This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Present address: ]Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, USA.

Mixed-symmetry octupole and hexadecapole excitations in the N=52N=52 isotones

A. Hennig hennig@ikp.uni-koeln.de Institut für Kernphysik, Universität zu Köln, D-50937 Köln, Germany    M. Spieker Institut für Kernphysik, Universität zu Köln, D-50937 Köln, Germany    V. Werner Wright Nuclear Structure Laboratory, Yale University, New Haven, Connecticut 06520, USA Institut für Kernphysik, Technische Universität Darmstadt, D-6489 Darmstadt, Germany    T. Ahn [ Wright Nuclear Structure Laboratory, Yale University, New Haven, Connecticut 06520, USA    V. Anagnostatou Wright Nuclear Structure Laboratory, Yale University, New Haven, Connecticut 06520, USA Department of Physics, University of Surrey, Guildford, GU2 7XH, UK    N. Cooper Wright Nuclear Structure Laboratory, Yale University, New Haven, Connecticut 06520, USA    V. Derya Institut für Kernphysik, Universität zu Köln, D-50937 Köln, Germany    M. Elvers Institut für Kernphysik, Universität zu Köln, D-50937 Köln, Germany Wright Nuclear Structure Laboratory, Yale University, New Haven, Connecticut 06520, USA    J. Endres Institut für Kernphysik, Universität zu Köln, D-50937 Köln, Germany    P. Goddard Wright Nuclear Structure Laboratory, Yale University, New Haven, Connecticut 06520, USA Department of Physics, University of Surrey, Guildford, GU2 7XH, UK    A. Heinz Wright Nuclear Structure Laboratory, Yale University, New Haven, Connecticut 06520, USA Fundamental Fysik, Chalmers Tekniska Högskola, SE-41296 Göteborg, Sweden    R. O. Hughes Wright Nuclear Structure Laboratory, Yale University, New Haven, Connecticut 06520, USA University of Richmond, Richmond, Virginia 23173, USA    G. Ilie Wright Nuclear Structure Laboratory, Yale University, New Haven, Connecticut 06520, USA National Institute for Physics and Nuclear Engineering, Bucharest-Magurele, RO-77125, Romania    M. N. Mineva Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, BG-1784 Sofia, Bulgaria    P. Petkov Institut für Kernphysik, Universität zu Köln, D-50937 Köln, Germany Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, BG-1784 Sofia, Bulgaria    S. G. Pickstone Institut für Kernphysik, Universität zu Köln, D-50937 Köln, Germany    N. Pietralla Institut für Kernphysik, Technische Universität Darmstadt, D-6489 Darmstadt, Germany    D. Radeck Institut für Kernphysik, Universität zu Köln, D-50937 Köln, Germany Wright Nuclear Structure Laboratory, Yale University, New Haven, Connecticut 06520, USA    T. J. Ross Department of Physics, University of Surrey, Guildford, GU2 7XH, UK University of Richmond, Richmond, Virginia 23173, USA    D. Savran ExtreMe Matter Institute EMMI and Research Division, GSI, D-64291 Darmstadt, Germany Frankfurt Institute for Advanced Studies FIAS, D-60438 Frankfurt a.M., Germany    A. Zilges Institut für Kernphysik, Universität zu Köln, D-50937 Köln, Germany
(August 2, 2025)
Abstract

Background: Excitations with mixed proton-neutron symmetry have been previously observed in the N=52N=52 isotones. Besides the well established quadrupole mixed-symmetry states (MSS), octupole and hexadecapole MSS have been recently proposed for the nuclei 92Zr and 94Mo.

Purpose: The heaviest stable N=52N=52 isotone 96Ru was investigated to study the evolution of octupole and hexadecapole MSS with increasing proton number.

Methods: Two inelastic proton-scattering experiments on 96Ru were performed to extract branching ratios, multipole mixing ratios, and level lifetimes. From the combined data, absolute transition strengths were calculated.

Results: Strong M1M1 transitions between the lowest-lying 33^{-} and 4+4^{+} states were observed, providing evidence for a one-phonon mixed-symmetry character of the 32()3^{(-)}_{2} and 42+4^{+}_{2} states.

Conclusions: sdgsdg-IBM-2 calculations were performed for 96Ru. The results are in excellent agreement with the experimental data, pointing out a one-phonon hexadecapole mixed-symmetry character of the 42+4^{+}_{2} state. The <31||M1||32()>\big{<}3^{-}_{1}\left||M1\right||3^{(-)}_{2}\big{>} matrix element is found to scale with the 2s+M12ms+\left<2^{+}_{\mathrm{s}}\left||M1\right||2^{+}_{\mathrm{ms}}\right> matrix element.

Mixed-symmetry states; Hexadecapole; Octupole; Interacting boson model
pacs:
21.10.Re, 21.10.Tg, 23.20.Lv, 21.60.Ev

Introduction. Protons and neutrons are the building blocks of atomic nuclei, which feature collective excitations which are symmetric or not symmetric with respect to the proton-neutron degree of freedom Heyde and Sau (1986). Excitations resulting from the antisymmetric coupling of proton and neutron eigenstates are usually referred to as mixed-symmetry states (MSS), whereas the symmetric coupling results in fully-symmetric states (FSS) Iachello (1984). Mixed-symmetry quadrupole excitations are predicted within the sdsd proton-neutron version of the interacting boson model (sdsd-IBM-2) Arima and Iachello (1975); Arima et al. (1977); Otsuka et al. (1978); van Isacker et al. (1986), where ss- and dd-bosons are obtained by coupling protons and neutrons to pairs with angular momentum L=0L=0 and L=2L=2, respectively. In the IBM-2, MSS and FSS can be distinguished by their FF-spin quantum number Arima et al. (1977); Otsuka et al. (1978), which is the bosonic analog of isospin for fermions. Strong FF-vector (ΔF=1\Delta F=1) M1M1 transitions from MSS to their symmetric counterparts are predicted by the model. In the IBM-1, where proton and neutron bosons are not distinguished, M1M1 transitions with a one-body M1M1 transition operator are forbidden. Thus, M1M1 transitions serve as a key signature for MSS Heyde et al. (2010); Pietralla et al. (2008).

Mixed-symmetry quadrupole excitations are well established in the stable N=52N=52 isotones Pietralla et al. (1999, 2000, 2001); Werner et al. (2002); Klein et al. (2002); Fransen et al. (2003, 2005); Linnemann et al. (2005); Orce et al. (2006); Pietralla et al. (2008), see Ref. Pietralla et al. (2008) for a review. In addition, the existence of higher-order multipolarity mixed-symmetry states has been recently proposed for the N=52N=52 isotones 92Zr and 94Mo, namely, of octupole (L=3L=3) Fransen et al. (2003); Smirnova et al. (2000); Scheck et al. (2010) and hexadecapole (L=4L=4) character Fransen et al. (2003, 2005); Casperson et al. (2013). As for the quadrupole MSS, experimental evidence came from the observation of remarkably strong M1M1 transition strengths in the order of 1μN2\sim 1~\mu_{N}^{2} between the lowest-lying 33^{-} and 4+4^{+} states, respectively.

Candidates for octupole excitations with mixed-symmetry character have been proposed in various nuclei in the A100A\approx 100 mass region Scheck et al. (2010), among others also in the N=52N=52 isotones 92Zr and 94Mo Fransen et al. (2005, 2003). MS octupole excitations were predicted in sdfsdf-IBM-2 calculations Smirnova et al. (2000). Along with the M1M1 fingerprint, a sizable E1E1 transition to the FS one-phonon quadrupole state 2s+2^{+}_{\mathrm{s}} is expected in the Uπν(1)Uπν(5)Uπν(7)U_{\pi\nu}(1)\otimes U_{\pi\nu}(5)\otimes U_{\pi\nu}(7) limit, according to the two-body nature of the E1E1 operator Pietralla et al. (2003); Scheck et al. (2010). In addition, a strong E1E1 transition to the MS one-phonon quadrupole state 2ms+2^{+}_{\mathrm{ms}} has been observed in the case of 94Mo.

Recently, the strong M1M1 transition between the lowest-lying 4+4^{+} states of 94Mo was successfully reproduced within the sdgsdg-IBM-2 without abandoning the description of quadrupole MSS Casperson et al. (2013), suggesting the strong M1M1 transition to result from MS and FS one-phonon hexadecapole components in the 42+4^{+}_{2} and 41+4^{+}_{1} states, respectively. Additional evidence for this interpretation is provided by shell-model calculations for 92Zr and 94Mo Werner et al. (2002); Lisetskiy et al. (2000); Fransen et al. (2003), indicating dominant ν=2\nu=2, j=4j=4 configurations for the lowest-lying 4+4^{+} states. These are by definition identified with gg-bosons in the IBM; here, ν\nu denotes the seniority.

The study in Ref. Casperson et al. (2013) was based on the only experimentally known case at that time. The intention of the present work is to show, that the case of 94Mo is not exceptional, but that the presence of hexadecapole components in the wave functions of low-lying 4+4^{+} states in near-spherical nuclei is a general phenomenon. For this purpose, we have studied the heaviest stable N=52N=52 isotone 96Ru in two proton-scattering experiments. In addition, the structure of the low-lying 4+4^{+} states was investigated in the framework of sdgsdg-IBM-2 calculations. Details on the experimental aspects will be given in a more extensive article.

Experiments. To identify MSS based on absolute transition strength, two inelastic proton scattering experiments were performed. The first one at the Wright Nuclear Structure Laboratory (WNSL) at Yale University, USA, the second one at the Institute for Nuclear Physics at the University of Cologne, Germany.

In the former, an 8.4MeV8.4~\mathrm{MeV} proton beam, provided by the ESTU Tandem Accelerator, impinged on a 106μg/cm2106~\mathrm{\mu g/cm^{2}} enriched 96Ru target, supported by a 12C backing with a thickness of 14μg/cm214~\mathrm{\mu g/cm^{2}}. The scattered protons were detected using five silicon surface-barrier detectors, positioned predominantly at backward angles. For the γ\gamma-ray detection, eight BGO-shielded Clover-type HPGe detectors of the YRAST Ball spectrometer Beausang et al. (2000) were used. Further information on the experimental setup can be found in Ref. Elvers et al. (2011). From the energy information of scattered protons, the excitation energy ExE_{x} was deduced on an event-by-event basis. Thus, γ\gamma-decay branching ratios were extracted with high sensitivity from the acquired pγp\gamma coincidence data by gating on a specific excitation energy Wilhelm et al. (1996). Spin quantum numbers and multipole mixing ratios were obtained by means of the γγ\gamma\gamma angular-correlation technique Krane et al. (1973).

For the extraction of level lifetimes, a second proton-scattering experiment was performed at the Institute for Nuclear Physics at the University of Cologne. The same target was bombarded with a 7.0MeV7.0~\mathrm{MeV} proton beam, provided by the 10 MV FN Tandem accelerator. For the coincident detection of the scattered protons and de-exciting γ\gamma-rays, the particle-detector array SONIC, equipped with six passivated implanted planar silicon (PIPS) detectors, was embedded within the γ\gamma-ray spectrometer HORUS. Nuclear level lifetimes were measured by means of the Doppler-shift attenuation method (DSAM) Alexander and Forster (1978); Petkov et al. (1998) using pγp\gamma coincidence data Seaman et al. (1969). Peak centroids were extracted from γ\gamma-ray spectra that were gated on the excitation energy of the level of interest. This way, feeding from higher-lying states is eliminated. The stopping process of the recoil nuclei in the target and stopper material was modeled by means of a Monte-Carlo simulation Currie (1969) using the computer code dstop96 Petkov et al. (1998) which is based on the code desastop Winter (1983). More detailed information on the experimental technique and the data analysis will be the subject of an upcoming publication. Absolute transition strengths were finally calculated from the combined experimental data of both experiments.

Mixed-symmetry octupole excitations. For the J=3J=3 state of 96Ru at 3076keV3076~\mathrm{keV}, a negative parity has been previously assigned based on the observation of a γ\gamma decay to the 55^{-} state at 2588keV2588~\mathrm{keV} Adamides et al. (1986). As in Klein et al. (2002), this γ\gamma decay was not confirmed in the present experiments. However, since the 3ms3^{-}_{\mathrm{ms}} candidates of 94Mo (3011keV3011~\mathrm{keV}) and 92Zr (3040keV3040~\mathrm{keV}) have been observed at similar excitation energies, a negative parity was assigned tentatively. With this assumption, an M1M1 transition strength of B(M1)=0.14(4)μN2B(M1)=0.14(4)~\mathrm{\mu_{N}^{2}} was obtained for the 32()313^{(-)}_{2}\rightarrow~3^{-}_{1} transition. Therewith, the 32()3^{(-)}_{2} state is a likely candidate for the one-phonon MS octupole state. As for the case of 94Mo, an E1E1 strength of B(E1)=0.14(3)mW.u.B(E1)=0.14(3)~\mathrm{mW.u.} to the known 2ms+2^{+}_{\mathrm{ms}} state at Ex=2283keVE_{x}=2283~\mathrm{keV} was obtained. However, only a weak E1E1 strength of B(E1)=0.0017(3)mW.u.B(E1)=0.0017(3)~\mathrm{mW.u.} was extracted for the 32()2s+3^{(-)}_{2}\rightarrow~2^{+}_{\mathrm{s}} transition.

As expected for collective excitations, the 32313^{-}_{2}\rightarrow~3^{-}_{1} M1M1 matrix element scales with the one for the 2ms+2s+2^{+}_{\mathrm{ms}}\rightarrow~2^{+}_{\mathrm{s}} transition for several nuclei in the A100A\approx 100 mass region Scheck et al. (2010), in particular also for the N=52N=52 isotones 92Zr and 94Mo. With the bare gg factors (gπ=1g_{\pi}=1 and gν=0g_{\nu}=0), a value of 14/51.67\sqrt{14/5}\approx 1.67 is predicted in the Uπν(1)Uπν(5)Uπν(7)U_{\pi\nu}(1)\otimes U_{\pi\nu}(5)\otimes U_{\pi\nu}(7) limit of the sdfsdf-IBM-2 for the ratio of the matrix elements Smirnova et al. (2000). The experimental ratios are close to unity but stay rather constant Scheck et al. (2010). Only the value for 96Mo deviates from the others by a factor of 2. From our new data, we calculated a ratio of 31M132()2s+M12ms+=0.53(9)\frac{\left<3^{-}_{1}\left||M1\right||3^{(-)}_{2}\right>}{\left<2^{+}_{\mathrm{s}}\left||M1\right||2^{+}_{\mathrm{ms}}\right>}=0.53(9) for 96Ru, close to the value for 96Mo. The deviation of the ratio for 96Ru compared to the values for the other N=52N=52 isotones might result from the more O(6)O(6)-like structure of 96Ru compared to, e.g., 94Mo (see below).

Hexadecapole excitations. For the J=4J=4 state of 96Ru at Ex=2462keVE_{x}=2462~\mathrm{keV}, a positive parity was assigned because of a newly observed γ\gamma-decay to the 21+2^{+}_{1} state. A lifetime of τ=14040+70fs\tau=140^{+70}_{-40}~\mathrm{fs} has been previously reported for this state Adamides et al. (1986), characterized by large uncertainties in the determination of the Doppler-shift attenuation factor. From our present analysis a lifetime of τ=72(5)fs\tau=72(5)~\mathrm{fs} was extracted. Figure 1 shows the centroid energy of the Eγ0=944keVE_{\gamma}^{0}=944~\mathrm{keV} 42+41+4^{+}_{2}\rightarrow~4^{+}_{1} γ\gamma-transition as a function of cos(θ)\cos(\theta), where θ\theta is the angle between the initial direction of motion of the recoil nucleus and the direction of the γ\gamma-ray emission. For the transition to the 41+4^{+}_{1} state, an M1M1 transition strength of 0.90(18)μN20.90(18)~\mathrm{\mu_{N}^{2}} was derived, which is even stronger than the M1M1 strength of the 2ms+2s+2^{+}_{\mathrm{ms}}\rightarrow~2^{+}_{\mathrm{s}} transition Pietralla et al. (2001). The M1M1 strength between the lowest-lying 4+4^{+} states of 94Mo is of comparable size Fransen et al. (2003). Hence, the 42+4^{+}_{2} state is a likely candidate to show one-phonon hexadecapole MS contributions.

Refer to caption
Figure 1: Centroid shift of the Eγ0=944keVE_{\gamma}^{0}=944~\mathrm{keV} 42+41+4^{+}_{2}\rightarrow~4^{+}_{1} γ\gamma-transition of 96Ru as a function of cos(θ)\cos(\theta). θ\theta is the angle between the recoil direction of motion and the direction in which the γ\gamma ray is emitted. From the slope, the Doppler-shift attenuation factor is calculated.

sdgsdg-IBM-2 calculations. The first sdgsdg-IBM-2 calculations on the N=52N=52 isotones were performed by Casperson et al. for the nucleus 94Mo Casperson et al. (2013). For the first time, the strong M1M1 transition between the lowest-lying 4+4^{+} states in 94Mo was reproduced without deteriorating the description of the well established quadrupole mixed-symmetry features. Motivated by this work, we chose the same Hamiltonian and transition operators for the description of 96Ru:

H^\displaystyle\hat{H} =\displaystyle= c{(1ζ)(n^dπ+n^dν+α(n^gπ+n^gν))\displaystyle c\Big{\{}(1-\zeta)\big{(}\hat{n}_{d_{\pi}}+\hat{n}_{d_{\nu}}+\alpha(\hat{n}_{g_{\pi}}+\hat{n}_{g_{\nu}})\big{)} (1)
ζ4N(Q^π+Q^ν)(Q^π+Q^ν)\displaystyle-\frac{\zeta}{4N}(\hat{Q}_{\pi}+\hat{Q}_{\nu})\cdot(\hat{Q}_{\pi}+\hat{Q}_{\nu})
+λsdM^sd+λsgM^sg},\displaystyle+\lambda_{sd}\hat{M}_{sd}+\lambda_{sg}\hat{M}_{sg}\Big{\}},

with

Q^ρ\displaystyle\hat{Q}_{\rho} =\displaystyle= [sρd~ρ+dρs~ρ](2)+β[dρg~ρ+gρd~ρ](2)+\displaystyle[s_{\rho}^{\dagger}\tilde{d}_{\rho}+d_{\rho}^{\dagger}\tilde{s}_{\rho}]^{(2)}+\beta[d_{\rho}^{\dagger}\tilde{g}_{\rho}+g_{\rho}^{\dagger}\tilde{d}_{\rho}]^{(2)}+ (2)
χd[dρd~ρ](2)+χg[gρg~ρ](2),\displaystyle\chi_{d}[d_{\rho}^{\dagger}\tilde{d}_{\rho}]^{(2)}+\chi_{g}[g_{\rho}^{\dagger}\tilde{g}_{\rho}]^{(2)},

and ρ=π,ν\rho=\pi,\nu. The M1M1 and E2E2 transition operators are defined as

T^(M1)=34π(gdπL^dπ+gdνL^dν+ggπL^gπ+ggνL^gν)\hat{T}(M1)=\sqrt{\frac{3}{4\pi}}\left(g_{d_{\pi}}\hat{L}_{d_{\pi}}+g_{d_{\nu}}\hat{L}_{d_{\nu}}+g_{g_{\pi}}\hat{L}_{g_{\pi}}+g_{g_{\nu}}\hat{L}_{g_{\nu}}\right) (3)

and

T^(E2)=eBπQ^π+eBνQ^ν,\hat{T}(E2)=e_{B_{\pi}}\hat{Q}_{\pi}+e_{B_{\nu}}\hat{Q}_{\nu}~, (4)

respectively. For detailed information on the Hamiltonian and the transition operators, see Casperson et al. (2013). The calculations were performed with the computer code ArbModel Heinze (2008). The number of valence bosons was chosen with respect to 100Sn as inert core, resulting in Nπ=3N_{\pi}=3 and Nν=1N_{\nu}=1.

Table 1: sdgsdg-IBM-2 parameters obtained from the parameter scan for 96Ru compared with the parameters obtained for 94Mo Casperson et al. (2013). eBπe_{B_{\pi}} is quoted in units of W.u.~\sqrt{\mathrm{W.u.}}, gρπg_{\rho_{\pi}} is quoted in units of μN\mu_{N}. See also Casperson et al. (2013) for details.
Parameter 96Ru 94Mo
cc 5.585.58 3.533.53
ζ\zeta 0.780.78 0.640.64
α\alpha 1.11.1 1.41.4
β\beta 1.51.5 1.861.86
λsd\lambda_{sd} 0.0260.026 0.050.05
λsg\lambda_{sg} 0.0180.018 0.0160.016
eBπe_{B_{\pi}} 2.262.26 1.831.83
gπg_{\pi} 1.341.34 1.441.44

To reduce the number of parameters, the proton gg-factors gdπg_{d_{\pi}} and ggπg_{g_{\pi}} were set equal and the neutron effective charges eBνe_{B_{\nu}} and gg factors gdνg_{d_{\nu}} and ggνg_{g_{\nu}} were set to zero, as were the parameters χd\chi_{d} and χg\chi_{g}. To fix the remaining five free parameters of the Hamiltonian, a parameter scan was performed to optimize the calculation to reproduce the energy of the 21+2^{+}_{1} state, the R4/2R_{4/2} ratio, the B(E2;41+21+)/B(E2;21+01+)B(E2;4^{+}_{1}\rightarrow~2^{+}_{1})/B(E2;2^{+}_{1}\rightarrow~0^{+}_{1}) ratio, the energy of the known one-phonon quadrupole MSS, which is the 23+2^{+}_{3} state of 96Ru Pietralla et al. (2001), and the B(M1;42+41+)/B(M1;23+21+)B(M1;4^{+}_{2}\rightarrow~4^{+}_{1})/B(M1;2^{+}_{3}\rightarrow~2^{+}_{1}) ratio.

The effective charges eBρe_{B_{\rho}} set the scale for E2E2 transitions and were fixed to reproduce the B(E2;21+01+)B(E2;2^{+}_{1}\rightarrow~0^{+}_{1}) value. The gg factor gπ=gdπ=ggπg_{\pi}=g_{d_{\pi}}=g_{g_{\pi}} was fixed to describe the B(M1;23+21+)B(M1;2^{+}_{3}\rightarrow~2^{+}_{1}) value. The obtained parameters are quoted in Table 1 and are similar to those obtained for 94Mo Casperson et al. (2013). The larger value of ζ=0.78\zeta=0.78 for 96Ru indicates a more O(6)O(6)-like structure compared to 94Mo. Only little difference is found for the excitation energies of the dd and gg bosons for 96Ru, governed by the parameter α\alpha.

The sdgsdg-IBM-2 with the chosen Hamiltonian and parameters is a simplified approach. A more sophisticated description has to include for example non-vanishing parameters χd,gρ\chi_{d,g}^{\rho} to allow SU(3)SU(3) contributions. However, the choice of χd,gπχd,gν\chi^{\pi}_{d,g}\neq\chi^{\nu}_{d,g} would result in a breaking of FF-spin symmetry, which was avoided to maintain a clear distinction between MSS and FSS. In addition, the chosen Hamiltonian conserves dd-parity Pietralla et al. (1998).

Refer to caption
Figure 2: Comparison of experimental (upper panel) and calculated (lower panel) level schemes for positive-parity low-spin states of 96Ru. M1M1 and E2E2 transitions are indicated by gray and black arrows, respectively. The widths of the arrows are proportional to the transition strengths. States for which the IBM predicts an FF-spin quantum number of Fmax1F_{\mathrm{max}}-1 are marked with dashed lines.

The calculated level scheme is in good agreement with the data, as shown in Fig. 2. In particular, the excitation energies of the 41,2+4^{+}_{1,2} states are well reproduced. Only for the excitation energies of the 24+2^{+}_{4} and 25+2^{+}_{5} states significant deviations from the experimental values were obtained.

Table 2: Experimental level energies and E2E2 and M1M1 transition strengths of 96Ru compared with the results from sdgsdg-IBM-2 calculations. The predicted E4E4 transition strengths for the decay of the lowest 4+4^{+} states to the ground state are shown as well. E2E2 and E4E4 strengths are given in W.u.\mathrm{W.u.}, M1M1 transitions are quoted in units of μN2\mu_{N}^{2}. If not indicated differently, the experimental values were obtained in this work. The FF-spin quantum number predicted by the IBM is shown in the second column.
Energies Transition strengths B(σλ\sigma\lambda)
FF EExpE_{\mathrm{Exp}} EIBME_{\mathrm{IBM}} JiπJfπJ^{\pi}_{i}\rightarrow J^{\pi}_{f} σλ\sigma\lambda Exp. IBM
01+0^{+}_{1} 2 0.000 0.000 - - - -
11+1^{+}_{1} 1 3.154 2.944 11+01+1^{+}_{1}\rightarrow 0^{+}_{1} M1M1 0.17(5)111A value of 0.30(4)μN20.30(4)~\mathrm{\mu_{N}^{2}} was reported in Linnemann et al. (2005). 0.13
21+2^{+}_{1} 2 0.832 0.832 21+01+2^{+}_{1}\rightarrow 0^{+}_{1} E2E2 18.1(5)222Adopted from Klein et al. (2002). 18.4
22+2^{+}_{2} 2 1.932 2.165 22+21+2^{+}_{2}\rightarrow 2^{+}_{1} M1M1 0.05(2) 0
22+21+2^{+}_{2}\rightarrow 2^{+}_{1} E2E2 28(9)333A value of 19(4)W.u.19(4)~\mathrm{W.u.} was reported in Klein et al. (2002). 24
23+2^{+}_{3} 1 2.283 2.322 23+21+2^{+}_{3}\rightarrow 2^{+}_{1} M1M1 0.69(14)444A value of 0.78(23)μN20.78(23)~\mathrm{\mu_{N}^{2}} was reported in Pietralla et al. (2001). 0.69
23+01+2^{+}_{3}\rightarrow 0^{+}_{1} E2E2 1.36(19) 2.53
31+3^{+}_{1} 2 2.852 3.072 31+21+3^{+}_{1}\rightarrow 2^{+}_{1} E2E2 <0.01<0.01 0
31+21+3^{+}_{1}\rightarrow 2^{+}_{1} M1M1 0.008(1) 0
31+22+3^{+}_{1}\rightarrow 2^{+}_{2} E2E2 <5.58<5.58 14.7
32+3^{+}_{2} 1 2.898 3.158 32+21+3^{+}_{2}\rightarrow 2^{+}_{1} E2E2 <0.28<0.28 3.17
32+22+3^{+}_{2}\rightarrow 2^{+}_{2} E2E2 0.02(4) 0
32+22+3^{+}_{2}\rightarrow 2^{+}_{2} M1M1 0.078(14) 0.563
41+4^{+}_{1} 2 1.518 1.523 41+21+4^{+}_{1}\rightarrow 2^{+}_{1} E2E2 22.6(17)b 25.6
41+01+4^{+}_{1}\rightarrow 0^{+}_{1} E4E4 - 1.09
42+4^{+}_{2} 1 2.462 2.482 42+41+4^{+}_{2}\rightarrow 4^{+}_{1} M1M1 0.90(18) 1.13
42+21+4^{+}_{2}\rightarrow 2^{+}_{1} E2E2 1.52(19) 1.44
42+23+4^{+}_{2}\rightarrow 2^{+}_{3} E2E2 <4103<4\cdot 10^{3} 10.5
42+01+4^{+}_{2}\rightarrow 0^{+}_{1} E4E4 - 0.55
43+4^{+}_{3} 2 - 2.884 43+01+4^{+}_{3}\rightarrow 0^{+}_{1} E4E4 - 0
43+41+4^{+}_{3}\rightarrow 4^{+}_{1} M1M1 - 0
44+4^{+}_{4} 2 - 3.025 44+01+4^{+}_{4}\rightarrow 0^{+}_{1} E4E4 - 0.84
44+41+4^{+}_{4}\rightarrow 4^{+}_{1} M1M1 - 0

The experimental and calculated level energies as well as the M1M1 and E2E2 transition strengths are compiled in Table 2. As for the level scheme, the transition strengths are in overall agreement. Only the transitions depopulating the 3+3^{+} states are predicted too strong by about one order of magnitude. For transitions which are forbidden for the applied Hamiltonian, only small transition strengths are observed experimentally. Of particular interest for the investigation of hexadecapole components in the 41,2+4^{+}_{1,2} states is the 42+41+4^{+}_{2}\rightarrow~4^{+}_{1} M1M1 transition. The IBM predicts a transition strength of 1.13μN21.13~\mu_{N}^{2} which is close to the experimental value of 0.90(18)μN20.90(18)~\mu_{N}^{2}. No other 4+4^{+} state is found to show enhanced M1M1 transitions to the 41+4^{+}_{1} state in the calculations. Also the 42+21+4^{+}_{2}\rightarrow~2^{+}_{1} E2E2 transition strength is reproduced by the model. The predicted E2E2 branching with sizable strength of 10.5W.u.10.5~\mathrm{W.u.} to the 23+2^{+}_{3} state is way below the experimental sensitivity limit.

The predicted FF-spin quantum numbers are shown in Table 2 as well. FF-spin quantum numbers of Fmax1F_{\mathrm{max}}-1 are obtained for the 23+2^{+}_{3}, 11+1^{+}_{1}, 32+3^{+}_{2}, and 42+4^{+}_{2} states. From their decay properties, the 23+2^{+}_{3} state and the 11+1^{+}_{1} and 32+3^{+}_{2} states can be identified as the experimentally known one- and two-phonon quadrupole MSS, respectively Pietralla et al. (2001); Klein et al. (2002). They will be discussed in an upcoming publication. A mixed-symmetry character is also predicted for the 42+4^{+}_{2} state. A variation of the strength parameters λsd\lambda_{\mathrm{sd}} and λsg\lambda_{\mathrm{sg}} revealed, that the 42+4^{+}_{2} state is most sensitive to the M^sg\hat{M}_{sg} operator. Thus a one-phonon mixed-symmetry hexadecapole character is obtained for the 42+4^{+}_{2} state. In contrast, a fully-symmetric character is predicted for the 41+4^{+}_{1} state based on the calculated FF-spin quantum number.

To quantify the amount of M1M1 strength of the 42+41+4^{+}_{2}\rightarrow~4^{+}_{1} transition related to the gg- and dd-boson parts of the M1M1 operator, the 41+M142+\left<4^{+}_{1}\left||M1\right||4^{+}_{2}\right> matrix element was recalculated with the values gdπ=0g_{d_{\pi}}=0 and ggπ=0g_{g_{\pi}}=0, respectively. The respective other value was kept at the value obtained from the parameter scan. With a contribution of 83%83\mathrm{\%} the 41+M142+\left<4^{+}_{1}\left||M1\right||4^{+}_{2}\right> matrix element is dominated by the gg-boson part of the M1M1 operator, while only 17%17\mathrm{\%} is related to the dd-boson part.

Refer to caption
Figure 3: Calculated gg- and (d+gd+g)-boson contents in the low-lying positive parity states of 96Ru, indicated with black and gray bars, respectively. The remaining fraction is related to ss-boson components. Enhanced gg-boson contents are predicted for the 11+1^{+}_{1}, 31+3^{+}_{1}, 41+4^{+}_{1}, and 42+4^{+}_{2} states.

The dd- and gg-boson contents of the low-lying, positive-parity low-spin states are shown in Fig. 3. With a value of 23%23~\mathrm{\%}, the largest gg-boson content is obtained for the 42+4^{+}_{2} state, supporting the one-phonon hexadecapole assignment. A similar gg-boson contribution is predicted for the 31+3^{+}_{1} state. This can be explained assuming a dominant (gd)(3)(g^{\dagger}d^{\dagger})^{(3)} structure. In this case the E2E2 transition to the 21+2^{+}_{1} state would be forbidden by dd-parity selection rules. This is supported by the calculation and is in remarkable agreement with the data (see Table 2). Also for the 41+4^{+}_{1} state a large gg-boson content is obtained which is considerably enhanced compared to, e.g., the 22+2^{+}_{2} state, which is known to be the 2+2^{+} member of the (2s+2s+2^{+}_{\mathrm{s}}\otimes 2^{+}_{\mathrm{s}}) triplet. In addition to the gg-boson content, a dd-boson contribution of about 30%30~\mathrm{\%} is predicted by the IBM for the 41+4^{+}_{1} state. For the chosen parameter of β\beta, a mixing of the one-phonon gg-boson excitation with two-phonon dd-boson excitations is allowed, which are at similar energies. This is also reflected by the collective B(E2;41+21+)B(E2;4^{+}_{1}\rightarrow~2^{+}_{1}) transition strength. In contrast, the dd-boson content of the 42+4^{+}_{2} state is a factor of 2 less compared to the 41+4^{+}_{1} state.

If the enhanced gg-boson contributions can be attributed to one-phonon hexadecapole contents in the wave functions, this should lead to sizable E4E4 strengths. The E4E4 transition operator was defined in the same way as in Casperson et al. (2013), namely

T^(E4)=eπ1[sπg~π+gπs~π](4).\hat{T}(E4)=e_{\pi 1}\left[s_{\pi}^{\dagger}\tilde{g}_{\pi}+g_{\pi}^{\dagger}\tilde{s}_{\pi}\right]^{(4)}. (5)

Since no B(E4)B(E4) strengths are known for 96Ru so far, the eπ1e_{\pi 1} value was arbitrarily set to 1W.u.1~\sqrt{\mathrm{W.u.}}. With this, E4E4 transition strengths of 1.091.09 and 0.55W.u.0.55~\mathrm{W.u.} are predicted for the 41+4^{+}_{1} and 42+4^{+}_{2} states, respectively. Their E4E4 strengths are enhanced compared to, e.g., that of the 43+4^{+}_{3} state. However, a similar E4E4 transition to the ground state is predicted for the 44+4^{+}_{4} state as well. Further constraints for the E4E4 transition operator might be obtained from a measurement of E4E4 strengths, e.g., in (e,e)(e,e^{\prime}) experiments.

To conclude, the sdgsdg-IBM-2 calculations provide strong evidences for MS and FS one-phonon hexadecapole contributions to the lowest-lying 4+4^{+} states of 96Ru. However, other mechanisms, such as the gg factors of the individual microscopic configurations in their wave functions have to be considered as well as being responsible for the generation of M1M1 strengths between low-lying 4+4^{+} states. They might be studied within the scope of shell-model calculations with realistic interactions or the quasiparticle phonon model (QPM).

Comparison to 92Zr and 94Mo. With the new experimental data obtained in this work, one-phonon MSS of quadrupole and possible octupole and hexadecapole character were studied in the N=52N=52 isotones as a function of proton number. Figure 4 shows the M1M1 transition strengths of the one-phonon MS to FS states for the different multipolarities for the nuclei 92Zr, 94Mo, and 96Ru. While for the quadrupole states an increase of M1M1 strength is observed with increasing proton number, the M1M1 strength decreases from 94Mo to 96Ru for higher multipolarities. It has to be mentioned, that the decrease might be related to a possible fragmentation of the one-phonon octupole and hexadecapole mixed-symmetry states which can not be excluded on the basis of the present experimental data.

Refer to caption
Figure 4: M1M1 strengths of the one-phonon MSS (JIIπJ^{\pi}_{II}) to FSS (JIπJ^{\pi}_{I}) transitions in the even-even N=52N=52 isotones of quadrupole (full squares), octupole (full circles), and hexadecapole (full diamonds) character. The values obtained in sdgsdg-IBM-2 calculations (open triangles) are shown as well. Data for 92Zr and 94Mo are taken from Fransen et al. (2005) and Fransen et al. (2003), respectively. The sdgsdg-IBM-2 results for 94Mo are adopted from Casperson et al. (2013).

The trend for the quadrupole states agrees with shell-model calculations, predicting a maximum M1M1 strength for 96Ru, based on the concept of configuration isospin polarization (CIP) Holt et al. (2007). Unfortunately, no results on 4+4^{+} states were reported in Ref. Holt et al. (2007). The decrease of the M1M1 strengths for the 4+4^{+} states with increasing proton number is not reproduced by the IBM, which predicts a similar trend as for the quadrupole states.

Summary. The observation of strong M1M1 transitions in 96Ru between the lowest-lying 33^{-} and 4+4^{+} states provides experimental evidence for one-phonon mixed-symmetry octupole and hexadecapole components in the wavefunctions of the 32()3^{(-)}_{2} and 42+4^{+}_{2} states, respectively. The interpretation on the latter is supported by sdgsdg-IBM-2 calculations. Together with the results of Ref. Casperson et al. (2013), the new data on 96Ru suggest that the presence of hexadecapole components in the wave functions of low-lying 4+4^{+} states is a general phenomenon in near spherical nuclei.

Acknowledgments. The authors thank R. Casperson and S. Heinze for support with the IBM calculations and A. Poves for useful discussions. Furthermore, we highly acknowledge the support of the accelerator staff at WNSL, Yale and IKP, Cologne during the beam times. This work is supported by the DFG under grant No. ZI 510/4-2 and grant No. SFB 634, the U.S. Department of Energy grant No. DE-FG02-01ER40609, and the BMBF grant No. 05P12RDFN8. P.P. is grateful for the financial support of the Bulgarian Science Fund under contract DFNI-E 01/2. D.R. and D.S. acknowledge the German Academic Exchange Service (DAAD) for financial support. S.G.P. and M.S. are supported by the Bonn-Cologne Graduate School of Physics and Astronomy.

References

  • Heyde and Sau (1986) K. Heyde and J. Sau, Phys. Rev. C 33, 1050 (1986).
  • Iachello (1984) F. Iachello, Phys. Rev. Lett. 53, 1427 (1984).
  • Arima and Iachello (1975) A. Arima and F. Iachello, Phys. Rev. Lett. 35, 1069 (1975).
  • Arima et al. (1977) A. Arima, T. Otsuka, F. Iachello,  and I. Talmi, Phys. Lett. B 66, 205 (1977).
  • Otsuka et al. (1978) T. Otsuka, A. Arima,  and F. Iachello, Nucl. Phys. A 309, 1 (1978).
  • van Isacker et al. (1986) P. van Isacker, K. Heyde, J. Jolie,  and A. Sevrin, Ann. Phys. 171, 253 (1986).
  • Heyde et al. (2010) K. Heyde, P. von Neumann-Cosel,  and A. Richter, Rev. Mod. Phys. 82, 2365 (2010).
  • Pietralla et al. (2008) N. Pietralla, P. von Brentano,  and A. F. Lisetskiy, Prog. Part. Nucl. Phys. 60, 225 (2008).
  • Pietralla et al. (1999) N. Pietralla, C. Fransen, D. Belic, P. von Brentano, C. Frießner, U. Kneissl, A. Linnemann, A. Nord, H. H. Pitz, T. Otsuka, I. Schneider, V. Werner,  and I. Wiedenhöver, Phys. Rev. Lett. 83, 1303 (1999).
  • Pietralla et al. (2000) N. Pietralla, C. Fransen, P. von Brentano, A. Dewald, A. Fitzler, C. Frießner,  and J. Gableske, Phys. Rev. Lett. 84, 3775 (2000).
  • Pietralla et al. (2001) N. Pietralla, C. J. Barton, R. Krücken, C. W. Beausang, M. A. Caprio, R. F. Casten, J. R. Cooper, A. A. Hecht, H. Newman, J. R. Novak,  and N. V. Zamfir, Phys. Rev. C 64, 031301(R) (2001).
  • Werner et al. (2002) V. Werner, D. Belic, P. von Brentano, C. Fransen, A. Gade, H. von Garrel, J. Jolie, U. Kneissl, C. Kohstall, A. Linnemann, A. F. Lisetskiy, N. Pietralla, H. H. Pitz, M. Scheck, K.-H. Speidel, F. Stedile,  and S. W. Yates, Phys. Lett. B 550, 140 (2002).
  • Klein et al. (2002) H. Klein, A. F. Lisetskiy, N. Pietralla, C. Fransen, A. Gade,  and P. von Brentano, Phys. Rev. C 65, 044315 (2002).
  • Fransen et al. (2003) C. Fransen, N. Pietralla, Z. Ammar, D. Bandyopadhyay, N. Boukharouba, P. von Brentano, A. Dewald, J. Gableske, A. Gade, J. Jolie, U. Kneissl, S. R. Lesher, A. F. Lisetskiy, M. T. McEllistrem, M. Merrick, H. H. Pitz, N. Warr, V. Werner,  and S. W. Yates, Phys. Rev. C 67, 024307 (2003).
  • Fransen et al. (2005) C. Fransen, V. Werner, D. Bandyopadhyay, N. Boukharouba, S. R. Lesher, M. T. McEllistrem, J. Jolie, N. Pietralla, P. von Brentano,  and S. W. Yates, Phys. Rev. C 71, 054304 (2005).
  • Linnemann et al. (2005) A. Linnemann, C. Fransen, M. Gorska, J. Jolie, U. Kneissl, P. Knoch, D. Mücher, H. H. Pitz, M. Scheck, C. Scholl,  and P. von Brentano, Phys. Rev. C 72, 064323 (2005).
  • Orce et al. (2006) J. N. Orce, J. D. Holt, A. Linnemann, C. J. McKay, S. R. Lesher, C. Fransen, J. W. Holt, A. Kumar, N. Warr, V. Werner, J. Jolie, T. T. S. Kuo, M. T. McEllistrem, N. Pietralla,  and S. W. Yates, Phys. Rev. Lett. 97, 062504 (2006).
  • Smirnova et al. (2000) N. A. Smirnova, N. Pietralla, T. Mizusaki,  and P. van Isacker, Nucl. Phys. A 678, 235 (2000).
  • Scheck et al. (2010) M. Scheck, P. A. Butler, C. Fransen, V. Werner,  and S. W. Yates, Phys. Rev. C 81, 064305 (2010).
  • Casperson et al. (2013) R. J. Casperson, V. Werner,  and S. Heinze, Phys. Lett. B 721, 51 (2013).
  • Pietralla et al. (2003) N. Pietralla, C. Fransen, A. Gade, N. A. Smirnova, P. von Brentano, V. Werner,  and S. W. Yates, Phys. Rev. C 68, 031305(R) (2003).
  • Lisetskiy et al. (2000) A. F. Lisetskiy, N. Pietralla, C. Fransen, R. V. Jolos,  and P. von Brentano, Nucl. Phys. A 677, 100 (2000).
  • Beausang et al. (2000) C. W. Beausang, C. J. Barton, M. A. Caprio, R. F. Casten, J. R. Cooper, R. Krücken, B. Liu, J. R. Novak, Z. Wang, M. Wilhelm, A. N. Wilson, N. V. Zamfir,  and A. Zilges, Nucl. Instr. and Meth. A 452, 431 (2000).
  • Elvers et al. (2011) M. Elvers, S. Pascu, T. Ahmed, T. Ahn, V. Anagnostatou, N. Cooper, C. Deng, J. Endres, P. Goddard, A. Heinz, G. Ilie, E. Jiang, C. Küppersbusch, D. Radeck, D. Savran, N. Shenkov, V. Werner,  and A. Zilges, Phys. Rev. C 84, 054323 (2011).
  • Wilhelm et al. (1996) M. Wilhelm, E. Radermacher, A. Zilges,  and P. von Brentano, Phys. Rev. C 54, R449 (1996).
  • Krane et al. (1973) K. S. Krane, R. M. Steffen,  and R. M. Wheeler, At. Data Nucl. Data Tables 11, 351 (1973).
  • Alexander and Forster (1978) T. K. Alexander and J. S. Forster, Adv. Nucl. Phys. 10, 197 (1978).
  • Petkov et al. (1998) P. Petkov, J. Gableske, O. Vogel, A. Dewald, P. von Brentano, R. Krücken, R. Peusquens, N. Nicolay, A. Gizon, J. Gizon, D. Bazzacco, C. Rossi-Alvarez, S. Lunardi, P. Pavan, D. R. Napoli, W. Andrejtscheff,  and R. V. Jolos, Nucl. Phys. A 640, 293 (1998).
  • Seaman et al. (1969) G. G. Seaman, N. Benczer-Koller, M. C. Bertin,  and J. R. MacDonald, Phys. Rev. 188, 1706 (1969).
  • Currie (1969) W. M. Currie, Nucl. Instr. and Meth. 73, 173 (1969).
  • Winter (1983) G. Winter, Nucl. Instr. and Meth. 214, 537 (1983).
  • Adamides et al. (1986) E. Adamides, J. Sinatkas, L. D. Skouras, A. C. Xenoulis, E. N. Gazis, C. T. Papadopoulos,  and R. Vlastou, Phys. Rev. C 34, 791 (1986).
  • Heinze (2008) S. Heinze, “Computer program ArbModel,” unpublished, University of Cologne (2008).
  • Pietralla et al. (1998) N. Pietralla, P. von Brentano, A. Gelberg, T. Otsuka, A. Richter, N. A. Smirnova,  and I. Wiedenhöver, Phys. Rev. C 58, 191 (1998).
  • Holt et al. (2007) J. D. Holt, N. Pietralla, J. W. Holt, T. T. S. Kuo,  and G. Rainovski, Phys. Rev. C 76, 034325 (2007).