This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Model Predictive Control for T-S Fuzzy Markovian Jump Systems Using Dynamic Prediction Optimization

Bin Zhang binzhangusst@163.com Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai 200240, China
Abstract

In this paper, the model predictive control (MPC) problem is investigated for the constrained discrete-time Takagi-Sugeno fuzzy Markovian jump systems (FMJSs) under imperfect premise matching rules. To strike a balance between initial feasible region, control performance, and online computation burden, a set of mode-dependent state feedback fuzzy controllers within the frame of dynamic prediction optimizing (DPO)-MPC is delicately designed with the perturbation variables produced by the predictive dynamics. The DPO-MPC controllers are implemented via two stages: at the first stage, terminal constraints sets companied with feedback gain are obtained by solving a “min-max” problem; at the second stage, and a set of perturbations is designed felicitously to enlarge the feasible region. Here, dynamic feedback gains are designed for off-line using matrix factorization technique, while the dynamic controller state is determined for online over a moving horizon to gradually guide the system state from the initial feasible region to the terminal constraint set. Sufficient conditions are provided to rigorously ensure the recursive feasibility of the proposed DPO-MPC scheme and the mean-square stability of the underlying FMJS. Finally, the efficacy of the proposed methods is demonstrated through a robot arm system example.

keywords:
Marko jump systems; Model predictive control; Takagi-Sugeno fuzzy model; dynamic prediction optimization; mean-square stability.
journal: Elsevier

1 Introduction

With the rapid progress in science and technology, contemporary industrial control systems have grown increasingly intricate, characterized by a proliferation of nonlinearities and uncertainties. The Takagi-Sugeno (T-S) fuzzy modeling approach has emerged as a valuable tool for approximating these complex systems, making T-S fuzzy models integral to the field of control in recent decades. Noteworthy advancements in this area have been documented in various studies [23, 6, 24, 12]. On the other hand, Markovian jump systems (MJSs) have garnered significant attention from the systems science and engineering community due to their efficacy in describing systems experiencing abrupt changes or random fluctuations. By integrating mode variation with T-S fuzzy rules, fuzzy Markovian jump systems (FMJSs) have captured the interest of researchers across disciplines, particularly in the control domain, being a class of stochastic nonlinear dynamic systems. Previous research efforts in this realm include works such as [27, 29, 30]. It is worth noting that many existing studies predominantly utilize the perfectly matched premises (PMP) framework, also known as parallel distributed compensation (PDC), rather than the imperfectly matched premises (IMP) approach. This preference is primarily attributed to the computational complexity associated with IMP, despite its potential for reduced conservatism, as highlighted in [11].

As a cutting-edge modern intelligent control technology, model predictive control (MPC) has demonstrated immense potential in practical applications across various fields [8, 20, 33, 19]. This is primarily due to its significant advantages in efficiently managing optimization problems involving multiple variables and constraints. Numerous research endeavors have been dedicated to addressing MPC challenges in T-S fuzzy systems [4, 5, 13, 7]. For instance, in [21], the observer-based output feedback MPC problem was explored for a T-S fuzzy system with data loss. Moreover, in [22], a Razumikhin approach was introduced for time-delay fuzzy systems, alongside the provision of two robust MPC algorithms. Regrettably, limited results regarding the MPC problem of FMJSs [25] have been documented in existing literature, primarily due to the challenges associated with ensuring algorithm feasibility in the simultaneous presence of jump modes and fuzzy rules.

From a practical standpoint, computational burden and performance are consistently pivotal issues for MPC strategies, potentially influencing their integration into industrial engineering applications [3], particularly when dealing with a large number of fuzzy controller rules within the IMP category. In the case of online MPC strategies, the continual and substantial computation load over a moving horizon, coupled with the strict requirement for the initial system state to belong to the terminal constraint set around the origin, pose significant challenges to MPC’s practicality. On the other hand, off-line MPC strategies excel in reducing online computational complexity but face stability concerns, especially when dealing with model uncertainties and random variations [7, 18]. Despite extensive research efforts dedicated to studying both online and off-line MPC strategies, effectively addressing the aforementioned performance issues remains a substantial challenge. Consequently, establishing a comprehensive “off-line to online” design framework for MPC becomes not only essential but also pragmatic to preserve the strengths of both off-line and online approaches while overcoming their limitations.

To this end, an efficient MPC algorithm proposed in [9, 10] strikes a balance between off-line and on-line computation, which requires a lower on-line computation than full on-line MPC strategy in [18, 31]. Meanwhile, the convex formulation for dynamic prediction optimizing (DPO) on MPC, as discussed in [1, 15], enhances predictive control by aligning controller state dynamics with system state evolution. Building upon this, in [16], a new approach was proposed to improve the optimality of DPO-MPC apparently without increasing much online computational load. However, addressing hard constraints in DPO-MPC for complex dynamic systems like FMJSs remains relatively unexplored, motivating the focus of this paper.

In pursuit of enhanced efficiency, a novel MPC algorithm that combines elements of both off-line and online strategies was introduced in [9, 10]. This algorithm, requiring less online computation compared to full online MPC strategies [18, 31], offers an additional DoF to extend the initial feasible region. Subsequently, the concept of dynamic prediction optimizing (DPO) within MPC was explored through a convex formulation in works such as [1, 15]. This approach empowers the dynamics guiding the predicted controller state to evolve in alignment with the projected system state. Building upon this progress, [16] introduced a novel method to enhance the optimality of DPO-MPC without significantly increasing online computational overhead. However, despite the practical significance of dynamic systems like FMJSs, research on DPO-MPC problems with stringent constraints is still nascent. The identified knowledge gap forms the primary motivation for our current study.

Our objective in this paper is to present a comprehensive “off-line design and online synthesis” DPO-MPC scheme tailored for a specific discrete-time stochastic FMJSs with constraints. The primary contributions of this paper are detailed as follows. 1)The establishment of an innovative optimizing prediction dynamics framework for MPC design, specifically tailored for T-S FMJSs with hard constraints, marking a pioneering effort in this domain; 2)utilization of mathematical analysis techniques, such as variable substitution, matrix decomposition, and inequality manipulation, to address the non-convexity challenges arising from coupled variables and dynamic state variable introductions; 3)implementation of DPO technology to devise a more adaptable IPM control strategy, effectively mitigating the potential computational overload associated with IPM; 4)development of an “off-line design and online synthesis” scheme, as opposed to the complete online MPC scheme [18, 31], aimed at striking a harmonious balance between computational complexity, initial feasible region and control efficacy. This recursive algorithm structure ensures the requisite mean-square stability of the closing-loop MJSs, thus enhancing overall control performance and system stability.

The remaining sections of the paper are organized as follows. Section 2 presents the formulation of the addressed system model and the DPO-MPC scheme. In Section 3, the determination of the terminal constraint set and the design of the corresponding control parameters are discussed. The design scheme of perturbation is offered in Section 4 with respect to the “off-line to online synthesis” approach. A single-link robot arm system example is presented in Section 5 and the paper is concluded in Section 6.

Notation. m\mathbb{R}^{m} represents the mm dimensional Euclidean space. N\mathcal{I}_{N} denotes a sequence from 11 to NN, i.e.{1,2,,N}\{1,2,\ldots,N\}. xs+|sx_{s+\ell|s} and us+|su_{s+\ell|s} stands for the predicted state and control move at the future time instant s+s+\ell according to the information at the current time instant ss, respectively, and s|ss\ast_{s|s}\doteq\ast_{s}. col{}{\rm col}\{\bullet\} and diag{}{\rm diag}\{\bullet\} indicate a column block matrix and a diagonal matrix, respectively. [][\,\cdot\,]_{\hbar} denotes the \hbarth row of a vector.

2 Problem Formulation and Preliminaries

2.1 System Model

Let us consider a discrete-time FMJSs using IF-THEN rules:
Plant Rule \hbar: IF f(1)(xs)f^{(1)}(x_{s}) is (1)\mathcal{F}_{\hbar}^{(1)}, f(2)(xs)f^{(2)}(x_{s}) is (2)\mathcal{F}_{\hbar}^{(2)}, \ldots, and f(r)(xs)f^{(r)}(x_{s}) is (r)\mathcal{F}_{\hbar}^{(r)},

THENxs+1=Aζs,xs+Bζs,us\text{THEN}~{}~{}\begin{aligned} x_{s+1}=A_{\zeta_{s},\hbar}x_{s}+B_{\zeta_{s},\hbar}u_{s}\end{aligned} (1)

where T={1,2,,t}\hbar\in\mathcal{I}_{T}=\{1,2,\ldots,t\}, tt symbolizes the number of IF-THEN rules;f(xs)=[f(1)(xs),f(2)(xs),f(x_{s})=[f^{(1)}(x_{s}),f^{(2)}(x_{s}), ,f(r)(xs)]T\cdots,f^{(r)}(x_{s})]^{T} represents the premise variable of the system and {(α),α=1,2,,r}\{\mathcal{F}_{\hbar}^{(\alpha)},\alpha=1,2,\ldots,r\} represents a fuzzy set; xsnxx_{s}\in{\mathbb{R}}^{n_{x}} and usnuu_{s}\in{\mathbb{R}}^{n_{u}} represent the system state and the system control input, respectively. Aζs,A_{\zeta_{s},\hbar} and Bζs,B_{\zeta_{s},\hbar} are the known constant matrices with appropriate dimensions.

The stochastic process ζs\zeta_{s} denotes a homogeneous Markov chain in a finite state space N\mathcal{I}_{N} with the transition probability

pıȷ=𝑃𝑟𝑜𝑏{ζs+1=ȷ|ζs=ı},ı,ȷN\displaystyle p_{\imath\jmath}=\it{Prob}\big{\{}\zeta_{s+1}=\jmath|\zeta_{s}=\imath\big{\}},\quad\forall\imath,\jmath\in{\mathcal{I}_{N}} (2)

where 0pıȷ10\leq p_{\imath\jmath}\leq 1. =[pıȷ]\mathbb{P}=[p_{\imath\jmath}] is called the transition probability matrix. The initial state x0x_{0} and mode ζ0\zeta_{0} are indicated. For each specific ζs=ıN\zeta_{s}=\imath\in\mathcal{I}_{N}, system matrices are represented by Aı,A_{\imath,\hbar}, Bı,B_{\imath,\hbar}.

Aided by the T-S fuzzy approach, we establish the overall FMJSs with ζs=ı\zeta_{s}=\imath as follows:

xs+1=Aıθxs+Bıθus\displaystyle x_{s+1}=A_{\imath\theta}x_{s}+B_{\imath\theta}u_{s} (3)

where

Aıθ==1tθ(f(xs))Aı,,Bıθ==1tθ(f(xs))Bı,\displaystyle A_{\imath\theta}=\sum_{\hbar=1}^{t}\theta_{\hbar}(f(x_{s}))A_{\imath,\hbar},~{}B_{\imath\theta}=\sum_{\hbar=1}^{t}\theta_{\hbar}(f(x_{s}))B_{\imath,\hbar}
θ(f(xs))=(f(xs))=1t(f(xs)),(f(xs))=α=1r(α)(f(α)(xs))\displaystyle\theta_{\hbar}(f(x_{s}))\!=\!\frac{\mathcal{F}_{\hbar}(f(x_{s}))}{\sum_{\hbar=1}^{t}\mathcal{F}_{\hbar}(f(x_{s}))},\mathcal{F}_{\hbar}(f(x_{s}))\!=\!\prod_{\alpha=1}^{r}\!\mathcal{F}_{\hbar}^{(\alpha)}(f^{(\alpha)}(x_{s}))

with (α)(f(α)(xs))\mathcal{F}_{\hbar}^{(\alpha)}(f^{(\alpha)}(x_{s})) referring to the grade of membership of f(α)(xs)f^{(\alpha)}(x_{s}) in (α)\mathcal{F}_{\hbar}^{(\alpha)}. And θ(f(xs))\theta_{\hbar}(f(x_{s})) implies the standard membership function of rule \hbar. For T\forall\hbar\in\mathcal{I}_{T}, we have θ(f(xs))0\theta_{\hbar}(f(x_{s}))\geq 0 and =1tθ(f(xs))=1\sum_{\hbar=1}^{t}\theta_{\hbar}(f(x_{s}))=1. For notational brevity, θ\theta_{\hbar} is denoted as θ(f(xs))\theta_{\hbar}(f(x_{s})) for the subsequent analysis.

The FMJSs will be affected by the constraints imposed by engineering practices on inputs and states as follows:

|[us]e|\displaystyle\big{|}[u_{s}]_{e}\big{|} [u˘]e,enu\displaystyle\leq[\breve{u}]_{e},\;\;\;e\in\mathcal{I}_{n_{u}} (4)
|[Φ]fxs|\displaystyle\big{|}[\Phi]_{f}x_{s}\big{|} [x˘]f,fnx\displaystyle\leq[\breve{x}]_{f},\;\;\;f\in\mathcal{I}_{n_{x}} (5)

where u˘\breve{u} and x˘\breve{x} are the known positive scalars, Φ\Phi is the matrix according to actual needs.

2.2 DPO-Based Control Law Design

Considering the remarkable superiority demonstrated in terms of the applicability complexity, robustness and flexibility to the PMP method, the IPM method is used to design a fuzzy controller for discrete-time FMJSs (3). However, it is very likely to result in a huge computation burden due to the number of rules for the IPM fuzzy controller. To alleviate the computational load online and maintain effective system performance, we incorporate a perturbation generated by a dynamic controller into the mode-dependent state feedback fuzzy control law within the DPO-MPC framework. This integration results in the fuzzy predictive dynamic controller law outlined below:
Controller Rule υ\upsilon: IF g(1)(xs+|s)g^{(1)}(x_{s+\ell|s}) is υ(1)\mathcal{H}_{\upsilon}^{(1)}, g(2)(xs+|s)g^{(2)}(x_{s+\ell|s}) is υ(2)\mathcal{H}_{\upsilon}^{(2)}, \ldots, and g(k)(xs+|s)g^{(k)}(x_{s+\ell|s}) is υ(k)\mathcal{H}_{\upsilon}^{(k)},

THENus+|s=Kı,υxs+|s+cs+|s,υ,=0,1,2,cs+|s,υ=𝒞ı,υηs+|sηs++1|s=𝒜ı,υηs+|s\text{THEN}~{}~{}\begin{aligned} &u_{s+\ell|s}=K_{\imath,\upsilon}x_{s+\ell|s}+c_{s+\ell|s,\upsilon},\ell=0,1,2,\ldots\\ &c_{s+\ell|s,\upsilon}=\mathcal{C}_{\imath,\upsilon}\eta_{s+\ell|s}\\ &\eta_{s+\ell+1|s}=\mathcal{A}_{\imath,\upsilon}\eta_{s+\ell|s}\end{aligned} (6)

where υV={1,2,,v}\upsilon\in\mathcal{I}_{V}=\{1,2,\ldots,v\} with vv symbolizing the number of inference rules; {υ(κ),κ=1,2,,k}\{\mathcal{H}_{\upsilon}^{(\kappa)},\kappa=1,2,\ldots,k\} represents a fuzzy set; g(xs+|s)=[g(1)(xs+|s),g(2)(xs+|s),g(x_{s+\ell|s})=[g^{(1)}(x_{s+\ell|s}),g^{(2)}(x_{s+\ell|s}), ,g(k)(xs+|s)]T\cdots,g^{(k)}(x_{s+\ell|s})]^{T} represents the premise variable of the controller.

From the fuzzy predictive dynamic controller described by (6), the mode-dependent fuzzy feedback gain Kı,υK_{\imath,\upsilon} is designed on terminal constraint set. {cs+|s,υ}\{c_{s+\ell|s,\upsilon}\} represents perturbation variables for fine-tuning control inputs, which are generated by the dynamic fuzzy controller. ηs|sηsnx\eta_{s|s}\triangleq\eta_{s}\in\mathbb{R}^{n_{x}} represents the dynamic controller state to be determined. The estimator gain 𝒜ı,υ\mathcal{A}_{\imath,\upsilon} and dynamic feedback gain 𝒞ı,υ\mathcal{C}_{\imath,\upsilon} are needed to be designed. Then, the integrated T-S fuzzy predictive controller with system mode ζs=i\zeta_{s}=i is given by

us+|s=Kıϑxs+|ı+cs+|s,ϑ\displaystyle u_{s+\ell|s}=K_{\imath\vartheta}x_{s+\ell|\imath}+c_{s+\ell|s,\vartheta} (7)
cs+|s,ϑ=𝒞ıϑηs+|s\displaystyle c_{s+\ell|s,\vartheta}=\mathcal{C}_{\imath\vartheta}\eta_{s+\ell|s} (8)
ηs++1|s=𝒜ıϑηs+|s\displaystyle\eta_{s+\ell+1|s}=\mathcal{A}_{\imath\vartheta}\eta_{s+\ell|s} (9)

where

Kıϑ=υ=1vϑυ(g(xs+|s))Kı,υ,𝒞ıϑ=υ=1vϑυ(g(xs+|s))𝒞ı,υ,𝒜iϑ=υ=1vϑυ(g(xs+|s))𝒜ı,υ,\displaystyle K_{\imath\vartheta}=\sum_{\upsilon=1}^{v}\vartheta_{\upsilon}(g(x_{s+\ell|s}))K_{\imath,\upsilon},\mathcal{C}_{\imath\vartheta}=\sum_{\upsilon=1}^{v}\vartheta_{\upsilon}(g(x_{s+\ell|s}))\mathcal{C}_{\imath,\upsilon},\mathcal{A}_{i\vartheta}=\sum_{\upsilon=1}^{v}\vartheta_{\upsilon}(g(x_{s+\ell|s}))\mathcal{A}_{\imath,\upsilon},
ϑυ(g(xs+|s))=υ(g(xs+|s))υ=1vυ(g(xs+|s)),υ(g(xs+|s))=κ=1kυ(κ)(g(κ)(xs+|s)).\displaystyle\vartheta_{\upsilon}(g(x_{s+\ell|s}))=\frac{\mathcal{H}_{\upsilon}(g(x_{s+\ell|s}))}{\sum_{\upsilon=1}^{v}\mathcal{H}_{\upsilon}(g(x_{s+\ell|s}))},\mathcal{H}_{\upsilon}(g(x_{s+\ell|s}))=\prod_{\kappa=1}^{k}\mathcal{H}_{\upsilon}^{(\kappa)}(g^{(\kappa)}(x_{s+\ell|s})).

υ(g(xs+|s))\mathcal{H}_{\upsilon}(g(x_{s+\ell|s})) refers to the grade of membership of g(κ)(xs+|s)g^{(\kappa)}(x_{s+\ell|s}) in υ(κ)\mathcal{H}_{\upsilon}^{(\kappa)}. And ϑυ(g(xs+|s))\vartheta_{\upsilon}(g(x_{s+\ell|s})) implies the standard membership function of rule υ\upsilon. For υV\forall\upsilon\in\mathcal{I}_{V}, we have ϑυ(g(xs+|s))0\vartheta_{\upsilon}(g(x_{s+\ell|s}))\geq 0 and υ=1vϑυ(g(xs+|s))=1\sum_{\upsilon=1}^{v}\vartheta_{\upsilon}(g(x_{s+\ell|s}))=1. For notational brevity, ϑυ\vartheta_{\upsilon} is denoted as its abbreviation of ϑυ(g(xs+|s))\vartheta_{\upsilon}(g(x_{s+\ell|s})).

Remark 1

The main working principle of MPC is to enlarge the initial feasible region as well as improve the time efficiency of online computing. The initial feasible region is a certain set that contains the initial system state at instant s=0s=0, specially, in this paper, it is defined as an ellipsoid set Σx,ζ0\Sigma_{x,\zeta_{0}}, and thus x0Σx,ζ0x_{0}\in\Sigma_{x,\zeta_{0}}. To this end, a DPO-MPC strategy is introduced in line with [1]. The control input, determined by the combination of KıϑK_{\imath\vartheta} and certain perturbations cs+|s,ϑc_{s+\ell|s,\vartheta}, aims to guide the system state from the initial feasible region towards the terminal constraint set. Unlike approaches that rely on perturbation sequences of finite length, which are often arbitrarily set, utilizing prediction dynamics for perturbation determination can objectively expand the initial feasible region. This is because the variables involved in the optimization of the initial feasible region under MPC with prediction dynamics, such as 𝒜ı,υ\mathcal{A}_{\imath,\upsilon} and 𝒞ı,υ\mathcal{C}_{\imath,\upsilon}, offer more degrees of freedom compared to those in the effective MPC scheme cited in [9]. On the other hand, most of variables to determine the controllers are calculated off-line. To be specific, the variables such as such as Kı,υK_{\imath,\upsilon}, 𝒜ı,υ\mathcal{A}_{\imath,\upsilon}, and 𝒞ı,υ\mathcal{C}_{\imath,\upsilon} are calculated off-line, while only ηs|s\eta_{s|s} needs to be designed online (See from OP4). Thus, the proposed DPO-MPC law will not result in too much online computation burden.

2.3 Preliminaries

Before delving into the main results, we provide some definitions to facilitate the derivation of subsequent results.

Definition 1

The autonomous FMJS xs+1=Aıθxsx_{s+1}=A_{\imath\theta}x_{s} is considered mean-square stable if, for any initial conditions x0Σx,ζ0x_{0}\in\Sigma_{x,\zeta_{0}} and ζ0N\zeta_{0}\in\mathcal{I}_{N}, the following condition is satisfied:

𝔼x0,ζ0{s=0xsTxs}<.\mathbb{E}_{x_{0},\zeta_{0}}\left\{\sum_{s=0}^{\infty}x_{s}^{T}x_{s}\right\}<\infty. (10)
Definition 2

For the FMJS (3), if the system state at time instant ss belongs to the set Σs\Sigma_{s} (i.e. xsΣsx_{s}\in\Sigma_{s}), and its future states under admissible fuzzy control also belong to this set (i.e. xs+Σs,=1,2,3,x_{s+\ell}\in\Sigma_{s},\ell=1,2,3,\ldots), then the set Σs\Sigma_{s} is termed a positive control invariant set.

The primary goal of this paper is to design a mode-dependent fuzzy predictive dynamic control law for the FMJS (3) subject to hard constraints. Specifically, for any x0Σζ0x_{0}\in\Sigma_{\zeta_{0}} (referred to as the initial feasible region, which will be defined in subsequent discussions), our aim is to solve an optimization problem at each time instant ss. This optimization problem seeks to determine the mode-dependent fuzzy feedback gain Kı,υK_{\imath,\upsilon}, estimator gain 𝒜ı,υ\mathcal{A}_{\imath,\upsilon}, dynamic feedback gain 𝒞ı,υ\mathcal{C}_{\imath,\upsilon} and the optimization controller state ηs\eta_{s}, ensuring the mean-square stability of the FMJS (3). This optimization problem is formulated as follows:

OP1 minus+|s,=0,1,2,maxAıθ,Bıθ,ıNJs\displaystyle\min_{u_{s+\ell|s},\ell=0,1,2,\ldots}\quad\max_{A_{\imath\theta},B_{\imath\theta},~{}\imath\in\mathcal{I}_{N}}\quad J^{\infty}_{s}
OP1 s.t.xs++1|s=Aıθxs+|s+Bıθus+|s,\displaystyle\text{s.t.}~{}x_{s+\ell+1|s}=A_{\imath\theta}x_{s+\ell|s}+B_{\imath\theta}u_{s+\ell|s},\! (11)
OP1 |[us+|s]e|[u˘]e,enu,\displaystyle~{}~{}\big{|}[u_{s+\ell|s}]_{e}\big{|}\leq[\breve{u}]_{e},e\in\mathcal{I}_{n_{u}},\! (12)
OP1 |[Φ]fxs+|s|[x˘]f,fnx,\displaystyle\big{|}[\Phi]_{f}x_{s+\ell|s}\big{|}\leq[\breve{x}]_{f},f\in\mathcal{I}_{n_{x}},\! (13)
OP1 𝔼{ΔVs+|s}(xs+|sS2+us+|sR2)\displaystyle\mathbb{E}\{\Delta V_{s+\ell|s}\}\leq\!\!-\left(\|x_{s+\ell|s}\|^{2}_{S}\!+\!\|u_{s+\ell|s}\|^{2}_{R}\right)~{}~{}~{}~{}~{}~{}~{}\!\! (14)

where Js𝔼{=0(xs+|sS2+us+|sR2)}J^{\infty}_{s}\triangleq\mathbb{E}\Big{\{}\sum_{\ell=0}^{\infty}\big{(}\|x_{s+\ell|s}\|^{2}_{S}+\|u_{s+\ell|s}\|^{2}_{R}\big{)}\Big{\}}, S>0S>0 and R>0R>0represent known weighting matrices. The term 𝔼{ΔVs+|s}\mathbb{E}\{\Delta V_{s+\ell|s}\} is defined as the expected difference in Vs+|sV_{s+\ell|s}, where Vs+|sV_{s+\ell|s} represents a Lyapunov-like function. We assume that Vs+|sV_{s+\ell|s} satisfies condition (14), also known as the terminal cost function condition [31]. This condition aids in constructing the upper bound of the objective function and achieving mean-square stability for the closed-loop system.

In the subsequent steps, our objective is to devise the fuzzy control law (7)-(9) by addressing OP1. Since directly minimizing the cost function over an infinite horizon, especially considering mode jumps and fuzzy rules, can be challenging, we opt to minimize a certain upper bound instead. It’s worth noting that the fuzzy control law (7) consists of two components: one related to the mode-dependent fuzzy feedback gain KıϑK_{\imath\vartheta} and the other dependent on cs+|s,ϑc_{s+\ell|s,\vartheta} determined by prediction dynamics. Therefore, our approach involves breaking down the optimization problem OP1 into several auxiliary optimization problems to achieve our objective.

3 Optimization Problem in Terminal Constraint Set

3.1 Control Law in Terminal Constraint Set

To begin, we establish the definition of a set known as the terminal constraint set as follows:

Σx,ı{xs+|s|xs+|sTPıθxs+|sσ},\displaystyle\Sigma_{x,\imath}\triangleq\left\{x_{s+\ell|s}|x^{T}_{s+\ell|s}P_{\imath\theta}x_{s+\ell|s}\leq\sigma\right\}, (15)

where the scalar σ>0\sigma>0, the matrix Pıθ=1tθPı,P_{\imath\theta}\triangleq\sum_{\hbar=1}^{t}\theta_{\hbar}P_{\imath,\hbar} with Pı,>0,ıNP_{\imath,\hbar}>0,\forall~{}\imath\in\mathcal{I}_{N}. In the terminal constraint set, the mode-dependent state feedback controller is constructed without using perturbation variables by:

us+|s=Kıϑxs+|s,ıN.u^{\ast}_{s+\ell|s}=K_{\imath\vartheta}x_{s+\ell|s},~{}\imath\in\mathcal{I}_{N}. (16)

Applying (16) to FMJS (3) gives rise to

xs++1|s\displaystyle x_{s+\ell+1|s} ==1tυ=1vθϑυ(Aı,+Bı,Kı,υ)xs+|sA~ıθϑxs+|s\displaystyle=\sum_{\hbar=1}^{t}\sum_{\upsilon=1}^{v}\theta_{\hbar}\vartheta_{\upsilon}(A_{\imath,\hbar}+B_{\imath,\hbar}K_{\imath,\upsilon})x_{s+\ell|s}\triangleq\tilde{A}_{\imath\theta\vartheta}x_{s+\ell|s} (17)

With regard to the cost function JsJ^{\infty}_{s}, a min-max problem is employed to design a set of mode-dependent fuzzy controllers, outlined as follows:

minKı,υ,υ=1,2,,v,ıNmaxAıθ,Bıθ,ıNJ^s,\displaystyle\min_{K_{\imath,\upsilon},\upsilon=1,2,\ldots,v,~{}\imath\in\mathcal{I}_{N}}\quad\max_{A_{\imath\theta},B_{\imath\theta},~{}\imath\in\mathcal{I}_{N}}\quad\hat{J}_{s}, (18)

where J^s=𝔼{=0(xs+|sS2+us+|sR2)}\hat{J}_{s}=\mathbb{E}\Big{\{}\sum_{\ell=0}^{\infty}\big{(}\|x_{s+\ell|s}\|^{2}_{S}+\|u^{\ast}_{s+\ell|s}\|^{2}_{R}\big{)}\Big{\}}.

3.2 Terminal Cost Function

Considering the control law (16), condition (14) in OP1 can be reformulated as follows:

𝔼{ΔVs+|s}(xs+|sS2+us+|sR2).\displaystyle\mathbb{E}\{\Delta V_{s+\ell|s}\}\!\leq\!\!-\left(\|x_{s+\ell|s}\|^{2}_{S}\!+\!\|u^{\ast}_{s+\ell|s}\|^{2}_{R}\right). (19)

We will now endeavor to identify the solvability condition for the terminal constraint (19). To begin, we introduce the following lemma, which is essential for deriving our main results.

Lemma 1

Let the SS and RR be given positive matrix. Assume that there exist matrices Wı,>0W_{\imath,\hbar}>0, a scalar σ>0\sigma>0, a set of matrices K~ı,υ\tilde{K}_{\imath,\upsilon} and invertible matrices Gı,υG_{\imath,\upsilon} , such that the following inequalities holds:

[𝔾ı,υpı1Πı,υW1,λpıNΠı,υ0WN,λS00σSRK~ı,υ000σR]<0,ıN,,λT\displaystyle\begin{bmatrix}-\mathbb{G}_{\imath,\hbar\upsilon}&\ast&\cdots&\ast&\ast&\ast\\ \sqrt{p_{\imath 1}}\Pi_{\imath,\hbar\upsilon}&-W_{1,\lambda}&\cdots&\ast&\ast&\ast\\ \vdots&\vdots&\ddots&\ast&\ast&\ast\\ \sqrt{p_{\imath N}}\Pi_{\imath,\hbar\upsilon}&0&\cdots&-W_{N,\lambda}&\ast&\ast\\ S&0&\cdots&0&-\sigma S&\ast\\ R\tilde{K}_{\imath,\upsilon}&0&\cdots&0&0&-\sigma R\\ \end{bmatrix}<0,\forall\imath\in\mathcal{I}_{N},\hbar,\lambda\in\mathcal{I}_{T} (20)

where

𝔾ı,υ=Gı,υT+Gı,υWı,,Πı,υ=Aı,Gı,υ+Bı,K~ı,υ.\displaystyle\mathbb{G}_{\imath,\hbar\upsilon}=G_{\imath,\upsilon}^{T}+G_{\imath,\upsilon}-W_{\imath,\hbar},~{}\Pi_{\imath,\hbar\upsilon}=A_{\imath,\hbar}G_{\imath,\upsilon}+B_{\imath,\hbar}\tilde{K}_{\imath,\upsilon}.

Then, condition (19) is satisfied, and the mode-dependent controller gain is calculated by

Kıϑ=υ=1vϑυKı,υ,Kı,υ=K~ı,υGı,υ1.\displaystyle K_{\imath\vartheta}=\sum_{\upsilon=1}^{v}\vartheta_{\upsilon}K_{\imath,\upsilon},K_{\imath,\upsilon}=\tilde{K}_{\imath,\upsilon}G_{\imath,\upsilon}^{-1}. (21)
Proof 1

Choose a Lyapunov-like function as follows:

Vs+|s(xs+|s)=xs+|sTPıθxs+|s,ıN.V_{s+\ell|s}(x_{s+\ell|s})=x^{T}_{s+\ell|s}P_{\imath\theta}x_{s+\ell|s},~{}\imath\in\mathcal{I}_{N}.

Calculating the difference of Vs+|sV_{s+\ell|s} along system (17) and taking the mathematical expectation yields

𝔼{ΔVs+|s}\displaystyle\mathbb{E}\{\Delta V_{s+\ell|s}\}
=\displaystyle= xs+|sT{ȷ=1Npıȷ[A~ıθϑTPȷθ+A~ıθϑ]Pıθ}xs+|s\displaystyle x^{T}_{s+\ell|s}\Big{\{}\sum^{N}_{\jmath=1}p_{\imath\jmath}\big{[}\tilde{A}_{\imath\theta\vartheta}^{T}P_{\jmath\theta_{+}}\tilde{A}_{\imath\theta\vartheta}\big{]}-P_{\imath\theta}\Big{\}}x_{s+\ell|s} (22)

where

Pȷθ+=λ=1tθλ+Pȷ,λ,θλ+=θλ(f(xs++1|s)).\displaystyle P_{\jmath\theta_{+}}=\sum_{\lambda=1}^{t}\theta_{\lambda+}P_{\jmath,\lambda},~{}\theta_{\lambda+}=\theta_{\lambda}(f(x_{s+\ell+1|s})).

Notice that Wı,>0W_{\imath,\hbar}>0, we have

(Gı,υWı,1)TWı,(Gı,υWı,1)>0\displaystyle(G_{\imath,\upsilon}-W_{\imath,\hbar}^{-1})^{T}W_{\imath,\hbar}(G_{\imath,\upsilon}-W_{\imath,\hbar}^{-1})>0

which leads to

Gı,υT+Gı,υWı,<Gı,υTWı,1Gı,υ.\displaystyle G_{\imath,\upsilon}^{T}+G_{\imath,\upsilon}-W_{\imath,\hbar}<G_{\imath,\upsilon}^{T}W_{\imath,\hbar}^{-1}G_{\imath,\upsilon}. (23)

Then, keeping (23) in mind, pre- and post-multiplying inequalities (20) by diag{Gı,υT,𝕀nx,,𝕀nx,𝕀nx,𝕀nu}\text{diag}\{G_{\imath,\upsilon}^{-T},\mathbb{I}_{n_{x}},\cdots,\mathbb{I}_{n_{x}},\mathbb{I}_{n_{x}},\mathbb{I}_{n_{u}}\} and its transpose leads to

[Wı,1pı1Π~ı,υW1,λpıNΠ~ı,υ0WN,λS00σSRKı,υ000σR]<0\displaystyle\begin{bmatrix}-W_{\imath,\hbar}^{-1}&\ast&\cdots&\ast&\ast&\ast\\ \sqrt{p_{\imath 1}}\tilde{\Pi}_{\imath,\hbar\upsilon}&-W_{1,\lambda}&\cdots&\ast&\ast&\ast\\ \vdots&\vdots&\ddots&\ast&\ast&\ast\\ \sqrt{p_{\imath N}}\tilde{\Pi}_{\imath,\hbar\upsilon}&0&\cdots&-W_{N,\lambda}&\ast&\ast\\ S&0&\cdots&0&-\sigma S&\ast\\ RK_{\imath,\upsilon}&0&\cdots&0&0&-\sigma R\\ \end{bmatrix}<0 (24)

where

Kı,υ=K~ı,υGı,υ1,Π~ı,υ=Aı,+Bı,Kı,υ.\displaystyle K_{\imath,\upsilon}=\tilde{K}_{\imath,\upsilon}G_{\imath,\upsilon}^{-1},~{}\tilde{\Pi}_{\imath,\hbar\upsilon}=A_{\imath,\hbar}+B_{\imath,\hbar}K_{\imath,\upsilon}.

For convenience, we define the matrix on the left side of the above inequality (24) as ı,υλ\mathbb{Z}_{\imath,\hbar\upsilon\lambda}. In light of standard membership function property of the underlying T-S FMJSs, it is easily seen from (24) that

λ=1t=1tυ=1vθλ+θϑυı,υλ<0.\displaystyle\sum_{\lambda=1}^{t}\sum_{\hbar=1}^{t}\sum_{\upsilon=1}^{v}\theta_{\lambda+}\theta_{\hbar}\vartheta_{\upsilon}\mathbb{Z}_{\imath,\hbar\upsilon\lambda}<0. (25)

Then, it follows from (25) that

[Wıθ1pı1A~ıθϑW1θ+pıNA~ıθϑ0WNθ+S00σSRKıϑ000σR]<0,\displaystyle\begin{bmatrix}-W_{\imath\theta}^{-1}&\ast&\cdots&\ast&\ast&\ast\\ \sqrt{p_{\imath 1}}\tilde{A}_{\imath\theta\vartheta}&-W_{1\theta_{+}}&\cdots&\ast&\ast&\ast\\ \vdots&\vdots&\ddots&\ast&\ast&\ast\\ \sqrt{p_{\imath N}}\tilde{A}_{\imath\theta\vartheta}&0&\cdots&-W_{N\theta_{+}}&\ast&\ast\\ S&0&\cdots&0&-\sigma S&\ast\\ RK_{\imath\vartheta}&0&\cdots&0&0&-\sigma R\\ \end{bmatrix}<0, (26)

where

Wıθ1==1tθWı,1,Wȷθ+=λ=1tθλ+Wȷ,λ,ı,ȷN.\displaystyle W_{\imath\theta}^{-1}=\sum_{\hbar=1}^{t}\theta_{\hbar}W_{\imath,\hbar}^{-1},~{}W_{\jmath\theta_{+}}=\sum_{\lambda=1}^{t}\theta_{\lambda+}W_{\jmath,\lambda},~{}\imath,\jmath\in\mathcal{I}_{N}.

By using the Schur Complement Lemma, we have

Wıθ1+ȷ=1Npıȷ[A~ıθϑTWȷθ+1A~ıθϑ]+1σS+1σKıϑTRKıϑ<0.\displaystyle-W_{\imath\theta}^{-1}\!+\!\sum^{N}_{\jmath=1}p_{\imath\jmath}\big{[}\tilde{A}_{\imath\theta\vartheta}^{T}W_{\jmath\theta_{+}}^{-1}\tilde{A}_{\imath\theta\vartheta}\big{]}\!+\!\frac{1}{\sigma}S\!+\!\frac{1}{\sigma}K_{\imath\vartheta}^{T}RK_{\imath\vartheta}<0. (27)

Multiplying both sides of (27) with σ\sigma, substituting σWıθ1=Pıθ,σWȷθ+1=Pȷθ+,ı,ȷN\sigma W_{\imath\theta}^{-1}=P_{\imath\theta},~{}\sigma W_{\jmath\theta_{+}}^{-1}=P_{\jmath\theta_{+}},~{}\imath,\jmath\in\mathcal{I}_{N} into (27), we have

Pıθ+ȷ=1Npıȷ[A~ıθϑTPȷθ+A~ıθϑ]+S+KıϑTRKıϑ<0.\displaystyle-P_{\imath\theta}+\sum^{N}_{\jmath=1}p_{\imath\jmath}\big{[}\tilde{A}_{\imath\theta\vartheta}^{T}P_{\jmath\theta_{+}}\tilde{A}_{\imath\theta\vartheta}\big{]}+S+K_{\imath\vartheta}^{T}RK_{\imath\vartheta}<0. (28)

Based on (1) and (16), multiplying both sides of (28) with xs+|sTx^{T}_{s+\ell|s} and its transpose and by using the transposition technique, we can obtain (19). Thus, (19) can be guaranteed by (20), which completes the proof.

Remark 2

In order to derive the mode-dependent controllers KıϑK_{\imath\vartheta} corresponding to the terminal constraint set Σx,ı\Sigma_{x,\imath}, a set of invertible matrices Gı,υG_{\imath,\upsilon} in regards to the controller fuzzy rules rather than a common invertible matrix GıG_{\imath} [27, 28] are introduced into the conditions (23), which causes less conservatism to the stability condition of the underlying system in the terminal constraint set. In addition, due to θ(f(xs+|s))ϑυ(g(xs+|s))\theta_{\hbar}(f(x_{s+\ell|s}))\neq\vartheta_{\upsilon}(g(x_{s+\ell|s})) in (17), the traditional PDC technique cannot be applied. Considering the properties of the membership functions θ\theta_{\hbar}, ϑυ\vartheta_{\upsilon} and θλ+\theta_{\lambda+}, the information of them is utilized in (25)-(26).

3.3 Performance Optimization in Terminal Constraint Set

In this subsection, we will try to find an upper bound of J^s\hat{J}_{s} based on (19) to design the fuzzy controller in the terminal constraint set.

To ensure the objective remains finite, it is necessary that x|s=0x_{\infty|s}=0, leading to V|s(x|s)=0V_{\infty|s}(x_{\infty|s})=0. Adding both sides of equation (19) from =0\ell=0 to \infty and considering lim𝔼{Vs+|s}=0\lim_{\ell\rightarrow\infty}\mathbb{E}\{V_{s+\ell|s}\}=0, we obtain

J^s𝔼{Vs|s}=Vs=xsTPıθxs,\displaystyle\hat{J}_{s}\leq\mathbb{E}\{V_{s|s}\}=V_{s}=x^{T}_{s}P_{\imath\theta}x_{s}, (29)

indicating max[Aıθ,Bıθ],ıNJ^sxsTPıθxs\max_{[A_{\imath\theta},B_{\imath\theta}],~{}\imath\in\mathcal{I}_{N}}\hat{J}_{s}\leq x^{T}_{s}P_{\imath\theta}x_{s}. This sets an upper bound for the objective function across the infinite horizon J^s\hat{J}_{s}. Therefore, our aim regarding the terminal constraint set of MPC is to formulate a series of mode-specific constant control laws, as defined by (16), to minimize the upper bound VsV_{s}.

Assuming the state at time ss lies within the terminal constraint set as defined by (15), specifically,

xsTPıθxsσ.\displaystyle x^{T}_{s}P_{\imath\theta}x_{s}\leq\sigma. (30)

it is evident from (19) that the predicted state at any future time remains within the set Σx,ı\Sigma_{x,\imath} in terms of mean-square, i.e., xs+|sΣx,ıx_{s+\ell|s}\in\Sigma_{x,\imath}. Condition (30) is also referred to as the positive control invariant set condition. Additionally, we derive

J^sσ.\displaystyle\hat{J}_{s}\leq\sigma. (31)

Clearly, σ\sigma serves as an upper bound for VsV_{s} and consequently for the objective function J^s\hat{J}_{s}.

Next, we will address hard constraints on inputs and states.

Lemma 2

Let the u˘\breve{u} and x˘\breve{x} be given scalars. Assume that there exist matrices 𝒰>0\mathcal{U}>0, 𝒳>0\mathcal{X}>0 and Wı,>0W_{\imath,\hbar}>0, a set of matrices K~ı,υ\tilde{K}_{\imath,\upsilon} and invertible matrices Gı,υG_{\imath,\upsilon} for any ıN\imath\in\mathcal{I}_{N} T\hbar\in\mathcal{I}_{T} and υV\upsilon\in\mathcal{I}_{V}, such that the following inequalities holds:

[𝒰K~ı,υT𝔾ı,υ]\displaystyle\begin{bmatrix}-\mathcal{U}&\ast\\ \tilde{K}_{\imath,\upsilon}^{T}&-\mathbb{G}_{\imath,\hbar\upsilon}\\ \end{bmatrix} 0,[𝒰]ee[u˘]e2,enu\displaystyle\leq 0,\quad[\mathcal{U}]_{ee}\leq[\breve{u}]_{e}^{2},~{}e\in\mathcal{I}_{n_{u}} (32)
[𝒳(ΦWı,)TWı,]\displaystyle\begin{bmatrix}-\mathcal{X}&\ast\\ (\Phi W_{\imath,\hbar})^{T}&-W_{\imath,\hbar}\\ \end{bmatrix} 0,[𝒳]ff[x˘]f2,fnx\displaystyle\leq 0,\quad[\mathcal{X}]_{ff}\leq[\breve{x}]_{f}^{2},~{}f\in\mathcal{I}_{n_{x}} (33)

then hard constraints on input usu^{\ast}_{s} and state are satisfied, where []ff[\cdot]_{ff}([]ee)([\cdot]_{ee}) denotes the ffth(eeth) diagonal element of “\cdot”.

Following the preceding discussions, given condition (30), we utilize the upper bound σ\sigma of J^s\hat{J}_{s} to formulate an optimization problem for deriving the mode-dependent controller gain KıϑK_{\imath\vartheta} regarding the terminal constraint set Σx,ı\Sigma_{x,\imath}, outlined as:

𝐎𝐏𝟐:\displaystyle\mathbf{OP2}: minWı,,Gı,υ,K~ı,υ,𝒰,𝒳ıN,T,υVσ\displaystyle\min_{\begin{subarray}{c}W_{\imath,\hbar},G_{\imath,\upsilon},\tilde{K}_{\imath,\upsilon},\mathcal{U},\mathcal{X}\\ \imath\in\mathcal{I}_{N},\hbar\in\mathcal{I}_{T},\upsilon\in\mathcal{I}_{V}\end{subarray}}\sigma
s.t. (20),(32),(33).\displaystyle\eqref{eq:3-5},~{}\eqref{eq:3-21},~{}\eqref{eq:3-22}.
Remark 3

The controller gain KıϑK_{\imath\vartheta} for the terminal constraint set Σx,ı\Sigma_{x,\imath} is computed by solving OP2 off-line. Meanwhile, under the positive control invariant condition (30), the mean-square stability of the closed-loop system (17) is ensured, as proven in [31]. However, condition (30) is somewhat conservative since it necessitates the initial presence of the system state within the terminal constraint set, limiting practical application of the MPC strategy. Consequently, in subsequent analysis, efforts are directed towards expanding the feasible state region, termed the initial feasible region. Once the system state resides within this initial region, our objective is to identify admissible control inputs capable of guiding it into the terminal constraint set. This rationale underscores the introduction of perturbation cs+|s,ϑc_{s+\ell|s,\vartheta} in the control law (7)-(9).

4 Perturbation Variable Design

In this section, we present a strategy for designing perturbation variables using an integrated approach from off-line to online settings.

4.1 Maximizing the Initial Feasible Region

Considering equations (3) and (7)-(9), and defining ξs=[xsTηsT]T2nx\xi_{s}=[x_{s}^{T}~{}\eta_{s}^{T}]^{T}\in\mathbb{R}^{2n_{x}}, we describe the closed-loop system as follows:

{ξs++1|s=Ξıθϑξs+|sxs+|s=[𝕀nx0]ξs+|sus+|s=[Kıϑ𝒞ıϑ]ξs+|s\left\{\begin{aligned} \xi_{s+\ell+1|s}&=\Xi_{\imath\theta\vartheta}\xi_{s+\ell|s}\\ x_{s+\ell|s}&=\begin{bmatrix}\mathbb{I}_{n_{x}}&0\end{bmatrix}\xi_{s+\ell|s}\\ u_{s+\ell|s}&=\begin{bmatrix}K_{\imath\vartheta}&\mathcal{C}_{\imath\vartheta}\end{bmatrix}\xi_{s+\ell|s}\end{aligned}\right. (34)

where

Ξıθϑ[A~ıθϑBıθ𝒞ıϑ0𝒜ıϑ]==1tυ=1vθϑυΞı,υ,\displaystyle\Xi_{\imath\theta\vartheta}\triangleq\begin{bmatrix}\tilde{A}_{\imath\theta\vartheta}&B_{\imath\theta}\mathcal{C}_{\imath\vartheta}\\ 0&\mathcal{A}_{\imath\vartheta}\end{bmatrix}=\sum_{\hbar=1}^{t}\sum_{\upsilon=1}^{v}\theta_{\hbar}\vartheta_{\upsilon}\Xi_{\imath,\hbar\upsilon},
Ξı,υ=[Π~ı,υBı,𝒞ı,υ0𝒜ı,υ].\displaystyle\Xi_{\imath,\hbar\upsilon}=\begin{bmatrix}\tilde{\Pi}_{\imath,\hbar\upsilon}&B_{\imath,\hbar}\mathcal{C}_{\imath,\upsilon}\\ 0&\mathcal{A}_{\imath,\upsilon}\end{bmatrix}.

Define a set for system (34) as follows:

Σξ,ı{ξs+|s|ξs+|sT𝒫ıϑξs+|s1}.\displaystyle\Sigma_{\xi,\imath}\triangleq\left\{\xi_{s+\ell|s}|\xi^{T}_{s+\ell|s}\mathcal{P}_{\imath\vartheta}\xi_{s+\ell|s}\leq 1\right\}. (35)

where 𝒫ıϑ=υ=1vϑυ𝒫ı,υ\mathcal{P}_{\imath\vartheta}=\sum_{\upsilon=1}^{v}\vartheta_{\upsilon}\mathcal{P}_{\imath,\upsilon} and 𝒫ı,υ\mathcal{P}_{\imath,\upsilon} denotes a collection of symmetric and positive-definite matrices. Subsequently, we demonstrate that Σξ,ı\Sigma_{\xi,\imath} serves as a positive control invariant set for (34) and is admissible under constraints (4) and (5). According to [18], the following conditions are formulated to provide theoretical support for a domain attracting constraints for ξs+|s\xi_{s+\ell|s}.

ΞıθϑT(ȷ=1Npıȷ𝒫ȷϑ+)Ξıθϑ𝒫ıϑ<0,\displaystyle\Xi_{\imath\theta\vartheta}^{T}\big{(}\sum_{\jmath=1}^{N}p_{\imath\jmath}\mathcal{P}_{\jmath\vartheta_{+}}\big{)}\Xi_{\imath\theta\vartheta}-\mathcal{P}_{\imath\vartheta}<0, (36)
[𝐔[Kıϑ𝒞ıϑ]T𝒫ıϑ]0,[𝐔]ee[u˘]e2,enu\displaystyle\begin{bmatrix}-\mathbf{U}&\ast\\ [K_{\imath\vartheta}~{}\mathcal{C}_{\imath\vartheta}]^{T}&-\mathcal{P}_{\imath\vartheta}\end{bmatrix}\leq 0,\quad[\mathbf{U}]_{ee}\leq[\breve{u}]_{e}^{2},\quad e\in\mathcal{I}_{n_{u}} (37)
[𝐗[Φ0]T𝒫ıϑ]0,[𝐗]ff[x˘]e2,fnx\displaystyle\begin{bmatrix}-\mathbf{X}&\ast\\ [\Phi~{}~{}0]^{T}&-\mathcal{P}_{\imath\vartheta}\end{bmatrix}\leq 0,\quad[\mathbf{X}]_{ff}\leq[\breve{x}]_{e}^{2},\quad f\in\mathcal{I}_{n_{x}} (38)

where

𝒫ȷϑ+=ω=1vϑω+𝒫ȷ,ω,ϑω+=ϑω(g(xs++1|s)).\displaystyle\mathcal{P}_{\jmath\vartheta_{+}}=\sum_{\omega=1}^{v}\vartheta_{\omega+}\mathcal{P}_{\jmath,\omega},~{}\vartheta_{\omega+}=\vartheta_{\omega}(g(x_{s+\ell+1|s})).

The matrices 𝐔\mathbf{U} and 𝐗\mathbf{X} are auxiliary and positive.

Up to this point, we formulate an optimization challenge based on (36)-(38) to expand the constraint attraction region. Nevertheless, it is important to note that (36) exhibits non-convexity due to the interaction between Ξıθϑ\Xi_{\imath\theta\vartheta} and 𝒫ȷϑ+\mathcal{P}_{\jmath\vartheta_{+}}. Therefore, addressing this non-convex issue is essential to ensure solvability of the forthcoming optimization problem. For this purpose, we introduce the following variable transformation.

To demonstrate this, consider Eı,υ,Fı,υnx×nxE_{\imath,\upsilon},~{}F_{\imath,\upsilon}\in\mathbb{R}^{n_{x}\times n_{x}}, and positive matrices Mı,υ,Lı,υnx×nxM_{\imath,\upsilon},~{}L_{\imath,\upsilon}\in\mathbb{R}^{n_{x}\times n_{x}} defined by

𝒫ı,υ=[Mı,υ1Mı,υ1Eı,υEı,υTMı,υ1Eı,υTMı,υ1Lı,υFı,υT],\displaystyle\mathcal{P}_{\imath,\upsilon}=\begin{bmatrix}M_{\imath,\upsilon}^{-1}&M_{\imath,\upsilon}^{-1}E_{\imath,\upsilon}\\ E^{T}_{\imath,\upsilon}M_{\imath,\upsilon}^{-1}&-E^{T}_{\imath,\upsilon}M_{\imath,\upsilon}^{-1}L_{\imath,\upsilon}F_{\imath,\upsilon}^{-T}\\ \end{bmatrix}, (39)
𝒫ı,υ1=[Lı,υFı,υFı,υTEı,υ1Fı,υ]\displaystyle\mathcal{P}_{\imath,\upsilon}^{-1}=\begin{bmatrix}L_{\imath,\upsilon}&F_{\imath,\upsilon}\\ F_{\imath,\upsilon}^{T}&-E_{\imath,\upsilon}^{-1}F_{\imath,\upsilon}\\ \end{bmatrix} (40)
Xı,υ=𝒞ı,υFı,υT,Yıȷ,υω=Eȷ,ω𝒜ı,υFı,υT.\displaystyle X_{\imath,\upsilon}=\mathcal{C}_{\imath,\upsilon}F_{\imath,\upsilon}^{T},Y_{\imath\jmath,\upsilon\omega}=E_{\jmath,\omega}\mathcal{A}_{\imath,\upsilon}F_{\imath,\upsilon}^{T}. (41)

Thus, 𝒫ı,υ𝒫ı,υ1=𝕀2nx\mathcal{P}_{\imath,\upsilon}\mathcal{P}_{\imath,\upsilon}^{-1}=\mathbb{I}_{2n_{x}} implies that

Eı,υFı,υT=Mı,υLı,υ.\displaystyle E_{\imath,\upsilon}F_{\imath,\upsilon}^{T}=M_{\imath,\upsilon}-L_{\imath,\upsilon}. (42)
Remark 4

Due to the coupling between variables in (36)-(38), the method of variable substitution (39)-(41) is adopted to reformulate condition as a convex one for the solvability. This is a natural yet widely used idea of the investigation on MPC problems in the framework of the dynamic output feedback.

By virtue of (39)-(42), the following Lemma is presented to help derive the sufficient conditions to (36)-(38).

Lemma 3

Let the Π~ı,υ\tilde{\Pi}_{\imath,\hbar\upsilon} be derived by solving OP2. Assume that there exist matrices Mı,υ>0M_{\imath,\upsilon}>0, Lı,υ>0L_{\imath,\upsilon}>0, 𝐔>0\mathbf{U}>0 and 𝐗>0\mathbf{X}>0, a set of matrices Xı,υX_{\imath,\upsilon} and Yıȷ,υωY_{\imath\jmath,\upsilon\omega} for any ıN\imath\in\mathcal{I}_{N}, T\hbar\in\mathcal{I}_{T}, υ,ωV\upsilon,\omega\in\mathcal{I}_{V}, such that the following inequalities holds:

[Δı,υpı1Γı1,υωΔ1,ωpıNΓıN,υω0ΔN,ω]0,\displaystyle\begin{bmatrix}-\Delta_{\imath,\upsilon}&\ast&\cdots&\ast\\ \sqrt{p_{\imath 1}}\Gamma_{\imath 1,\hbar\upsilon\omega}&-\Delta_{1,\omega}&\cdots&\ast\\ \vdots&\vdots&\ddots&\vdots\\ \sqrt{p_{\imath N}}\Gamma_{\imath N,\hbar\upsilon\omega}&0&\cdots&-\Delta_{N,\omega}\\ \end{bmatrix}\leq 0, (43)
[𝐔[Kı,υLı,υ+Xı,υKı,υMı,υ]TΔı,υ]0,[𝐔]ee[u˘]e2,\displaystyle\begin{bmatrix}-\mathbf{U}&\ast\\ [K_{\imath,\upsilon}L_{\imath,\upsilon}\!+\!X_{\imath,\upsilon}~{}K_{\imath,\upsilon}M_{\imath,\upsilon}]^{T}&-\Delta_{\imath,\upsilon}\end{bmatrix}\!\leq\!0,\!~{}[\mathbf{U}]_{ee}\!\leq\![\breve{u}]_{e}^{2}, (44)
[𝐗[ΦLı,υΦMı,υ]TΔı,υ]0,[𝐗]ff[x˘]e2,\displaystyle\begin{bmatrix}-\mathbf{X}&\ast\\ [\Phi L_{\imath,\upsilon}~{}\Phi M_{\imath,\upsilon}]^{T}&-\Delta_{\imath,\upsilon}\end{bmatrix}\leq 0,~{}~{}[\mathbf{X}]_{ff}\leq[\breve{x}]_{e}^{2}, (45)

where

Δı,υ\displaystyle\Delta_{\imath,\upsilon} =[Lı,υMı,υMı,υMı,υ],Π~ı,υ=Aı,+Bı,Kı,υ,\displaystyle=\begin{bmatrix}L_{\imath,\upsilon}&M_{\imath,\upsilon}\\ M_{\imath,\upsilon}&M_{\imath,\upsilon}\\ \end{bmatrix},\tilde{\Pi}_{\imath,\hbar\upsilon}=A_{\imath,\hbar}+B_{\imath,\hbar}K_{\imath,\upsilon},
Γıȷ,υω\displaystyle\Gamma_{\imath\jmath,\hbar\upsilon\omega} =[Π~ı,υLı,υ+Bı,Xı,υΠ~ı,υMı,υΠ~ı,υLı,υ+Bı,Xı,υ+Yıȷ,υωΠ~ı,υMı,υ].\displaystyle=\begin{bmatrix}\tilde{\Pi}_{\imath,\hbar\upsilon}L_{\imath,\upsilon}+B_{\imath,\hbar}X_{\imath,\upsilon}&\tilde{\Pi}_{\imath,\hbar\upsilon}M_{\imath,\upsilon}\\ \tilde{\Pi}_{\imath,\hbar\upsilon}L_{\imath,\upsilon}+B_{\imath,\hbar}X_{\imath,\upsilon}+Y_{\imath\jmath,\upsilon\omega}&\tilde{\Pi}_{\imath,\hbar\upsilon}M_{\imath,\upsilon}\\ \end{bmatrix}.

Then, conditions (36)-(38) are satisfied, and mode-dependent estimator gain and dynamic feedback gain are computed through

𝒜ı,υ=ȷ=1NpıȷEȷ,υ1Yıȷ,υυFı,υT,𝒞ı,υ=Xı,υFı,υT.\displaystyle\mathcal{A}_{\imath,\upsilon}=\sum_{\jmath=1}^{N}p_{\imath\jmath}E_{\jmath,\upsilon}^{-1}Y_{\imath\jmath,\upsilon\upsilon}F_{\imath,\upsilon}^{-T},~{}\mathcal{C}_{\imath,\upsilon}=X_{\imath,\upsilon}F_{\imath,\upsilon}^{-T}. (46)
Proof 2

Firstly, according to the property of the standard membership function of the underlying T-S FMJSs, conditions (36)-(38) can be guaranteed by the following inequalities:

Ξı,υT(ȷ=1Npıȷ𝒫ȷ,ω)Ξı,υ𝒫ı,υ<0,\displaystyle\Xi_{\imath,\hbar\upsilon}^{T}\big{(}\sum_{\jmath=1}^{N}p_{\imath\jmath}\mathcal{P}_{\jmath,\omega}\big{)}\Xi_{\imath,\hbar\upsilon}-\mathcal{P}_{\imath,\upsilon}<0, (47)
[𝐔[Kı,υ𝒞ı,υ]T𝒫ı,υ]0,[𝐔]ee[u˘]e2,enu,\displaystyle\begin{bmatrix}-\mathbf{U}&\ast\\ [K_{\imath,\upsilon}~{}\mathcal{C}_{\imath,\upsilon}]^{T}&-\mathcal{P}_{\imath,\upsilon}\end{bmatrix}\leq 0,\quad[\mathbf{U}]_{ee}\leq[\breve{u}]_{e}^{2},\quad e\in\mathcal{I}_{n_{u}}, (48)
[𝐗[Φ0]T𝒫ı,υ]0,[𝐗]ff[x˘]e2,fnx.\displaystyle\begin{bmatrix}-\mathbf{X}&\ast\\ [\Phi~{}~{}0]^{T}&-\mathcal{P}_{\imath,\upsilon}\end{bmatrix}\leq 0,\quad[\mathbf{X}]_{ff}\leq[\breve{x}]_{e}^{2},\quad f\in\mathcal{I}_{n_{x}}. (49)

By applying the Schur Complement Lemma, (47) is valid if and only if

[𝒫ı,υpı1𝒫1,ωΞı,υ𝒫1,ωpıN𝒫N,ωΞı,υ0𝒫N,ω]<0,\displaystyle\begin{bmatrix}-\mathcal{P}_{\imath,\upsilon}&\ast&\cdots&\ast\\ \sqrt{p_{\imath 1}}\mathcal{P}_{1,\omega}\Xi_{\imath,\hbar\upsilon}&-\mathcal{P}_{1,\omega}&\cdots&\ast\\ \vdots&\vdots&\ddots&\vdots\\ \sqrt{p_{\imath N}}\mathcal{P}_{N,\omega}\Xi_{\imath,\hbar\upsilon}&0&\cdots&-\mathcal{P}_{N,\omega}\\ \end{bmatrix}<0, (50)

Subsequently, multiplying both sides of inequality (50) by diag{Θı,υT,Θ1,ωT,,ΘN,ωT}\text{diag}\big{\{}\Theta_{\imath,\upsilon}^{T},~{}\Theta_{1,\omega}^{T},~{}\ldots,~{}\Theta_{N,\omega}^{T}\big{\}} and its transpose with

Θı,υ=[Lı,υMı,υFı,υT0],\displaystyle\Theta_{\imath,\upsilon}=\begin{bmatrix}L_{\imath,\upsilon}&M_{\imath,\upsilon}\\ F_{\imath,\upsilon}^{T}&0\\ \end{bmatrix},

yields (43). Therefore, (36) follows from (43).

Next, multiplying both sides of the first inequality in (48) by diag{𝕀nu,Θı,υT}\text{diag}\big{\{}\mathbb{I}_{n_{u}},\Theta_{\imath,\upsilon}^{T}\big{\}} and its transpose gives us (44). Consequently, (37) follows from (44).

Finally, transforming the state constraint (49) into (45) can be achieved by multiplying both sides of the first inequality by diag{𝕀nx,Θı,υT}\text{diag}\big{\{}\mathbb{I}_{n_{x}},\Theta_{\imath,\upsilon}^{T}\big{\}} and its transpose.

Before proceeding, we will demonstrate that if the augmented state ξ\xi resides within the set Σξ,ı\Sigma_{\xi,\imath}, the state xx of the system can reach the terminal constraint set Σx,ı\Sigma_{x,\imath} based on conditions (36)-(38). Consequently, according to Lemma 1, the system state xx can be guided towards the equilibrium point using the control input usu^{\ast}_{s}.

Prior to advancing, the projection of Σξ,ı\Sigma_{\xi,\imath} onto the subspace of xx is provided as

Σxξ,ı{xs+|s|xs+|sTLıϑ1xs+|s1},\displaystyle\Sigma_{x\xi,\imath}\triangleq\left\{x_{s+\ell|s}|x^{T}_{s+\ell|s}L_{\imath\vartheta}^{-1}x_{s+\ell|s}\leq 1\right\}, (51)

where Lıϑ=υ=1vϑυLı,υL_{\imath\vartheta}=\sum_{\upsilon=1}^{v}\vartheta_{\upsilon}L_{\imath,\upsilon}.

The following Lemma can be derived similarly to [16].

Lemma 4

[16] (Thm.2) Among all solutions satisfying (43)-(45), the set Σξ,ı\Sigma_{\xi,\imath} can be optimized such that Σx,ıΣxξ,ı\Sigma_{x,\imath}\subseteq\Sigma_{x\xi,\imath}.

According to Lemma 4 and condition (43), it is evident that the predicted future system state xs+|sx_{s+\ell|s} can enter Σx,ı\Sigma_{x,\imath} using admissible control laws defined by (34), provided the initial augmented state ξs\xi_{s} belongs to Σξ,ı\Sigma_{\xi,\imath} [9].

Thus far, the off-line maximization of Σxξ,ı\Sigma_{x\xi,\imath} across 𝒜ıϑ\mathcal{A}_{\imath\vartheta}, 𝒞ıϑ\mathcal{C}_{\imath\vartheta}, 𝒫ıϑ\mathcal{P}_{\imath\vartheta}, 𝐔\mathbf{U} and 𝐗\mathbf{X}, subject to (36)-(38), can be achieved by solving the following optimization problem:

𝐎𝐏𝟑:\displaystyle\mathbf{OP3}: minMı,υ,Lı,υ,Xı,υ,Yıȷ,υ,𝐔,𝐗,ıN,υVlogdetLı,υ\displaystyle\min_{\begin{subarray}{c}M_{\imath,\upsilon},~{}L_{\imath,\upsilon},~{}X_{\imath,\upsilon},~{}Y_{\imath\jmath,\upsilon},~{}\mathbf{U},~{}\mathbf{X},\\ ~{}\imath\in\mathcal{I}_{N},\upsilon\in\mathcal{I}_{V}\end{subarray}}-\log\det L_{\imath,\upsilon}
s.t.(43)(45).\displaystyle\text{s.t.}~{}~{}~{}~{}\eqref{eq:4-10}-\eqref{eq:4-15}.
Remark 5

Upon obtaining the variables Mı,υM_{\imath,\upsilon} and Lı,υL_{\imath,\upsilon}, utilize the matrix eigenvalue decomposition condition (42) to determine the respective values of Eı,υE_{\imath,\upsilon} and Fı,υF_{\imath,\upsilon}. Typically, this decomposition is singular.

4.2 The Online Optimization Problem of Controller State ηs\eta_{s}

From the acquired feasible region Σxξ,ı\Sigma_{x\xi,\imath}, within this section, our focus lies in formulating an online optimization problem using the cost function JsJ^{\infty}_{s}. This problem is subject to the initial state requirement (i.e., ξsΣξ,ı\xi_{s}\in\Sigma_{\xi,\imath}), ensuring that a series of permissible control strategies derived from this optimization can guide the system state xx towards the terminal constraint set.

To attain the stated objective, concerning OP1, the current task involves resolving the “min-max” problem of the prediction cost JsJ^{\infty}_{s} using the DPO input (7) to ascertain a sequence of disturbance variables {cs+|s,ϑ,=0,1,2,,}\{c_{s+\ell|s,\vartheta},\ell=0,1,2,\ldots,\infty\}. Now, we examine the subsequent quadratic function

Vs+|s(ξs+|s)=ξs+|sTΨıϑξs+|s,\displaystyle V_{s+\ell|s}(\xi_{s+\ell|s})=\xi^{T}_{s+\ell|s}\Psi_{\imath\vartheta}\xi_{s+\ell|s}, (52)

where Ψıϑ=υ=1vϑυΨı,υ2nx×2nx\Psi_{\imath\vartheta}=\sum_{\upsilon=1}^{v}\vartheta_{\upsilon}\Psi_{\imath,\upsilon}\in\mathbb{R}^{2n_{x}\times 2n_{x}}, the matrix Ψı,υ=diag{Ψıxx,υ,Ψıηη,υ}>0\Psi_{\imath,\upsilon}=\text{diag}\{\Psi_{\imath xx,\upsilon},\Psi_{\imath\eta\eta,\upsilon}\}>0 satisfying

𝔼{ΔVs+|s(ξs+|s)}(xs+|sS2+us+|sR2).\displaystyle\mathbb{E}\{\Delta V_{s+\ell|s}(\xi_{s+\ell|s})\}\!\leq\!-\left(\|x_{s+\ell|s}\|^{2}_{S}+\|u_{s+\ell|s}\|^{2}_{R}\right). (53)

Adding both sides of (46) from =0\ell=0 to \infty under the condition lim𝔼{Vs+|s}=0\lim_{\ell\rightarrow\infty}\mathbb{E}\{V_{s+\ell|s}\}=0, we have JsVs|s(ξs|s)J^{\infty}_{s}\leq V_{s|s}(\xi_{s|s}). Then Vs|s(ξs|s)V_{s|s}(\xi_{s|s}) is the upper bound of JsJ^{\infty}_{s}. The following lemma transforms constraint (46) into a convex expression.

Lemma 5

Condition (53) holds true when there exist matrices Ψıxx,υ>0\Psi_{\imath xx,\upsilon}>0 and Ψıηη,υ>0\Psi_{\imath\eta\eta,\upsilon}>0, for any ıN\imath\in\mathcal{I}_{N}, υ,ωV\upsilon,\omega\in\mathcal{I}_{V}, satisfying the subsequent inequality

Ξı,υT(ȷ=1NpıȷΨȷ,ω)Ξı,υΨı,υ+𝔼TS𝔼+Λı,υTRΛı,υ<0\displaystyle\Xi_{\imath,\hbar\upsilon}^{T}\left(\sum_{\jmath=1}^{N}p_{\imath\jmath}\Psi_{\jmath,\omega}\right)\Xi_{\imath,\hbar\upsilon}\!-\!\Psi_{\imath,\upsilon}+\mathbb{E}^{T}S\mathbb{E}+\Lambda_{\imath,\upsilon}^{T}R\Lambda_{\imath,\upsilon}<0 (54)

where Λı,υ=[Kı,υ𝒞ı,υ]\Lambda_{\imath,\upsilon}=\begin{bmatrix}K_{\imath,\upsilon}&\mathcal{C}_{\imath,\upsilon}\end{bmatrix}, 𝔼=[𝕀nx0]\mathbb{E}=\begin{bmatrix}\mathbb{I}_{n_{x}}&0\end{bmatrix}.

Note that Ψıϑ\Psi_{\imath\vartheta} is used to provide an upper bound of JsJ^{\infty}_{s}. Thus, Ψıϑ\Psi_{\imath\vartheta} can be calculated by solving the following optimization problem:

𝐎𝐏𝟒:\displaystyle\mathbf{OP4}: minΨıxx,υ,Ψıηη,υ,ıN,υ,ωV\displaystyle\min_{\begin{subarray}{c}\Psi_{\imath xx,\upsilon},\Psi_{\imath\eta\eta,\upsilon},\\ \imath\in\mathcal{I}_{N},\upsilon,\omega\in\mathcal{I}_{V}\end{subarray}} trace(Ψıxx,υ)+trace(Ψıηη,υ)\displaystyle\text{trace}(\Psi_{\imath xx,\upsilon})+\text{trace}(\Psi_{\imath\eta\eta,\upsilon})
s.t.(54).\displaystyle~{}~{}~{}~{}~{}\text{s.t.}~{}~{}~{}\eqref{eq:4-28}.

Next, we formulate an online problem to determine ηs\eta_{s}. Given that the system state xsx_{s} is measured at time instant ss, the first component of the upper bound, expressed as xsTΨıxxϑxsx^{T}_{s}\Psi_{\imath xx\vartheta}x_{s} is known. This implies that minimizing Vs|s(ξs|s)V_{s|s}(\xi_{s|s}) is solely dependent on ηsTΨıηηϑηs\eta^{T}_{s}\Psi_{\imath\eta\eta\vartheta}\eta_{s}. Thus, we establish the following optimization problem related to ηs\eta_{s}: i) ensuring the initial state satisfies x0Σxξ,ζ0x_{0}\in\Sigma_{x\xi,\zeta_{0}}; ii) determining the necessary perturbations to guide the system into the terminal constraint set Σx,ı\Sigma_{x,\imath}.

𝐎𝐏𝟓:\displaystyle\mathbf{OP5}: minηsηsTΨıηηϑηs\displaystyle\min_{\begin{subarray}{c}\eta_{s}\end{subarray}}~{}~{}~{}~{}\eta^{T}_{s}\Psi_{\imath\eta\eta\vartheta}\eta_{s}
s.t.[1ξs𝒫ıϑ1]0.\displaystyle\text{s.t.}~{}~{}~{}\begin{bmatrix}-1&\ast\\ \xi_{s}&-\mathcal{P}_{\imath\vartheta}^{-1}\\ \end{bmatrix}\leq 0. (55)

Using the Schur Complement Lemma, it is evident from (55) that ξsT𝒫ıϑξs1\xi^{T}_{s}\mathcal{P}_{\imath\vartheta}\xi_{s}\leq 1, ensuring the positive control invariant condition ξsΣξ,ı\xi_{s}\in\Sigma_{\xi,\imath}. Notably, at time instant ss, a perturbation ηs\eta_{s} can be determined by solving an optimization problem based on the current state xsx_{s}. Subsequently, a series of perturbation variables {cs+|s,ϑ,=0,1,2,,}\{c_{s+\ell|s,\vartheta},\ell=0,1,2,\ldots,\infty\} are computed using the dynamic predictions (8)-(9). However, only the initial component cs,ϑc_{s,\vartheta} influences usu_{s} and affects the plant operation. At the next step, a fresh perturbation is derived from a new optimization based on the updated state xs+1x_{s+1}. This iterative process continues until the system reaches the terminal constraint set, illustrating the moving horizon optimization principle in MPC.

4.3 Stability Analysis and Algorithm

In this subsection, the following theorem guarantees the solvability of our DPO-MPC algorithm at time step s>0s>0, , provided that the optimization problem is solvable at s=0s=0, and it establishes the mean-square stability of the closed-loop system.

Theorem 1

Under the conditions that the off-line optimization problems OP2, OP3, and OP4 are feasible for FMJS (3), the online optimization problem OP5 remains feasible for all future times, given any initial mode ζ0\zeta_{0} and the initial state x0Σxξ,ζ0x_{0}\in\Sigma_{x\xi,\zeta_{0}}, This ensures that the system state can be directed into the terminal constraint set Σx,ı\Sigma_{x,\imath} and the designed controller (7) stabilizes the closed-loop system in a mean square sense.

Proof 3

The proof proceeds in two main steps. Initially, we verify the feasibility of the online optimization problem OP5, ensuring the system state can be guided into the terminal constraint set Σx,ı\Sigma_{x,\imath}. Subsequently, we demonstrate the guaranteed stability of the closed-loop system.

1) Recursive feasibility: For OP5, the validity of (55) hinges on the state ξs\xi_{s}. Therefore, to establish the feasibility of OP5, we must demonstrate that (55) holds given x0Σxξ,ζ0x_{0}\in\Sigma_{x\xi,\zeta_{0}}. The condition x0Σxξ,ζ0x_{0}\in\Sigma_{x\xi,\zeta_{0}} implies ξ0Σξ,ζ0\xi_{0}\in\Sigma_{\xi,\zeta_{0}}, ensuring (55) at initial time s=0s=0. Consequently, leveraging Lemma 3, Σξ,ζ0\Sigma_{\xi,\zeta_{0}} serves as an attraction domain for ξ1|0\xi_{1|0}. Thus, ξ1|0=ξ1\xi_{1|0}=\xi_{1} for some Ξıθϑ\Xi_{\imath\theta\vartheta}, confirming the feasibility of OP5 at s=1s=1. This procedure extends recursively to subsequent time instances, thereby ensuring the recursive feasibility of OP5 under the initial feasibility assumption. Moreover, Lemma 4 guarantees that a set of permissible control inputs usu_{s} can guide the predicted state xs+|sx_{s+\ell|s} into the terminal constraint set Σx,ı\Sigma_{x,\imath} given its initial state in Σxξ,ı\Sigma_{x\xi,\imath}. Therefore, due to the guaranteed recursive feasibility, it follows straightforwardly that such permissible control inputs usu_{s} can ultimately steer the state xsx_{s} into the terminal constraint set Σx,ı\Sigma_{x,\imath}.

2) Mean square stability: The system’s mean-square stability under fuzzy feedback gain KıϑK_{\imath\vartheta} after entry into the terminal constraint set needs to be established. We select a quadratic function candidate V(xs)xsTPζsθxsV(x_{s})\triangleq x_{s}^{T}P_{\zeta_{s}\theta}x_{s}, where PζsθP_{\zeta_{s}\theta} is obtained from OP2. Given that the state xs+1=xs+1|sx_{s+1}=x_{s+1|s} for some [Aıθ,Bıθ,Kıθ][A_{\imath\theta},B_{\imath\theta},K_{\imath\theta}] and feasibility of OP2, it follows from (19) that 𝔼{ΔVs}=𝔼{V(xs+1)}V(xs)0\mathbb{E}\{\Delta V_{s}\}=\mathbb{E}\{V(x_{s+1})\}-V(x_{s})\leq 0 holds under constraints (4)-(5). Thus, 𝔼{V(xs+1)}V(xs)0\mathbb{E}\{V(x_{s+1})\}-V(x_{s})\leq 0 holds for all xsΣxξ,ıx_{s}\in\Sigma_{x\xi,\imath}. Consequently, all states within Σxξ,ı\Sigma_{x\xi,\imath} satisfy lims𝔼{xs2}=0\lim_{s\rightarrow\infty}\mathbb{E}\big{\{}\|x_{s}\|^{2}\big{\}}=0, ensuring the mean square stability of the closed-loop system.

To address the couplings within the optimization challenge, we propose a two-part approach: the Offline and Online segments for DPO-MPC starting from the specified initial state ζ0\zeta_{0}.

Algorithm 1: Offline Part
1. Begin at time instant s0s_{0} and initialize parameters.
2. Resolve optimization issue OP2, utilizing (21) to obtain
the mode-dependent controller gain KıϑK_{\imath\vartheta} within
the terminal constraint set Σx,ı\Sigma_{x,\imath}.
3. Address optimization problem OP3.
4. Utilize condition (42) to derive values for Eı,υE_{\imath,\upsilon} and Fı,υF_{\imath,\upsilon}.
5. Compute 𝒫ı,υ\mathcal{P}_{\imath,\upsilon}, 𝒫ı,υ1\mathcal{P}_{\imath,\upsilon}^{-1}, 𝒜ı,υ\mathcal{A}_{\imath,\upsilon}, 𝒞ı,υ\mathcal{C}_{\imath,\upsilon} as per
(39)-(41) and (46).
6. Resolve optimization problem OP4.
Algorithm 2: Online Part
1. At each time step ss, verify if xsΣx,ıx_{s}\in\Sigma_{x,\imath}. If so, compute the control input
as us=Kıϑxsu_{s}=K_{\imath\vartheta}x_{s}. Otherwise, determine ηs\eta_{s} by solving
optimization problem OP5, then calculate the control input as
us=Kıϑxs+𝒞ıϑηsu_{s}=K_{\imath\vartheta}x_{s}+\mathcal{C}_{\imath\vartheta}\eta_{s}.
2. Apply usu_{s} to the system. Increment ss to s+1s+1 and return to Step 1.

5 Illustrative example

5.1 Example

In this section, a single-link robot arm system [27] is used to verify the effectiveness of the control strategy derived in the previous section, in which dynamic systems is presented by

δt¨=MζtgLJζtsin(δt)RJζtδt˙+1Jζtut\ddot{\delta_{t}}=-\frac{M_{\zeta_{t}}gL}{J_{\zeta_{t}}}\sin(\delta_{t})-\frac{R}{J_{\zeta_{t}}}\dot{\delta_{t}}+\frac{1}{J_{\zeta_{t}}}u_{t}

where δt\delta_{t} represents the angle position of the arm. gg, LL, and RR are the acceleration of gravity, the arm’s length, and the viscous friction’s coefficient, respectively. In this simulation, relevant parameters are set as follows: g=9.81g=9.81, L=0.5L=0.5, and R=2R=2. The parameter payload mass MζtM_{\zeta_{t}} and moment of inertia JζtJ_{\zeta_{t}} for the system are presented as: M1=J1=1M_{1}=J_{1}=1, M1=J1=5M_{1}=J_{1}=5, M1=J1=10M_{1}=J_{1}=10, and M1=J1=15M_{1}=J_{1}=15. We are able to define \mathbb{P} for the Markov jump matrix as

=[0.20.250.40.150.10.20.30.40.30.20.40.10.40.20.20.2]\displaystyle\mathbb{P}=\begin{bmatrix}0.2&0.25&0.4&0.15\\ 0.1&0.2&0.3&0.4\\ 0.3&0.2&0.4&0.1\\ 0.4&0.2&0.2&0.2\\ \end{bmatrix}

Define xs=[δs,δs˙]T[xs(1),xs(2)]Tx_{s}=[\delta_{s},~{}\dot{\delta_{s}}]^{T}\triangleq[x_{s}(1),~{}x_{s}(2)]^{T} as state variables. The single-link robot arm system model can be discretized by the Euler approximation and reconstructed as (Sampling period T=0.1T=0.1)

Plant Rule 11: IF xs(1)x_{s}(1) is about 0 rad,

THENxs+1=[1TTMζsgLJζs1TRJζs]xs+[0TJζs]us\text{THEN}~{}\begin{aligned} x_{s+1}=\begin{bmatrix}1&T\\ -\frac{TM_{\zeta_{s}}gL}{J_{\zeta_{s}}}&1-\frac{TR}{J_{\zeta_{s}}}\end{bmatrix}x_{s}+\begin{bmatrix}0\\ \frac{T}{J_{\zeta_{s}}}\end{bmatrix}u_{s}\end{aligned}

Plant Rule 22: IF xs(1)x_{s}(1) is about π\pi rad or π-\pi rad,

THENxs+1=[1TβTMζsgLJζs1TRJζs]xs+[0TJζs]us\text{THEN}~{}\begin{aligned} x_{s+1}=\begin{bmatrix}1&T\\ -\frac{\beta TM_{\zeta_{s}}gL}{J_{\zeta_{s}}}&1-\frac{TR}{J_{\zeta_{s}}}\end{bmatrix}x_{s}+\begin{bmatrix}0\\ \frac{T}{J_{\zeta_{s}}}\end{bmatrix}u_{s}\end{aligned}

where β=102/π\beta=10^{-2}/\pi, ζs=1,2,3,4\zeta_{s}=1,2,3,4.

As for this fuzzy model, the standard membership function is chosen as

θ1(xs(1))={sin(xs(1))βxs(1)(1β)xs(1),xs(1)01,xs(1)=0\displaystyle\theta_{1}(x_{s}(1))=\left\{\begin{aligned} &\frac{\sin(x_{s}(1))-\beta x_{s}(1)}{(1-\beta)x_{s}(1)},~{}~{}x_{s}(1)\neq 0\\ &1,~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}x_{s}(1)=0\end{aligned}\right.
θ2(xs(1))=1θ1(xs(1)).\displaystyle\theta_{2}(x_{s}(1))=1-\theta_{1}(x_{s}(1)).

Set hard constraints on states and inputs as πxs(1)π-\pi\leq x_{s}(1)\leq\pi, 40us40-40\leq u_{s}\leq 40. The initial values of the state and the mode are given by x0=[1.5,1.5]Tx_{0}=[1.5,-1.5]^{T} , ζ0=1\zeta_{0}=1. The weighting matrices are chosen as S=𝕀2S=\mathbb{I}_{2}, R=0.01R=0.01.

5.2 Solving Off-line Part

Through the application of Lemma 1 and Lemma 2, the controller gains specific to each operational mode can be derived by solving OP2 individually.

K1,1=[8.18608.7263],K1,2=[8.25329.0878]\displaystyle K_{1,1}=\begin{bmatrix}-8.1860&-8.7263\end{bmatrix},~{}~{}~{}K_{1,2}=\begin{bmatrix}-8.2532&-9.0878\end{bmatrix}
K2,1=[21.798825.6431],K2,2=[23.820331.5950]\displaystyle K_{2,1}=\begin{bmatrix}-21.7988&-25.6431\end{bmatrix},K_{2,2}=\begin{bmatrix}-23.8203&-31.5950\end{bmatrix}
K3,1=[20.792017.1278],K3,2=[16.269221.2610]\displaystyle K_{3,1}=\begin{bmatrix}-20.7920&-17.1278\end{bmatrix},K_{3,2}=\begin{bmatrix}-16.2692&-21.2610\end{bmatrix}
K4,1=[17.186012.2843],K4,2=[10.930213.9034]\displaystyle K_{4,1}=\begin{bmatrix}-17.1860&-12.2843\end{bmatrix},K_{4,2}=\begin{bmatrix}-10.9302&-13.9034\end{bmatrix}

Simultaneously, the terminal constraint set Σx,ı\Sigma_{x,\imath} fcorresponding to each mode is depicted by the dotted line in Fig. 1. Subsequently, the expanded initial feasible region Σxξ,ı\Sigma_{x\xi,\imath} is determined through the resolution of OP3.

The advantages of the proposed DPO-MPC are illustrated through comparative simulations in [5, 31]. As shown in Fig. 1, we can see that the initial state x0x_{0} belongs to Σxξ,1\Sigma_{x\xi,1} but outside of Σx,1\Sigma_{x,1}, and the range of the region Σxξ,1\Sigma_{x\xi,1} is obviously much wider compared with Σx,1\Sigma_{x,1}. On the other hand, the initial feasible region Υxξ,1\Upsilon_{x\xi,1} derived from the EMPC approach exhibits less satisfactory outcomes when contrasted with the DPO-MPC strategy. This is due to constraints that exert considerable influence in specific directions, stemming from the constraints on their optimization flexibility. This underscores the significant enhancement in practical applicability offered by the proposed algorithm.

Refer to caption
Figure 1: Comparison of initial feasible region before and after expansion

5.3 Solving On-line Part

In this subsection, the benefits of the proposed DPO-MPC are illustrated through comparative simulations. To demonstrate the comparison with EMPC and online MPC, the average performance from 100 different experiments is utilized due to random jumps in FMJSs. Algorithm 2 can be effectively executed using the yalmip.master toolbox on the MATLAB R2016a platform featuring an Intel(R) Core(TM) i5-3470 CPU @3.20GHz.

From TABLE 1, it is evident that the online computational cost of DPO-MPC is markedly reduced in contrast to the EMPC and Online robust MPC (RMPC) strategies. While OP5 requires online solving, its constraints are considerably fewer compared to the RMPC approach. Furthermore, unlike EMPC, the online OP5 constraints involve only a single perturbation ηs\eta_{s} rather than a sequence, thereby reducing the computational burden to some extent. The simulation outcomes are depicted in Fig. 2-Fig. 5

Table 1: Comparison of the average solver-time using yalmip for DPO-MPC, EMPC, and online MPC
Method DPO-MPC EMPC Online-MPC
Time(s) 0.1395 0.5660 0.8974
Refer to caption
Figure 2: The system state evolution xsx_{s} with three different MPC strategy. (Closed-loop evolution for 100 times different experiments.)
Refer to caption
Figure 3: The system states evolution xsx_{s} without control.
Refer to caption
Figure 4: A possible sequence of system modes
Refer to caption
Figure 5: The evolution of control inputs. (Closed-loop evolution for 100 times different experiments.)

5.4 Discussion and Analysis

From Fig. 2, it can be concluded that the control performances of the compared strategies exhibit similarity. However, a detailed examination reveals that the control effectiveness of the DPO-MPC approach slightly surpasses that of the EMPC method, approaching parity with the online RMPC strategy. Thus, this paper validates the efficacy of the proposed methodology. Furthermore, to demonstrate the effectiveness of the MPC strategy, we employ a divergent open-loop system, depicted in Fig. 3. The sequence of system modes is illustrated in Fig. 4. Finally, Fig. 5 portrays the trajectory of the system’s control input.

6 Conclusion

This study has investigated the DPO-MPC problem for a discrete-time class of FMJSs featuring hard constraints. By utilizing the IPM approach, a suite of mode-dependent fuzzy predictive controllers is devised to ensure system stability. The optimized predictive dynamics MPC strategy significantly expands the initial feasible region and reduces online computational overhead, enhancing algorithm practicality. The design methodology is synthesized through an “off-line to online” approach, establishing a comprehensive framework for analyzing algorithm feasibility and mean-square stability in the underlying MJS. Theoretical findings are validated via a single-link robot arm system. Future research directions include extending these results to encompass more complex systems with advanced network-induced phenomena, as explored in [32].

Acknowledgments

This work was supported in part by the China Postdoctoral Science Foundation under Grants 2022TQ0208, 2023M732226.

References

  • Cannon and Kouvaritakis [2005] Cannon, M. and Kouvaritakis, B. (2005). Optimizing prediction dynamics for robust MPC. IEEE Transactions on Automatic Control, 50(11):1892–1897.
  • Chen et al. [2020] Chen, Y., Chen, Z., Chen, Z., and Xue, A. (2020). Observer-based passive control of non-homogeneous Markov jump systems with random communication delays. International Journal of Systems Science, 51(6):1133–1147.
  • Dai et al. [2021] Dai, L., Cannon, M., Yang, F., and Yan, S. (2021). Fast self-triggered MPC for constrained linear systems with additive disturbances. IEEE Transactions on Automatic Control, 66(8):3624–3637.
  • Dong et al. [2020a] Dong, Y., Song, Y., and Wei, G. (2020a). Efficient model predictive control for networked interval type-2 T-S fuzzy system with stochastic communication protocol. IEEE Transactions on Fuzzy Systems, 29(2):286–297.
  • Dong et al. [2020b] Dong, Y., Song, Y., and Wei, G. (2020b). Efficient model predictive control for nonlinear systems in interval type-2 T-S fuzzy form under round-robin protocol. IEEE Transactions on Fuzzy Systems, pages 1–1.
  • Du et al. [2021] Du, Z., Kao, Y., and Zhao, X. (2021). An input delay approach to interval type-2 fuzzy exponential stabilization for nonlinear unreliable networked sampled-data control systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 51(6):3488–3497.
  • Hu and Ding [2019] Hu, J. and Ding, B. (2019). Output feedback model predictive control with steady-state target calculation for fuzzy systems. IEEE Transactions on Fuzzy Systems, 28(12):3442–3449.
  • Jin et al. [2021] Jin, B., Li, H., Yan, W., and Cao, M. (2021). Distributed model predictive control and optimization for linear systems with global constraints and time-varying communication. IEEE Transactions on Automatic Control, 66(7):3393–3400.
  • Kouvaritakis et al. [2000] Kouvaritakis, B., Rossiter, J. A., and Schuurmans, J. (2000). Efficient robust predictive control. IEEE Transactions on automatic control, 45(8):1545–1549.
  • Kouvaritakis et al. [2002] Kouvaritakis, B., Cannon, M., and Rossiter, J. A. (2002). Who needs QP for linear MPC anyway? Automatica, 38(5):879–884.
  • Lam [2018] Lam, H.-K. (2018). A review on stability analysis of continuous-time fuzzy-model-based control systems: From membership-function-independent to membership-function-dependent analysis. Engineering Applications of Artificial Intelligence, 67:390–408.
  • Li et al. [2019a] Li, C., Yi, J., Lv, Y., and Duan, P. (2019a). A hybrid learning method for the data-driven design of linguistic dynamic systems. IEEE/CAA Journal of Automatica Sinica, 6(6):1487–1498.
  • Li et al. [2019b] Li, F., Du, C., Yang, C., Wu, L., and Gui, W (2019b). Finite-time asynchronous sliding mode control for Markovian jump systems. Automatica, 109, 108503.
  • Li and Liang [2020] Li, Q. and Liang, J. (2020). Dissipativity of the stochastic Markovian switching CVNNs with randomly occurring uncertainties and general uncertain transition rates. International Journal of Systems Science, 51(6):1102–1118.
  • Lu et al. [2019] Lu, J., Xi, Y., and Li, D. (2019). Stochastic model predictive control for probabilistically constrained Markovian jump linear systems with additive disturbance. International Journal of Robust and Nonlinear Control, 29(15):5002–5016.
  • Nguyen [2021] Nguyen, H.-N. (2021). Optimizing prediction dynamics with saturated inputs for robust model predictive control. IEEE Transactions on Automatic Control, 66(1):383–390.
  • Song et al. [2018] Song, J., Niu, Y., Lam, J., and Shu, Z. (2018). A hybrid design approach for output feedback exponential stabilization of Markovian jump systems. IEEE Transactions on Automatic Control, 63(5):1404–1417.
  • Song et al. [2017] Song, Y., Wang, Z., Ding, D., and Wei, G. (2017). Robust H2HH_{2}-H_{\infty} model predictive control for linear systems with polytopic uncertainties under weighted MEF-TOD protocol. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 49(7):1470–1481.
  • Song et al. [2022] Song, Y., Wang, Z., Zou, L., and Liu, S. (2022). Endec-decoder-based NN-step model predictive control: Detectability, stability and optimization. Automatica, 135, 109961.
  • Sun et al. [2018] Sun, Z., Dai, L., Liu, K., Xia, Y., and Johansson, K. H. (2018). Robust MPC for tracking constrained unicycle robots with additive disturbances. Automatica, 90:172–184.
  • Tang et al. [2018] Tang, X., Deng, L., Liu, N., Yang, S., and Yu, J. (2018). Observer-based output feedback MPC for T-S fuzzy system with data loss and bounded disturbance. IEEE transactions on cybernetics, 49(6):2119–2132.
  • Teng et al. [2018] Teng, L., Wang, Y., Cai, W., and Li, H. (2018). Efficient robust fuzzy model predictive control of discrete nonlinear time-delay systems via Razumikhin approach. IEEE Transactions on Fuzzy Systems, 27(2):262–272.
  • Tran et al. [2021] Tran, V. P., Mabrok, M. A., Garratt, M. A., and Petersen, I. R. (2021). Hybrid adaptive negative imaginary-neural-fuzzy control with model identification for a quadrotor. IFAC Journal of Systems and Control, 16, 100156.
  • Wang et al. [2018] Wang, L., Basin, M. V., Li, H., and Lu, R. (2018). Observer-based composite adaptive fuzzy control for nonstrict-feedback systems with actuator failures. IEEE Transactions on Fuzzy Systems, 26(4), 2336-2347.
  • Wen et al. [2012] Wen, J., Liu, F., and Nguang, S. K. (2012). Feedback predictive control for constrained fuzzy systems with Markovian jumps. Asian Journal of Control, 14(3):795–806.
  • Xie et al. [2007] Xie, L., Ugrinovskii, V. A., and Petersen, I. R. (2007). A posteriori probability distances between finite-alphabet hidden Markov models. IEEE transactions on information theory, 53(2), 783-793.
  • Xue et al. [2020a] Xue, M., Yan, H., Zhang, H., Li, Z., Chen, S., and Chen, C. (2020a). Event-triggered guaranteed cost controller design for T-S fuzzy Markovian jump systems with partly unknown transition probabilities. IEEE Transactions on Fuzzy Systems, 29(5):1052–1064.
  • Xue et al. [2020b] Xue, M., Yan, H., Zhang, H., Sun, J., and Lam, H.-K. (2020b). Hidden-Markov-model-based asynchronous HH_{\infty} tracking control of fuzzy Markov jump systems. IEEE Transactions on Fuzzy Systems, 29(5):1081–1092.
  • You et al. [2020] You, Z., Yan, H., Sun, J., Zhang, H., and Li, Z. (2020). Reliable control for flexible spacecraft systems with aperiodic sampling and stochastic actuator failures. IEEE Transactions on Cybernetics, pages 1–12.
  • Zeng et al. [2021] Zeng, P., Deng, F., Zhang, H., and Gao, X. (2021). Event-based HH_{\infty} control for discrete-time fuzzy Markov jump systems subject to DoS attacks. IEEE Transactions on Fuzzy Systems.
  • Zhang and Song [2019] Zhang, B. and Song, Y. (2019). Asynchronous constrained resilient robust model predictive control for Markovian jump systems. IEEE Transactions on Industrial Informatics, 16(11):7025–7034.
  • Zhao et al. [2020] Zhao, D., Wang, Z., Wei, G., and Han, Q.-L. (2020). A dynamic event-triggered approach to observer-based PID security control subject to deception attacks. Automatica, 120:109128.
  • Zou et al. [2015] Zou, Y., Lam, J., Niu, Y., and Li, D. (2015). Constrained predictive control synthesis for quantized systems with Markovian data loss. Automatica, 55:217–225.