorem 1.6

Proof.

The upper bound follows from Theorem 5.1. Certainly, for any ε>0\varepsilon>0, every large nn\in\mathbb{N} satisfies Ψ(n)(Bε)n\Psi(n)\geq(B-\varepsilon)^{n}, so 𝐭(Ψ)𝐭(Bε)\mathcal{E}_{\mathbf{t}}(\Psi)\subseteq\mathcal{E}_{\mathbf{t}}(B-\varepsilon) and

dimH𝐭(Ψ)dimH𝐭(Bε)dimH𝐭(B) as ε0.\dim_{\operatorname{H}}\mathcal{E}_{\mathbf{t}}(\Psi)\leq\dim_{\operatorname{H}}\mathcal{E}_{\mathbf{t}}(B-\varepsilon)\to\dim_{\operatorname{H}}\mathcal{E}_{\mathbf{t}}(B)\;\text{ as }\;\varepsilon\to 0.

The lower bound is obtained in essentially the same way as in Theorem 5.1. The case s0(B)t12s0(B)1t00\frac{s_{0}(B)}{t_{1}}-\frac{2s_{0}(B)-1}{t_{0}}\leq 0 is solved without significant modifications. Assume that

(18) s0(B)t12s0(B)1t0>0.\frac{s_{0}(B)}{t_{1}}-\frac{2s_{0}(B)-1}{t_{0}}>0.

We shall only define a useful Cantor set contained in 𝐭(Ψ)\mathcal{E}_{\mathbf{t}}(\Psi) and a probability measure supported on it. Let B~>B\widetilde{B}>B be so close to BB that (18) still holds for s0(B~)s_{0}(\widetilde{B}). Let A~\widetilde{A} be such that

ft0logA~=ft0,t1(s)logB~.f_{t_{0}}\log\widetilde{A}=f_{t_{0},t_{1}}(s)\log\widetilde{B}.

Consider a strictly increasing sequence (nj)j1(n_{j})_{j\geq 1} in \mathbb{N} such that

Ψ(nk)B~nk for all k.\Psi(n_{k})\leq\widetilde{B}^{n_{k}}\quad\text{ for all }k\in\mathbb{N}.

Write

β0:=A~1/t0 and β1:=B~1/t0.\beta_{0}\colon=\widetilde{A}^{1/t_{0}}\quad\text{ and }\quad\beta_{1}\colon=\widetilde{B}^{1/t_{0}}.

Now, let (k)k1(\ell_{k})_{k\geq 1} and (ik)k1(i_{k})_{k\geq 1} be the sequences of integers determined by

(nk1)(nk11)=kN+ik with 0ik<N.(n_{k}-1)-(n_{k-1}-1)=\ell_{k}N+i_{k}\text{ with }0\leq i_{k}<N.

Call E~\widetilde{E} be the subset of 𝐭(Ψ)\mathcal{E}_{\mathbf{t}}(\Psi) whose elements x=d1,d2,x=\langle d_{1},d_{2},\ldots\rangle satisfy:

  1. i.

    For each kk\in\mathbb{N}, we have

    β0nkdnk2β0nk and β1nkdnk+1<2β1nk.\beta_{0}^{n_{k}}\leq d_{n_{k}}\leq 2\beta_{0}^{n_{k}}\quad\text{ and }\quad\beta_{1}^{n_{k}}\leq d_{n_{k}+1}<2\beta_{1}^{n_{k}}.
  2. ii.

    We have d1==di1=2d_{1}=\ldots=d_{i_{1}}=2 and dnk+2==dnk+1+ik=2d_{n_{k}+2}=\ldots=d_{n_{k}+1+i_{k}}=2 for kk\in\mathbb{N}.

  3. iii.

    For every other natural number nn, we have 2dnM2\leq d_{n}\leq M.

Hence, if x=d1,d2,,E~x=\langle d_{1},d_{2},\ldots,\rangle\in\widetilde{E}, there are k\ell_{k} words 𝐰1k\mathbf{w}_{1}^{k}, \ldots, 𝐰kk\mathbf{w}_{\ell_{k}}^{k} in {2,,m}N\{2,\ldots,m\}^{N} for kk\in\mathbb{N} such that

𝐝=22i1 times 𝐰11𝐰11dn1dn1+122i2 times 𝐰12𝐰22dn2dn2+122ik times 𝐰1k𝐰kkdnkdnk+1.\mathbf{d}=\underbrace{2\cdots 2}_{i_{1}\text{ times }}\mathbf{w}_{1}^{1}\cdots\mathbf{w}_{\ell_{1}}^{1}d_{n_{1}}d_{n_{1}+1}\underbrace{2\cdots 2}_{i_{2}\text{ times }}\mathbf{w}_{1}^{2}\cdots\mathbf{w}_{\ell_{2}}^{2}d_{n_{2}}d_{n_{2}+1}\ldots\underbrace{2\cdots 2}_{i_{k}\text{ times }}\mathbf{w}_{1}^{k}\cdots\mathbf{w}_{\ell_{k}}^{k}d_{n_{k}}d_{n_{k}+1}\ldots.

Define D~:=Λ1[E~]\widetilde{D}\colon=\Lambda^{-1}\left[\widetilde{E}\right]. For each nn\in\mathbb{N} consider D~n:={(d1,,dn):(dj)j1D~}\widetilde{D}_{n}\colon=\left\{(d_{1},\ldots,d_{n}):(d_{j})_{j\geq 1}\in\widetilde{D}\right\} and define the set J~n\widetilde{J}_{n} by adapting the definition of JnJ_{n} into our current context. Take any 1nn1+11\leq n\leq n_{1}+1 and 𝐝D~n\mathbf{d}\in\widetilde{D}_{n}.

  1. i.

    If n{1,,i1}n\in\{1,\ldots,i_{1}\}, put μ~(J~n(2,,2)):=1\widetilde{\mu}(\widetilde{J}_{n}(2,\ldots,2))\colon=1.

  2. ii.

    If n=i1+1+Nn=i_{1}+1+N\ell with 111\leq\ell\leq\ell_{1}, we write

    μ~(Jn(𝐝)):=1β0sN|IN(𝐰11𝐰1)|s.\widetilde{\mu}\left(J_{n}(\mathbf{d})\right)\colon=\frac{1}{\beta_{0}^{sN\ell}}\left|I_{N\ell}(\mathbf{w}_{1}^{1}\cdots\mathbf{w}_{\ell}^{1})\right|^{s}.
  3. iii.

    If i1+1+N(1)+1ni1+1+N(1)1i_{1}+1+N(\ell-1)+1\leq n\leq i_{1}+1+N(\ell-1)-1, where 111\leq\ell\leq\ell_{1}, write

    μ~(Jn(𝐝)):=𝐛μ~(Ji1+1+N(𝐝𝐛)),\widetilde{\mu}\left(J_{n}(\mathbf{d})\right)\colon=\sum_{\mathbf{b}}\widetilde{\mu}\left(J_{i_{1}+1+N\ell}(\mathbf{d}\mathbf{b})\right),

    where the sum runs along all those words 𝐛\mathbf{b} such that 𝐝𝐛\mathbf{d}\mathbf{b} belongs to D~i1+1+N\widetilde{D}_{i_{1}+1+N\ell}.

  4. iv.

    When n=n1n=n_{1}, write

    μ~(Jn1(𝐝)):=μ~(Jn11(d1,,dn11))2β0n1β0n1.\widetilde{\mu}(J_{n_{1}}(\mathbf{d}))\colon=\frac{\widetilde{\mu}\left(J_{n_{1}-1}(d_{1},\ldots,d_{n_{1}-1})\right)}{\lfloor 2\beta_{0}^{n_{1}}\rfloor-\lceil\beta_{0}^{n_{1}}\rceil}.
  5. v.

    When n=n1+1n=n_{1}+1, write

    μ~(Jn1+1(𝐝):=μ~(Jn11(d1,,dn11))(2β0n1β0n1)(2β1n1β1n1).\widetilde{\mu}(J_{n_{1}+1}(\mathbf{d})\colon=\frac{\widetilde{\mu}\left(J_{n_{1}-1}(d_{1},\ldots,d_{n_{1}-1})\right)}{\left(\lfloor 2\beta_{0}^{n_{1}}\rfloor-\lceil\beta_{0}^{n_{1}}\rceil\right)\left(\lfloor 2\beta_{1}^{n_{1}}\rfloor-\lceil\beta_{1}^{n_{1}}\rceil\right)}.

Assume that we have already defined μ~\widetilde{\mu} for the fundamental intervals of order up to nk+1n_{k}+1 for some kk\in\mathbb{N}. Take nn\in\mathbb{N} such that nk+2nnk+1+1n_{k}+2\leq n\leq n_{k+1}+1.

  1. i.

    If nk+2nnk+1+ikn_{k}+2\leq n\leq n_{k}+1+i_{k}, write

    μ~(Jn(𝐝))=μ~(Jnk+1(d1,,dnk+1)).\widetilde{\mu}\left(J_{n}(\mathbf{d})\right)=\widetilde{\mu}\left(J_{n_{k}+1}(d_{1},\ldots,d_{n_{k}+1})\right).
  2. ii.

    If n=nk+ik+1+1+Nn=n_{k}+i_{k+1}+1+N\ell for some 1k1\leq\ell\leq\ell_{k}, define

    μ~(Jn(d1,,dn)):=12Nsβ0sNμ~(Jnk+ik+1+1(d1,,dnk+1+ik+1)).\widetilde{\mu}\left(J_{n}(d_{1},\ldots,d_{n})\right)\colon=\frac{1}{2^{N\ell s}\beta_{0}^{sN\ell}}\,\widetilde{\mu}\left(J_{n_{k}+i_{k+1}+1}(d_{1},\ldots,d_{n_{k}+1+i_{k+1}})\right).
  3. iii.

    If nk+1+ik+1+N(1)+1n<nk+1+ik+1+Nn_{k}+1+i_{k+1}+N(\ell-1)+1\leq n<n_{k}+1+i_{k+1}+N\ell, then

    μ~(Jn(𝐝)):=𝐛μ~(Jnk+1+ik+1+N(𝐝𝐛)),\widetilde{\mu}(J_{n}(\mathbf{d}))\colon=\sum_{\mathbf{b}}\widetilde{\mu}\left(J_{n_{k}+1+i_{k+1}+N\ell}(\mathbf{d}\mathbf{b})\right),

    where the sum runs along the words 𝐛\mathbf{b} such that 𝐝𝐛Dnk+1+ik+1+N\mathbf{d}\mathbf{b}\in D_{n_{k}+1+i_{k+1}+N\ell}.

  4. iv.

    If n=nkn=n_{k}, write

    μ~(Jn1(𝐝)):=μ~(Jnk1(d1,,dnk1))2β0nkβ0nk.\widetilde{\mu}(J_{n_{1}}(\mathbf{d}))\colon=\frac{\widetilde{\mu}\left(J_{n_{k}-1}(d_{1},\ldots,d_{n_{k}-1})\right)}{\lfloor 2\beta_{0}^{n_{k}}\rfloor-\lceil\beta_{0}^{n_{k}}\rceil}.
  5. v.

    If n=nk+1n=n_{k}+1, write

    μ~(Jn1+1(𝐝)):=μ~(Jnk1(d1,,dnk1))(2β0nkβ0nk)(2β1nkβ1nk).\widetilde{\mu}(J_{n_{1}+1}(\mathbf{d}))\colon=\frac{\widetilde{\mu}\left(J_{n_{k}-1}(d_{1},\ldots,d_{n_{k}-1})\right)}{\left(\lfloor 2\beta_{0}^{n_{k}}\rfloor-\lceil\beta_{0}^{n_{k}}\rceil\right)\left(\lfloor 2\beta_{1}^{n_{k}}\rfloor-\lceil\beta_{1}^{n_{k}}\rceil\right)}.

6. Final remarks

Our investigations give rise to a natural question: what happens when 1<B<1<B<\infty and m3m\geq 3? Unfortunately, our argument is not strong enough to solve this problem. However, based on [2], we state a conjecture on the Hausdorff dimension of 𝐭(Ψ)\mathcal{E}_{\mathbf{t}}(\Psi). For any mm\in\mathbb{N} and 𝐭=(t0,,tm1)>0m\mathbf{t}=(t_{0},\ldots,t_{m-1})\in\mathbb{R}_{>0}^{m}, define the functions ft0,ft0,t1,,ft0,t1,,tm1f_{t_{0}},f_{t_{0},t_{1}},\ldots,f_{t_{0},t_{1},\ldots,t_{m-1}} as follows: ft0(s)=st0f_{t_{0}}(s)=\frac{s}{t_{0}} and

ft0,,tj(s)=sft0,,tj1(s)tjft0,,tj1(s)+max{0,s2s1max{t0,,tj1}}f_{t_{0},\ldots,t_{j}}(s)=\frac{sf_{t_{0},\ldots,t_{j-1}}(s)}{t_{j}f_{t_{0},\ldots,t_{j-1}}(s)+\max\left\{0,s-\frac{2s-1}{\max\{t_{0},\ldots,t_{j-1}\}}\right\}}

for all j{2,,m}j\in\{2,\ldots,m\}.

Conjecture 6.1.

Let m3m\in\mathbb{N}_{\geq 3} be arbitrary and let BB be as in (1). If 1<B<1<B<\infty, then dimH𝐭(Ψ)\dim_{\operatorname{H}}\mathcal{E}_{\mathbf{t}}(\Psi) is the unique solution ss of

d=21ds(d1)sBft0,,tm1(s)=1.\sum_{d=2}^{\infty}\frac{1}{d^{s}(d-1)^{s}B^{f_{t_{0},\ldots,t_{m-1}}(s)}}=1.

References

  • [1] R. Alcaraz Barrera and G. González Robert. Chaotic sets and Hausdorff dimension for Lüroth expansions. J. Math. Anal. Appl., 514(2):Paper No. 126324, 29, 2022.
  • [2] A. Bakhtawar, M. Hussain, D. Kleinbock, and B.-W. Wang. Metrical properties for the weighted products of multiple partial quotients in continued fractions. Preprint: arXiv: 2202.11212. In Press: Houston Journal of Mathematics.
  • [3] P. Bos, M. Hussain, and D. Simmons. The generalised Hausdorff measure of sets of Dirichlet non-improvable numbers. Proc. Amer. Math. Soc., 151(5):1823–1838, 2023.
  • [4] K. Dajani and C. Kraaikamp. Ergodic theory of numbers, volume 29 of Carus Mathematical Monographs. Mathematical Association of America, Washington, DC, 2002.
  • [5] K. Falconer. Techniques in fractal geometry. John Wiley & Sons, Ltd., Chichester, 1997.
  • [6] J. Galambos. Representations of real numbers by infinite series. Lecture Notes in Mathematics, Vol. 502. Springer-Verlag, Berlin-New York, 1976.
  • [7] L. Huang, J. Wu, and J. Xu. Metric properties of the product of consecutive partial quotients in continued fractions. Israel J. Math., 238(2):901–943, 2020.
  • [8] M. Hussain, D. Kleinbock, N. Wadleigh, and B.-W. Wang. Hausdorff measure of sets of Dirichlet non-improvable numbers. Mathematika, 64(2):502–518, 2018.
  • [9] H. Jager and C. de Vroedt. Lüroth series and their ergodic properties. Nederl. Akad. Wetensch. Proc. Ser. A 72=Indag. Math., 31:31–42, 1969.
  • [10] O. Kallenberg. Foundations of modern probability, volume 99 of Probability Theory and Stochastic Modelling. Springer, Cham, [2021] ©2021. Third edition [of 1464694].
  • [11] A. Y. Khinchin. Continued fractions. Dover Publications, Inc., Mineola, NY, Russian edition, 1997. With a preface by B. V. Gnedenko, Reprint of the 1964 translation.
  • [12] D. Kleinbock and N. Wadleigh. A zero-one law for improvements to Dirichlet’s Theorem. Proc. Amer. Math. Soc., 146(5):1833–1844, 2018.
  • [13] T. Łuczak. On the fractional dimension of sets of continued fractions. Mathematika, 44(1):50–53, 1997.
  • [14] W. Philipp. Some metrical theorems in number theory. Pacific J. Math., 20:109–127, 1967.
  • [15] L. Shen. Hausdorff dimension of the set concerning with Borel-Bernstein theory in Lüroth expansions. J. Korean Math. Soc., 54(4):1301–1316, 2017.
  • [16] L. Shen and K. Fang. The fractional dimensional theory in Lüroth expansion. Czechoslovak Math. J., 61(136)(3):795–807, 2011.
  • [17] K. R. Stromberg. Introduction to classical real analysis. Wadsworth International Mathematics Series. Wadsworth International, Belmont, Calif., 1981.
  • [18] B. Tan and Q. Zhou. Approximation properties of Lüroth expansions. Discrete Contin. Dyn. Syst., 41(6):2873–2890, 2021.
  • [19] B.-W. Wang and J. Wu. Hausdorff dimension of certain sets arising in continued fraction expansions. Adv. Math., 218(5):1319–1339, 2008.