This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Minimal Energy Local Systems on Curves

Charlie Wu
Abstract.

Let Σg,d\Sigma_{g,d} be an orientable topological surface of genus gg with dd punctures. When g=0g=0, Deroin and Tholozan studied the class of supra-maximal representations π1(Σ0,d)PSL2()\pi_{1}(\Sigma_{0,d})\to\operatorname{PSL}_{2}(\mathbb{R}), and they showed that the supra-maximal representations form a compact component of a real relative character variety. We study a collection of rank nn local systems on Σg,d\Sigma_{g,d} which we call of minimal energy. These are generalizations of supra-maximal representations, and underlie polarizable complex variations of Hodge structure for any choice of complex structure on Σg,d\Sigma_{g,d}. Like the supra-maximal representations, the minimal energy local systems form a compact component of a real relative character variety.

We show that when the local monodromy data around the punctures is chosen to be unitary and generic, and the relative character variety is nonempty, these minimal energy local systems always exist. When g>0g>0, we show that the minimal energy local systems come from unitary representations of π1(Σg,d)\pi_{1}(\Sigma_{g,d}). If g=0g=0 we show that they do not always come from unitary representations, and we study their structure in general.

1. Introduction

Let Σg,d\Sigma_{g,d} be an orientable topological surface of genus gg and dd punctures. Let C=(C1,,Cd)C=(C_{1},\dots,C_{d}) be a dd-tuple of conjugacy classes of GLn()\operatorname{GL}_{n}(\mathbb{C}). We let χ(π1(Σg,d),C)\chi(\pi_{1}(\Sigma_{g,d}),C) be the relative character variety of Σg,d\Sigma_{g,d}. This is the space of semi-simple rank nn representations of the fundamental group of Σg,d\Sigma_{g,d} such that the homotopy class of a simple closed loop γi\gamma_{i} around some puncture xix_{i} lies in CiC_{i} up to conjugation of the representation by GLn()\operatorname{GL}_{n}(\mathbb{C}).

More precisely, we let the (relative) representation variety Rep(π1(Σg,d),C)\mathrm{Rep}(\pi_{1}(\Sigma_{g,d}),C) be given by

Rep(π1(XD),C)i=12gGLn()×i=1dCi\displaystyle\mathrm{Rep}(\pi_{1}(X\setminus D),C)\subseteq\prod_{i=1}^{2g}\operatorname{GL}_{n}(\mathbb{C})\times\prod_{i=1}^{d}C_{i}

where Rep(π1(Σg,d),C)\mathrm{Rep}(\pi_{1}(\Sigma_{g,d}),C) is cut out by the relations

i=12gAi=i=1dBi\displaystyle\prod_{i=1}^{2g}A_{i}=\prod_{i=1}^{d}B_{i}

for AiGLn()A_{i}\in\operatorname{GL}_{n}(\mathbb{C}) and BiCiB_{i}\in C_{i}. Since the CiC_{i} are algebraic subvarieties of GLn()\operatorname{GL}_{n}(\mathbb{C}), Rep(π1(Σg,d),C)\mathrm{Rep}(\pi_{1}(\Sigma_{g,d}),C) inherits the structure of an algebraic variety. Then, GLn()\operatorname{GL}_{n}(\mathbb{C}) acts on Rep(π1(Σg,d),C)\mathrm{Rep}(\pi_{1}(\Sigma_{g,d}),C) by simultaneous conjugation of the AiA_{i}’s and BiB_{i}’s, and we define χ(π1(Σg,d),C)\chi(\pi_{1}(\Sigma_{g,d}),C) to be Rep(π1(Σg,d),C)//GLn()\mathrm{Rep}(\pi_{1}(\Sigma_{g,d}),C)//\operatorname{GL}_{n}(\mathbb{C}) where the quotient is a GIT quotient.

1.1. Main results

We study a collection of local systems in χ(π1(Σg,n),C)\chi(\pi_{1}(\Sigma_{g,n}),C) which we call of minimal energy. These local systems are defined in Definition 4.2, and they come from polarizable complex variations of Hodge structure (\mathbb{C}-VHS) satisfying a Hodge-theoretic vanishing condition. This definition a priori depends on a choice of complex structure for Σg,n\Sigma_{g,n}, but we show in Proposition 4.17 that this choice turns out to be auxiliary and does not matter.

Therefore, we give Σg,n\Sigma_{g,n} a complex structure and work with smooth algebraic curves. Let XX be a smooth proper curve of genus gg over the complex numbers and let D=x1++xdD=x_{1}+\dots+x_{d} be a reduced effective divisor on XX so that topologically, Σg,n\Sigma_{g,n} is homeomorphic to XDX\setminus D. Suppose that the conjugacy classes C1,,CdGLn()C_{1},\dots,C_{d}\subseteq\operatorname{GL}_{n}(\mathbb{C}) each contain a unitary matrix, and as before we let C=(C1,,Cd)C=(C_{1},\dots,C_{d}).

The following results will be proven in Section 4, Section 5, and Section 6.

When χ(π1(XD),C)\chi(\pi_{1}(X\setminus D),C) is nonempty and smooth, we show that there is always a minimal energy local system in χ(π1(XD),C)\chi(\pi_{1}(X\setminus D),C). Smoothness of χ(π1(XD),C)\chi(\pi_{1}(X\setminus D),C) is guaranteed provided that CC satisfies some genericity conditions (Definition 3.6).

Theorem 1.2.

If χ(π1(XD),C)\chi(\pi_{1}(X\setminus D),C) is nonempty and smooth, then there is a minimal energy local system in χ(π1(XD),C)\chi(\pi_{1}(X\setminus D),C).

The methods used to prove Theorem 1.2 allow us conclude in Proposition 4.17 that the minimal energy local systems form almost all of the \mathbb{C}-VHS lying in χ(π1(XD),C)\chi(\pi_{1}(X\setminus D),C).

If XX has positive genus and our local monodromy data is generic, a minimal energy local system must come from a \mathbb{C}-VHS with a one-step Hodge filtration. That is, these minimal energy local systems come from unitary representations. This is proven in Proposition 4.18. If the genus of XX is zero, then the minimal energy local systems do not have to come from a \mathbb{C}-VHS with a one-step Hodge filtration. In Example 6.2, for any rank rr we find an example of a minimal energy local system on 1D\mathbb{P}^{1}\setminus D whose associated \mathbb{C}-VHS has a two-step Hodge filtration. However, we show that when the number of punctures dd is very large compared to rr, this is the maximum number of pieces that can appear in the Hodge filtration of a \mathbb{C}-VHS associated to a minimal energy local system.

Theorem 1.3.

Let 𝕍\mathbb{V} be an irreducible minimal energy local system of rank nn on 1D\mathbb{P}^{1}\setminus D with generic unitary local monodromy. If

degD4n228\displaystyle\deg D\geq 4n^{2}-28

then 𝕍\mathbb{V} comes from a \mathbb{C}-VHS with at most two steps in its Hodge filtration.

1.4. History and motivation

In [BG99], Robert Benedetto and William Goldman studied SL2()\operatorname{SL}_{2}(\mathbb{C})-representations on Σ0,4\Sigma_{0,4}. They observed that there is a compact component of a real relative character variety χ(π1(XD),C)\chi(\pi_{1}(X\setminus D),C). Benedetto and Goldman first found this component by plotting the character variety on a computer.

Bertrand Deroin and Nicolas Tholozan, in [DT19], then studied PSL2()\operatorname{PSL}_{2}(\mathbb{R})-representations of π1(Σ0,d)\pi_{1}(\Sigma_{0,d}) when the number of punctures dd is at least three. They generalized the work of Benedetto-Goldman by showing that a class of representations, which they call supra-maximal, forms a compact component of a real relative character variety.

Tholozan and Jérémy Toulisse [TT21] generalized the work of Deroin-Tholozan to higher rank representations of π1(Σ0,3)\pi_{1}(\Sigma_{0,3}). They show that relative SU(p,q)\operatorname{SU}(p,q)-character varieties admit compact components under certain conditions on the local monodromy when d3d\geq 3, and they construct examples of nonempty SU(p,q)\operatorname{SU}(p,q)-character varieties satisfying these constraints.

The minimal energy local systems are generalizations of the supra-maximal representations (see [LLL23, Remark 4.3.4]), and they exist in any rank. One key feature of these minimal energy local systems is that, like the supra-maximal representations, they also form a compact component of a real relative character variety (see Proposition 4.19). This extends the work of Deroin-Tholozan and Tholozan-Toulisse, as the minimal energy local systems always exist (provided that the relative character variety is non-empty and smooth). Furthermore, the minimal energy local systems (and hence the compact components) exist for relative character varieties for all surfaces - not just punctured spheres.

1.5. Structure of the paper

Our methods heavily rely on Non-Abelian Hodge Theory, which gives us a correspondence between local systems on XDX\setminus D and parabolic Higgs bundles on XX (with parabolic divisor DD). In Section 2 and Section 3 we review the notions of parabolic bundles and \mathbb{C}-VHS. In particular, we discuss how to take a \mathbb{C}-VHS on XDX\setminus D and produce a parabolic Higgs bundle.

Experts may wish to skip to Section 4, where we introduce the notion of minimal energy and prove Theorem 1.2 and Proposition 4.18. In Section 5 we prove Theorem 1.3, and in Section 6 we give Example 6.2 and give some applications of minimal energy local systems to Gromov-Witten theory.

1.6. Acknowledgements

I thank my advisor Daniel Litt. He suggested that I study these minimal energy local systems, and this project would not be possible without his encouragement and the many extremely helpful conversations I have had with him. I would also like to thank Simon Xu for the discussions I have had with him and for entertaining my many questions about Hodge theory. I am grateful to Samuel Bronstein and Arnaud Maret for their insightful questions and comments. I also thank Brian Collier as well as Bronstein and Maret for bringing the work of Tholozan and Toulisse to my attention.

2. Parabolic Bundles

We review the notions of parabolic bundles and parabolic sheaves. We use the notation in [LL24, Section 2]. Parabolic bundles are, roughly speaking, bundles carrying extra structure that keeps track of local unitary monodromy data.

Definition 2.1.

Let EE be a vector bundle on a smooth curve CC, and let D=x1++xdD=x_{1}+\dots+x_{d} be a reduced effective divisor on CC. A parabolic bundle (E,{Eji},{αji})(E,\{E_{j}^{i}\},\{\alpha_{j}^{i}\}) on (C,D)(C,D) is the data

  1. (1)

    a strictly decreasing filtration Exj=Ej1Ej2Ejnj+1=0E_{x_{j}}=E_{j}^{1}\supset E_{j}^{2}\supset\dots\supset E_{j}^{n_{j}+1}=0,

  2. (2)

    a sequence of real numbers 0αj1<αj2<<αjnj<10\leq\alpha_{j}^{1}<\alpha_{j}^{2}<\dots<\alpha_{j}^{n_{j}}<1

for all xjx_{j} appearing in DD. We write EE_{*} to mean (E,{Eji},{αji})(E,\{E_{j}^{i}\},\{\alpha_{j}^{i}\}) and we call DD the parabolic divisor of EE_{*}. For a fixed xjx_{j}, we call {Eji}\{E_{j}^{i}\} the flag over xjx_{j} and {αji}\{\alpha_{j}^{i}\} the weights over xjx_{j}. We call αji\alpha_{j}^{i} the weight associated to EjiE_{j}^{i}.

Given a parabolic bundle EE_{*}, we get induced parabolic structures on subquotients of EE_{*}.

Definition 2.2.

Let EE_{*} be a parabolic bundle on CC with parabolic divisor DD, and let FEF\subseteq E be a subbundle of EE. The vector bundles FF and E/FE/F carry an induced parabolic structure with parabolic divisor DD follows:

  1. (1)

    the flag of FxjF_{x_{j}} over xjx_{j} is given by

    Fxj=Ej1FxjEj2FxjEjnj+1Fxj=0\displaystyle F_{x_{j}}=E_{j}^{1}\cap F_{x_{j}}\supseteq E_{j}^{2}\cap F_{x_{j}}\supseteq\dots\supseteq E_{j}^{n_{j}+1}\cap F_{x_{j}}=0

    after removing redundancies, and the weight associated to FjiF_{j}^{i} is given by max1knj{αjk:Fji=EjkFxj}\max_{1\leq k\leq n_{j}}\{\alpha_{j}^{k}:F_{j}^{i}=E_{j}^{k}\cap F_{x_{j}}\}.

  2. (2)

    the flag of (E/F)xj(E/F)_{x_{j}} is given by

    (E/F)xj=(Ej1+Fxj)/Fxj(Ej2+Fxj)/Fxj(Ejnj+Fxj)/Fxj=0\displaystyle(E/F)_{x_{j}}=(E^{1}_{j}+F_{x_{j}})/F_{x_{j}}\supseteq(E^{2}_{j}+F_{x_{j}})/F_{x_{j}}\supseteq\dots\supseteq(E^{n_{j}}_{j}+F_{x_{j}})/F_{x_{j}}=0

    after removing redundancies, and the weight associated to (E/F)xji(E/F)_{x_{j}}^{i} is given by max1knj{αjk:(E/F)xji=(Ejk+Fxj)/Fxj}\max_{1\leq k\leq n_{j}}\{\alpha_{j}^{k}:(E/F)_{x_{j}}^{i}=(E_{j}^{k}+F_{x_{j}})/F_{x_{j}}\}.

Definition 2.3.

Let EE_{*} be a parabolic vector bundle on CC with parabolic divisor D=x1++xdD=x_{1}+\dots+x_{d}. The parabolic degree is the quantity

pardegE\displaystyle\operatorname{par-deg}E_{*} :=deg(E)+j=1di=1njαjidim(Eji/Eji+1)\displaystyle:=\deg(E)+\sum_{j=1}^{d}\sum_{i=1}^{n_{j}}\alpha_{j}^{i}\cdot\dim(E_{j}^{i}/E_{j}^{i+1})

and we call μ(E):=pardegE/rankE\mu_{*}(E_{*}):=\operatorname{par-deg}E_{*}/\rank E to be the parabolic slope of EE_{*}.

Parabolic degree satisfies properties similar to those satisfied by the usual notion of degree, and there is a corresponding notion of parabolic stability.

Lemma 2.4.

Let 0FEQ00\to F_{*}\to E_{*}\to Q_{*}\to 0 be a short exact sequence of parabolic bundles. Then pardeg(E)=pardeg(F)+pardeg(Q)\operatorname{par-deg}(E_{*})=\operatorname{par-deg}(F_{*})+\operatorname{par-deg}(Q_{*}). A parabolic bundle EE_{*} is semi-stable (resp. stable) if and only if for every quotient bundle QQ_{*} of EE_{*}, μ(E)μ(Q)\mu_{*}(E_{*})\leq\mu_{*}(Q_{*}) (resp. μ(E)<μ(Q)\mu_{*}(E_{*})<\mu_{*}(Q_{*})).

Proof.

See [LL24, Lemma 2.4.5]. ∎

To define the notion of parabolic tensor product and homomorphisms between parabolic bundles, we will need the notion of a parabolic sheaf. To that end, let \mathbb{R} be the category consisting of real numbers with a single morphism ia,b:abi^{a,b}:a\to b if aba\leq b.

Definition 2.5.

An \mathbb{R}-filtered 𝒪X\mathscr{O}_{X}-module is a functor E:Mod𝒪XE:\mathbb{R}\to\mathrm{Mod}_{\mathscr{O}_{X}} where Mod𝒪X\mathrm{Mod}_{\mathscr{O}_{X}} is the category of 𝒪X\mathscr{O}_{X}-modules. We write EαE_{\alpha} for E(α)E(\alpha) and we write EE_{*} for the functor EE. Write iEa,b=E(ia,b)i_{E}^{a,b}=E(i^{a,b}).

Set E[α]E[\alpha]_{*} to be the functor given by E[α]β=Eα+βE[\alpha]_{\beta}=E_{\alpha+\beta}, and iE[α]a,b=iEa+α,b+αi^{a,b}_{E[\alpha]}=i^{a+\alpha,b+\alpha}_{E}. We write iE[α,β]:E[α]E[β]i^{[\alpha,\beta]}_{E}:E[\alpha]_{*}\to E[\beta]_{*} to be the natural transformation so that iE[α,β](γ)=iEα+γ,β+γi_{E}^{[\alpha,\beta]}(\gamma)=i_{E}^{\alpha+\gamma,\beta+\gamma}. If f:EFf:E_{*}\to F_{*} is a natural transformation of \mathbb{R}-filtered 𝒪X\mathscr{O}_{X}-modules, we write f[α]:E[α]F[α]f[\alpha]:E[\alpha]_{*}\to F[\alpha]_{*} to be the induced map.

Definition 2.6.

A parabolic sheaf EE_{*} with divisor DD is an \mathbb{R}-filtered 𝒪X\mathscr{O}_{X}-module with an isomorphism jE:E(D)E[1]j_{E}:E_{*}(-D)\to E_{*}[1] such that iE[0,1]jE=idEiDi_{E}^{[0,1]}\circ j_{E}=\operatorname{id}_{E_{*}}\otimes i_{D} where iD:𝒪X(D)𝒪Xi_{D}:\mathscr{O}_{X}(-D)\to\mathscr{O}_{X} is the inclusion.

A natural transformation f:EFf:E_{*}\to F_{*} is a parabolic morphism if f[1]jE=(fid)jFf[1]\circ j_{E}=(f\otimes\operatorname{id})\circ j_{F}. Let Hom(E,F)\operatorname{Hom}(E_{*},F_{*}) be the set of parabolic morphisms and om(E,F)\mathscr{H}\kern-2.0ptom(E_{*},F_{*}) to be the sheaf of parabolic morphisms defined by om(E,F)(U)=Hom(E|U,F|U)\mathscr{H}\kern-2.0ptom(E_{*},F_{*})(U)=\operatorname{Hom}({E_{*}}|_{U},{F_{*}}|_{U}). The sheaf om(E,F)\mathscr{H}\kern-2.0ptom(E_{*},F_{*}) has a parabolic structure given by om(E,F)α=om(E,F[α])\mathscr{H}\kern-2.0ptom(E_{*},F_{*})_{\alpha}=\mathscr{H}\kern-2.0ptom(E_{*},F[\alpha]_{*}) with morphism om(E,F)αom(E,F)β\mathscr{H}\kern-2.0ptom(E_{*},F_{*})_{\alpha}\to\mathscr{H}\kern-2.0ptom(E_{*},F_{*})_{\beta} induced by F[α]F[β]F[\alpha]_{*}\to F[\beta]_{*}.

The notion of parabolic vector bundle and parabolic sheaf are related.

Example 2.7.

Let (E,{Eji},{αji}(E,\{E_{j}^{i}\},\{\alpha_{j}^{i}\} be a parabolic vector bundle with parabolic divisor DD. For 0α<10\leq\alpha<1, write β(α,j)=min{j:αjiα}\beta(\alpha,j)=\min\{j:\alpha_{j}^{i}\geq\alpha\} for all αmax{αji}\alpha\leq\max\{\alpha_{j}^{i}\} and β(α,j)=nj+1\beta(\alpha,j)=n_{j}+1 for max{αji}<α<1\max\{\alpha_{j}^{i}\}<\alpha<1. Then set

Eα\displaystyle E_{\alpha} =j=1nker(EExj/Ejβ(α,j)).\displaystyle=\bigcap_{j=1}^{n}\ker(E\to E_{x_{j}}/E_{j}^{\beta(\alpha,j)}).

We extend outside [0,1)[0,1) by Ex+n=Ex(nD)E_{x+n}=E_{x}(-nD) for all nn\in\mathbb{Z}, with morphisms iα,β:EαEβi^{\alpha,\beta}:E_{\alpha}\to E_{\beta} to be their natural inclusions.

Definition 2.8.

Let EE_{*} and FF_{*} be two parabolic sheaves with the same parabolic divisor DD, and let j:CDCj:C\setminus D\hookrightarrow C the natural inclusion. Suppose that EαE_{\alpha} and FαF_{\alpha} are both locally free for all α\alpha. Then, we define the parabolic tensor product EFE_{*}\otimes F_{*} to be the parabolic sheaf such that (EF)α(E_{*}\otimes F_{*})_{\alpha} is generated by all EaEbE_{a}\otimes E_{b} where a+b=αa+b=\alpha when viewed as a subbundle of jj(EF)j_{*}j^{*}(E\otimes F), and morphisms iEFα,βi_{E_{*}\otimes F_{*}}^{\alpha,\beta} to be the natural inclusion map.

A parabolic sheaf EE_{*} is constant along intervals [αi,αi+1)[\alpha_{i},\alpha_{i+1}). To each parabolic sheaf, we can associate a parabolic sheaf E^\widehat{E}_{*} which is constant along (αi,αi+1](\alpha_{i},\alpha_{i+1}]. (See [BY96, Figure 1]).

Definition 2.9.

Let EE_{*} be a parabolic sheaf. We define E^\widehat{E}_{*} by the rule

E^x\displaystyle\widehat{E}_{x} ={ExxαiEαi+1x=αi,\displaystyle=\begin{cases}E_{x}&x\neq\alpha_{i}\\ E_{\alpha_{i+1}}&x=\alpha_{i},\end{cases}

and we call E^\widehat{E}_{*} the coparabolic sheaf associated to EE_{*}. If EE_{*} is a parabolic bundle, then we call E^\widehat{E}_{*} the coparabolic bundle associated to EE_{*}.

Proposition 2.10.

If we write FF_{*}^{\vee} to mean om(F,𝒪X)\mathscr{H}\kern-2.0ptom(F_{*},\mathscr{O}_{X})_{*} (where 𝒪X\mathscr{O}_{X} has the trivial parabolic structure), then om(E,F)(EF)\mathscr{H}\kern-2.0ptom(E_{*},F_{*})_{*}\cong(E_{*}^{\vee}\otimes F_{*})_{*}.

Proof.

See [Yok95, Lemma 3.6]. ∎

If EE_{*} and FF_{*} are rank 11 parabolic bundles, then om(E,F)EF(D)\mathscr{H}\kern-2.0ptom(E_{*},F_{*})\cong E^{\vee}\otimes F(-D^{\prime}) where DDD^{\prime}\subseteq D is the divisor consisting of points xjx_{j} where the weight of EE_{*} is greater than the weight of FF_{*}. Similarly, om(E,F)^EF(D′′)\widehat{\mathscr{H}\kern-2.0ptom(E_{*},F_{*})}\cong E^{\vee}\otimes F(-D^{\prime\prime}) where D′′D^{\prime\prime} is the divisor of points where the weight of EE_{*} is greater than or equal to the weight of FF_{*}.

Definition 2.11.

A parabolic Higgs bundle (E,θ)(E_{*},\theta) on (C,D)(C,D) is a parabolic bundle EE_{*} on (C,D)(C,D) along with an End(E)\operatorname{End}(E_{*})-valued logarithmic 11-form θH0(X,End(E)ΩX1(logD)^)\theta\in H^{0}(X,\widehat{\operatorname{End}(E_{*})\otimes\Omega_{X}^{1}(\log D)}). The map θ\theta is called a Higgs field.

There are notions of stability and semi-stability for parabolic Higgs bundles.

Definition 2.12.

If (E,θ)(E_{*},\theta) is a Higgs bundle with a parabolic structure, then we say that (E,θ)(E_{*},\theta) is a parabolic Higgs bundle is stable (resp. semi-stable) if all sub-Higgs bundles (F,θ|F)(F_{*},\theta|_{F}) satisfy μ(F)<μ(E)\mu_{*}(F_{*})<\mu_{*}(E_{*}) (resp. μ(F)μ(E)\mu_{*}(F_{*})\leq\mu_{*}(E_{*})).

Lemma 2.13.

If FF_{*} and GG_{*} two parabolic bundles on 1\mathbb{P}^{1}, then

(2.1) pardegom(E,F)=rankEpardegFrankFpardegE.\displaystyle\operatorname{par-deg}\mathscr{H}\kern-2.0ptom(E_{*},F_{*})_{*}=\rank E\cdot\operatorname{par-deg}F_{*}-\rank F\cdot\operatorname{par-deg}E_{*}.
Proof.

See [Bis03, Section 2] for a discussion on computing pardeg(EF)\operatorname{par-deg}(E_{*}\otimes F_{*})_{*} for EE_{*} and FF_{*} parabolic bundles. Then to get the statement for om(E,F)\mathscr{H}\kern-2.0ptom(E_{*},F_{*})_{*} we note that om(E,F)=((E)F)\mathscr{H}\kern-2.0ptom(E_{*},F_{*})_{*}=((E_{*})^{\vee}\otimes F_{*})_{*}. ∎

Lemma 2.14.

Let EE_{*} be a parabolic vector bundle with parabolic divisor DD. Then

degEpardegE<degE+rankEdegD.\displaystyle\deg E\leq\operatorname{par-deg}E_{*}<\deg E+\rank E\cdot\deg D.
Proof.

By Definition 2.3

pardegE=degE+xjDi=1njαijdim(Eji/Eji+1).\displaystyle\operatorname{par-deg}E_{*}=\deg E+\sum_{x_{j}\in D}\sum_{i=1}^{n_{j}}\alpha_{i}^{j}\cdot\dim(E_{j}^{i}/E_{j}^{i+1}).

Since our parabolic weights αij\alpha_{i}^{j} lie in [0,1)[0,1),

0xjDi=1njαijdim(Eji/Eji+1)\displaystyle 0\leq\sum_{x_{j}\in D}\sum_{i=1}^{n_{j}}\alpha_{i}^{j}\cdot\dim(E_{j}^{i}/E_{j}^{i+1}) <xjDi=1njdim(Eji/Eji+1)=xjDdim(Exj).\displaystyle<\sum_{x_{j}\in D}\sum_{i=1}^{n_{j}}\dim(E_{j}^{i}/E_{j}^{i+1})=\sum_{x_{j}\in D}\dim(E_{x_{j}}).

But EE is a vector bundle so the fibers have dimension equal to rankE\rank E. Therefore

degVpardegV<degV+xjDdim(Exj)=degV+rankEdegD.\displaystyle\deg V\leq\operatorname{par-deg}V_{*}<\deg V+\sum_{x_{j}\in D}\dim(E_{x_{j}})=\deg V+\rank E\cdot\deg D.

We seek to study parabolic Higgs bundles on (X¯,D)(\overline{X},D) because they correspond to local systems on X¯D\overline{X}\setminus D. This correspondence is work of Simpson in [Sim90], and we include it as Proposition 2.15 for convenience. We will refer to Proposition 2.15 below as the Non-Abelian Hodge Theorem.

Proposition 2.15.

Let X=X¯DX=\overline{X}\setminus D where X¯\overline{X} is a smooth proper curve and DD is a reduced effective divisor. There is a one-to-one correspondence between parabolic semi-stable Higgs bundles of parabolic degree 0 on X¯\overline{X} with parabolic divisor DD and the local systems on XX.

Proof.

See [Sim90, Theorem on page 718]. ∎

We will describe which Higgs bundles correspond to local systems underlying a complex variation of Hodge structure in Section 3.

3. Variations of Hodge Structure

We give background on variations of Hodge structure and their associated Higgs bundles in this section. We primarily use the notation of [LL24, Section 4].

Definition 3.1.

Let XX be a smooth irreducible variety over \mathbb{C}. A complex variation of Hodge struture (\mathbb{C}-VHS) is a triple (V,Vp,q,D)(V,V^{p,q},D) where VV is a complex CC^{\infty}-bundle on XX, Vp,q=V\oplus V^{p,q}=V is a direct sum decomposition, and DD is a flat connection satisfying

D(Vp,q)A1,0(Vp,q)A0,1(Vp,q)A1,0(Vp1,q+1)A0,1(Vp+1,q1).\displaystyle D(V^{p,q})\subseteq A^{1,0}(V^{p,q})\oplus A^{0,1}(V^{p,q})\oplus A^{1,0}(V^{p-1,q+1})\oplus A^{0,1}(V^{p+1,q-1}).

A polarization on (V,Vp,q,D)(V,V^{p,q},D) is a flat Hermitian form ψ\psi such that the Vp,qV^{p,q} are orthogonal to eachother under ψ\psi, and that on each Vp,qV^{p,q} the form (1)pψ(-1)^{p}\psi is positive-definite. A polarizable \mathbb{C}-VHS is a \mathbb{C}-VHS which admits a polarization ψ\psi.

Given a \mathbb{C}-VHS (V,Vp,q,D)(V,V^{p,q},D) we call the holomorphic flat bundle (E,):=(ker(D)𝒪,idd)(E,\nabla):=(\ker(D)\otimes_{\mathbb{C}}\mathscr{O},\operatorname{id}\otimes d) the holomorphic flat bundle associated to the \mathbb{C}-VHS. We get a filtration FpEF^{p}E on EE induced by the filtration FpV=jpVj,qF^{p}V=\oplus_{j\geq p}V^{j,q} on VV, known as the Hodge filtration. The filtration satisfies Griffiths transversality:

(Fp)Fp1ΩX1(logD).\displaystyle\nabla(F^{p})\subseteq F^{p-1}\otimes\Omega_{X}^{1}(\log D).

If 𝕍\mathbb{V} is a a local system isomorphic to ker(D)\ker(D) for some polarizable \mathbb{C}-VHS (V,Vp,q,D)(V,V^{p,q},D), then we say that 𝕍\mathbb{V} underlies a polarizable \mathbb{C}-VHS.

Definition 3.2.

Let X=X¯DX=\overline{X}\setminus D with DD a simple normal crossings divisor, and (E,)(E,\nabla) a flat holomorphic vector bundle on XX. The Deligne canonical extension of (E,)(E,\nabla) is the unique logarithmic flat bundle (E¯,¯)(\overline{E},\overline{\nabla}) on X¯\overline{X} with regular singularities along DD, along with an isomorphism (E¯,¯)|X(E,)(\overline{E},\overline{\nabla})|_{X}\cong(E,\nabla), and such that the eigenvalues of the residues of ¯\overline{\nabla} along DD have real part in [0,1)[0,1).

The existence of the Deligne canonical extension is a theorem of Deligne [Del70, Remarques 5.5(i)].

Definition 3.3.

Let X=X¯DX=\overline{X}\setminus D be a curve where X¯\overline{X} is some smooth proper curve and DD is a reduced effective divisor. Let (E,)(E,\nabla) be a flat holomorphic vector bundle of rank nn on XX with regular singularities along DD. Suppose at some xjx_{j}, the eigenvalues of the residue matrix Res()(xj)\Res(\nabla)(x_{j}) are given by ηj1,,ηjn\eta_{j}^{1},\dots,\eta_{j}^{n}. Then, the real parts Re(ηji)\real(\eta_{j}^{i}) lie in [0,1)[0,1). We write αji=Re(ηji)\alpha_{j}^{i}=\real(\eta_{j}^{i}) and order the αji\alpha_{j}^{i} in increasing order and remove repetitions so

0αj1<<αjnj<1.\displaystyle 0\leq\alpha_{j}^{1}<\dots<\alpha_{j}^{n_{j}}<1.

Let EjiExjE_{j}^{i}\subseteq E_{x_{j}} be the sum of all of the generalized eigenspaces of Res()(xj)\Res(\nabla)(x_{j}) such that the real part of the associated eigenvalues are at least αji\alpha_{j}^{i}. Then, E=(E,{Eji},{αji})E=(E,\{E_{j}^{i}\},\{\alpha_{j}^{i}\}) is the parabolic bundle associated to the connection \nabla.

Definition 3.4.

Let X¯\overline{X} be a smooth projective curve, ZZ a reduced effective divisor, and X=X¯ZX=\overline{X}\setminus Z. Let (V,Vp,q,D)(V,V^{p,q},D) be a \mathbb{C}-VHS on XX and (E,)(E,\nabla) its associated holomorphic flat bundle with Hodge filtration FF^{\bullet}. Let (E¯,¯)(\overline{E}_{*},\overline{\nabla}) be its associated parabolic bundle on XX in the sense of Definition 3.2 and Definition 3.3. Then by [Bru17, Section 7], there is a canonical extension of the Hodge filtration FF^{\bullet} to (E¯,¯)(\overline{E},\overline{\nabla}). Let F¯\overline{F}^{\bullet} be this extension.

We call (pGrF¯pE¯,GrF¯p¯)(\oplus_{p}\operatorname{Gr}_{\overline{F}^{\bullet}}^{p}\overline{E}_{*},\oplus\operatorname{Gr}_{\overline{F}^{\bullet}}^{p}\overline{\nabla}) the parabolic Higgs bundle associated to the variation of Hodge structure. The 𝒪X\mathscr{O}_{X}-linearity of the map GrF¯p¯\oplus\operatorname{Gr}_{\overline{F}^{\bullet}}^{p}\overline{\nabla} is due to Griffiths transversality of ¯\overline{\nabla} and F¯\overline{F}^{\bullet}.

Proposition 3.5.

Let X=X¯ZX=\overline{X}\setminus Z where X¯\overline{X} is a smooth proper curve and ZZ is a reduced effective divisor. Let (V,Vp,q,D)(V,V^{p,q},D) be a complex variation of Hodge structure on XX, (E,F,)(E,F^{\bullet},\nabla) its associated holomorphic flat bundle with Hodge filtration FF^{\bullet}, and (Ep,θp):=(pGrF¯pE¯,GrF¯p¯)(\oplus E^{p}_{*},\oplus\theta_{p}):=(\oplus_{p}\operatorname{Gr}_{\overline{F}^{\bullet}}^{p}\overline{E}_{*},\oplus\operatorname{Gr}_{\overline{F}^{\bullet}}^{p}\overline{\nabla}) be its associated parabolic Higgs bundle defined in Definition 3.4. Then,

  1. (1)

    Ep\oplus E_{*}^{p} is of parabolic degree zero,

  2. (2)

    (Ep,θp)(\oplus E_{*}^{p},\oplus\theta_{p}) is parabolic semi-stable as a Higgs bundle,

  3. (3)

    if the local system ker()\ker(\nabla) is irreducible, then (Ep,θp)(\oplus E_{*}^{p},\oplus\theta_{p}) is parabolic stable as a Higgs bundle.

Proof.

This is due to Simpson [Sim90, Theorem 5]. ∎

Proposition 3.5 produces a parabolic Higgs bundle from a \mathbb{C}-VHS. The parabolic Higgs bundle is the same as the one given by Simpson’s Non-Abelian Hodge Theorem (Proposition 2.15).

Definition 3.6.

Let XX be a smooth projective curve and D=x1++xdD=x_{1}+\dots+x_{d} be a reduced effective divisor on XX. We fix a positive integer nn. Let {αji}\{\alpha_{j}^{i}\} be a collection of parabolic weights.

  1. (1)

    We say that {αji}\{\alpha_{j}^{i}\} is smooth with respect to (X,D,n)(X,D,n) if every semi-stable parabolic Higgs bundle of rank nn on (X,D)(X,D) of parabolic degree 0 with the weights {αji}\{\alpha_{j}^{i}\} is actually stable.

  2. (2)

    We say that the collection of weights {αji}\{\alpha_{j}^{i}\} is distinct with respect to (X,D,n)(X,D,n) if for all jj, nj=nn_{j}=n where njn_{j} is the number of weights over xjx_{j}.

  3. (3)

    We say that the weights {αji}\{\alpha_{j}^{i}\} are generic with respect to (X,D,n)(X,D,n) if (1) and (2) are both satisfied.

Let 𝕍\mathbb{V} be a local system on XDX\setminus D with unitary local monodromy around the punctures. We say the local monodromy of 𝕍\mathbb{V} is generic if the collection of associated weights of the associated parabolic Higgs bundle is generic (via the Non-Abelian Hodge Theorem).

Example 3.7.

Let (X,D,n)(X,D,n) be fixed. Let {αji}[0,1)\{\alpha_{j}^{i}\}\subseteq[0,1) be a set of size degDn\deg D\cdot n so that no proper subset of the {αji}\{\alpha_{j}^{i}\} has elements which sum to an integer. Then, {αji}\{\alpha_{j}^{i}\} is generic with respect to (X,D,n)(X,D,n) in the sense of Definition 3.4 (3). To check this, we take any parabolic semi-stable Higgs bundle (E,θ)(E_{*},\theta) of parabolic degree 0 and observe that any sub-Higgs bundle (F,θ|F)(F_{*},\theta|_{F}) of (E,θ)(E_{*},\theta) satisfies

pardegFrankF=μ(F)μ(E)=pardegErankE=0.\displaystyle\frac{\operatorname{par-deg}F_{*}}{\rank F}=\mu_{*}(F_{*})\leq\mu_{*}(E_{*})=\frac{\operatorname{par-deg}E_{*}}{\rank E}=0.

Then since

(3.1) pardegF=degF+j=1degDk=1rankFαjik\displaystyle\operatorname{par-deg}F_{*}=\deg F+\sum_{j=1}^{\deg D}\sum_{k=1}^{\rank F}\alpha_{j}^{{i_{k}}}

where {αjik}\{\alpha_{j}^{i_{k}}\} is the collection of weights of FF_{*}. We note that

degF+j=1degDk=1rankFαjik<0\displaystyle\deg F+\sum_{j=1}^{\deg D}\sum_{k=1}^{\rank F}\alpha_{j}^{{i_{k}}}<0

because by assumption, the expression

j=1degDk=1rankFαjik\displaystyle\sum_{j=1}^{\deg D}\sum_{k=1}^{\rank F}\alpha_{j}^{{i_{k}}}

is not an integer and degF\deg F is always an integer.

Let XX be a curve. Given a parabolic Higgs bundle (E,θ)(E_{*},\theta) on (X,D)(X,D), the ii-th Higgs cohomology group of (E,θ)(E,\theta) is defined to be

i(E𝜃EΩX1(logD)^).\displaystyle\mathbb{H}^{i}\left(E\xrightarrow{\theta}\widehat{E\otimes\Omega_{X}^{1}(\log D)}\right).

If (E,θ)(E_{*},\theta) underlies a \mathbb{C}-VHS of weight ww, E=p+q=wEp,qE=\oplus_{p+q=w}E^{p,q} then the Higgs cohomology has a Hodge structure of weight w+iw+i with (p,q)(p,q) part given by

p,q(E𝜃EΩX1(logD)^)\displaystyle\mathbb{H}^{p,q}\left(E\xrightarrow{\theta}\widehat{E\otimes\Omega_{X}^{1}(\log D)}\right) :=i(Ep,qi𝜃Ep1,q+i1ΩX1(logD)^).\displaystyle:=\mathbb{H}^{i}\left(E^{p,q-i}\xrightarrow{\theta}\widehat{E^{p-1,q+i-1}\otimes\Omega_{X}^{1}(\log D)}\right).

This means that

i(E𝜃EΩX1(logD)^)=p+q=w+ii(Ep,qi𝜃Ep1,q+i1ΩX1(logD)^).\displaystyle\mathbb{H}^{i}\left(E\xrightarrow{\theta}\widehat{E\otimes\Omega_{X}^{1}(\log D)}\right)=\bigoplus_{p+q=w+i}\mathbb{H}^{i}\left(E^{p,q-i}\xrightarrow{\theta}\widehat{E^{p-1,q+i-1}\otimes\Omega_{X}^{1}(\log D)}\right).
Definition 3.8.

Let (E,θ)(E_{*},\theta) be a parabolic Higgs bundle underlying a \mathbb{C}-VHS on a curve XX with parabolic divisor DD. We say 1(EEΩX1(logD)^)\mathbb{H}^{1}(E_{*}\to\widehat{E_{*}\otimes\Omega_{X}^{1}(\log D)}\to\dots) is of Hodge length \ell if k,1k(EEΩX1(logD)^)=0\mathbb{H}^{k,1-k}(E_{*}\to\widehat{E_{*}\otimes\Omega_{X}^{1}(\log D)})=0 for all k<+1k<-\ell+1 and k>k>\ell.

4. Minimal Energy

Let XX be a smooth proper curve. As before, we let M=M(X,D,n,{αij})M=M(X,D,n,\{\alpha_{i}^{j}\}) be the coarse moduli space of semi-stable parabolic Higgs bundles of rank nn of parabolic degree 0 on XX with parabolic divisor DD and parabolic weights {αij}\{\alpha_{i}^{j}\}. This space is constructed in [Yok93, Section 2]. As (X,D,n)(X,D,n) are fixed, any smoothness, distinctness, and genericity conditions on a collection of weights {αji}\{\alpha_{j}^{i}\} are assumed to be with respect to (X,D,n)(X,D,n) in the sense of Definition 3.6.

As before, for a semi-stable parabolic Higgs field (E,θ)(E_{*},\theta) to be in MM, we require that θH0(X,End(E)ΩX1(logD)^)\theta\in H^{0}(X,\widehat{\operatorname{End}(E)_{*}\otimes\Omega_{X}^{1}(\log D)}). This ensures that when we deform a Higgs bundle corresponding to a local system with unitary local monodromy, the resulting Higgs bundle gives us a local system with unitary local monodromy.

Remark 4.1.

If (E,θ)=(Ep,θp)(E_{*},\theta)=(\oplus E^{p},\oplus\theta_{p}) is a stable parabolic Higgs bundle underlying an (irreducible) \mathbb{C}-VHS, then the adjoint Higgs bundle Ad(E)\operatorname{Ad}(E_{*}) also underlies a \mathbb{C}-VHS. This has a canonical grading, where the kk-th graded piece Ad(E)k,k\operatorname{Ad}(E_{*})^{k,-k} is given by om(Ep,Ep+k)\oplus\mathscr{H}\kern-2.0ptom(E^{p}_{*},E^{p+k}_{*})_{*}. Then,

1=1(Ad(E)𝜃Ad(E)ΩX1(logD)^)\displaystyle\mathbb{H}^{1}=\mathbb{H}^{1}(\operatorname{Ad}(E_{*})\xrightarrow{\theta}\widehat{\operatorname{Ad}(E_{*})\otimes\Omega_{X}^{1}(\log D)})

has a Hodge structure of weight 11. In this case dimp,1p=dim1p,p\dim_{\mathbb{C}}\mathbb{H}^{p,1-p}=\dim_{\mathbb{C}}\mathbb{H}^{1-p,p} because Ad(E)\operatorname{Ad}(E_{*}) is self dual so 1\mathbb{H}^{1} has a real Hodge structure. This is because Ad(E)\operatorname{Ad}(E_{*}) is polarized, so it is dual to its conjugate. But it is self-dual, so its conjugate is itself.

We now define the notion of minimal energy.

Definition 4.2.

Let (E,θ)(E_{*},\theta) be a stable parabolic Higgs bundle on a smooth proper curve XX with parabolic divisor DD and parabolic weights {αij}\{\alpha_{i}^{j}\} corresponding to a complex variation of Hodge structure. We say that (E,θ)(E_{*},\theta) is an irreducible minimal energy parabolic Higgs bundle (or is of minimal energy) if the Higgs cohomology group

1(Ad(E)Ad(E)ΩX1(logD)^)\displaystyle\mathbb{H}^{1}(\operatorname{Ad}(E_{*})\to\widehat{\operatorname{Ad}(E_{*})\otimes\Omega_{X}^{1}(\log D)})

of MM at (E,θ)(E_{*},\theta) is of Hodge length 11.

If (V,Vp,q,D)(V,V^{p,q},D^{\prime}) is the \mathbb{C}-VHS corresponding to the minimal energy Higgs bundle (E,θ)(E_{*},\theta), then we say that (V,Vp,q,D)(V,V^{p,q},D^{\prime}) is a minimal energy variation of Hodge structure.

Similarly, if 𝕍\mathbb{V} is a local system on XDX\setminus D with unitary local monodromy such that the corresponding parabolic Higgs bundle (E,θ)(E_{*},\theta) (under the Non-Abelian Hodge correspondence) is of minimal energy, then we say 𝕍\mathbb{V} is a minimal energy local system (or is of minimal energy).

The notion of minimal energy is actually a condition on the tangent space of MM at (E,θ)(E_{*},\theta).

Remark 4.3.

If (E,θ)(E_{*},\theta) is a smooth point of MM, then the tangent space at (E,θ)(E_{*},\theta) is isomorphic to 1(Ad(E)Ad(E)ΩX1(logD)^)\mathbb{H}^{1}(\operatorname{Ad}(E_{*})\to\widehat{\operatorname{Ad}(E_{*})\otimes\Omega_{X}^{1}(\log D)}). If (E,θ)(E_{*},\theta) is stable, then it is a smooth point in MM.

Proof.

See [Tha02, Section 3] for the smoothness claim. A detailed proof that the tangent space at (E,θ)(E_{*},\theta) is isomorphic 1(Ad(E)Ad(E)ΩX1(logD)^)\mathbb{H}^{1}(\operatorname{Ad}(E_{*})\to\widehat{\operatorname{Ad}(E_{*})\otimes\Omega_{X}^{1}(\log D)}) to can be found in [Bot95, Proposition 5.2.1].

By Remark 4.3, if our parabolic weights are chosen smoothly (in the sense of Definition 3.6), then every semi-stable parabolic Higgs bundle with those weights is actually stable. In this case, our moduli space MM is smooth.

Remark 4.4.

In the non-parabolic setting, there is an energy functional on the moduli space of Higgs bundles given by (E,θ)=iXtr(θθ)\norm{(E,\theta)}=i\int_{X}\tr(\theta\wedge\theta^{*}) where θ\theta^{*} is the adjoint to θ\theta with respect to a harmonic metric. If (E,θ)(E,\theta) is stable, then this metric is unique. Collier and Wentworth [CW19, Section 4.1] showed that stable Higgs bundles which minimize (E,θ)\norm{(E,\theta)} are those whose tangent space is of Hodge length 11 by exploiting the fact that the energy functional is a Morse-Bott function on the moduli space of Higgs bundles [Hit87, Section 8]. The tangent space to the moduli space of Higgs bundles splits into a direct sum jTj\oplus_{j\in\mathbb{Z}}T_{j} where Tj=j,1jT_{j}=\mathbb{H}^{j,1-j} [Hit92, Section 8]. On each piece TjT_{j}, the Hessian of \norm{\cdot} has eigenvalue jj and hence a Higgs bundle cannot minimize the energy functional unless Tj=0T_{j}=0 for j<0j<0. Symmetry of the decomposition of the tangent space implies that the only nonzero pieces are T0T_{0} and T1T_{1} which is precisely the Hodge length 11 condition described in Definition 4.2.

There are some classes of local systems which are always of minimal energy.

Example 4.5.

A unitary local system 𝕍\mathbb{V} corresponds to a parabolic Higgs bundle underlying a \mathbb{C}-VHS coming in one piece E=E1E_{*}=E^{1}_{*} and Higgs field θ=0\theta=0. This is a consequence of the Mehta-Seshadri correspondence for irreducible unitary local systems and stable parabolic bundles [MS80, Theorem 4.1]. Then, 𝕍\mathbb{V} is a minimal energy local system.

Example 4.6.

A rigid local system is always of minimal energy.

We give an example of a rigid local system. A result of Katz [Kat96, Theorem 1.1.2] says that for a rank nn irreducible local system 𝕍\mathbb{V} on 1{p1,,pk}\mathbb{P}^{1}\setminus\{p_{1},\dots,p_{k}\} with local monodromy data (conjugate to) (A1,,Ak)(A_{1},\dots,A_{k}), 𝕍\mathbb{V} is rigid if and only if

(2k)n2+i=1kdimZ(Ai)=2\displaystyle(2-k)n^{2}+\sum_{i=1}^{k}\dim Z(A_{i})=2

where Z(Ai)Z(A_{i}) is the centralizer of AiA_{i}.

In the case where k=3k=3 and n=2n=2, Katz’s condition requires that

dimZ(A1)+dimZ(A2)+dimZ(A3)=6.\displaystyle\dim Z(A_{1})+\dim Z(A_{2})+\dim Z(A_{3})=6.

For a 2×22\times 2 non-scalar matrix BB, dimZ(B)=2\dim Z(B)=2. Hence, any irreducible rank 22 local system on 1{0,1,}\mathbb{P}^{1}\setminus\{0,1,\infty\} with non-scalar local monodromy around the punctures must be rigid and therefore is of minimal energy.

There is a a 𝔾m\mathbb{G}_{m}-action on MM. If t𝔾mt\in\mathbb{G}_{m} and (E,θ)M(E_{*},\theta)\in M then we act on (E,θ)(E_{*},\theta) by tt by t(E,θ)=(E,tθ)t\cdot(E_{*},\theta)=(E_{*},t\theta). Simpson [Sim90, Theorem 8] shows that the fixed points of this action on MM is precisely the locus of parabolic Higgs bundles coming from a \mathbb{C}-VHS under the correspondence in Proposition 2.15.

The 𝔾m\mathbb{G}_{m}-action on MM induces a 𝔾m\mathbb{G}_{m}-action the tangent space 1(Ad(E)Ad(E)ΩX1(logD)^)\mathbb{H}^{1}(\operatorname{Ad}(E_{*})\to\widehat{\operatorname{Ad}(E_{*})\otimes\Omega_{X}^{1}(\log D)}), and this 𝔾m\mathbb{G}_{m}-action interacts with the Hodge structure in a natural way.

Proposition 4.7.

The 𝔾m\mathbb{G}_{m}-action on MM induces a 𝔾m\mathbb{G}_{m}-action on the tangent space of MM at a fixed point (E,θ)(E_{*},\theta). This induces a 𝔾m\mathbb{G}_{m}-action (through the isomorphism in Remark 4.3) on 1(Ad(E)Ad(E)ΩX1(logD)^)\mathbb{H}^{1}(\operatorname{Ad}(E_{*})\to\widehat{\operatorname{Ad}(E_{*})\otimes\Omega_{X}^{1}(\log D)}). The action of t𝔾mt\in\mathbb{G}_{m} on each piece of the Hodge structure p,1p(Ad(E)Ad(E)ΩX1(logD)^)\mathbb{H}^{p,1-p}(\operatorname{Ad}(E_{*})\to\widehat{\operatorname{Ad}(E_{*})\otimes\Omega_{X}^{1}(\log D)}) is given by tpt^{p}.

Proof.

Let (E,θ)(E_{*},\theta) be a fixed point. By [Sim90, Theorem 8], (E,θ)(E_{*},\theta) comes from a \mathbb{C}-VHS and hence has a graded Higgs bundle (E,θ)=(Ep,θp)(E_{*},\theta)=(\oplus E^{p}_{*},\oplus\theta^{p}). The grading is unique up to shifting. Once we pick a grading, we get a map f:(Ep,tθp)(Ep,θp)f:(\oplus E^{p}_{*},\oplus t\theta^{p})\to(\oplus E^{p}_{*},\oplus\theta^{p}) given by f|Ep=tpf|_{E^{p}}=t^{p}. This is an isomorphism of parabolic Higgs bundles.

The map ff naturally gives us a morphism of complexes

Ad(E){{\operatorname{Ad}(E_{*})}}Ad(E)ΩX1(logD)^{{\widehat{\operatorname{Ad}(E_{*})\otimes\Omega_{X}^{1}(\log D)}}}Ad(E){{\operatorname{Ad}(E_{*})}}Ad(E)ΩX1(logD)^{{\widehat{\operatorname{Ad}(E_{*})\otimes\Omega_{X}^{1}(\log D)}}}tψ\scriptstyle{{t\psi}}f~\scriptstyle{{\tilde{f}}}f~id\scriptstyle{{\tilde{f}\otimes\operatorname{id}}}ψ\scriptstyle{\psi}

where ψ\psi is the induced Higgs field on Ad(E)\operatorname{Ad}(E_{*}). Here, f~|Ad(E)p,p\tilde{f}|_{\operatorname{Ad}(E_{*})^{p,-p}} is given by multiplication by tpt^{p}. Hence, we get a map on hypercohomology

1(Ad(E)Ad(E)ΩX1(logD))1(Ad(E)Ad(E)ΩX1(logD))\displaystyle\mathbb{H}^{1}(\operatorname{Ad}(E_{*})\to\operatorname{Ad}(E_{*})\otimes\Omega_{X}^{1}(\log D))\to\mathbb{H}^{1}(\operatorname{Ad}(E_{*})\to\operatorname{Ad}(E_{*})\otimes\Omega_{X}^{1}(\log D))

induced by f~\tilde{f}.

In order to compute the 𝔾m\mathbb{G}_{m}-action on p,1p\mathbb{H}^{p,1-p} we consider the morphism of complexes

Ad(E)p,p{{\operatorname{Ad}(E_{*})^{p,-p}}}Ad(E)p1,1pΩX1(logD)^{{\widehat{\operatorname{Ad}(E_{*})^{p-1,1-p}\otimes\Omega_{X}^{1}(\log D)}}}Ad(E)p,p{{\operatorname{Ad}(E_{*})^{p,-p}}}Ad(E)p1,1pΩX1(logD)^{{\widehat{\operatorname{Ad}(E_{*})^{p-1,1-p}\otimes\Omega_{X}^{1}(\log D)}}}tψ\scriptstyle{t\psi}tp\scriptstyle{\cdot t^{p}}(tp1)id\scriptstyle{(\cdot t^{p-1})\otimes\operatorname{id}}ψ\scriptstyle{\psi}

.

Let II^{\bullet} be a resolution of Ad(E)p,p\operatorname{Ad}(E_{*})^{p,-p} and JJ^{\bullet} be a resolution of Ad(E)p1,1pΩX1(logD)^\widehat{\operatorname{Ad}(E_{*})^{p-1,1-p}\otimes\Omega_{X}^{1}(\log D)}. Then,

p,1p=H1(Γ(I0)Γ(I1)Γ(J0)Γ(I2)Γ(J1))\displaystyle\mathbb{H}^{p,1-p}=H^{1}(\Gamma(I^{0})\to\Gamma(I^{1})\oplus\Gamma(J^{0})\to\Gamma(I^{2})\oplus\Gamma(J^{1})\to\dots)

and we can compute the 𝔾m\mathbb{G}_{m}-action on p,1p\mathbb{H}^{p,1-p} using the above description. Here, we are implicitly using the isomorphism in Remark 4.3.

The complex

Ad(E)p,p{{\operatorname{Ad}(E_{*})^{p,-p}}}Ad(E)p1,1pΩX1(logD)^{{\widehat{\operatorname{Ad}(E_{*})^{p-1,1-p}\otimes\Omega_{X}^{1}(\log D)}}}tψ\scriptstyle{t\psi}

is resolved by IJ{I^{\bullet}}\to{J^{\bullet}}^{\prime} where J{J^{\bullet}}^{\prime} and JJ^{\bullet} are related by multiplication by tt. This is because we have an isomorphism of complexes

Ad(E)p,p{{\operatorname{Ad}(E_{*})^{p,-p}}}Ad(E)p1,1pΩX1(logD)^{{\widehat{\operatorname{Ad}(E_{*})^{p-1,1-p}\otimes\Omega_{X}^{1}(\log D)}}}Ad(E)p,p{{\operatorname{Ad}(E_{*})^{p,-p}}}Ad(E)p1,1pΩX1(logD)^{{\widehat{\operatorname{Ad}(E_{*})^{p-1,1-p}\otimes\Omega_{X}^{1}(\log D)}}}ψ\scriptstyle{{\psi}}id\scriptstyle{\operatorname{id}}t\scriptstyle{{\cdot t}}tψ\scriptstyle{t\psi}

.

To obtain the chain map, we can compose the vertical maps to get

Γ(I0){{\Gamma(I^{0})}}Γ(I1)Γ(J0){{\Gamma(I^{1})\oplus\Gamma(J^{0})}}Γ(I2)Γ(J1){{\Gamma(I^{2})\oplus\Gamma(J^{1})}}{\dots}Γ(I0){{\Gamma(I^{0})}}Γ(I1)Γ(J0){{\Gamma(I^{1})\oplus\Gamma({J^{0}}^{\prime})}}Γ(I2)Γ(J1){{\Gamma(I^{2})\oplus\Gamma({J^{1}}^{\prime})}}{\dots}Γ(I0){{\Gamma(I^{0})}}Γ(I1)Γ(J0){{\Gamma(I^{1})\oplus\Gamma(J^{0})}}Γ(I2)Γ(J1){{\Gamma(I^{2})\oplus\Gamma(J^{1})}}{\dots}tp\scriptstyle{{t^{p}}}(tp)(tp1)\scriptstyle{{(\cdot t^{p})\oplus(\cdot t^{p-1})}}(tp)(tp1)\scriptstyle{(\cdot t^{p})\oplus(\cdot t^{p-1})}id\scriptstyle{\operatorname{id}}id(t)\scriptstyle{{\operatorname{id}\oplus(\cdot t)}}id(t)\scriptstyle{\operatorname{id}\oplus(\cdot t)}

.

The chain map is given by multiplication by tpt^{p}, so 𝔾m\mathbb{G}_{m} acts on p,1p\mathbb{H}^{p,1-p} by multiplication by tpt^{p}. ∎

Theorem 1.2 says that the energy Higgs bundles always exist when the moduli space MM is smooth, and a generic parabolic Higgs bundle in MM can be deformed to one of minimal energy. We prove this by using the parabolic Hitchin map defined in [Yok93, Page 495] as well as Bialynicki-Birula theory. We briefly review the definitions and properties here.

4.8. The Hitchin map

Definition 4.9.

The parabolic Hitchin map is the map h:Mj=1nH0(X,ΩX1(logD)j)h:M\to\oplus_{j=1}^{n}H^{0}(X,\Omega_{X}^{1}(\log D)^{\otimes j}) defined by

h((E,θ))=(tr(1θ),tr(2θ),,tr(nθ)).\displaystyle h((E_{*},\theta))=(\tr(\wedge^{1}\theta),\tr(\wedge^{2}\theta),\dots,\tr(\wedge^{n}\theta)).

The map hh sends a parabolic Higgs bundle to the coefficients of the characteristic polynomial of its Higgs field.

Proposition 4.10.

The parabolic Hitchin map is proper.

Proof.

See [Yok93, Theorem 5.10] where they prove that the valuative criterion for properness holds. ∎

Lemma 4.11.

Let (E,θ)(E_{*},\theta) be a stable parabolic Higgs bundle on XX. Then, limt0(E,tθ)\lim_{t\to 0}(E_{*},t\theta) exists and underlies a \mathbb{C}-VHS. In particular, (E,θ)(E_{*},\theta) can be deformed to a parabolic Higgs bundle underlying a \mathbb{C}-VHS.

Proof.

This is proven in [Moc06, Proposition 1.9(3)]. ∎

4.12. The Bialynicki-Birula stratification

Let G=𝔾mG=\mathbb{G}_{m}, ZZ be some smooth variety over \mathbb{C} with an action of GG on ZZ, and ZGZ^{G} the locus of fixed points of the GG-action. Suppose ZZ can be covered by GG-invariant quasi-affine opens. Then, Bialynicki-Birula [BB73, Theorem 4.1 and Theorem 4.3] proves the following:

Theorem 4.13.

Let ZG=i=1r(ZG)iZ^{G}=\cup_{i=1}^{r}(Z^{G})_{i} be the decomposition of ZGZ^{G} into connected components. Then for any i=1,,ri=1,\dots,r, there exists are unique locally closed non-singular GG-invariant subschemes Zi+Z_{i}^{+} and ZiZ_{i}^{-} and unique morphisms γi+:Zi+(ZG)i\gamma_{i}^{+}:Z_{i}^{+}\to(Z^{G})_{i} and γi:Zi(ZG)i\gamma_{i}^{-}:Z_{i}^{-}\to(Z^{G})_{i}

  1. (a)

    (ZG)i(Z^{G})_{i} is a closed subscheme of Zi+Z_{i}^{+} (resp. ZiZ_{i}^{-}) and γi+|(ZG)i\gamma_{i}^{+}|_{(Z^{G})_{i}} (resp. γi|(ZG)i\gamma_{i}^{-}|_{(Z^{G})_{i}}) is the identity.

  2. (b)

    Zi+Z_{i}^{+} (resp. ZiZ_{i}^{-}) with its induced action of GG and with the map γi+\gamma_{i}^{+} (resp. γi\gamma_{i}^{-}) is a GG-fibration over (ZG)i(Z^{G})_{i}.

  3. (c)

    For any closed a(ZG)ia\in(Z^{G})_{i}, we have the following equality of tangent spaces Ta(Zi+)=Ta(Z)0Ta(Z)+T_{a}(Z_{i}^{+})=T_{a}(Z)^{0}\oplus T_{a}(Z)^{+} and Ta(Zi)=Ta(Z)0Ta(Z)T_{a}(Z_{i}^{-})=T_{a}(Z)^{0}\oplus T_{a}(Z)^{-} where for a GG-module VV, V0V^{0} is the GG-invariant submodule of VV, V+V^{+} is spanned by the elements vVv\in V such that tv=tkvt\cdot v=t^{k}v for k>0k>0, and VV^{-} is spanned by the elements vVv\in V such that tv=tkvt\cdot v=t^{k}v for k<0k<0.

If furthermore limt0zt\lim_{t\to 0}z\cdot t exists for all zZz\in Z, then

  1. (d)

    (Zi+)G=(ZG)i(Z_{i}^{+})^{G}=(Z^{G})_{i} (resp. (Zi)G=(ZG)i(Z_{i}^{-})_{G}=(Z_{G})_{i}) for i=1,,ri=1,\dots,r.

  2. (e)

    Zi+Z_{i}^{+} (resp. ZiZ_{i}^{-}) with the map γi+\gamma_{i}^{+} (resp. γi\gamma_{i}^{-}) is a GG-fibration over (ZG)i(Z^{G})_{i}

  3. (f)

    For any closed a(ZG)ia\in(Z^{G})_{i}, Ta(Zi+)=Ta((ZG)i)Ta(Zi+)T_{a}(Z_{i}^{+})=T_{a}((Z^{G})_{i})\oplus T_{a}(Z_{i}^{+}) (resp. Ta(Zi)=Ta((ZG)i)Ta(Zi)T_{a}(Z_{i}^{-})=T_{a}((Z^{G})_{i})\oplus T_{a}(Z_{i}^{-}))

Remark 4.14.

The statements of Theorem 4.13 (d), (e), and (f) in [BB73, Theorem 4.3] require that our variety ZZ is complete. This is to ensure that limt0zt\lim_{t\to 0}z\cdot t exists, so requiring the weaker assumption that limt0zt\lim_{t\to 0}z\cdot t exists is sufficient.

Theorem 4.13 gives us a stratification of MM (when it is smooth) compatible with the 𝔾m\mathbb{G}_{m}-action on MM. This is because smoothness of MM over \mathbb{C} ensures that MM is a normal variety with a 𝔾m\mathbb{G}_{m}-action, so by [Sum74, Corollary 2] we can cover MM with 𝔾m\mathbb{G}_{m}-invariant affine open subsets of MM. By Lemma 4.11, limt0(E,tθ)\lim_{t\to 0}(E_{*},t\theta) exists for all (E,θ)(E_{*},\theta) so parts (d), (e), and (f) of Theorem 4.13 also apply. We can realize MM as a fibration over the locus of 𝔾m\mathbb{G}_{m}-fixed points, which by [Sim90, Theorem 8] is precisely the \mathbb{C}-VHS locus.

4.15. Proof of Theorem 1.2

We are now ready to prove that if MM is smooth, then minimal energy parabolic Higgs bundles exist. By Simpson’s Non-Abelian Hodge Theorem (Proposition 2.15), this is the same as showing the minimal energy local systems in χ(π1(XD),C)\chi(\pi_{1}(X\setminus D),C) exist.

Proof of Theorem 1.2.

We use the Bialynicki-Birula stratification (Theorem 4.13). By assumption MM is smooth, and Lemma 4.11 implies that limt0(E,tθ)\lim_{t\to 0}(E_{*},t\theta) exists so all parts of Theorem 4.13 hold in our setting. The 𝔾m\mathbb{G}_{m}-fixed locus inside MM is precisely the \mathbb{C}-VHS locus by [Sim90, Theorem 8]. Let YY be this locus, and Y=Y1YrY=Y_{1}\cup\dots\cup Y_{r} its decomposition into irreducible components. By Theorem 4.13, there are locally closed non-singular 𝔾m\mathbb{G}_{m}-invariant subschemes Mi+M_{i}^{+} and morphisms γi+:Mi+Yi\gamma_{i}^{+}:M_{i}^{+}\to Y_{i} that YiY_{i} is inside Mi+M_{i}^{+} and γi+\gamma_{i}^{+} restricts to the identity on YiY_{i}. Assume without loss of generality that M1+M_{1}^{+} has the greatest dimension among the Mi+M_{i}^{+} for i=1,,ri=1,\dots,r. Note that dimM1+=dimM\dim M_{1}^{+}=\dim M.

Let yY1y\in Y_{1}. We claim that yy is of minimal energy. We define the following subspaces of TM,yT_{M,y}:

W\displaystyle W^{-} =span{vTM,y:tv=tkv for some k<0}\displaystyle=\mathrm{span}\{v\in T_{M,y}:t\cdot v=t^{k}v\text{ for some }k<0\}
W0\displaystyle W^{0} =span{vTM,y:tv=v}\displaystyle=\mathrm{span}\{v\in T_{M,y}:t\cdot v=v\}
W+\displaystyle W^{+} =span{vTM,y:tv=tkv for some k>0}\displaystyle=\mathrm{span}\{v\in T_{M,y}:t\cdot v=t^{k}v\text{ for some }k>0\}

By Proposition 4.7, Wp<0p,1pW^{-}\cong\oplus_{p<0}\mathbb{H}^{p,1-p}, W00,1W^{0}\cong\mathbb{H}^{0,1}, and W+p>0p,1pW^{+}\cong\oplus_{p>0}\mathbb{H}^{p,1-p}. Since dimp,1p=dim1p,p\dim_{\mathbb{C}}\mathbb{H}^{p,1-p}=\dim_{\mathbb{C}}\mathbb{H}^{1-p,p} for all pp\in\mathbb{Z} (see Remark 4.1), to show that p,1p=1p,p=0\mathbb{H}^{p,1-p}=\mathbb{H}^{1-p,p}=0 for p>1p>1 it is enough it is enough to show that W=0W^{-}=0 since

dimW=dim(p<0p,1p)=dim(p>1p,1p).\displaystyle\dim W^{-}=\dim\left(\bigoplus_{p<0}\mathbb{H}^{p,1-p}\right)=\dim\left(\bigoplus_{p>1}\mathbb{H}^{p,1-p}\right).

By parts (c) and (f) of Theorem 4.13, we know that TM1+,y=W0W+T_{M_{1}^{+},y}=W^{0}\oplus W^{+}. But since dimM1+=dimM\dim M_{1}^{+}=\dim M, this implies that

W0W+=TM1+,y=TM,y=WW0W+.\displaystyle W^{0}\oplus W^{+}=T_{M_{1}^{+},y}=T_{M,y}=W^{-}\oplus W^{0}\oplus W^{+}.

But then, W=0W^{-}=0 and we are done. ∎

4.16. Some properties of minimal energy local systems

The minimal energy local systems make up “most” of the \mathbb{C}-VHS in MM. We make this precise below.

Proposition 4.17.

Suppose MM is smooth, and let YY be the locus of \mathbb{C}-VHS inside MM. A \mathbb{C}-VHS pYp\in Y is of minimal energy if and only if it lies in the irreducible component of YY of largest dimension. The (complex) dimension of this irreducible component is half of the (complex) dimension of MM.

Proof.

By Proposition 4.7 and Remark 4.3, the tangent space of MM at a \mathbb{C}-VHS pMp\in M is of the form TM,p=1(Ad(E)Ad(E)ΩX1(logD)^)=pp,1pT_{M,p}=\mathbb{H}^{1}(\operatorname{Ad}(E_{*})\to\widehat{\operatorname{Ad}(E_{*})\otimes\Omega_{X}^{1}(\log D)})=\oplus_{p}\mathbb{H}^{p,1-p} and the action of 𝔾m\mathbb{G}_{m} on p,1p\mathbb{H}^{p,1-p} is given by multiplication by tpt^{p}. Hence, parts (c) and (f) of Theorem 4.13 imply that 0,1\mathbb{H}^{0,1} is isomorphic TY,pT_{Y,p} (which is the tangent space of YY at pp).

Since p,1p1p,p\mathbb{H}^{p,1-p}\cong\mathbb{H}^{1-p,p} as vector spaces for all pp\in\mathbb{Z}, this implies that

dimY=dimTY,p=dim0,112dimTM,p=12dimM\displaystyle\dim Y=\dim T_{Y,p}=\dim\mathbb{H}^{0,1}\leq\frac{1}{2}\dim T_{M,p}=\frac{1}{2}\dim M

with equality if and only if pp is of minimal energy. Since we know by Theorem 1.2 that minimal energy \mathbb{C}-VHS always exist, we know that the top dimensional component of YY is always half of the dimension of MM.

If q=(F,ω)Yq=(F_{*},\omega)\in Y lies in component of smaller dimension YYY^{\prime}\subseteq Y, then

dimY=dimTY,q=dim0,1(Ad(F)Ad(F)ΩX1(logD)^)<12dimTM,q=12dimM\displaystyle\dim Y^{\prime}=\dim T_{Y,q}=\dim\mathbb{H}^{0,1}(\operatorname{Ad}(F_{*})\to\widehat{\operatorname{Ad}(F_{*})\otimes\Omega_{X}^{1}(\log D)})<\frac{1}{2}\dim T_{M,q}=\frac{1}{2}\dim M

which implies that there is some k>1k>1 such that k,1k(Ad(F)Ad(F)ΩX1(logD)^)\mathbb{H}^{k,1-k}(\operatorname{Ad}(F_{*})\to\widehat{\operatorname{Ad}(F_{*})\otimes\Omega_{X}^{1}(\log D)}) is nonzero which violates the definition of minimal energy. ∎

If XX is a positive genus curve, then the minimal energy parabolic Higgs bundles must correspond to unitary representations of π1(XD)\pi_{1}(X\setminus D). We make this precise below in Proposition 4.18.

Proposition 4.18.

Let XX be a smooth proper curve of genus g>0g>0, and DD a reduced effective divisor. If (E,θ)(E_{*},\theta) is a stable parabolic Higgs bundle of minimal energy (with parabolic divisor DD) on XX of parabolic degree 0 with distinct parabolic weights {αij}\{\alpha_{i}^{j}\}, then the Higgs field is zero (and so (E,θ)(E_{*},\theta) comes from a unitary representation).

Proof.

We write E=ErE1E_{*}=E^{r}_{*}\oplus\dots\oplus E^{1}_{*} where the graded pieces of our Higgs fields θp:EpEp1ΩX1(logD)\theta^{p}:E^{p}\to E^{p-1}\otimes\Omega_{X}^{1}(\log D) are all nonzero. Since (E,θ)(E_{*},\theta) is stable, it is a smooth point of the moduli space of semi-stable parabolic Higgs bundles of parabolic degree 0 on XX with parabolic divisor DD and parabolic weights {αij}\{\alpha_{i}^{j}\}. Therefore by Remark 4.3, the tangent space to MM at (E,θ)(E_{*},\theta) is isomorphic to 1(Ad(E)Ad(E)ΩX1(logD)^)\mathbb{H}^{1}(\operatorname{Ad}(E_{*})\to\widehat{\operatorname{Ad}(E_{*})\otimes\Omega_{X}^{1}(\log D)}).

If 1(Ad(E)Ad(E)ΩX1(logD)^)\mathbb{H}^{1}(\operatorname{Ad}(E_{*})\to\widehat{\operatorname{Ad}(E_{*})\otimes\Omega_{X}^{1}(\log D)}) is of Hodge length 11, then we require that

1(0om(E1,Er)ΩX1(logD))=1(om(Er,E1)0)=0.\displaystyle\mathbb{H}^{1}(0\to\mathscr{H}\kern-2.0ptom(E^{1}_{*},E^{r}_{*})_{*}\otimes\Omega_{X}^{1}(\log D))=\mathbb{H}^{1}(\mathscr{H}\kern-2.0ptom(E^{r},E^{1})_{*}\to 0)=0.

Then, Riemann-Roch for curves yields

0\displaystyle 0 h0(X,om(Er,E1))h1(X,om(Er,E1))\displaystyle\leq h^{0}(X,\mathscr{H}\kern-2.0ptom(E^{r}_{*},E^{1}_{*})_{*})-h^{1}(X,\mathscr{H}\kern-2.0ptom(E^{r}_{*},E^{1}_{*})_{*})
=degom(Er,E1)+rankom(Er,E1)(1g).\displaystyle=\deg\mathscr{H}\kern-2.0ptom(E^{r}_{*},E^{1}_{*})_{*}+\rank\mathscr{H}\kern-2.0ptom(E^{r}_{*},E^{1}_{*})_{*}(1-g).

Therefore

1g\displaystyle 1-g degom(Er,E1)rankom(Er,E1)=μ(om(Er,E1)).\displaystyle\geq-\frac{\deg\mathscr{H}\kern-2.0ptom(E^{r}_{*},E^{1}_{*})_{*}}{\rank\mathscr{H}\kern-2.0ptom(E^{r}_{*},E^{1}_{*})_{*}}=-\mu_{*}(\mathscr{H}\kern-2.0ptom(E^{r}_{*},E^{1}_{*})_{*}).

Since om(Er,E1)\mathscr{H}\kern-2.0ptom(E^{r}_{*},E^{1}_{*})_{*} has parabolic degree at most 0 and

degom(Er,E1)pardegom(Er,E1)0\displaystyle\deg\mathscr{H}\kern-2.0ptom(E^{r}_{*},E^{1}_{*})_{*}\leq\operatorname{par-deg}\mathscr{H}\kern-2.0ptom(E^{r}_{*},E^{1}_{*})_{*}\leq 0

by Lemma 2.14, this implies that 1g=01-g=0 if and only if degom(Er,E1)=pardegom(Er,E1)=0\deg\mathscr{H}\kern-2.0ptom(E^{r}_{*},E^{1}_{*})_{*}=\operatorname{par-deg}\mathscr{H}\kern-2.0ptom(E^{r}_{*},E^{1}_{*})_{*}=0. Otherwise, μ(om(Er,E1))>0-\mu_{*}(\mathscr{H}\kern-2.0ptom(E^{r}_{*},E^{1}_{*})_{*})>0 and so g=0g=0.

If degom(Er,E1)=pardegom(Er,E1)=0\deg\mathscr{H}\kern-2.0ptom(E^{r}_{*},E^{1}_{*})_{*}=\operatorname{par-deg}\mathscr{H}\kern-2.0ptom(E^{r}_{*},E^{1}_{*})_{*}=0 then that implies that Er=E1E^{r}=E^{1} since we have assumed that the parabolic weights on (E,θ)(E_{*},\theta) are all distinct at each point in our parabolic divisor. But then, we know that E=Er=E1E_{*}=E^{r}_{*}=E^{1}_{*} and so the Higgs field on EE_{*} is zero. The Non-Abelian Hodge Theorem (Proposition 2.15) tells us that (E,θ)(E_{*},\theta) must come from a unitary representation. ∎

The author thanks Daniel Litt for sharing the following argument learned from a conversation with Bertrand Deroin and Nicolas Tholozan.

Proposition 4.19.

Let XX be a smooth proper curve and DD a reduced effective divisor on XX. Let (E,θ)=(Ek,θk)(E_{*},\theta)=(\oplus E^{k}_{*},\oplus\theta_{k}) be a minimal parabolic energy Higgs bundle of rank nn on XX with parabolic divisor DD and generic parabolic weights. If p=rankkE2kp=\sum\rank_{k\in\mathbb{Z}}E^{2k} and q=krankE2k+1q=\sum_{k\in\mathbb{Z}}\rank E^{2k+1}, then p+q=np+q=n and the locus of minimal energy Higgs bundles form a compact component of the SU(p,q)\operatorname{SU}(p,q)-relative character variety.

Proof.

Let 𝕍\mathbb{V} be a local system corresponding to a polarizable \mathbb{C}-VHS. Then, the representation ρ\rho corresponding to 𝕍\mathbb{V} preserves the polarization, and the polarization is a type (p,q)(p,q)-Hermitian form. Hence, ρ\rho is an SU(p,q)\operatorname{SU}(p,q)-representation of π1(XD)\pi_{1}(X\setminus D). The \mathbb{C}-VHS correspond to parabolic Higgs bundles, and the parabolic Higgs bundles they correspond to have nilpotent Higgs field. Hence, the parabolic Higgs bundles coming from \mathbb{C}-VHS lie in h1(0)h^{-1}(0) where hh is the parabolic Hitchin map (Definition 4.9).

We now consider the minimal energy local systems. As minimal energy local systems underlie a \mathbb{C}-VHS, they necessarily correspond to SU(p,q)\operatorname{SU}(p,q)-representations and also lie in h1(0)h^{-1}(0). Proposition 4.10 tells us that hh is proper, so h1(0)h^{-1}(0) is compact. Let YY be the SU(p,q)\operatorname{SU}(p,q)-relative character variety. Then, YY is a real form of the GLn()\operatorname{GL}_{n}(\mathbb{C})-relative character variety because SU(p,q)\operatorname{SU}(p,q) is a real form of GLn()\operatorname{GL}_{n}(\mathbb{C}). Hence, YY is closed inside the GLn()\operatorname{GL}_{n}(\mathbb{C})-relative character variety. Let YMY^{\prime}\subseteq M be the locus of parabolic Higgs bundles in MM corresponding to YY. We know that YY^{\prime} is closed in MM, so Yh1(0)Y^{\prime}\cap h^{-1}(0) is compact as it is a closed subset of h1(0)h^{-1}(0) which is compact.

Let ZYh1(0)Z\subseteq Y^{\prime}\cap h^{-1}(0) be the locus of minimal energy parabolic Higgs bundles. It suffices to show that ZZ is a component of YY, as then ZZ would be closed in YY and hence a compact component of YY. We know by Proposition 4.17 that 12dimM=dimZdimYh1(0)dimY=12dimM\frac{1}{2}\dim M=\dim Z\leq\dim Y^{\prime}\cap h^{-1}(0)\leq\dim Y=\frac{1}{2}\dim M. Therefore, dimZ=dimY\dim Z=\dim Y which implies that ZZ is a component of YY. ∎

This mirrors the lower-rank case in [DT19, Proposition 2.6] where the Deroin-Tholozan representations (which correspond to the minimal energy local systems in rank 22), form a compact component of the real character variety.

5. Genus g=0g=0

We restrict our attention to minimal energy parabolic Higgs bundles on 1\mathbb{P}^{1}. In contrast to the higher genus case (see Proposition 4.18) where the minimal energy local systems correspond to unitary representations, the minimal energy Higgs bundles do not necessarily underlie a \mathbb{C}-VHS with only one graded piece.

Let (E,θ)(E_{*},\theta) be a parabolic Higgs bundle on 1\mathbb{P}^{1} with distinct parabolic weights and parabolic divisor DD corresponding to an irreducible representation. Since (E,θ)(E_{*},\theta) underlies a \mathbb{C}-VHS it is of the form (p=1rEp,θp)(\oplus_{p=1}^{r}E^{p}_{*},\oplus\theta^{p}) where our Higgs field θp:EpEp1Ω11(logD)\theta^{p}:E^{p}\to E^{p-1}\otimes\Omega_{\mathbb{P}^{1}}^{1}(\log D) is nonzero. Suppose there rr pieces, where r>2r>2. We define Vk=pom(Ep,Ep+k)=Ad(E)k,kV^{k}=\oplus_{p}\mathscr{H}\kern-2.0ptom(E^{p}_{*},E^{p+k}_{*})_{*}=\operatorname{Ad}(E_{*})^{k,-k}, and θk:VkVk1Ω11(logD)\theta_{k}:V^{k}\to V^{k-1}\otimes\Omega_{\mathbb{P}^{1}}^{1}(\log D) to be the induced Higgs field on the kk-th graded piece of Ad(E)\operatorname{Ad}(E_{*}).

Our ultimate goal in this section is to prove Theorem 1.3. We work with minimal energy parabolic Higgs bundles (E,θ)(E_{*},\theta), and we bound the number of graded pieces in (E,θ)(E_{*},\theta). This bounds the number of steps in the Hodge filtration of the \mathbb{C}-VHS associated to (E,θ)(E_{*},\theta).

We first prove the following intermediate bound.

Proposition 5.1.

Let (E,θ)(E_{*},\theta) be a minimal energy parabolic Higgs bundle on 1\mathbb{P}^{1}of with at least 33 graded pieces and with generic unitary local monodromy data. If (E,θ)(E_{*},\theta) underlies an irreducible representation, then

degD2rankVr1rankV1+2k=2r1rankVk1+k=2r1(2k3)rankVkk=2r1(rankVk1rankcokerθk)+k=2r1(k2)rankVk.\displaystyle\deg D\leq\frac{2\rank V^{r-1}-\rank V^{1}+2\sum_{k=2}^{r-1}\rank V^{k-1}+\sum_{k=2}^{r-1}(2k-3)\rank V^{k}}{\sum_{k=2}^{r-1}(\rank V^{k-1}-\rank\mathrm{coker}\,\theta_{k})+\sum_{k=2}^{r-1}(k-2)\rank V^{k}}.

This bound will be used to prove Theorem 1.3. The bound in Theorem 1.3, which is independent of the ranks of the individual graded pieces, is obtained by bounding the rankVk\rank V^{k} in terms of rankE\rank E_{*} and applying Proposition 5.1.

To that end, we prove a series of lemmas which place restrictions the behavior of the Higgs field on (Ad(E),θk)(\operatorname{Ad}(E_{*}),\oplus\theta_{k}) whenever (E,θ)(E_{*},\theta) is of minimal energy.

Lemma 5.2.

If (E,θ)(E_{*},\theta) is a parabolic Higgs bundle of minimal energy with distinct parabolic weights, then for all 1<k<r1<k<r

H1(1,kerθk)=H0(1,cokerθk)=0\displaystyle H^{1}(\mathbb{P}^{1},\ker\theta_{k})=H^{0}(\mathbb{P}^{1},\mathrm{coker}\,\theta_{k})=0
Proof.

By Definition 4.2 and Remark 4.3, 1(Ad(E)Ad(E)Ω11(logD))\mathbb{H}^{1}(\operatorname{Ad}(E_{*})\to\operatorname{Ad}(E_{*})\otimes\Omega_{\mathbb{P}^{1}}^{1}(\log D)) is of Hodge length 11. Note that since our parabolic weights are distinct, VkΩ11(logD)^=VkΩ11(logD)\widehat{V^{k}\otimes\Omega_{\mathbb{P}^{1}}^{1}(\log D)}=V^{k}\otimes\Omega_{\mathbb{P}^{1}}^{1}(\log D) for all 1kr1\leq k\leq r. Therefore, the complex Ad(E)Ad(E)Ω11(logD)^\operatorname{Ad}(E_{*})\to\widehat{\operatorname{Ad}(E_{*})\otimes\Omega_{\mathbb{P}^{1}}^{1}(\log D)} has associated graded pieces

0\displaystyle 0 Vr1Ω11(logD)\displaystyle\to V^{r-1}\otimes\Omega_{\mathbb{P}^{1}}^{1}(\log D)
Vr1\displaystyle V^{r-1} Vr2Ω11(logD)\displaystyle\to V^{r-2}\otimes\Omega_{\mathbb{P}^{1}}^{1}(\log D)
\displaystyle\vdots
V2r\displaystyle V^{2-r} V1rΩ11(logD)\displaystyle\to V^{1-r}\otimes\Omega_{\mathbb{P}^{1}}^{1}(\log D)
V1r\displaystyle V^{1-r} 0.\displaystyle\to 0.

The graded pieces of 1(Ad(E)Ad(E)Ω11(logD))\mathbb{H}^{1}(\operatorname{Ad}(E_{*})\to\operatorname{Ad}(E_{*})\otimes\Omega_{\mathbb{P}^{1}}^{1}(\log D)) are given by

k,1k(Ad(E)Ad(E)ΩX1(logD)^)=1(VkVk1Ω11(logD))\displaystyle\mathbb{H}^{k,1-k}(\operatorname{Ad}(E_{*})\to\widehat{\operatorname{Ad}(E_{*})\otimes\Omega_{X}^{1}(\log D)})=\mathbb{H}^{1}(V^{k}\to V^{k-1}\otimes\Omega_{\mathbb{P}^{1}}^{1}(\log D))

whenever k1k\neq 1. We have an exact sequence of complexes of sheaves

0kerθk[0][VkVk1Ω11(logD)]cokerθk[1]0\displaystyle 0\to\ker\theta_{k}[0]\to[V^{k}\to V^{k-1}\otimes\Omega_{\mathbb{P}^{1}}^{1}(\log D)]\to\mathrm{coker}\,\theta_{k}[-1]\to 0

so we get a long exact sequence on hypercohomology

0{0}0(1,kerθk[0]){{\mathbb{H}^{0}(\mathbb{P}^{1},\ker\theta_{k}[0])}}0(VkVk1Ω11(logD)){{\mathbb{H}^{0}(V^{k}\to V^{k-1}\otimes\Omega_{\mathbb{P}^{1}}^{1}(\log D))}}0(1,cokerθk[1]){{\mathbb{H}^{0}(\mathbb{P}^{1},\mathrm{coker}\,\theta_{k}[-1])}}1(1,kerθk[0]){{\mathbb{H}^{1}(\mathbb{P}^{1},\ker\theta_{k}[0])}}1(VkVk1Ω11(logD)){{\mathbb{H}^{1}(V^{k}\to V^{k-1}\otimes\Omega_{\mathbb{P}^{1}}^{1}(\log D))}}1(1,cokerθk[1]){{\mathbb{H}^{1}(\mathbb{P}^{1},\mathrm{coker}\,\theta_{k}[-1])}}0{0}

.

Since 0(1,cokerθk[1])=0\mathbb{H}^{0}(\mathbb{P}^{1},\mathrm{coker}\,\theta_{k}[-1])=0, 1(1,cokerθk[1])=H0(1,cokerθk)\mathbb{H}^{1}(\mathbb{P}^{1},\mathrm{coker}\,\theta_{k}[-1])=H^{0}(\mathbb{P}^{1},\mathrm{coker}\,\theta_{k}), and H1(1,kerθk[0])=H1(1,kerθk)H^{1}(\mathbb{P}^{1},\ker\theta_{k}[0])=H^{1}(\mathbb{P}^{1},\ker\theta_{k}) we have a short exact sequence

0H1(1,kerθk)1(VkVk1Ω11(logD))H0(1,cokerθk)0\displaystyle 0\to H^{1}(\mathbb{P}^{1},\ker\theta_{k})\to\mathbb{H}^{1}(V^{k}\to V^{k-1}\otimes\Omega_{\mathbb{P}^{1}}^{1}(\log D))\to H^{0}(\mathbb{P}^{1},\mathrm{coker}\,\theta_{k})\to 0

and so k,1k(Ad(E)Ad(E)ΩX1(logD)^)=1(VkVk1Ω11(logD))\mathbb{H}^{k,1-k}(\operatorname{Ad}(E_{*})\to\widehat{\operatorname{Ad}(E_{*})\otimes\Omega_{X}^{1}(\log D)})=\mathbb{H}^{1}(V^{k}\to V^{k-1}\otimes\Omega_{\mathbb{P}^{1}}^{1}(\log D)) vanishes if and only if H1(1,kerθk)=H0(1,cokerθk)=0H^{1}(\mathbb{P}^{1},\ker\theta_{k})=H^{0}(\mathbb{P}^{1},\mathrm{coker}\,\theta_{k})=0. Since (E,θ)(E_{*},\theta) is of minimal energy, k,1k(Ad(E)Ad(E)ΩX1(logD)^)=0\mathbb{H}^{k,1-k}(\operatorname{Ad}(E_{*})\to\widehat{\operatorname{Ad}(E_{*})\otimes\Omega_{X}^{1}(\log D)})=0 for 1<k<r1<k<r. ∎

This lemma gives us strong conditions on the Higgs fields of minimal energy Higgs bundles.

Corollary 5.3.

Let (E,θ)(E_{*},\theta) be a minimal energy parabolic Higgs bundle on 1\mathbb{P}^{1}. Then for 1<k<r1<k<r, cokerθk\mathrm{coker}\,\theta_{k} is a locally free sheaf.

Proof.

As 1\mathbb{P}^{1}is a smooth curve and cokerθk\mathrm{coker}\,\theta_{k} is a coherent sheaf, we obtain a splitting cokerθk=(cokerθk)lf(cokerθk)tors\mathrm{coker}\,\theta_{k}=(\mathrm{coker}\,\theta_{k})_{\mathrm{lf}}\oplus(\mathrm{coker}\,\theta_{k})_{\mathrm{tors}} where (cokerθk)lf(\mathrm{coker}\,\theta_{k})_{\mathrm{lf}} is locally free and (cokerθk)tors(\mathrm{coker}\,\theta_{k})_{\mathrm{tors}} is a torsion sheaf. Since (E,θ)(E_{*},\theta) is a minimal energy parabolic Higgs bundle, 1(Ad(E)Ad(E)ΩX1(logD)^)\mathbb{H}^{1}(\operatorname{Ad}(E_{*})\to\widehat{\operatorname{Ad}(E_{*})\otimes\Omega_{X}^{1}(\log D)}) is of Hodge length 11. Lemma 5.2 implies that for 1<k<r1<k<r,

0=H0(1,cokerθk)=H0(1,(cokerθk)lf)H0(1,(cokerθk)tors).\displaystyle 0=H^{0}(\mathbb{P}^{1},\mathrm{coker}\,\theta_{k})=H^{0}(\mathbb{P}^{1},(\mathrm{coker}\,\theta_{k})_{\mathrm{lf}})\oplus H^{0}(\mathbb{P}^{1},(\mathrm{coker}\,\theta_{k})_{\mathrm{tors}}).

But (cokerθk)tors(\mathrm{coker}\,\theta_{k})_{\mathrm{tors}} is a torsion sheaf on a curve and is hence supported at finitely many points. Therefore H0(1,(cokerθk)tors)=0H^{0}(\mathbb{P}^{1},(\mathrm{coker}\,\theta_{k})_{\mathrm{tors}})=0 if and only if (cokerθk)tors(\mathrm{coker}\,\theta_{k})_{\mathrm{tors}} has empty support if and only if (cokerθk)tors=0(\mathrm{coker}\,\theta_{k})_{\mathrm{tors}}=0. Therefore cokerθk=(cokerθk)lf\mathrm{coker}\,\theta_{k}=(\mathrm{coker}\,\theta_{k})_{\mathrm{lf}} as desired. ∎

Corollary 5.4.

If (E,θ)(E_{*},\theta) is a minimal energy parabolic Higgs bundle on 1\mathbb{P}^{1}, then for 1<k<r1<k<r, degcokerθkrankcokerθk\deg\mathrm{coker}\,\theta_{k}\leq-\rank\mathrm{coker}\,\theta_{k} and degkerθkrankkerθk\deg\ker\theta_{k}\geq-\rank\ker\theta_{k}.

Proof.

As (E,θ)(E_{*},\theta) is a minimal energy Higgs bundle on 1\mathbb{P}^{1}, we have H0(1,cokerθk)=H1(1,kerθk)=0H^{0}(\mathbb{P}^{1},\mathrm{coker}\,\theta_{k})=H^{1}(\mathbb{P}^{1},\ker\theta_{k})=0 by Lemma 5.2 whenever 1<k<r1<k<r.

As kerθk\ker\theta_{k} is a vector bundle on 1\mathbb{P}^{1}, kerθk𝒪(a1)𝒪(arankkerθk)\ker\theta_{k}\cong\mathscr{O}(a_{1})\oplus\dots\oplus\mathscr{O}(a_{\rank\ker\theta_{k}}) where aja_{j} are integers and a1++arankkerθk=degkerθka_{1}+\dots+a_{\rank\ker\theta_{k}}=\deg\ker\theta_{k}. Therefore

H1(1,kerθk)=H1(1,𝒪(a1))H1(1,𝒪(arankkerθk))=0\displaystyle H^{1}(\mathbb{P}^{1},\ker\theta_{k})=H^{1}(\mathbb{P}^{1},\mathscr{O}(a_{1}))\oplus\dots\oplus H^{1}(\mathbb{P}^{1},\mathscr{O}(a_{\rank\ker\theta_{k}}))=0

if and only if all of the integers aja_{j} are at least 1-1. So, degkerθk=a1++arankkerθkrankkerθk\deg\ker\theta_{k}=a_{1}+\dots+a_{\rank\ker\theta_{k}}\geq-\rank\ker\theta_{k}.

By Corollary 5.3, cokerθk\mathrm{coker}\,\theta_{k} is a vector bundle and is isomorphic to 𝒪(b1)𝒪(brankcokerθk)\mathscr{O}(b_{1})\oplus\dots\oplus\mathscr{O}(b_{\rank\mathrm{coker}\,\theta_{k}}). Since

H0(1,cokerθk)=H0(1,𝒪(b1))H0(1,𝒪(brankcokerθk))=0\displaystyle H^{0}(\mathbb{P}^{1},\mathrm{coker}\,\theta_{k})=H^{0}(\mathbb{P}^{1},\mathscr{O}(b_{1}))\oplus\dots\oplus H^{0}(\mathbb{P}^{1},\mathscr{O}(b_{\rank\mathrm{coker}\,\theta_{k}}))=0

we know that all of the integers bjb_{j} are at most 1-1. Therefore

degcokerθk=b1++brankcokerθkrankcokerθk.\displaystyle\deg\mathrm{coker}\,\theta_{k}=b_{1}+\dots+b_{\rank\mathrm{coker}\,\theta_{k}}\leq-\rank\mathrm{coker}\,\theta_{k}.

We now prove a series of technical lemmas used in the proof of Proposition 5.1.

Lemma 5.5.

If (E,θ)(E,\theta) is of minimal energy on 1\mathbb{P}^{1}, then

pardegV1\displaystyle\operatorname{par-deg}V^{1} (degD1)k=2r1(k2)rankVkk=2r1(k1)rankVk\displaystyle\geq(\deg D-1)\sum_{k=2}^{r-1}(k-2)\rank V^{k}-\sum_{k=2}^{r-1}(k-1)\rank V^{k}

and degVr1=rankVr1(1degD)\deg V^{r-1}=\rank V^{r-1}\cdot(1-\deg D).

Proof.

Since (E,θ)(E,\theta) is of minimal energy, 1(V1r0)=H1(1,V1r)=0\mathbb{H}^{1}(V^{1-r}\to 0)=H^{1}(\mathbb{P}^{1},V^{1-r})=0. But observe that V1rV^{1-r} is a sub-parabolic Higgs bundle of Ad(E)\operatorname{Ad}(E_{*}) with zero Higgs field, so V1rV^{1-r} must be a semi-stable vector bundle on 1\mathbb{P}^{1} and by Lemma 2.13 and Lemma 2.14

degV1rpardegV1r=pardegE1rankErpardegErrankE1<0.\displaystyle\deg V^{1-r}\leq\operatorname{par-deg}V^{1-r}=\operatorname{par-deg}E^{1}\cdot\rank E^{r}-\operatorname{par-deg}E^{r}\cdot\rank E^{1}<0.

Therefore V1r𝒪(1)rankV1rV^{1-r}\cong\mathscr{O}(-1)^{\oplus\rank V^{1-r}}. Equivalently, Vr1(𝒪(1)rankVr1)(D)V^{r-1}\cong(\mathscr{O}(1)^{\oplus\rank V^{r-1}})(-D) and so degVr1=rankVr1(1degD)\deg V^{r-1}=\rank V^{r-1}\cdot(1-\deg D).

We have short exact sequences

0kerθkVkVk1Ω11(logD)cokerθk0\displaystyle 0\to\ker\theta_{k}\to V^{k}\to V^{k-1}\otimes\Omega_{\mathbb{P}^{1}}^{1}(\log D)\to\mathrm{coker}\,\theta_{k}\to 0

and for r<k<2r<k<2 we have by Corollary 5.4

degVk1\displaystyle\deg V^{k-1} =degVk+rankVk1(2degD)+degcokerθkdegkerθk\displaystyle=\deg V^{k}+\rank V^{k-1}\cdot(2-\deg D)+\deg\mathrm{coker}\,\theta_{k}-\deg\ker\theta_{k}
degVk+rankVk1(2degD)+rankkerθkrankcokerθk.\displaystyle\leq\deg V^{k}+\rank V^{k-1}\cdot(2-\deg D)+\rank\ker\theta_{k}-\rank\mathrm{coker}\,\theta_{k}.

Since rankkerθkrankcokerθk=rankVkrankVk1\rank\ker\theta_{k}-\rank\mathrm{coker}\,\theta_{k}=\rank V^{k}-\rank V^{k-1}, we then have that

degVk1\displaystyle\deg V^{k-1} degVk+rankVk1(1degD)+rankVk\displaystyle\leq\deg V^{k}+\rank V^{k-1}\cdot(1-\deg D)+\rank V^{k}

By induction, for >0\ell>0 we obtain the bound

degVk\displaystyle\deg V^{k-\ell} degVk+(1degD)j=1rankVkj+j=1rankVkj+1.\displaystyle\leq\deg V^{k}+(1-\deg D)\cdot\sum_{j=1}^{\ell}\rank V^{k-j}+\sum_{j=1}^{\ell}\rank V^{k-j+1}.

In the special case where k=r1k=r-1, we have by substituting for degVr1\deg V^{r-1}

degVr1\displaystyle\deg V^{r-1-\ell} (1degD)j=0rankVr1j+j=1rankVrj.\displaystyle\leq(1-\deg D)\cdot\sum_{j=0}^{\ell}\rank V^{r-1-j}+\sum_{j=1}^{\ell}\rank V^{r-j}.

We now observe that V0V1V1rV^{0}\oplus V^{-1}\oplus\dots\oplus V^{1-r} is a sub-Higgs bundle, so pardeg(V0V1V1r)0\operatorname{par-deg}(V^{0}\oplus V^{-1}\oplus\dots\oplus V^{1-r})\leq 0 by semi-stability of Ad(E)\operatorname{Ad}(E_{*}). Equivalently, pardeg(Vr1V1)0\operatorname{par-deg}(V^{r-1}\oplus\dots\oplus V^{1})\geq 0. We first bound pardegVk\operatorname{par-deg}V^{k}. By Lemma 2.14 and our above bounds on degVk\deg V^{k}, we have

pardegVk\displaystyle\operatorname{par-deg}V^{k} j=kr1rankVj+(1degD)j=k+1r1rankVj.\displaystyle\leq\sum_{j=k}^{r-1}\rank V^{j}+(1-\deg D)\cdot\sum_{j=k+1}^{r-1}\rank V^{j}.

Since pardeg(Vr1V1)0\operatorname{par-deg}(V^{r-1}\oplus\dots\oplus V^{1})\geq 0 we have that

pardegV1\displaystyle\operatorname{par-deg}V^{1} k=2r1pardegVk\displaystyle\geq-\sum_{k=2}^{r-1}\operatorname{par-deg}V^{k}
k=2r1(j=kr1rankVj+(1degD)j=k+1r1rankVj),\displaystyle\geq-\sum_{k=2}^{r-1}\left(\sum_{j=k}^{r-1}\rank V^{j}+(1-\deg D)\cdot\sum_{j=k+1}^{r-1}\rank V^{j}\right),

so we have obtained a lower bound in terms of the rankVk\rank V^{k}. Simplifying yields

pardegV1\displaystyle\operatorname{par-deg}V^{1} (degD1)k=2r1(k2)rankVkk=2r1(k1)rankVk.\displaystyle\geq(\deg D-1)\sum_{k=2}^{r-1}(k-2)\rank V^{k}-\sum_{k=2}^{r-1}(k-1)\rank V^{k}.

Lemma 5.6.

For all 1<k<r1<k<r,

rankVk1rankcokerθkrk.\displaystyle\rank V^{k-1}-\rank\mathrm{coker}\,\theta_{k}\geq r-k.
Proof.

Since Vk1ΩX1(logD)V^{k-1}\otimes\Omega_{X}^{1}(\log D) surjects onto cokerθk\mathrm{coker}\,\theta_{k}, we know that rankVk1rankcokerθk0\rank V^{k-1}-\rank\mathrm{coker}\,\theta_{k}\geq 0. By Lemma 5.4 we have

rankVk1rankcokerθk=rankVkrankkerθk\displaystyle\rank V^{k-1}-\rank\mathrm{coker}\,\theta_{k}=\rank V^{k}-\rank\ker\theta_{k}

and hence if rankVk1rankcokerθk=0\rank V^{k-1}-\rank\mathrm{coker}\,\theta_{k}=0, then θk\theta_{k} must be the zero map.

We show that this is not the case. The map θk:j=1rkom(Ej,Ej+k)j=1rk+1om(Ej,Ej+k1)\theta_{k}:\oplus_{j=1}^{r-k}\mathscr{H}\kern-2.0ptom(E^{j}_{*},E^{j+k}_{*})_{*}\to\oplus_{j=1}^{r-k+1}\mathscr{H}\kern-2.0ptom(E^{j}_{*},E^{j+k-1}_{*})_{*} is given by

θk(f11+k,,frkr)\displaystyle\theta_{k}(f_{1}^{1+k},\dots,f_{r-k}^{r})
=(θ1+kf11+k,θk+2f2k+2(f11+kid)θ2,\displaystyle=(\theta^{1+k}\circ f_{1}^{1+k},\theta^{k+2}\circ f_{2}^{k+2}-(f_{1}^{1+k}\otimes\operatorname{id})\circ\theta^{2}\dots,
θrfrkr(frk1r1)id)θrk,(frkkid)θrk+1)\displaystyle\qquad\theta^{r}\circ f_{r-k}^{r}-(f_{r-k-1}^{r-1})\otimes\operatorname{id})\circ\theta^{r-k},-(f_{r-k}^{k}\otimes\operatorname{id})\circ\theta^{r-k+1})

where fjj+kom(Ej,Ej+k)f_{j}^{j+k}\in\mathscr{H}\kern-2.0ptom(E^{j}_{*},E^{j+k}_{*})_{*}.

As cokerθk\mathrm{coker}\,\theta_{k} is a locally free sheaf for all 1<k<r1<k<r by Corollary 5.3, we can compute rankkerθk\rank\ker\theta_{k} at a general point of 1\mathbb{P}^{1}. Let ss be such a general point. Then, θk\theta_{k} at ss is given by

(θk)s\displaystyle(\theta_{k})_{s} =(A1kB2k+1A2k+1B3k+2Arkr1Brk+1r)\displaystyle=\begin{pmatrix}A_{1}^{k}&B_{2}^{k+1}&&&\\ &A_{2}^{k+1}&B_{3}^{k+2}&\\ &&\ddots&\ddots\\ &&&A_{r-k}^{r-1}&B_{r-k+1}^{r}\\ \end{pmatrix}

where

Ajj+k1(fjj+k)\displaystyle A_{j}^{j+k-1}(f_{j}^{j+k}) =(θj+k)sfjj+k\displaystyle=(\theta^{j+k})_{s}\circ f_{j}^{j+k}
Bj+1j+k(fjj+k)\displaystyle B_{j+1}^{j+k}(f_{j}^{j+k}) =(fjj+kid)(θj+1)s.\displaystyle=-(f_{j}^{j+k}\otimes\operatorname{id})\circ(\theta^{j+1})_{s}.

Then,

dimrank(θk)sj=1rkdimrank(Ajj+k1)\displaystyle\dim\rank(\theta_{k})_{s}\leq\sum_{j=1}^{r-k}\dim\rank(A_{j}^{j+k-1})

and since ss is a general point, we know that our Higgs fields θp:EpEp1ΩX1(logD)\theta^{p}:E^{p}\to E^{p-1}\otimes\Omega_{X}^{1}(\log D) are nonzero and so our maps Ajj+k1A_{j}^{j+k-1} are also nonzero. Therefore

rankVk1rankcokerθk=rankVkrankkerθk=dim(Vk)sdimker(θk)srk.\displaystyle\rank V^{k-1}-\rank\mathrm{coker}\,\theta_{k}=\rank V^{k}-\rank\ker\theta_{k}=\dim(V^{k})_{s}-\dim\ker(\theta_{k})_{s}\geq r-k.

We can now prove Proposition 5.1.

Proof of Proposition 5.1.

We have an exact sequence of sheaves

0kerθkVkVk1Ω11(logD)cokerθk0\displaystyle 0\to\ker\theta_{k}\to V^{k}\to V^{k-1}\otimes\Omega_{\mathbb{P}^{1}}^{1}(\log D)\to\mathrm{coker}\,\theta_{k}\to 0

and by Corollary 5.3 for 1<k<r1<k<r this is an exact sequence of vector bundles on 1\mathbb{P}^{1}. Therefore we obtain

pardegkerθk\displaystyle\operatorname{par-deg}\ker\theta_{k} +pardegVk1Ω11(logD)=pardegVk+pardegcokerθk.\displaystyle+\operatorname{par-deg}V^{k-1}\otimes\Omega_{\mathbb{P}^{1}}^{1}(\log D)=\operatorname{par-deg}V^{k}+\operatorname{par-deg}\mathrm{coker}\,\theta_{k}.

Since pardegVk1Ω11(logD)=pardegVk1+rankVk1(degD2)\operatorname{par-deg}V^{k-1}\otimes\Omega_{\mathbb{P}^{1}}^{1}(\log D)=\operatorname{par-deg}V^{k-1}+\rank V^{k-1}\cdot(\deg D-2), by summing the above equation over 1<k<r1<k<r we obtain the equality

k=2r1pardegkerθk+k=2r1pardegVk1+(degD2)k=2r1rankVk1\displaystyle\sum_{k=2}^{r-1}\operatorname{par-deg}\ker\theta_{k}+\sum_{k=2}^{r-1}\operatorname{par-deg}V^{k-1}+(\deg D-2)\sum_{k=2}^{r-1}\rank V^{k-1}
=k=2r1pardegVk+k=2r1pardegcokerθk.\displaystyle=\sum_{k=2}^{r-1}\operatorname{par-deg}V^{k}+\sum_{k=2}^{r-1}\operatorname{par-deg}\mathrm{coker}\,\theta_{k}.

Simplifying, rearranging, and applying Lemma 5.5 yields

k=2r1pardegcokerθkk=2r1pardegkerθk\displaystyle\sum_{k=2}^{r-1}\operatorname{par-deg}\mathrm{coker}\,\theta_{k}-\sum_{k=2}^{r-1}\operatorname{par-deg}\ker\theta_{k}
(degD2)k=2r1rankVk1+(degD1)k=2r1(k2)rankVkk=2r1(k1)rankVkrankVr1.\displaystyle\geq(\deg D-2)\sum_{k=2}^{r-1}\rank V^{k-1}+(\deg D-1)\sum_{k=2}^{r-1}(k-2)\rank V^{k}-\sum_{k=2}^{r-1}(k-1)\rank V^{k}-\rank V^{r-1}.

By applying Lemma 2.14 to the parabolic bundles kerθk\ker\theta_{k} and cokerθk\mathrm{coker}\,\theta_{k}, we have

(degD2)k=2r1rankVk1+pardegV1pardegVr1\displaystyle(\deg D-2)\sum_{k=2}^{r-1}\rank V^{k-1}+\operatorname{par-deg}V^{1}-\operatorname{par-deg}V^{r-1}
<k=2r1degcokerθk+degD(k=2r1rankcokerθk)k=2r1degkerθk.\displaystyle<\sum_{k=2}^{r-1}\deg\mathrm{coker}\,\theta_{k}+\deg D\cdot\left(\sum_{k=2}^{r-1}\rank\mathrm{coker}\,\theta_{k}\right)-\sum_{k=2}^{r-1}\deg\ker\theta_{k}.

Then Corollary 5.4 and the rank-nullity theorem impies

k=2r1degcokerθk+degD(k=2r1rankcokerθk)k=2r1degkerθk\displaystyle\sum_{k=2}^{r-1}\deg\mathrm{coker}\,\theta_{k}+\deg D\cdot\left(\sum_{k=2}^{r-1}\rank\mathrm{coker}\,\theta_{k}\right)-\sum_{k=2}^{r-1}\deg\ker\theta_{k}
rankVr1rankV1+degD(k=2r1rankcokerθk).\displaystyle\leq\rank V^{r-1}-\rank V^{1}+\deg D\cdot\left(\sum_{k=2}^{r-1}\rank\mathrm{coker}\,\theta_{k}\right).

We can now combine inequalities to get

rankVr1rankV1+degD(k=2r1rankcokerθk)\displaystyle\rank V^{r-1}-\rank V^{1}+\deg D\cdot\left(\sum_{k=2}^{r-1}\rank\mathrm{coker}\,\theta_{k}\right)
(degD2)k=2r1rankVk1+(degD1)k=2r1(k2)rankVkk=2r1(k1)rankVkrankVr1.\displaystyle\geq(\deg D-2)\sum_{k=2}^{r-1}\rank V^{k-1}+(\deg D-1)\sum_{k=2}^{r-1}(k-2)\rank V^{k}-\sum_{k=2}^{r-1}(k-1)\rank V^{k}-\rank V^{r-1}.

Simplifying yields

2rankVr1rankV1+2k=2r1rankVk1+k=2r1(2k3)rankVk\displaystyle 2\rank V^{r-1}-\rank V^{1}+2\sum_{k=2}^{r-1}\rank V^{k-1}+\sum_{k=2}^{r-1}(2k-3)\rank V^{k}
degD(k=2r1(rankVk1rankcokerθk)+k=2r1(k2)rankVk).\displaystyle\geq\deg D\cdot\left(\sum_{k=2}^{r-1}(\rank V^{k-1}-\rank\mathrm{coker}\,\theta_{k})+\sum_{k=2}^{r-1}(k-2)\rank V^{k}\right).

Observe that rankVk1>cokerθk\rank V^{k-1}>\mathrm{coker}\,\theta_{k} for all 1<k<r1<k<r, so the expression on the right-hand-side is positive by Lemma 5.6. Therefore,

degD2rankVr1rankV1+2k=2r1rankVk1+k=2r1(2k3)rankVkk=2r1(rankVk1rankcokerθk)+k=2r1(k2)rankVk.\displaystyle\deg D\leq\frac{2\rank V^{r-1}-\rank V^{1}+2\sum_{k=2}^{r-1}\rank V^{k-1}+\sum_{k=2}^{r-1}(2k-3)\rank V^{k}}{\sum_{k=2}^{r-1}(\rank V^{k-1}-\rank\mathrm{coker}\,\theta_{k})+\sum_{k=2}^{r-1}(k-2)\rank V^{k}}.

We can now extract a uniform bound on degD\deg D in terms of rankE\rank E_{*} from Proposition 5.1.

Proof of Theorem 1.3.

If (E,θ)(E_{*},\theta) has more than 22 nonzero pieces in its grading, (E,θ)(E_{*},\theta) is given by a Higgs bundle (E,θ)(E_{*},\theta_{*}) with nonzero Higgs field as it underlies a non-unitary local system. As our local monodromy data is generic, our parabolic weights are all distinct. And the θp\theta^{p} are never identically zero as 𝕍\mathbb{V} underlies an irreducible representation. Let rr be the Hodge length of (E,θ)(E_{*},\theta).

We can apply Proposition 5.1. We have that

degD2rankVr1rankV1+2k=2r1rankVk1+k=2r1(2k3)rankVkk=2r1(rankVk1rankcokerθk)+k=2r1(k2)rankVk.\displaystyle\deg D\leq\frac{2\rank V^{r-1}-\rank V^{1}+2\sum_{k=2}^{r-1}\rank V^{k-1}+\sum_{k=2}^{r-1}(2k-3)\rank V^{k}}{\sum_{k=2}^{r-1}(\rank V^{k-1}-\rank\mathrm{coker}\,\theta_{k})+\sum_{k=2}^{r-1}(k-2)\rank V^{k}}.

By Lemma 5.6, we have that rankVk1rankcokerθkrk\rank V^{k-1}-\rank\mathrm{coker}\,\theta_{k}\geq r-k and so

degD2rankVr1rankV1+2k=2r1rankVk1+k=2r1(2k3)rankVkk=2r1(rk)+k=2r1(k2)rankVk.\displaystyle\deg D\leq\frac{2\rank V^{r-1}-\rank V^{1}+2\sum_{k=2}^{r-1}\rank V^{k-1}+\sum_{k=2}^{r-1}(2k-3)\rank V^{k}}{\sum_{k=2}^{r-1}(r-k)+\sum_{k=2}^{r-1}(k-2)\rank V^{k}}.

The denominator is bounded below by

k=2r1(rk)=(r1)(r2)2\displaystyle\sum_{k=2}^{r-1}(r-k)=\frac{(r-1)(r-2)}{2}

and this is nonzero whenever r>2r>2.

Then we coarsely bound the numerator from above by observing that rankVk=rankAdEjkrankVjn212r\rank V^{k}=\rank\operatorname{Ad}E_{*}-\sum_{j\neq k}\rank V^{j}\leq n^{2}-1-2r and rankVk0\rank V^{k}\geq 0 to get

2rankVr1rankV1+2k=2r1rankVk1+k=2r1(2k3)rankVk\displaystyle 2\rank V^{r-1}-\rank V^{1}+2\sum_{k=2}^{r-1}\rank V^{k-1}+\sum_{k=2}^{r-1}(2k-3)\rank V^{k}
2(n212r)2k=2r1(n212r)+k=2r1(2k3)(n212r)\displaystyle\leq 2(n^{2}-1-2r)-2\sum_{k=2}^{r-1}(n^{2}-1-2r)+\sum_{k=2}^{r-1}(2k-3)(n^{2}-1-2r)
2(n212r)2(n212r)(r2)+2(n212r)(r2)2\displaystyle\leq 2(n^{2}-1-2r)-2(n^{2}-1-2r)(r-2)+2(n^{2}-1-2r)(r-2)^{2}
=2(r25r+7)(n22r1)\displaystyle=2(r^{2}-5r+7)(n^{2}-2r-1)

For r>2r>2, we have that r25r+7<(r1)(r2)r^{2}-5r+7<(r-1)(r-2) and so

degD2(r25r+7)(n22r1)(r1)(r2)2<4(n22r1)4n228.\displaystyle\deg D\leq\frac{2(r^{2}-5r+7)(n^{2}-2r-1)}{\frac{(r-1)(r-2)}{2}}<4(n^{2}-2r-1)\leq 4n^{2}-28.

Therefore degD<4n228\deg D<4n^{2}-28, and this contradicts our assumption that degD4n228\deg D\geq 4n^{2}-28. Therefore, r2r\leq 2 as desired. ∎

6. Consequences of Theorem 1.3

Theorem 1.3 states that when degD4n228\deg D\geq 4n^{2}-28, then a stable minimal energy parabolic Higgs bundle of rank nn has at most two graded pieces. We show that this is the best we can do. We construct an example of a stable minimal energy parabolic Higgs bundle on 1\mathbb{P}^{1} in every rank with parabolic divisor of arbitrarily large degree which has two graded pieces. We first prove a technical lemma.

Lemma 6.1.

Let aa be a nonnegative integer, nn an integer larger than 11, and ϵ>0\epsilon>0 a very small real number. Then,

1n1(11+a1+naϵ)<1+a1+naϵ.\displaystyle\frac{1}{n-1}\left(1-\frac{1+a}{1+na}-\epsilon\right)<\frac{1+a}{1+na}-\epsilon.
Proof.

We observe that

a+1>a+1n=1n(na+1)\displaystyle a+1>a+\frac{1}{n}=\frac{1}{n}\left(na+1\right)

and so

(nn1)(1+a1+na)>1n1.\displaystyle\left(\frac{n}{n-1}\right)\left(\frac{1+a}{1+na}\right)>\frac{1}{n-1}.

We can choose ϵ>0\epsilon>0 to be small enough so that

(nn1)(1+a1+na)>1n1+ϵ(n2n1).\displaystyle\left(\frac{n}{n-1}\right)\left(\frac{1+a}{1+na}\right)>\frac{1}{n-1}+\epsilon\left(\frac{n-2}{n-1}\right).

Then,

(nn1)(1+a1+na)=1n1(1+a1+na)+1+a1+na>1n1+ϵϵ(1n1).\displaystyle\left(\frac{n}{n-1}\right)\left(\frac{1+a}{1+na}\right)=\frac{1}{n-1}\left(\frac{1+a}{1+na}\right)+\frac{1+a}{1+na}>\frac{1}{n-1}+\epsilon-\epsilon\left(\frac{1}{n-1}\right).

Rearranging yields

1+a1+naϵ>1n1(11+a1+naϵ).\displaystyle\frac{1+a}{1+na}-\epsilon>\frac{1}{n-1}\left(1-\frac{1+a}{1+na}-\epsilon\right).

Example 6.2.

Let aa be some nonnegative integer and ϵ>0\epsilon>0 very small. Let E=SQE=S\oplus Q where S=𝒪(a)(n1)S=\mathscr{O}(-a)^{\oplus(n-1)} and Q=𝒪(a1)Q=\mathscr{O}(-a-1), so rankE=n\rank E=n. We let DD be a reduced effective divisor on 1\mathbb{P}^{1} so that degD=1+na\deg D=1+na. We choose our Higgs field θ:SQΩX1(logD)\theta:S\to Q\otimes\Omega_{X}^{1}(\log D) to be generic, and since QQ is a line bundle we know that θ\theta is surjective. At each xjx_{j}, we give EE the weights

0<1n1(11+a1+na+ϵ)+ϵ1<<1n1(11+a1+na+ϵ)+ϵn1<1+a1+naϵ<1\displaystyle 0<\frac{1}{n-1}\left(1-\frac{1+a}{1+na}+\epsilon\right)+\epsilon_{1}<\dots<\frac{1}{n-1}\left(1-\frac{1+a}{1+na}+\epsilon\right)+\epsilon_{n-1}<\frac{1+a}{1+na}-\epsilon<1

where ϵ1<<ϵn1\epsilon_{1}<\dots<\epsilon_{n-1} are chosen to be very close to zero, and so that ϵ1++ϵn1=0\epsilon_{1}+\dots+\epsilon_{n-1}=0. By Lemma 6.1, we can pick ϵ1,,ϵn1\epsilon_{1},\dots,\epsilon_{n-1} satisfying these conditions.

We give ExjE_{x_{j}} the parabolic flag Exj=Sj1QxjSjn1QxjQxj0E_{x_{j}}=S_{j}^{1}\oplus Q_{x_{j}}\supset\dots\supset S_{j}^{n-1}\oplus Q_{x_{j}}\supset Q_{x_{j}}\supseteq 0 where {Sji}\{S_{j}^{i}\} is a generically chosen flag of SxjS_{x_{j}}. Our parabolic weights are distinct and our parabolic structure can be chosen to be generic in the sense of Definition 3.6 by modifying the real numbers ϵ\epsilon and ϵ1,,ϵn1\epsilon_{1},\dots,\epsilon_{n-1}.

We actually have a nonzero Higgs field beecause om(S,Q)ΩX1(logD)𝒪(na)(n1)\mathscr{H}\kern-2.0ptom(S_{*},Q_{*})_{*}\otimes\Omega_{X}^{1}(\log D)\cong\mathscr{O}(na)^{\oplus(n-1)} which has global sections since n0n\geq 0 and a0a\geq 0.

Since (E,θ)(E_{*},\theta) only has two graded pieces, the complex Ad(E)Ad(E)ΩX1(logD)^\operatorname{Ad}(E_{*})\to\widehat{\operatorname{Ad}(E_{*})\otimes\Omega_{X}^{1}(\log D)} has graded pieces

0\displaystyle 0 om(Q,S)ΩX1(logD)\displaystyle\to\mathscr{H}\kern-2.0ptom(Q_{*},S_{*})_{*}\otimes\Omega_{X}^{1}(\log D)
om(Q,S)ΩX1(logD)\displaystyle\mathscr{H}\kern-2.0ptom(Q_{*},S_{*})_{*}\otimes\Omega_{X}^{1}(\log D) om(S,S)ΩX1(logD)^om(Q,Q)ΩX1(logD)^\displaystyle\to\widehat{\mathscr{H}\kern-2.0ptom(S_{*},S_{*})_{*}\otimes\Omega_{X}^{1}(\log D)}\oplus\widehat{\mathscr{H}\kern-2.0ptom(Q_{*},Q_{*})_{*}\otimes\Omega_{X}^{1}(\log D)}
om(S,S)om(Q,Q)\displaystyle\mathscr{H}\kern-2.0ptom(S_{*},S_{*})_{*}\oplus\mathscr{H}\kern-2.0ptom(Q_{*},Q_{*})_{*} om(S,Q)ΩX1(logD)\displaystyle\to\mathscr{H}\kern-2.0ptom(S_{*},Q_{*})_{*}\otimes\Omega_{X}^{1}(\log D)
om(S,Q)\displaystyle\mathscr{H}\kern-2.0ptom(S_{*},Q_{*})_{*} 0.\displaystyle\to 0.

By symmetry of the Hodge structure on 1(Ad(E)Ad(E)ΩX1(logD)^)\mathbb{H}^{1}(\operatorname{Ad}(E_{*})\to\widehat{\operatorname{Ad}(E_{*})\otimes\Omega_{X}^{1}(\log D)}), to show that EE_{*} is of minimal energy we need to show that 1(om(S,Q)0)=H1(1,om(S,Q))=0\mathbb{H}^{1}(\mathscr{H}\kern-2.0ptom(S_{*},Q_{*})_{*}\to 0)=H^{1}(\mathbb{P}^{1},\mathscr{H}\kern-2.0ptom(S_{*},Q_{*})_{*})=0. But this is true, since om(S,Q)𝒪(1)(n1)\mathscr{H}\kern-2.0ptom(S_{*},Q_{*})_{*}\cong\mathscr{O}(-1)^{\oplus(n-1)}.

Therefore it remains to show that (E,θ)(E_{*},\theta) is a parabolic stable Higgs bundle. By construction, the parabolic degree of EE_{*} is zero. The sub-Higgs bundles of (E,θ)(E_{*},\theta) are the bundles QQ_{*}, ker(θ)\ker(\theta)_{*}, and VQV_{*}\oplus Q_{*} where VSV\subseteq S is any subbundle.

We first note that μ(Q)=degQ+xjD(1+a1+naϵ)=1a+1+a(1+na)ϵ<0\mu_{*}(Q_{*})=\deg Q+\sum_{x_{j}\in D}(\frac{1+a}{1+na}-\epsilon)=-1-a+1+a-(1+na)\epsilon<0 since degD=1+na\deg D=1+na so QQ_{*} is not destabilizing.

To check that ker(θ)\ker(\theta)_{*} is not destabilizing, we note that it fits in a exact sequence

0ker(θ)SQΩX1(logD)0.\displaystyle 0\to\ker(\theta)_{*}\to S_{*}\to Q_{*}\otimes\Omega_{X}^{1}(\log D)\to 0.

Hence by Lemma 2.4, we have the equality

pardegker(θ)=pardegSpardegQΩX1(logD).\displaystyle\operatorname{par-deg}\ker(\theta)_{*}=\operatorname{par-deg}S_{*}-\operatorname{par-deg}Q_{*}\otimes\Omega_{X}^{1}(\log D).

Observe that pardegS=ϵdegD\operatorname{par-deg}S_{*}=\epsilon\deg D and pardegQ=ϵdegD\operatorname{par-deg}Q_{*}=-\epsilon\deg D, so

pardegker(θ)=pardegSpardegQΩX1(logD)=2ϵdegDdegD+2.\displaystyle\operatorname{par-deg}\ker(\theta)_{*}=\operatorname{par-deg}S_{*}-\operatorname{par-deg}Q_{*}\otimes\Omega_{X}^{1}(\log D)=2\epsilon\deg D-\deg D+2.

Since ϵ>0\epsilon>0 is chosen to be very small, as long as degD>3\deg D>3 (which holds, for example, as long as a>0a>0 and n>1n>1) we know that pardegker(θ)<0\operatorname{par-deg}\ker(\theta)_{*}<0 and so ker(θ)\ker(\theta)_{*} cannot be destabilizing.

It remains to check that VQV_{*}\oplus Q_{*} is not destabilizing. We know that pardeg(VQ)=pardegV+pardegQ=pardegVϵdegD\operatorname{par-deg}(V_{*}\oplus Q_{*})=\operatorname{par-deg}V_{*}+\operatorname{par-deg}Q_{*}=\operatorname{par-deg}V_{*}-\epsilon\deg D. Let r=rankVr=\rank V. Then,

pardegV\displaystyle\operatorname{par-deg}V ra+degDj=n1rn1(1n1(11+a1+na+ϵ)+ϵj)\displaystyle\leq-ra+\deg D\sum_{j=n-1-r}^{n-1}\left(\frac{1}{n-1}\left(1-\frac{1+a}{1+na}+\epsilon\right)+\epsilon_{j}\right)
=ra+rdegDn1(11+a1+na+ϵ)+degD(ϵn1++ϵn1r).\displaystyle=-ra+\frac{r\deg D}{n-1}\left(1-\frac{1+a}{1+na}+\epsilon\right)+\deg D(\epsilon_{n-1}+\dots+\epsilon_{n-1-r}).

Simplifying and substituting degD=1+na\deg D=1+na into the bound yields

pardegV\displaystyle\operatorname{par-deg}V rdegDϵn1+degD(ϵn1++ϵn1r).\displaystyle\leq\frac{r\deg D\epsilon}{n-1}+\deg D(\epsilon_{n-1}+\dots+\epsilon_{n-1-r}).

Therefore,

pardeg(VQ)rdegDϵn1+degD(ϵn1++ϵn1r)ϵdegD.\displaystyle\operatorname{par-deg}(V_{*}\oplus Q_{*})\leq\frac{r\deg D\epsilon}{n-1}+\deg D(\epsilon_{n-1}+\dots+\epsilon_{n-1-r})-\epsilon\deg D.

Since 0r<n10\leq r<n-1 and ϵn1++ϵn1r\epsilon_{n-1}+\dots+\epsilon_{n-1-r} is chosen to be very small, we have pardeg(VQ)<0\operatorname{par-deg}(V_{*}\oplus Q_{*})<0.

Therefore every sub-Higgs bundle of (E,θ)(E_{*},\theta) fails to be destabilizing, and so (E,θ)(E_{*},\theta) is indeed a minimal energy parabolic Higgs bundle of rank nn with parabolic divisor DD that has two graded pieces.

By choosing a0a\gg 0, we can force degD=na+1\deg D=na+1 to be larger than 4n2284n^{2}-28. Therefore, we cannot do better than two graded pieces in Theorem 1.3. In this example, we picked our parabolic weights so that at each point in DD, the weights sum to an integer. Therefore, the local monodromy data is not only unitary but actually lies in SU(n)\operatorname{SU}(n).

6.3. An application to Gromov-Witten theory

We give an application of minimal energy local systems to Gromov-Witten invariants.

To a parabolic bundle VV_{*} of rank nn on 1\mathbb{P}^{1} with parabolic divisor DD, we can obtain a modified complete parabolic bundle V~\widetilde{V}_{*} with the following properties. This process is described in [AW98, below Theorem 5.1] and in [Bel01, Appendix]. We describe their properties below.

Proposition 6.4.

Let VV_{*} be a parabolic bundle and V~\widetilde{V}_{*} its modified parabolic bundle.

  1. (1)

    The underlying bundle of V~\widetilde{V_{*}} is a trivial bundle so that rankV~=rankV\rank\tilde{V}=\rank V.

  2. (2)

    If VV_{*} has 0αj1<<αjnj<10\leq\alpha_{j}^{1}<\dots<\alpha_{j}^{n_{j}}<1 at xjDx_{j}\in D, then the weights {αji~}\{\widetilde{\alpha_{j}^{i}}\} of V~\widetilde{V}_{*} at xjDx_{j}\in D no longer necessarily lie within [0,1)[0,1) but satisfy αj1~αjn~<αj1~+1\widetilde{\alpha_{j}^{1}}\leq\dots\leq\widetilde{\alpha_{j}^{n}}<\widetilde{\alpha_{j}^{1}}+1. The weights can be repeated.

  3. (3)

    The parabolic degree of a modified parabolic bundle is defined to be the sum of the degree of the underlying bundle and the weights above every point. Then, pardeg(V)=pardeg(V~)\operatorname{par-deg}(V_{*})=\operatorname{par-deg}(\widetilde{V}_{*}).

  4. (4)

    There is a bijection between subbundles WW_{*} of VV_{*} and modified parabolic subbundles W~\widetilde{W}_{*} of V~\widetilde{V}_{*}. This bijection preserves parabolic degree. If WW_{*} and W~\widetilde{W}_{*} are sent to each other under this bijection, then pardegW=pardegW~\operatorname{par-deg}W_{*}=\operatorname{par-deg}\widetilde{W}_{*}.

  5. (5)

    As a consequence of (1), (3) and (4), VV_{*} is parabolic stable if and only if V~\widetilde{V}_{*} is parabolic stable.

A conjugacy class CSU(n)C\subseteq\operatorname{SU}(n) is determined by the eigenvalues of a diagonal representative. If the eigenvalues are given by (e2πiθ1,,e2πiθn)(e^{2\pi i\theta_{1}},\dots,e^{2\pi i\theta_{n}}), then we obtain real numbers θ1,,θn\theta_{1},\dots,\theta_{n} where each θi\theta_{i} is determined up to an integer. Note that the θ1,,θn\theta_{1},\dots,\theta_{n} must sum to an integer because matrices in SU(n)\operatorname{SU}(n) have determinant one. We choose the θ1,,θn\theta_{1},\dots,\theta_{n} so that θ1++θn=0\theta_{1}+\dots+\theta_{n}=0 and that (after ordering from largest to smallest) θ1θnθ11\theta_{1}\geq\dots\geq\theta_{n}\geq\theta_{1}-1. This uniquely determines the conjugacy class CC. Let λ(C)=(θ1,,θn)\lambda(C)=(\theta_{1},\dots,\theta_{n}) and for some subset I{1,,n}I\subseteq\{1,\dots,n\} of size kk we let λI(C)=jIθj\lambda_{I}(C)=\sum_{j\in I}\theta_{j}.

A subset I{1,,n}I\subseteq\{1,\dots,n\} of size kk determines a Schubert variety ΩI\Omega_{I} in the Grassmannian Gr(k,n)\operatorname{Gr}(k,n), and we let σI\sigma_{I} be the cohomology class associated to ΩI\Omega_{I}. When I1,,IdI_{1},\dots,I_{d} are all of subsets of {1,,n}\{1,\dots,n\} of same size, we let σI1,,σIdβ\langle\sigma_{I_{1}},\dots,\sigma_{I_{d}}\rangle_{\beta} be the number of degree β\beta be rational curves in Gr(k,n)\operatorname{Gr}(k,n) passing through ΩI1,,ΩId\Omega_{I_{1}},\dots,\Omega_{I_{d}}. For details on Schubert varieties and Gromov-Witten invariants, see [Bel01, Definition 4].

Then, Belkale [Bel01, Theorem 7] and Agnihotri-Woodward [AW98, Theorem 3.1] independently prove the following:

Theorem 6.5.

There is a SU(n)\operatorname{SU}(n)-local system on 1{x1,,xd}\mathbb{P}^{1}\setminus\{x_{1},\dots,x_{d}\} with prescribed SU(n)\operatorname{SU}(n)-local monodromy C1,,CdC_{1},\dots,C_{d} if and only if for any s{1,,n1}s\in\{1,\dots,n-1\} and any choice of subsets I1,,Id{1,,n}I_{1},\dots,I_{d}\subseteq\{1,\dots,n\} of cardinality ss, the inequality

k=1rλIk(Ck)d\displaystyle\sum_{k=1}^{r}\lambda_{I_{k}}(C_{k})\leq d

whenever σI1,,σIkd=1\langle\sigma_{I_{1}},\dots,\sigma_{I_{k}}\rangle_{d}=1.

The above statement is taken from [Bel01, Theorem 7].

Corollary 6.6.

Let X=1X=\mathbb{P}^{1} and D=x1++xdD=x_{1}+\dots+x_{d} be a reduced effective divisor. Let C1,,CdSU(n)C_{1},\dots,C_{d}\subseteq\operatorname{SU}(n) be a collection generic local monodromy data. Let (E,θ)(E_{*},\theta) be a minimal energy stable parabolic Higgs bundle which only has two graded pieces and has parabolic weights corresponding to the data C1,,CdC_{1},\dots,C_{d}. Then, E=H(V/H)E_{*}=H_{*}\oplus(V/H)_{*} with Higgs field θ:H(V/H)ΩX1(logD)\theta:H\to(V/H)\otimes\Omega_{X}^{1}(\log D).

Let E~\widetilde{E}_{*} be the modified parabolic bundle of EE_{*} and H~\widetilde{H}_{*} the modified parabolic bundle of HH_{*}. For all j=1,,dj=1,\dots,d we let Ij{1,,n}I_{j}\subseteq\{1,\dots,n\} be a subset of size rankH\rank H so that for all iIi\in I, θji\theta_{j}^{i} is a parabolic weight of H~\widetilde{H}_{*}. Then, the Gromov-Witten invariant σI1,,σIddegH~\langle\sigma_{I_{1}},\dots,\sigma_{I_{d}}\rangle_{-\deg\widetilde{H}} is nonzero.

Proof.

If there is a minimal energy local system 𝕍\mathbb{V} on 1D\mathbb{P}^{1}\setminus D with the local monodromy data C1,,CdC_{1},\dots,C_{d} which is not SU(n)\operatorname{SU}(n)-local systems, then there are no SU(n)\operatorname{SU}(n)-local systems satisfying this local monodromy data. In particular, HH_{*} is a subbundle of EE_{*} which is destabilizing as a parabolic subbundle. Let m=rankkm=\rank k.

We know that H~\widetilde{H}_{*} is a destabilizing subbundle of V~\widetilde{V}_{*}. Hence, the associated Gromov-Witten invariant σI1,,σIddegH~\langle\sigma_{I_{1}},\dots,\sigma_{I_{d}}\rangle_{-\deg\widetilde{H}} is nonzero. This is because H~\widetilde{H} is a subbundle of a trivial bundle and hence determines a rational degree degH~-\deg\widetilde{H} curve in Gr(k,n)\operatorname{Gr}(k,n) intersecting the Schubert varieties ΩI1,,ΩId\Omega_{I_{1}},\dots,\Omega_{I_{d}}. ∎

Remark 6.7.

When degD4n228\deg D\geq 4n^{2}-28 where n=rankEn=\rank E, Theorem 1.3 applies and the minimal energy local systems have the desired number of graded pieces.

We give an example of Corollary 6.6.

Example 6.8.

Let (E,θ)(E_{*},\theta) be a parabolic Higgs bundle on 1\mathbb{P}^{1} with parabolic divisor D=x1+x2+x3D=x_{1}+x_{2}+x_{3}. We let the underlying bundle be E=𝒪(2)𝒪(1)𝒪(1)E=\mathscr{O}(-2)\oplus\mathscr{O}(-1)\oplus\mathscr{O}(-1). We set S=𝒪(2)S=\mathscr{O}(-2) and Q=𝒪(1)𝒪(1)Q=\mathscr{O}(-1)\oplus\mathscr{O}(-1). We let QxjQj0Q_{x_{j}}\supseteq Q_{j}\supseteq 0 be a generic flag of the fiber QxjQ_{x_{j}} at each point xjx_{j}. For j=1,2j=1,2, we let our parabolic flag at xjx_{j} be given by

Exj=QxjSxjQjSxjSxj0.\displaystyle E_{x_{j}}=Q_{x_{j}}\oplus S_{x_{j}}\supseteq Q_{j}\oplus S_{x_{j}}\supseteq S_{x_{j}}\supseteq 0.

At x3x_{3}, we let our parabolic flag be given by

Ex3=Qx3Sx3Qx3Q30.\displaystyle E_{x_{3}}=Q_{x_{3}}\oplus S_{x_{3}}\supseteq Q_{x_{3}}\supseteq Q_{3}\supseteq 0.

Let 124>ϵ>148\frac{1}{24}>\epsilon>\frac{1}{48} be a real number. We choose our weights at x1x_{1} to be {12,12+ϵ,1ϵ}\{\frac{1}{2},\frac{1}{2}+\epsilon,1-\epsilon\}. The weights at x2x_{2} are {18ϵ,18,34+ϵ}\{\frac{1}{8}-\epsilon,\frac{1}{8},\frac{3}{4}+\epsilon\}. The weights at x3x_{3} are given by {13ϵ,13,13+ϵ}\{\frac{1}{3}-\epsilon,\frac{1}{3},\frac{1}{3}+\epsilon\}. That is, at x1x_{1} and x2x_{2} we give SS the largest parabolic weights. At x3x_{3} we give SS the smallest parabolic weights.

We note that μ(S)=112ϵ\mu(S_{*})=\frac{1}{12}-\epsilon. Every subbundle of QQ_{*} has parabolic degree at most 124ϵ-\frac{1}{24}-\epsilon. Therefore, (E,θ)(E_{*},\theta) is parabolic stable. Then, Hom(S,Q)𝒪(1)𝒪(1)\operatorname{Hom}(S_{*},Q_{*})_{*}\cong\mathscr{O}(-1)\oplus\mathscr{O}(-1) and Hom(S,Q)ΩX1(logD)𝒪𝒪\operatorname{Hom}_{*}(S_{*},Q_{*})_{*}\otimes\Omega_{X}^{1}(\log D)\cong\mathscr{O}\oplus\mathscr{O}. Therefore, (E,θ)(E_{*},\theta) is a minimal energy parabolic Higgs bundle.

Let I1I_{1}, I2I_{2}, and I3I_{3} be the subsets of {1,2,3}\{1,2,3\} of size 11 so that λIj(Cj)\lambda_{I_{j}}(C_{j}) gives the weight of SS_{*} over xjx_{j}. So, our Schubert varieties are subvarieties of 2\mathbb{P}^{2}. Here, I1=I2={1}I_{1}=I_{2}=\{1\} and I3={3}I_{3}=\{3\}. The classes σI1\sigma_{I_{1}} and σI2\sigma_{I_{2}} are the class of a point. The class σI3\sigma_{I_{3}} is the class of 2\mathbb{P}^{2} and degS~=1\deg\widetilde{S}=-1. Therefore, we get that σI1,σI2,σI310\langle\sigma_{I_{1}},\sigma_{I_{2}},\sigma_{I_{3}}\rangle_{1}\neq 0. Geometrically, this says that there is at least one degree 11 rational curve in 2\mathbb{P}^{2} passing through all of 2\mathbb{P}^{2} and two generic points in 2\mathbb{P}^{2}. Since a degree 11 rational curve is just a line, this says that there is at least one line passing through two points in 2\mathbb{P}^{2} in generic position. Corollary 6.6 does not, however, tell us that there is a unique line passing through two points in 2\mathbb{P}^{2} in generic position.

References

  • [AW98] S. Agnihotri and C. Woodward. Eigenvalues of products of unitary matrices and quantum schubert calculus. Mathematical Research Letters, 5(6):817–836, 1998.
  • [BB73] A. Bialynicki-Birula. Some theorems on actions of algebraic groups. Annals of Mathematics, 98(3):480–497, 1973.
  • [Bel01] Prakash Belkale. Local systems on 1S\mathbb{P}^{1}-\mathrm{S} for S\mathrm{S} a finite set. Compositio Mathematica, 129(1):67–86, 2001.
  • [BG99] Robert L. Benedetto and William M. Goldman. The topology of the relative character varieties of a quadruply-punctured sphere. Experimental Mathematics, 8(1):85–103, January 1999.
  • [Bis03] Indranil Biswas. On the principal bundles with parabolic structure. Kyoto Journal of Mathematics, 43(2), January 2003.
  • [Bot95] Francesco Bottacin. Symplectic geometry on moduli spaces of stable pairs. Ann. Sci. École Norm. Sup. (4), 28(4):391–433, 1995.
  • [Bru17] Yohan Brunebarbe. Semi-positivity from higgs bundles. 07 2017.
  • [BY96] Hans U. Boden and Kôji Yokogawa. Moduli spaces of parabolic Higgs bundles and parabolic K(D)\mathrm{K}(\mathrm{D}) pairs over smooth curves: I. International Journal of Mathematics, 07(05):573–598, October 1996.
  • [CW19] Brian Collier and Richard Wentworth. Conformal limits and the Białynicki-Birula stratification of the space of λ\lambda-connections. Advances in Mathematics, 350:1193–1225, 2019.
  • [Del70] Pierre Deligne. Équations différentielles à points singuliers réguliers. Lecture Notes in Mathematics, Vol. 163. Springer-Verlag, Berlin-New York, 1970.
  • [DT19] Bertrand Deroin and Nicolas Tholozan. Supra-maximal representations from fundamental groups of punctured spheres to PSL(2,)\rm PSL(2,\mathbb{R}). Ann. Sci. Éc. Norm. Supér. (4), 52(5):1305–1329, 2019.
  • [Hit87] N. J. Hitchin. The self-duality equations on a Riemann surface. Proceedings of the London Mathematical Society, S3-55(1):59–126, July 1987.
  • [Hit92] N.J. Hitchin. Lie groups and Teichmüller space. Topology, 31(3):449–473, July 1992.
  • [Kat96] Nicholas M. Katz. Rigid local systems, volume 139 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 1996.
  • [LL24] Aaron Landesman and Daniel Litt. Geometric local systems on very general curves and isomonodromy. J. Amer. Math. Soc., 37(3):683–729, 2024.
  • [LLL23] Yeuk Hay Joshua Lam, Aaron Landesman, and Daniel Litt. Finite braid group orbits on SL2\mathrm{SL}_{2}-character varieties. arXiv preprint, 08 2023.
  • [Moc06] Takuro Mochizuki. Kobayashi-Hitchin correspondence for tame harmonic bundles and an application. Astérisque, (309), 2006.
  • [MS80] V. B. Mehta and C. S. Seshadri. Moduli of vector bundles on curves with parabolic structures. Mathematische Annalen, 248(3):205–239, October 1980.
  • [Sim90] Carlos T. Simpson. Harmonic bundles on noncompact curves. J. Amer. Math. Soc., 3(3):713–770, 1990.
  • [Sum74] Hideyasu Sumihiro. Equivariant completion. Kyoto Journal of Mathematics, 14(1):1–28, January 1974.
  • [Tha02] Michael Thaddeus. Variation of moduli of parabolic Higgs bundles. Journal für die reine und angewandte Mathematik, 2002(547):1–14, January 2002.
  • [TT21] Nicolas Tholozan and Jérémy Toulisse. Compact connected components in relative character varieties of punctured spheres. Épijournal Géom. Algébrique, 5:Art. 6, 37, 2021.
  • [Yok93] Kôji Yokogawa. Compactification of moduli of parabolic sheaves and moduli of parabolic Higgs sheaves. J. Math. Kyoto Univ., 33(2):451–504, 1993.
  • [Yok95] Kôji Yokogawa. Infinitesimal deformation of parabolic higgs sheaves. International Journal of Mathematics, 06(01):125–148, February 1995.