This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Microwave spectroscopy of Majorana vortex modes

Zhibo Ren Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907 USA    Justin Copenhaver Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907 USA Department of Physics, University of Colorado, Boulder, CO 80309, USA    Leonid Rokhinson Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907 USA    Jukka I. Väyrynen Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907 USA
(April 15, 2025)
Abstract

The observation of zero-bias conductance peaks in vortex cores of certain Fe-based superconductors has sparked renewed interest in vortex-bound Majorana states. These materials are believed to be intrinsically topological in their bulk phase, thus avoiding potentially problematic interface physics encountered in superconductor-semiconductor heterostructures. However, progress toward a vortex-based topological qubit is hindered by our inability to measure the topological quantum state of a non-local vortex Majorana state, i.e., the charge of a vortex pair. In this paper, we theoretically propose a microwave-based charge parity readout of the Majorana vortex pair charge. A microwave resonator above the vortices can couple to the charge allowing for a dispersive readout of the Majorana parity. Our technique may also be used in vortices in conventional superconductors and allows one to probe the lifetime of vortex-bound quasiparticles, which is currently beyond existing scanning tunneling microscopy capabilities.

Introduction.  Majorana zero modes were originally proposed within the context of vortices in a topological superconductor (SC) Volovik (1999); Read and Green (2000); Ivanov (2001); Fu and Kane (2008); Sau et al. (2010), and have since emerged as a captivating subject of study in the field of superconductivity. The recent discovery of zero-bias conductance peaks Chen et al. (2018); Wang et al. (2018); Liu et al. (2018); Chen et al. (2019); Machida et al. (2019); Kong et al. (2019); Zhu et al. (2020); Liu et al. (2020); Kong et al. (2021) in the vortex cores of certain Fe-based superconductors Shi et al. (2017); Zhang et al. (2018, 2019a); Peng et al. (2019); Li et al. (2022) has sparked renewed interest in vortex Majorana zero modes (MZMs), which are predicted to be bound in these vortices Sau et al. (2010); Qin et al. (2019); Machida and Hanaguri (2023). The inherent topological nature of vortices as excitations within the superconducting condensate gives hope that the bound states hosted by them would be less susceptible to the disorder, unlike Majorana approaches that require engineered interfaces Banerjee et al. (2023); Aghaee et al. (2023). The key motivation behind studying MZMs is their predicted non-Abelian braiding statistics and possible use in a topologically protected quantum computer Ivanov (2001); Kitaev (2003); Nayak et al. (2008); Grosfeld et al. (2011).

However, the measurement of the topological quantum state of a non-local vortex MZM remains a challenge, hindering progress toward a vortex-based topological qubit. While it is in principle possible to move the vortices and associated MZMs Tewari et al. (2007); Ma et al. (2020, 2021); Hua et al. (2021), it will be challenging to do this adiabatically for a large vortex, but at the same time fast enough to avoid quasiparticle poisoning, the timescale of which in vortices is currently unknown. Alternatively, measurement-based braiding techniques could potentially circumvent the need for moving the MZMs Bonderson et al. (2008). Non-local conductance Liu et al. (2019); Sbierski et al. (2022) and interferometric Fu and Kane (2009); Akhmerov et al. (2009) measurements have been suggested as a means to identify and control Majorana vortex modes. Nevertheless, it is important to note that a microwave-based technique would be optimal for achieving fast readout Smith et al. (2020); Razmadze et al. (2019).

In this paper, we propose a solution to the measurement problem using microwave (MW) techniques, which have been established and demonstrated as an extremely versatile tool to address electronic systems in various experiments Bretheau et al. (2013); van Woerkom et al. (2017); Tosi et al. (2019); Hays et al. (2020, 2021); Fatemi et al. (2022); Matute-Cañadas et al. (2022); Wesdorp et al. (2022). Specifically, we present a microwave-based method for MZM charge parity readout analogous to what has been proposed in different platforms Yavilberg et al. (2015); Ginossar and Grosfeld (2014); Dmytruk et al. (2015); Väyrynen et al. (2015); Yavilberg et al. (2015); Smith et al. (2020).

Our approach focuses on studying the coupling between electrons in the Fe-based superconductor and the microwave photons from a resonator positioned above it. By analyzing the frequency-dependent transmission of the resonator, we can achieve a dispersive readout of the non-local vortex Majorana state. We provide the necessary requirements for the resonator quality factor QQ to enable the parity readout. Importantly, our technique can also be applied to vortices in conventional superconductors, offering insights into the lifetime and coherent manipulation of vortex-bound quasiparticles, surpassing the capabilities of existing scanning tunneling microscopy.

General theory of MW coupling to vortex state.  The interaction between the external electromagnetic field with the charge density of the superconductor results in a MW coupling Hamiltonian

δHcos(ωt)=d3𝐫ρe(𝐫)V(𝐫)cos(ωt),\delta H\cos{\omega t}=\int d^{3}\mathbf{r}\rho_{e}(\mathbf{r})V(\mathbf{r})\cos{\omega t}, (1)

where ρe(𝐫)\rho_{e}(\mathbf{r}) is the charge density operator and V(𝐫)cos(ωt)V(\mathbf{r})\cos{\omega t} is the scalar potential of the external electromagnetic field. This electromagnetic field is created by a resonator, which is within a wavelength of the SC surface. Thus the field can be treated in the quasistatic approximation. The sketch of the measurement setup is shown in Fig. 1(a).

In the static field approximation, screening in the superconductor results in a decay of the field, characterized by a screening length λTF\lambda_{\text{TF}}. The scalar potential of the external electromagnetic field can be written as V(𝐫)=V0ezλTFV(\mathbf{r})=V_{0}e^{-\frac{z}{\lambda_{\text{TF}}}}, where zz is the distance from the top surface of the superconductor and V0V_{0} is the amplitude of the external field.

In Eq. (1), the charge density ρe\rho_{e} can be expressed as ρe=12eΨτzΨ\rho_{e}=-\frac{1}{2}e\Psi^{\dagger}\tau_{z}\Psi, where Ψ=((c,c),(c,c))T\Psi=((c_{\uparrow},c_{\downarrow}),(c_{\uparrow}^{\dagger},c_{\downarrow}^{\dagger}))^{T} is the Nambu field operator and τz=diag(1,1,1,1)\tau_{z}=\text{diag}(1,1,-1,-1). In order to expand the field operator in the exact eigenbasis of the unperturbed Hamiltonian H0H_{0}, which is given by Eq. (10) below, we define Φn\Phi_{n} as the spinor wave function of the eigenstate with energy EnE_{n}, and Γn\Gamma_{n} as the second quantized annihilation operators of these quasiparticles.

The eigenstates of the system exhibit a particle-hole symmetry (PHS) that is represented by an antiunitary operator 𝒫\mathcal{P}. For each eigenstate Φn\Phi_{n} with energy EnE_{n}, there exists another eigenstate Φn=𝒫Φn\Phi_{-n}=\mathcal{P}\Phi_{n} with energy En-E_{n}. The corresponding annihilation operator satisfies Γn=Γn\Gamma_{-n}=\Gamma_{n}^{\dagger}. We consider energies below the SC gap and include the excited vortex-bound states (Caroli-de Gennes-Matricon states). The lowest energy state in the system is the Majorana state ΦM\Phi_{\text{M}} with energy EME_{\text{M}}, and its corresponding operator is given by ΓM=12(γ1iγ2)\Gamma_{\text{M}}=\frac{1}{2}(\gamma_{1}-i\gamma_{2}), where γ1\gamma_{1} and γ2\gamma_{2} are two Majorana operators as shown in Fig. 1. We aim to read out the occupation number nM=ΓMΓMn_{\text{M}}=\Gamma_{\text{M}}^{\dagger}\Gamma_{\text{M}} [or its parity, (1)nM=iγ1γ2(-1)^{n_{\text{M}}}=i\gamma_{1}\gamma_{2}] of this Majorana zero mode.

Expanding the Nambu spinor Ψ\Psi in terms of Γn\Gamma_{n},

Ψ=\displaystyle\Psi= En>0(ΦnΓn+ΦnΓn),\displaystyle\sum_{E_{n}>0}(\Phi_{n}\Gamma_{n}+\Phi_{-n}\Gamma_{n}^{\dagger}), (2)

the MW coupling (1) can be written as

δH\displaystyle\delta H =V0En>0qn,n(ΓnΓn12)\displaystyle=V_{0}\sum_{E_{n}>0}q_{n,n}(\Gamma_{n}^{\dagger}\Gamma_{n}-\frac{1}{2}) (3)
+12V0En>0mnEm>0[qn,mΓnΓm+qn,mΓnΓm+H.c.].\displaystyle+\frac{1}{2}V_{0}\sum_{E_{n}>0}\sum_{m\neq n\atop E_{m}>0}[q_{n,m}\Gamma_{n}^{\dagger}\Gamma_{m}+q_{n,-m}\Gamma_{n}^{\dagger}\Gamma_{m}^{\dagger}+H.c.].

Here we introduced the matrix elements of the (surface) charge operator q^=2d3𝐫ρeez/λTF\hat{q}=2\int d^{3}\mathbf{r}\rho_{e}e^{-z/\lambda_{\text{TF}}}, e.g.,

qn,m=ed3𝐫(ΦnτzΦm)ez/λTF.q_{n,m}=-e\int d^{3}\mathbf{r}(\Phi_{n}^{\ast}\tau_{z}\Phi_{m})e^{-z/\lambda_{\text{TF}}}. (4)

Because the charge operator preserves PHS, the matrix elements obey the same symmetry, encoded by the relations qn,m=qn,mq_{n,-m}=-q_{-n,m}^{*} and qn.n=0q_{n.-n}=0.

Refer to caption
Figure 1: Dispersive readout of vortex MZM parity. (a) Schematic circuit model. The red square shows the cavity resonator and the blue squares show the capacitive coupling to the SC vortex state. The microwave response of the vortex pair, represented by the charge-charge correlation function Π(ω)\Pi(\omega) depends on the MZM parity as described in Eq. (6). (b) transmission vs. frequency in the detuning regime |E1ωc|ωcζ,EM|E_{1}-\omega_{c}|\gg\omega_{c}\zeta,E_{\text{M}}. Here E1,EME_{1},E_{\text{M}} are the energies of the first bound state and Majorana state, ζ\zeta is the dimensionless charge [see above Eq. (8)], ωc\omega_{c} is the resonant frequency of the cavity. The parity readout is measuring iγ1γ2\langle i\gamma_{1}\gamma_{2}\rangle, the occupation number parity of the Majorana state on the top surface. We take here the first bound state energy E12ωcE_{1}\approx 2\omega_{c}, EM=0E_{\text{M}}=0, ζ=0.015\zeta=0.015, and δζ=0.02\delta\zeta=0.02. These parameters correspond to critical cavity Q-factor Qc103Q_{c}\approx 10^{3}, and in the plot, we take Q=104QcQ=10^{4}\gg Q_{c}, so these peaks can clearly be resolved.

Microwave readout of Majorana parity.  In circuit quantum electrodynamics Blais et al. (2021), the MW coupling between a resonator and the superconductor allows us to read out the Majorana parity Dmytruk et al. (2015). The electromagnetic fields induced by the resonator interact with the superconductor in the manner described by the Hamiltonian δH\delta H, Eq. (3). This interaction influences the complex transmission coefficient τ(p)(ω)\tau^{(p)}(\omega) that relates the output and input photonic fields of the resonator. Under the limit L1C1LCL_{1}C_{1}\ll LC (see Fig. 1a) and frequency close to the cavity resonance ωc=1/LCtot\omega_{c}=1/\sqrt{LC_{\text{tot}}}, we find

τ(p)(ω)κi(ωωc)+κ+iωcΠ(p)(ω)2Ctot,\tau^{(p)}(\omega)\approx\frac{\kappa}{i(\omega-\omega_{c})+\kappa+\frac{i\omega_{c}\Pi^{(p)}(\omega)}{2C_{\text{tot}}}}, (5)

where κ=2/(CtotR)\kappa=2/(C_{\text{tot}}R^{*}) is the escape rate of the cavity, and p=(1)nMp=(-1)^{n_{\text{M}}} denotes the Majorana parity. We denote Π(p)(ω)\Pi^{(p)}(\omega) the parity-dependent charge-charge correlation function. In the time domain, it is given by Π(p)(t)=iΘ(t)[q^(t),q^(0)]p\Pi^{(p)}(t)=-\frac{i}{\hbar}\Theta(t)\langle[\hat{q}(t),\hat{q}(0)]\rangle_{p}, where Θ(t)\Theta(t) is the Heaviside step function. As shown in Fig. 1a, Ctot=C+C1C_{\text{tot}}=C+C_{\text{1}}, where CC and C1C_{\text{1}} are the capacitance of the resonator and the superconductor, respectively. The resonator is coupled with capacitance CκC_{\kappa} to the input-output transmission line with resistance R0R_{0}, and the effective resistance R=1+ωc2Cκ2R02ωc2Cκ2R0R^{*}=\frac{1+\omega_{c}^{2}C^{2}_{\kappa}R_{0}^{2}}{\omega_{c}^{2}C^{2}_{\kappa}R_{0}} incorporates the coupling strength CκC_{\kappa} Göppl et al. (2008).

The interaction between the resonator and the superconductor induces transitions between the Majorana state and the vortex-bound states localized near the top surface. The correlation function Π(p)\Pi^{(p)} contains information of these transitions and can be written as a sum (from hereon we set =1\hbar=1)

Π(p)(ω)=l±M,El>0(1ωl(p)+ω+iδ+1ωl(p)ωiδ)\displaystyle\Pi^{(p)}(\omega)=\sum_{l\neq\pm\text{M},E_{l}>0}\left(\frac{1}{\omega_{l}^{(p)}+\omega+i\delta}+\frac{1}{\omega_{l}^{(p)}-\omega-i\delta}\right) (6)
[|ql,+M|2(nMnl)|ql,M|2(nM1+nl)],\displaystyle[|q_{l,+\text{M}}|^{2}(n_{\text{M}}-n_{l})-|q_{l,-\text{M}}|^{2}(n_{\text{M}}-1+n_{l})],

here ωl(p)=El+pEM\omega_{l}^{(p)}=E_{l}+pE_{\text{M}} is the transition frequency and EME_{\text{M}}, ElE_{l}, nMn_{\text{M}} and nln_{l} are the energies and occupation numbers of the Majorana state and the bound state ll. The infinitesimal level width δ>0\delta>0 accounts for causality and ql,±Mq_{l,\pm\text{M}} are the charge matrix elements between bound state ll and occupied/unoccupied (+/M+/-\text{M}) Majorana state. At low temperatures, in the absence of occupied bound states (nl=0n_{l}=0), we obtain that Π(+)(ω)|ql,M|2\Pi^{(+)}(\omega)\propto|q_{l,-\text{M}}|^{2} for nM=0n_{\text{M}}=0 and Π()(ω)|ql,+M|2\Pi^{(-)}(\omega)\propto|q_{l,+\text{M}}|^{2} for nM=1n_{\text{M}}=1. The unequal charge matrix elements ql,M,ql,Mq_{l,\text{M}},q_{l,-\text{M}} and transition frequencies ωl(p)\omega_{l}^{(p)} result in different Π(±)(ω)\Pi^{(\pm)}(\omega), which suggests that the MW coupling can be used to probe the Majorana occupation number nMn_{\text{M}}.

The critical cavity Q-factor.  The parity-dependent correlation function Π(p)\Pi^{(p)} allows for the microwave readout of MZM parity based on the transmission [Eq. (5)]. For simplicity, let us only consider the first vortex-bound state l=1l=1 on the surface. Our primary interest lies in the strong coupling regime where the coupling strength |q1,±M||q_{1,\pm\mathrm{M}}| greatly exceeds the level width δ\delta. In this regime, the transmission |τ(p)|2|\tau^{(p)}|^{2} versus ω\omega displays two parity-dependent peaks at ω>0\omega>0. Parity readout is contingent upon the ability to distinguish peaks between different parity, which sets limitations for the cavity Q-factor Q=ωcκQ=\frac{\omega_{c}}{\kappa}. Here, we define a minimum critical cavity Q-factor QcQ_{c} required for parity distinction,

Qc1=ΔΩcΩc,Q_{c}^{-1}=\frac{\Delta\Omega_{c}}{\Omega_{c}}, (7)

where ΔΩc=Ωc(+)Ωc()\Delta\Omega_{c}=\Omega_{c}^{(+)}-\Omega_{c}^{(-)} is the peak seperation of two parities in Fig. 1(b), Ωc=12(Ωc(+)+Ωc())\Omega_{c}=\frac{1}{2}(\Omega_{c}^{(+)}+\Omega_{c}^{(-)}) is the average of peak positions, and Ωc(±)\Omega_{c}^{(\pm)} are the shifted resonator frequencies of p=±1p=\pm 1 parity Sup , i.e., |τ(p)(Ωc(p))|2=1|\tau^{(p)}(\Omega_{c}^{(p)})|^{2}=1.

The Eq. (7) determines the approximate requirement Q>QcQ>Q_{c} for distinguishing the different parity resonances. There are two variables that affect the critical cavity Q-factor QcQ_{c}: the parity-dependent charge matrix elements q1,±Mq_{1,\pm\text{M}} and the parity-dependent transition energies ω1(p)\omega_{1}^{(p)} associated with the Majorana energy splitting EME_{\text{M}}. We define the dimensionless variable ζ±M=U±Mωc\zeta_{\pm\text{M}}=\sqrt{\frac{U_{\pm\text{M}}}{\omega_{c}}} and the capacitive energy U±M=q1,±M22CtotU_{\pm\text{M}}=\frac{q_{1,\pm\text{M}}^{2}}{2C_{\text{tot}}}.

In the resonant regime, when the resonator frequency is close to the energy of the first bound state, characterized by |ωcE1|ωcζ|\omega_{c}-E_{1}|\ll\omega_{c}\zeta, where ζ=12(ζ+M+ζM)\zeta=\frac{1}{2}(\zeta_{+\text{M}}+\zeta_{-\text{M}}), the transmission curve of each parity exhibits two peaks of width κ\kappa, separated by 2ωcζ2\omega_{c}\zeta. The parity difference causes a shift in the position of the peaks by ωcδζ12δE\omega_{c}\delta\zeta-\frac{1}{2}\delta E, where δζ=ζ+MζM\delta\zeta=\zeta_{+\text{M}}-\zeta_{-\text{M}} is the dimensionless transition matrix element difference, and δE\delta E is the change in resonance frequency given by δE=2EM\delta E=-2E_{\text{M}}. It is important to note that these two contributions have opposite effects, which can affect the behavior of the transmission curve in this regime. By setting the shift in peak position equal to the escape rate κ\kappa, we obtain

Qc|ωcωcδζ+EM|,|ωcE1|ωcζ.Q_{c}\approx|\frac{\omega_{c}}{\omega_{c}\delta\zeta+E_{\text{M}}}|,\qquad|\omega_{c}-E_{1}|\ll\omega_{c}\zeta. (8)

It is worth mentioning that QcQ_{c} diverges at δζ=EM/ωc\delta\zeta=-E_{\text{M}}/\omega_{c} since the peak position does not shift, and thus parity detection becomes difficult.

In the detuning regime, where the resonator frequency is significantly detuned from the first bound state’s energy (|E1ωc|ωcζ,EM|E_{1}-\omega_{c}|\gg\omega_{c}\zeta,E_{\text{M}}), the full expression for QcQ_{c} is more complex compared to the resonant regime (for detailed derivation, see Ref. Sup ). Nevertheless, QcQ_{c} can be approximated as:

Qc\displaystyle Q_{c}\approx |E12ωc24ωcE1ζδζ|,\displaystyle|\frac{E_{1}^{2}-\omega_{c}^{2}}{4\omega_{c}E_{1}\zeta\delta\zeta}|, δζζEM(E12+ωc2)(E12ωc2)E1\frac{\delta\zeta}{\zeta}\gg\frac{E_{\text{M}}(E_{1}^{2}+\omega_{c}^{2})}{(E_{1}^{2}-\omega_{c}^{2})E_{1}}, (9a)
Qc\displaystyle Q_{c}\approx (E12ωc2)24ωc(E12+ωc2)EMζ2,\displaystyle\frac{(E_{1}^{2}-\omega_{c}^{2})^{2}}{4\omega_{c}(E_{1}^{2}+\omega_{c}^{2})E_{\text{M}}\zeta^{2}}, δζζEM(E12+ωc2)(E12ωc2)E1\frac{\delta\zeta}{\zeta}\ll\frac{E_{\text{M}}(E_{1}^{2}+\omega_{c}^{2})}{(E_{1}^{2}-\omega_{c}^{2})E_{1}}, (9b)

where |E1ωc|ωcζ,EM|E_{1}-\omega_{c}|\gg\omega_{c}\zeta,E_{\text{M}}. The two different forms highlight the parity readout based on the parity-dependence of the charge matrix element (δζ\delta\zeta) or the transition energy (EME_{\text{M}}). The first form [Eq. (9a)] depends only on the change in the dimensionless charge matrix element difference δζ\delta\zeta as the parity-dependent factor, while the second form [Eq. (9b)] depends only on the change in transition energy 2EM2E_{\text{M}} as the parity-dependent factor.

Model for Fe-based superconductor.  In order to estimate the feasibility of the parity readout discussed above, we will use a microscopic Hamiltonian to evaluate the transition matrix element between the Majorana state and the vortex-bound states.

We will analyze a two-band effective BdG model for an Fe-based superconductor Qin et al. (2019); Zhang et al. (2019b); Ghazaryan et al. (2020); Chiu et al. (2020); Hou and Klinovaja (2021); Barik and Sau (2022). The Hamiltonian in the Nambu basis Ψ(k)=(c1,c1,c2,c2,c1,c1,c2,c2)T\Psi(\textbf{k})=(c_{1\uparrow},c_{1\downarrow},c_{2\uparrow},c_{2\downarrow},c_{1\uparrow}^{\dagger},c_{1\downarrow}^{\dagger},c_{2\uparrow}^{\dagger},c_{2\downarrow}^{\dagger})^{T} can be represented as HSC=12𝑑kΨSCΨH_{\text{SC}}=\frac{1}{2}\int dk\Psi^{\dagger}\mathcal{H}_{\text{SC}}\Psi, where the BdG Hamiltonian SC\mathcal{H}_{\text{SC}} is given by

SC=(H0(k)μiΔ0σyiΔ0σyμH0(k)),\mathcal{H}_{\text{SC}}=\begin{pmatrix}H_{0}(\textbf{k})-\mu&i\Delta_{0}\sigma_{y}\\ -i\Delta_{0}^{*}\sigma_{y}&\mu-H_{0}^{*}(-\textbf{k})\end{pmatrix}, (10)

here μ=5\mu=5 meV represents the chemical potential, and Δ0=1.8\Delta_{0}=1.8 meV is the bulk pairing gap. In our lattice model, H0(k)=νηx(σxsinkxa+σysinkya+σzsinkza)+m(k)ηzH_{0}(\textbf{k})=\nu\eta_{x}(\sigma_{x}\sin k_{x}a+\sigma_{y}\sin k_{y}a+\sigma_{z}\sin k_{z}a)+m(\textbf{k})\eta_{z} with m(k)=m0m1(coskxa+coskya)m2coskzam(\textbf{k})=m_{0}-m_{1}(\cos k_{x}a+\cos k_{y}a)-m_{2}\cos k_{z}a, where ηi\eta_{i} and σi\sigma_{i} represent the Pauli matrices that account for the orbital and spin degrees of freedom, respectively Zhang et al. (2019b). In this basis, 𝒫=τxK\mathcal{P}=\tau_{x}K, where τx\tau_{x} represents the Pauli matrix that accounts for the particle-hole degrees of freedom and KK denotes complex conjugation. In our numerical simulation, we set ν=10\nu=10 meV and a=5a=5 nm (the lattice constant), m0=4ν,m1=2νm_{0}=-4\nu,m_{1}=-2\nu, and m2=νm_{2}=\nu so that the system is in the topological phase Zhang et al. (2019b); Hou and Klinovaja (2021) which can have vortex Majorana zero modes.

In the context of our model, we consider the s-wave superconducting pairing potential in the presence of vortices that extend along the z-axis. For a single vortex centered at the origin, the pairing term can be expressed as Blatter et al. (1996)

Δ1v(w)=Δ0w|w|2+ξ2,\Delta_{1-\text{v}}(w)=\Delta_{0}\frac{w}{\sqrt{|w|^{2}+\xi^{2}}}, (11)

where ξ=5\xi=5 nm represents the characteristic radius of the vortex and w=x+iyw=x+iy.

In our specific model (shown in Fig. 1a), we consider the presence of two vortices, each hosting a pair of MBSs within the Fe-based superconductor. Assuming the vortices are far apart, we can approximate the pairing term as follows,

Δ2v(w)=Δ0ww1|ww1|2+ξ2ww2|ww2|2+ξ2,\Delta_{2-\text{v}}(w)=\Delta_{0}\frac{w-w_{1}}{\sqrt{|w-w_{1}|^{2}+\xi^{2}}}\frac{w-w_{2}}{\sqrt{|w-w_{2}|^{2}+\xi^{2}}}, (12)

where w1w_{1} and w2w_{2} correspond to the respective locations of the two vortices.

The two-vortex pairing term and the BdG Hamiltonian exhibit a Z2\text{Z}_{2} symmetry represented by Z2=R(z,π)τzηz\mathcal{R}_{\text{Z}_{2}}=R(z,\pi)\tau_{z}\eta_{z}. This operator is characterized by a π\pi rotation around the z-axis, with respect to the midpoint of the two vortices, taken here as the origin. Its action on a function f(x,y,z)f(x,y,z) is given by R(z,π)f(x,y,z)=f(x,y,z)R(z,\pi)f(x,y,z)=f(-x,-y,z). The symmetry operator has eigenvalues ±1\pm 1. The manifestation of this symmetry results in the observation of double degeneracy in the system’s spectrum, as evident in the inset of Fig. 2. The operator Z2\mathcal{R}_{\text{Z}_{2}} commutes with the Hamiltonian (1), establishing a selection rule that governs the allowed MW transitions within the system. According to the selection rule, transitions within the system can only occur between states that share the same eigenvalues of Z2\mathcal{R}_{\text{Z}_{2}}. Since the PHS operator 𝒫=τxK\mathcal{P}=\tau_{x}K changes the eigenvalue of Z2\mathcal{R}_{\text{Z}_{2}}, at least one of the transition matrix elements qn,+M,qn,Mq_{n,+\text{M}},q_{n,-\text{M}} vanishes.

However, the presence of random disorder in realistic conditions disrupts the symmetry, resulting in the elimination of the double degeneracy in the spectrum (Fig. 2). Consequently, this compromises the strict adherence to the selection rule. None of the transition matrix elements qn,+M,qn,Mq_{n,+\text{M}},q_{n,-\text{M}} are generally zero (Fig. 3). Thus, in realistic experimental settings, the selection rule is not rigorously maintained.

Refer to caption
Figure 2: Eigenvalues vs distances with 50 realizations in the disordered system. The mean values and standard deviations are shown for each energy. The inset shows the spectrum in a clean system, illustrating the degeneracy of excited state pairs at large distances. This degeneracy arises from the symmetry Z2\mathcal{R}_{\text{Z}_{2}} discussed below Eq. (12).

Numerical studies of two-vortex systems.  We employ a numerical approach to investigate a two-vortex system. To perform the numerical analysis, we discretize the Hamiltonian given by Eq. (10) and utilize the Kwant package Groth et al. (2014) in Python to implement and solve the corresponding tight-binding model. The system under consideration is a cuboid with dimensions 500 nm ×\crossproduct 250 nm ×\crossproduct 25 nm (refer to Fig. 1a for an illustration), discretized with a lattice constant a=5a=5 nm.

We utilize the results obtained in Ref. Sup to calculate the screened electric potential of two vortices Blatter et al. (1996), which is then included in the real space version of the Hamiltonian in Eq. (10), similar to the way the chemical potential μ\mu is incorporated. We take the screening length λTF\lambda_{\text{TF}} as one lattice constant. Our investigation encompasses both clean and disordered systems. To model the disorder, we introduce a position-dependent random potential into the Hamiltonian. The disorder potential follows a normal distribution, with the standard deviation of this distribution matching the gap Δ0\Delta_{0}. The spectrums and charge matrix elements acquired through numerical computations are depicted in Fig. 2 and Fig. 3.

Discussion.  We showed that a microwave coupling enables the parity readout of a non-local Majorana zero mode hosted in a vortex pair. We quantified the sensitivity of the readout by defining a critical cavity Q-factor QcQ_{c}, Eqs. (8)-(9b), required of the resonant cavity coupled to the vortices. To estimate a typical value of QcQ_{c}, let us consider a resonant frequency 5 GHz (much below a typical superconducting gap Δ0\Delta_{0}) and effective capacitance 1×10121\times 10^{-12} F of a typical coplanar waveguide resonator Göppl et al. (2008). In our simulation, we find that the MZM energy EME_{\text{M}} for a system with a large vortex separation d=36ξd=36\xi can be neglected while the first excited state is approximately at E10.58Δ0ωcE_{1}\approx 0.58\Delta_{0}\gg\omega_{c} (see Fig. 2), implying the system is in the detuning regime. The relevant charge matrix elements are numerically estimated to be q10.009eq_{1}\approx 0.009e and δq10.002e\delta q_{1}\approx 0.002e, the ratio of which is shown in Fig. 3. In this case, Eq. (9a) gives the required critical cavity Q-factor Qc108Q_{c}\sim 10^{8}, which is close to state-of-the-art experimental conditions Noguchi et al. (2019). Below distance d20ξd\approx 20\xi, the system is still in the detuning regime of Eq. (9a). There, Qc106Q_{c}\sim 10^{6}, well within reach of the experiments.

Our method offers a compelling approach to measuring the non-Abelian nature of Majorana zero modes. By employing two resonators to measure quantities sz=iγ1γ2s_{z}=i\gamma_{1}\gamma_{2} and sx=iγ2γ3s_{x}=i\gamma_{2}\gamma_{3}, we can effectively measure two non-commuting parities of MZMs. Through monitoring these observables Vool et al. (2014); Hays et al. (2018), we can estimate quasi-particle poisoning time and MZM hybridization EME_{\text{M}}. Additionally, incorporating a third resonator to measure sy=iγ1γ3s_{y}=i\gamma_{1}\gamma_{3} and an ancillary pair of MZMs, would enable measurement-based braiding Bonderson et al. (2008); Liu et al. (2019); Karzig et al. (2017) within timescales shorter than the quasi-particle poisoning time, when the total parity is conserved. Alternatively, braiding can be achieved through time-dependent control of MZM hybridization in a non-topologically protected manner Trif and Simon (2019). Thus, the resonator-based approach not only allows one to measure the essential quasi-particle poisoning time but also enables one to demonstrate the non-Abelian characteristics of vortex-based MZMs, thus holding significant promise for advancing topological quantum computing and related technologies.

Refer to caption
Figure 3: The ratio of parity-dependent charge difference |δqn|=|qn,+M||qn,M||\delta q_{n}|=|q_{n,+M}|-|q_{n,-M}| to the total charge qn=|qn,+M|+|qn,M|q_{n}=|q_{n,+M}|+|q_{n,-M}| vs distance for 50 disorder realizations. The charges between MZMs and the 2 lowest excited states are shown with their mean values and standard deviations. The ratio in the clean system is always 1 due to the selection rule discussed below Eq. (12).
Acknowledgements.
Acknowledgments.  We thank Yong Chen, Valla Fatemi, Leonid Glazman, Mingi Kim, and Lingyuan Kong for valuable discussions. This work was initiated at Aspen Center for Physics, which is supported by National Science Foundation grant PHY-1607611. This material is based upon work supported by the Office of the Under Secretary of Defense for Research and Engineering under award number FA9550-22-1-0354.

References

  • Volovik (1999) G. E. Volovik, “Fermion zero modes on vortices in chiral superconductors,” Soviet Journal of Experimental and Theoretical Physics Letters 70, 609–614 (1999).
  • Read and Green (2000) N. Read and Dmitry Green, “Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum Hall effect,” Physical Review B 61, 10267–10297 (2000)arXiv:cond-mat/9906453 [cond-mat.mes-hall] .
  • Ivanov (2001) D. A. Ivanov, “Non-Abelian Statistics of Half-Quantum Vortices in p-Wave Superconductors,” Phys. Rev. Lett. 86, 268–271 (2001).
  • Fu and Kane (2008) L. Fu and C. L. Kane, “Superconducting Proximity Effect and Majorana Fermions at the Surface of a Topological Insulator,” Phys. Rev. Lett. 100, 096407 (2008).
  • Sau et al. (2010) Jay D. Sau, Roman M. Lutchyn, Sumanta Tewari,  and S. Das Sarma, “Generic New Platform for Topological Quantum Computation Using Semiconductor Heterostructures,” Phys. Rev. Lett. 104, 040502 (2010).
  • Chen et al. (2018) Mingyang Chen, Xiaoyu Chen, Huan Yang, Zengyi Du, Xiyu Zhu, Enyu Wang,  and Hai-Hu Wen, “Discrete energy levels of Caroli-de Gennes-Matricon states in quantum limit in FeTe0.55Se0.45,” Nature communications 9, 1–7 (2018).
  • Wang et al. (2018) Dongfei Wang, Lingyuan Kong, Peng Fan, Hui Chen, Shiyu Zhu, Wenyao Liu, Lu Cao, Yujie Sun, Shixuan Du, John Schneeloch, Ruidan Zhong, Genda Gu, Liang Fu, Hong Ding,  and Hong-Jun Gao, “Evidence for Majorana bound states in an iron-based superconductor,” Science 362, 333–335 (2018).
  • Liu et al. (2018) Qin Liu, Chen Chen, Tong Zhang, Rui Peng, Ya-Jun Yan, Chen-Hao-Ping Wen, Xia Lou, Yu-Long Huang, Jin-Peng Tian, Xiao-Li Dong, Guang-Wei Wang, Wei-Cheng Bao, Qiang-Hua Wang, Zhi-Ping Yin, Zhong-Xian Zhao,  and Dong-Lai Feng, “Robust and Clean Majorana Zero Mode in the Vortex Core of High-Temperature Superconductor (Li0.84Fe0.16)OHFeSe\mathbf{(}{\mathrm{Li}}_{0.84}{\mathrm{Fe}}_{0.16}\mathbf{)}\mathrm{OHFeSe},” Phys. Rev. X 8, 041056 (2018).
  • Chen et al. (2019) C. Chen, Q. Liu, T. Z. Zhang, D. Li, P. P. Shen, X. L. Dong, Z.-X. Zhao, T. Zhang,  and D. L. Feng, “Quantized Conductance of Majorana Zero Mode in the Vortex of the Topological Superconductor (Li0.84Fe0.16)OHFeSe\mathbf{(}{\mathrm{Li}}_{0.84}{\mathrm{Fe}}_{0.16}\mathbf{)}\mathrm{OHFeSe},” Chinese Physics Letters 36, 057403 (2019).
  • Machida et al. (2019) T. Machida, Y. Sun, S. Pyon, S. Takeda, Y. Kohsaka, T. Hanaguri, T. Sasagawa,  and T. Tamegai, “Zero-energy vortex bound state in the superconducting topological surface state of Fe(Se,Te),” Nature Materials 18, 811–815 (2019).
  • Kong et al. (2019) Lingyuan Kong, Shiyu Zhu, Michał Papaj, Hui Chen, Lu Cao, Hiroki Isobe, Yuqing Xing, Wenyao Liu, Dongfei Wang, Peng Fan, Yujie Sun, Shixuan Du, John Schneeloch, Ruidan Zhong, Genda Gu, Liang Fu, Hong-Jun Gao,  and Hong Ding, “Half-integer level shift of vortex bound states in an iron-based superconductor,” Nature Physics 15, 1181–1187 (2019).
  • Zhu et al. (2020) Shiyu Zhu, Lingyuan Kong, Lu Cao, Hui Chen, Michał Papaj, Shixuan Du, Yuqing Xing, Wenyao Liu, Dongfei Wang, Chengmin Shen, Fazhi Yang, John Schneeloch, Ruidan Zhong, Genda Gu, Liang Fu, Yu-Yang Zhang, Hong Ding,  and Hong-Jun Gao, “Nearly quantized conductance plateau of vortex zero mode in an iron-based superconductor,” Science 367, 189–192 (2020).
  • Liu et al. (2020) Wenyao Liu, Lu Cao, Shiyu Zhu, Lingyuan Kong, Guangwei Wang, Michał Papaj, Peng Zhang, Ya-Bin Liu, Hui Chen, Geng Li, Fazhi Yang, Takeshi Kondo, Shixuan Du, Guang-Han Cao, Shik Shin, Liang Fu, Zhiping Yin, Hong-Jun Gao,  and Hong Ding, “A new Majorana platform in an Fe-As bilayer superconductor,” Nature Communications 11, 5688 (2020).
  • Kong et al. (2021) Lingyuan Kong, Lu Cao, Shiyu Zhu, Michał Papaj, Guangyang Dai, Geng Li, Peng Fan, Wenyao Liu, Fazhi Yang, Xiancheng Wang, Shixuan Du, Changqing Jin, Liang Fu, Hong-Jun Gao,  and Hong Ding, “Majorana zero modes in impurity-assisted vortex of LiFeAs superconductor,” Nature Communications 12, 4146 (2021).
  • Shi et al. (2017) Xun Shi, Zhi-Qing Han, Pierre Richard, Xian-Xin Wu, Xi-Liang Peng, Tian Qian, Shan-Cai Wang, Jiang-Ping Hu, Yu-Jie Sun,  and Hong Ding, “FeTe1-xSex monolayer films: towards the realization of high-temperature connate topological superconductivity,” Science Bulletin 62, 503–507 (2017).
  • Zhang et al. (2018) Peng Zhang, Koichiro Yaji, Takahiro Hashimoto, Yuichi Ota, Takeshi Kondo, Kozo Okazaki, Zhijun Wang, Jinsheng Wen, G. D. Gu, Hong Ding,  and Shik Shin, “Observation of topological superconductivity on the surface of an iron-based superconductor,” Science 360, 182–186 (2018).
  • Zhang et al. (2019a) Peng Zhang et al., “Multiple topological states in iron-based superconductors,” Nature Physics 15, 41–47 (2019a).
  • Peng et al. (2019) X.-L. Peng, Y. Li, X.-X. Wu, H.-B. Deng, X. Shi, W.-H. Fan, M. Li, Y.-B. Huang, T. Qian, P. Richard, J.-P. Hu, S.-H. Pan, H.-Q. Mao, Y.-J. Sun,  and H. Ding, “Observation of topological transition in high-Tc{T}_{c} superconducting monolayer FeTe1xSex{\mathrm{FeTe}}_{1-x}{\mathrm{Se}}_{x} films on SrTiO3(001){\mathrm{SrTiO}}_{3}(001),” Phys. Rev. B 100, 155134 (2019).
  • Li et al. (2022) Geng Li, Shiyu Zhu, Peng Fan, Lu Cao,  and Hong-Jun Gao, “Exploring Majorana zero modes in iron-based superconductors,” Chinese Physics B 31, 080301 (2022).
  • Qin et al. (2019) Shengshan Qin, Lunhui Hu, Xianxin Wu, Xia Dai, Chen Fang, Fu-Chun Zhang,  and Jiangping Hu, “Topological vortex phase transitions in iron-based superconductors,” Science Bulletin 64, 1207–1214 (2019).
  • Machida and Hanaguri (2023) Tadashi Machida and Tetsuo Hanaguri, “Searching for Majorana quasiparticles at vortex cores in iron-based superconductors,” Progress of Theoretical and Experimental Physics , ptad084 (2023).
  • Banerjee et al. (2023) A. Banerjee, O. Lesser, M. A. Rahman, H.-R. Wang, M.-R. Li, A. Kringhøj, A. M. Whiticar, A. C. C. Drachmann, C. Thomas, T. Wang, M. J. Manfra, E. Berg, Y. Oreg, Ady Stern,  and C. M. Marcus, “Signatures of a topological phase transition in a planar Josephson junction,” Phys. Rev. B 107, 245304 (2023).
  • Aghaee et al. (2023) Morteza Aghaee et al. (Microsoft Quantum), “InAs-Al hybrid devices passing the topological gap protocol,” Phys. Rev. B 107, 245423 (2023).
  • Kitaev (2003) A. Y. Kitaev, “Fault-tolerant quantum computation by anyons,” Annals of Physics 303, 2–30 (2003)quant-ph/9707021 .
  • Nayak et al. (2008) Chetan Nayak, Steven H. Simon, Ady Stern, Michael Freedman,  and Sankar Das Sarma, “Non-abelian anyons and topological quantum computation,” Rev. Mod. Phys. 80, 1083–1159 (2008).
  • Grosfeld et al. (2011) Eytan Grosfeld, Babak Seradjeh,  and Smitha Vishveshwara, “Proposed Aharonov-Casher interference measurement of non-Abelian vortices in chiral p-wave superconductors,” Physical Review B 83 (2011), 10.1103/physrevb.83.104513.
  • Tewari et al. (2007) Sumanta Tewari, S. Das Sarma, Chetan Nayak, Chuanwei Zhang,  and P. Zoller, “Quantum Computation using Vortices and Majorana Zero Modes of a px+ipy{p}_{x}+i{p}_{y} Superfluid of Fermionic Cold Atoms,” Phys. Rev. Lett. 98, 010506 (2007).
  • Ma et al. (2020) X. Ma, C. J. O. Reichhardt,  and C. Reichhardt, “Braiding Majorana fermions and creating quantum logic gates with vortices on a periodic pinning structure,” Phys. Rev. B 101, 024514 (2020).
  • Ma et al. (2021) Hai-Yang Ma, Dandan Guan, Shiyong Wang, Yaoyi Li, Canhua Liu, Hao Zheng,  and Jin-Feng Jia, “Braiding Majorana zero mode in an electrically controllable way,” Journal of Physics D Applied Physics 54, 424003 (2021).
  • Hua et al. (2021) Chengyun Hua, Gábor B. Halász, Eugene Dumitrescu, Matthew Brahlek,  and Benjamin Lawrie, “Optical vortex manipulation for topological quantum computation,” Phys. Rev. B 104, 104501 (2021).
  • Bonderson et al. (2008) Parsa Bonderson, Michael Freedman,  and Chetan Nayak, “Measurement-Only Topological Quantum Computation,” Phys. Rev. Lett. 101, 010501 (2008).
  • Liu et al. (2019) Chun-Xiao Liu, Dong E. Liu, Fu-Chun Zhang,  and Ching-Kai Chiu, “Protocol for Reading Out Majorana Vortex Qubits and Testing Non-Abelian Statistics,” Phys. Rev. Appl. 12, 054035 (2019).
  • Sbierski et al. (2022) Björn Sbierski, Max Geier, An-Ping Li, Matthew Brahlek, Robert G. Moore,  and Joel E. Moore, “Identifying Majorana vortex modes via nonlocal transport,” Physical Review B 106 (2022), 10.1103/physrevb.106.035413.
  • Fu and Kane (2009) Liang Fu and C. L. Kane, “Probing Neutral Majorana Fermion Edge Modes with Charge Transport,” Phys. Rev. Lett. 102, 216403 (2009).
  • Akhmerov et al. (2009) A. R. Akhmerov, Johan Nilsson,  and C. W. J. Beenakker, “Electrically Detected Interferometry of Majorana Fermions in a Topological Insulator,” Phys. Rev. Lett. 102, 216404 (2009).
  • Smith et al. (2020) Thomas B. Smith, Maja C. Cassidy, David J. Reilly, Stephen D. Bartlett,  and Arne L. Grimsmo, “Dispersive Readout of Majorana Qubits,” PRX Quantum 1, 020313 (2020).
  • Razmadze et al. (2019) Davydas Razmadze, Deividas Sabonis, Filip K. Malinowski, Gerbold C. Ménard, Sebastian Pauka, Hung Nguyen, David M.T. van Zanten, Eoin C.T. OFarrell, Judith Suter, Peter Krogstrup, Ferdinand Kuemmeth,  and Charles M. Marcus, “Radio-Frequency Methods for Majorana-Based Quantum Devices: Fast Charge Sensing and Phase-Diagram Mapping,” Phys. Rev. Appl. 11, 064011 (2019).
  • Bretheau et al. (2013) L. Bretheau, Ç. Ö. Girit, H. Pothier, D. Esteve,  and C. Urbina, “Exciting Andreev pairs in a superconducting atomic contact,” Nature 499, 312–315 (2013).
  • van Woerkom et al. (2017) David J. van Woerkom, Alex Proutski, Bernard van Heck, Daniël Bouman, Jukka I. Väyrynen, Leonid I. Glazman, Peter Krogstrup, Jesper Nygård, Leo P. Kouwenhoven,  and Attila Geresdi, “Microwave spectroscopy of spinful Andreev bound states in ballistic semiconductor Josephson junctions,” Nat. Phys. 13, 876–881 (2017).
  • Tosi et al. (2019) L. Tosi, C. Metzger, M. F. Goffman, C. Urbina, H. Pothier, Sunghun Park, A. Levy Yeyati, J. Nygârd,  and P. Krogstrup, “Spin-Orbit Splitting of Andreev States Revealed by Microwave Spectroscopy,” Phys. Rev. X 9, 011010 (2019).
  • Hays et al. (2020) M Hays, V Fatemi, K Serniak, D Bouman, S Diamond, G de Lange, P Krogstrup, J Nygård, A Geresdi,  and MH Devoret, “Continuous monitoring of a trapped superconducting spin,” Nature Physics 16, 1103–1107 (2020).
  • Hays et al. (2021) M Hays, V Fatemi, D Bouman, J Cerrillo, S Diamond, K Serniak, T Connolly, P Krogstrup, J Nygård, A Levy Yeyati, et al., “Coherent manipulation of an Andreev spin qubit,” Science 373, 430–433 (2021).
  • Fatemi et al. (2022) V Fatemi, PD Kurilovich, M Hays, D Bouman, T Connolly, S Diamond, NE Frattini, VD Kurilovich, P Krogstrup, J Nygard, et al., “Microwave Susceptibility Observation of Interacting Many-Body Andreev States,” Phys. Rev. Lett. 129, 227701 (2022).
  • Matute-Cañadas et al. (2022) F. J. Matute-Cañadas, C. Metzger, Sunghun Park, L. Tosi, P. Krogstrup, J. Nygård, M. F. Goffman, C. Urbina, H. Pothier,  and A. Levy Yeyati, “Signatures of Interactions in the Andreev Spectrum of Nanowire Josephson Junctions,” Phys. Rev. Lett. 128, 197702 (2022).
  • Wesdorp et al. (2022) J. J. Wesdorp, F. J. Matute-Caňadas, A. Vaartjes, L. Grünhaupt, T. Laeven, S. Roelofs, L. J. Splitthoff, M. Pita-Vidal, A. Bargerbos, D. J. van Woerkom, P. Krogstrup, L. P. Kouwenhoven, C. K. Andersen, A. Levy Yeyati, B. van Heck,  and G. de Lange, “Microwave spectroscopy of interacting Andreev spins,”   (2022), 10.48550/ARXIV.2208.11198.
  • Yavilberg et al. (2015) Konstantin Yavilberg, Eran Ginossar,  and Eytan Grosfeld, “Fermion parity measurement and control in Majorana circuit quantum electrodynamics,” Phys. Rev. B 92, 075143 (2015).
  • Ginossar and Grosfeld (2014) E. Ginossar and E. Grosfeld, “Microwave transitions as a signature of coherent parity mixing effects in the Majorana-transmon qubit,” Nat. Commun. 5, 4772 (2014)arXiv:1307.1159 [cond-mat.mes-hall] .
  • Dmytruk et al. (2015) Olesia Dmytruk, Mircea Trif,  and Pascal Simon, “Cavity quantum electrodynamics with mesoscopic topological superconductors,” Phys. Rev. B 92, 245432 (2015).
  • Väyrynen et al. (2015) Jukka I. Väyrynen, Gianluca Rastelli, Wolfgang Belzig,  and Leonid I. Glazman, “Microwave signatures of Majorana states in a topological Josephson junction,” Phys. Rev. B 92, 134508 (2015).
  • Blais et al. (2021) Alexandre Blais, Arne L. Grimsmo, S. M. Girvin,  and Andreas Wallraff, “Circuit quantum electrodynamics,” Rev. Mod. Phys. 93, 025005 (2021).
  • Göppl et al. (2008) M. Göppl, A. Fragner, M. Baur, R. Bianchetti, S. Filipp, J. M. Fink, P. J. Leek, G. Puebla, L. Steffen,  and A. Wallraff, “Coplanar waveguide resonators for circuit quantum electrodynamics,” Journal of Applied Physics 104 (2008), 10.1063/1.3010859, 113904.
  • (52) See supplementary materials for details.
  • Zhang et al. (2019b) Rui-Xing Zhang, William S. Cole,  and S. Das Sarma, “Helical Hinge Majorana Modes in Iron-Based Superconductors,” Phys. Rev. Lett. 122, 187001 (2019b).
  • Ghazaryan et al. (2020) Areg Ghazaryan, P. L. S. Lopes, Pavan Hosur, Matthew J. Gilbert,  and Pouyan Ghaemi, “Effect of Zeeman coupling on the Majorana vortex modes in iron-based topological superconductors,” Phys. Rev. B 101, 020504 (2020).
  • Chiu et al. (2020) Ching-Kai Chiu, T. Machida, Yingyi Huang, T. Hanaguri,  and Fu-Chun Zhang, “Scalable Majorana vortex modes in iron-based superconductors,” Science Advances 6, eaay0443 (2020).
  • Hou and Klinovaja (2021) Zhe Hou and Jelena Klinovaja, “Zero-energy Andreev bound states in iron-based superconductor Fe(Te,Se),”  (2021).
  • Barik and Sau (2022) Tamoghna Barik and Jay D. Sau, “Signatures of nontopological patches on the surface of topological insulators,” Phys. Rev. B 105, 035128 (2022).
  • Blatter et al. (1996) Gianni Blatter, Mikhail Feigel’man, Vadim Geshkenbein, Anatoli Larkin,  and Anne van Otterlo, “Electrostatics of Vortices in Type-II Superconductors,” Phys. Rev. Lett. 77, 566–569 (1996).
  • Groth et al. (2014) Christoph W Groth, Michael Wimmer, Anton R Akhmerov,  and Xavier Waintal, “Kwant: a software package for quantum transport,” New Journal of Physics 16, 063065 (2014).
  • Noguchi et al. (2019) Takashi Noguchi, Agnes Dominjon, Matthias Kroug, Satoru Mima,  and Chiko Otani, “Characteristics of Very High Q Nb Superconducting Resonators for Microwave Kinetic Inductance Detectors,” IEEE Transactions on Applied Superconductivity 29, 1–5 (2019).
  • Vool et al. (2014) U. Vool, I. M. Pop, K. Sliwa, B. Abdo, C. Wang, T. Brecht, Y. Y. Gao, S. Shankar, M. Hatridge, G. Catelani, M. Mirrahimi, L. Frunzio, R. J. Schoelkopf, L. I. Glazman,  and M. H. Devoret, “Non-Poissonian Quantum Jumps of a Fluxonium Qubit due to Quasiparticle Excitations,” Phys. Rev. Lett. 113, 247001 (2014).
  • Hays et al. (2018) M. Hays, G. de Lange, K. Serniak, D. J. van Woerkom, D. Bouman, P. Krogstrup, J. Nygård, A. Geresdi,  and M. H. Devoret, “Direct Microwave Measurement of Andreev-Bound-State Dynamics in a Semiconductor-Nanowire Josephson Junction,” Phys. Rev. Lett. 121, 047001 (2018).
  • Karzig et al. (2017) T. Karzig, C. Knapp, R. M. Lutchyn, P. Bonderson, M. B. Hastings, C. Nayak, J. Alicea, K. Flensberg, S. Plugge, Y. Oreg, et al., “Scalable designs for quasiparticle-poisoning-protected topological quantum computation with Majorana zero modes,” Phys. Rev. B 95, 235305 (2017)arXiv:1610.05289 [cond-mat.mes-hall] .
  • Trif and Simon (2019) Mircea Trif and Pascal Simon, “Braiding of Majorana Fermions in a Cavity,” Phys. Rev. Lett. 122, 236803 (2019).
  • Lubashevsky et al. (2012) Y. Lubashevsky, E. Lahoud, K. Chashka, D. Podolsky,  and A. Kanigel, “Shallow pockets and very strong coupling superconductivity in FeSexTe1-x,” Nature Physics 8, 309–312 (2012).
  • Rinott et al. (2017) Shahar Rinott, K. B. Chashka, Amit Ribak, Emile D. L. Rienks, Amina Taleb-Ibrahimi, Patrick Le Fevre, François Bertran, Mohit Randeria,  and Amit Kanigel, “Tuning across the BCS-BEC crossover in the multiband superconductor Fe1+ySexTe1-x: An angle-resolved photoemission study,” Science Advances 3, e1602372 (2017)https://www.science.org/doi/pdf/10.1126/sciadv.1602372 .
  • Xu et al. (2023) Chang Xu, Ka Ho Wong, Eric Mascot,  and Dirk K. Morr, “Competing topological superconducting phases in FeSe0.45Te0.55{\mathrm{FeSe}}_{0.45}{\mathrm{Te}}_{0.55},” Phys. Rev. B 107, 214514 (2023).

Supplementary materials on

“Microwave spectroscopy of Majorana vortex modes”
Zhibo Ren1, Justin Copenhaver1,2, Leonid Rokhinson1, Jukka I. Väyrynen1,

1 Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, USA
2
Department of Physics, University of Colorado, Boulder, CO 80309, USA

These supplementary materials contain details about the critical cavity Q-factor and screened potential of a vortex.

S1 Derivation of the critical cavity Q-factor

In the strong coupling limit, where the MW coupling strength greatly exceeds the vortex bound state level width δ\delta, we can approximate the correlation function in Eq. (6) by neglecting its imaginary part. The approximation leads to an expression for the correlation function given by (take l=1l=1)

Π(p)(ω)2ω1(p)(ω1(p))2ω2[|q1,M|2nM+|q1,M|2(1nM)],\Pi^{(p)}(\omega)\approx\frac{2\omega_{1}^{(p)}}{(\omega_{1}^{(p)})^{2}-\omega^{2}}[|q_{1,\text{M}}|^{2}n_{\text{M}}+|q_{1,-\text{M}}|^{2}(1-n_{\text{M}})], (S1)

where nMn_{\text{M}} is the Majorana occupation number and p=(1)nMp=(-1)^{n_{\text{M}}} its parity. The resonator transmission, Eq. (5) of the main text, then takes the form

|τ(p)(ω)|2κ2[ωωc+ωcΠ(p)(ω)2Ctot]2+κ2.|\tau^{(p)}(\omega)|^{2}\approx\frac{\kappa^{2}}{[\omega-\omega_{c}+\frac{\omega_{c}\Pi^{(p)}(\omega)}{2C_{\text{tot}}}]^{2}+\kappa^{2}}. (S2)

We can read off the modified resonance frequencies from the equation,

ωωc+ωcΠ(p)(ω)2Ctot=0.\omega-\omega_{c}+\frac{\omega_{c}\Pi^{(p)}(\omega)}{2C_{\text{tot}}}=0. (S3)

Next, we solve this equation in both the resonant limit and the detuning limit, and find that there are always 3 solutions, we denote them as Ωn(p),Ωc(p)\Omega_{n}^{(p)},\Omega_{c}^{(p)}, and Ωt(p)\Omega_{t}^{(p)}.

In the resonant region |ωcE1|ωcζ|\omega_{c}-E_{1}|\ll\omega_{c}\zeta, these solutions are given by

{Ωn(p)ω1(p)+(ωcω1(p))2[ζ+MnM+ζM(1nM)],Ωc(p)12(ωc+ω1(p))ωc[ζ+MnM+ζM(1nM)],Ωt(p)12(ωc+ω1(p))+ωc[ζ+MnM+ζM(1nM)].\begin{cases}\Omega_{n}^{(p)}&\approx-\omega_{1}^{(p)}+\frac{(\omega_{c}-\omega_{1}^{(p)})}{2}[\zeta_{+\text{M}}n_{\text{M}}+\zeta_{-\text{M}}(1-n_{\text{M}})],\\ \Omega_{c}^{(p)}&\approx\frac{1}{2}(\omega_{c}+\omega_{1}^{(p)})-\omega_{c}[\zeta_{+\text{M}}n_{\text{M}}+\zeta_{-\text{M}}(1-n_{\text{M}})],\\ \Omega_{t}^{(p)}&\approx\frac{1}{2}(\omega_{c}+\omega_{1}^{(p)})+\omega_{c}[\zeta_{+\text{M}}n_{\text{M}}+\zeta_{-\text{M}}(1-n_{\text{M}})].\end{cases} (S4)

The first solution Ωn(p)\Omega_{n}^{(p)} is negative, so the peak with the lowest positive frequency of the transmission is located at Ωc(p)\Omega_{c}^{(p)}, with a peak width approximately equal to κ\kappa. The shift of the peak positions, denoted as ΔΩc\Delta\Omega_{c}, is given by

ΔΩc=Ωc(+)Ωc()EM+ωcδζ.\Delta\Omega_{c}=\Omega_{c}^{(+)}-\Omega_{c}^{(-)}\approx E_{\text{M}}+\omega_{c}\delta\zeta. (S5)

Approximate to the zero-order of ζ\zeta, the average of peak positions Ωc=12(Ωc(+)+Ωc())ωc\Omega_{c}=\frac{1}{2}(\Omega_{c}^{(+)}+\Omega_{c}^{(-)})\approx\omega_{c}. The critical cavity Q-factor is achieved when the shift in peak position equals the escape rate, ΔΩc=κ\Delta\Omega_{c}=\kappa. This lead to the expression for QcQ_{c},

Qc=ωc|EM+ωcδζ|,Q_{c}=\frac{\omega_{c}}{|E_{\text{M}}+\omega_{c}\delta\zeta|}, (S6)

giving Eq. (8) of the main text.

In the detuning region |E1ωc|ωcζ,EM|E_{1}-\omega_{c}|\gg\omega_{c}\zeta,E_{\text{M}}, the Eq. (S3) has 3 solutions given by

{Ωn(p)ω1(p)ωc2(ωc+ω1(p))[ζ+M2nM+ζM2(1nM)],Ωc(p)ωc2ω1(p)ωc2|ωc2(ω1(p))2|[ζ+M2nM+ζM2(1nM)],Ωt(p)ω1(p)ωc2|ωcω1(p)|[ζ+M2nM+ζM2(1nM)].\begin{cases}\Omega_{n}^{(p)}&\approx-\omega_{1}^{(p)}-\frac{\omega_{c}^{2}}{(\omega_{c}+\omega_{1}^{(p)})}[\zeta^{2}_{+\text{M}}n_{\text{M}}+\zeta^{2}_{-\text{M}}(1-n_{\text{M}})],\\ \Omega_{c}^{(p)}&\approx\omega_{c}-\frac{2\omega_{1}^{(p)}\omega_{c}^{2}}{|\omega_{c}^{2}-(\omega_{1}^{(p)})^{2}|}[\zeta^{2}_{+\text{M}}n_{\text{M}}+\zeta^{2}_{-\text{M}}(1-n_{\text{M}})],\\ \Omega_{t}^{(p)}&\approx\omega_{1}^{(p)}-\frac{\omega_{c}^{2}}{|\omega_{c}-\omega_{1}^{(p)}|}[\zeta^{2}_{+\text{M}}n_{\text{M}}+\zeta^{2}_{-\text{M}}(1-n_{\text{M}})].\end{cases} (S7)

Similar to the resonant region, the peak with the lowest positive frequency of the transmission is located at Ωc(p)\Omega_{c}^{(p)}, and the peak width is now doubled to 2κ2\kappa. The shift of the peak positions is given by

ΔΩc=Ωc(+)Ωc()4(E12+ωc2)ωc2(E12wc2)2EMζ24E1ωc2|E12wc2|ζδζ.\Delta\Omega_{c}=\Omega_{c}^{(+)}-\Omega_{c}^{(-)}\approx\frac{4(E_{1}^{2}+\omega_{c}^{2})\omega_{c}^{2}}{(E_{1}^{2}-w_{c}^{2})^{2}}E_{\text{M}}\zeta^{2}-\frac{4E_{1}\omega_{c}^{2}}{|E_{1}^{2}-w_{c}^{2}|}\zeta\delta\zeta. (S8)

Approximate to the zero-order of ζ\zeta, the average of peak positions Ωc=12(Ωc(+)+Ωc())ωc\Omega_{c}=\frac{1}{2}(\Omega_{c}^{(+)}+\Omega_{c}^{(-)})\approx\omega_{c} The critical cavity Q-factor is achieved when the shift in peak position equals the escape rate, ΔΩc=κ\Delta\Omega_{c}=\kappa.

Qc=(E12wc2)24ωcζ|(E12+ωc2)EMζE1(E12wc2)δζ|,Q_{c}=\frac{(E_{1}^{2}-w_{c}^{2})^{2}}{4\omega_{c}\zeta|(E_{1}^{2}+\omega_{c}^{2})E_{\text{M}}\zeta-E_{1}(E_{1}^{2}-w_{c}^{2})\delta\zeta|}, (S9)

leading to Eq. (9a,9b) of the main text.

S2 Screening of a vortex

Here we model the screened potential of a vortex based on 3D parabolic bulk bands Blatter et al. (1996); Lubashevsky et al. (2012); Rinott et al. (2017); Xu et al. (2023). The opening of a gap Δ(R)\Delta(R) in the spectrum results in a displacement of the carrier density by δn(R)\delta n(R), corresponding to a (non-screened) charge density ρ(R)=eδn(R)\rho(R)=-e\,\delta n(R). For a single vortex of size ξ\xi with order parameter given by Eq. (11),

ρ(R)=eNμΔ02ξ2R2+ξ2dlnTcdμ,\rho(R)=eN_{\mu}\Delta_{0}^{2}\frac{\xi^{2}}{R^{2}+\xi^{2}}\frac{d\,\text{ln}\,T_{c}}{d\mu}\,, (S10)

with RR the radial distance from the vortex core and NμdlnTc/dμn/μ2N_{\mu}\,d\,\text{ln}\,T_{c}/d\mu\approx n/\mu^{2} Blatter et al. (1996), where nn is the electron density and NμN_{\mu} is the density of states at chemical potential μ\mu. With two vortices separated by a distance d>ξd>\xi, the charge density contains contributions from each vortex.

To account for electric screening due to bulk carriers Lubashevsky et al. (2012); Rinott et al. (2017) in the superconductor, we use a Thomas-Fermi approximation and solve the screened Poisson equation for the screened electric potential φscrn(R)\varphi_{\text{scrn}}(R)  Blatter et al. (1996):

[2λTF2]φscrn=4πρ,[\nabla^{2}-\lambda_{\text{TF}}^{-2}]\,\varphi_{\text{scrn}}=-4\pi\rho\,, (S11)

where λTF=(8πe2Nμ)1/2\lambda_{\text{TF}}=(8\pi e^{2}N_{\mu})^{-1/2} is the screening length. In our numerical simulation, we take λTF\lambda_{\text{TF}} to be one lattice constant, λTF5\lambda_{\text{TF}}\approx 5 nm. The Green’s function corresponding to Eq. (S11) is G(r,r)=14π|rr|e|rr|/λTFG(\vec{r},\vec{r}\,^{\prime})=-\frac{1}{4\pi\absolutevalue{\vec{r}-\vec{r}\,^{\prime}}}e^{-\absolutevalue{\vec{r}-\vec{r}\,^{\prime}}/\lambda_{\text{TF}}}, therefore, on the lattice we have

φscrn(r)=Vρ(r)|rr|e|rr|/λTFd3r.\varphi_{\text{scrn}}(\vec{r})=\int_{V}\frac{\rho(\vec{r}\,^{\prime})}{\absolutevalue{\vec{r}-\vec{r}\,^{\prime}}}e^{-\absolutevalue{\vec{r}-\vec{r}\,^{\prime}}/\lambda_{\text{TF}}}d^{3}r\,^{\prime}. (S12)

After performing this calculation with a two-vortex source term, we then use φscrn\varphi_{\text{scrn}} in Hamiltonian given by Eq. (10), by setting μμ+eφscrn\mu\to\mu+e\varphi_{\text{scrn}}.

Refer to caption
Figure S1: The screened potential in x and z (inset) directions for a system with two vortices and λTF=a=ξ\lambda_{\text{TF}}=a=\xi. The system is a cuboid with dimensions 100ξ×50ξ×5ξ100\xi\crossproduct 50\xi\crossproduct 5\xi. The two red dots indicate the positions of the two vortices. The screened potential in the x direction is plotted along the blue line in the left cuboid and in the z direction (inset) it is plotted along the orange line in the right cuboid.