This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

missing

missing  and  Paula Truöl Department of Mathematics, ETH Zurich, Switzerland paula.truoel@math.ethz.ch

The upsilon invariant at 11 of 33-braid knots

missing  and  Paula Truöl Department of Mathematics, ETH Zurich, Switzerland paula.truoel@math.ethz.ch
Abstract.

We provide explicit formulas for the integer-valued smooth concordance invariant υ(K)=ΥK(1)\upsilon(K)=\Upsilon_{K}(1) for every 33-braid knot KK. We determine this invariant, which was defined by Ozsváth, Stipsicz and Szabó [OSS17a], by constructing cobordisms between 33-braid knots and (connected sums of) torus knots. As an application, we show that for positive 33-braid knots KK several alternating distances all equal the sum g(K)+υ(K)g(K)+\upsilon(K), where g(K)g(K) denotes the 33-genus of KK. In particular, we compute the alternation number, the dealternating number and the Turaev genus for all positive 33-braid knots. We also provide upper and lower bounds on the alternation number and dealternating number of every 33-braid knot which differ by 11.

Key words and phrases:
3-braids, Upsilon invariant, alternation number, fractional Dehn twist coefficient.
1991 Mathematics Subject Classification:
57K10, 57K18, 20F36.

1. Introduction

We study knots in the 33-sphere S3S^{3}, i. e. non-empty, connected, oriented, closed smooth 11-dimensional submanifolds of S3S^{3}, considered up to ambient isotopy. Two knots KK and JJ are called concordant if there exists an annulus AS1×[0,1]A\cong S^{1}\times[0,1] smoothly and properly embedded in S3×[0,1]S^{3}\times[0,1] such that A=K×{0}J×{1}\partial A=K\times\{0\}\,\cup J\,\times\{1\} and such that the induced orientation on the boundary of the annulus agrees with the orientation of KK, but is the opposite one on JJ. Knots up to concordance form a group, the concordance group 𝒞\mathcal{C}, with the group operation induced by connected sum.

In [OSS17a], Ozsváth, Stipsicz and Szabó used the Heegaard Floer knot complex to define the invariant ΥK\Upsilon_{K} of a knot KK, which induces a homomorphism from the knot concordance group to the group of real-valued piecewise linear functions on the interval [0,2][0,2]. The function ΥK\Upsilon_{K} evaluated at t=1t=1, υ(K):=ΥK(1)\upsilon(K):=\Upsilon_{K}(1), induces a homomorphism 𝒞\mathcal{C}\to\mathbb{Z}. In this article, we will call υ(K)\upsilon(K) upsilon of KK.

A 33-braid is an element of the braid group on three strands, denoted B3B_{3}. The classical presentation of B3B_{3} with generators aa and bb and relation aba=bababa=bab, the braid relation, was introduced by Artin [Art25]. A braid word γ\gamma — a word in the generators of B3B_{3} and their inverses — defines a diagram for a (geometric) 33-braid; the generators aa and bb correspond to the geometric 33-braids given by braid diagrams as in Figure 1. In our figures, braid diagrams will always be oriented from bottom to top. We denote by Δ\Delta the braid aba=bababa=bab, and note that its square Δ2=(ab)3\Delta^{2}=(ab)^{3} (the positive full twist on three strands) generates the center of B3B_{3} [Cho48, Theorem 3]. A 33-braid knot is a knot that arises as the closure γ^\widehat{\gamma} of a 33-braid γ\gamma.

(a) The two generators aa and bb.
==
(b) The braid relation aba=bababa=bab.
Figure 1. Generators and relation in the braid group B3B_{3}.

As our main result, we determine the upsilon invariant for all 33-braid knots. More precisely, we show the following.

Theorem 1.1.

Let γ=Δ2ap1bq1ap2bq2aprbqr\gamma=\Delta^{2\ell}a^{-p_{1}}b^{q_{1}}a^{-p_{2}}b^{q_{2}}\cdots a^{-p_{r}}b^{q_{r}} be a braid word in the generators aa and bb of B3B_{3} for some integers \ell\in\mathbb{Z}, r1r\geq 1 and pi,qi1p_{i},q_{i}\geq 1 for i{1,,r}i\in\{1,\dots,r\}, where Δ2=(ab)3\Delta^{2}=(ab)^{3}. Suppose that the closure K=γ^K=\widehat{\gamma} of γ\gamma is a knot. Then its upsilon invariant is

υ(K)\displaystyle\upsilon(K) =i=1r(piqi)22.\displaystyle=\dfrac{\sum\limits_{i=1}^{r}(p_{i}-q_{i})}{2}-2\ell.

It follows from Murasugi’s classification of the conjugacy classes of 33-braids [Mur74, Proposition 2.1] that indeed all 33-braid knots — except for the torus knots that are closures of 33-braids — are covered by Theorem 1.1. However, for torus knots the invariant υ\upsilon can be calculated explicitly by a combinatorial, inductive formula in terms of their Alexander polynomial [OSS17a, Theorem 1.15]; see Equation 12 below. Hence, we have indeed determined υ(K)\upsilon(K) for all 33-braid knots KK.

As an application of Theorem 1.1, we show that the following invariants coincide for positive 33-braid knots — knots that are the closure of positive 33-braids.

Corollary 1.2.

Let KK be a knot that is the closure of a positive 33-braid, i.e. an element of B3B_{3} that can be written as a word in the generators aa and bb only (no inverses). Then

alt(K)\displaystyle\operatorname{alt}(K) =dalt(K)=gT(K)=𝒜s(K)=g(K)+υ(K).\displaystyle=\operatorname{dalt}(K)=g_{T}(K)=\mathcal{A}_{s}(K)=g(K)+\upsilon(K).

Here, the alternation number alt(K)\operatorname{alt}(K), dealternating number dalt(K)\operatorname{dalt}(K) and Turaev genus gT(K)g_{T}(K) are different ways of measuring how far the knot KK is from being alternating. The best known among them is certainly the first one: the alternation number alt(K)\operatorname{alt}(K) of a knot KK was first defined by Kawauchi [Kaw10] as the minimal Gordian distance of KK to the set of alternating knots. In Section 5, we will review the precise definition and prove 1.2. The invariant 𝒜s(K)\mathcal{A}_{s}(K) introduced by Friedl, Livingston and Zentner [FLZ17] is defined as the minimal number of double point singularities in a generically immersed concordance from a knot KK to an alternating knot. Lastly, g(K)g(K) denotes the 33-genus of KK, the minimal genus of a compact, connected, oriented smooth surface in S3S^{3} with oriented boundary the knot KK.

Two other corollaries of Theorem 1.1 for positive 33-braid knots are the following.

Corollary 1.3.

Let KK be a positive 33-braid knot. Then the minimal rr such that KK is the closure of ap1bq1ap2bq2aprbqra^{p_{1}}b^{q_{1}}a^{p_{2}}b^{q_{2}}\cdots a^{p_{r}}b^{q_{r}} for positive integers pi,qip_{i},q_{i}, i{1,,r}i\in\{1,\dots,r\}, is r=g(K)+υ(K)+1r=g(K)+\upsilon(K)+1.

Corollary 1.4.

If KK and JJ are concordant knots that are both closures of positive 33-braids, then the minimal rr from 1.3 is the same for both KK and JJ.

3.2 in Section 3 provides a normal form for 33-braids, the Garside normal form, which is different from Murasugi’s normal form mentioned above (cf. 4.15). The Garside normal form allows us to read off from a braid word whether it is conjugate to a positive braid word. In Section 6, we provide formulas for the fractional Dehn twist coefficient for all 33-braids in Garside normal form; see 6.1.

Proof strategy for Theorem 1.1. A crucial property of the invariant υ\upsilon is that it provides a lower bound on the 44-genus g4(K)g_{4}(K) of a knot KK, the minimal genus of a compact, connected, oriented surface smoothly embedded in the 44-ball B4B^{4} with oriented boundary the knot KK in S3=B4S^{3}=\partial B^{4}: we have

(1) |υ(K)|g4(K)\displaystyle\left|\upsilon(K)\right|\leq g_{4}(K)

for any knot KK [OSS17a, Theorem 1.11]. Our general strategy to find υ(K)\upsilon(K) for any 33-braid knot KK will be to construct a cobordism between KK and another knot JJ for which the value of υ\upsilon is known. A cobordism between KK and JJ is a smoothly and properly embedded oriented surface CC in S3×[0,1]S^{3}\times[0,1] with boundary K×{0}J×{1}K\times\{0\}\cup J\times\{1\} such that the induced orientation on the boundary of CC agrees with the orientation of KK and disagrees with the orientation of JJ. We have

(2) |υ(K)υ(J)|g(C),\displaystyle\left|\upsilon(K)-\upsilon(J)\right|\leq g(C),

for any cobordism CC between KK and JJ, where g(C)g(C) denotes the genus of the cobordism; see inequality (15) in Section 4.1. This provides bounds on υ(K)\upsilon(K) in terms of υ(J)\upsilon(J) and g(C)g(C).

We will find such cobordisms for example by algebraic modifications of a braid word representing KK and by saddle moves corresponding to the addition or deletion of generators from such braid words. We will also repeatedly make use of the trick described in 4.1 in Section 4.1 of looking at cobordisms of genus 11 between γ^#T2,2n+1\widehat{\gamma}\#T_{2,2n+1} and γb2n^\widehat{\gamma b^{2n}} for 33-braid words γ\gamma and n1n\geq 1.

To prove Theorem 1.1, we will first determine υ\upsilon for all positive 33-braid knots and then generalize our computations to all 33-braid knots. This extension was somewhat unexpected for the author since, in contrast, the same method would not work to determine slice-torus invariants [Lew14] like the invariant τ\tau defined by Ozsváth and Szabó [OS03] or Rasmussen’s invariant ss [Ras10] for all 33-braid knots. We will elaborate on this in Section 4.4.2.

Remark 1.5.

As we will only use properties of the upsilon invariant (see Section 2.2) and not its definition, we can similarly determine any concordance homomorphism 𝒞\mathcal{C}\to\mathbb{Z} whose absolute value bounds the 44-genus of a knot from below and which takes the same value as υ\upsilon on torus knots of braid index 22 and 33. An example is t2-\frac{t}{2} for the concordance invariant tt constructed by Ballinger [Bal20] from the E(1)E(-1) spectral sequence on Khovanov homology. The invariant tt defines a concordance homomorphism valued in the even integers which satisfies |t(K)2|g4(K)\left|\frac{t(K)}{2}\right|\leq g_{4}(K) for any knot KK [Bal20, Theorem 1.1]. Moreover, it fulfills t(Tp,q)=2υ(Tp,q)t\left(T_{p,q}\right)=-2\upsilon\left(T_{p,q}\right) for the torus knots Tp,qT_{p,q} for any coprime positive integers pp and qq [Bal20, p. 22]. The same method we use for the proof of Theorem 1.1 shows that t(K)=2υ(K)t(K)=-2\upsilon(K) for any 33-braid knot KK.

Remark 1.6.

Theorem 1.1 and a result of Erle [Erl99] imply that σ(K)=2υ(K)\sigma(K)=2\upsilon(K) for all 33-braid knots KK except when K=±T3,3+kK=\pm T_{3,3\ell+k} for odd >0\ell>0 and k{1,2}k\in\{1,2\}. Here σ(K)\sigma(K) denotes the classical signature of the knot KK [Tro62]111We use the standard signature convention that the positive torus knots have negative signatures, e. g. σ(T3,2)=2\sigma(T_{3,2})=-2.. In the exceptional cases, we have σ(K)=2υ(K)2\sigma(K)=2\upsilon(K)-2. This observation improves a result by Feller and Krcatovich who showed that |υ(K)σ(K)2|2\left|\upsilon(K)-\frac{\sigma(K)}{2}\right|\leq 2 for all 33-braid knots KK [FK17, Proposition 4.4]; see also Section 4.4.1.

Organization. The remainder of this article is organized as follows. In Section 2, we will provide the necessary background on (positive) braids and the upsilon invariant before providing a normal form for 33-braids (3.2) that we call Garside normal form in Section 3. Then in Section 4, after a more detailed outline of our proof strategy (Section 4.1), we will prove Theorem 1.1 first for positive 33-braid knots (Section 4.2) and afterwards in the general 33-braid case (Section 4.3). We will prove 1.3 and 1.4 in Section 4.2. Section 4.4 will provide further context on our results. Section 5 is concerned with the proof of 1.2 (Section 5.1) and the application of our result about the upsilon invariant to alternating distances of general 33-braid knots (Section 5.2). In particular, we determine the alternation number of any 33-braid knot up to an additive error of at most 11. Finally, in Section 6, we determine the fractional Dehn twist coefficient for all 33-braids in Garside normal form.

Acknowledgments. I would like to thank Peter Feller for introducing me to the topic and for all the helpful discussions. Thanks also to Lukas Lewark for lots of useful comments, including during my stay in Regensburg in September 2020, and to Xenia Flamm for her feedback. Finally, I thank the referee for many valuable remarks and improvements. This project is supported by the Swiss National Science Foundation Grant 181199.

2. Preliminaries

We recall important concepts about knots and braids, and also the necessary properties of the upsilon invariant and the knot invariant τ\tau coming from Heegaard Floer homology.

2.1. Knots and braids

By a fundamental theorem of Alexander [Ale23], every knot in S3S^{3} can be represented as the closure of a geometric nn-braid for some positive integer nn. An nn-braid is an element of the braid group on nn strands, denoted BnB_{n}, which is presented by n1n-1 generators σ1,,σn1\sigma_{1},\dots,\sigma_{n-1} and relations

σiσj=σjσi if |ij|2, and σiσi+1σi=σi+1σiσi+1[Art25].\displaystyle\sigma_{i}\sigma_{j}=\sigma_{j}\sigma_{i}\text{ if }|i-j|\geq 2,\text{ and }\sigma_{i}\sigma_{i+1}\sigma_{i}=\sigma_{i+1}\sigma_{i}\sigma_{i+1}\qquad\text{\cite[cite]{[\@@bibref{}{artin_1925}{}{}]}}.

We call a word in the generators of BnB_{n} and their inverses a braid word. A braid word defines a diagram for a (geometric) nn-braid where the generators σi\sigma_{i} of the braid group correspond to the geometric nn-braids given by the braid diagrams in which the ii-th and (i+1)(i+1)-st strands cross once positively. In the following, we will always identify braid words with the corresponding geometric braids, and we suppress nn if the context is clear.

By gluing the top ends of the (oriented) strands of a geometric braid γBn\gamma\in B_{n} to the corresponding bottom ends, we get a knot (or link) γ^\widehat{\gamma}, called the closure of γ\gamma. If γ\gamma induces a permutation with only one cycle on the ends of its nn strands, then its closure γ^\widehat{\gamma} is a knot and we call it an nn-braid knot. Note that conjugate braids γ0,γ1Bn\gamma_{0},\gamma_{1}\in B_{n}, denoted by γ0γ1\gamma_{0}\sim\gamma_{1}, have isotopic closures γ0^=γ1^\widehat{\gamma_{0}}=\widehat{\gamma_{1}}. For a more detailed account on braids, we refer the reader to [BB05].

A positive braid is an element of the braid group BnB_{n} for some nn that can be written as a positive braid word σs1σs2σsl\sigma_{s_{1}}\sigma_{s_{2}}\cdots\sigma_{s_{l}} with si{1,,n1}s_{i}\in\{1,\dots,n-1\}. A knot is called a positive braid knot if it can be represented as the closure of a positive braid. The set of positive braid knots contains the sets of (positive) torus knots and algebraic knots, while itself being a subset of the set of positive knots or, more generally, the frequently studied set of (strongly) quasipositive knots.

Let wr(γ)\operatorname{wr}(\gamma) denote the writhe of a braid word γBn\gamma\in B_{n}, i. e. the exponent sum of the word γ\gamma. If γ\gamma is a positive nn-braid such that K=γ^K=\widehat{\gamma} is a knot, then, by work of Bennequin [Ben83] and Rudolph [Rud93] — the latter building on Kronheimer and Mrowka’s proof of the local Thom conjecture [KM93] — we have

(3) g4(K)=g(K)=wr(γ)n+12.\displaystyle g_{4}(K)=g(K)=\frac{\operatorname{wr}(\gamma)-n+1}{2}.

2.2. The concordance invariants τ\tau and Υ\Upsilon

In [OS03], Ozsváth and Szabó constructed the knot invariant τ\tau via the knot filtration on the Heegaard Floer chain complex of S3S^{3}; the latter was also defined independently by Rasmussen [Ras03]. The invariant τ\tau induces a group homomorphism 𝒞\mathcal{C}\to\mathbb{Z} from the (smooth) knot concordance group 𝒞\mathcal{C} to the group of integers \mathbb{Z} and gives a lower bound on the 44-ball genus g4(K)g_{4}(K): we have |τ(K)|g4(K)\left|\tau(K)\right|\leq g_{4}(K) for any knot KK. For the torus knots Tp,qT_{p,q}, where pp and qq are coprime positive integers, the invariant τ\tau recovers the 33-genus [OS03, Corollary 1.7], namely we have

(4) τ(Tp,q)=g(Tp,q)=(p1)(q1)2.\displaystyle\tau\left(T_{p,q}\right)=g\left(T_{p,q}\right)=\frac{(p-1)(q-1)}{2}.

Moreover, it follows from [Liv04, Theorem 4 and Corollary 7] together with Equation 3 above that, for any knot KK that is the closure of a positive nn-braid γ\gamma, we have

(5) τ(K)=wr(γ)n+12=g4(K)=g(K).\displaystyle\tau(K)=\frac{\operatorname{wr}(\gamma)-n+1}{2}=g_{4}(K)=g(K).

The invariant Υ\Upsilon was defined by Ozsváth, Stipsicz and Szabó in [OSS17a]. We will not recall the definition of Υ\Upsilon via the knot Floer complex CFK(K)CFK^{\infty}(K) since the properties of Υ\Upsilon mentioned below will be enough for our later computations and we will not explicitly use the Heegaard Floer theory behind it. For an overview on the properties of Υ\Upsilon, see the original article [OSS17a] or Livingston’s notes on Υ\Upsilon [Liv17]; see [Hom17] for a survey on Heegaard Floer homology and knot concordance.

For every knot KK, the knot invariant ΥK:[0,1]\Upsilon_{K}\colon[0,1]\to\mathbb{R} is a continuous, piecewise linear function with the following properties [OSS17a]:

(6) ΥK(0)=0,\displaystyle\Upsilon_{K}(0)=0,
(7) the slope of ΥK(t) at t=0 is given by τ(K),\displaystyle\text{the slope of }\Upsilon_{K}(t)\text{ at }t=0\text{ is given by }-\tau(K),
(8) ΥK1#K2(t)=ΥK1(t)+ΥK2(t) for all 0t1 and all knots K1 and K2,\displaystyle\Upsilon_{K_{1}\#K_{2}}(t)=\Upsilon_{K_{1}}(t)+\Upsilon_{K_{2}}(t)\text{ for all }0\leq t\leq 1\text{ and all knots }K_{1}\text{ and }K_{2},
(9) ΥK(t)=ΥK(t) for all 0t1,\displaystyle\Upsilon_{-K}(t)=-\Upsilon_{K}(t)\text{ for all }0\leq t\leq 1,
(10) |ΥK(t)|g4(K)t for all 0t1.\displaystyle\left|\Upsilon_{K}(t)\right|\leq g_{4}(K)t\text{ for all }0\leq t\leq 1.

Here, K-K is the knot obtained by mirroring KK and reversing its orientation. Its concordance class is the inverse of the class of KK in the knot concordance group 𝒞\mathcal{C}. It follows from (8)-(10) that Υ\Upsilon induces a homomorphism from the concordance group to the group of real-valued piecewise linear functions on the interval [0,1][0,1].

For some classes of knots, the invariant Υ\Upsilon can be explicitly computed in terms of classical knot invariants like the signature and the Alexander polynomial.

Proposition 2.1 ([OSS17a, Theorem 1.14]).

We have ΥK(t)=σ(K)2t\Upsilon_{K}(t)=\frac{\sigma(K)}{2}t for all alternating or quasi-alternating knots KK and all 0t10\leq t\leq 1.

For positive torus knots, ΥK(t)\Upsilon_{K}(t) is completely determined by a combinatorial formula in terms of their Alexander polynomial [OSS17a, Theorem 1.15]. For torus knots of braid index 22 or 33, the following holds; see e. g. [Fel16]. For 0\ell\geq 0, we have

(11) ΥT2,2+1(t)=τ(T2,2+1)t=tfor all 0t1.\displaystyle\Upsilon_{T_{2,2\ell+1}}(t)=-\tau\left(T_{2,2\ell+1}\right)\cdot t=-\ell\cdot t\qquad\text{for all }0\leq t\leq 1.

For 0\ell\geq 0 and k{1,2}k\in\{1,2\}, we have

(12) ΥT3,3+1(1)\displaystyle\Upsilon_{T_{3,3\ell+1}}(1) =ΥT3,3+2(1)+1=2,\displaystyle=\Upsilon_{T_{3,3\ell+2}}(1)+1=-2\ell,
ΥT3,3+k(t)\displaystyle\Upsilon_{T_{3,3\ell+k}}(t) =τ(T3,3+k)t=(3+k1)t\displaystyle=-\tau(T_{3,3\ell+k})t=-(3\ell+k-1)t for all 0t23and\displaystyle\text{for all }0\leq t\leq\frac{2}{3}\qquad\text{and}
ΥT3,3+k(t)\displaystyle\Upsilon_{T_{3,3\ell+k}}(t) is linear on [23,1].\displaystyle\text{ is linear on }\left[\frac{2}{3},1\right].

3. The Garside normal form for 33-braids

In this section, we provide a classification result on the conjugacy classes of 33-braids; see 3.2. This result is basically due to work of Garside [Gar69] who gave the first solution to the conjugacy problem for all braid groups BnB_{n}, n3n\geq 3, in 1965. 3.2 might be known to the experts, but since the explicit formulas appear to be missing from the literature, we will provide them here.

Throughout, we denote the two generators of the braid group B3B_{3} by a:=σ1a\vcentcolon=\sigma_{1} and b:=σ2b\vcentcolon=\sigma_{2} which are subject to the braid relation aba=bababa=bab. Recall that the braid Δ2=(aba)2=(ab)3\Delta^{2}=(aba)^{2}=(ab)^{3} generates the center of B3B_{3}.

Remark 3.1.

Any 33-braid is conjugate to the same braid with generators aa and bb interchanged. More precisely, let γ=ap1bq1aprbqr\gamma=a^{p_{1}}b^{q_{1}}\cdots a^{p_{r}}b^{q_{r}} for some r1r\geq 1 and integers pi,qip_{i},q_{i}, i{1,,r},i\in\{1,\dots,r\}, be a 33-braid. Then using Δa=bΔ\Delta a=b\Delta and Δb=aΔ\Delta b=a\Delta, we have

γ\displaystyle\gamma =Δ1Δap1bq1aprbqr=Δ1bp1aq1bpraqrΔbp1aq1bpraqr.\displaystyle=\Delta^{-1}\Delta a^{p_{1}}b^{q_{1}}\cdots a^{p_{r}}b^{q_{r}}=\Delta^{-1}b^{p_{1}}a^{q_{1}}\cdots b^{p_{r}}a^{q_{r}}\Delta\sim b^{p_{1}}a^{q_{1}}\cdots b^{p_{r}}a^{q_{r}}.

In 3.2, we will provide a certain standard form for the conjugacy classes of 33-braids.

Proposition 3.2.

Let γ\gamma be a 33-braid. Then γ\gamma is conjugate to one of the 33-braids

(A) Δ2ap\displaystyle\Delta^{2\ell}a^{p} for ,p0,\displaystyle\text{for }\ell\in\mathbb{Z},\,p\geq 0,
(B) Δ2apb\displaystyle\Delta^{2\ell}a^{p}b for ,p{1,2,3},\displaystyle\text{for }\ell\in\mathbb{Z},\,p\in\{1,2,3\},
(C) Δ2ap1bq1aprbqr\displaystyle\Delta^{2\ell}a^{p_{1}}b^{q_{1}}\cdots a^{p_{r}}b^{q_{r}} for ,r1,pi,qi2,i{1,,r},\displaystyle\text{for }\ell\in\mathbb{Z},\,r\geq 1,\,p_{i},q_{i}\geq 2,\,i\in\{1,\dots,r\},
(D) Δ2+1ap1bq1apr1bqr1apr\displaystyle\Delta^{2\ell+1}a^{p_{1}}b^{q_{1}}\cdots a^{p_{r-1}}b^{q_{r-1}}a^{p_{r}} for ,r1,pr2,pi,qi2,\displaystyle\text{for }\ell\in\mathbb{Z},\,r\geq 1,\,p_{r}\geq 2,\,p_{i},q_{i}\geq 2,
i{1,,r1}.\displaystyle i\in\{1,\dots,r-1\}.

If γ\gamma is a positive 33-braid, then 0\ell\geq 0. If γ^\widehat{\gamma} is a knot, then only the cases (B)–(D) can occur and pp must be odd in case (B), at least one of the pip_{i} and one of the qiq_{i} must be odd in case (C), and at least one of the pip_{i} or qiq_{i} must be odd in case (D).

While we will never use it in this article, we note — without proof — the following uniqueness result related to 3.2.

Remark 3.3.

Up to cyclic permutation of the powers p1,q1,,pr,qrp_{1},q_{1},\dots,p_{r},q_{r} in (C) and p1,q1,,pr1,qr1,prp_{1},q_{1},\dots,p_{r-1},q_{r-1},p_{r} in (D), respectively, each 33-braid is conjugate to exactly one of the 33-braids listed in 3.2. This follows from Garside’s work [Gar69]. In his notation, each of the 33-braids listed in (A)–(D) in 3.2 is the standard form of a certain element in the (so-called) summit set of γ\gamma. For 33-braids of the form (C) or (D), the summit set consists of those 33-braids obtained by cyclic permutation of the powers p1,q1,,pr,qrp_{1},q_{1},\dots,p_{r},q_{r} in (C) and p1,q1,,pr1,qr1,prp_{1},q_{1},\dots,p_{r-1},q_{r-1},p_{r} in (D), respectively.

Definition 3.4.

We call a braid word of the form in (A)–(D) a 33-braid in Garside normal form.

Remark 3.5.

The advantage of the Garside normal form over Murasugi’s normal form for 33-braids used later in Section 4.3 (see 4.15) is that positive 33-braids are easier to detect in this normal form: if γ\gamma is a positive 33-braid, then γ\gamma is conjugate to one of the braids in (A)–(D) with 0\ell\geq 0. Since Garside’s solution to the conjugacy problem works for any nn-braid with n3n\geq 3, one might hope to generalize an explicit standard form as in 3.2 to nn-braids for any n3n\geq 3.

Remark 3.6.

For odd pp, case (B) of 3.2 covers the torus knots of braid index 33. More precisely, if γΔ2ab=(ab)3+1\gamma\sim\Delta^{2\ell}ab=(ab)^{3\ell+1}, then its closure is γ^=T3,3+1\widehat{\gamma}=T_{3,3\ell+1} for 0\ell\geq 0 and γ^=T3,3(1)+2\widehat{\gamma}=-T_{3,3(-\ell-1)+2} for <0\ell<0, and if γΔ2a3b(ab)3+2\gamma\sim\Delta^{2\ell}a^{3}b\sim(ab)^{3\ell+2}, then γ^=T3,3+2\widehat{\gamma}=T_{3,3\ell+2} for 0\ell\geq 0 and γ^=T3,3(1)+1\widehat{\gamma}=-T_{3,3(-\ell-1)+1} for <0\ell<0.

Proof of 3.2.

The proof will follow from the following claim.

Claim 1.

Let γ\gamma be a positive 33-braid. Then γ\gamma is conjugate to one of the 33-braids in (A)–(D) with 0\ell\geq 0.

We first deduce 3.2 from this claim. To that end, let γ\gamma be any 33-braid. If γ\gamma is a positive braid, we are done by 1. If not, then γ\gamma can be written in the form γ=Δmα\gamma=\Delta^{m}\alpha where mm is a negative integer and α\alpha a positive 33-braid [Gar69, Theorem 5]. In fact, inserting Δ1Δ\Delta^{-1}\Delta if mm is odd, we can assume γ\gamma to be of the form Δ2nα\Delta^{-2n}\alpha for some n1n\geq 1 and a positive 33-braid α\alpha. The proposition then easily follows using the claim for α\alpha. It remains to prove 1.

Proof of 1: A positive 33-braid γ\gamma has the form γ=aP1bQ1aPRbQR\gamma=a^{P_{1}}b^{Q_{1}}\cdots a^{P_{R}}b^{Q_{R}} for integers R1R\geq 1, Pi,Qi0P_{i},Q_{i}\geq 0, i{1,,R}i\in\{1,\dots,R\}. If all the PiP_{i} or all the QiQ_{i} are 0, then (possibly using 3.1) γ\gamma is conjugate to apa^{p} for some p0p\geq 0 and we are in case (A) for =0\ell=0. Possibly after conjugation and reduction of RR, we can thus assume that all of the integers Pi,QiP_{i},Q_{i} are non-zero. If P1,Q12P_{1},Q_{1}\geq 2 applies for all i{1,,R}i\in\{1,\dots,R\}, then γ\gamma is of the form in (C) for =0\ell=0. If R=1R=1, i. e. γ=aP1bQ1\gamma=a^{P_{1}}b^{Q_{1}} for integers P1,Q11P_{1},Q_{1}\geq 1, and P1=1P_{1}=1 or Q1=1Q_{1}=1, then (possibly using 3.1) γ\gamma is conjugate to a braid of the form in (B).

It remains to consider the case where R2R\geq 2 and at least one of the PiP_{i} or QiQ_{i} is 11. In that case — if necessary after conjugation — γ\gamma contains Δ=aba=bab\Delta=aba=bab as a subword and is thus conjugate to Δα\Delta\alpha for some positive 33-braid α\alpha. Now, let n1n\geq 1 be maximal with the property that γ\gamma is conjugate to Δnα\Delta^{n}\alpha for some positive 33-braid α\alpha. Then, possibly after conjugation of γ\gamma, the braid word α\alpha must be one of the following:

ap\displaystyle a^{p} for p0,\displaystyle\text{for }p\geq 0,
apb\displaystyle a^{p}b for p1,\displaystyle\text{for }p\geq 1,
(13) ap1bq1aprbqr\displaystyle a^{p_{1}}b^{q_{1}}\cdots a^{p_{r}}b^{q_{r}} for r1,pi,qi2,i{1,,r},\displaystyle\text{for }r\geq 1,\,p_{i},q_{i}\geq 2,\,i\in\{1,\dots,r\},
ap1bq1apr1bqr1apr\displaystyle a^{p_{1}}b^{q_{1}}\cdots a^{p_{r-1}}b^{q_{r-1}}a^{p_{r}} for r1,pr2,pi,qi2,i{1,,r1}.\displaystyle\text{for }r\geq 1,\,p_{r}\geq 2,\,p_{i},q_{i}\geq 2,\,i\in\{1,\dots,r-1\}.

Indeed, using 3.1, up to conjugation these are the only possible words such that Δnα\Delta^{n}\alpha does not contain any additional Δ\Delta as a subword. Note that α\alpha can be the empty word, which is covered by the first case in (3) for p=0p=0. Further, note that

(14) Δ2apbΔ2+1ap2,Δ2+1aΔ2a3b,Δ2+1apbΔ2+1ap+1,Δ2+1ap1bq1aprbqrΔ2+1ap1+qrbq1ap2bqr1aprandΔ2ap1bq1apr1bqr1aprΔ2ap1+prbq1ap2apr1bpr1\displaystyle\begin{split}&\Delta^{2\ell}a^{p}b\sim\Delta^{2\ell+1}a^{p-2},\qquad\Delta^{2\ell+1}a\sim\Delta^{2\ell}a^{3}b,\qquad\Delta^{2\ell+1}a^{p}b\sim\Delta^{2\ell+1}a^{p+1},\\ &\Delta^{2\ell+1}a^{p_{1}}b^{q_{1}}\cdots a^{p_{r}}b^{q_{r}}\sim\Delta^{2\ell+1}a^{p_{1}+q_{r}}b^{q_{1}}a^{p_{2}}\cdots b^{q_{r-1}}a^{p_{r}}\qquad\text{and}\\ &\Delta^{2\ell}a^{p_{1}}b^{q_{1}}\cdots a^{p_{r-1}}b^{q_{r-1}}a^{p_{r}}\sim\Delta^{2\ell}a^{p_{1}+p_{r}}b^{q_{1}}a^{p_{2}}\cdots a^{p_{r-1}}b^{p_{r-1}}\end{split}

for any 0\ell\geq 0, p1p\geq 1, pi,qi2p_{i},q_{i}\geq 2, i{1,,r}i\in\{1,\dots,r\}. It follows from a case by case analysis of the cases in (3), using (14) and taking the parity of nn into account, that any positive 33-braid is conjugate to one of the 33-braids in (A)–(D) with 0\ell\geq 0. \blacksquare

This concludes the proof of 3.2. ∎

4. The upsilon invariant of 33-braid knots

In this section, we prove Theorem 1.1. Along the way, we compute the invariant υ\upsilon for positive 33-braid knots in Garside normal form (4.2) and prove 1.3 and 1.4.

4.1. Methodology

We first recall inequality (2) from the introduction — which will be repeatedly used in Section 4 — in more generality.

The cobordism distance d(K,J)d(K,J) between two knots KK and JJ is defined as the 44-genus g4(K#J)g_{4}(K\#-J) of the connected sum of KK and the inverse of JJ. Equivalently, the cobordism distance d(K,J)d(K,J) could be defined as the minimal genus of a smoothly and properly embedded oriented surface CC in S3×[0,1]S^{3}\times[0,1] with boundary K×{0}J×{1}K\times\{0\}\cup J\times\{1\} such that the induced orientation on the boundary of CC agrees with the orientation of KK and disagrees with the orientation of JJ. Suppose the genus of a cobordism CC between two knots KK and JJ is g(C)g(C). We then have d(K,J)g(C)d(K,J)\leq g(C), so by the properties (8)-(10) of Υ\Upsilon from Section 2.2 we get

(15) |ΥK(t)ΥJ(t)|=|ΥK#J(t)|g4(K#T)t=d(K,T)tg(C)t\displaystyle\left|\Upsilon_{K}(t)-\Upsilon_{J}(t)\right|=\left|\Upsilon_{K\#-J}(t)\right|\leq g_{4}(K\#-T)t=d(K,T)t\leq g(C)t

for all 0t10\leq t\leq 1. This provides bounds on ΥK(t)\Upsilon_{K}(t) in terms of ΥJ(t)\Upsilon_{J}(t) and g(C)g(C).

We now give an example for the cobordisms we will use later on.

Example 4.1.

Among other things, we will frequently use the following trick the author first saw in [FK17, Example 4.5]. Let γ\gamma be a 33-braid such that K=γ^K=\widehat{\gamma} is a knot. Consider the 33-braid α:=γb2n\alpha\vcentcolon=\gamma b^{2n} for some n1n\geq 1. Then α^\widehat{\alpha} is also a knot and there is a cobordism between α^\widehat{\alpha} and the connected sum K#T2,2n+1K\#T_{2,2n+1} of genus 11. This cobordism can be realized by two saddle moves (11-handle attachments) of the form shown in Figure 2(b), performed in the two circled regions of Figure 2(a). One of them is used to add a generator bb to the braid α\alpha to obtain the braid word γb2n+1\gamma b^{2n+1} and the other is used to transform the closure of this new braid word into a connected sum of KK and T2,2n+1T_{2,2n+1}. Recall that our braid diagrams are oriented from bottom to top.

\psfrag{a}{\small{$\gamma$}}\psfrag{b}{\small{$2n$}}\psfrag{c}{\small{$\widehat{\alpha}$}}\psfrag{d}{\begin{tabular}[]{@{}l@{}}\small{$2n$}\\ \small{$+1$}\end{tabular}}\psfrag{e}{\small{$\widehat{\gamma}\#T_{2,2n+1}$}}\psfrag{f}{\begin{tabular}[]{@{}l@{}}\small{$2$ saddle}\\ \small{moves}\end{tabular}}\includegraphics[width=260.17464pt]{SchematicCobordism.eps}
(a) A schematic of a cobordism between the knots α^\widehat{\alpha} and γ^#T2,2n+1\widehat{\gamma}\#T_{2,2n+1} realized by two saddle moves.
Refer to caption
(b) A saddle move.
Figure 2. An example illustrating our proof strategy.

Using υ(T2,2n+1)=n\upsilon\left(T_{2,2n+1}\right)=-n by Equation 11 and that the genus of the cobordism is 11, by (15) for t=1t=1, we have

(16) |υ(α^)υ(K#T2,2n+1)|1|υ(α^)υ(K)+n|1,\displaystyle\left|\upsilon\left(\widehat{\alpha}\right)-\upsilon\left(K\#T_{2,2n+1}\right)\right|\leq 1\quad\Longleftrightarrow\quad\left|\upsilon\left(\widehat{\alpha}\right)-\upsilon\left(K\right)+n\right|\leq 1,

which provides the lower bound υ(K)υ(α^)+n1\upsilon(K)\geq\upsilon\big{(}\widehat{\alpha}\big{)}+n-1 on υ(K)\upsilon(K).

4.2. The upsilon invariant of positive 33-braid knots

In this section, we determine the invariant υ\upsilon for all positive 33-braid knots.

By 3.2 and 3.6, positive 33-braid knots are either the torus knots T3,3+kT_{3,3\ell+k} for 0\ell\geq 0 and k{1,2}k\in\{1,2\} which have braid representatives of Garside normal form (B), or closures of positive 33-braids of Garside normal form (C) or (D) (cf. 3.4). The following proposition thus proves Theorem 1.1 for all positive 33-braid knots.

Proposition 4.2.

Let γ\gamma be a positive 33-braid such that K=γ^K=\widehat{\gamma} is a knot. Then

υ(K)={2p12if γ is conjugate to a braid in (B),i=1r(pi+qi)2+r2if γ is conjugate to a braid in (C),i=1r1(pi+qi)+pr2+r232if γ is conjugate to a braid in (D).\displaystyle\upsilon(K)=\begin{cases}-2\ell-\dfrac{p-1}{2}&\text{if }\gamma\text{ is conjugate to a braid in }\eqref{eq:torusknotcase},\\ -\dfrac{\sum\limits_{i=1}^{r}\left(p_{i}+q_{i}\right)}{2}+r-2\ell&\text{if }\gamma\text{ is conjugate to a braid in }\eqref{eq:evenpower},\\ -\dfrac{\sum\limits_{i=1}^{r-1}\left(p_{i}+q_{i}\right)+p_{r}}{2}+r-2\ell-\dfrac{3}{2}&\text{if }\gamma\text{ is conjugate to a braid in }\eqref{eq:oddpower}.\end{cases}
Remark 4.3.

In fact, the formulas from 4.2 also give the correct upsilon invariant in terms of the Garside normal form of a 33-braid representative of a knot KK if KK is the closure of any 33-braid in Garside normal form (C) or (D), not necessarily a positive one. This follows from Theorem 1.1 (proved in the next section) and the observations of Section 4.4.3.

Recall that for the torus knots of braid index 33, we know the invariant υ\upsilon by Equation 12. In the following, we will determine the invariant υ\upsilon for all knots that are closures of positive 33-braids of Garside normal form (C) or (D).

We first provide an upper bound on ΥK(t)\Upsilon_{K}(t) for positive 33-braid knots KK and 0t10\leq t\leq 1. The following inequality (17) in 4.4 could also be shown using the dealternating number and a result of Abe and Kishimoto [AK10, Lemma 2.2], whereas the main work for the upper bound on υ\upsilon for the knots in the second and third case in 4.2 will be to rewrite the braid words representing these knots. We use the approach below since it will also give bounds on the minimal cobordism distance between any positive 33-braid knot and an alternating knot; see 4.14.

Lemma 4.4.

Let γ=ap1bq1aprbqr\gamma=a^{p_{1}}b^{q_{1}}\cdots a^{p_{r}}b^{q_{r}} be a positive 33-braid, where r1r\geq 1 and pi,qi1p_{i},q_{i}\geq 1, i{1,,r}i\in\{1,\dots,r\}, are integers such that K=γ^K=\widehat{\gamma} is a knot. Then

(17) ΥK(t)(g(K)+r1)tfor all 0t1.\displaystyle\Upsilon_{K}(t)\leq\left(-g(K)+r-1\right)t\qquad\text{for all }0\leq t\leq 1.
Proof.

We claim that there is a cobordism CC of genus

(18) g(C)=r1+ε2\displaystyle g(C)=\frac{r-1+\varepsilon}{2}

between KK and the connected sum

Jε=T2,i=1rpi+εp#T2,q1+ε1#T2,q2+ε2##T2,qr+εr,\displaystyle J_{\varepsilon}=T_{2,\sum\limits_{i=1}^{r}p_{i}+\varepsilon_{p}}\#\,T_{2,q_{1}+\varepsilon_{1}}\#\,T_{2,q_{2}+\varepsilon_{2}}\#\,\dots\#\,T_{2,q_{r}+\varepsilon_{r}},

where ε1,,εr,εp{0,1}\varepsilon_{1},\dots,\varepsilon_{r},\varepsilon_{p}\in\{0,1\} are chosen such that JεJ_{\varepsilon} is a connected sum of torus knots (rather than links), i. e. such that i=1rpi+εp\sum_{i=1}^{r}p_{i}+\varepsilon_{p}, q1+ε1q_{1}+\varepsilon_{1}, q2+ε2,,qr+εrq_{2}+\varepsilon_{2},\dots,q_{r}+\varepsilon_{r} are all odd, and εεp+i=1rεi\varepsilon\coloneqq\varepsilon_{p}+\sum_{i=1}^{r}\varepsilon_{i}. This cobordism CC can be realized by r1+εr-1+\varepsilon saddle moves as follows. Following the schematic in Figure 3, we add ε\varepsilon generators bb by ε\varepsilon saddle moves and additionally perform r1r-1 saddle moves of the form shown in Figure 2(b) in the green circled regions of Figure 3. In Figure 3, a box on the left labeled pip_{i} or qiq_{i} stands for the positive braid apia^{p_{i}} or bqib^{q_{i}}, respectively. The Euler characteristic of the cobordism CC is χ(C)=r+1ε\chi(C)=-r+1-\varepsilon. Since CC is connected and — as JεJ_{\varepsilon} and KK are knots — has two boundary components, the genus of CC is g(C)=χ(C)2=r1+ε2g(C)=\frac{-\chi(C)}{2}=\frac{r-1+\varepsilon}{2} as claimed.

\psfrag{a}{\small{$p_{1}$}}\psfrag{b}{\small{$q_{1}$}}\psfrag{c}{\small{$p_{2}$}}\psfrag{d}{\small{$q_{2}$}}\psfrag{e}{\small{$p_{r}$}}\psfrag{f}{\small{$q_{r}$}}\psfrag{g}{\begin{tabular}[]{@{}l@{}}\small{ $q_{1}$}\\ \small{$+\varepsilon_{1}$}\end{tabular}}\psfrag{h}{\begin{tabular}[]{@{}l@{}}\small{ $q_{2}$}\\ \small{$+\varepsilon_{2}$}\end{tabular}}\psfrag{j}{\begin{tabular}[]{@{}l@{}}\small{ $q_{r}$}\\ \small{$+\varepsilon_{r}$}\end{tabular}}\psfrag{k}{\begin{tabular}[]{@{}l@{}}$r-1+\varepsilon$\\ saddle\\ moves\end{tabular}}\psfrag{m}{\begin{tabular}[]{@{}l@{}}\small{ $p_{r}$}\\ \small{$+\varepsilon_{p}$}\end{tabular}}\psfrag{n}{\small{$K$}}\psfrag{p}{\small{$J_{\varepsilon}$}}\includegraphics[width=273.18271pt]{SchematicSaddleMovesJ_epsilon.eps}
Figure 3. A schematic of a cobordism between the knots K=γ^K=\widehat{\gamma} and Jε=T2,i=1rpi+εp#T2,q1+ε1#T2,q2+ε2##T2,qr+εrJ_{\varepsilon}=T_{2,\sum_{i=1}^{r}p_{i}+\varepsilon_{p}}\#T_{2,q_{1}+\varepsilon_{1}}\#T_{2,q_{2}+\varepsilon_{2}}\#\dots\#T_{2,q_{r}+\varepsilon_{r}} realized by r1+εr-1+\varepsilon saddle moves.

By (15), we get |ΥK(t)ΥJε(t)|g(C)t\left|\Upsilon_{K}(t)-\Upsilon_{J_{\varepsilon}}(t)\right|\leq g(C)t for all 0t10\leq t\leq 1, hence

(19) ΥK(t)\displaystyle\Upsilon_{K}(t) ΥJε(t)+g(C)tfor all 0t1.\displaystyle\leq\Upsilon_{J_{\varepsilon}}(t)+g(C)t\qquad\text{for all }0\leq t\leq 1.

By Equations 8 and 11 from Section 2.2, we have

ΥJε(t)\displaystyle\Upsilon_{J_{\varepsilon}}(t) =(i=1rpi+εp12q1+ε112q2+ε212qr+εr12)t\displaystyle=\left(-\frac{\sum_{i=1}^{r}p_{i}+\varepsilon_{p}-1}{2}-\frac{q_{1}+\varepsilon_{1}-1}{2}-\frac{q_{2}+\varepsilon_{2}-1}{2}\dots-\frac{q_{r}+\varepsilon_{r}-1}{2}\right)t
=12(i=1r(pi+qi)(r+1)+ε)t,\displaystyle=-\frac{1}{2}\left(\sum\limits_{i=1}^{r}(p_{i}+q_{i})-(r+1)+\varepsilon\right)t,

so (18) and (19) imply

ΥK(t)(i=1r(pi+qi)2+r)tfor all 0t1.\displaystyle\Upsilon_{K}(t)\leq\left(-\frac{\sum\limits_{i=1}^{r}(p_{i}+q_{i})}{2}+r\right)t\qquad\text{for all }0\leq t\leq 1.

The claim follows, since by Equation 3, we have

g(K)\displaystyle g(K) =wr(γ)22=i=1r(pi+qi)22.\displaystyle=\frac{\operatorname{wr}(\gamma)-2}{2}=\frac{\sum\limits_{i=1}^{r}(p_{i}+q_{i})-2}{2}.\qed

The following two lemmas improve the bound from 4.4 for knots that are closures of positive 33-braids of Garside normal form (C) or (D), respectively.

Lemma 4.5.

Let γ=Δ2+1ap1bq1apr1bqr1apr\gamma=\Delta^{2\ell+1}a^{p_{1}}b^{q_{1}}\cdots a^{p_{r-1}}b^{q_{r-1}}a^{p_{r}} for some 0\ell\geq 0, r1,r\geq 1, pr1p_{r}\geq 1 and pi,qi1p_{i},q_{i}\geq 1 for i{1,,r1}i\in\{1,\dots,r-1\} such that K=γ^K=\widehat{\gamma} is a knot. Then

ΥK(t)(i=1r1(pi+qi)+pr2+r232)tfor all 0t1.\displaystyle\Upsilon_{K}(t)\leq\left(-\frac{\sum\limits_{i=1}^{r-1}(p_{i}+q_{i})+p_{r}}{2}+r-2\ell-\frac{3}{2}\right)t\qquad\text{for all }0\leq t\leq 1.

In the proof of 4.5, we will use that in B3B_{3}, we have

(20) (ab)3n+1=abΔ2n=a2ba3(aba3)n1banfor all n1,\displaystyle(ab)^{3n+1}=ab\Delta^{2n}=a^{2}ba^{3}(aba^{3})^{n-1}ba^{n}\qquad\text{for all }n\geq 1,

where Δ2=(aba)2=(ab)3=(ba)3\Delta^{2}=(aba)^{2}=(ab)^{3}=(ba)^{3}; see [Fel16, Proof of Prop. 22].

Proof of 4.5.

Let Σγ=i=1r1(pi+qi)+pr\Sigma_{\gamma}=\sum\limits_{i=1}^{r-1}(p_{i}+q_{i})+p_{r} and note that using Equation 3, we have

(21) g(K)=3(2+1)+Σγ22=Σγ2+3+12.\displaystyle g(K)=\frac{3(2\ell+1)+\Sigma_{\gamma}-2}{2}=\frac{\Sigma_{\gamma}}{2}+3\ell+\frac{1}{2}.

If =0\ell=0, then γ=Δap1bq1apr1bqr1apr\gamma=\Delta a^{p_{1}}b^{q_{1}}\cdots a^{p_{r-1}}b^{q_{r-1}}a^{p_{r}} is conjugate to

γ1=ap1+1bq1apr1bqr1apr+1b\displaystyle\gamma_{1}=a^{p_{1}+1}b^{q_{1}}\cdots a^{p_{r-1}}b^{q_{r-1}}a^{p_{r}+1}b

and γ1^=γ^=K\widehat{\gamma_{1}}=\widehat{\gamma}=K, so g(γ1^)=Σγ2+12g\left(\widehat{\gamma_{1}}\right)=\frac{\Sigma_{\gamma}}{2}+\frac{1}{2}. By 4.4, we get

ΥK(t)(g(γ1^)+r1)t=(Σγ2+r32)tfor all 0t1.\displaystyle\Upsilon_{K}(t)\leq\left(-g\left(\widehat{\gamma_{1}}\right)+r-1\right)t=\left(-\frac{\Sigma_{\gamma}}{2}+r-\frac{3}{2}\right)t\qquad\text{for all }0\leq t\leq 1.

For 1\ell\geq 1, using Δ2+1=(ab)3aba=(ab)3+1a\Delta^{2\ell+1}=(ab)^{3\ell}aba=(ab)^{3\ell+1}a, we have

γ\displaystyle\gamma =Δ2+1ap1bq1apr1bqr1apr=(ab)3+1ap1+1bq1apr1bqr1apr\displaystyle=\Delta^{2\ell+1}a^{p_{1}}b^{q_{1}}\cdots a^{p_{r-1}}b^{q_{r-1}}a^{p_{r}}=(ab)^{3\ell+1}a^{p_{1}+1}b^{q_{1}}\cdots a^{p_{r-1}}b^{q_{r-1}}a^{p_{r}}
=(20)a2ba3(aba3)1bap1++1bq1apr1bqr1apr\displaystyle\overset{\eqref{lem:braideq1}}{=}a^{2}ba^{3}(aba^{3})^{\ell-1}ba^{p_{1}+\ell+1}b^{q_{1}}\cdots a^{p_{r-1}}b^{q_{r-1}}a^{p_{r}}
apr+2ba3(aba3)1bap1++1bq1apr1bqr1=:γ1.\displaystyle\sim a^{p_{r}+2}ba^{3}(aba^{3})^{\ell-1}ba^{p_{1}+\ell+1}b^{q_{1}}\cdots a^{p_{r-1}}b^{q_{r-1}}=:\gamma_{1}.

We have γ1^=γ^=K\widehat{\gamma_{1}}=\widehat{\gamma}=K and g(γ1^)=Σγ2+3+12g\left(\widehat{\gamma_{1}}\right)=\frac{\Sigma_{\gamma}}{2}+3\ell+\frac{1}{2} by (21). Again, 4.4 implies

ΥK(t)(g(γ1^)+r+1)t=(Σγ2+r232)tfor all 0t1,\displaystyle\Upsilon_{K}(t)\leq\left(-g\left(\widehat{\gamma_{1}}\right)+r+\ell-1\right)t=\left(-\frac{\Sigma_{\gamma}}{2}+r-2\ell-\frac{3}{2}\right)t\qquad\text{for all }0\leq t\leq 1,

which proves the claim of the lemma. ∎

Lemma 4.6.

Let γ=Δ2ap1bq1aprbqr\gamma=\Delta^{2\ell}a^{p_{1}}b^{q_{1}}\cdots a^{p_{r}}b^{q_{r}} for some 0\ell\geq 0, r1r\geq 1 and pi,qi1p_{i},q_{i}\geq 1 for i{1,,r}i\in\{1,\dots,r\} such that K=γ^K=\widehat{\gamma} is a knot. Then

ΥK(t)(i=1r(pi+qi)2+r2)tfor all 0t1.\displaystyle\Upsilon_{K}(t)\leq\left(-\frac{\sum\limits_{i=1}^{r}(p_{i}+q_{i})}{2}+r-2\ell\right)t\qquad\text{for all }0\leq t\leq 1.

In the proof, we will need the following statement about positive 33-braids.

Lemma 4.7.

In B3B_{3}, we have

(22) (ab)3n1=a2nb(a2b2)n1afor all n1.\displaystyle(ab)^{3n-1}=a^{2n}b(a^{2}b^{2})^{n-1}a\qquad\text{for all }n\geq 1.
Proof.

Starting with the left-hand side we have

(ab)3n1=a(ba)3(n1)bab=a(ab)3(n1)aba,\displaystyle(ab)^{3n-1}=a(ba)^{3(n-1)}bab=a(ab)^{3(n-1)}aba,

which proves Equation 22 for n=1n=1. We now show by induction that

(23) (ab)3(n1)a=a2n1b(a2b2)n2a2bfor all n2,\displaystyle(ab)^{3(n-1)}a=a^{2n-1}b(a^{2}b^{2})^{n-2}a^{2}b\qquad\text{for all }n\geq 2,

which implies the lemma for all n1n\geq 1. For n=2n=2, we have

(ab)3a=a(ba)3=a(ab)3=a2babab=a3ba2b.\displaystyle(ab)^{3}a=a(ba)^{3}=a(ab)^{3}=a^{2}babab=a^{3}ba^{2}b.

Assuming that (23) is true for some n12n-1\geq 2, we get

(ab)3(n1)a\displaystyle(ab)^{3(n-1)}a =a(ba)3(n1)=a(ab)3(n1)=a2(ba)3(n2)babab=a2(ab)3(n2)aba2b\displaystyle=a(ba)^{3(n-1)}=a(ab)^{3(n-1)}=a^{2}(ba)^{3(n-2)}babab=a^{2}(ab)^{3(n-2)}aba^{2}b
=a2(a2n3b(a2b2)n3a2b)ba2b=a2n1b(a2b2)n2a2b,\displaystyle=a^{2}\left(a^{2n-3}b(a^{2}b^{2})^{n-3}a^{2}b\right)ba^{2}b=a^{2n-1}b(a^{2}b^{2})^{n-2}a^{2}b,

using the induction hypothesis in the second to last equality. ∎

Proof of 4.6.

Let Σγ=i=1r(pi+qi)\Sigma_{\gamma}=\sum\limits_{i=1}^{r}(p_{i}+q_{i}). If =0\ell=0, then by Equation 3 and 4.4 we have

ΥK(t)(g(K)+r1)t=(Σγ2+r)tfor all 0t1.\displaystyle\Upsilon_{K}(t)\leq\left(-g\left(K\right)+r-1\right)t=\left(-\frac{\Sigma_{\gamma}}{2}+r\right)t\qquad\text{for all }0\leq t\leq 1.

For 1\ell\geq 1, using Δ2=(ba)3\Delta^{2}=(ba)^{3} and 4.7, we have

γ\displaystyle\gamma =(ba)3ap1bq1aprbqr(ab)31ap1+1bq1aprbqr+1\displaystyle=(ba)^{3\ell}a^{p_{1}}b^{q_{1}}\cdots a^{p_{r}}b^{q_{r}}\sim(ab)^{3\ell-1}a^{p_{1}+1}b^{q_{1}}\cdots a^{p_{r}}b^{q_{r}+1}
a2b(a2b2)1ap1+2bq1aprbqr+1=:γ1.\displaystyle\sim a^{2\ell}b(a^{2}b^{2})^{\ell-1}a^{p_{1}+2}b^{q_{1}}\cdots a^{p_{r}}b^{q_{r}+1}=:\gamma_{1}.

Note that γ1^=γ^=K\widehat{\gamma_{1}}=\widehat{\gamma}=K and by Equation 3, we have

g(γ1^)=g(K)=6+Σγ22=Σγ2+31.\displaystyle g\left(\widehat{\gamma_{1}}\right)=g(K)=\frac{6\ell+\Sigma_{\gamma}-2}{2}=\frac{\Sigma_{\gamma}}{2}+3\ell-1.

Again by 4.4, we get

ΥK(t)(g(γ1^)+r+1)t=(Σγ2+r2)tfor all 0t1.\displaystyle\Upsilon_{K}(t)\leq\left(-g\left(\widehat{\gamma_{1}}\right)+r+\ell-1\right)t=\left(-\frac{\Sigma_{\gamma}}{2}+r-2\ell\right)t\qquad\text{for all }0\leq t\leq 1.

We will now focus on υ(K)=ΥK(1)\upsilon(K)=\Upsilon_{K}(1) and prove 4.2 by showing that the upper bounds on ΥK(t)\Upsilon_{K}(t) from 4.5 and 4.6 for t=1t=1 are also lower bounds. We will need the following observation used in [FK17, Example 4.5] about 33-braids, which we prove here for completeness.

Lemma 4.8.

In B3B_{3}, we have

(24) a2n+1b(a2b2)n=(ab)3n+1and b2n+1a(b2a2)n=(ba)3n+1for all n0.\displaystyle a^{2n+1}b\left(a^{2}b^{2}\right)^{n}=(ab)^{3n+1}\,\text{and }\,b^{2n+1}a\left(b^{2}a^{2}\right)^{n}=(ba)^{3n+1}\qquad\text{for all }n\geq 0.
Proof.

We prove the first statement by induction. For n=0n=0, the equality is clearly true. For n=1n=1, using Δa=bΔ\Delta a=b\Delta and Δb=aΔ\Delta b=a\Delta, we have

a3ba2b2=a2Δab2=a2baΔb=aΔ2b=Δ2ab=(ab)4.\displaystyle a^{3}ba^{2}b^{2}=a^{2}\Delta ab^{2}=a^{2}ba\Delta b=a\Delta^{2}b=\Delta^{2}ab=(ab)^{4}.

We now assume that (24) is true for some n10n-1\geq 0. Using the induction hypothesis and the equality for n=1n=1, we get

a2n+1b(a2b2)n\displaystyle a^{2n+1}b\left(a^{2}b^{2}\right)^{n} =a2(ab)3(n1)+1a2b2=a3bΔ2(n1)a2b2\displaystyle=a^{2}\left(ab\right)^{3(n-1)+1}a^{2}b^{2}=a^{3}b\Delta^{2(n-1)}a^{2}b^{2}
=Δ2(n1)a3ba2b2=(ab)3(n1)(ab)4=(ab)3n+1.\displaystyle=\Delta^{2(n-1)}a^{3}ba^{2}b^{2}=(ab)^{3(n-1)}(ab)^{4}=(ab)^{3n+1}.\qed
Lemma 4.9.

Let γ=Δ2+1ap1bq1apr1bqr1apr\gamma=\Delta^{2\ell+1}a^{p_{1}}b^{q_{1}}\cdots a^{p_{r-1}}b^{q_{r-1}}a^{p_{r}} for some 0\ell\geq 0, r1,r\geq 1, pr3p_{r}\geq 3 and pi,qi2p_{i},q_{i}\geq 2 for i{1,,r1}i\in\{1,\dots,r-1\} such that K=γ^K=\widehat{\gamma} is a knot. Then

υ(K)\displaystyle\upsilon(K) =i=1r1(pi+qi)+pr2+r232.\displaystyle=-\frac{\sum\limits_{i=1}^{r-1}(p_{i}+q_{i})+p_{r}}{2}+r-2\ell-\frac{3}{2}.
Proof of 4.9.

Let Σγ=i=1r1(pi+qi)+pr\Sigma_{\gamma}=\sum\limits_{i=1}^{r-1}(p_{i}+q_{i})+p_{r}. From 4.5, it follows directly that υ(K)=ΥK(1)Σγ2+r232,\upsilon(K)=\Upsilon_{K}(1)\leq-\frac{\Sigma_{\gamma}}{2}+r-2\ell-\frac{3}{2}, so we are left to show that υ(K)Σγ2+r232\upsilon(K)\geq-\frac{\Sigma_{\gamma}}{2}+r-2\ell-\frac{3}{2}. To that end, consider

γ\displaystyle\gamma =Δ2+1ap1bq1apr1bqr1aprΔ2aΔap1bq1apr1bqr1apr1\displaystyle=\Delta^{2\ell+1}a^{p_{1}}b^{q_{1}}\cdots a^{p_{r-1}}b^{q_{r-1}}a^{p_{r}}\sim\Delta^{2\ell}a\Delta a^{p_{1}}b^{q_{1}}\cdots a^{p_{r-1}}b^{q_{r-1}}a^{p_{r}-1}
=Δ2bab2ap1bq1apr1bqr1apr1=:γ1,\displaystyle=\Delta^{2\ell}bab^{2}a^{p_{1}}b^{q_{1}}\cdots a^{p_{r-1}}b^{q_{r-1}}a^{p_{r}-1}=:\gamma_{1},

where we used aΔ=abab=bab2a\Delta=abab=bab^{2}. Note that γ1^=γ^=K\widehat{\gamma_{1}}=\widehat{\gamma}=K. Now, define

α:=b2rγ1=Δ2b2r+1ab2ap1bq1apr1bqr1apr1\displaystyle\alpha:=b^{2r}\gamma_{1}=\Delta^{2\ell}b^{2r+1}ab^{2}a^{p_{1}}b^{q_{1}}\cdots a^{p_{r-1}}b^{q_{r-1}}a^{p_{r}-1}

and note that α^\widehat{\alpha} is a knot. By assumption, we have pr12p_{r}-1\geq 2. There is a cobordism between α^\widehat{\alpha} and the connected sum T2,2r+1#γ1^=T2,2r+1#KT_{2,2r+1}\#\widehat{\gamma_{1}}=T_{2,2r+1}\#K of genus 11 by using two saddle moves similar to the two saddle moves illustrated in Figure 2 from 4.1. Similarly as in (16) from 4.1, we have υ(K)υ(α^)+r1\upsilon(K)\geq\upsilon\big{(}\widehat{\alpha}\big{)}+r-1. In order to find a lower bound for υ(α^)\upsilon\big{(}\widehat{\alpha}\big{)}, note that there is a cobordism CC between α^\widehat{\alpha} and the torus knot T=T3,3(+r)+1T=T_{3,3(\ell+r)+1} of genus g(C)=Σγ22r+12g(C)=\frac{\Sigma_{\gamma}}{2}-2r+\frac{1}{2}. Here we think of TT as the closure of the braid word β=Δ2b2r+1a(b2a2)r\beta=\Delta^{2\ell}b^{2r+1}a(b^{2}a^{2})^{r}, which is equal to Δ2(ba)3r+1=(ba)3(+r)+1\Delta^{2\ell}(ba)^{3r+1}=(ba)^{3(\ell+r)+1} as 33-braids by 4.8. The cobordism CC between α^\widehat{\alpha} and T=β^T=\widehat{\beta} can thus be realized by

p12+q12++pr12+qr12+pr3=Σγ4r+1\displaystyle p_{1}-2+q_{1}-2+\dots+p_{r-1}-2+q_{r-1}-2+p_{r}-3=\Sigma_{\gamma}-4r+1

saddle moves corresponding to the deletion of the same number of generators aa and bb from the braid word α\alpha to obtain β\beta. Hence the Euler characteristic of the cobordism CC is χ(C)=Σγ+4r1\chi(C)=-\Sigma_{\gamma}+4r-1. Since CC is connected and has two boundary components (as α^\widehat{\alpha} and T=β^T=\widehat{\beta} are knots), the genus of CC is indeed g(C)=Σγ22r+12g(C)=\frac{\Sigma_{\gamma}}{2}-2r+\frac{1}{2}. Now, by (15) and Equation 12, we have

υ(α^)υ(T)g(C)=2(+r)(Σγ22r+12)=Σγ2212.\displaystyle\upsilon\left(\widehat{\alpha}\right)\geq\upsilon\left(T\right)-g(C)=-2\left(\ell+r\right)-\left(\frac{\Sigma_{\gamma}}{2}-2r+\frac{1}{2}\right)=-\frac{\Sigma_{\gamma}}{2}-2\ell-\frac{1}{2}.

It follows that

υ(K)υ(α^)+r1Σγ2+r232\displaystyle\upsilon(K)\geq\upsilon\left(\widehat{\alpha}\right)+r-1\geq-\frac{\Sigma_{\gamma}}{2}+r-2\ell-\frac{3}{2}

as claimed, hence the statement of the lemma. ∎

Lemma 4.10.

Let γ=Δ2ap1bq1aprbqr\gamma=\Delta^{2\ell}a^{p_{1}}b^{q_{1}}\cdots a^{p_{r}}b^{q_{r}} for some 0\ell\geq 0, r1r\geq 1, pr,qr3p_{r},q_{r}\geq 3 and pi,qi2p_{i},q_{i}\geq 2 for i{1,,r1}i\in\{1,\dots,r-1\} such that K=γ^K=\widehat{\gamma} is a knot. Then

υ(K)\displaystyle\upsilon(K) =i=1r(pi+qi)2+r2.\displaystyle=-\frac{\sum\limits_{i=1}^{r}(p_{i}+q_{i})}{2}+r-2\ell.
Proof of 4.10.

The proof uses similar ideas as the proof of 4.9. Let Σγ=i=1r(pi+qi)\Sigma_{\gamma}=\sum\limits_{i=1}^{r}(p_{i}+q_{i}). By 4.6, we have υ(K)Σγ2+r2\upsilon(K)\leq-\frac{\Sigma_{\gamma}}{2}+r-2\ell, so it remains to show that υ(K)Σγ2+r2\upsilon(K)\geq-\frac{\Sigma_{\gamma}}{2}+r-2\ell. To that end, we consider

γ=Δ2ap1bq1aprbqrΔ2bap1bq1aprbqr1=:γ1.\displaystyle\gamma=\Delta^{2\ell}a^{p_{1}}b^{q_{1}}\cdots a^{p_{r}}b^{q_{r}}\sim\Delta^{2\ell}ba^{p_{1}}b^{q_{1}}\cdots a^{p_{r}}b^{q_{r}-1}=:\gamma_{1}.

Note that γ1^=γ^=K\widehat{\gamma_{1}}=\widehat{\gamma}=K. We define

α:=a2rγ1=a2rΔ2bap1bq1aprbqr1Δ2ba2rbap1bq1aprbqr2=:α1.\displaystyle\alpha:=a^{2r}\gamma_{1}=a^{2r}\Delta^{2\ell}ba^{p_{1}}b^{q_{1}}\cdots a^{p_{r}}b^{q_{r}-1}\sim\Delta^{2\ell}ba^{2r}ba^{p_{1}}b^{q_{1}}\cdots a^{p_{r}}b^{q_{r}-2}=:\alpha_{1}.

Then α1^=α^\widehat{\alpha_{1}}=\widehat{\alpha} is a knot and by assumption we have qr21q_{r}-2\geq 1. There is a cobordism between α^\widehat{\alpha} and T2,2r+1#γ1^=T2,2r+1#KT_{2,2r+1}\#\widehat{\gamma_{1}}=T_{2,2r+1}\#K of genus 11 by using two saddle moves similar to the cobordism considered in 4.1 and in the proof of 4.9, hence υ(K)υ(α1^)+r1\upsilon(K)\geq\upsilon\big{(}\widehat{\alpha_{1}}\big{)}+r-1. To find a lower bound for υ(α1^)\upsilon\big{(}\widehat{\alpha_{1}}\big{)}, we observe that there is a cobordism CC between the knot α1^\widehat{\alpha_{1}} and the knot β^\widehat{\beta}, where

β=Δ2ba2rb(a2b2)r1a3b.\displaystyle\beta=\Delta^{2\ell}ba^{2r}b(a^{2}b^{2})^{r-1}a^{3}b.

Using Equation 24 from 4.8 for n1n-1, in B3B_{3}, we have

ba2nb(a2b2)n1a2\displaystyle ba^{2n}b\left(a^{2}b^{2}\right)^{n-1}a^{2} =ba(ab)3(n1)+1a2=baΔ2(n1)aba2=Δ2nfor all n1.\displaystyle=ba(ab)^{3(n-1)+1}a^{2}=ba\Delta^{2(n-1)}aba^{2}=\Delta^{2n}\qquad\text{for all }n\geq 1.

We thus have β=Δ2Δ2rab=(ab)3(+r)+1\beta=\Delta^{2\ell}\Delta^{2r}ab=(ab)^{3(\ell+r)+1}, so the closure of β\beta is the torus knot T=T3,3(+r)+1T=T_{3,3(\ell+r)+1} with υ(T)=2(+r)\upsilon(T)=-2\left(\ell+r\right) by Equation 12. The cobordism CC between α1^\widehat{\alpha_{1}} and T=β^T=\widehat{\beta} can be realized by

p12+q12++pr12+qr12+pr3+qr3=Σγ4r2\displaystyle p_{1}-2+q_{1}-2+\dots+p_{r-1}-2+q_{r-1}-2+p_{r}-3+q_{r}-3=\Sigma_{\gamma}-4r-2

saddle moves corresponding to the deletion of the same number of generators aa and bb from the braid word α1\alpha_{1} to obtain β\beta. By a similar Euler characteristic argument as in the proofs of 4.4 and 4.9, the genus of this cobordism is g(C)=Σγ22r1g(C)=\frac{\Sigma_{\gamma}}{2}-2r-1. Note that here we used pr3p_{r}\geq 3 and qr3q_{r}\geq 3. Now, by (15), we have

υ(α1^)\displaystyle\upsilon(\widehat{\alpha_{1}}) υ(T)g(C)=Σγ22+1,hence\displaystyle\geq\upsilon\left(T\right)-g(C)=-\frac{\Sigma_{\gamma}}{2}-2\ell+1,\qquad\text{hence}
υ(K)\displaystyle\upsilon(K) υ(α1^)+r1Σγ2+r2.\displaystyle\geq\upsilon\left(\widehat{\alpha_{1}}\right)+r-1\geq-\frac{\Sigma_{\gamma}}{2}+r-2\ell.\qed
Lemma 4.11.

Let γ=Δ2ap1bq1aprbqr\gamma=\Delta^{2\ell}a^{p_{1}}b^{q_{1}}\cdots a^{p_{r}}b^{q_{r}} for some 0\ell\geq 0, r2r\geq 2, pi,qi2p_{i},q_{i}\geq 2 for i{1,,r}i\in\{1,\dots,r\}. Suppose that qr3q_{r}\geq 3 and pk3p_{k}\geq 3 for some 1k<r1\leq k<r and that K=γ^K=\widehat{\gamma} is a knot. Then

υ(K)\displaystyle\upsilon(K) =i=1r(pi+qi)2+r2.\displaystyle=-\frac{\sum\limits_{i=1}^{r}(p_{i}+q_{i})}{2}+r-2\ell.
Proof.

We proceed similar as in the proof of 4.10, but here we will look at a different cobordism to obtain a lower bound for υ(α1^)\upsilon\left(\widehat{\alpha_{1}}\right). The steps of the proof are exactly the same until then, so we consider

γ=Δ2ap1bq1aprbqrΔ2bap1bq1aprbqr1=:γ1\displaystyle\gamma=\Delta^{2\ell}a^{p_{1}}b^{q_{1}}\cdots a^{p_{r}}b^{q_{r}}\sim\Delta^{2\ell}ba^{p_{1}}b^{q_{1}}\cdots a^{p_{r}}b^{q_{r}-1}=:\gamma_{1}

and define

α:=a2rγ1Δ2ba2rbap1bq1aprbqr2=:α1.\displaystyle\alpha:=a^{2r}\gamma_{1}\sim\Delta^{2\ell}ba^{2r}ba^{p_{1}}b^{q_{1}}\cdots a^{p_{r}}b^{q_{r}-2}=:\alpha_{1}.

Again, we have υ(K)υ(α1^)+r1.\upsilon(K)\geq\upsilon(\widehat{\alpha_{1}})+r-1. Now, in order to find a lower bound for υ(α1^)\upsilon(\widehat{\alpha_{1}}), we observe that there is a cobordism CC between α1^\widehat{\alpha_{1}} and the knot β^\widehat{\beta}, where

β=Δ2ba2rb(a2b2)k1a3b2(a2b2)rk1a2b.\displaystyle\beta=\Delta^{2\ell}ba^{2r}b(a^{2}b^{2})^{k-1}a^{3}b^{2}(a^{2}b^{2})^{r-k-1}a^{2}b.

We find the cobordism CC by the deletion of generators from the braid word β\beta to obtain α1\alpha_{1}, where we use the assumptions qr3q_{r}\geq 3 and pk3p_{k}\geq 3. In fact, the cobordism can be realized by

p12+q12++pk12+qk12+pk3+qk2\displaystyle p_{1}-2+q_{1}-2+\dots+p_{k-1}-2+q_{k-1}-2+p_{k}-3+q_{k}-2
+pk+12+qk+12++pr12+qr12+pr2+qr3\displaystyle\quad+p_{k+1}-2+q_{k+1}-2+\dots+p_{r-1}-2+q_{r-1}-2+p_{r}-2+q_{r}-3
=Σγ4r2\displaystyle=\Sigma_{\gamma}-4r-2

saddle moves, so its genus is g(C)=Σγ22r1g(C)=\frac{\Sigma_{\gamma}}{2}-2r-1. Using a2k1b(a2b2)k1=(ab)3k2a^{2k-1}b(a^{2}b^{2})^{k-1}=(ab)^{3k-2} by 4.8, we have

β\displaystyle\beta =Δ2ba2r2k+1(ab)3k2a3b2(a2b2)rk1a2b\displaystyle=\Delta^{2\ell}ba^{2r-2k+1}(ab)^{3k-2}a^{3}b^{2}(a^{2}b^{2})^{r-k-1}a^{2}b
=Δ2ba2r2k+1Δ2(k1)aba3b2(a2b2)rk1a2b\displaystyle=\Delta^{2\ell}ba^{2r-2k+1}\Delta^{2(k-1)}aba^{3}b^{2}(a^{2}b^{2})^{r-k-1}a^{2}b
Δ2(+k1)Δa2b2(a2b2)rk1a2b2a2r2k+1\displaystyle\sim\Delta^{2(\ell+k-1)}\Delta a^{2}b^{2}(a^{2}b^{2})^{r-k-1}a^{2}b^{2}a^{2r-2k+1}
=Δ2(+k1)+1(a2b2)rk+1a2r2k+1=:β1.\displaystyle=\Delta^{2(\ell+k-1)+1}(a^{2}b^{2})^{r-k+1}a^{2r-2k+1}=:\beta_{1}.

Note that by our assumptions on \ell, rr and kk, we have +k10\ell+k-1\geq 0, rk+12r-k+1\geq 2 and 2r2k+132r-2k+1\geq 3, so β1\beta_{1} has the form of the braid words considered in 4.9. We thus have

υ(β^)\displaystyle\upsilon\left(\widehat{\beta}\right) =υ(β1^)=4(rk+1)+2r2k+12+(rk+2)2(+k1)32\displaystyle=\upsilon\left(\widehat{\beta_{1}}\right)=-\frac{4(r-k+1)+2r-2k+1}{2}+\left(r-k+2\right)-2\left(\ell+k-1\right)-\frac{3}{2}
=2(+r).\displaystyle=-2(\ell+r).

By (15), we have

υ(α1^)\displaystyle\upsilon(\widehat{\alpha_{1}}) υ(β^)g(C)=Σγ22+1,hence\displaystyle\geq\upsilon\left(\widehat{\beta}\right)-g(C)=-\frac{\Sigma_{\gamma}}{2}-2\ell+1,\qquad\text{hence}
υ(K)\displaystyle\upsilon(K) υ(α1^)+r1Σγ2+r2.\displaystyle\geq\upsilon\left(\widehat{\alpha_{1}}\right)+r-1\geq-\frac{\Sigma_{\gamma}}{2}+r-2\ell.\qed
Proof of 4.2.

The first case of 4.2 follows from 3.6 and Equation 12. 4.10 and 4.11 together prove the second case, 4.9 proves the third case. Note that up to conjugation, by 3.1 and the remarks in 3.2, it is no restriction to assume that pr3p_{r}\geq 3 in 4.9 and that qr3q_{r}\geq 3 and either pr3p_{r}\geq 3 or pk3p_{k}\geq 3 for some 1k<r1\leq k<r in 4.10 and 4.11, respectively. ∎

Before we proceed with the general case where the knot KK is given as the closure of any 33-braid, let us prove the following corollaries of our results in this section.

Corollary 4.12 (1.3).

Let KK be a knot that is the closure of a positive 33-braid. Then

r=g(K)+υ(K)+1\displaystyle r=g(K)+\upsilon(K)+1

is minimal among all integers r1r\geq 1 such that KK is the closure of a positive 33-braid ap1bq1aprbqra^{p_{1}}b^{q_{1}}\cdots a^{p_{r}}b^{q_{r}} for integers pi,qi1p_{i},q_{i}\geq 1, i{1,,r}i\in\{1,\dots,r\}.

Proof.

By 4.4 we have

υ(K)g(K)+r1g(K)+υ(K)+1r\displaystyle\upsilon(K)\leq-g(K)+r-1\quad\Longleftrightarrow\quad g(K)+\upsilon(K)+1\leq r

whenever KK is the closure of a positive 33-braid ap1bq1aprbqra^{p_{1}}b^{q_{1}}\cdots a^{p_{r}}b^{q_{r}} for integers r1r\geq 1, pi,qi1p_{i},q_{i}\geq 1, i{1,,r}i\in\{1,\dots,r\}. It remains to show that we can always find a positive braid representative for KK of the form ap1bq1aprbqra^{p_{1}}b^{q_{1}}\cdots a^{p_{r}}b^{q_{r}} with r=g(K)+υ(K)+1r=g(K)+\upsilon(K)+1. We will use 3.2. In fact, if KK is the closure of a positive braid γ\gamma of the form in (C) with 0\ell\geq 0, then g(K)+υ(K)+1=r+g\left(K\right)+\upsilon\left(K\right)+1=r+\ell by Equation 3 applied to γ\gamma, 4.10 and 4.11. Moreover, we have

γ\displaystyle\gamma =ap1bq1aprbqrif =0and\displaystyle=a^{p_{1}}b^{q_{1}}\cdots a^{p_{r}}b^{q_{r}}\qquad\text{if }\ell=0\qquad\text{and}
γ\displaystyle\gamma a2b(a2b2)1ap1+2bq1aprbqr+1if 1\displaystyle\sim a^{2\ell}b(a^{2}b^{2})^{\ell-1}a^{p_{1}+2}b^{q_{1}}\cdots a^{p_{r}}b^{q_{r}+1}\qquad\text{if }\ell\geq 1

by the proof of 4.6; these give the desired braid representatives for KK. Furthermore, if KK is represented by a positive braid γ\gamma of the form in (D) with 0\ell\geq 0, then g(K)+υ(K)+1=r+g\left(K\right)+\upsilon\left(K\right)+1=r+\ell by Equation 3 and 4.9, and we have

γ\displaystyle\gamma ap1+1bq1apr1bqr1apr+1bif =0and\displaystyle\sim a^{p_{1}+1}b^{q_{1}}\cdots a^{p_{r-1}}b^{q_{r-1}}a^{p_{r}+1}b\qquad\text{if }\ell=0\qquad\text{and}
γ\displaystyle\gamma apr+2ba3(aba3)1bap1++1bq1apr1bqr1if 1\displaystyle\sim a^{p_{r}+2}ba^{3}(aba^{3})^{\ell-1}ba^{p_{1}+\ell+1}b^{q_{1}}\cdots a^{p_{r-1}}b^{q_{r-1}}\qquad\text{if }\ell\geq 1

by the proof of 4.5. Finally, if K=T3,3+kK=T_{3,3\ell+k} for 0\ell\geq 0 and k{1,2}k\in\{1,2\}, then by Equation 4 and Equation 12, we have g(K)+υ(K)+1=+1g(K)+\upsilon(K)+1=\ell+1 and T3,3+1T_{3,3\ell+1} and T3,3+2T_{3,3\ell+2} are represented by the positive 33-braids (ab)3+1=a2+1b(a2b2)(ab)^{3\ell+1}=a^{2\ell+1}b\left(a^{2}b^{2}\right)^{\ell} and (ab)3+2a2+3b(a2b2),(ab)^{3\ell+2}\sim a^{2\ell+3}b(a^{2}b^{2})^{\ell}, respectively, by 4.8 and 4.7. ∎

Corollary 4.13 (1.4).

If KK and JJ are concordant knots that are both closures of positive 33-braids, then the minimal rr from 4.12 is the same for both KK and JJ.

Proof.

If KK and JJ are concordant, then their 44-genus and their upsilon invariants are equal. So by Equation 3 from Section 2.1 and by 4.12, positive 33-braids with closures KK and JJ, respectively, will have the same minimal rr. ∎

Remark 4.14.

Let 𝒜g(K)\mathcal{A}_{g}(K) denote the minimal genus of a cobordism between a knot KK and an alternating knot, i. e. the cobordism distance d(K,{alternating knots})d\left(K,\{\text{alternating knots}\}\right). By [FLZ17, Theorem 8], we have |τ(K)+υ(K)|2𝒜g(K)\frac{\left|\tau(K)+\upsilon(K)\right|}{2}\leq\mathcal{A}_{g}(K) for any knot KK. It thus follows from our results in this section that

r+12𝒜g(K)r+1+ε2\displaystyle\frac{r+\ell-1}{2}\leq\mathcal{A}_{g}(K)\leq\frac{r+\ell-1+\varepsilon}{2}

for any knot KK that is the closure of a positive 33-braid in Garside normal form (C) or (D), where ε0\varepsilon\geq 0 is an integer depending on KK. The lower bound uses 4.2 and Equation 5 from Section 2.2; see also the proof of 4.12. The upper bound follows from the proofs of 4.5 and 4.6, see also the proof of 4.4. Note that for most positive 33-braid knots, we have ε>0\varepsilon>0, so we do not get an equality.

A shorter proof of 4.4 without cobordisms follows from a result of Abe and Kishimoto on the dealternating number of positive 33-braid knots. Indeed, we have

|ΥK(t)+g(K)t|\displaystyle\left|\Upsilon_{K}(t)+g(K)t\right| =(5)|ΥK(t)+τ(K)t|alt(K)t(26)dalt(K)t\displaystyle\overset{\eqref{eq:tauGamma}}{=}\left|\Upsilon_{K}(t)+\tau(K)t\right|\leq\operatorname{alt}(K)t\overset{\eqref{eq:altdalt}}{\leq}\operatorname{dalt}(K)t
(29)(r1)tfor all 0t1.\displaystyle\overset{\eqref{upperbounddalt}}{\leq}\left(r-1\right)t\qquad\text{for all }0\leq t\leq 1.

The definitions of the dealternating number dalt(K)\operatorname{dalt}(K) and the alternation number alt(K)\operatorname{alt}(K) of a knot KK and more details on the inequalities used here will be provided in Section 5.

4.3. Proof of Theorem 1.1

It remains to show Theorem 1.1 when KK is the closure of a not necessarily positive 33-braid. We first recall a result of Murasugi, which implies that indeed all 33-braid knots except for the torus knots of braid index 33 are covered by Theorem 1.1.

Let γ\gamma be a 33-braid. Then, by [Mur74, Proposition 2.1], γ\gamma is conjugate to one and only one of the 33-braids

(a) Δ2aporΔ2+1\displaystyle\Delta^{2\ell}a^{p}\quad\text{or}\quad\Delta^{2\ell+1} for ,p,\displaystyle\text{for }\ell\in\mathbb{Z},\,p\in\mathbb{Z},
(b) Δ2aborΔ2(ab)2\displaystyle\Delta^{2\ell}ab\quad\text{or}\quad\Delta^{2\ell}(ab)^{2} for ,\displaystyle\text{for }\ell\in\mathbb{Z},
(c) Δ2ap1bq1aprbqr\displaystyle\Delta^{2\ell}a^{-p_{1}}b^{q_{1}}\cdots a^{-p_{r}}b^{q_{r}} for ,r1,pi,qi1,i{1,,r}.\displaystyle\text{for }\ell\in\mathbb{Z},\,r\geq 1,\,p_{i},q_{i}\geq 1,\,i\in\{1,\dots,r\}.
Definition 4.15.

We call a braid word of the form in (a)–(c) a 33-braid in Murasugi normal form.

Remark 4.16.

The closures of the 33-braids in Murasugi normal form (a) are links of two (if pp is odd) or three components and the closures of the 33-braids in Murasugi normal form (b) are the torus knots of braid index 33 (cf. 3.6).

If =0\ell=0 in case (c), the braid word γ=ap1bq1aprbqr\gamma=a^{-p_{1}}b^{q_{1}}\cdots a^{-p_{r}}b^{q_{r}} for integers r1r\geq 1 and pi,qi1p_{i},q_{i}\geq 1, i{1,,r}i\in\{1,\dots,r\}, gives rise to an alternating braid diagram. If K=γ^K=\widehat{\gamma} is a knot, by 2.1 we thus have υ(K)=σ(K)2\upsilon(K)=\frac{\sigma(K)}{2} in that case and the statement of Theorem 1.1 follows directly from a result by Erle on the signature of 33-braid knots.

Proposition 4.17 ([Erl99, Theorem 2.6]).

Let γ=Δ2ap1bq1aprbqr\gamma=\Delta^{2\ell}a^{-p_{1}}b^{q_{1}}\cdots a^{-p_{r}}b^{q_{r}} for integers \ell\in\mathbb{Z}, r1r\geq 1 and pi,qi1p_{i},q_{i}\geq 1 for i{1,,r}i\in\{1,\dots,r\} such that K=γ^K=\widehat{\gamma} is a knot. Then

σ(K)\displaystyle\sigma(K) =i=1r(piqi)4.\displaystyle=\sum\limits_{i=1}^{r}(p_{i}-q_{i})-4\ell.

We still need to show Theorem 1.1 when KK is the closure of a 33-braid in Murasugi normal form (c) with 0\ell\neq 0. The proof will follow from the following two lemmas.

Lemma 4.18.

Let γ=Δ2ap1bq1aprbqr\gamma=\Delta^{2\ell}a^{-p_{1}}b^{q_{1}}\cdots a^{-p_{r}}b^{q_{r}} for some 1,r1\ell\geq 1,r\geq 1 and pi,qi1p_{i},q_{i}\geq 1 for i{1,,r}i\in\{1,\dots,r\} such that K=γ^K=\widehat{\gamma} is a knot. Then

ΥK(t)\displaystyle\Upsilon_{K}(t) (i=1r(piqi)22)tfor all 0t1.\displaystyle\leq\left(\frac{\sum\limits_{i=1}^{r}(p_{i}-q_{i})}{2}-2\ell\right)t\qquad\text{for all }0\leq t\leq 1.
Lemma 4.19.

Let γ=Δ2ap1bq1aprbqr\gamma=\Delta^{2\ell}a^{-p_{1}}b^{q_{1}}\cdots a^{-p_{r}}b^{q_{r}} for some 0\ell\geq 0, r1r\geq 1 and pi,qi1p_{i},q_{i}\geq 1 for i{1,,r}i\in\{1,\dots,r\} such that K=γ^K=\widehat{\gamma} is a knot. Then

υ(K)\displaystyle\upsilon(K) i=1r(piqi)22.\displaystyle\geq\frac{\sum\limits_{i=1}^{r}(p_{i}-q_{i})}{2}-2\ell.
Proof of Theorem 1.1.

For 1\ell\geq 1, the statement of the theorem follows directly from 4.18 and 4.19. If <0\ell<0, the knot K-K is represented by the braid word Δ2aqrbpraq1bp1\Delta^{-2\ell}a^{-q_{r}}b^{p_{r}}\cdots a^{-q_{1}}b^{p_{1}} with 1-\ell\geq 1 and accordingly we have

υ(K)=i=1r(qipi)2+2.\displaystyle\upsilon\left(-K\right)=\frac{\sum\limits_{i=1}^{r}(q_{i}-p_{i})}{2}+2\ell.

Using that υ(K)=υ(K)\upsilon(-K)=-\upsilon(K) by Equation 9 from Section 2.2, this implies the claim. ∎

The remainder of this section is devoted to prove the above lemmas.

Proof of 4.18.

We first consider the case where p12p_{1}\geq 2 and 2\ell\geq 2. Using Δa1=ab\Delta a^{-1}=ab and

(ab)3n+2=bn+1a(b3ab)n1b3ab3for all n1[Fel16, Proof of Prop. 22],\displaystyle(ab)^{3n+2}=b^{n+1}a(b^{3}ab)^{n-1}b^{3}ab^{3}\qquad\text{for all }n\geq 1\quad\text{\cite[cite]{[\@@bibref{}{Feller_2016}{}{}, Proof of Prop. 22]}},

we have

γ\displaystyle\gamma =Δ2ap1bq1aprbqr=Δ2(1)+1abap1+1bq1aprbqr\displaystyle=\Delta^{2\ell}a^{-p_{1}}b^{q_{1}}\cdots a^{-p_{r}}b^{q_{r}}=\Delta^{2(\ell-1)+1}aba^{-p_{1}+1}b^{q_{1}}\cdots a^{-p_{r}}b^{q_{r}}
=(ba)3(1)+2bap1+1bq1aprbqr(ab)3(1)+2ap1+1bq1aprbqr+1\displaystyle=(ba)^{3(\ell-1)+2}ba^{-p_{1}+1}b^{q_{1}}\cdots a^{-p_{r}}b^{q_{r}}\sim(ab)^{3(\ell-1)+2}a^{-p_{1}+1}b^{q_{1}}\cdots a^{-p_{r}}b^{q_{r}+1}
a(b3ab)2b3ab3ap1+1bq1aprbqr++1=:γ1.\displaystyle\sim a(b^{3}ab)^{\ell-2}b^{3}ab^{3}a^{-p_{1}+1}b^{q_{1}}\cdots a^{-p_{r}}b^{q_{r}+\ell+1}=:\gamma_{1}.

Now, we claim that there is a cobordism CC of genus g(C)=+r1+ε2g(C)=\frac{\ell+r-1+\varepsilon}{2} between the closure KK of γ1\gamma_{1} and the connected sum

Jε=T2,p11ε1#T2,p2ε2##T2,prεr#T2,i=1rqi+51+εq,\displaystyle J_{\varepsilon}=-T_{2,p_{1}-1-\varepsilon_{1}}\,\#\,-T_{2,p_{2}-\varepsilon_{2}}\,\#\,\dots\,\#\,-T_{2,p_{r}-\varepsilon_{r}}\#\,T_{2,\sum\limits_{i=1}^{r}q_{i}+5\ell-1+\varepsilon_{q}},

where we choose ε1,,εr,εq{0,1}\varepsilon_{1},\dots,\varepsilon_{r},\varepsilon_{q}\in\{0,1\} such that JεJ_{\varepsilon} is a connected sum of torus knots, i. e. such that i=1rqi+51+εq\sum_{i=1}^{r}q_{i}+5\ell-1+\varepsilon_{q}, p11ε1p_{1}-1-\varepsilon_{1}, p2ε2,,prεrp_{2}-\varepsilon_{2},\dots,p_{r}-\varepsilon_{r} are all odd; and ε=εq+i=1rεi\varepsilon=\varepsilon_{q}+\sum_{i=1}^{r}\varepsilon_{i}. This cobordism CC can be realized using +r1+ε\ell+r-1+\varepsilon saddle moves as follows. On the one hand, we add i=1rεi\sum_{i=1}^{r}\varepsilon_{i} generators aa and εq\varepsilon_{q} generators bb to the braid word γ1\gamma_{1}, on the other hand, we perform +r1\ell+r-1 saddle moves of the form as the r1r-1 saddle moves used in the proof of 4.4 to get a connected sum of torus knots. The Euler characteristic of CC is χ(C)=r+1ε\chi(C)=-\ell-r+1-\varepsilon. Since CC is connected and has two boundary components (as KK and JεJ_{\varepsilon} are knots), the genus of CC is g(C)=χ(C)2=+r1+ε2g(C)=\frac{-\chi(C)}{2}=\frac{\ell+r-1+\varepsilon}{2} as claimed. By Equations 8 and 11, we have

ΥJε(t)\displaystyle\Upsilon_{J_{\varepsilon}}(t) =(i=1r(piqi)εr5+12)tfor all 0t1\displaystyle=\left(\frac{\sum\limits_{i=1}^{r}(p_{i}-q_{i})-\varepsilon-r-5\ell+1}{2}\right)t\qquad\text{for all }0\leq t\leq 1

and by (15), we get

ΥK(t)\displaystyle\Upsilon_{K}(t) ΥJε(t)+g(C)t=(i=1r(piqi)22)tfor all 0t1.\displaystyle\leq\Upsilon_{J_{\varepsilon}}(t)+g(C)t=\left(\frac{\sum\limits_{i=1}^{r}(p_{i}-q_{i})}{2}-2\ell\right)t\qquad\text{for all }0\leq t\leq 1.

If p12p_{1}\geq 2 and =1\ell=1, then

γ(ab)2ap1+1bq1aprbqr+1ab2ap1+1bq1aprbqr+2=:γ1,\displaystyle\gamma\sim(ab)^{2}a^{-p_{1}+1}b^{q_{1}}\cdots a^{-p_{r}}b^{q_{r}+1}\sim ab^{2}a^{-p_{1}+1}b^{q_{1}}\cdots a^{-p_{r}}b^{q_{r}+2}=:\gamma_{1},

and similarly as above, there is a cobordism CC of genus g(C)=r+ε2g(C)=\frac{r+\varepsilon}{2} between the closure KK of γ1\gamma_{1} and the connected sum

Jε=T2,p11ε1#T2,p2ε2##T2,prεr#T2,i=1rqi+4+εq,\displaystyle J_{\varepsilon}=-T_{2,p_{1}-1-\varepsilon_{1}}\,\#\,-T_{2,p_{2}-\varepsilon_{2}}\,\#\,\dots\,\#\,-T_{2,p_{r}-\varepsilon_{r}}\#\,T_{2,\sum\limits_{i=1}^{r}q_{i}+4+\varepsilon_{q}},

where we choose ε1,,εr,εq{0,1}\varepsilon_{1},\dots,\varepsilon_{r},\varepsilon_{q}\in\{0,1\} such that JεJ_{\varepsilon} is a connected sum of torus knots and ε=εq+i=1rεi\varepsilon=\varepsilon_{q}+\sum_{i=1}^{r}\varepsilon_{i}. The claim follows also in this case from Equations (8) and (11), and the intequality in (15).

It remains to show the claim when p1=1p_{1}=1. In that case, using Δa1=ab\Delta a^{-1}=ab, we have

γ\displaystyle\gamma =Δ2a1bq1aprbqr=Δ21abq1+1aprbqrΔ21bq1+1aprbqr+1.\displaystyle=\Delta^{2\ell}a^{-1}b^{q_{1}}\cdots a^{-p_{r}}b^{q_{r}}=\Delta^{2\ell-1}ab^{q_{1}+1}\cdots a^{-p_{r}}b^{q_{r}}\sim\Delta^{2\ell-1}b^{q_{1}+1}\cdots a^{-p_{r}}b^{q_{r}+1}.

If =1\ell=1, then γ\gamma is conjugate to γ1=abq1+2ap2bq2aprbqr+2\gamma_{1}=ab^{q_{1}+2}a^{-p_{2}}b^{q_{2}}\cdots a^{-p_{r}}b^{q_{r}+2} and if 2\ell\geq 2, then using Equation 20 from Section 4.2, we have

γ\displaystyle\gamma Δ2(1)+1bq1+1ap2bq2aprbqr+1=(ba)3(1)+1bq1+2ap2bq2aprbqr+1\displaystyle\sim\Delta^{2(\ell-1)+1}b^{q_{1}+1}a^{-p_{2}}b^{q_{2}}\cdots a^{-p_{r}}b^{q_{r}+1}=(ba)^{3(\ell-1)+1}b^{q_{1}+2}a^{-p_{2}}b^{q_{2}}\cdots a^{-p_{r}}b^{q_{r}+1}
ab3(bab3)2abq1++1ap2bq2aprbqr+3=:γ1.\displaystyle\sim ab^{3}(bab^{3})^{\ell-2}ab^{q_{1}+\ell+1}a^{-p_{2}}b^{q_{2}}\cdots a^{-p_{r}}b^{q_{r}+3}=:\gamma_{1}.

In both cases, there is a cobordism CC of genus g(C)=+r2+ε2g(C)=\frac{\ell+r-2+\varepsilon}{2} between the closure KK of γ1\gamma_{1} and the connected sum

Jε=T2,p2ε2##T2,prεr#T2,i=1rqi+51+εq,\displaystyle J_{\varepsilon}=-T_{2,p_{2}-\varepsilon_{2}}\,\#\,\dots\,\#\,-T_{2,p_{r}-\varepsilon_{r}}\#\,T_{2,\sum\limits_{i=1}^{r}q_{i}+5\ell-1+\varepsilon_{q}},

where we choose ε1,,εr,εq{0,1}\varepsilon_{1},\dots,\varepsilon_{r},\varepsilon_{q}\in\{0,1\} such that JεJ_{\varepsilon} is a connected sum of torus knots and ε=εq+i=1rεi\varepsilon=\varepsilon_{q}+\sum_{i=1}^{r}\varepsilon_{i}. Using (8), (11), and (15) again, the claim follows. ∎

We will need the following two technical lemmas for the proof of 4.19.

Lemma 4.20.

Let γ=Δ2ap1bq1aprbqr\gamma=\Delta^{2\ell}a^{p_{1}}b^{q_{1}}\cdots a^{p_{r}}b^{q_{r}} for some 0\ell\geq 0, r1r\geq 1 and integers pi,qip_{i},q_{i} such that pi<0p_{i}<0 or pi2p_{i}\geq 2, and qi<0q_{i}<0 or qi2q_{i}\geq 2, for any i{1,,r}i\in\{1,\dots,r\}. Moreover, assume that K=γ^K=\widehat{\gamma} is a knot. Then

υ(K)\displaystyle\upsilon(K) i=1r(pi+qi)2+r2#{ipi<0}#{iqi<0},\displaystyle\geq-\frac{\sum\limits_{i=1}^{r}(p_{i}+q_{i})}{2}+r-2\ell-\#\{i\mid p_{i}<0\}-\#\{i\mid q_{i}<0\},

where #A\#A denotes the cardinality of the set AA.

Lemma 4.21.

Let γ=Δ2+1ap1bq1apr1bqr1apr\gamma=\Delta^{2\ell+1}a^{p_{1}}b^{q_{1}}\cdots a^{p_{r-1}}b^{q_{r-1}}a^{p_{r}} for some 0\ell\geq 0, r1r\geq 1 and integers pi,qip_{i},q_{i} such that pi<0p_{i}<0 or pi2p_{i}\geq 2 for any i{1,,r}i\in\{1,\dots,r\} and qi<0q_{i}<0 or qi2q_{i}\geq 2 for any i{1,,r1}i\in\{1,\dots,r-1\}. Moreover, assume that K=γ^K=\widehat{\gamma} is a knot. Then

υ(K)\displaystyle\upsilon(K) i=1r1(pi+qi)+pr2+r232#{ipi<0}#{iqi<0}.\displaystyle\geq-\frac{\sum\limits_{i=1}^{r-1}(p_{i}+q_{i})+p_{r}}{2}+r-2\ell-\frac{3}{2}-\#\{i\mid p_{i}<0\}-\#\{i\mid q_{i}<0\}.

For the proof of 4.20 and 4.21, we refer the reader to the very end of this section; we will first prove 4.19 using these lemmas.

Proof of 4.19.

Let kk be the number of exponents qjq_{j} of γ\gamma with qj=1q_{j}=1 and let 𝒥={j1,,jk}\mathcal{J}=\{j_{1},\dots,j_{k}\} for 0kr0\leq k\leq r be the set of indices such that qj=1q_{j}=1 if and only if j𝒥j\in\mathcal{J}. For all j𝒥j\in\mathcal{J}, we rewrite the subword apjbqja^{-p_{j}}b^{q_{j}} of γ\gamma using Δ1ab=a1\Delta^{-1}ab=a^{-1} as

apjbqj=apjb=apja1ΔΔ1ab=apj1Δa1=Δbpj1a1.\displaystyle a^{-p_{j}}b^{q_{j}}=a^{-p_{j}}b=a^{-p_{j}}a^{-1}\Delta\Delta^{-1}ab=a^{-p_{j}-1}\Delta a^{-1}=\Delta b^{-p_{j}-1}a^{-1}.

Note that if j,j+1𝒥j,j+1\in\mathcal{J}, then apjbqjapj+1bqj+1=Δ2apj1bpj+12a1.a^{-p_{j}}b^{q_{j}}a^{-p_{j+1}}b^{q_{j+1}}=\Delta^{2}a^{-p_{j}-1}b^{-p_{j+1}-2}a^{-1}. After rewriting apjbqja^{-p_{j}}b^{q_{j}} for all j𝒥j\in\mathcal{J}, the braid γ\gamma is conjugate to γ1=Δ2+kα\gamma_{1}=\Delta^{2\ell+k}\alpha for some 33-braid α\alpha which is of the form

α={ap1~bq1~apn~bqn~ for n=rk2if k is even,bp1~aq1~bpn1~aqn1~bpn~ for n=rk12if k is odd,\displaystyle\alpha=\begin{cases}a^{\widetilde{p_{1}}}b^{\widetilde{q_{1}}}\cdots a^{\widetilde{p_{n}}}b^{\widetilde{q_{n}}}\text{ for }n=r-\frac{k}{2}&\text{if }k\text{ is even},\\ b^{\widetilde{p_{1}}}a^{\widetilde{q_{1}}}\cdots b^{\widetilde{p_{n-1}}}a^{\widetilde{q_{n-1}}}b^{\widetilde{p_{n}}}\text{ for }n=r-\frac{k-1}{2}&\text{if }k\text{ is odd},\end{cases}

where i=1n(pi~+qi~)=i=1r(pi+qi)3k\sum\limits_{i=1}^{n}(\widetilde{p_{i}}+\widetilde{q_{i}})=\sum\limits_{i=1}^{r}\left(-p_{i}+q_{i}\right)-3k and where the pi~\widetilde{p_{i}} and qi~\widetilde{q_{i}} fulfill the assumptions of 4.20 and 4.21, respectively, i. e. where pi~<0\widetilde{p_{i}}<0 or 2\geq 2 and qi~<0\widetilde{q_{i}}<0 or 2\geq 2 for any ii. The number of negative exponents in α\alpha equals the number of negative exponents pi-p_{i} in γ\gamma, so

#{ipi~<0}+#{iqi~<0}=r.\displaystyle\#\{i\mid\widetilde{p_{i}}<0\}+\#\{i\mid\widetilde{q_{i}}<0\}=r.

If kk is even, by 4.20, we get

υ(γ^)\displaystyle\upsilon\left(\widehat{\gamma}\right) i=1n(pi~+qi~)2+n(2+k)#{ipi~<0}+#{iqi~<0}\displaystyle\geq-\frac{\sum\limits_{i=1}^{n}(\widetilde{p_{i}}+\widetilde{q_{i}})}{2}+n-(2\ell+k)-\#\{i\mid\widetilde{p_{i}}<0\}+\#\{i\mid\widetilde{q_{i}}<0\}
=i=1r(pi+qi)3k2+rk2(2+k)r=i=1r(piqi)22.\displaystyle=-\frac{\sum\limits_{i=1}^{r}\left(-p_{i}+q_{i}\right)-3k}{2}+r-\frac{k}{2}-(2\ell+k)-r=\frac{\sum\limits_{i=1}^{r}\left(p_{i}-q_{i}\right)}{2}-2\ell.

Similarly, if kk is odd, the claim follows from 4.21. ∎

It remains to prove 4.20 and 4.21.

Proof of 4.20.

We will modify the braid word γ\gamma in 2r2r steps, where each step corresponds to one of the 2r2r exponents pi,qip_{i},q_{i}, i{1,,r}i\in\{1,\dots,r\}, of γ\gamma. In every step, we will either just conjugate γ\gamma (if the corresponding exponent is positive) or perform a cobordism of genus 11 between the closure of a2nγa^{2n}\gamma or b2nγb^{2n}\gamma and the connected sum T2,2n+1#γ^T_{2,2n+1}\#\widehat{\gamma} for some n0n\geq 0 — similarly as the cobordism described in 4.1 and used in the proofs of 4.9, 4.10 and 4.11. We now describe these steps in more detail. First, let γ0,q=γ\gamma_{0,q}^{\prime}=\gamma and define

ap1+2+ε1,pγ0,q=Δ2a2+ε1,pbq1ap2bq2aprbqr\displaystyle a^{-p_{1}+2+\varepsilon_{1,p}}\gamma_{0,q}^{\prime}=\Delta^{2\ell}a^{2+\varepsilon_{1,p}}b^{q_{1}}a^{p_{2}}b^{q_{2}}\cdots a^{p_{r}}b^{q_{r}}
Δ2bq1ap2bq2aprbqra2+ε1,p=:γ1,p\displaystyle\sim\Delta^{2\ell}b^{q_{1}}a^{p_{2}}b^{q_{2}}\cdots a^{p_{r}}b^{q_{r}}a^{2+\varepsilon_{1,p}}=:\gamma_{1,p}^{\prime} if p1<0 and\displaystyle\text{if }p_{1}<0\text{ and}
γ0,qΔ2bq1ap2bq2aprbqrap1=:γ1,p\displaystyle\gamma_{0,q}^{\prime}\sim\Delta^{2\ell}b^{q_{1}}a^{p_{2}}b^{q_{2}}\cdots a^{p_{r}}b^{q_{r}}a^{p_{1}}=:\gamma_{1,p}^{\prime} if p1>0,\displaystyle\text{if }p_{1}>0,

so that γ1,p=Δ2bq1ap2aprbqrap1~\gamma_{1,p}^{\prime}=\Delta^{2\ell}b^{q_{1}}a^{p_{2}}\cdots a^{p_{r}}b^{q_{r}}a^{\widetilde{p_{1}}} for some p1~2\widetilde{p_{1}}\geq 2 (note that we assumed p1<0p_{1}<0 or p12p_{1}\geq 2). Here, if p1<0p_{1}<0, we choose ε1,p{0,1}\varepsilon_{1,p}\in\{0,1\} such that p1+2+ε1,p-p_{1}+2+\varepsilon_{1,p} is even and γ1,p^\widehat{\gamma_{1,p}^{\prime}} is a knot. Second, let ε1,q{0,1}\varepsilon_{1,q}\in\{0,1\} such that q1+2+ε1,q-q_{1}+2+\varepsilon_{1,q} is even if q1<0q_{1}<0, and define

γ1,q\displaystyle\gamma_{1,q} =bq1+2+ε1,qγ1,p=Δ2b2+ε1,qap2bq2aprbqrap1~\displaystyle=b^{-q_{1}+2+\varepsilon_{1,q}}\gamma_{1,p}^{\prime}=\Delta^{2\ell}b^{2+\varepsilon_{1,q}}a^{p_{2}}b^{q_{2}}\cdots a^{p_{r}}b^{q_{r}}a^{\widetilde{p_{1}}}
Δ2ap2bq2aprbqrap1~b2+ε1,q=:γ1,q\displaystyle\sim\Delta^{2\ell}a^{p_{2}}b^{q_{2}}\cdots a^{p_{r}}b^{q_{r}}a^{\widetilde{p_{1}}}b^{2+\varepsilon_{1,q}}=:\gamma_{1,q}^{\prime} if q1<0 and\displaystyle\text{if }q_{1}<0\text{ and}
γ1,q\displaystyle\gamma_{1,q} =γ1,pΔ2ap2bq2aprbqrap1~bq1=:γ1,q\displaystyle=\gamma_{1,p}^{\prime}\sim\Delta^{2\ell}a^{p_{2}}b^{q_{2}}\cdots a^{p_{r}}b^{q_{r}}a^{\widetilde{p_{1}}}b^{q_{1}}=:\gamma_{1,q}^{\prime} if q1>0,\displaystyle\text{if }q_{1}>0,

so that γ1,q=Δ2ap2bq2aprbqrap1~bq1~\gamma_{1,q}^{\prime}=\Delta^{2\ell}a^{p_{2}}b^{q_{2}}\cdots a^{p_{r}}b^{q_{r}}a^{\widetilde{p_{1}}}b^{\widetilde{q_{1}}} for some p1~,q1~2\widetilde{p_{1}},\widetilde{q_{1}}\geq 2. Inductively, for any 1ir1\leq i\leq r, we let

api+2+εi,pγi1,q=Δ2a2+εi,pbqiapi+1aprbqrap1~bq1~api1~bqi1~\displaystyle a^{-p_{i}+2+\varepsilon_{i,p}}\gamma_{i-1,q}^{\prime}=\Delta^{2\ell}a^{2+\varepsilon_{i,p}}b^{q_{i}}a^{p_{i+1}}\cdots a^{p_{r}}b^{q_{r}}a^{\widetilde{p_{1}}}b^{\widetilde{q_{1}}}\cdots a^{\widetilde{p_{i-1}}}b^{\widetilde{q_{i-1}}}
Δ2bqiapi+1aprbqrap1~bq1~api1~bqi1~a2+εi,p=:γi,p\displaystyle\sim\Delta^{2\ell}b^{q_{i}}a^{p_{i+1}}\cdots a^{p_{r}}b^{q_{r}}a^{\widetilde{p_{1}}}b^{\widetilde{q_{1}}}\cdots a^{\widetilde{p_{i-1}}}b^{\widetilde{q_{i-1}}}a^{2+\varepsilon_{i,p}}=:\gamma_{i,p}^{\prime} if pi<0 and\displaystyle\text{if }p_{i}<0\text{ and}
γi1,qΔ2bqiapi+1aprbqrap1~bq1~api1~bqi1~api=:γi,p\displaystyle\gamma_{i-1,q}^{\prime}\sim\Delta^{2\ell}b^{q_{i}}a^{p_{i+1}}\cdots a^{p_{r}}b^{q_{r}}a^{\widetilde{p_{1}}}b^{\widetilde{q_{1}}}\cdots a^{\widetilde{p_{i-1}}}b^{\widetilde{q_{i-1}}}a^{p_{i}}=:\gamma_{i,p}^{\prime} if pi>0,\displaystyle\text{if }p_{i}>0,

so that

γi,p=Δ2bqiapi+1aprbqrap1~bq1~api1~bqi1~api~\displaystyle\gamma_{i,p}^{\prime}=\Delta^{2\ell}b^{q_{i}}a^{p_{i+1}}\cdots a^{p_{r}}b^{q_{r}}a^{\widetilde{p_{1}}}b^{\widetilde{q_{1}}}\cdots a^{\widetilde{p_{i-1}}}b^{\widetilde{q_{i-1}}}a^{\widetilde{p_{i}}}

for some integers p1~,q1~,,pi1~,qi1~,pi~2\widetilde{p_{1}},\widetilde{q_{1}},\dots,\widetilde{p_{i-1}},\widetilde{q_{i-1}},\widetilde{p_{i}}\geq 2. Here we choose εi,p{0,1}\varepsilon_{i,p}\in\{0,1\} such that pi+2+εi,p-p_{i}+2+\varepsilon_{i,p} is even if pi<0p_{i}<0. Moreover, for 1ir1\leq i\leq r, we let εi,q{0,1}\varepsilon_{i,q}\in\{0,1\} such that qi+2+εi,q-q_{i}+2+\varepsilon_{i,q} is even, and define

γi,q\displaystyle\gamma_{i,q} =bqi+2+εi,qγi,p\displaystyle=b^{-q_{i}+2+\varepsilon_{i,q}}\gamma_{i,p}^{\prime} if qi<0 and\displaystyle\text{if }q_{i}<0\text{ and}
γi,q\displaystyle\gamma_{i,q} =γi,p\displaystyle=\gamma_{i,p}^{\prime} if qi>0;\displaystyle\text{if }q_{i}>0;

and we define γi,q\gamma_{i,q}^{\prime} similarly as γ1,q\gamma_{1,q}^{\prime}. Inductively, after 2r2r steps, we get the positive 33-braid

γr,q=Δ2ap1~bq1~apr~bqr~\displaystyle\gamma_{r,q}^{\prime}=\Delta^{2\ell}a^{\widetilde{p_{1}}}b^{\widetilde{q_{1}}}\cdots a^{\widetilde{p_{r}}}b^{\widetilde{q_{r}}}

with

pi~={2+εi,pif pi<0,piif pi>0,andqi~={2+εi,qif qi<0,qiif qi>0,\displaystyle\widetilde{p_{i}}=\begin{cases}2+\varepsilon_{i,p}&\text{if }p_{i}<0,\\ p_{i}&\text{if }p_{i}>0,\end{cases}\qquad\text{and}\qquad\widetilde{q_{i}}=\begin{cases}2+\varepsilon_{i,q}&\text{if }q_{i}<0,\\ q_{i}&\text{if }q_{i}>0,\end{cases}

for all 1ir1\leq i\leq r; so that p1~,q1~,pr~,qr~2\widetilde{p_{1}},\widetilde{q_{1}},\dots\widetilde{p_{r}},\widetilde{q_{r}}\geq 2. By 4.2, we have

υ(γr,q^)\displaystyle\upsilon\left(\widehat{\gamma_{r,q}^{\prime}}\right) =pi>0i=1rpi+qi>0i=1rqi+pi<0i=1r(2+εi,p)+qi<0i=1r(2+εi,q)2+r2.\displaystyle=-\frac{\sum\limits_{\stackrel{{\scriptstyle i=1}}{{p_{i}>0}}}^{r}p_{i}+\sum\limits_{\stackrel{{\scriptstyle i=1}}{{q_{i}>0}}}^{r}q_{i}+\sum\limits_{\stackrel{{\scriptstyle i=1}}{{p_{i}<0}}}^{r}\left(2+\varepsilon_{i,p}\right)+\sum\limits_{\stackrel{{\scriptstyle i=1}}{{q_{i}<0}}}^{r}\left(2+\varepsilon_{i,q}\right)}{2}+r-2\ell.

Now, note that if pi<0p_{i}<0 for some 1ir1\leq i\leq r, then there is a cobordism of genus 11 between γi,p^\widehat{\gamma_{i,p}^{\prime}} and T2,2m+1#γi1,q^T_{2,2m+1}\#\widehat{\gamma_{i-1,q}^{\prime}} by using two saddle moves, where m=pi+2+εi,p2m=\frac{-p_{i}+2+\varepsilon_{i,p}}{2}, so similarly as in (16) from 4.1, we have

υ(γi1,q^)υ(γi,p^)+m1=υ(γi,p^)+pi+εi,p2.\displaystyle\upsilon\left(\widehat{\gamma_{i-1,q}^{\prime}}\right)\geq\upsilon\left(\widehat{\gamma_{i,p}^{\prime}}\right)+m-1=\upsilon\left(\widehat{\gamma_{i,p}^{\prime}}\right)+\frac{-p_{i}+\varepsilon_{i,p}}{2}.

Similarly, if qi<0q_{i}<0 for some 1ir1\leq i\leq r, then υ(γi,p^)υ(γi,q^)+qi+εi,q2.\upsilon(\widehat{\gamma_{i,p}^{\prime}})\geq\upsilon(\widehat{\gamma_{i,q}^{\prime}})+\frac{-q_{i}+\varepsilon_{i,q}}{2}. In addition, if pi>0p_{i}>0, then we have υ(γi,p^)=υ(γi1,q^)\upsilon(\widehat{\gamma_{i,p}^{\prime}})=\upsilon(\widehat{\gamma_{i-1,q}^{\prime}}), and if qi>0q_{i}>0, then υ(γi,q^)=υ(γi,p^)\upsilon(\widehat{\gamma_{i,q}^{\prime}})=\upsilon(\widehat{\gamma_{i,p}^{\prime}}). We conclude

υ(γ^)\displaystyle\upsilon\left(\widehat{\gamma}\right) =υ(γ0,q^)υ(γr,q^)+pi<0i=1rpi+εi,p2+qi<0i=1rqi+εi,q2\displaystyle=\upsilon\left(\widehat{\gamma_{0,q}^{\prime}}\right)\geq\upsilon\left(\widehat{\gamma_{r,q}^{\prime}}\right)+\sum\limits_{\stackrel{{\scriptstyle i=1}}{{p_{i}<0}}}^{r}\frac{-p_{i}+\varepsilon_{i,p}}{2}+\sum\limits_{\stackrel{{\scriptstyle i=1}}{{q_{i}<0}}}^{r}\frac{-q_{i}+\varepsilon_{i,q}}{2}
=pi>0i=1rpi+qi>0i=1rqi+pi<0i=1r(pi+2)+qi<0i=1r(qi+2)2+r2\displaystyle=-\frac{\sum\limits_{\stackrel{{\scriptstyle i=1}}{{p_{i}>0}}}^{r}p_{i}+\sum\limits_{\stackrel{{\scriptstyle i=1}}{{q_{i}>0}}}^{r}q_{i}+\sum\limits_{\stackrel{{\scriptstyle i=1}}{{p_{i}<0}}}^{r}\left(p_{i}+2\right)+\sum\limits_{\stackrel{{\scriptstyle i=1}}{{q_{i}<0}}}^{r}\left(q_{i}+2\right)}{2}+r-2\ell
=i=1r(pi+qi)2+r2#{ipi<0}#{iqi<0}.\displaystyle=-\frac{\sum\limits_{i=1}^{r}(p_{i}+q_{i})}{2}+r-2\ell-\#\{i\mid p_{i}<0\}-\#\{i\mid q_{i}<0\}.\qed
Proof of 4.21.

The strategy of the proof is the same as in the proof of 4.20. Here, we need 2r12r-1 steps corresponding to the 2r12r-1 exponents p1,q1,,pr1,qr1,prp_{1},q_{1},\dots,p_{r-1},q_{r-1},p_{r} of γ\gamma. The steps are similar as in the proof of 4.20, the only change is that we multiply γi1,q\gamma_{i-1,q}^{\prime} by a power of bb if pi<0p_{i}<0, and γi,p\gamma_{i,p}^{\prime} by a power of aa if qi<0q_{i}<0 (since aΔ2+1=Δ2+1ba\Delta^{2\ell+1}=\Delta^{2\ell+1}b and bΔ2+1=Δ2+1ab\Delta^{2\ell+1}=\Delta^{2\ell+1}a). Thus, starting with γ0,q=γ\gamma_{0,q}^{\prime}=\gamma, after 2r12r-1 steps we obtain the positive 33-braid

γr,p=Δ2+1ap1~bq1~apr1~bqr1~apr~\displaystyle\gamma_{r,p}^{\prime}=\Delta^{2\ell+1}a^{\widetilde{p_{1}}}b^{\widetilde{q_{1}}}\cdots a^{\widetilde{p_{r-1}}}b^{\widetilde{q_{r}-1}}a^{\widetilde{p_{r}}}

with

pi~\displaystyle\widetilde{p_{i}} ={2+εi,pif pi<0,piif pi>0,andqi~={2+εi,qif qi<0,qiif qi>0.\displaystyle=\begin{cases}2+\varepsilon_{i,p}&\text{if }p_{i}<0,\\ p_{i}&\text{if }p_{i}>0,\end{cases}\qquad\text{and}\qquad\widetilde{q_{i}}=\begin{cases}2+\varepsilon_{i,q}&\text{if }q_{i}<0,\\ q_{i}&\text{if }q_{i}>0.\end{cases}

By 4.9, we have

υ(γr,p)\displaystyle\upsilon\left(\gamma_{r,p}^{\prime}\right) =pi>0i=1rpi+qi>0i=1r1qi+pi<0i=1r(2+εi,p)+qi<0i=1r1(2+εi,q)2+r232.\displaystyle=-\frac{\sum\limits_{\stackrel{{\scriptstyle i=1}}{{p_{i}>0}}}^{r}p_{i}+\sum\limits_{\stackrel{{\scriptstyle i=1}}{{q_{i}>0}}}^{r-1}q_{i}+\sum\limits_{\stackrel{{\scriptstyle i=1}}{{p_{i}<0}}}^{r}\left(2+\varepsilon_{i,p}\right)+\sum\limits_{\stackrel{{\scriptstyle i=1}}{{q_{i}<0}}}^{r-1}\left(2+\varepsilon_{i,q}\right)}{2}+r-2\ell-\frac{3}{2}.

Since the steps we performed have similar effects on υ(γ^)\upsilon\left(\widehat{\gamma}\right) as the ones in the proof of 4.20, we get

υ(γ^)\displaystyle\upsilon\left(\widehat{\gamma}\right) =υ(γ0,q^)υ(γr,p^)+pi<0i=1rpi+εi,p2+qi<0i=1r1qi+εi,q2\displaystyle=\upsilon\left(\widehat{\gamma_{0,q}^{\prime}}\right)\geq\upsilon\left(\widehat{\gamma_{r,p}^{\prime}}\right)+\sum\limits_{\stackrel{{\scriptstyle i=1}}{{p_{i}<0}}}^{r}\frac{-p_{i}+\varepsilon_{i,p}}{2}+\sum\limits_{\stackrel{{\scriptstyle i=1}}{{q_{i}<0}}}^{r-1}\frac{-q_{i}+\varepsilon_{i,q}}{2}
=pi>0i=1rpi+qi>0i=1r1qi+pi<0i=1r(pi+2)+qi<0i=1r1(qi+2)2+r232\displaystyle=-\frac{\sum\limits_{\stackrel{{\scriptstyle i=1}}{{p_{i}>0}}}^{r}p_{i}+\sum\limits_{\stackrel{{\scriptstyle i=1}}{{q_{i}>0}}}^{r-1}q_{i}+\sum\limits_{\stackrel{{\scriptstyle i=1}}{{p_{i}<0}}}^{r}\left(p_{i}+2\right)+\sum\limits_{\stackrel{{\scriptstyle i=1}}{{q_{i}<0}}}^{r-1}\left(q_{i}+2\right)}{2}+r-2\ell-\frac{3}{2}
=i=1r1(pi+qi)+pr2+r232#{ipi<0}#{iqi<0}.\displaystyle=-\frac{\sum\limits_{i=1}^{r-1}(p_{i}+q_{i})+p_{r}}{2}+r-2\ell-\frac{3}{2}-\#\{i\mid p_{i}<0\}-\#\{i\mid q_{i}<0\}.\qed

4.4. Further discussion of Theorem 1.1

In this section, we provide some further context on our main result. In particular, in Section 4.4.2 we will discuss why it might be surprising that our proof strategy works for all 33-braid knots.

4.4.1. Comparison of upsilon and the classical signature

By Theorem 1.1 and 4.17, we have

(25) σ(K)=2υ(K)\displaystyle\sigma(K)=2\upsilon(K)

for any knot KK that is the closure of a 33-braid γ=Δ2ap1bq1aprbqr\gamma=\Delta^{2\ell}a^{-p_{1}}b^{q_{1}}\cdots a^{-p_{r}}b^{q_{r}} for integers \ell\in\mathbb{Z}, r1r\geq 1 and pi,qi1p_{i},q_{i}\geq 1 for i{1,,r}i\in\{1,\dots,r\}. Computations of the signature for torus knots (and links) of braid index 33, first done by Hirzebruch, Murasugi and Shinora [Mur74, Proposition 9.1, pp. 34-35], together with Equation 12 from Section 2.2 imply that the equality in (25) is in fact true for all 33-braid knots KK except for the cases that K=±T3,3+1K=\pm T_{3,3\ell+1} for odd >0\ell>0 or K=±T3,3+2K=\pm T_{3,3\ell+2} for odd >0\ell>0. In the exceptional cases, we have σ(K)=2υ(K)2\sigma(K)=2\upsilon(K)-2. As mentioned in the introduction, this improves the inequality |υ(K)σ(K)2|2|\upsilon(K)-\frac{\sigma(K)}{2}|\leq 2 for all 33-braid knots KK in [FK17, Proposition 4.4].

It was shown in [OSS17b, Theorem 1.2] that |υ(K)σ(K)2||\upsilon(K)-\frac{\sigma(K)}{2}| gives a lower bound on the nonorientable smooth 44-genus of a knot KK, denoted γ4(K)\gamma_{4}(K), the minimal first Betti number of a nonorientable surface in B4B^{4} that meets the boundary S3S^{3} along KK. The similarity of the invariant υ\upsilon and the classical signature σ\sigma on 33-braid knots KK described above clearly does not lead to a good lower bound on γ4(K)\gamma_{4}(K).

However, the equality σ(K)=2υ(K)\sigma(K)=2\upsilon(K) for most 33-braid knots is actually no great surprise when noting that in fact |υ(K)σ(K)2|1|\upsilon(K)-\frac{\sigma(K)}{2}|\leq 1 must be true for all 33-braid knots KK for the following reason. It is not hard to see that for every 33-braid knot KK, there is a nonorientable band move to a 22-bridge knot JJ, which is alternating [Goo72]. This implies that the nonorientable cobordism distance dγ(K,J)=γ4(K#J)d_{\gamma}(K,J)=\gamma_{4}(K\#-J) between KK and JJ is bounded from above by 11. On the other hand, using that υ\upsilon and σ\sigma induce homomorphisms 𝒞\mathcal{C}\to\mathbb{Z} (see Section 2.2 and [Mur65]), the inequality |υ(K)σ(K)2|γ4(K)|\upsilon(K)-\frac{\sigma(K)}{2}|\leq\gamma_{4}(K) implies that

|υ(K)σ(K)2|\displaystyle\left|\upsilon(K)-\frac{\sigma(K)}{2}\right| =|υ(K#J)σ(K#J)2|dγ(K,J)1,\displaystyle=\left|\upsilon\left(K\#-J\right)-\frac{\sigma\left(K\#-J\right)}{2}\right|\leq d_{\gamma}(K,J)\leq 1,

where we used υ(J)=σ(J)2\upsilon(J)=\frac{\sigma(J)}{2} by 2.1.

Note that a similar argument shows that |υ(K)σ(K)2|2|\upsilon(K)-\frac{\sigma(K)}{2}|\leq 2 for all 44-braid knots KK, using two nonorientable band moves to transform KK into a 22-bridge link, which is also alternating.

4.4.2. On the proof technique

As mentioned in the introduction, it came as a surprise to the author that our proof strategy works not only for positive 33-braid knots, but for all 33-braid knots. Let us make this more precise.

The proofs in Section 4.2 and Section 4.3 imply, for any 33-braid knot KK, the existence of cobordisms C1C_{1} and C2C_{2} of genus g(C1)g(C_{1}) and g(C2)g(C_{2}) between KK and (connected sums of) torus knots T1T_{1} and T2T_{2}, respectively, such that

g(C1)+g(C2)=|υ(T2)υ(T1)|\displaystyle g\left(C_{1}\right)+g\left(C_{2}\right)=\left|\upsilon(T_{2})-\upsilon(T_{1})\right|

and

υ(K)=υ(T1)+g(C1)=υ(T2)g(C2).\displaystyle\upsilon(K)=\upsilon(T_{1})+g(C_{1})=\upsilon(T_{2})-g(C_{2}).

For example, for knots KK that are closures of positive 33-braids of Garside normal form (D), the proof of 4.5 shows the existence of such a cobordism C1C_{1} for T1=JεT_{1}=J_{\varepsilon} as in the proof of 4.4; and the existence of such a cobordism C2C_{2} between KK and T2=T3,3(+r)+1#T2,2r+1T_{2}=T_{3,3\left(\ell+r\right)+1}\#-T_{2,2r+1} follows from the proof of 4.9.

The same strategy would work to determine the concordance invariants ss and τ\tau for all positive 33-braid knots KK. Indeed, every positive 33-braid knot can be realized as the slice of a cobordism CC between the unknot UU and a torus knot TT of braid index 33 such that g(C)=|τ(U)τ(T)|=|s(U)s(T)|g(C)=|\tau(U)-\tau(T)|=|s(U)-s(T)| [FLL22, Proposition 4.1]. However, in contrast, there are 33-braid knots where this strategy provably fails to determine ss and τ\tau. A concrete example is the 33-braid knot 1012510_{125} — the closure of a5ba3ba^{-5}ba^{3}b [LM21] — which is not squeezed [FLL22, Example 3.1]. This means that every cobordism CC between two connected sums of torus knots T1T_{1} and T2T_{2} that has 1012510_{125} as a slice satisfies g(C)>|τ(T2)τ(T1)|=|s(T2)s(T1)|g(C)>|\tau(T_{2})-\tau(T_{1})|=|s(T_{2})-s(T_{1})|.

4.4.3. Comparison of the normal forms for 33-braids

An algorithm described in [BM93, Section 7] as Schreier’s solution to the conjugacy problem [Sch24] can be used to convert 33-braids in Garside normal form (cf. 3.4) to 33-braids in Murasugi normal form (cf. 4.15): If γ\gamma is a 33-braid of Garside normal form (C), then

γΔ2(+r)a1bp12a1bq12a1bpr2a1bqr2,\displaystyle\gamma\sim\Delta^{2(\ell+r)}a^{-1}b^{p_{1}-2}a^{-1}b^{q_{1}-2}\cdots a^{-1}b^{p_{r}-2}a^{-1}b^{q_{r}-2},

and if γ\gamma is of Garside normal form (D), then

γΔ2(+r)a1bp12a1bq12a1bpr12a1bqr12a1bpr2.\displaystyle\gamma\sim\Delta^{2(\ell+r)}a^{-1}b^{p_{1}-2}a^{-1}b^{q_{1}-2}\cdots a^{-1}b^{p_{r-1}-2}a^{-1}b^{q_{r-1}-2}a^{-1}b^{p_{r}-2}.

In addition, it is easy to see how 33-braids of Garside normal form (A) or (B) are conjugate to braids of Murasugi normal form (a) or (b).

5. On alternating distances of 33-braid knots

In this section, we prove 1.2 from the introduction and provide lower and upper bounds on the alternation number and dealternating number of any 33-braid knot which differ by 11.

5.1. Alternating distances of positive 33-braid knots

We will prove the following proposition.

Proposition 5.1.

Let KK be a knot that is the closure of a positive 33-braid. Then

alt(K)\displaystyle\operatorname{alt}(K) =dalt(K)=τ(K)+υ(K)\displaystyle=\operatorname{dalt}(K)=\tau(K)+\upsilon(K)
={if K is the torus knot T3,3+k for 0,k{1,2},r+1if K is the closure of a braid of the form in (C) or (D),\displaystyle=\begin{cases}\ell&\text{if }K\text{ is the torus knot }T_{3,3\ell+k}\text{ for }\ell\geq 0,k\in\{1,2\},\\ r+\ell-1&\text{if }K\text{ is the closure of a braid of the form in }\eqref{eq:evenpower}\text{ or }\eqref{eq:oddpower},\\ \end{cases}

where (C) and (D) refer to the Garside normal forms from 3.2.

Remark 5.2.

Some of the cases in 5.1 have already been proved by other authors. Indeed, Feller, Pohlmann and Zentner used the observation (27) below to show that alt(T3,3+k)=\operatorname{alt}\left(T_{3,3\ell+k}\right)=\ell for all 0\ell\geq 0, k{1,2}k\in\{1,2\} [FPZ18, Theorem 1.1]. The upper bound they used was provided by [Kan10, Theorem 8]; in fact, the equality had already been shown by Kanenobu in half of the cases, namely when \ell is even. Moreover, Abe and Kishimoto [AK10, Theorem 3.1] showed that alt(K)=dalt(K)=r+1\operatorname{alt}(K)=\operatorname{dalt}(K)=r+\ell-1 if KK is a knot that is the closure of a positive 33-braid of the form in (C). However, to the best of this author’s knowledge, it is new that alt(K)=g(K)+υ(K)\operatorname{alt}(K)=g(K)+\upsilon(K) for all positive 33-braid knots KK. Recall that τ(K)=g(K)\tau(K)=g(K) for all positive 33-braid knots KK by Equation 5 from Section 2.1.

Before we prove 5.1, let us provide the necessary definitions and background. The Gordian distance dG(K,J)d_{G}(K,J) between two knots KK and JJ is the minimal number of crossing changes needed to transform a diagram of KK into a diagram of JJ, where the minimum is taken over all diagrams of KK [Mur85]. The alternation number alt(K)\operatorname{alt}(K) of a knot KK is defined as the minimal Gordian distance of the knot KK to the set of alternating knots [Kaw10], i. e.

alt(K)=min{dG(K,J)J is an alternating knot}.\displaystyle\operatorname{alt}(K)=\text{min}\left\{d_{G}(K,J)\mid J\text{ is an alternating knot}\right\}.

The dealternating number dalt(K)\operatorname{dalt}(K) of a knot KK is defined via a more diagrammatic approach [ABB+92]: it is the minimal number nn such that KK has a diagram that can be turned into an alternating diagram by nn crossing changes. It follows from the definitions that

(26) alt(K)dalt(K)\displaystyle\operatorname{alt}(K)\leq\operatorname{dalt}(K)

for any knot KK and alt(K)=dalt(K)=0\operatorname{alt}(K)=\operatorname{dalt}(K)=0 if and only if KK is alternating. Note that there are families of knots for which the difference between the alternation number and the dealternating number becomes arbitrarily large [Low15, Theorem 1.1].

In the proof of 5.1, we will use that

(27) |τ(K)+υ(K)|alt(K)\displaystyle\left|\tau(K)+\upsilon(K)\right|\leq\operatorname{alt}(K)

for any knot KK. In fact, for all alternating knots KK, we have

(28) τ(K)=s(K)2=υ(K)=ΥK(t)t=σ(K)2\displaystyle\tau(K)=\frac{s(K)}{2}=-\upsilon(K)=-\frac{\Upsilon_{K}(t)}{t}=-\frac{\sigma(K)}{2}

for any t(0,1]t\in(0,1] (see [OS03, Theorem 1.4], [Ras10, Theorem 3] and [OSS17a, Theorem 1.14]), where ss denotes Rasmussen’s concordance invariant from Khovanov homology [Ras10]. It follows from [Abe09, Theorem 2.1] — which builds on ideas of Livingston [Liv04, Corollary 3] — that the absolute value of the difference of any two of the invariants in (28) is a lower bound on alt(K)\operatorname{alt}(K). It was first observed in [FPZ18] that the upsilon invariant fits very well in this context (see also [FLZ17, Lemma 8]).

Another main ingredient of our proof of 5.1 is the inequality

(29) dalt(γ^)r1\displaystyle\operatorname{dalt}(\widehat{\gamma})\leq r-1

for any positive 33-braid γ=ap1bq1aprbqr\gamma=a^{p_{1}}b^{q_{1}}\cdots a^{p_{r}}b^{q_{r}} with integers r1r\geq 1 and pi,qi1p_{i},q_{i}\geq 1 for i{1,,r}i\in\{1,\dots,r\} [AK10, Lemma 2.2].

Proof of 5.1.

Let KK be a knot that is the closure of a positive 33-braid γ\gamma of the form in (C) or (D) from 3.2 with 0\ell\geq 0. We claim that then

(30) r+1=τ(K)+υ(K)=|τ(K)+υ(K)|alt(K)dalt(K)r+1,\displaystyle r+\ell-1=\tau(K)+\upsilon(K)=\left|\tau(K)+\upsilon(K)\right|\leq\operatorname{alt}(K)\leq\operatorname{dalt}(K)\leq r+\ell-1,

which implies the statement of the proposition for these knots. The two equalities in (30) directly follow from our computations of υ(K)\upsilon(K) in 4.2 and Equation 5 applied to γ\gamma. The first two inequalities are direct consequences of the inequalities (27) and (26). Finally, the last inequality follows from inequality (29) applied to the particular braid representatives of KK considered in the proof of 4.12.

For torus knots of braid index 33, the statement follows analogously. More precisely, if K=T3,3+kK=T_{3,3\ell+k} for 0\ell\geq 0 and k{1,2}k\in\{1,2\}, then by Equations 4 and 12, we have |τ(K)+υ(K)|=.\left|\tau(K)+\upsilon(K)\right|=\ell. In addition, the inequality in (29) applied to the particular braid representatives of KK considered in the proof of 4.12 implies that dalt(T3,3+k)\operatorname{dalt}\left(T_{3,3\ell+k}\right)\leq\ell. ∎

From 5.1, it is easy to deduce that the alternating positive 33-braid knots are precisely the unknot and the connected sums T2,2p+1#T2,2q+1T_{2,2p+1}\#T_{2,2q+1} of two torus knots of braid index 22 for p,q0p,q\geq 0. This was already known; in fact, the stronger statement is true that the only prime alternating positive braid knots are the torus knots of braid index 22 [Baa13, Corollary 3]. Note that by [Mor79] (see also [BM93, Corollary 7.2]), the only composite 33-braid knots are the connected sums T2,2p+1#T2,2q+1T_{2,2p+1}\#T_{2,2q+1} for p,qp,q\in\mathbb{Z}.

By [Abe09, Theorem 1.1], the only torus knots with alternation number 11 are the torus knots T3,4T_{3,4} and T3,5T_{3,5}. A knot with dealternating number 11 is called almost alternating.

Corollary 5.3.

A positive 33-braid knot is almost alternating if and only if it is one of the torus knots T3,4T_{3,4} and T3,5T_{3,5} or it is represented by a braid of the form

ap1bq1ap2bq2,Δap1bq1ap2,Δ2ap1bq1orΔ3ap1\displaystyle a^{p_{1}}b^{q_{1}}a^{p_{2}}b^{q_{2}},\quad\Delta a^{p_{1}}b^{q_{1}}a^{p_{2}},\quad\Delta^{2}a^{p_{1}}b^{q_{1}}\quad\text{or}\quad\Delta^{3}a^{p_{1}}

for some integers p1,p2,q1,q22p_{1},p_{2},q_{1},q_{2}\geq 2.

Proof.

This follows directly from 5.1. ∎

Remark 5.4.

In particular, the seven positive 33-braid knots with crossing number 1212 (cf. [LM21]) are all almost alternating.

Remark 5.5.

Our results imply that the Turaev genus equals the alternation number for all positive 33-braid knots. Indeed, let KK be a knot that is the closure of a positive braid of the form in (C) or (D) with 0\ell\geq 0. Then we have

(31) gT(K)\displaystyle g_{T}(K) =alt(K)=dalt(K)=r+1,\displaystyle=\operatorname{alt}(K)=\operatorname{dalt}(K)=r+\ell-1,

where gT(K)g_{T}(K) denotes the Turaev genus of the knot KK. The Turaev genus gT(K)g_{T}(K) of a knot KK is another alternating distance [Low15], which was first defined in [DFK+08] as the minimal genus of a Turaev surface F(D)F(D), where the minimum is taken over all diagrams DD of KK. The Turaev surface F(D)F(D) is a closed orientable surface embedded in S3S^{3} associated to the diagram DD. It is formed by building the natural cobordism between the circles in the two extreme Kauffman states (the all-AA-state and the all-BB-state) of the diagram DD via adding saddles for each crossing of DD, and then capping off the boundary components with disks. More details on the definition can be found e. g. in a survey by Champanerkar and Kofman [CK14].

The equality gT(K)=dalt(K)g_{T}(K)=\operatorname{dalt}(K) in (31) easily follows from 5.1, the inequalities |τ(K)+σ(K)2|gT(K)|\tau(K)+\frac{\sigma(K)}{2}|\leq g_{T}(K) [DL11, Theorem 1.1] and gT(K)dalt(K)g_{T}(K)\leq\operatorname{dalt}(K) [AK10, Cor. 5.4], and the fact that σ(K)=2υ(K)\sigma(K)=2\upsilon(K) for all knots that are closures of positive braids of Garside normal form (C) or (D) (see Section 4.4.1).

It is not known whether the alternation number and the Turaev genus of a knot are in general comparable: it is not known whether alt(K)gT(K)\operatorname{alt}(K)\leq g_{T}(K) for all knots KK (see [Low15, Question 3]). However, it was shown by Abe and Kishimoto that gT(T3,3+k)=dalt(T3,3+k)=g_{T}\left(T_{3,3\ell+k}\right)=\operatorname{dalt}\left(T_{3,3\ell+k}\right)=\ell for all 0\ell\geq 0 and k{1,2}k\in\{1,2\} [AK10, Theorem 5.9], so gT(K)=alt(K)=dalt(K)g_{T}(K)=\operatorname{alt}(K)=\operatorname{dalt}(K) is true for all positive 33-braid knots.

Remark 5.6.

In [FLZ17], Friedl, Livingston and Zentner introduce the invariant 𝒜s(K)\mathcal{A}_{s}(K), the minimal number of double point singularities in a generically immersed concordance from a knot KK to an alternating knot. In the case that the alternating knot is the unknot, this is the well studied invariant c4(K)c_{4}(K) called the 44-dimensional clasp number [Shi74]. A sequence of crossing changes in a diagram of a knot KK leading to a diagram of an alternating knot JJ realizes an immersed concordance from KK to JJ where any crossing change gives rise to a double point singularity in the concordance. We thus have 𝒜s(K)alt(K)\mathcal{A}_{s}(K)\leq\operatorname{alt}(K) for any knot KK, which resembles the inequality c4(K)u(K)c_{4}(K)\leq u(K) between the 44-dimensional clasp number and the unknotting number u(K)u(K) of KK. Moreover, we have |υ(K)+τ(K)|𝒜s(K)\left|\upsilon(K)+\tau(K)\right|\leq\mathcal{A}_{s}(K) for any knot KK [FLZ17, Theorem 18], so 5.1 implies 𝒜s(K)=alt(K)\mathcal{A}_{s}(K)=\operatorname{alt}(K) for all positive 33-braid knots KK.

We are now ready to prove 1.2 from the introduction.

Proof of 1.2.

The corollary follows directly from 5.1, 5.5 and 5.6. ∎

5.2. Bounds on the alternation number of general 33-braid knots

In the following, we turn our attention to 33-braid knots in general, which are not necessarily the closure of positive 33-braids. We will use that

(32) |s(K)2+υ(K)|alt(K)\displaystyle\left|\frac{s(K)}{2}+\upsilon(K)\right|\leq\operatorname{alt}(K)

for any knot KK, which follows from [Abe09, Theorem 2.1], see also equation (28) from Section 5.1. Rasmussen’s invariant ss was computed for all 33-braid knots in Murasugi normal form (cf. 4.15) by Greene.222These computations were generalized to all links that are closures of 33-braids in [Mar19].

Corollary 5.7.

Let γ=Δ2ap1bq1aprbqr\gamma=\Delta^{2\ell}a^{-p_{1}}b^{q_{1}}\cdots a^{-p_{r}}b^{q_{r}} for some \ell\in\mathbb{Z}, r1r\geq 1 and pi,qi1p_{i},q_{i}\geq 1 for i{1,,r}i\in\{1,\dots,r\} such that K=γ^K=\widehat{\gamma} is a knot. Then

||1alt(K)\displaystyle\left|\ell\right|-1\leq\operatorname{alt}(K) dalt(K)||if 0.\displaystyle\leq\operatorname{dalt}(K)\leq\left|\ell\right|\qquad\text{if }\ell\neq 0.
Proof of 5.7.

The lower bound on the alternation number follows from the inequality (32), Theorem 1.1 and the values of the invariant ss for K=γ^K=\widehat{\gamma} [Gre14, Proposition 2.4], namely

s(K)\displaystyle s(K) ={i=1r(piqi)+62if >0,i=1r(piqi)+6+2if <0.\displaystyle=\begin{cases}-\sum\limits_{i=1}^{r}(p_{i}-q_{i})+6\ell-2&\text{if }\ell>0,\\ -\sum\limits_{i=1}^{r}(p_{i}-q_{i})+6\ell+2&\text{if }\ell<0.\\ \end{cases}

Moreover, it follows from [AK10, Theorem 2.5] that dalt(γ^)||\operatorname{dalt}\left(\widehat{\gamma}\right)\leq\left|\ell\right|. ∎

Remark 5.8.

An alternative way to prove the upper bound on dalt(K)\operatorname{dalt}(K) in 5.7 for 1\ell\geq 1 follows from our observations in the proof of 4.18. In fact, the braid diagrams given by the braid representatives γ1\gamma_{1} of K=γ^K=\widehat{\gamma} considered in that proof can easily be transformed into alternating diagrams by \ell crossing changes: it is enough to change the positive crossings corresponding to the single generators aa in γ1\gamma_{1} to negative crossings; we obtain generators a1a^{-1} in the corresponding braid words which then correspond to alternating braid diagrams.

Remark 5.9.

If KK is represented by a 33-braid of Garside normal form (C) or (D) (see 3.4), then using the observations in Section 4.4.3, 5.7 implies

(33) |r+|1alt(K)\displaystyle\left|r+\ell\right|-1\leq\operatorname{alt}(K) dalt(K)|r+|\displaystyle\leq\operatorname{dalt}(K)\leq\left|r+\ell\right| if |r+|>0 and\displaystyle\text{if }\left|r+\ell\right|>0\,\text{ and}
alt(K)\displaystyle\operatorname{alt}(K) =dalt(K)=0\displaystyle=\operatorname{dalt}(K)=0 if r+=0.\displaystyle\text{if }r+\ell=0.

By 5.1, the lower bound in (33) is sharp whenever KK is the closure of a positive 33-braid of Garside normal form (C) or (D). However, there are examples where the upper bound in (33) is sharp. The two easiest such examples in terms of crossing number are the non-alternating knots 8208_{20} and 8218_{21}, which are represented by the 33-braids (cf. [LM21])

a3b1a3b1\displaystyle a^{3}b^{-1}a^{-3}b^{-1} Δ3a7and\displaystyle\sim\Delta^{-3}a^{7}\qquad\text{and}
a3ba2b2\displaystyle a^{3}ba^{-2}b^{2} Δ2a3b2a2b3,\displaystyle\sim\Delta^{-2}a^{3}b^{2}a^{2}b^{3},

respectively. The lower bound on the alternation number from (33) is |r+|1=0\left|r+\ell\right|-1=0 in both cases. Indeed, by [Bal08, Theorem 8.6] both knots are quasialternating, so all the invariants from equation (28) are equal [Bal08, Proposition 1.4], [MO08], [OSS17a].

Remark 5.10.

In a similar fashion as 5.7, the Turaev genus of all 33-braid knots was determined up to an additive error of at most 1 by Lowrance in [Low11, Proposition 4.15] using his computation of the Khovanov width for these knots. More precisely, we have

||1gT(K)||if 0\displaystyle\left|\ell\right|-1\leq g_{T}(K)\leq\left|\ell\right|\qquad\text{if }\ell\neq 0

for any knot KK that is represented by γ=Δ2ap1bq1aprbqr\gamma=\Delta^{2\ell}a^{-p_{1}}b^{q_{1}}\cdots a^{-p_{r}}b^{q_{r}} for some \ell\in\mathbb{Z}, r1r\geq 1 and pi,qi1p_{i},q_{i}\geq 1 for i{1,,r}i\in\{1,\dots,r\}.

6. The fractional Dehn twist coefficient of 33-braids in Garside normal form

In this section, we compute the fractional Dehn twist coefficient of any 33-braid in Garside normal form (cf. 3.4).

The fractional Dehn twist coefficient is a homogeneous quasimorphism on the braid group BnB_{n} that assigns to any nn-braid γ\gamma a rational number ω(γ)\omega(\gamma). Here, a quasimorphism on a group GG is any map φ:G\varphi\colon G\to\mathbb{R} such that

sup(a,b)G×G|φ(ab)φ(a)φ(b)|=:Dφ<,\displaystyle\sup_{(a,b)\in G\times G}\left|\varphi(ab)-\varphi(a)-\varphi(b)\right|=\vcentcolon D_{\varphi}<\infty,

where DφD_{\varphi} is called the defect of φ\varphi. A quasimorphism φ:G\varphi\colon G\to\mathbb{R} is called homogeneous if φ(ak)=kφ(a)\varphi\left(a^{k}\right)=k\varphi(a) for all kk\in\mathbb{Z} and aGa\in G. Any homogeneous quasimorphism is invariant under conjugation, so ω(γ)\omega(\gamma) is invariant under the conjugacy class of γ\gamma.

The fractional Dehn twist coefficient first appeared in [GO89] in a different language. It can be defined for mapping classes of general surfaces with boundary, where we here view braids as mapping classes of the nn times punctured closed disk. Malyutin defined the fractional Dehn twist coefficient ω:Bn\omega\colon B_{n}\to\mathbb{R}, n2n\geq 2, for all braid groups and showed that its defect is 11 if n3n\geq 3 and 0 if n=2n=2 [Mal04, Theorem 6.3]. We refer the reader to [Mal04] for a more detailed account.

Corollary 6.1.

Let γ\gamma be a 33-braid. Then its fractional Dehn twist coefficient is

ω(γ)={if γ is conjugate to a braid in (A),p+16+if γ is conjugate to a braid in (B),r+if γ is conjugate to a braid in (C) or (D).\displaystyle\omega(\gamma)=\begin{cases}\ell&\text{if }\gamma\text{ is conjugate to a braid in }\eqref{eq:linkcase},\\ \frac{p+1}{6}+\ell&\text{if }\gamma\text{ is conjugate to a braid in }\eqref{eq:torusknotcase},\\ r+\ell&\text{if }\gamma\text{ is conjugate to a braid in }\eqref{eq:evenpower}\text{ or }\eqref{eq:oddpower}.\end{cases}

where (A)–(D) refer to the Garside normal forms from 3.2.

Remark 6.2.

The fractional Dehn twist coefficient was computed for 33-braids in Murasugi normal form (cf. 4.15) in [HKK+21, Proposition 6.6].

In the proof of 6.1, we will use that the fractional Dehn twist coefficient of any 33-braid γ\gamma is completely determined by the writhe wr(γ)\operatorname{wr}(\gamma) and the homogenized upsilon invariant υ~\widetilde{\upsilon} of γ\gamma: we have

(34) ω(γ)=υ~(γ)+wr(γ)2[FH19, Theorem 1.3]\displaystyle\omega(\gamma)=\widetilde{\upsilon}(\gamma)+\frac{\operatorname{wr}(\gamma)}{2}\qquad\text{\cite[cite]{[\@@bibref{}{Feller_2019}{}{}, Theorem 1.3]}}

for any 33-braid γ\gamma. The invariant υ~\widetilde{\upsilon} is another real-valued homogeneous quasimorphism on the braid group B3B_{3} which can be defined as

υ~:B3,γυ~(γ)=limkυ(γ6kab^)6k.\displaystyle\widetilde{\upsilon}\colon B_{3}\to\mathbb{R},\qquad\gamma\mapsto\widetilde{\upsilon}\left(\gamma\right)=\lim_{k\to\infty}\frac{\upsilon\left(\widehat{\gamma^{6k}ab}\right)}{6k}.

More generally, Brandenbursky [Bra11, Theorem 2.6] showed that a homogeneous quasimorphism BnB_{n}\to\mathbb{R} can be assigned to any concordance homomorphism 𝒞\mathcal{C}\to\mathbb{R} that is bounded above by a constant multiple of the 44-genus. We refer the reader to [Bra11] or [FH19, Appendix A] for more details on homogenized concordance invariants.

Proposition 6.3.

Let γ\gamma be a 33-braid. Then

υ~(γ)={p22if γ is conjugate to a braid in (A),p+132if γ is conjugate to a braid in (B),i=1r(pi+qi)2+r2if γ is conjugate to a braid in (C),i=1r1(pi+qi)+pr2+r232if γ is conjugate to a braid in (D).\displaystyle\widetilde{\upsilon}(\gamma)=\begin{cases}-\frac{p}{2}-2\ell&\text{if }\gamma\text{ is conjugate to a braid in }\eqref{eq:linkcase},\\ -\frac{p+1}{3}-2\ell&\text{if }\gamma\text{ is conjugate to a braid in }\eqref{eq:torusknotcase},\\ -\frac{\sum\limits_{i=1}^{r}\left(p_{i}+q_{i}\right)}{2}+r-2\ell&\text{if }\gamma\text{ is conjugate to a braid in }\eqref{eq:evenpower},\\ -\frac{\sum\limits_{i=1}^{r-1}\left(p_{i}+q_{i}\right)+p_{r}}{2}+r-2\ell-\frac{3}{2}&\text{if }\gamma\text{ is conjugate to a braid in }\eqref{eq:oddpower}.\end{cases}
Proof of 6.3.

We will use that υ~(αβ)=υ~(α)+υ~(β)\widetilde{\upsilon}(\alpha\beta)=\widetilde{\upsilon}(\alpha)+\widetilde{\upsilon}(\beta) if α\alpha and β\beta commute [FH19, Lemma A.1]. In particular, for any 33-braid γ\gamma and any \ell\in\mathbb{Z}, we have

(35) υ~(Δ2γ)=υ~(Δ2)+υ~(γ).\displaystyle\widetilde{\upsilon}\left(\Delta^{2\ell}\gamma\right)=\widetilde{\upsilon}\left(\Delta^{2\ell}\right)+\widetilde{\upsilon}(\gamma).

Moreover, by the definition of υ~\widetilde{\upsilon}, Equation 12 and the homogeneity of υ~\widetilde{\upsilon}, we have

(36) υ~(Δ2)=2for all .\displaystyle\widetilde{\upsilon}\left(\Delta^{2\ell}\right)=-2\ell\qquad\text{for all }\ell\in\mathbb{Z}.

We will now compute υ~(γ)\widetilde{\upsilon}(\gamma) for the positive 33-braids γ\gamma of the form (A)–(D), i. e. assuming 0\ell\geq 0 in (A)–(D). The statement of 6.3 will then follow from (35) and (36).

First, let γ=Δ2ap\gamma=\Delta^{2\ell}a^{p} for some 0,p0\ell\geq 0,\,p\geq 0. If p=0p=0, we have υ~(γ)=2\widetilde{\upsilon}(\gamma)=-2\ell by (36). If p1p\geq 1, we have

γ6kab=Δ12ka6pkabΔ12k+1a6pk1,\displaystyle\gamma^{6k}ab=\Delta^{12\ell k}a^{6pk}ab\sim\Delta^{12\ell k+1}a^{6pk-1},

so by 4.9, for k1k\geq 1, we get

υ(γ6kab^)\displaystyle\upsilon\left(\widehat{\gamma^{6k}ab}\right) =6pk12+112k32=3pk12k,hence\displaystyle=-\frac{6pk-1}{2}+1-12\ell k-\frac{3}{2}=-3pk-12\ell k,\qquad\text{hence}
υ~(γ)\displaystyle\widetilde{\upsilon}(\gamma) =limkυ(γ6kab^)6k=limk3pk12k6k=p22.\displaystyle=\lim_{k\to\infty}\frac{\upsilon\left(\widehat{\gamma^{6k}ab}\right)}{6k}=\lim_{k\to\infty}\frac{-3pk-12\ell k}{6k}=-\frac{p}{2}-2\ell.

Second, let γ=Δ2apb\gamma=\Delta^{2\ell}a^{p}b for some 0,p{1,2,3}\ell\geq 0,\,p\in\{1,2,3\}. We have

γ6kab\displaystyle\gamma^{6k}ab =Δ12k(ab)6kab=Δ12k+4kab\displaystyle=\Delta^{12\ell k}\left(ab\right)^{6k}ab=\Delta^{12\ell k+4k}ab if p=1,\displaystyle\text{if }p=1,
γ6kab\displaystyle\gamma^{6k}ab =Δ12k(a2ba2b)3kab=Δ12k(ababab)3kab=Δ12k+6kab\displaystyle=\Delta^{12\ell k}\left(a^{2}ba^{2}b\right)^{3k}ab=\Delta^{12\ell k}\left(ababab\right)^{3k}ab=\Delta^{12\ell k+6k}ab if p=2, and\displaystyle\text{if }p=2,\text{ and}
γ6kab\displaystyle\gamma^{6k}ab =Δ12k(a3ba3ba3b)2kab=Δ12k(a2babababa2b)2kab\displaystyle=\Delta^{12\ell k}\left(a^{3}ba^{3}ba^{3}b\right)^{2k}ab=\Delta^{12\ell k}\left(a^{2}babababa^{2}b\right)^{2k}ab
=Δ12k+8kab\displaystyle=\Delta^{12\ell k+8k}ab if p=3.\displaystyle\text{if }p=3.

By Equation 12, we get

υ~(γ)\displaystyle\widetilde{\upsilon}(\gamma) =limk12k(2p+2)k6k=2p+13.\displaystyle=\lim_{k\to\infty}\frac{-12\ell k-(2p+2)k}{6k}=-2\ell-\frac{p+1}{3}.

Third, let γ=Δ2ap1bq1aprbqr\gamma=\Delta^{2\ell}a^{p_{1}}b^{q_{1}}\cdots a^{p_{r}}b^{q_{r}} for some 0\ell\geq 0, r1r\geq 1, pi,qi2p_{i},q_{i}\geq 2, i{1,,r}i\in\{1,\dots,r\}. Then

γ6kab\displaystyle\gamma^{6k}ab =Δ12k(ap1bq1aprbqr)6kab\displaystyle=\Delta^{12\ell k}\left(a^{p_{1}}b^{q_{1}}\cdots a^{p_{r}}b^{q_{r}}\right)^{6k}ab
Δ12k+1ap11bq1aprbqr(ap1bq1aprbqr)6k1\displaystyle\sim\Delta^{12\ell k+1}a^{p_{1}-1}b^{q_{1}}\cdots a^{p_{r}}b^{q_{r}}\left(a^{p_{1}}b^{q_{1}}\cdots a^{p_{r}}b^{q_{r}}\right)^{6k-1}
Δ12k+1(bq1ap2bq2aprbqrap1)6k1bq1ap2bq2aprbp1+qr1,\displaystyle\sim\Delta^{12\ell k+1}\left(b^{q_{1}}a^{p_{2}}b^{q_{2}}\cdots a^{p_{r}}b^{q_{r}}a^{p_{1}}\right)^{6k-1}b^{q_{1}}a^{p_{2}}b^{q_{2}}\cdots a^{p_{r}}b^{p_{1}+q_{r}-1},

where p1+qr13p_{1}+q_{r}-1\geq 3. By 4.9, we have

υ(γ6kab^)\displaystyle\upsilon\left(\widehat{\gamma^{6k}ab}\right) =3ki=1r(pi+qi)+6kr12k1,hence\displaystyle=-3k\sum_{i=1}^{r}(p_{i}+q_{i})+6kr-12\ell k-1,\qquad\text{hence}
υ~(γ)\displaystyle\widetilde{\upsilon}(\gamma) =12i=1r(pi+qi)+r2.\displaystyle=-\frac{1}{2}\sum_{i=1}^{r}(p_{i}+q_{i})+r-2\ell.

Finally, let γ=Δ2+1ap1bq1apr1bqr1apr\gamma=\Delta^{2\ell+1}a^{p_{1}}b^{q_{1}}\cdots a^{p_{r-1}}b^{q_{r-1}}a^{p_{r}} for some l0l\geq 0, r1r\geq 1, pr2p_{r}\geq 2, pi,qi2,i{1,,r1}p_{i},q_{i}\geq 2,i\in\{1,\dots,r-1\}. Then

γ6kab\displaystyle\gamma^{6k}ab =Δ12k(Δap1bq1apr1bqr1apr)6kab\displaystyle=\Delta^{12\ell k}\left(\Delta a^{p_{1}}b^{q_{1}}\cdots a^{p_{r-1}}b^{q_{r-1}}a^{p_{r}}\right)^{6k}ab
=Δ12k(Δ2bp1aq1bpr1aqr1bprap1bq1apr1bqr1apr)3kab\displaystyle=\Delta^{12\ell k}\left(\Delta^{2}b^{p_{1}}a^{q_{1}}\cdots b^{p_{r-1}}a^{q_{r-1}}b^{p_{r}}a^{p_{1}}b^{q_{1}}\cdots a^{p_{r-1}}b^{q_{r-1}}a^{p_{r}}\right)^{3k}ab
=Δ12k+6k(bp1bprap1apr)3kab\displaystyle=\Delta^{12\ell k+6k}\left(b^{p_{1}}\cdots b^{p_{r}}a^{p_{1}}\cdots a^{p_{r}}\right)^{3k}ab
Δ12k+6kaq1bp2bprap1apr(bp1bprap1apr)3k2\displaystyle\sim\Delta^{12\ell k+6k}a^{q_{1}}b^{p_{2}}\cdots b^{p_{r}}a^{p_{1}}\cdots a^{p_{r}}\left(b^{p_{1}}\cdots b^{p_{r}}a^{p_{1}}\cdots a^{p_{r}}\right)^{3k-2}
bp1bprap1apr+1bp1+1,\displaystyle\qquad b^{p_{1}}\cdots b^{p_{r}}a^{p_{1}}\cdots a^{p_{r}+1}b^{p_{1}+1},

where pr+1,p1+13p_{r}+1,\,p_{1}+1\geq 3. By 4.10, we have

υ(γ6kab^)\displaystyle\upsilon\left(\widehat{\gamma^{6k}ab}\right) =3k(i=1r1(pi+qi)+pr)+6kr12k9k1,hence\displaystyle=-3k\left(\sum_{i=1}^{r-1}(p_{i}+q_{i})+p_{r}\right)+6kr-12\ell k-9k-1,\qquad\text{hence}
υ~(γ)\displaystyle\widetilde{\upsilon}(\gamma) =12(i=1r1(pi+qi)+pr)+r232.\displaystyle=-\frac{1}{2}\left(\sum_{i=1}^{r-1}(p_{i}+q_{i})+p_{r}\right)+r-2\ell-\frac{3}{2}.\qed
Proof of 6.1.

This follows directly from 6.3, Equation 34, and a straightforward calculation of the writhe of the braids in (A)–(D). ∎

Remark 6.4.

If γ\gamma is a 33-braid conjugate to a braid of the form in (C) or (D) such that γ^\widehat{\gamma} is a knot, then 6.3 and Theorem 1.1 imply υ~(γ)=υ(γ^)\widetilde{\upsilon}(\gamma)=\upsilon\left(\widehat{\gamma}\right). If γ\gamma additionally is a positive 33-braid, then ω(γ)=r+=g(γ^)+υ(γ^)+1\omega(\gamma)=r+\ell=g\left(\widehat{\gamma}\right)+\upsilon\left(\widehat{\gamma}\right)+1 is the minimal number from 1.3/4.12.

Remark 6.5.

Our computation of ω(γ)\omega(\gamma) in 6.1 together with [FH19, Theorem 1.3] completely determines Υ(t)~(γ)\widetilde{\Upsilon(t)}(\gamma) for all 0t10\leq t\leq 1 for any 33-braid γ\gamma, where Υ(t)~(γ)\widetilde{\Upsilon(t)}(\gamma) is the homogenization of the invariant Υ(t):𝒞\Upsilon(t)\colon\mathcal{C}\to\mathbb{R}, defined similarly as the homogenization υ~\widetilde{\upsilon} of υ\upsilon.

References

  • [ABB+92] Colin C. Adams, Jeffrey F. Brock, John Bugbee, Timothy D. Comar, Keith A. Faigin, Amy M. Huston, Anne M. Joseph, and David Pesikoff. Almost alternating links. Topology Appl., 46(2):151–165, 1992.
  • [Abe09] Tetsuya Abe. An estimation of the alternation number of a torus knot. J. Knot Theory Ramifications, 18(3):363–379, 2009.
  • [AK10] Tetsuya Abe and Kengo Kishimoto. The dealternating number and the alternation number of a closed 3-braid. J. Knot Theory Ramifications, 19(9):1157–1181, 2010.
  • [Ale23] J.W. Alexander. A lemma on systems of knotted curves. Proceedings of the National Academy of Sciences of the United States of America, 9(3):93–95, March 1923.
  • [Art25] E. Artin. Theorie der Zöpfe. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 4:47–72, 1925.
  • [Baa13] Sebastian Baader. Positive braids of maximal signature. Enseign. Math., 59(3-4):351–358, 2013.
  • [Bal08] John A. Baldwin. Heegaard Floer homology and genus one, one-boundary component open books. J. Topol., 1(4):963–992, 2008.
  • [Bal20] William Ballinger. Concordance invariants from the e(1)e(-1) spectral sequence on khovanov homology. arXiv e-prints, page arXiv:2004.10807, April 2020.
  • [BB05] Joan S. Birman and Tara E. Brendle. Braids: a survey. In Handbook of knot theory, pages 19–103. Elsevier B. V., Amsterdam, 2005.
  • [Ben83] Daniel Bennequin. Entrelacements et équations de Pfaff. In Third Schnepfenried geometry conference, Vol. 1 (Schnepfenried, 1982), volume 107 of Astérisque, pages 87–161. Soc. Math. France, Paris, 1983.
  • [BM93] Joan S. Birman and William W. Menasco. Studying links via closed braids. III. Classifying links which are closed 33-braids. Pacific J. Math., 161(1):25–113, 1993.
  • [Bra11] Michael Brandenbursky. On quasi-morphisms from knot and braid invariants. J. Knot Theory Ramifications, 20(10):1397–1417, 2011.
  • [Cho48] Wei-Liang Chow. On the algebraical braid group. Annals of Mathematics, 49(3):654–658, 1948.
  • [CK14] Abhijit Champanerkar and Ilya Kofman. A survey on the Turaev genus of knots. Acta Math. Vietnam., 39(4):497–514, 2014.
  • [DFK+08] Oliver T. Dasbach, David Futer, Efstratia Kalfagianni, Xiao-Song Lin, and Neal W. Stoltzfus. The Jones polynomial and graphs on surfaces. J. Combin. Theory Ser. B, 98(2):384–399, 2008.
  • [DL11] Oliver T. Dasbach and Adam M. Lowrance. Turaev genus, knot signature, and the knot homology concordance invariants. Proc. Amer. Math. Soc., 139(7):2631–2645, 2011.
  • [Erl99] Dieter Erle. Calculation of the signature of a 3-braid link. Kobe J. Math., 16(2):161–175, 1999.
  • [Fel16] Peter Feller. Optimal cobordisms between torus knots. Communications in Analysis and Geometry, 24(5):993–1025, 2016.
  • [FH19] Peter Feller and Diana Hubbard. Braids with as many full twists as strands realize the braid index. Journal of Topology, 12(4):1069–1092, May 2019.
  • [FK17] Peter Feller and David Krcatovich. On cobordisms between knots, braid index, and the upsilon-invariant. Mathematische Annalen, 369(1-2):301–329, Mar 2017.
  • [FLL22] Peter Feller, Lukas Lewark, and Andrew Lobb. Squeezed knots. arXiv preprint arXiv:2202.12289, 2022.
  • [FLZ17] Stefan Friedl, Charles Livingston, and Raphael Zentner. Knot concordances and alternating knots. Michigan Math. J., 66(2):421–432, 2017.
  • [FPZ18] Peter Feller, Simon Pohlmann, and Raphael Zentner. Alternation numbers of torus knots with small braid index. Indiana University Mathematics Journal, 67(2):645–655, 2018.
  • [Gar69] F. A. Garside. The braid group and other groups. The Quarterly Journal of Mathematics, 20(1):235–254, 01 1969.
  • [GO89] David Gabai and Ulrich Oertel. Essential laminations in 33-manifolds. Ann. of Math. (2), 130(1):41–73, 1989.
  • [Goo72] R. E. Goodrick. Two bridge knots are alternating knots. Pacific J. Math., 40:561–564, 1972.
  • [Gre14] Joshua Evan Greene. Donaldson’s theorem, Heegaard Floer homology, and knots with unknotting number one. Adv. Math., 255:672–705, 2014.
  • [HKK+21] Diana Hubbard, Keiko Kawamuro, Feride Ceren Kose, Gage Martin, Olga Plamenevskaya, Katherine Raoux, Linh Truong, and Hannah Turner. Braids, fibered knots, and concordance questions, 2021. arXiv:2004.07445.
  • [Hom17] Jennifer Hom. A survey on Heegaard Floer homology and concordance. J. Knot Theory Ramifications, 26(2):1740015, 24, 2017.
  • [Kan10] Taizo Kanenobu. Upper bound for the alternation number of a torus knot. Topology Appl., 157(1):302–318, 2010.
  • [Kaw10] Akio Kawauchi. On alternation numbers of links. Topology Appl., 157(1):274–279, 2010.
  • [KM93] P. B. Kronheimer and T. S. Mrowka. Gauge theory for embedded surfaces. I. Topology, 32(4):773–826, 1993.
  • [Lew14] Lukas Lewark. Rasmussen’s spectral sequences and the 𝔰𝔩N{\mathfrak{sl}}_{N}-concordance invariants. Adv. Math., 260:59–83, 2014.
  • [Liv04] Charles Livingston. Computations of the Ozsváth-Szabó knot concordance invariant. Geom. Topol., 8:735–742, 2004.
  • [Liv17] Charles Livingston. Notes on the knot concordance invariant upsilon. Algebr. Geom. Topol., 17(1):111–130, 2017.
  • [LM21] Charles Livingston and Allison H. Moore. Knotinfo: Table of knot invariants. URL: knotinfo.math.indiana.edu, June 14, 2021.
  • [Low11] Adam Lowrance. The Khovanov width of twisted links and closed 3-braids. Comment. Math. Helv., 86(3):675–706, 2011.
  • [Low15] Adam M. Lowrance. Alternating distances of knots and links. Topology Appl., 182:53–70, 2015.
  • [Mal04] A. V. Malyutin. Writhe of (closed) braids. Algebra i Analiz, 16(5):59–91, 2004.
  • [Mar19] Gage Martin. Annular rasmussen invariants: Properties and 3-braid classification, 2019. arXiv:1909.09245.
  • [MO08] Ciprian Manolescu and Peter Ozsváth. On the Khovanov and knot Floer homologies of quasi-alternating links. In Proceedings of Gökova Geometry-Topology Conference 2007, pages 60–81. Gökova Geometry/Topology Conference (GGT), Gökova, 2008.
  • [Mor79] H. R. Morton. Closed braids which are not prime knots. Math. Proc. Cambridge Philos. Soc., 86(3):421–426, 1979.
  • [Mur65] Kunio Murasugi. On a certain numerical invariant of link types. Trans. Amer. Math. Soc., 117:387–422, 1965.
  • [Mur74] Kunio Murasugi. On closed 33-braids. American Mathematical Society, Providence, R.I., 1974. Memoirs of the American Mathmatical Society, No. 151.
  • [Mur85] Hitoshi Murakami. Some metrics on classical knots. Math. Ann., 270(1):35–45, 1985.
  • [OS03] Peter Ozsváth and Zoltán Szabó. Knot Floer homology and the four-ball genus. Geom. Topol., 7:615–639, 2003.
  • [OSS17a] P. Ozsváth, A. I. Stipsicz, and Z. Szabó. Concordance homomorphisms from knot Floer homology. Advances in Mathematics, 315:366–426, Jul 2017.
  • [OSS17b] Peter S. Ozsváth, András I. Stipsicz, and Zoltán Szabó. Unoriented knot Floer homology and the unoriented four-ball genus. Int. Math. Res. Not. IMRN, (17):5137–5181, 2017.
  • [Ras03] J. A. Rasmussen. Floer homology and knot complements. ProQuest LLC, Ann Arbor, MI, 2003. Thesis (Ph.D.)–Harvard University.
  • [Ras10] Jacob Rasmussen. Khovanov homology and the slice genus. Invent. Math., 182(2):419–447, 2010.
  • [Rud93] Lee Rudolph. Quasipositivity as an obstruction to sliceness. Bull. Amer. Math. Soc. (N.S.), 29(1):51–59, 1993.
  • [Sch24] Otto Schreier. Über die Gruppen AaBb=1A^{a}B^{b}=1. Abh. Math. Sem. Univ. Hamburg, 3(1):167–169, 1924.
  • [Shi74] Tetsuo Shibuya. Some relations among various numerical invariants for links. Osaka Math. J., 11:313–322, 1974.
  • [Tro62] H. F. Trotter. Homology of group systems with applications to knot theory. Annals of Mathematics, 76(3):464–498, 1962.