This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Model-theoretic independence
in the Banach lattices Lp(μ)L_{p}(\mu)

Itaï Ben Yaacov Itaï Ben Yaacov
Université Claude Bernard – Lyon 1
Institut Camille Jordan
43 boulevard du 11 novembre 1918
69622 Villeurbanne Cedex
France
http://math.univ-lyon1.fr/~begnac/
Alexander Berenstein Alexander Berenstein, Universidad de los Andes
Cra 1 No 18A-10
Bogotá, Colombia
and Université Claude Bernard – Lyon 1
Institut Camille Jordan
43 boulevard du 11 novembre 1918
69622 Villeurbanne Cedex
France
http://matematicas.uniandes.edu.co/~aberenst
 and  C. Ward Henson C. Ward Henson
University of Illinois at Urbana-Champaign
Urbana, Illinois 61801
USA
http://www.math.uiuc.edu/~henson
(Date: July 30, 2025)
Abstract.

We study model-theoretic stability and independence in Banach lattices of the form Lp(X,U,μ)L_{p}(X,U,\mu), where 1p<1\leq p<\infty. We characterize non-dividing using concepts from analysis and show that canonical bases exist as tuples of real elements.

Key words and phrases:
LpL_{p} Banach lattices ; stability ; independence
2000 Mathematics Subject Classification:
03C45 ; 03C90 ; 46B04 ; 46B42
The first author was supported by CNRS-UIUC exchange programme. The first and second authors were supported by ANR chaire d’excellence junior THEMODMET (ANR-06-CEXC-007). The third author was supported by NSF grants DMS-0100979, DMS-0140677 and DMS-0555904.

1. Introduction

Let XX be a set, UU a σ\sigma-algebra on XX and μ\mu a measure on UU, and let p[1,)p\in[1,\infty). We denote by Lp(X,U,μ)L_{p}(X,U,\mu) the space of (equivalence classes of) UU-measurable functions f:Xf\colon X\to\mathbb{R} such that f=(|f|p𝑑μ)1/p<\|f\|=(\int|f|^{p}d\mu)^{1/p}<\infty. We consider this space as a Banach lattice (complete normed vector lattice) over \mathbb{R} in the usual way; in particular, the lattice operations ,\wedge,\vee are given by pointwise maximum and minimum. In this paper we study model-theoretic stability and independence in such LpL_{p} Banach lattices.

There are several ways to understand model-theoretic stability for classes of structures, like these, that lie outside the first order context. For the structures considered in this paper, these approaches are completely equivalent. The work of Iovino [Iov99] provides tools for understanding stability in normed space structures using the language of positive bounded formulas developed by Henson [Hen76]. (See also [HI02].) A different approach was initiated by Ben Yaacov [Ben03b] in the compact abstract theory (cat) setting [Ben03a]; first order structures and normed space structures are special cases. Roughly speaking, stability as developed in [Iov99] and [Ben03b] corresponds to the study of universal domains in which there are bounds on the size of spaces of types. Buechler and Lessmann [BL03] developed a notion of simplicity (and thus also of stability) for strongly homogeneous structures. More recently, Ben Yaacov and Usvyatsov [BU] developed local stability for metric structures in a continuous version of first order logic. (See also [BBHU08].)

In all four settings, a key ingredient is the analysis of a model-theoretic concept of independence. In [Iov99, part II, section 3] this analysis is based on a notion of non-forking, which is characterized there using definability of types. Independence is studied in [Ben03b] and in [BL03] by means of the notion of non-dividing (as defined by Shelah); in [Ben03b, section 2], non-dividing in a stable structure is also characterized via definability of types. In [BU] the local stability of continuous formulas is developed and a treatment of independence is sketched in [BBHU08]. It follows from what is proved in those papers that stability and independence are the same notions from all four points of view, for the structures to which they all apply.

In particular, for the structures studied here, these four approaches to stability and independence are equivalent. In this paper, we take the concept of non-dividing as the foundation of our study of independence.

We prove here that for each pp with 1p<1\leq p<\infty, the Banach lattices Lp(μ)L_{p}(\mu) are model-theoretically stable as normed space structures, and we give a characterization of non-dividing using concepts from analysis. See [BBHU08] for a summary of how these results can be translated into the setting of continuous first order logic for metric structures.

Krivine and Maurey [KM81] noted that Lp(μ)L_{p}(\mu) spaces are stable, in a sense that amounts to stability for quantifier-free positive formulas in the language of Banach spaces. This observation was part of a larger project, in which the main theorem is a deep subspace property of quantifier-free stable (infinite dimensional) Banach spaces: if XX is such a Banach space, then for some pp in the interval 1p<1\leq p<\infty, the sequence space p\ell_{p} embeds almost isometrically in XX.

We strengthen this stability observation about the Lp(μ)L_{p}(\mu) spaces so that it applies to the Banach lattice setting and to arbitrary positive bounded formulas in that language (i.e., with bounded quantifiers allowed). Our general motivation is model-theoretic, in that we study independence, non-dividing, and canonical bases in these structures. In this paper we do not attempt to derive structural results that apply to all Banach lattices that are stable in the (strong) sense considered here.

Our work is organized as follows.

In section 2, we introduce basic notions from analysis and probability, such as conditional expectations and distributions.

In section 3 we recall model-theoretic results about atomless LpL_{p} Banach lattices, concerning properties such as elimination of quantifiers [HI02] and separable categoricity [Hen76], and we review a characterization of types in terms of conditional distributions that is due to Markus Pomper [Pom00]. We prove that the Banach lattices Lp(μ)L_{p}(\mu) are ω\omega-stable (with respect to the metrics on the spaces of types that are induced by the norm). (This fact had been observed by the third author [Hen87] but not published.) All of this is done in the model theoretic context described in [HI02], which develops the language of positive bounded formulas with an approximate semantics.

In section 4 we use conditional expectations to characterize non-dividing for the theory of atomless LpL_{p} Banach lattices, thus providing a relation between model-theoretic independence and the notion of independence used in analysis and probability.

In section 5 we give a close analysis of the space of 1-types over a given set of parameters in atomless LpL_{p} Banach lattices. In particular, we give an explicit formula for calculating the distance metric on that space of 1-types (Corollary 5.10.) This metric is centrally important in the model theory of structures such as the ones considered here. The tools developed in this section also yield a second characterization of model-theoretic independence in these structures (Proposition 5.12.)

Finally, in section 6, we construct canonical bases for types in atomless LpL_{p} Banach lattices using conditional slices. In particular we prove they always exist as sets of ordinary elements, i.e., without any need for imaginary sorts.

2. Basic analysis and probability

We start with a review of some results from analysis that we use throughout this paper.

Let (X,U,μ)(X,U,\mu) be a measure space; that is, XX is a nonempty set, UU is a σ\sigma-algebra of subsets of XX, and μ\mu is a σ\sigma-additive measure on UU (not necessarily assumed to be finite or even σ\sigma-finite, in general).

A measure space (X,U,μ)(X,U,\mu) is called decomposable (also called strictly localizable) if there exists a partition {Xi:iI}U\{X_{i}:i\in I\}\subset U of XX into measurable sets such that μ(Xi)<\mu(X_{i})<\infty for all iIi\in I and such that for any subset AA of XX, AUA\in U iff AXiUA\cap X_{i}\in U for all iIi\in I and, in that case, μ(A)=iIμ(AXi)\mu(A)=\sum_{i\in I}\mu(A\cap X_{i}). When these properties hold, the partition {Xi:iI}\{X_{i}:i\in I\} will be called a witness for the decomposability of (X,U,μ)(X,U,\mu). (See [HLR91].)

Convention 2.1.

Throughout this paper we require that all measure spaces are decomposable.

If (X,U,μ)(X,U,\mu) and (Y,V,ν)(Y,V,\nu) are measure spaces, we define a product measure space (X,U,μ)(Y,V,ν)(X,U,\mu)\otimes(Y,V,\nu) by defining μν\mu\otimes\nu in the usual way on rectangles A×BA\times B, where AUA\in U and BVB\in V have finite measure, and then extending to make the resulting product measure space on X×YX\times Y decomposable. When both measure spaces are σ\sigma-finite, this agrees with the usual product measure construction.

Let 1p<.1\leq p<\infty. A Banach lattice EE is an abstract LpL_{p}-space if x+yp=xp+yp\|x+y\|^{p}=\|x\|^{p}+\|y\|^{p} whenever x,yEx,y\in E and xy=0x\wedge y=0. Evidently Lp(X,U,μ)L_{p}(X,U,\mu) is an abstract LpL_{p}-space for every measure space (X,U,μ)(X,U,\mu). For the study of Lp(μ)L_{p}(\mu) spaces, the requirement that all measure spaces be decomposable causes no loss of generality; indeed, the representation theorem for abstract LpL_{p}-spaces states that each such space is Lp(X,U,μ)L_{p}(X,U,\mu) for some decomposable measure space (X,U,μ)(X,U,\mu). (Discussions of this representation theorem can be found in [LT79, pp. 15–16] and [Lac74, Chapter 5]; see [Lac74, p. 135] for the history of this result. See also the proof of Theorem 3 in [BDCK67], which was a key paper in the model theory of LpL_{p}-spaces.)

Let EE be any Banach lattice and fEf\in E. The positive part of ff is f0f\vee 0, and it is denoted f+f^{+}. The negative part of ff is f=(f)+f^{-}=(-f)^{+}, and one has f=f+ff=f^{+}-f^{-} and |f|=f++f|f|=f^{+}+f^{-}. Further, ff is positive if f=f+f=f^{+} and ff is negative if f-f is positive. For f,gEf,g\in E, one has fgf\geq g iff fgf-g is positive.

A subspace FEF\subset E is an ideal if whenever gEg\in E and fFf\in F are such that 0|g||f|0\leq|g|\leq|f|, one always has gFg\in F. An ideal FF is a band if for all collections {hj:jJ}F\{h_{j}:j\in J\}\subset F such that h=jJhjEh=\bigvee_{j\in J}h_{j}\in E, one always has hFh\in F. By a sublattice of EE we mean a norm-closed linear sublattice. If A,BA,B are subsets of EE we write ABA\leq B to mean that AA and BB are sublattices of EE and AA is contained in BB.

Let BEB\subset E. One defines B={fE:|f||g|=0B^{\perp}=\{f\in E\colon|f|\wedge|g|=0 for all gB}g\in B\} and therefore B={fE:|f||g|=0 for all gB}B^{\perp\perp}=\{f\in E\colon|f|\wedge|g|=0\text{ for all }g\in B^{\perp}\}. It is a standard fact that BB^{\perp} and BB^{\perp\perp} are bands and BB^{\perp\perp} is the smallest band containing BB. One refers to BB^{\perp} as the band orthogonal to BB and to BB^{\perp\perp} as the band generated by BB. In LpL_{p}-spaces, every band is a projection band. That is, for any set BLp(X,U,μ)B\subset L_{p}(X,U,\mu), one has a lattice direct sum decomposition Lp(X,U,μ)=BBL_{p}(X,U,\mu)=B^{\perp}\oplus B^{\perp\perp}. (See [Sch74], for example.)

Let (X,U,μ)(X,U,\mu) be a measure space. A measurable set SUS\in U is an atom if μ(S)>0\mu(S)>0 but there do not exist S1,S2US_{1},S_{2}\in U disjoint, both of positive measure, such that S1S2=SS_{1}\cup S_{2}=S. One calls (X,U,μ)(X,U,\mu) atomless if it has no atoms. An atom in a Banach lattice is an element xx such that the ideal generated by xx has dimension 1. In Lp(X,U,μ)L_{p}(X,U,\mu), the atoms in the sense of this definition are exactly the elements of the form rχSr\chi_{S} where r0r\neq 0 and SS is an atom in the sense of measure theory. We may write XX as the disjoint union of two measurable sets, X0X_{0} and X1X_{1}, such that X0X_{0} is (up to null sets) the union of all atoms in UU and X1X_{1} is atomless. Moreover, if BB is the set of atoms in Lp(X,U,μ)L_{p}(X,U,\mu), then B=Lp(X0,U0,μ)B^{\perp\perp}=L_{p}(X_{0},U_{0},\mu) and B=Lp(X1,U1,μ)B^{\perp}=L_{p}(X_{1},U_{1},\mu), where for each i=0,1i=0,1, UiU_{i} is the restriction of UU to XiX_{i}.

Definition 2.2.

Let (X,U,ν)(X,U,\nu) and (Y,V,μ)(Y,V,\mu) be a measure spaces. We write (Y,V,ν)(X,U,μ)(Y,V,\nu)\subset(X,U,\mu) to mean that VUV\subset U and ν(A)=μ(A)\nu(A)=\mu(A) for all AVA\in V, and that there exists a witness (XiiI)(X_{i}\mid i\in I) for the decomposability of (X,U,μ)(X,U,\mu) and JIJ\subset I such that (XiiJ)(X_{i}\mid i\in J) witnesses the decomposability of (Y,V,ν)(Y,V,\nu). In particular YY and each of the sets in (XiiJ)(X_{i}\mid i\in J) are elements of VV.

Notation 2.3.

In the rest of this paper, we will frequently use μ\mu as the generic symbol for a measure. This follows usual mathematical practice, as when ++ is used as the symbol for addition in every abelian group. In particular, when we write (Y,V,μ)(X,U,μ)(Y,V,\mu)\subset(X,U,\mu), it is the restriction of μ\mu to VV that is to be used as the measure in the measure space (Y,V,μ)(Y,V,\mu).

Remark 2.4.

Let 𝒰\mathcal{U} be an abstract LpL_{p}-space and let (Cj:j=1,,n)(C_{j}\colon j=1,\dots,n) be an increasing chain of sublattices of 𝒰\mathcal{U}, so C1Cn𝒰C_{1}\leq\dots\leq C_{n}\leq\mathcal{U}. Note that each CjC_{j} is an abstract LpL_{p} space. One can use the representation theorem for abstract LpL_{p} spaces to show that there exist measure spaces (X,U,μ)(X,U,\mu) and ((Yj,Vj,μ):j=1,,n)((Y_{j},V_{j},\mu)\colon j=1,\dots,n) satisfying (Y1,V1,μ)(Yn,Vn,μ)(X,U,μ)(Y_{1},V_{1},\mu)\subset\dots\subset(Y_{n},V_{n},\mu)\subset(X,U,\mu), as well as an isomorphism Φ\Phi from Lp(X,U,μ)L_{p}(X,U,\mu) onto 𝒰\mathcal{U} such that Φ\Phi maps Lp(Yj,Vj,μ)L_{p}(Y_{j},V_{j},\mu) exactly onto CjC_{j} for each jj. To see this, proceed inductively to construct for each jj a maximal set SjS_{j} of pairwise disjoint positive elements of CjC_{j}, satisfying S1SnS_{1}\subset\dots\subset S_{n}, and extend SnS_{n} to a maximal set TT of pairwise disjoint positive elements of 𝒰\mathcal{U}. Then the elements of UU (respectively, VjV_{j}) having finite measure can be identified with the set of elements of 𝒰\mathcal{U} (respectively, of CjC_{j}) that are convergent sums of disjoint components of elements of TT (respectively, of SjS_{j}), and the measure μ\mu is simply p\|\ \|^{p}. The full measure spaces are then determined by taking them to be decomposable.

A key relationship between an abstract LpL_{p}-space 𝒰\mathcal{U} and a given sublattice CC of 𝒰\mathcal{U} is based on the following standard theorem. As explained in Remark 2.4, we may take 𝒰=Lp(X,U,μ)\mathcal{U}=L_{p}(X,U,\mu) and C=Lp(Y,V,μ)C=L_{p}(Y,V,\mu) where (Y,V,μ)(X,U,μ)(Y,V,\mu)\subset(X,U,\mu).

Fact 2.5.

(Conditional Expectation) Let (Y,V,μ)(X,U,μ)(Y,V,\mu)\subset(X,U,\mu) be measure spaces (and recall Convention 2.1, which applies to both (X,U,μ)(X,U,\mu) and (Y,V,μ))(Y,V,\mu)). Fix 1p<1\leq p<\infty and let fLp(X,U,μ)f\in L_{p}(X,U,\mu). Then there exists a unique gfLp(Y,V,μ)g_{f}\in L_{p}(Y,V,\mu) such that Agf𝑑μ=Af𝑑μ\int_{A}g_{f}\,d\mu=\int_{A}f\,d\mu for every AVA\in V. We call the function gfg_{f} the conditional expectation of ff with respect to (Y,V,μ)(Y,V,\mu) and denote it by 𝔼(f|V)\mathbb{E}(f|V). If f=χBf=\chi_{B} for some BUB\in U, we often write 𝔼(B|V)\mathbb{E}(B|V) in place of 𝔼(f|V)\mathbb{E}(f|V). The operator mapping ff to 𝔼(f|V)\mathbb{E}(f|V) is a contractive, positive projection from Lp(X,U,μ)L_{p}(X,U,\mu) onto Lp(Y,V,μ)L_{p}(Y,V,\mu), and 𝔼(f|V)=0\mathbb{E}(f|V)=0 for any fLp(Y,V,μ)f\in L_{p}(Y,V,\mu)^{\perp}.

Proof.

If μ(Y)<\mu(Y)<\infty, the existence of gfg_{f} is a standard fact; first restrict ff and UU to YY, and then apply the usual conditional expectation operator. Our assumption that (Y,V,μ)(Y,V,\mu) is decomposable gives the general case. See the proof of [Sch74, Theorem 11.4, p. 212] for details. A somewhat more elementary proof of the existence of a contractive, positive projection from Lp(X,U,μ)L_{p}(X,U,\mu) onto Lp(Y,V,μ)L_{p}(Y,V,\mu) is given in [LT79]. (See Lemma 1.b.9 and its proof on page 20.) ∎

Remark 2.6.

Consider the case p=2p=2; L2(X,U,μ)L_{2}(X,U,\mu) is the expansion of a Hilbert space by adding the lattice operations \wedge, \vee. Let (Y,V,μ)(X,U,μ)(Y,V,\mu)\subset(X,U,\mu) and let fL2(X,U,μ)f\in L_{2}(X,U,\mu). From the definitions, one has f𝔼(f|V),χA=0\langle f-\mathbb{E}(f|V),\chi_{A}\rangle=0 for all AVA\in V; using linearity and continuity of the inner product as well as density of simple functions, it follows that f𝔼(f|V),h=0\langle f-\mathbb{E}(f|V),h\rangle=0 for all hL2(Y,V,μ)h\in L_{2}(Y,V,\mu). Thus 𝔼(f|V)\mathbb{E}(f|V) is the orthogonal projection of ff on the closed subspace L2(Y,V,μ)L_{2}(Y,V,\mu).

For our characterization of model-theoretic independence, it is important that the conditional expectation operator defined above is uniquely determined by some of its Banach lattice properties. This is shown in the following result using functional analysis; a second, more elementary proof is given in Section 5. (See Proposition 5.6 and Remark 5.7).

Proposition 2.7.

Let 𝒰\mathcal{U} be an abstract LpL_{p} Banach lattice and let CC be any sublattice of  𝒰\mathcal{U}. There is a unique linear operator T:𝒰CT\colon\mathcal{U}\to C such that TT is a contractive, positive projection and T(f)=0T(f)=0 for any fCf\in C^{\perp}. Indeed, if (Y,V,μ)(X,U,μ)(Y,V,\mu)\subset(X,U,\mu) are any measure spaces and Φ\Phi is any isomorphism from Lp(X,U,μ)L_{p}(X,U,\mu) onto 𝒰\mathcal{U} that maps Lp(Y,V,μ)L_{p}(Y,V,\mu) exactly onto CC, then for any f𝒰f\in\mathcal{U} one has that T(f)T(f) = Φ1(𝔼(Φ(f)|V))\Phi^{-1}(\mathbb{E}(\Phi(f)|V)).

Proof.

The existence of such an operator and its connection to the conditional expectation is given in Fact 2.5.

It remains to prove uniqueness. Suppose T:𝒰CT\colon\mathcal{U}\to C is a contractive, positive projection and T(f)=0T(f)=0 for any fCf\in C^{\perp}. We first show that if fCf\in C, then TT maps the band B={f}B=\{f\}^{\perp\perp} generated by ff into itself. To see this, note that if 0x|f|0\leq x\leq|f|, then positivity of TT implies 0T(x)T(|f|)=|f|0\leq T(x)\leq T(|f|)=|f|, so T(x)BT(x)\in B. In LpL_{p}-spaces, BB is the closed linear span of such xx, so TT necessarily maps BB into itself.

Let (Y,V,μ)(X,U,μ)(Y,V,\mu)\subset(X,U,\mu) be measure spaces such that 𝒰=Lp(X,U,μ)\mathcal{U}=L_{p}(X,U,\mu) and C=Lp(Y,V,μ)C=L_{p}(Y,V,\mu). Recalling that (Y,V,μ)(Y,V,\mu) is decomposable and using the band argument in the second paragraph of this proof, we may reduce to the case where Y=XY=X and μ(X)<\mu(X)<\infty. Without loss of generality we take μ(X)=1\mu(X)=1.

Let qq be dual to pp, so q=q=\infty if p=1p=1 and p+q=pqp+q=pq otherwise. Then Lq(X,U,μ)L_{q}(X,U,\mu) is the dual space of Lp(X,U,μ)L_{p}(X,U,\mu), with the pairing given by f,g=Xfg𝑑μ\langle f,g\rangle=\int_{X}fg\,d\mu for all fLp(X,U,μ)f\in L_{p}(X,U,\mu) and gLq(X,U,μ)g\in L_{q}(X,U,\mu). Let T:Lq(X,V,μ)Lq(X,U,μ)T^{\prime}\colon L_{q}(X,V,\mu)\to L_{q}(X,U,\mu) be the adjoint of TT, a positive linear operator of norm 11. Note that T(χX)=χXT^{\prime}(\chi_{X})=\chi_{X}, since T(χX)T^{\prime}(\chi_{X}) is positive, has norm 1\leq 1, and satisfies χX,T(χX)=T(χX),χX=χX,χX=μ(X)=1\langle\chi_{X},T^{\prime}(\chi_{X})\rangle=\langle T(\chi_{X}),\chi_{X}\rangle=\langle\chi_{X},\chi_{X}\rangle=\mu(X)=1.

To prove TT is unique, it suffices to prove T(f)=𝔼(f|V)T(f)=\mathbb{E}(f|V) for any fLp(X,U,μ)f\in L_{p}(X,U,\mu) that satisfies 0fχX0\leq f\leq\chi_{X}, since the linear span of such functions is norm dense in Lp(X,U,μ)L_{p}(X,U,\mu). Let AVA\in V and set B=XAVB=X\smallsetminus A\in V so f=fχA+fχBf=f\chi_{A}+f\chi_{B}. The band argument above shows that T(fχA)T(f\chi_{A}) vanishes on BB and that T(fχB)T(f\chi_{B}) vanishes on AA. Therefore we have

AT(f)𝑑μ=XχAT(f)𝑑μ=XχAT(fχA)𝑑μ+XχAT(fχB)𝑑μ\int_{A}T(f)\,d\mu=\int_{X}\chi_{A}T(f)\,d\mu=\int_{X}\chi_{A}T(f\chi_{A})\,d\mu+\int_{X}\chi_{A}T(f\chi_{B})\,d\mu
=XχAT(fχA)𝑑μ=XχXT(fχA)𝑑μ=XT(χX)fχA𝑑μ=\int_{X}\chi_{A}T(f\chi_{A})\,d\mu=\int_{X}\chi_{X}T(f\chi_{A})\,d\mu=\int_{X}T^{\prime}(\chi_{X})f\chi_{A}\,d\mu
=XχXfχA𝑑μ=XχAf𝑑μ=Af𝑑μ.=\int_{X}\chi_{X}f\chi_{A}\,d\mu=\int_{X}\chi_{A}f\,d\mu=\int_{A}f\,d\mu.

Hence T(f)T(f) must be the conditional expectation of ff relative to (X,V,μ)(X,V,\mu). ∎

Remark 2.8.

The uniqueness of TT could have been derived from a theorem of Douglas [Dou65] (for p=1p=1) and Ando [And66] (for p>1p>1). The restriction of TT to a band generated by a single element of CC corresponds to the case of 2.7 where Y=XY=X and μ(X)<\mu(X)<\infty, which is exactly the setting of the Douglas-Ando result. Applying this to each such band would give the uniqueness of TT globally. In order to make this paper more self-contained and because we did not find in the literature a simple proof of the Douglas-Ando result for all values of pp, we included one here. It is adapted from the argument for the p=1p=1 case in [AAB93].

Remark 2.9.

In Proposition 2.7 the assumption that T=0T=0 on CC^{\perp} is needed for p=1p=1 but it follows from the other assumptions about TT when p>1p>1.

While the definition of conditional expectation is in terms of functions on concrete measure spaces, it follows from the moreover part of Proposition 2.7 that the conditional expectation 𝔼(f|V)\mathbb{E}(f|V) only depends on the embedding of CC in 𝒰\mathcal{U} as an abstract sublattice.

Notation 2.10.

If 𝒰\mathcal{U} is an abstract LpL_{p} lattice and CC is a sublattice of 𝒰\mathcal{U} then the conditional expectation mapping from 𝒰\mathcal{U} to CC will be denoted by 𝔼C𝒰\mathbb{E}_{C}^{\mathcal{U}}, or simply by 𝔼C\mathbb{E}_{C} if 𝒰\mathcal{U} is understood from the context.

Definition 2.11.

Let (Y,V,μ)(X,U,μ)(Y,V,\mu)\subset(X,U,\mu). Let f¯=(f1,,fn)Lp(X,U,μ)n\bar{f}=(f_{1},...,f_{n})\in L_{p}(X,U,\mu)^{n} and let g¯=(g1,,gn)Lp(X,U,μ)n\bar{g}=(g_{1},...,g_{n})\in L_{p}(X,U,\mu)^{n} be such that fif_{i}, gig_{i} are in the band generated by Lp(Y,V,μ)L_{p}(Y,V,\mu) for ini\leq n. We write dist(f1,,fn|V)=dist(g1,,gn|V)\operatorname{dist}(f_{1},...,f_{n}|V)=\operatorname{dist}(g_{1},...,g_{n}|V) and say that (f1,,fn)(f_{1},...,f_{n}), (g1,,gn)(g_{1},...,g_{n}) have the same (joint) conditional distribution over (Y,V,μ)(Y,V,\mu) if

𝔼(f¯1(B)|V)=𝔼(g¯1(B)|V)\mathbb{E}(\bar{f}^{-1}(B)|V)=\mathbb{E}(\bar{g}^{-1}(B)|V)

for any Borel set BnB\subset\mathbb{R}^{n}.

Definition 2.12.

Let (X,V,μ)(X,U,μ)(X,V,\mu)\subset(X,U,\mu). The measure space (X,U,μ)(X,U,\mu) is atomless over (X,V,μ)(X,V,\mu) if for every AUA\in U of positive finite measure there exists BUB\in U such that ABACA\cap B\neq A\cap C for all CVC\in V.

A key property of measure spaces having this “atomless over” relation is the following result [BR85, Theorem 1.3]. See also [Fre04, Lemma 331B].

Fact 2.13 (Maharam’s Lemma).

Let (X,V,μ)(X,U,μ)(X,V,\mu)\subset(X,U,\mu) with (X,U,μ)(X,U,\mu) atomless over (X,V,μ)(X,V,\mu); then for every AUA\in U of positive finite measure and for every fLp(X,V,μ)f\in L_{p}(X,V,\mu) such that 0f𝔼(A|V)0\leq f\leq\mathbb{E}(A|V) there is a set BUB\in U such that BAB\subset A and 𝔼(B|V)=f\mathbb{E}(B|V)=f.

Example 2.14.

Let (Y,V,μ)(Y,V,\mu) be a measure space and let ([0,1],,m)([0,1],\mathcal{B},m) be the standard Lebesgue measure space on the interval [0,1][0,1]. Let 𝒯\mathcal{T} be the trivial σ\sigma-algebra on [0,1][0,1]: 𝒯={,[0,1]}\mathcal{T}=\{\varnothing,[0,1]\}. Then (Y,V,μ)([0,1],,m)(Y,V,\mu)\otimes([0,1],\mathcal{B},m) is atomless over (Y,V,μ)([0,1],𝒯,m)(Y,V,\mu)\otimes([0,1],\mathcal{T},m), which is isomorphic to (Y,V,μ)(Y,V,\mu).

The following result shows how to obtain functions with a prescribed conditional distribution. We state the result for LpL_{p} functions; in [BR85] Berkes and Rosenthal give a proof of the corresponding result for arbitrary measurable functions.

Fact 2.15.

(Theorem 1.5 [BR85]) Let (X,V,μ)(X,U,μ)(X,V,\mu)\subset(X,U,\mu) be measure spaces, where (X,U,μ)(X,U,\mu) is atomless over (X,V,μ)(X,V,\mu). Let (X,V,μ)(X,W,μ)(X,V,\mu)\subset(X,W,\mu) be any other extension, not necessarily atomless over (X,V,μ)(X,V,\mu). Then for any fLp(X,W,μ)f\in L_{p}(X,W,\mu), there is gLp(X,U,μ)g\in L_{p}(X,U,\mu) such that dist(f|V)=dist(g|V)\operatorname{dist}(f|V)=\operatorname{dist}(g|V).

We need an iterated version of the previous result, as stated in the next lemma. This was proved by Markus Pomper in his thesis [Pom00, Theorem 6.2.7]. Pomper gave a direct proof based on generalizing the argument of Berkes and Rosenthal to dimension >1>1. We give a different proof by iterating the 11-dimensional result.

Lemma 2.16.

Let (X,V,μ)(X,U,μ)(X,V,\mu)\subset(X,U,\mu) be measure spaces, where (X,U,μ)(X,U,\mu) is atomless over (X,V,μ)(X,V,\mu). Let (X,V,μ)(X,W,μ)(X,V,\mu)\subset(X,W,\mu) be any other extension, not necessarily atomless over (X,V,μ)(X,V,\mu). Then for any f1,,fnLp(X,W,μ)f_{1},...,f_{n}\in L_{p}(X,W,\mu), there are g1,,gnLp(X,U,μ)g_{1},...,g_{n}\in L_{p}(X,U,\mu) such that dist(f1,,fn|V)=dist(g1,,gn|V)\operatorname{dist}(f_{1},...,f_{n}|V)=\operatorname{dist}(g_{1},...,g_{n}|V).

Proof.

We reduce this Lemma to the case in which (X,U,μ)(X,U,\mu) is isomorphic over (X,V,μ)(X,V,\mu) to (X,V,μ)([0,1],,m)(X,V,\mu)\otimes([0,1],\mathcal{B},m), where ([0,1],,m)([0,1],\mathcal{B},m) is the standard Lebesgue space. To see that a treatment of this special case is sufficient, it suffices to show that any (X,U,μ)(X,U,\mu) that is atomless over (X,V,μ)(X,V,\mu) must contain a measure space isomorphic over (X,V,μ)(X,V,\mu) to (X,V,μ)([0,1],,m)(X,V,\mu)\otimes([0,1],\mathcal{B},m). To prove this, it suffices to consider the case where μ(X)<\mu(X)<\infty since (X,U,μ)(X,U,\mu) is decomposable. Fact 2.13 yields X0UX_{0}\in U with (χX)/2=𝔼(X0|V)(\chi_{X})/2=\mathbb{E}(X_{0}|V). Setting X1=XX0X_{1}=X\smallsetminus X_{0} we get a partition X0,X1UX_{0},X_{1}\in U of XX such that (χX)/2=𝔼(X0|V)=𝔼(X1|V)(\chi_{X})/2=\mathbb{E}(X_{0}|V)=\mathbb{E}(X_{1}|V). Now Fact 2.13 can be applied to each of the sets X0X_{0} and X1X_{1}, yielding a refinement of X0,X1X_{0},X_{1} to a partition of XX by four sets X00,X01,X10,X11X_{00},X_{01},X_{10},X_{11} from UU, each of which satisfies (χX)/4=𝔼(Xij|V)(\chi_{X})/4=\mathbb{E}(X_{ij}|V). Continuing to apply Fact 2.13 inductively yields a family (Xα)(X_{\alpha}) in UU, where α\alpha ranges over all finite sequences from {0,1}\{0,1\}, which has the following properties: (i) for each n1n\geq 1, πn={Xα:α has length n}\pi_{n}=\{X_{\alpha}\colon\alpha\mbox{ has length }n\} is a partition of XX; (ii) πn+1\pi_{n+1} refines πn\pi_{n} for each n1n\geq 1; and (iii) if α\alpha has length nn, then 𝔼(Xα|V)=2nχX\mathbb{E}(X_{\alpha}|V)=2^{-n}\chi_{X}. The measure subspace of (X,U,μ)(X,U,\mu) generated by VV and the sets XαX_{\alpha} is isomorphic over (X,V,μ)(X,V,\mu) to (X,V,μ)([0,1],,m)(X,V,\mu)\otimes([0,1],\mathcal{B},m).

So, we now assume that (X,U,μ)(X,U,\mu) is isomorphic over (X,V,μ)(X,V,\mu) to (X,V,μ)([0,1],,m)(X,V,\mu)\otimes([0,1],\mathcal{B},m). Note that ([0,1],,m)([0,1],\mathcal{B},m) is isomorphic to ([0,1]n,n,mn)([0,1]^{n},\mathcal{B}_{n},m_{n}), where n\mathcal{B}_{n} is the Lebesgue σ\sigma-algebra of the product space, and mnm_{n} is the product measure. Thus we may assume that (X,U,μ)(X,U,\mu) is equal to (X,V,μ)([0,1]n,n,mn)(X,V,\mu)\otimes([0,1]^{n},\mathcal{B}_{n},m_{n}). Let 𝒯k\mathcal{T}_{k} be the trivial σ\sigma-algebra on [0,1]k[0,1]^{k}: 𝒯k={,[0,1]k}\mathcal{T}_{k}=\{\varnothing,[0,1]^{k}\}. Let ViV_{i} be the subalgebra (X,V,μ)([0,1]i,i,mi)([0,1]ni,𝒯ni,mni)(X,V,\mu)\otimes([0,1]^{i},\mathcal{B}_{i},m_{i})\otimes([0,1]^{n-i},\mathcal{T}_{n-i},m_{n-i}) of (X,W,μ)([0,1]n,n,mn)(X,W,\mu)\otimes([0,1]^{n},\mathcal{B}_{n},m_{n}) for each ini\leq n. Then (X,Vi+1,μ)(X,V_{i+1},\mu) is atomless over (X,Vi,μ)(X,V_{i},\mu) for all in1i\leq n-1.

Now we proceed inductively. By Fact 2.15, there is g1Lp(X,V1,μ)g_{1}\in L_{p}(X,V_{1},\mu) such that dist(f1|V)=dist(g1|V)\operatorname{dist}(f_{1}|V)=\operatorname{dist}(g_{1}|V). For the induction step, suppose there are g1,,glLp(X,Vl,μ)g_{1},...,g_{l}\in L_{p}(X,V_{l},\mu) such that dist(f1,,fl|V)=dist(g1,,gl|V)\operatorname{dist}(f_{1},...,f_{l}|V)=\operatorname{dist}(g_{1},...,g_{l}|V). Let WlW_{l} be the smallest σ\sigma-subalgebra of WW containing VV and making f1,,flf_{1},...,f_{l} measurable; let UlU_{l} be the smallest σ\sigma-subalgebra of UU containing VV and making g1,,glg_{1},...,g_{l} measurable, so UlVlU_{l}\subset V_{l}. Then there is an isomorphism from (X,Wl,μ)(X,W_{l},\mu) to (X,Ul,μ)(X,U_{l},\mu) which is equal to the identity when restricted to VV. Since (X,Vl+1,μ)(X,V_{l+1},\mu) is atomless over (X,Vl,μ)(X,V_{l},\mu), it is also atomless over (X,Ul,μ)(X,U_{l},\mu). By 2.15 we can find gl+1g_{l+1} in Lp(X,Vl+1,μ)L_{p}(X,V_{l+1},\mu) such that dist(f1,,fl+1|V)=dist(g1,,gl+1|V)\operatorname{dist}(f_{1},...,f_{l+1}|V)=\operatorname{dist}(g_{1},...,g_{l+1}|V). ∎

Corollary 2.17.

Let (X,W,μ)(X,V,μ)(X,U,μ)(X,W,\mu)\subset(X,V,\mu)\subset(X,U,\mu) be measure spaces such that (X,U,μ)(X,U,\mu) is atomless over (X,V,μ)(X,V,\mu). Let (X,W,μ)(X,V,μ)(X,W,\mu)\subset(X,V^{\prime},\mu) be any other extension. Then for any f¯=(f1,,fn)Lp(X,V,μ)\bar{f}=(f_{1},\dots,f_{n})\in L_{p}(X,V^{\prime},\mu) there are g¯=(g1,,gn)Lp(X,U,μ)\bar{g}=(g_{1},\dots,g_{n})\in L_{p}(X,U,\mu) such that dist(g1,,gn|W)=dist(f1,,fn|W)\operatorname{dist}(g_{1},\dots,g_{n}|W)=\operatorname{dist}(f_{1},\dots,f_{n}|W) and 𝔼(g¯1(B)|V)=𝔼(g¯1(B)|W)\mathbb{E}(\bar{g}^{-1}(B)|V)=\mathbb{E}(\bar{g}^{-1}(B)|W) for any Borel set BnB\subset\mathbb{R}^{n}.

Proof.

By Lemma 2.16 and Example 2.14, we may assume that (X,V,μ)=(X,W,μ)([0,1],,m)(X,V^{\prime},\mu)=(X,W,\mu)\otimes([0,1],\mathcal{B},m), where ([0,1],,m)([0,1],\mathcal{B},m) is the standard Lebesgue space. We view (X,V,μ)([0,1],,m)(X,V,\mu)\otimes([0,1],\mathcal{B},m) as an extension of (X,V,μ)(X,V,\mu), and also as an extension of (X,V,μ)(X,V^{\prime},\mu). Hence we can regard f¯=(f1,,fn)Lp(X,V,μ)\bar{f}=(f_{1},\dots,f_{n})\in L_{p}(X,V^{\prime},\mu) as elements of the LpL_{p}-space of an extension of (X,V,μ)(X,V,\mu). By Lemma 2.16 there are g¯=(g1,,gn)Lp(X,U,μ)\bar{g}=(g_{1},\dots,g_{n})\in L_{p}(X,U,\mu) with dist(g1,,gn|V)=dist(f1,,fn|V)\operatorname{dist}(g_{1},\dots,g_{n}|V)=\operatorname{dist}(f_{1},\dots,f_{n}|V). Note also that for any Borel set BnB\subset\mathbb{R}^{n}, we have 𝔼(g¯1(B)|V)=𝔼(f¯1(B)|V)=𝔼(f¯1(B)|W)\mathbb{E}(\bar{g}^{-1}(B)|V)=\mathbb{E}(\bar{f}^{-1}(B)|V)=\mathbb{E}(\bar{f}^{-1}(B)|W).

3. Basic model theory

We use the model-theoretic tools developed in [HI02] to study normed space structures. We use the word formula to mean positive bounded formula and use the semantics of approximate satisfaction as defined there. In particular, the type of a tuple over a set, denoted tp(f¯,/A)\operatorname{tp}(\bar{f},/A), is the collection of such formulas (with parameters from the set) approximately satisfied by the tuple. We also write f¯Cg¯\bar{f}\equiv_{C}\bar{g} in order to say that tp(f¯/C)=tp(g¯/C)\operatorname{tp}(\bar{f}/C)=\operatorname{tp}(\bar{g}/C).

We study the model theory of LpL_{p} Banach lattices in the signature ={0,,(fqq),+,,,}\mathcal{L}=\{0,-,(f_{q}\mid q\in\mathbb{Q}),+,\wedge,\vee,\|\ \ \|\}, where each fqf_{q} is interpreted as the unary function of scalar multiplication by qq. Terms in this signature correspond to lattice polynomials; atomic formulas are of the forms tr\|t\|\leq r and sts\leq\|t\| where tt is a term and r,sr,s are rational numbers. By Th𝒜(Lp(X,U,μ))\operatorname{Th}_{\mathcal{A}}(L_{p}(X,U,\mu)) we mean the approximate positive bounded theory of the Banach lattice Lp(X,U,μ)L_{p}(X,U,\mu) in this signature. See [HI02] for the necessary background.

Restriction 3.1.

In the rest of this paper we only consider the model theory of LpL_{p} Banach lattices that are based on atomless measure spaces.

Because of the direct sum decomposition of a measure space into its atomless and purely atomic parts, it is routine to extend what is done here to obtain analogous results in the general case. See the end of this section for a brief discussion.

Fact 3.2.

(See Theorem 2.2 in [Hen76]) If (X,U,μ)(X,U,\mu) and (Y,V,ν)(Y,V,\nu) are atomless measure spaces, then their LpL_{p} Banach lattices are elementarily equivalent; i.e.,

Th𝒜(Lp(X,U,μ))=Th𝒜(Lp(Y,V,ν))\operatorname{Th}_{\mathcal{A}}(L_{p}(X,U,\mu))=\operatorname{Th}_{\mathcal{A}}(L_{p}(Y,V,\nu)).

Fact 3.3.

(Axiomatizability, see Example 13.4 in [HI02] and Theorem 2.2 in [Hen76]) Let (X,U,μ)(X,U,\mu) be an atomless measure space. Let MM be a Banach space structure such that M𝒜Th𝒜(Lp(X,U,μ))M\vDash_{\mathcal{A}}\operatorname{Th}_{\mathcal{A}}(L_{p}(X,U,\mu)). Then MM is an atomless LpL_{p} Banach lattice; i.e., there is an atomless measure space (Y,V,ν)(Y,V,\nu) such that MM is isomorphic to Lp(Y,V,ν)L_{p}(Y,V,\nu).

Definition 3.4.

Let κ\kappa be a cardinal larger than 202^{\aleph_{0}}. We say that a normed space structure 𝒰\mathcal{U} is a κ\kappa-universal domain if it is κ\kappa-strongly homogeneous and κ\kappa-saturated. We call a subset C𝒰C\subset\mathcal{U} small if |C|<κ|C|<\kappa.

Thus, if f¯\bar{f},g¯𝒰n\bar{g}\in\mathcal{U}^{n} are two tuples and C𝒰C\subseteq\mathcal{U} is a set (by which we always implicitly mean that |C|<κ|C|<\kappa): f¯Cg¯\bar{f}\equiv_{C}\bar{g} if and only if there exists an automorphism θ\theta of the Banach lattice 𝒰\mathcal{U} which fixes CC (in symbols: θAut(𝒰/C)\theta\in\operatorname{Aut}(\mathcal{U}/C)) sending f¯\bar{f} to g¯\bar{g}.

For each cardinal κ\kappa and each consistent set of positive bounded sentences Σ\Sigma, there exists a normed space structure that is a model of Σ\Sigma and a κ\kappa-universal domain; see [HI02, Corollary 12.3 and Remark 12.4].

For the remainder of this section, 𝒰\mathcal{U} will be a κ\kappa-universal domain for the theory of atomless LpL_{p} Banach lattices, where κ\kappa is much larger than any set or collection of variables or constants under consideration. Since 𝒰\mathcal{U} is at least ω1\omega_{1}-saturated, 𝒰\mathcal{U} is a metrically complete structure and there is a measure space (X,U,μ)(X,U,\mu) such that 𝒰=Lp(X,U,μ)\mathcal{U}=L_{p}(X,U,\mu). Unless stated otherwise, sets of parameters such as A,B,C𝒰A,B,C\subset\mathcal{U} are required to be small.

Fact 3.5.

(Separable categoricity) Let M𝒜Th𝒜(𝒰)M\vDash_{\mathcal{A}}\operatorname{Th}_{\mathcal{A}}(\mathcal{U}) be separable and complete. Then MM is isomorphic to Lp([0,1],,m)L_{p}([0,1],\mathcal{B},m), where \mathcal{B} is the σ\sigma-algebra of Lebesgue measurable sets and mm is Lebesgue measure.

Note that Fact 3.5 need not hold if we add constants to the language. By Fact 3.6 below, we get (Lp([0,1],,m),f))𝒜(Lp([0,1],,m),g))(L_{p}([0,1],\mathcal{B},m),f))\equiv_{\mathcal{A}}(L_{p}([0,1],\mathcal{B},m),g)), where ff and gg are any two norm 1, positive elements of Lp([0,1],,m)L_{p}([0,1],\mathcal{B},m). However, there are two possible isomorphism types of such structures, depending on whether or not the support of the adjoined function has measure 1 or not.

Fact 3.6.

(Quantifier elimination, see Example 13.18 in [HI02]) Let a¯,b¯𝒰\bar{a},\bar{b}\subset\mathcal{U}. If a¯\bar{a} and b¯\bar{b} have the same quantifier-free type in 𝒰\mathcal{U}, then a¯\bar{a} and b¯\bar{b} have the same type in 𝒰\mathcal{U}. That is, if t(a¯)=t(b¯)\|t(\bar{a})\|=\|t(\bar{b})\| for every term tt, then a¯\bar{a} and b¯\bar{b} have the same type.

Note that Fact 3.6 fails to be true without the assumption that 𝒰\mathcal{U} is atomless; atoms and non-atoms can have the same quantifier-free type, but they never have the same type.

An important tool for studying non-dividing (which we do in the next section) is a characterization of types in terms of conditional distributions. The following results were proved by Markus Pomper [Pom00, Theorems 6.3.1 and 6.4.1] in his thesis. We give alternate proofs.

Proposition 3.7.

Let BB be a sublattice of  𝒰\mathcal{U} and let (Y,V,μ)(X,U,μ)(Y,V,\mu)\subset(X,U,\mu) be measure spaces such that B=Lp(Y,V,μ)B=L_{p}(Y,V,\mu) and 𝒰=Lp(X,U,μ)\mathcal{U}=L_{p}(X,U,\mu). Let f¯,h¯(B)n\bar{f},\bar{h}\in(B^{\perp\perp})^{n}. Then the following are equivalent:

  1. (i)

    f¯Bh¯\bar{f}\equiv_{B}\bar{h}.

  2. (ii)

    λifiBλihi\sum\lambda_{i}f_{i}\equiv_{B}\sum\lambda_{i}h_{i} for all λ¯n\bar{\lambda}\in\mathbb{R}^{n}.

  3. (iii)

    dist(f¯|V)=dist(h¯|V)\operatorname{dist}(\bar{f}|V)=\operatorname{dist}(\bar{h}|V).

Proof.
  • (i) \Longrightarrow (ii).

    Immediate.

  • (iii) \Longrightarrow (iv).

    The joint conditional distribution of a tuple is determined by the family of conditional distributions of linear combinations of the coordinates. (This is proved using characteristic functions or Laplace transforms of distributions; see [Kal02, Theorem 5.3].) Thus it will be enough to show that fBhf\equiv_{B}h implies that dist(f|V)=dist(h|V)\operatorname{dist}(f|V)=\operatorname{dist}(h|V) (where f,hBf,h\in B^{\perp\perp}). By splitting into positive and negative parts, we may assume that f=f+f=f^{+}. Moreover, since all measure spaces are decomposable here, there is no loss of generality in assuming μ(X)<\mu(X)<\infty. Hence also μ(Y)<\mu(Y)<\infty and the characteristic function χY\chi_{Y} is in BB.

    Assume first that f=χAf=\chi_{A} for some set AUA\in U; because fBf\in B^{\perp\perp} we have AYA\subset Y and hence ff satisfies f(χYf)=0f\wedge(\chi_{Y}-f)=0. This can be equivalently expressed by the family of conditions fC(χCfC)=0f_{C}\wedge(\chi_{C}-f_{C})=0, where CC ranges over the sets of finite measure in VV and fCf_{C} denotes the restriction of ff to CC, which is fχCf\wedge\chi_{C} since ff is a characteristic function. In particular, this condition on ff is expressible by a family of conditions whose parameters come from BB. Assuming tp(h/B)=tp(f/B)\operatorname{tp}(h/B)=\operatorname{tp}(f/B) and hBh\in B^{\perp\perp}, it follows that hh is the characteristic function of some subset of YY and that f=h\|f\|=\|h\|. It is further easy to verify that dist(f|V)=dist(h|V)\operatorname{dist}(f|V)=\operatorname{dist}(h|V).

    Now assume that ff is a simple positive function, written as f=r1χA1++rnχAmf=r_{1}\chi_{A_{1}}+\dots+r_{n}\chi_{A_{m}}, where A1,,AmUA_{1},\dots,A_{m}\in U are disjoint sets of positive measure and 0<r1<<rm0<r_{1}<\dots<r_{m} are in \mathbb{R}; by assumption, each AiA_{i} is a subset of YY. Then tp(f/B)\operatorname{tp}(f/B) contains formulas describing the existence of mm positive functions g1,,gmg_{1},...,g_{m} with disjoint supports such that f=r1g1++rngmf=r_{1}g_{1}+\dots+r_{n}g_{m} and gig_{i} is the characteristic function of a subset of YY with gip=μ(Ai)\|g_{i}\|^{p}=\mu(A_{i}), for each i=1,,mi=1,\dots,m. By saturation of 𝒰\mathcal{U}, if tp(h/B)=tp(f/B)\operatorname{tp}(h/B)=\operatorname{tp}(f/B), then hh must also be a simple function with the same distribution as ff over VV.

    For a general function ff, the type tp(f/B)\operatorname{tp}(f/B) describes the existence of a sequence (fi:iω)(f_{i}:i\in\omega) of simple functions converging in norm to ff. If tp(h/B)=tp(f/B)\operatorname{tp}(h/B)=\operatorname{tp}(f/B), the saturation of 𝒰\mathcal{U} ensures the existence of a sequence of functions (hi:iω)(h_{i}:i\in\omega) such that tp(hi,h/B)=tp(fi,f/B)\operatorname{tp}(h_{i},h/B)=\operatorname{tp}(f_{i},f/B) for all iωi\in\omega. Then (hi:iω)(h_{i}:i\in\omega) converges to hh in norm and dist(fi|V)=dist(hi|V)\operatorname{dist}(f_{i}|V)=\operatorname{dist}(h_{i}|V) for all iωi\in\omega. It follows that dist(f|V)=dist(h|V)\operatorname{dist}(f|V)=\operatorname{dist}(h|V).

  • (v) \Longrightarrow (i).

    Assume that dist(f¯|V)=dist(h¯|V)\operatorname{dist}(\bar{f}|V)=\operatorname{dist}(\bar{h}|V). By quantifier elimination, to show that tp(f¯/B)=tp(h¯/B)\operatorname{tp}(\bar{f}/B)=\operatorname{tp}(\bar{h}/B) it suffices to prove that for any g¯Bl\bar{g}\in B^{l} and any term t(x¯,y¯)t(\bar{x},\bar{y}), we have t(f¯,g¯)p=t(h¯,g¯)p\|t(\bar{f},\bar{g})\|^{p}=\|t(\bar{h},\bar{g})\|^{p}.

    Let ν\nu be the measure on Borel subsets DD of n+l\mathbb{R}^{n+l} defined by ν(D)=μ{xX:(f¯,g¯)(x)D}\nu(D)=\mu\{x\in X:(\bar{f},\bar{g})(x)\in D\}. Since dist(f¯,g¯)=dist(h¯,g¯)\operatorname{dist}(\bar{f},\bar{g})=\operatorname{dist}(\bar{h},\bar{g}), we have that ν(D)=μ{xX:(h¯,g¯)(x)D}\nu(D)=\mu\{x\in X:(\bar{h},\bar{g})(x)\in D\} for any Borel Dn+lD\subset\mathbb{R}^{n+l}. Then, by the change of variable formula,

    X|t(f¯(x),g¯(x))|p𝑑μ(x)=n+l|t(r¯,s¯)|p𝑑ν(r¯,s¯)=X|t(h¯(x),g¯(x))|p𝑑μ(x)\int_{X}|t(\bar{f}(x),\bar{g}(x))|^{p}d\mu(x)=\int_{\mathbb{R}^{n+l}}|t(\bar{r},\bar{s})|^{p}d\nu(\bar{r},\bar{s})=\int_{X}|t(\bar{h}(x),\bar{g}(x))|^{p}d\mu(x). ∎

Lemma 3.8.

Let f¯𝒰n\bar{f}\in\mathcal{U}^{n} be a tuple, C𝒰C\leq\mathcal{U} a Banach sublattice. We can write each fif_{i} uniquely as fi1+fi2f_{i}^{1}+f_{i}^{2} where fi1Cf_{i}^{1}\in C^{\perp\perp} and fi2Cf_{i}^{2}\in C^{\perp}. Then tp(f¯/C)\operatorname{tp}(\bar{f}/C) determines and is determined by the pair tp(f¯1/C),tp(f¯2)\operatorname{tp}(\bar{f}^{1}/C),\operatorname{tp}(\bar{f}^{2}).

In other words, for f¯,g¯𝒰n\bar{f},\bar{g}\in\mathcal{U}^{n} we have f¯Cg¯\bar{f}\equiv_{C}\bar{g} if and only if both f¯1Cg¯1\bar{f}^{1}\equiv_{C}\bar{g}^{1} and f¯2g¯2\bar{f}^{2}\equiv\bar{g}^{2}.

Proof.

Notice that an automorphism θAut(𝒰/C)\theta\in\operatorname{Aut}(\mathcal{U}/C) of 𝒰\mathcal{U} which fixes CC pointwise must fix CC^{\perp\perp} and CC^{\perp} set-wise. Thus, if such an automorphism sends f¯\bar{f} to g¯\bar{g} it must also send f¯1\bar{f}^{1} to g¯1\bar{g}^{1} and f¯2\bar{f}^{2} to g¯2\bar{g}^{2}.

Conversely, assume f¯1Cg¯1\bar{f}^{1}\equiv_{C}\bar{g}^{1} and f¯2g¯2\bar{f}^{2}\equiv\bar{g}^{2}. Since f¯2\bar{f}^{2} and g¯2\bar{g}^{2} are both in CC^{\perp}, it follows by quantifier elimination that f¯2Cg¯2\bar{f}^{2}\equiv_{C}\bar{g}^{2}. Thus we have θ1,θ2Aut(𝒰/C)\theta^{1},\theta^{2}\in\operatorname{Aut}(\mathcal{U}/C) such that θ1:f¯1g¯1\theta^{1}\colon\bar{f}^{1}\mapsto\bar{g}^{1} and θ2:f¯2g¯2\theta^{2}\colon\bar{f}^{2}\mapsto\bar{g}^{2}. Define θ\theta by letting it act as θ1\theta^{1} on CC^{\perp\perp} and as θ2\theta^{2} on CC^{\perp}, so θAut(𝒰/C)\theta\in\operatorname{Aut}(\mathcal{U}/C) and θ(f¯)=g¯\theta(\bar{f})=\bar{g}. ∎

Lemma 3.9.

Let f¯𝒰n\bar{f}\in\mathcal{U}^{n} be a tuple, C𝒰C\leq\mathcal{U} a Banach sublattice. Then tp(f¯/C)\operatorname{tp}(\bar{f}/C) depends only on the mapping associating to each term t(x¯)t(\bar{x}) in nn free variables the type tp(t(f¯)/C)\operatorname{tp}(t(\bar{f})/C).

In other words, for f¯,g¯𝒰n\bar{f},\bar{g}\in\mathcal{U}^{n} we have f¯Cg¯\bar{f}\equiv_{C}\bar{g} if and only if t(f¯)Bt(g¯)t(\bar{f})\equiv_{B}t(\bar{g}) for every term tt.

Proof.

Assume f¯Cg¯\bar{f}\not\equiv_{C}\bar{g}. We will follow the notation of Lemma 3.8.

If f¯1Cg¯1\bar{f}^{1}\not\equiv_{C}\bar{g}^{1} then by Proposition 3.7 there is a tuple λ¯n\bar{\lambda}\in\mathbb{R}^{n} such that λifi1Cλigi1\sum\lambda_{i}f_{i}^{1}\not\equiv_{C}\sum\lambda_{i}g_{i}^{1}. Notice that λifi1=(λifi)1\sum\lambda_{i}f_{i}^{1}=\left(\sum\lambda_{i}f_{i}\right)^{1}, etc., so by Lemma 3.8 we have λifiCλigi\sum\lambda_{i}f_{i}\not\equiv_{C}\sum\lambda_{i}g_{i}.

If f¯1Cg¯1\bar{f}^{1}\equiv_{C}\bar{g}^{1} then by Lemma 3.8 we have f¯2g¯2\bar{f}^{2}\not\equiv\bar{g}^{2}. By quantifier elimination there is a term tt such that t(f¯2)t(g¯2)\|t(\bar{f}^{2})\|\neq\|t(\bar{g}^{2})\|. Again we have t(f¯2)=t(f¯)2t(\bar{f}^{2})=t(\bar{f})^{2}, etc., so: t(f¯)p=t(f¯1)p+t(f¯2)p\|t(\bar{f})\|^{p}=\|t(\bar{f}^{1})\|^{p}+\|t(\bar{f}^{2})\|^{p} and similarly for g¯\bar{g}. But f¯1Cg¯1\bar{f}^{1}\equiv_{C}\bar{g}^{1} implies that t(f¯1)=t(g¯1)\|t(\bar{f}^{1})\|=\|t(\bar{g}^{1})\|, so t(f¯)t(g¯)\|t(\bar{f})\|\neq\|t(\bar{g})\|. Thus t(f¯)Ct(g¯)t(\bar{f})\not\equiv_{C}t(\bar{g}). ∎

Definition 3.10.

Let A𝒰A\subset\mathcal{U} and f𝒰f\in\mathcal{U}. We say ff is in the definable closure of AA and write fdcl(A)f\in\operatorname{dcl}(A) if for any automorphism ΦAut(𝒰)\Phi\in\operatorname{Aut}(\mathcal{U}), if Φ\Phi fixes AA pointwise then Φ(f)=f\Phi(f)=f.

Fact 3.11.

Let A𝒰A\subset\mathcal{U}. The definable closure of AA in 𝒰\mathcal{U} is the sublattice of 𝒰\mathcal{U} generated by AA.

Lemma 3.12.

Let f𝒰f\in\mathcal{U} and let A𝒰A\subset\mathcal{U}. If fdcl(A)f\not\in\operatorname{dcl}(A), then the set of realizations of tp(f/A)\operatorname{tp}(f/A) is large; that is, it has cardinality greater than or equal to κ\kappa.

Proof.

Let f𝒰f\in\mathcal{U}, A𝒰A\subset\mathcal{U}. As dcl(A)\operatorname{dcl}(A) is a sublattice of 𝒰\mathcal{U}, we may assume that dcl(A)=Lp(Y,V,μ)\operatorname{dcl}(A)=L_{p}(Y,V,\mu), (Y,V,μ)(X,U,μ)(Y,V,\mu)\subset(X,U,\mu) and 𝒰=Lp(X,U,μ)\mathcal{U}=L_{p}(X,U,\mu). If fdcl(A)nf\not\in\operatorname{dcl}(A)^{n} then by Lemma 2.16 we can find arbitrarily many elements f𝒰f^{\prime}\subset\mathcal{U} such that fff^{\prime}\neq f and dist(f|V)=dist(f|V)\operatorname{dist}(f|V)=\operatorname{dist}(f^{\prime}|V). By the previous facts, this shows that the set of realizations of tp(f/A)\operatorname{tp}(f/A) is large. ∎

Finally we show stability. We first recall two definitions:

Definition 3.13.

Let A𝒰A\subset\mathcal{U}; consider f¯,g¯𝒰n\bar{f},\bar{g}\in\mathcal{U}^{n} and set t=tp(f¯/A)t=\operatorname{tp}(\bar{f}/A) and s=tp(g¯/A)s=\operatorname{tp}(\bar{g}/A). We define d(t,s)d(t,s) to be the infimum of all distances max{figi:1in}\max\{\|f_{i}^{\prime}-g_{i}^{\prime}\|\colon 1\leq i\leq n\} where f¯,g¯𝒰n\bar{f}^{\prime},\bar{g}^{\prime}\in\mathcal{U}^{n}, t=tp(f¯/A)t=\operatorname{tp}(\bar{f}^{\prime}/A) and s=tp(g¯/A)s=\operatorname{tp}(\bar{g}^{\prime}/A). This defines a metric on the space of nn-types over AA.

Definition 3.14.

[Iov99] Let λ<κ\lambda<\kappa be an infinite cardinal. We say that Th𝒜(𝒰)\operatorname{Th}_{\mathcal{A}}(\mathcal{U}) is λ\lambda-stable (or metrically λ\lambda-stable) if for any A𝒰A\subset\mathcal{U} of cardinality λ\leq\lambda, there is a subset of the spaces of types over AA that is dense with respect to the metric on the space of types.

Theorem 3.15 (Henson [Hen87]).

The theory ThA(𝒰)\operatorname{Th}_{A}(\mathcal{U}) is ω\omega-stable.

Proof.

Let A𝒰A\subset\mathcal{U} be countable infinite. Then dcl(A)\operatorname{dcl}(A) is a sublattice of 𝒰\mathcal{U} and thus we can find measure spaces (Y,V,μ)(X,U,μ)(Y,V,\mu)\subset(X,U,\mu) such that dcl(A)=Lp(Y,V,μ)\operatorname{dcl}(A)=L_{p}(Y,V,\mu) and 𝒰=Lp(X,U,μ)\mathcal{U}=L_{p}(X,U,\mu). We have to prove that the density character of the space of types of functions in the band orthogonal to AA is ω\omega and that the density character of the space of types in the band generated by AA is ω\omega.

Let g𝒰g\in\mathcal{U} be such that gdcl(A)g\in\operatorname{dcl}(A)^{\perp}. The type tp(g/A)\operatorname{tp}(g/A) is determined by g+\|g^{+}\| and g\|g^{-}\|. Let B,CUB,C\in U be disjoint from YY and from each other, each of measure one. The set {tp(c1χBc2χC):c1,c2+}\{\operatorname{tp}(c_{1}\chi_{B}-c_{2}\chi_{C}):c_{1},c_{2}\in\mathbb{Q}^{+}\} is a countable dense subset of the space of types of functions in the band orthogonal to dcl(A)\operatorname{dcl}(A).

We can identify Lp(Y,V,μ)L_{p}(Y,V,\mu) with its canonical image in the space Lp((Y,V,μ)([0,1],,m))L_{p}((Y,V,\mu)\otimes([0,1],\mathcal{B},m)), where ([0,1],,m)([0,1],\mathcal{B},m) is the standard Lebesgue space. Let f𝒰f\in\mathcal{U} be an element in the band generated by dcl(A)\operatorname{dcl}(A). By Fact 2.15, we can find fLp((Y,V,μ)([0,1],,m))f^{\prime}\in L_{p}((Y,V,\mu)\otimes([0,1],\mathcal{B},m)) such that tp(f/A)=tp(f/A)\operatorname{tp}(f/A)=\operatorname{tp}(f^{\prime}/A). To find the density character of the space of types in the band generated by AA it suffices to find the density character of the space of types over dcl(A)\operatorname{dcl}(A) of elements in Lp((Y,V,μ)([0,1],,m))L_{p}((Y,V,\mu)\otimes([0,1],\mathcal{B},m)). Since Lp((Y,V,μ)([0,1],,m))L_{p}((Y,V,\mu)\otimes([0,1],\mathcal{B},m)) is separable, the density character of the space of types over dcl(A)\operatorname{dcl}(A) is also ω\omega. ∎

Remark 3.16 (LpL_{p} spaces with atoms).

Let (X,U,μ)(X,U,\mu) be a measure space with atoms such that Lp(X,U,μ)L_{p}(X,U,\mu) is infinite dimensional. We discuss briefly how the preceding results in this section can be used to analyze types and prove ω\omega-stability for ThA(Lp(X,U,μ))\operatorname{Th}_{A}(L_{p}(X,U,\mu)).

Let 𝒰\mathcal{U} be a κ\kappa-universal domain for ThA(Lp(X,U,μ))\operatorname{Th}_{A}(L_{p}(X,U,\mu)). By [HI02, Example 13.4], there exists a measure space (Y,V,ν)(Y,V,\nu) such that 𝒰\mathcal{U} is isomorphic to Lp(Y,V,ν)L_{p}(Y,V,\nu) as Banach lattices. Using [Hen87, Theorem 2.2] one can show that the number of atoms in VV is the same as the number of atoms in UU, if that number is finite, and otherwise both σ\sigma-algebras have an infinite number of atoms. As discussed in Section 2, we may write YY as the disjoint union of two measurable sets, Y=Y0Y1Y=Y_{0}\cup Y_{1}, with Y0Y_{0} being the union (up to null sets) of all the atoms of VV and Y1Y_{1} being atomless. Since 𝒰\mathcal{U} is at least ω1\omega_{1}-saturated, it is easy to show ν(Y1)>0\nu(Y_{1})>0.

For each i=0,1i=0,1, let Vi,νiV_{i},\nu_{i} denote the restrictions of V,νV,\nu to YiY_{i}, and let 𝒰i=Lp(Yi,Vi,νi)\mathcal{U}_{i}=L_{p}(Y_{i},V_{i},\nu_{i}). Then we have the p\ell_{p} direct sum decomposition 𝒰𝒰0p𝒰1\mathcal{U}\cong\mathcal{U}_{0}\oplus_{p}\mathcal{U}_{1} as Banach lattices. Furthermore, every Banach lattice automorphism of 𝒰\mathcal{U} leaves the sublattices 𝒰0\mathcal{U}_{0} and 𝒰1\mathcal{U}_{1} invariant; hence the automorphisms of 𝒰\mathcal{U} are exactly the maps σ0σ1\sigma_{0}\oplus\sigma_{1} obtained as the direct sum of automorphisms σ0\sigma_{0} of 𝒰0\mathcal{U}_{0} and σ1\sigma_{1} of 𝒰1\mathcal{U}_{1}. The atomic LpL_{p} space 𝒰0\mathcal{U}_{0} is isomorphic to the sequence space p(S)\ell_{p}(S) for a suitable set S. Its Banach lattice automorphisms arise from permutations of SS. Using [Hen87, HI02] as above, we may assume that 𝒰1\mathcal{U}_{1} is a κ\kappa-universal domain for its theory. Thus 𝒰1\mathcal{U}_{1} has a rich group of Banach lattice automorphisms corresponding to the equivalence relations defined by types, as discussed previously in this section.

It is now easy to use automorphisms of 𝒰\mathcal{U} to make estimates of the sizes of type spaces, and thus verify that ThA(Lp(X,U,μ))\operatorname{Th}_{A}(L_{p}(X,U,\mu)) is ω\omega-stable.

4. Dividing

Since the theory of LpL_{p} Banach lattices is stable, we know it admits a notion of independence defined by non-dividing. Let us recall the definition:

Definition 4.1.

Let p(x,B)p(x,B) be a partial type over BB in a possibly infinite tuple of variables xx (so p(x,y)p(x,y) is a partial type without parameters). Then p(x,B)p(x,B) divides over another set CC if there exists a CC-indiscernible sequence (Bi:i<ω)(B_{i}\colon i<\omega) in tp(B/C)\operatorname{tp}(B/C) such that i<ωp(x,Bi)\bigcup_{i<\omega}p(x,B_{i}) is inconsistent.
If A,B,CA,B,C are any sets in a universal domain 𝒰\mathcal{U}, such that tp(A/BC)\operatorname{tp}(A/BC) does not divide over CC, then we say that AA is independent from BB over CC, in symbols ACBA\mathop{\mathchoice{\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\kern 4.53473pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 2.71246pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 4.53473pt}{\kern 3.95836pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 1.93747pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 3.95836pt}}_{C}B.

This definition of non-dividing yields a natural notion of independence in every stable theory, and more generally in every simple one. The goal of this section is to give a more natural characterization of non-dividing in the context of LpL_{p} Banach lattices. We will prove that it coincides with *-independence (introduced in the next definition) by showing that this relation has the standard properties of dividing independence. (See Proposition 4.11 below.)

Definition 4.2.

Let A,B,C𝒰A,B,C\leq\mathcal{U} be sublattices of 𝒰\mathcal{U} such that CABC\leq A\cap B. Let 𝔼B\mathbb{E}_{B} and 𝔼C\mathbb{E}_{C} be the conditional expectation projections to BB and CC, respectively, as in Notation 2.10. We say that AA is *-independent from BB over CC, in symbols ACBA\mathop{\mathchoice{\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\kern 4.53473pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 2.71246pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 4.53473pt}{\kern 3.95836pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 1.93747pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 3.95836pt}}_{C}B, if 𝔼B(f)=𝔼C(f)\mathbb{E}_{B}(f)=\mathbb{E}_{C}(f) for all fAf\in A.
If A,B,CA,B,C are any subsets of 𝒰\mathcal{U}, we say that ACBA\mathop{\mathchoice{\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\kern 4.53473pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 2.71246pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 4.53473pt}{\kern 3.95836pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 1.93747pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 3.95836pt}}_{C}B if AC¯BA^{\prime}\mathop{\mathchoice{\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\kern 4.53473pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 2.71246pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 4.53473pt}{\kern 3.95836pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 1.93747pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 3.95836pt}}_{\bar{C}}B^{\prime}, where A=dcl(AC)A^{\prime}=\operatorname{dcl}(AC) is the sublattice generated by ACAC, C¯=dcl(C)\bar{C}=\operatorname{dcl}(C) and B=dcl(BC)B^{\prime}=\operatorname{dcl}(BC).

First we have to point out that if we remove the requirement that CC be contained in AA we get a weaker (and wrong) definition (see Example 4.14). Therefore transitivity of \mathop{\mathchoice{\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\kern 4.53473pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 2.71246pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 4.53473pt}{\kern 3.95836pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 1.93747pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 3.95836pt}} does not follow as obviously from the definition as may seem at first sight. However, we may replace the requirement that CAC\leq A with the following weaker one:

Definition 4.3.

Let A,C𝒰A,C\leq\mathcal{U} be sublattices. We say that AA and CC intersect well if AC=(AC)A^{\perp\perp}\cap C^{\perp\perp}=(A\cap C)^{\perp\perp}. (Clearly \supset always holds.)

Remark 4.4.

It is easy to show (in the notation of the previous definition) that AA and CC intersect well if and only if there exists a measure space (X,U,μ)(X,U,\mu) such that 𝒰Lp(X,U,μ)\mathcal{U}\cong L_{p}(X,U,\mu), with measure subspaces (Z,W,μ)(Z,W,\mu) and (Y,V,μ)(Y,V,\mu) such that ZYZ\cap Y is in WVW\cap V and under this isomorphism ALp(Z,W,μ)A\cong L_{p}(Z,W,\mu) and CLp(Y,V,μ)C\cong L_{p}(Y,V,\mu).

Lemma 4.5.

Let A,B,C𝒰A,B,C\leq\mathcal{U} be sublattices such that CBC\leq B, AA and CC intersect well, and 𝔼CA=𝔼BA\mathbb{E}_{C}{\restriction}_{A}=\mathbb{E}_{B}{\restriction}_{A}. Then AB=(AC)A^{\perp\perp}\cap B^{\perp\perp}=(A\cap C)^{\perp\perp} (so in particular AA and BB intersect well).

Proof.

Let D=ACD=A\cap C. The inclusion \supset is immediate, so we prove \subset. Assume not, and let f(AB)Df\in(A^{\perp\perp}\cap B^{\perp\perp})\smallsetminus D^{\perp\perp} be positive. Since AA and CC intersect well and fAf\in A^{\perp\perp}, we necessarily have fCf\notin C^{\perp\perp}. Replacing ff with its restriction to CC^{\perp}, we may assume that

0fABC.0\neq f\in A^{\perp\perp}\cap B^{\perp\perp}\cap C^{\perp}.

As fAf\in A^{\perp\perp}, there is gAg\in A positive such that limn(ng)f=f\lim_{n\to\infty}(ng)\wedge f=f. Then we also have limn𝔼B((ng)f)=𝔼B(f)>0\lim_{n\to\infty}\mathbb{E}_{B}((ng)\wedge f)=\mathbb{E}_{B}(f)>0, whereby 𝔼B(gf)>0\mathbb{E}_{B}(g\wedge f)>0. Replacing gg with its restriction to the band DD^{\perp}, we still have gAg\in A (since ADA\geq D) and gfg\wedge f is unchanged (since fDf\in D^{\perp}). As AA and CC intersect well: gADCg\in A\cap D^{\perp}\subset C^{\perp}.

We now have:

𝔼B(g)𝔼B(gf)>0=𝔼C(g).\displaystyle\mathbb{E}_{B}(g)\geq\mathbb{E}_{B}(g\wedge f)>0=\mathbb{E}_{C}(g).

This contradicts the assumption. ∎

Remark 4.6.

When A,B,C𝒰A,B,C\leq\mathcal{U}, CBC\leq B and AB=(AC)A^{\perp\perp}\cap B^{\perp\perp}=(A\cap C)^{\perp\perp}, we can represent 𝒰\mathcal{U} as Lp(X,U,μ)L_{p}(X,U,\mu) such that the sublattices AA, BB, CC and ACA\cap C are all the LpL_{p} spaces of sub-measure spaces of XX.

Lemma 4.7.

Let A,B,C𝒰A,B,C\leq\mathcal{U} be sublattices such that CBC\leq B and AA and CC intersect well. Then ACBA\mathop{\mathchoice{\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\kern 4.53473pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 2.71246pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 4.53473pt}{\kern 3.95836pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 1.93747pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 3.95836pt}}_{C}B if and only if 𝔼BA=𝔼CA\mathbb{E}_{B}{\restriction}_{A}=\mathbb{E}_{C}{\restriction}_{A}.

Proof.

Let A=dcl(AC)A^{\prime}=\operatorname{dcl}(AC) and D=ACD=A\cap C. The left to right is immediate since AAA\subset A^{\prime}. We prove right to left.

First, by Lemma 4.5 we have AB=DA^{\perp\perp}\cap B^{\perp\perp}=D^{\perp\perp}. It follows that there exists a measure space (X,U,μ)(X,U,\mu) such that 𝒰Lp(X,U,μ)\mathcal{U}\cong L_{p}(X,U,\mu), and it has measure subspaces such that under this isomorphism ALp(Z,W,μ)A\cong L_{p}(Z,W,\mu) and CLp(Y,V,μ)C\cong L_{p}(Y,V,\mu). See Remark 4.4. Then ALp(YZ,VW,μ)A^{\prime}\cong L_{p}(Y\cup Z,\langle V\cup W\rangle,\mu).

Let PWP\in W and QVQ\in V. Then from the various assumptions we made we obtain:

𝔼B(χP)\displaystyle\mathbb{E}_{B}(\chi_{P}) =𝔼C(χP)\displaystyle=\mathbb{E}_{C}(\chi_{P})
𝔼B(χQ)\displaystyle\mathbb{E}_{B}(\chi_{Q}) =χQ=𝔼C(χQ)\displaystyle=\chi_{Q}=\mathbb{E}_{C}(\chi_{Q})
𝔼B(χPQ)\displaystyle\mathbb{E}_{B}(\chi_{P\cap Q}) =χQ𝔼B(χP)=χQ𝔼C(χP)=𝔼C(χPQ)\displaystyle=\chi_{Q}\mathbb{E}_{B}(\chi_{P})=\chi_{Q}\mathbb{E}_{C}(\chi_{P})=\mathbb{E}_{C}(\chi_{P\cap Q})

It follows that 𝔼B(χR)=𝔼C(χR)\mathbb{E}_{B}(\chi_{R})=\mathbb{E}_{C}(\chi_{R}) for all RVWR\in\langle V\cup W\rangle, whereby 𝔼BA=𝔼CA\mathbb{E}_{B}{\restriction}_{A^{\prime}}=\mathbb{E}_{C}{\restriction}_{A^{\prime}}, as required. ∎

Corollary 4.8.

Let A,B,C,D𝒰A,B,C,D\leq\mathcal{U} such that BCDB\leq C\leq D. Then ABDA\mathop{\mathchoice{\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\kern 4.53473pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 2.71246pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 4.53473pt}{\kern 3.95836pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 1.93747pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 3.95836pt}}_{B}D if and only if ABCA\mathop{\mathchoice{\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\kern 4.53473pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 2.71246pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 4.53473pt}{\kern 3.95836pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 1.93747pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 3.95836pt}}_{B}C and ACDA\mathop{\mathchoice{\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\kern 4.53473pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 2.71246pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 4.53473pt}{\kern 3.95836pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 1.93747pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 3.95836pt}}_{C}D.

Proof.

Replacing AA with dcl(AB)\operatorname{dcl}(AB), we may assume that ABA\geq B.

If ABCA\mathop{\mathchoice{\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\kern 4.53473pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 2.71246pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 4.53473pt}{\kern 3.95836pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 1.93747pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 3.95836pt}}_{B}C and ACDA\mathop{\mathchoice{\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\kern 4.53473pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 2.71246pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 4.53473pt}{\kern 3.95836pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 1.93747pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 3.95836pt}}_{C}D, then clearly 𝔼DA=𝔼BA\mathbb{E}_{D}{\restriction}_{A}=\mathbb{E}_{B}{\restriction}_{A}, whereby ABDA\mathop{\mathchoice{\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\kern 4.53473pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 2.71246pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 4.53473pt}{\kern 3.95836pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 1.93747pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 3.95836pt}}_{B}D.

Conversely, assume that ABDA\mathop{\mathchoice{\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\kern 4.53473pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 2.71246pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 4.53473pt}{\kern 3.95836pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 1.93747pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 3.95836pt}}_{B}D. Then 𝔼DA=𝔼BA=𝔼CA\mathbb{E}_{D}{\restriction}_{A}=\mathbb{E}_{B}{\restriction}_{A}=\mathbb{E}_{C}{\restriction}_{A}. If follows by definition that ABCA\mathop{\mathchoice{\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\kern 4.53473pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 2.71246pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 4.53473pt}{\kern 3.95836pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 1.93747pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 3.95836pt}}_{B}C. Also, by Lemma 4.5, AA and CC intersect well, whereby ACDA\mathop{\mathchoice{\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\kern 4.53473pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 2.71246pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 4.53473pt}{\kern 3.95836pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 1.93747pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 3.95836pt}}_{C}D using Lemma 4.7. ∎

To prove symmetry of \mathop{\mathchoice{\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\kern 4.53473pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 2.71246pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 4.53473pt}{\kern 3.95836pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 1.93747pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 3.95836pt}}, we first point out that the following is a special case of Lemma 4.5:

Corollary 4.9.

Let A,B,C𝒰A,B,C\leq\mathcal{U} be sublattices, such that CABC\leq A\cap B, and ACBA\mathop{\mathchoice{\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\kern 4.53473pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 2.71246pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 4.53473pt}{\kern 3.95836pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 1.93747pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 3.95836pt}}_{C}B. Then AB=CA^{\perp\perp}\cap B^{\perp\perp}=C^{\perp\perp}.

It is therefore harmless to assume, when proving symmetry, that AB=CA^{\perp\perp}\cap B^{\perp\perp}=C^{\perp\perp}.

Lemma 4.10.

Let A,B,C𝒰A,B,C\leq\mathcal{U} be sublattices such that CABC\leq A\cap B and AB=CA^{\perp\perp}\cap B^{\perp\perp}=C^{\perp\perp}. Using Remark 4.6, choose (Y,V,μ)(Zi,Wi,μ)(X,U,μ)(Y,V,\mu)\subset(Z_{i},W_{i},\mu)\subset(X,U,\mu) such that 𝒰Lp(X,U,μ)\mathcal{U}\cong L_{p}(X,U,\mu), ALp(Z0,W0,μ)A\cong L_{p}(Z_{0},W_{0},\mu), BLp(Z1,W1,μ)B\cong L_{p}(Z_{1},W_{1},\mu), CLp(Y,V,μ)C\cong L_{p}(Y,V,\mu). Then the following are equivalent:

  1. (i)

    ACBA\mathop{\mathchoice{\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\kern 4.53473pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 2.71246pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 4.53473pt}{\kern 3.95836pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 1.93747pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 3.95836pt}}_{C}B.

  2. (ii)

    For every P0W0P_{0}\in W_{0}, P1W1P_{1}\in W_{1}:

    𝔼C(P0P1)=𝔼C(P0)𝔼C(P1)\displaystyle\mathbb{E}_{C}(P_{0}\cap P_{1})=\mathbb{E}_{C}(P_{0})\mathbb{E}_{C}(P_{1})
Proof.

Assume first that ACBA\mathop{\mathchoice{\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\kern 4.53473pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 2.71246pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 4.53473pt}{\kern 3.95836pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 1.93747pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 3.95836pt}}_{C}B. Then for every pair of PiWiP_{i}\in W_{i} and QVQ\in V:

QχP0P1𝑑μ\displaystyle\int_{Q}\chi_{P_{0}\cap P_{1}}\,d\mu =Q𝔼C(𝔼B(χP0χP1))𝑑μ=Q𝔼C(χP1𝔼B(χP0))𝑑μ\displaystyle=\int_{Q}\mathbb{E}_{C}(\mathbb{E}_{B}(\chi_{P_{0}}\chi_{P_{1}}))\,d\mu=\int_{Q}\mathbb{E}_{C}(\chi_{P_{1}}\mathbb{E}_{B}(\chi_{P_{0}}))\,d\mu
=Q𝔼C(χP1𝔼C(χP0))𝑑μ=Q𝔼C(χP0)𝔼C(χP1)𝑑μ.\displaystyle=\int_{Q}\mathbb{E}_{C}(\chi_{P_{1}}\mathbb{E}_{C}(\chi_{P_{0}}))\,d\mu=\int_{Q}\mathbb{E}_{C}(\chi_{P_{0}})\mathbb{E}_{C}(\chi_{P_{1}})\,d\mu.

Whereby 𝔼C(P0P1)=𝔼C(P0)𝔼C(P1)\mathbb{E}_{C}(P_{0}\cap P_{1})=\mathbb{E}_{C}(P_{0})\mathbb{E}_{C}(P_{1}).

Conversely, assume that 𝔼C(PQ)=𝔼C(P)𝔼C(Q)\mathbb{E}_{C}(P\cap Q)=\mathbb{E}_{C}(P)\mathbb{E}_{C}(Q) for every PW0P\in W_{0} and QW1Q\in W_{1}. Then:

QχP𝑑μ\displaystyle\int_{Q}\chi_{P}\,d\mu =χPQ𝑑μ=\displaystyle=\int\chi_{P\cap Q}\,d\mu=\ldots

As AB=CA^{\perp\perp}\cap B^{\perp\perp}=C^{\perp\perp} we have PQYP\cap Q\subset Y, whereby:

\displaystyle\ldots =𝔼C(χPQ)𝑑μ=𝔼C(χP)𝔼C(χQ)𝑑μ\displaystyle=\int\mathbb{E}_{C}(\chi_{P\cap Q})\,d\mu=\int\mathbb{E}_{C}(\chi_{P})\mathbb{E}_{C}(\chi_{Q})\,d\mu
=𝔼C(𝔼C(χP)χQ)𝑑μ=𝔼C(χP)χQ𝑑μ\displaystyle=\int\mathbb{E}_{C}(\mathbb{E}_{C}(\chi_{P})\chi_{Q})\,d\mu=\int\mathbb{E}_{C}(\chi_{P})\chi_{Q}\,d\mu
=Q𝔼C(χP)𝑑μ.\displaystyle=\int_{Q}\mathbb{E}_{C}(\chi_{P})\,d\mu.

As this holds for all QW1Q\in W_{1} we get 𝔼B(χP)=𝔼C(χP)\mathbb{E}_{B}(\chi_{P})=\mathbb{E}_{C}(\chi_{P}), and by standard arguments it follows that 𝔼B(f)=𝔼C(f)\mathbb{E}_{B}(f)=\mathbb{E}_{C}(f) for all fAf\in A. ∎

Proposition 4.11.

The relation \mathop{\mathchoice{\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\kern 4.53473pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 2.71246pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 4.53473pt}{\kern 3.95836pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 1.93747pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 3.95836pt}} satisfies the following properties (here AA, BB, etc., are any small subsets of  𝒰\mathcal{U}):

  1. (i)

    Invariance under automorphisms of  𝒰\mathcal{U}.

  2. (ii)

    Symmetry: ACBBCAA\mathop{\mathchoice{\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\kern 4.53473pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 2.71246pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 4.53473pt}{\kern 3.95836pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 1.93747pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 3.95836pt}}_{C}B\Longleftrightarrow B\mathop{\mathchoice{\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\kern 4.53473pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 2.71246pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 4.53473pt}{\kern 3.95836pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 1.93747pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 3.95836pt}}_{C}A.

  3. (iii)

    Transitivity: ACBDA\mathop{\mathchoice{\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\kern 4.53473pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 2.71246pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 4.53473pt}{\kern 3.95836pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 1.93747pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 3.95836pt}}_{C}BD if and only if ACBA\mathop{\mathchoice{\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\kern 4.53473pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 2.71246pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 4.53473pt}{\kern 3.95836pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 1.93747pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 3.95836pt}}_{C}B and ABCDA\mathop{\mathchoice{\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\kern 4.53473pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 2.71246pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 4.53473pt}{\kern 3.95836pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 1.93747pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 3.95836pt}}_{BC}D.

  4. (iv)

    Finite Character: ACBA\mathop{\mathchoice{\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\kern 4.53473pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 2.71246pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 4.53473pt}{\kern 3.95836pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 1.93747pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 3.95836pt}}_{C}B if and only a¯CB\bar{a}\mathop{\mathchoice{\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\kern 4.53473pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 2.71246pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 4.53473pt}{\kern 3.95836pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 1.93747pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 3.95836pt}}_{C}B for all finite tuples a¯A\bar{a}\in A.

  5. (v)

    Extension: For all AA, BB and CC we can find AA^{\prime} such that ACAA\equiv_{C}A^{\prime} and ACBA^{\prime}\mathop{\mathchoice{\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\kern 4.53473pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 2.71246pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 4.53473pt}{\kern 3.95836pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 1.93747pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 3.95836pt}}_{C}B.

  6. (vi)

    Local Character: If a¯\bar{a} is any finite tuple, then there is B0BB_{0}\subset B at most countable such that a¯B0B\bar{a}\mathop{\mathchoice{\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\kern 4.53473pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 2.71246pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 4.53473pt}{\kern 3.95836pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 1.93747pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 3.95836pt}}_{B_{0}}B.

  7. (vii)

    Stationarity of types: If ACAA\equiv_{C}A^{\prime}, ACBA\mathop{\mathchoice{\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\kern 4.53473pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 2.71246pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 4.53473pt}{\kern 3.95836pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 1.93747pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 3.95836pt}}_{C}B, and ACBA^{\prime}\mathop{\mathchoice{\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\kern 4.53473pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 2.71246pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 4.53473pt}{\kern 3.95836pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 1.93747pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 3.95836pt}}_{C}B then ABCAA\equiv_{BC}A^{\prime}.

Proof.
  1. (i)

    The definition of \mathop{\mathchoice{\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\kern 4.53473pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 2.71246pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 4.53473pt}{\kern 3.95836pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 1.93747pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 3.95836pt}} makes this clear.

  2. (ii)

    Follows directly from Corollary 4.9 and Lemma 4.10.

  3. (iii)

    This is just a rephrasing of Corollary 4.8.

  4. (iv)

    One direction is clear. Conversely, assume that A CBA\mathop{\mathchoice{\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\not$\kern 8.00134pt\hss}\hbox to0.0pt{\hss$\displaystyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\not$\kern 8.00134pt\hss}\hbox to0.0pt{\hss$\textstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\kern 4.53473pt\hbox to0.0pt{\hss$\scriptstyle\not$\kern 6.34859pt\hss}\hbox to0.0pt{\hss$\scriptstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 2.71246pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 4.53473pt}{\kern 3.95836pt\hbox to0.0pt{\hss$\scriptscriptstyle\not$\kern 5.54167pt\hss}\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 1.93747pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 3.95836pt}}_{C}B, so there is fdcl(AC)f\in\operatorname{dcl}(AC) such that 𝔼B(f)𝔼C(f)\mathbb{E}_{B}(f)\neq\mathbb{E}_{C}(f). This ff is simply the limit of terms in members of ACA\cup C, so a finite tuple a¯A\bar{a}\in A (and all of CC) would suffice to get some ff^{\prime} which is close enough to ff so that 𝔼B(f)𝔼C(f)\mathbb{E}_{B}(f^{\prime})\neq\mathbb{E}_{C}(f^{\prime}). Then a¯ CB\bar{a}\mathop{\mathchoice{\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\not$\kern 8.00134pt\hss}\hbox to0.0pt{\hss$\displaystyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\not$\kern 8.00134pt\hss}\hbox to0.0pt{\hss$\textstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\kern 4.53473pt\hbox to0.0pt{\hss$\scriptstyle\not$\kern 6.34859pt\hss}\hbox to0.0pt{\hss$\scriptstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 2.71246pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 4.53473pt}{\kern 3.95836pt\hbox to0.0pt{\hss$\scriptscriptstyle\not$\kern 5.54167pt\hss}\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 1.93747pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 3.95836pt}}_{C}B.

  5. (v)

    We may assume that A,B,CA,B,C are sublattices of 𝒰\mathcal{U} and CABC\leq A\cap B. By finite character, symmetry and transitivity, it suffices to prove the result when AA is finitely generated over CC, say A=dcl({f1,fn}C)A=\operatorname{dcl}(\{f_{1},\dots f_{n}\}\cup C). Furthermore, we may assume that there is lnl\leq n such that fiCf_{i}\in C^{\perp\perp} if ili\leq l and fiCf_{i}\in C^{\perp} if i>li>l. First let gl+1,,gnBg_{l+1},\dots,g_{n}\in B^{\perp} with tp(gl+1,,gn)=tp(fl+1,,fn)\operatorname{tp}(g_{l+1},\dots,g_{n})=\operatorname{tp}(f_{l+1},\dots,f_{n}). (See Lemma 3.8.) By Corollary 2.17, Proposition 3.7 and Lemma 4.10 we can find elements g1,,glCg_{1},\dots,g_{l}\in C^{\perp\perp} such that tp(g1,,gl/C)=tp(f1,,fl/C)\operatorname{tp}(g_{1},\dots,g_{l}/C)=\operatorname{tp}(f_{1},\dots,f_{l}/C) and {g1,,gl}CB\{g_{1},\dots,g_{l}\}\mathop{\mathchoice{\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\kern 4.53473pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 2.71246pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 4.53473pt}{\kern 3.95836pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 1.93747pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 3.95836pt}}_{C}{B}. Let A=dcl({g1,,gn}C)A^{\prime}=\operatorname{dcl}(\{g_{1},\dots,g_{n}\}\cup C). Then ACB{A^{\prime}}\mathop{\mathchoice{\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\kern 4.53473pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 2.71246pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 4.53473pt}{\kern 3.95836pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 1.93747pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 3.95836pt}}_{C}{B} and ACAA\equiv_{C}A^{\prime}.

  6. (vi)

    Let B¯\bar{B} be the sublattice generated by BB. Let C0B¯C_{0}\leq\bar{B} be the sublattice generated by {𝔼B¯(f):fdcl(a¯)}\{\mathbb{E}_{\bar{B}}(f)\colon f\in\operatorname{dcl}(\bar{a})\}. Clearly C0C_{0} is separable, whereby A0=dcl(a¯C0)A_{0}=\operatorname{dcl}(\bar{a}C_{0}) is also separable. Also, A0A_{0} and BB intersect well, so letting C1C_{1} be the lattice generated by {𝔼B¯(f):fA0}\{\mathbb{E}_{\bar{B}}(f)\colon f\in A_{0}\} we get a¯C1B\bar{a}\mathop{\mathchoice{\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\kern 4.53473pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 2.71246pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 4.53473pt}{\kern 3.95836pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 1.93747pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 3.95836pt}}_{C_{1}}B. Then C1B¯C_{1}\leq\bar{B} is also separable, so there is a countable subset B0BB_{0}\subset B such that C1dcl(B0)C_{1}\subset\operatorname{dcl}(B_{0}). By transitivity: a¯B0B\bar{a}\mathop{\mathchoice{\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\kern 4.53473pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 2.71246pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 4.53473pt}{\kern 3.95836pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 1.93747pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 3.95836pt}}_{B_{0}}B as required.

  7. (vii)

    Again we may assume that all are lattices and CABC\leq A\cap B. Then the conditional distribution of members of AA over CC, along with the fact that they have the same conditional expectation over CC and over BB, determines their conditional distribution over BB. ∎

It follows by [Ben03b, Theorems 1.51,2.8]:

Theorem 4.12.

The theory of LpL_{p} Banach lattices is stable, and non-dividing coincides with *-independence (i.e., ACBACBA\mathop{\mathchoice{\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\kern 4.53473pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 2.71246pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 4.53473pt}{\kern 3.95836pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 1.93747pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 3.95836pt}}_{C}B\Longleftrightarrow A\mathop{\mathchoice{\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\kern 4.53473pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 2.71246pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 4.53473pt}{\kern 3.95836pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 1.93747pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 3.95836pt}}_{C}B).

The following is a nice feature of independence in LpL_{p} lattices:

Proposition 4.13.

Let A,B,C𝒰A,B,C\subset\mathcal{U} be any sets. Then ACBA\mathop{\mathchoice{\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\kern 4.53473pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 2.71246pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 4.53473pt}{\kern 3.95836pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 1.93747pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 3.95836pt}}_{C}B if and only if fCgf\mathop{\mathchoice{\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\kern 4.53473pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 2.71246pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 4.53473pt}{\kern 3.95836pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 1.93747pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 3.95836pt}}_{C}g for all fdcl(A)f\in\operatorname{dcl}(A) and gdcl(B)g\in\operatorname{dcl}(B). In fact, it suffices to assume that fCgf\mathop{\mathchoice{\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\kern 4.53473pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 2.71246pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 4.53473pt}{\kern 3.95836pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 1.93747pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 3.95836pt}}_{C}g for every f,gf,g which are obtained as terms in members of AA and BB, respectively.

Proof.

Left to right is clear, so we prove right to left. By the finite character of independence we may assume that AA is a finite set, and enumerate it in a tuple f¯\bar{f}. Using symmetry, it would suffice to assume that hCBh\mathop{\mathchoice{\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\kern 4.53473pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 2.71246pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 4.53473pt}{\kern 3.95836pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 1.93747pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 3.95836pt}}_{C}B for all hdcl(A)h\in\operatorname{dcl}(A), and we might as well assume that BCB\supseteq C. In particular we have t(f¯)CBt(\bar{f})\mathop{\mathchoice{\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\kern 4.53473pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 2.71246pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 4.53473pt}{\kern 3.95836pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 1.93747pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 3.95836pt}}_{C}B for every term tt in the right number of variables.

By Proposition 4.11 (extension) we can find a tuple g¯\bar{g} such that g¯Cf¯\bar{g}\equiv_{C}\bar{f} and such that in addition g¯CB\bar{g}\mathop{\mathchoice{\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\kern 4.53473pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 2.71246pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 4.53473pt}{\kern 3.95836pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 1.93747pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 3.95836pt}}_{C}B. Thus for every term tt we also have t(g¯)CBt(\bar{g})\mathop{\mathchoice{\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\kern 4.53473pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 2.71246pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 4.53473pt}{\kern 3.95836pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 1.93747pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 3.95836pt}}_{C}B and t(f¯)Ct(g¯)t(\bar{f})\equiv_{C}t(\bar{g}). By stationarity we have t(f¯)Ct(g¯)t(\bar{f})\equiv_{C}t(\bar{g}) for every term tt, and by Lemma 3.9: f¯Bg¯\bar{f}\equiv_{B}\bar{g}. Thus by invariance we obtain f¯CB\bar{f}\mathop{\mathchoice{\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\kern 4.53473pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 2.71246pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 4.53473pt}{\kern 3.95836pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 1.93747pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 3.95836pt}}_{C}B, i.e., ACBA\mathop{\mathchoice{\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\kern 4.53473pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 2.71246pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 4.53473pt}{\kern 3.95836pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 1.93747pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 3.95836pt}}_{C}B as required. ∎

The following example show that the requirement that CAC\leq A in the definition of \mathop{\mathchoice{\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\kern 4.53473pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 2.71246pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 4.53473pt}{\kern 3.95836pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 1.93747pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 3.95836pt}} cannot be entirely done away with:

Example 4.14.

Let us work in Lp([0,3],,μ)L_{p}([0,3],\mathcal{B},\mu), where μ\mu is the Lebesgue measure. Let CC consist of all constant functions, BB consist of all functions which are constant of [0,2][0,2] and (2,3](2,3], and let AA consist of all scalar multiples of f=2χ[0,1]+χ[2,3]f=2\chi_{[0,1]}+\chi_{[2,3]}.

The A,B,CA,B,C are sublattices of the ambient lattice, CBC\leq B, and for all members αf\alpha f of AA (where α\alpha is a scalar):

𝔼B(αf)=𝔼C(αf)=αχ[0,3].\mathbb{E}_{B}(\alpha f)=\mathbb{E}_{C}(\alpha f)=\alpha\chi_{[0,3]}.

Nevertheless, we have A CBA\mathop{\mathchoice{\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\not$\kern 8.00134pt\hss}\hbox to0.0pt{\hss$\displaystyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\not$\kern 8.00134pt\hss}\hbox to0.0pt{\hss$\textstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\kern 4.53473pt\hbox to0.0pt{\hss$\scriptstyle\not$\kern 6.34859pt\hss}\hbox to0.0pt{\hss$\scriptstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 2.71246pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 4.53473pt}{\kern 3.95836pt\hbox to0.0pt{\hss$\scriptscriptstyle\not$\kern 5.54167pt\hss}\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hbox to0.0pt{${}^{*}$\hss}\hss}\lower 1.93747pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 3.95836pt}}_{C}B, since χ[2,3]dcl(AC)\chi_{[2,3]}\in\operatorname{dcl}(AC), and

𝔼B(χ[2,3])=χ[2,3]13χ[0,3]=𝔼C(χ[2,3]).\mathbb{E}_{B}(\chi_{[2,3]})=\chi_{[2,3]}\neq\frac{1}{3}\chi_{[0,3]}=\mathbb{E}_{C}(\chi_{[2,3]}).

An interesting feature of Hilbert space and many of its expansions (see [BB04]) is that non-dividing is “trivial” in the following sense: two sets AA and BB are independent over CC if and only if for every aAa\in A and bBb\in B, aa is independent from bb over CC. The Banach lattice 𝒰\mathcal{U} is not “trivial” in that sense, as it is shown by the following well known example from probability. (See exercise 9.1 in [Fol84].)

Example 4.15.

We work inside the standard Lebesgue space Lp([0,1],,μ)L_{p}([0,1],\mathcal{B},\mu). Let C=χ[0,1]C=\chi_{[0,1]}. Let a1=χ[0,1/4][1/2,3/4]a_{1}=\chi_{[0,1/4]\cup[1/2,3/4]}, a2=χ[0,1/4][3/4,1]a_{2}=\chi_{[0,1/4]\cup[3/4,1]}, a3=χ[0,1/2]a_{3}=\chi_{[0,1/2]}. Then ajCa3a_{j}\mathop{\mathchoice{\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\kern 4.53473pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 2.71246pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 4.53473pt}{\kern 3.95836pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 1.93747pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 3.95836pt}}_{C}a_{3} for j=1,2j=1,2 but a1,a2 Ca3a_{1},a_{2}\mathop{\mathchoice{\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\not$\kern 8.00134pt\hss}\hbox to0.0pt{\hss$\displaystyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\not$\kern 8.00134pt\hss}\hbox to0.0pt{\hss$\textstyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\kern 4.53473pt\hbox to0.0pt{\hss$\scriptstyle\not$\kern 6.34859pt\hss}\hbox to0.0pt{\hss$\scriptstyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 2.71246pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 4.53473pt}{\kern 3.95836pt\hbox to0.0pt{\hss$\scriptscriptstyle\not$\kern 5.54167pt\hss}\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 1.93747pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 3.95836pt}}_{C}a_{3}.

Remark 4.16.

As a closing remark in this section, we note that for bounded functions over sets of finite measure, dividing independence in LpL_{p}-spaces does not depend at all on pp. Specifically, if (X,U,μ)(X,U,\mu) is a measure space with μ(X)<\mu(X)<\infty and A,B,CL(X,U,μ)A,B,C\subset L_{\infty}(X,U,\mu), then for any 1p,q<1\leq p,q<\infty, ACBA\mathop{\mathchoice{\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\kern 4.53473pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 2.71246pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 4.53473pt}{\kern 3.95836pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 1.93747pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 3.95836pt}}_{C}B holds in Lp(X,U,μ)L_{p}(X,U,\mu) if and only if it holds in Lq(X,U,μ)L_{q}(X,U,\mu).

5. Conditional slices

In this section we would like to study types and independence a little further. First, we would like to give a concrete characterization of types over a set CC. For this purpose we may always assume that C=dcl(C)C=\operatorname{dcl}(C), i.e., that CC is a Banach sublattice of the ambient model. We have in fact already given such a characterization of types as conditional distributions in Proposition 3.7. However this characterization depends on a particular presentation of CC as an LpL_{p} space and is not intrinsic to the type.

We find our characterization of independence using conditional expectations similarly deficient as it depends on a good intersection. Indeed Example 4.14 shows that for lattices CBC\leq B, comparing conditional expectations over CC and over BB does not necessarily suffice to decide whether ACBA\mathop{\mathchoice{\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\kern 4.53473pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 2.71246pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 4.53473pt}{\kern 3.95836pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 1.93747pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 3.95836pt}}_{C}B. We should therefore like to have a finer tool that can give an exact measure of the dependencies of AA with BB (and with CC).

We solve both issues using the notion of conditional slices. More precisely, the conditional slices of a single function ff over a lattice CC yield an intrinsic characterization of the type tp(f/C)\operatorname{tp}(f/C). We will show that for CBC\leq B, the conditional slices of ff over BB and CC agree if and only if fCBf\mathop{\mathchoice{\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\kern 4.53473pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 2.71246pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 4.53473pt}{\kern 3.95836pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 1.93747pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 3.95836pt}}_{C}B. By Proposition 4.13 this suffices to characterize when ACBA\mathop{\mathchoice{\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\kern 4.53473pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 2.71246pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 4.53473pt}{\kern 3.95836pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 1.93747pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 3.95836pt}}_{C}B where AA is an arbitrary lattice (i.e., not necessarily intersecting CC well).

If AA is a Banach lattice then A+A^{+} denotes its positive cone A+={fA:f0}A^{+}=\{f\in A\colon f\geq 0\}.

Throughout, C𝒰C\leq\mathcal{U} will denote a Banach sublattice of the ambient model. We may sometimes wish to fix a presentation of C𝒰C\leq\mathcal{U} as the LpL_{p} spaces of (Y,V,μ)(X,U,μ)(Y,V,\mu)\subset(X,U,\mu). We start with a simple observation:

Lemma 5.1.

Let f𝒰f\in\mathcal{U}, r[0,1]r\in[0,1]. Fixing a presentation of CC as above, let R={x:f(x)0}R=\{x\colon f(x)\leq 0\}. Then the property C(f0)=C(R)rχY\mathbb{P}_{C}(f\leq 0)=\mathbb{P}_{C}(R)\geq r\chi_{Y} does not depend on the chosen presentation. We will therefore simply write it as “C(f0)r\mathbb{P}_{C}(f\leq 0)\geq r”.

Proof.

The equivalent property C(f>0)(1r)χY\mathbb{P}_{C}(f>0)\leq(1-r)\chi_{Y} holds if and only if for all gC+g\in C^{+} and all n<ωn<\omega: (nf)+g1rpg\|(nf)^{+}\wedge g\|\leq\sqrt[p]{1-r}\|g\|. ∎

We may therefore conveniently work with any fixed presentation of CC as an LpL_{p} space, while at the same time keeping our constructions independent of this presentation. For f𝒰+f\in\mathcal{U}^{+} and r(0,1)r\in(0,1) we may define, independently of the presentation of CC:

Sr(f)={gC+:C(gf)r for some r>r}.\displaystyle S_{r}(f)=\{g\in C^{+}\colon\mathbb{P}_{C}(g\leq f)\geq r^{\prime}\text{ for some }r^{\prime}>r\}.

Assume gSr(f)g\in S_{r}(f), and let A={xX:g(x)f(x)}A=\{x\in X\colon g(x)\leq f(x)\}. Then χAgf\chi_{A}g\leq f whereby χAgp𝑑μfp\int\chi_{A}g^{p}\,d\mu\leq\|f\|^{p}. Since gCg\in C we also have χAgp𝑑μ=[A|C]gp𝑑μrgprgp\int\chi_{A}g^{p}\,d\mu=\int\mathbb{P}[A|C]g^{p}\,d\mu\geq r^{\prime}\|g\|^{p}\geq r\|g\|^{p}. Thus gSr(f)g\in S_{r}(f) implies rpgf\sqrt[p]{r}\|g\|\leq\|f\|, whereby g1rpf\|g\|\leq\frac{1}{\sqrt[p]{r}}\|f\| for all gSr(f)g\in S_{r}(f), and thus for all gSr(f)¯g\in\overline{S_{r}(f)}. If g1,g2Sr(f)g_{1},g_{2}\in S_{r}(f) then considering separately the sets on which g1g2g_{1}\geq g_{2} and on which g1<g2g_{1}<g_{2} we see that g1g2Sr(f)g_{1}\vee g_{2}\in S_{r}(f). Since the lattice operations are continuous it follows that g1,g2Sr(f)¯g1g2Sr(f)¯g_{1},g_{2}\in\overline{S_{r}(f)}\Longrightarrow g_{1}\vee g_{2}\in\overline{S_{r}(f)}. Now let (gn:n<ω)Sr(f)¯(g_{n}\colon n<\omega)\subseteq\overline{S_{r}(f)} be an increasing sequence and let gg be its pointwise limit. By Monotone Convergence we have g1rpf\|g\|\leq\frac{1}{\sqrt[p]{r}}\|f\|, so gC+g\in C^{+}, and by Dominated Convergence gngg_{n}\to g in LpL_{p} and gSr(f)¯g\in\overline{S_{r}(f)}. In any LpL_{p} space, a strictly increasing sequence of positive functions is strictly increasing in norm and therefore at most countable. Putting everything together we conclude that Sr(f)¯\overline{S_{r}(f)} must admit a greatest element.

Definition 5.2.

Let C𝒰C\leq\mathcal{U} be a Banach sublattice, f𝒰f\in\mathcal{U}, r(0,1)r\in(0,1). If f0f\geq 0 we define its conditional rr-slice over CC, denoted 𝕊r(f/C)\mathbb{S}_{r}(f/C), as the maximal element of Sr(f)¯\overline{S_{r}(f)}. In other words, 𝕊r(f/C)C+\mathbb{S}_{r}(f/C)\in C^{+} and is the supremum of all gC+g\in C^{+} verifying C(fg)r>r\mathbb{P}_{C}\big{(}f\geq g\big{)}\geq r^{\prime}>r.

For arbitrary ff we define 𝕊r(f/C)=𝕊r(f+/C)𝕊1r(f/C)\mathbb{S}_{r}(f/C)=\mathbb{S}_{r}(f^{+}/C)-\mathbb{S}_{1-r}(f^{-}/C).

If g1Sr(f+)g_{1}\in S_{r}(f^{+}) and g2S1r(f)g_{2}\in S_{1-r}(f^{-}) then by definition there are r′′<r<rr^{\prime\prime}<r<r^{\prime} such that:

C(g1f+)r,C(g2f)1r′′.\displaystyle\mathbb{P}_{C}\big{(}g_{1}\leq f^{+}\big{)}\geq r^{\prime},\qquad\mathbb{P}_{C}\big{(}g_{2}\leq f^{-}\big{)}\geq 1-r^{\prime\prime}.

Notice that r+(1r′′)>1r^{\prime}+(1-r^{\prime\prime})>1, so if we had in addition g1g2>0g_{1}\wedge g_{2}>0 we would obtain f+f>0f^{+}\wedge f^{-}>0 which is impossible. We conclude that for all g1Sr(f+)g_{1}\in S_{r}(f^{+}) and g2S1r(f)g_{2}\in S_{1-r}(f^{-}): g1g2=0g_{1}\wedge g_{2}=0. It follows by continuity that 𝕊r(f+/C)𝕊1r(f/C)=0\mathbb{S}_{r}(f^{+}/C)\wedge\mathbb{S}_{1-r}(f^{-}/C)=0, i.e.:

𝕊r(f+/C)=𝕊r(f/C)+,𝕊1r(f/C)=𝕊r(f/C).\displaystyle\mathbb{S}_{r}(f^{+}/C)=\mathbb{S}_{r}(f/C)^{+},\qquad\mathbb{S}_{1-r}(f^{-}/C)=\mathbb{S}_{r}(f/C)^{-}.

Observe also that for f0f\geq 0 we have Sr(f)=r>rSr(f)S_{r}(f)=\bigcup_{r^{\prime}>r}S_{r^{\prime}}(f), and this is an increasing union, so

𝕊r(f)=r>r𝕊r(f).\displaystyle\mathbb{S}_{r}(f)=\bigvee_{r^{\prime}>r}\mathbb{S}_{r^{\prime}}(f).

In particular 𝕊r(f/C)\mathbb{S}_{r}(f/C) decreases as rr increases (for f0f\geq 0 and thus for arbitrary ff).

Finally observe that 𝕊r(f/C)\mathbb{S}_{r}(f/C) only depends on fCf{\restriction}_{C^{\perp\perp}}. Moreover, it is unchanged by automorphisms of 𝒰\mathcal{U} which fix CC, so it only depends on tp(f/C)\operatorname{tp}(f/C). Thus, if p=tp(f/C)p=\operatorname{tp}(f/C) we may define 𝕊r(p)=𝕊r(f/C)\mathbb{S}_{r}(p)=\mathbb{S}_{r}(f/C).

Lemma 5.3.

Let f0f\geq 0, r(0,1)r\in(0,1), t0t\geq 0, and fix a presentation C=Lp(Y,V,μ)C=L_{p}(Y,V,\mu). Then the following subsets of YY are equal up to a null measure set:

{xY:C(ft)(x)r}=a.e.r(0,r){xY:𝕊r(f/C)(x)t}.\big{\{}x\in Y\colon\mathbb{P}_{C}(f\geq t)(x)\geq r\big{\}}\qquad=_{a.e.}\qquad\bigcap_{r^{\prime}\in(0,r)\cap\mathbb{Q}}\big{\{}x\in Y\colon\mathbb{S}_{r^{\prime}}(f/C)(x)\geq t\big{\}}.
Proof.

(All equalities and inequalities here are up to a null measure set.) Let AA and BB denote the sets on the left and right hand side, respectively. Let BrB_{r^{\prime}} denote the set inside the intersection, so B=r(0,r)BrB=\bigcap_{r^{\prime}\in(0,r)\cap\mathbb{Q}}B_{r^{\prime}}. If r<rr^{\prime}<r then tχASr(f)t\chi_{A}\in S_{r^{\prime}}(f) whereby 𝕊r(f/C)tχA\mathbb{S}_{r^{\prime}}(f/C)\geq t\chi_{A}. Therefore ABrA\subseteq B_{r^{\prime}} for all r<rr^{\prime}<r, so ABA\subseteq B. On the other hand observe that by construction C(f𝕊r(f/C))r\mathbb{P}_{C}\big{(}f\geq\mathbb{S}_{r^{\prime}}(f/C)\big{)}\geq r^{\prime}. Therefore C(ftχB)r\mathbb{P}_{C}\big{(}f\geq t\chi_{B}\big{)}\geq r^{\prime} for all (rational) r<rr^{\prime}<r, so C(ftχB)r\mathbb{P}_{C}\big{(}f\geq t\chi_{B}\big{)}\geq r. Since BVB\in V, this is the same as saying that C(ft)r\mathbb{P}_{C}\big{(}f\geq t\big{)}\geq r for (almost) all xBx\in B, whence BAB\subseteq A. ∎

Proposition 5.4.

For f,gCf,g\in C^{\perp\perp}: fCgf\equiv_{C}g if and only if 𝕊r(f/C)=𝕊r(g/C)\mathbb{S}_{r}(f/C)=\mathbb{S}_{r}(g/C) for all r(0,1)r\in(0,1).

More generally, for arbitrary f,g𝒰f,g\in\mathcal{U} we have fCgf\equiv_{C}g if and only if 𝕊r(f/C)=𝕊r(g/C)\mathbb{S}_{r}(f/C)=\mathbb{S}_{r}(g/C) for all r(0,1)r\in(0,1) and (fC)+=(gC)+\|(f{\restriction}_{C^{\perp}})^{+}\|=\|(g{\restriction}_{C^{\perp}})^{+}\|, (fC)=(gC)\|(f{\restriction}_{C^{\perp}})^{-}\|=\|(g{\restriction}_{C^{\perp}})^{-}\|

Proof.

For the first assertion, left to right has already been observed above. For right to left, let us fix a presentation C=Lp(Y,V,μ)C=L_{p}(Y,V,\mu), and consider first the case where f,g0f,g\geq 0. By Lemma 5.3 we have C(ft)=C(gt)\mathbb{P}_{C}(f\geq t)=\mathbb{P}_{C}(g\geq t) for all t0t\geq 0, so the conditional distributions of ff and gg over VV are equal: dist(f|V)=dist(g|V)\operatorname{dist}(f|V)=\operatorname{dist}(g|V). In the general case we have 𝕊r(f+|C)=𝕊r(f|C)+=𝕊r(g|C)+=𝕊r(g+|C)\mathbb{S}_{r}(f^{+}|C)=\mathbb{S}_{r}(f|C)^{+}=\mathbb{S}_{r}(g|C)^{+}=\mathbb{S}_{r}(g^{+}|C) and 𝕊r(f|C)=𝕊1r(f|C)=𝕊1r(g|C)=𝕊r(g|C)\mathbb{S}_{r}(f^{-}|C)=\mathbb{S}_{1-r}(f|C)^{-}=\mathbb{S}_{1-r}(g|C)^{-}=\mathbb{S}_{r}(g^{-}|C) for all r(0,1)r\in(0,1). Again by Lemma 5.3, dist(f+|V)=dist(g+|V)\operatorname{dist}(f^{+}|V)=\operatorname{dist}(g^{+}|V) and dist(f|V)=dist(g|V)\operatorname{dist}(f^{-}|V)=\operatorname{dist}(g^{-}|V), whereby dist(f|V)=dist(g|V)\operatorname{dist}(f|V)=\operatorname{dist}(g|V). We conclude that fCgf\equiv_{C}g using Proposition 3.7.

The second assertion follows. ∎

Thus conditional slices provide a system of invariants for classifying 11-types over CC. Unlike conditional distributions they do not depend on any extraneous information such as a presentation of CC as a concrete LpL_{p} space. We will now see that various properties of types, of which the most important are distance and independence, can be read off directly from the conditional slices.

For this purpose we will first construct, for each system for conditional slices, a canonical realization of the corresponding type in CC^{\perp\perp}. Let D=CLp([0,1],,λ)D=C\otimes L_{p}([0,1],\mathcal{B},\lambda), where ([0,1],,λ)([0,1],\mathcal{B},\lambda) is the standard Lebesgue space. Given a presentation C=Lp(Y,V,μ)C=L_{p}(Y,V,\mu) we can present D=Lp(Y×[0,1],V,μ×λ)D=L_{p}(Y\times[0,1],V\otimes\mathcal{B},\mu\times\lambda). For fCf\in C and gLp([0,1],,μ)g\in L_{p}([0,1],\mathcal{B},\mu) the tensor fgDf\otimes g\in D is just the function h(x,y)=f(x)g(y)h(x,y)=f(x)g(y). Alternatively, we can view DD as an abstract LpL_{p} lattice in which CC embeds via ffχ[0,1]f\mapsto f\otimes\chi_{[0,1]}. We may embed DD in 𝒰\mathcal{U} over CC, and we will choose (arbitrarily) such an embedding. Notice that then DCD\leq C^{\perp\perp}.

For f𝒰f\in\mathcal{U} we define 𝕊(f/C)D\mathbb{S}(f/C)\in D by 𝕊(f/C)(x,y)=𝕊y(f/C)(x)\mathbb{S}(f/C)(x,y)=\mathbb{S}_{y}(f/C)(x). As usual, this does not depend on the presentation of CC (although it does of course depend on the particular presentation we chose for Lp([0,1])L_{p}([0,1])). Indeed we have:

𝕊(f/C)+\displaystyle\mathbb{S}(f/C)^{+} =𝕊(f+/C)\displaystyle=\mathbb{S}(f^{+}/C)
={𝕊r(f+/C)χ[0,r]:r(0,1)},\displaystyle=\bigvee\{\mathbb{S}_{r}(f^{+}/C)\otimes\chi_{[0,r]}\colon r\in\mathbb{Q}\cap(0,1)\},
𝕊(f/C)\displaystyle\mathbb{S}(f/C)^{-} =𝕊(f/C)=(idτ)(𝕊(f/C))\displaystyle=-\mathbb{S}(-f^{-}/C)=(\operatorname{id}\otimes\tau)\big{(}\mathbb{S}(f^{-}/C)\big{)}
={𝕊1r(f/C)χ[r,1]:r(0,1)}.\displaystyle=\bigvee\{\mathbb{S}_{1-r}(f^{-}/C)\otimes\chi_{[r,1]}\colon r\in\mathbb{Q}\cap(0,1)\}.

Here τAut(Lp([0,1]))\tau\in\operatorname{Aut}(L_{p}([0,1])) consists of reversing the order on [0,1][0,1]: (τh)(y)=h(1y)(\tau h)(y)=h(1-y). As before, 𝕊(f/C)\mathbb{S}(f/C) depends only on tp(f/C)\operatorname{tp}(f/C), so we may write it instead as 𝕊(p)\mathbb{S}(p) where p=tp(f/C)p=\operatorname{tp}(f/C).

Let DdecDD_{dec}\subseteq D be the set of h(x,y)Dh(x,y)\in D which are decreasing in yy.

Lemma 5.5.

For all f𝒰f\in\mathcal{U} we have 𝕊(f/C)Ddec\mathbb{S}(f/C)\in D_{dec}. If in addition fCf\in C^{\perp\perp} then 𝕊(f/C)Cf\mathbb{S}(f/C)\equiv_{C}f. Finally, if fCDdecf\in C^{\perp\perp}\cap D_{dec} then 𝕊(f/C)=f\mathbb{S}(f/C)=f.

Proof.

The first assertion is clear.

Before we proceed, let us first observe that if fDdec+f\in D_{dec}^{+}, gC+g\in C^{+} and r(0,1)r\in(0,1) then gSr(f/C)g\in S_{r}(f/C) if and only if gχ[0,r]fg\otimes\chi_{[0,r^{\prime}]}\leq f for some r>rr^{\prime}>r. Thus 𝕊r(f/C)={gC+:gχ[0,r]f,r>r}\mathbb{S}_{r}(f/C)=\bigvee\{g\in C^{+}\colon g\otimes\chi_{[0,r^{\prime}]}\leq f,r^{\prime}>r\}.

For the second assertion we assume that fCf\in C^{\perp\perp}. Let h=𝕊r(f)h=\mathbb{S}_{r}(f), and consider first the case where f0f\geq 0. Then 𝕊r(h/C)\mathbb{S}_{r}(h/C) is equal (by our observation) to {gC+:gχ[0,r]h,r>r}\bigvee\{g\in C^{+}\colon g\otimes\chi_{[0,r^{\prime}]}\leq h,r^{\prime}>r\}. This is equal by construction of h=𝕊(f/C)h=\mathbb{S}(f/C) to r>r𝕊r(f/C)=𝕊r(f/C)\bigvee_{r^{\prime}>r}\mathbb{S}_{r^{\prime}}(f/C)=\mathbb{S}_{r}(f/C). Thus ff and hh have the same conditional slices and therefore the same type (over CC). In the general case this implies that h+Cf+h^{+}\equiv_{C}f^{+} and (idτ)(h)Cf(\operatorname{id}\otimes\tau)(h^{-})\equiv_{C}f^{-}. Since idτ\operatorname{id}\otimes\tau is an automorphism of DD fixing CC, by quantifier elimination we obtain hCfh^{-}\equiv_{C}f^{-}. Thus hCfh\equiv_{C}f.

For the third assertion, let us first consider the case fDdec+f\in D_{dec}^{+}. By our observation 𝕊r(f/C)={gC+:gχ[0,r]f,r>r}\mathbb{S}_{r}(f/C)=\bigvee\{g\in C^{+}\colon g\otimes\chi_{[0,r^{\prime}]}\leq f,r^{\prime}>r\}, so 𝕊r(f/C)χ[0,r]f\mathbb{S}_{r}(f/C)\otimes\chi_{[0,r]}\leq f and thus 𝕊(f/C)f\mathbb{S}(f/C)\leq f. On the other hand we already know that fC𝕊(f/C)f\equiv_{C}\mathbb{S}(f/C), so f=𝕊(f/C)\|f\|=\|\mathbb{S}(f/C)\|, and together with 0𝕊(f/C)f0\leq\mathbb{S}(f/C)\leq f we obtain f=𝕊(f/C)f=\mathbb{S}(f/C). If fDdecf\in D_{dec} is negative then (idτ)(f)Ddec(\operatorname{id}\otimes\tau)(-f)\in D_{dec} is positive, so 𝕊(f/C)=(idτ)𝕊(f/C)=(idτ)𝕊((idτ)(f)/C)=(idτ)2(f)=f\mathbb{S}(f/C)=-(\operatorname{id}\otimes\tau)\mathbb{S}(-f/C)=-(\operatorname{id}\otimes\tau)\mathbb{S}((\operatorname{id}\otimes\tau)(-f)/C)=-(\operatorname{id}\otimes\tau)^{2}(-f)=f. The general case ensues. ∎

It follows that not only do conditional slices serve as a complete system of invariants for types in CC^{\perp\perp}, but they also allow easy extraction of various other invariants of such types:

Proposition 5.6.

For all f𝒰f\in\mathcal{U} we have

𝔼C(f)=01𝕊r(f/C)𝑑r\displaystyle\mathbb{E}_{C}(f)=\int_{0}^{1}\mathbb{S}_{r}(f/C)\,dr
fC=(01𝕊r(f/C)pdr)1p\displaystyle\|f{\restriction}_{C^{\perp\perp}}\|=\left(\int_{0}^{1}\|\mathbb{S}_{r}(f/C)\|^{p}\,dr\right)^{\frac{1}{p}}

The first integral is just integration of a function of two variables: 𝔼C(f)(x)=01𝕊r(f/C)(x)𝑑r\mathbb{E}_{C}(f)(x)=\int_{0}^{1}\mathbb{S}_{r}(f/C)(x)\,dr for (almost) all xx.

Proof.

Let h(x,r)=𝕊(f/C)(x,r)=𝕊r(f/C)(x)h(x,r)=\mathbb{S}(f/C)(x,r)=\mathbb{S}_{r}(f/C)(x). Then hCfCh\equiv_{C}f{\restriction}_{C^{\perp\perp}}, whereby:

𝔼C(f)(x)=𝔼C(h)(x)=01h(x,r)𝑑r\displaystyle\mathbb{E}_{C}(f)(x)=\mathbb{E}_{C}(h)(x)=\int_{0}^{1}h(x,r)\,dr
fCp=hp=01C|h(x,r)|pdμ(x)dr=01h(,r)pdr\displaystyle\|f{\restriction}_{C^{\perp\perp}}\|^{p}=\|h\|^{p}=\int_{0}^{1}\int_{C}|h(x,r)|^{p}\,d\mu(x)\,dr=\int_{0}^{1}\|h(\cdot,r)\|^{p}\,dr

For both we use Fubini’s theorem (and, for the first, the definition of conditional expectation). ∎

Remark 5.7.

Since every two presentations of CC as a concrete LpL_{p} space differ by (essentially) no more than a density change, one can verify that the function 01𝕊r(f/C)(x)𝑑rC\int_{0}^{1}\mathbb{S}_{r}(f/C)(x)\,dr\in C does not depend on the presentation of CC, justifying the notation 𝔼C(f)=01𝕊r(f/C)𝑑r\mathbb{E}_{C}(f)=\int_{0}^{1}\mathbb{S}_{r}(f/C)\,dr. Alternatively, one may develop a theory of integration of CC-valued functions (and more generally, of EE-valued functions, where EE is any Dedekind complete vector lattice), in which case the identity 𝔼C(f)=01𝕊r(f/C)𝑑r\mathbb{E}_{C}(f)=\int_{0}^{1}\mathbb{S}_{r}(f/C)\,dr holds directly, the right hand side being the CC-valued integral of the mapping r𝕊r(f/C)r\mapsto\mathbb{S}_{r}(f/C).

Either way this gives an alternative proof to the fact (Proposition 2.7) that the conditional expectation mapping 𝔼C:𝒰C\mathbb{E}_{C}\colon\mathcal{U}\to C does not depend on any particular choice of presentation for 𝒰\mathcal{U} and CC.

We get a similar result for the distance between types, but a little more work is required.

Let S1(C)S1(C)S_{1}^{\perp\perp}(C)\subseteq S_{1}(C) denote the set of all types whose realizations are in CC^{\perp\perp} and let S1(C)S1(C)S_{1}^{\perp}(C)\subseteq S_{1}(C) denote the set of types whose realizations are in CC^{\perp}.

Theorem 5.8.

For every type pS1(C)p\in S_{1}^{\perp\perp}(C), 𝕊(p)\mathbb{S}(p) is its unique realization in DdecD_{dec}. Thus 𝕊:S1(C)Ddec\mathbb{S}\colon S_{1}^{\perp\perp}(C)\to D_{dec} is a bijection, whose inverse is the mapping ftp(f/C)f\mapsto\operatorname{tp}(f/C). Moreover, equipping S1(C)S_{1}^{\perp\perp}(C) with the usual distance between types, this bijection is an isometry.

Proof.

The first assertion follows immediately from Lemma 5.5, so we concentrate on the isometry assertion.

Let p,qS1(C)p,q\in S_{1}^{\perp\perp}(C), f=𝕊(p)f=\mathbb{S}(p), g=𝕊(q)g=\mathbb{S}(q). Then fpf\vDash p and gqg\vDash q by Lemma 5.5, and by definition of the distance between types: d(p,q)d(f,g)d(p,q)\leq d(f,g). We should now show that if fpf^{\prime}\vDash p and gqg^{\prime}\vDash q are any two other realizations then d(f,g)d(f,g)d(f^{\prime},g^{\prime})\geq d(f,g).

Let us fix a presentation of C𝒰C\leq\mathcal{U} as the LpL_{p} spaces of (Y,V,μ)(X,U,μ)(Y,V,\mu)\subset(X,U,\mu). By a density change argument we may assume there is SVS\in V such that μ(S)=1\mu(S)=1, and such that f,g,f,gf,g,f^{\prime},g^{\prime} are in the band generated by χS\chi_{S} (in fact, for all intents and purposes we may simply assume that Y=SY=S).

Having a presentation we may speak of characteristic and simple functions. Let us first consider the case where both ff and gg are characteristic. Notice that the type of ff over CC says that ff is characteristic: 0fχS0\leq f\leq\chi_{S} and f(χSf)=0f\wedge(\chi_{S}-f)=0. Thus we may write f=χTf=\chi_{T}, f=χTf^{\prime}=\chi_{T^{\prime}}. As fDf\in D we may identify TT with a (V)(V\otimes\mathcal{B})-measurable subset of Y×[0,1]Y\times[0,1]. Moreover, f=χTDdecf=\chi_{T}\in D_{dec}, so TT must be equal to the “area under the graph” of 𝔼C(f)\mathbb{E}_{C}(f): T={(x,y)Y×[0,1]:y𝔼C(f)(x)}T=\{(x,y)\in Y\times[0,1]\colon y\leq\mathbb{E}_{C}(f)(x)\}. On the other hand, fCf𝔼C(f)=𝔼C(f)f\equiv_{C}f^{\prime}\Longrightarrow\mathbb{E}_{C}(f)=\mathbb{E}_{C}(f^{\prime}).

We make similar assumptions and observations for g=χRg=\chi_{R}, g=χRg^{\prime}=\chi_{R^{\prime}}. In particular: R={(x,y)Y×[0,1]:y𝔼C(g)(x)}R=\{(x,y)\in Y\times[0,1]\colon y\leq\mathbb{E}_{C}(g)(x)\}. It follows that 𝔼C(TR)=𝔼C(f).𝔼C(g)\mathbb{E}_{C}(T\smallsetminus R)=\mathbb{E}_{C}(f)\mathbin{\mathchoice{\kern 2.77774pt\hbox to0.0pt{\hss\hbox{$\displaystyle-$}\hss}\raise 2.58334pt\hbox to0.0pt{\hss$\displaystyle.$\hss}\kern 2.77774pt}{\kern 2.77774pt\hbox to0.0pt{\hss\hbox{$\textstyle-$}\hss}\raise 2.58334pt\hbox to0.0pt{\hss$\textstyle.$\hss}\kern 2.77774pt}{\kern 2.45831pt\hbox to0.0pt{\hss\hbox{$\scriptstyle-$}\hss}\raise 1.80835pt\hbox to0.0pt{\hss$\scriptstyle.$\hss}\kern 2.45831pt}{\kern 2.29166pt\hbox to0.0pt{\hss\hbox{$\scriptscriptstyle-$}\hss}\raise 1.29167pt\hbox to0.0pt{\hss$\scriptscriptstyle.$\hss}\kern 2.29166pt}}\mathbb{E}_{C}(g), while for T,RT^{\prime},R^{\prime} we only have: 𝔼C(TR)𝔼C(f).𝔼C(g)\mathbb{E}_{C}(T^{\prime}\smallsetminus R^{\prime})\geq\mathbb{E}_{C}(f^{\prime})\mathbin{\mathchoice{\kern 2.77774pt\hbox to0.0pt{\hss\hbox{$\displaystyle-$}\hss}\raise 2.58334pt\hbox to0.0pt{\hss$\displaystyle.$\hss}\kern 2.77774pt}{\kern 2.77774pt\hbox to0.0pt{\hss\hbox{$\textstyle-$}\hss}\raise 2.58334pt\hbox to0.0pt{\hss$\textstyle.$\hss}\kern 2.77774pt}{\kern 2.45831pt\hbox to0.0pt{\hss\hbox{$\scriptstyle-$}\hss}\raise 1.80835pt\hbox to0.0pt{\hss$\scriptstyle.$\hss}\kern 2.45831pt}{\kern 2.29166pt\hbox to0.0pt{\hss\hbox{$\scriptscriptstyle-$}\hss}\raise 1.29167pt\hbox to0.0pt{\hss$\scriptscriptstyle.$\hss}\kern 2.29166pt}}\mathbb{E}_{C}(g^{\prime}), and putting together: 𝔼C(TR)𝔼C(TR)\mathbb{E}_{C}(T^{\prime}\smallsetminus R^{\prime})\geq\mathbb{E}_{C}(T\smallsetminus R). Same holds of course exchanging TT and RR. We obtain: d(f,g)p=Y[𝔼C(TR)+𝔼C(RT)]𝑑μY[𝔼C(TR)+𝔼C(RT)]𝑑μ=d(f,g)pd(f^{\prime},g^{\prime})^{p}=\int_{Y}[\mathbb{E}_{C}(T^{\prime}\smallsetminus R^{\prime})+\mathbb{E}_{C}(R^{\prime}\smallsetminus T^{\prime})]d\mu\geq\int_{Y}[\mathbb{E}_{C}(T\smallsetminus R)+\mathbb{E}_{C}(R\smallsetminus T)]d\mu=d(f,g)^{p}.

d(f,g)p\displaystyle d(f^{\prime},g^{\prime})^{p} =μ(TR)+μ(RT)\displaystyle=\mu(T^{\prime}\smallsetminus R^{\prime})+\mu(R^{\prime}\smallsetminus T^{\prime})
=Y[𝔼C(TR)+𝔼C(RT)]𝑑μ\displaystyle=\int_{Y}[\mathbb{E}_{C}(T^{\prime}\smallsetminus R^{\prime})+\mathbb{E}_{C}(R^{\prime}\smallsetminus T^{\prime})]d\mu
Y[𝔼C(TR)+𝔼C(RT)]𝑑μ\displaystyle\geq\int_{Y}[\mathbb{E}_{C}(T\smallsetminus R)+\mathbb{E}_{C}(R\smallsetminus T)]d\mu
=d(f,g)p\displaystyle=d(f,g)^{p}

Let us now consider the case where ff and gg are simple positive functions with range in {0,,n}\{0,\ldots,n\}. We can write them in a unique fashion as f=i<nχTif=\sum_{i<n}\chi_{T_{i}}, g=i<nχRig=\sum_{i<n}\chi_{R_{i}} where T0T1Tn1T_{0}\subseteq T_{1}\subseteq\ldots\subseteq T_{n-1} and R0R1Rn1R_{0}\subseteq R_{1}\subseteq\ldots\subseteq R_{n-1}. As above the decompositions are coded in the types over CC, so we get corresponding decompositions f=i<nχTif^{\prime}=\sum_{i<n}\chi_{T_{i}^{\prime}}, g=i<nχRig^{\prime}=\sum_{i<n}\chi_{R_{i}^{\prime}}. Since f,gDdecf,g\in D_{dec} we must have χTi,χRiDdec\chi_{T_{i}},\chi_{R_{i}}\in D_{dec} whereby χTi=𝕊(χTi)\chi_{T_{i}}=\mathbb{S}(\chi_{T_{i}^{\prime}}), χRi=𝕊(χRi)\chi_{R_{i}}=\mathbb{S}(\chi_{R_{i}^{\prime}}). As above it follows that 𝔼C(TiRj)𝔼C(TiRj)\mathbb{E}_{C}(T^{\prime}_{i}\smallsetminus R^{\prime}_{j})\geq\mathbb{E}_{C}(T_{i}\smallsetminus R_{j}), 𝔼C(RiTj)𝔼C(RiTj)\mathbb{E}_{C}(R^{\prime}_{i}\smallsetminus T^{\prime}_{j})\geq\mathbb{E}_{C}(R_{i}\smallsetminus T_{j}).

In order to calculate d(f,g)d(f^{\prime},g^{\prime}), let us define c0=1c_{0}=1 and for n>0n>0: cn=(n+1)p2np+(n1)pc_{n}=(n+1)^{p}-2n^{p}+(n-1)^{p}. As xxpx\mapsto x^{p} is convex all cnc_{n} are positive. One shows by induction first that (n+1)pnp=inci(n+1)^{p}-n^{p}=\sum_{i\leq n}c_{i} and then that np=i<n(ni)cin^{p}=\sum_{i<n}(n-i)c_{i}. The last identity can also be written as np=ij<ncjin^{p}=\sum_{i\leq j<n}c_{j-i}. It follows that d(f,g)p=ij<ncji[μ(TjRi)+μ(RjTi)]d(f^{\prime},g^{\prime})^{p}=\sum_{i\leq j<n}c_{j-i}[\mu(T^{\prime}_{j}\smallsetminus R^{\prime}_{i})+\mu(R^{\prime}_{j}\smallsetminus T^{\prime}_{i})], and similarly for f,gf,g. Thus:

d(f,g)p\displaystyle d(f^{\prime},g^{\prime})^{p} =ij<ncjiY[𝔼C(TjRi)+𝔼C(RjTi)]𝑑μ\displaystyle=\sum_{i\leq j<n}c_{j-i}\int_{Y}[\mathbb{E}_{C}(T^{\prime}_{j}\smallsetminus R_{i}^{\prime})+\mathbb{E}_{C}(R_{j}^{\prime}\smallsetminus T_{i}^{\prime})]\,d\mu
ij<ncjiY[𝔼C(TjRi)+𝔼C(RjTi)]𝑑μ=d(f,g)p.\displaystyle\geq\sum_{i\leq j<n}c_{j-i}\int_{Y}[\mathbb{E}_{C}(T_{j}\smallsetminus R_{i})+\mathbb{E}_{C}(R_{j}\smallsetminus T_{i})]\,d\mu=d(f,g)^{p}.

For simple functions with range, say, in {mn:mn2}\{\frac{m}{n}\colon m\leq n^{2}\}, just apply the previous result and shrink by a factor of nn. Arbitrary positive LpL_{p} functions are increasing limits (both pointwise and in LpL_{p} norm) of such functions, whence the result for positive functions. If ff and gg are possibly negative but bounded from below, say f,gMχSf,g\geq-M\chi_{S}, then same hold of f,gf^{\prime},g^{\prime} and we have: d(f,g)=d(f+MχS,g+MχS)d(f+MχS,g+MχS)=d(f,g)d(f^{\prime},g^{\prime})=d(f^{\prime}+M\chi_{S},g^{\prime}+M\chi_{S})\geq d(f+M\chi_{S},g+M\chi_{S})=d(f,g). Since the bounded functions are dense in LpL_{p} we obtain the general case. ∎

This can be extended to obtain an explicit expression for the distance between arbitrary 11-types over CC (i.e., not necessarily of functions in CC^{\perp\perp}).

Notation 5.9.

For p=tp(f/C)S1(C)p=\operatorname{tp}(f/C)\in S_{1}(C), let:

  1. (i)

    p+=tp(f+/C)p^{+}=\operatorname{tp}(f^{+}/C), p=tp(f/C)p^{-}=\operatorname{tp}(f^{-}/C).

  2. (ii)

    p=f\|p\|=\|f\|.

  3. (iii)

    pC=tp(fC/C)p{\restriction}_{C^{\perp\perp}}=\operatorname{tp}(f{\restriction}_{C^{\perp\perp}}/C).

  4. (iv)

    pC=tp(fC/C)p{\restriction}_{C^{\perp}}=\operatorname{tp}(f{\restriction}_{C^{\perp}}/C).

Corollary 5.10.

For all p,qS1(C)p,q\in S_{1}(C):

d(p,q)p=01𝕊r(p)𝕊r(q)p𝑑r+|p+Cq+C|p+|pCqC|p\displaystyle d(p,q)^{p}=\begin{aligned} &\int_{0}^{1}\|\mathbb{S}_{r}(p)-\mathbb{S}_{r}(q)\|^{p}\,dr\\ &\quad+\big{|}\|p^{+}{\restriction}_{C^{\perp}}\|-\|q^{+}{\restriction}_{C^{\perp}}\|\big{|}^{p}+\big{|}\|p^{-}{\restriction}_{C^{\perp}}\|-\|q^{-}{\restriction}_{C^{\perp}}\|\big{|}^{p}\end{aligned}
Proof.

Notice that for all f,gf,g: fgp=fCgCp+fCgC|p\|f-g\|^{p}=\|f{\restriction}_{C^{\perp\perp}}-g{\restriction}_{C^{\perp\perp}}\|^{p}+\|f{\restriction}_{C^{\perp}}-g{\restriction}_{C^{\perp}}|\|^{p}, so d(p,q)p=d(pC,qC)p+d(pC,qC)pd(p,q)^{p}=d(p{\restriction}_{C^{\perp\perp}},q{\restriction}_{C^{\perp\perp}})^{p}+d(p{\restriction}_{C^{\perp}},q{\restriction}_{C^{\perp}})^{p}. By Theorem 5.8: d(pC,qC)p=𝕊(p)𝕊(q)p=01𝕊r(p)𝕊r(q)pdrd(p{\restriction}_{C^{\perp\perp}},q{\restriction}_{C^{\perp\perp}})^{p}=\|\mathbb{S}(p)-\mathbb{S}(q)\|^{p}=\int_{0}^{1}\|\mathbb{S}_{r}(p)-\mathbb{S}_{r}(q)\|^{p}\,dr.

We are left with showing that if p,qS1(C)p,q\in S_{1}^{\perp}(C) then d(p,q)p=|p+q+|p+|pq|pd(p,q)^{p}=\big{|}\|p^{+}\|-\|q^{+}\|\big{|}^{p}+\big{|}\|p^{-}\|-\|q^{-}\|\big{|}^{p}. If fpf\vDash p then pp is determined by the fact that fCf\in C^{\perp} and by the numbers f+,f\|f^{+}\|,\|f^{-}\|. If gqg\vDash q then:

fgp\displaystyle\|f-g\|^{p} f+g+p+fgp\displaystyle\geq\|f^{+}-g^{+}\|^{p}+\|f^{-}-g^{-}\|^{p}
|f+g+|p+|fg|p\displaystyle\geq\big{|}\|f^{+}\|-\|g^{+}\|\big{|}^{p}+\big{|}\|f^{-}\|-\|g^{-}\|\big{|}^{p}
=|p+q+|p+|pq|p.\displaystyle=\big{|}\|p^{+}\|-\|q^{+}\|\big{|}^{p}+\big{|}\|p^{-}\|-\|q^{-}\|\big{|}^{p}.

This lower bound can be attained by taking f+f^{+} and g+g^{+} to be the constants f+\|f^{+}\| and g+\|g^{+}\|, respectively, over a set AA of measure 11 (where χAC\chi_{A}\in C^{\perp}) and similarly for ff^{-} and gg^{-} over a disjoint set BB of measure 11 (i.e. χBdcl(χA,C)\chi_{B}\in{\operatorname{dcl}(\chi_{A},C)}^{\perp}). ∎

Finally, we observe that conditional slices yield another characterization of independence. Indeed, let CBC\leq B, and let E=BLp([0,1],,λ)E=B\otimes L_{p}([0,1],\mathcal{B},\lambda). Then D=CLp([0,1],,λ)ED=C\otimes L_{p}([0,1],\mathcal{B},\lambda)\leq E, and clearly DCBD\mathop{\mathchoice{\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\kern 4.53473pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 2.71246pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 4.53473pt}{\kern 3.95836pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 1.93747pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 3.95836pt}}_{C}B.

Lemma 5.11.

For all f𝒰f\in\mathcal{U}, the following are equivalent:

  1. (i)

    fCBf\mathop{\mathchoice{\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\kern 4.53473pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 2.71246pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 4.53473pt}{\kern 3.95836pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 1.93747pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 3.95836pt}}_{C}B.

  2. (ii)

    For all 0<r<10<r<1: 𝕊r(f/B)=𝕊r(f/C)\mathbb{S}_{r}(f/B)=\mathbb{S}_{r}(f/C).

  3. (iii)

    For all 0<r<10<r<1: 𝕊r(f/B)C\mathbb{S}_{r}(f/B)\in C.

Proof.

First, we may assume that fBf\in B^{\perp\perp}, as replacing ff with its component in this band leaves all statements unchanged.

Assume first that fCBf\mathop{\mathchoice{\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\kern 4.53473pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 2.71246pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 4.53473pt}{\kern 3.95836pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 1.93747pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 3.95836pt}}_{C}B, and let f=𝕊(f/C)DdecEdecf^{\prime}=\mathbb{S}(f/C)\in D_{dec}\subseteq E_{dec}. Then fBfCf\in B^{\perp\perp}\Longrightarrow f\in C^{\perp\perp}, so fCff\equiv_{C}f^{\prime}. Now DCBfCBD\mathop{\mathchoice{\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\kern 4.53473pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 2.71246pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 4.53473pt}{\kern 3.95836pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 1.93747pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 3.95836pt}}_{C}B\Longrightarrow f^{\prime}\mathop{\mathchoice{\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\kern 4.53473pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 2.71246pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 4.53473pt}{\kern 3.95836pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 1.93747pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 3.95836pt}}_{C}B, and by stationarity we get that fBff^{\prime}\equiv_{B}f. As fEdecf^{\prime}\in E_{dec} we must have f=𝕊(f/B)f^{\prime}=\mathbb{S}(f/B), so 𝕊r(f/B)=𝕊r(f/C)\mathbb{S}_{r}(f/B)=\mathbb{S}_{r}(f/C) for all 0<r<10<r<1.

Conversely, assume that 𝕊r(f/B)C\mathbb{S}_{r}(f/B)\in C for all 0<r<10<r<1, and let f=𝕊(f/B)Edecf^{\prime}=\mathbb{S}(f/B)\in E_{dec}. Then fBff\equiv_{B}f^{\prime} and fDdecf^{\prime}\in D_{dec}, so fCBf^{\prime}\mathop{\mathchoice{\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\kern 4.53473pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 2.71246pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 4.53473pt}{\kern 3.95836pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 1.93747pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 3.95836pt}}_{C}B and therefore fCBf\mathop{\mathchoice{\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\kern 4.53473pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 2.71246pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 4.53473pt}{\kern 3.95836pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 1.93747pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 3.95836pt}}_{C}B. ∎

Using Proposition 4.13, we conclude:

Proposition 5.12.

Let CB𝒰C\leq B\leq\mathcal{U} be sublattices and AA any set. Then the following are equivalent:

  1. (i)

    ACBA\mathop{\mathchoice{\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\kern 4.53473pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 2.71246pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 4.53473pt}{\kern 3.95836pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 1.93747pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 3.95836pt}}_{C}B.

  2. (ii)

    𝕊r(f/B)=𝕊r(f/C)\mathbb{S}_{r}(f/B)=\mathbb{S}_{r}(f/C) for every r(0,1)r\in(0,1) and ff which is a term in members of AA.

  3. (iii)

    𝕊r(f/B)C\mathbb{S}_{r}(f/B)\in C for every r(0,1)r\in(0,1) and ff which is a term in members of AA.

6. Canonical bases

The notion of the canonical base of a type comes from general stability theory. It is, in a sense, a minimal set of parameters which is required to define the type. Since we did not discuss definability of types in this paper we shall use an alternative approach, namely, viewing the canonical base as a canonical parameter for the parallelism class of the type. We will try and give a quick introduction to the uninitiated.

We again work inside a κ\kappa-universal domain 𝒰\mathcal{U} for the theory of atomless LpL_{p} Banach lattices, and we take (X,U,μ)(X,U,\mu) to be a measure space such that 𝒰=Lp(X,U,μ)\mathcal{U}=L_{p}(X,U,\mu).

Since a type over a subset A𝒰A\subseteq\mathcal{U} is the same as a type over dcl(A)\operatorname{dcl}(A), i.e., the Banach sublattice generated by AA, we will only consider types over Banach sublattices of 𝒰\mathcal{U}. For AB𝒰A\leq B\leq\mathcal{U}, qSn(B)q\in S_{n}(B) and pSn(A)p\in S_{n}(A), we say that qq is a non-forking extension of pp if f¯q\bar{f}\vDash q implies f¯p\bar{f}\vDash p and f¯AB\bar{f}\mathop{\mathchoice{\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\kern 4.53473pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 2.71246pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 4.53473pt}{\kern 3.95836pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 1.93747pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 3.95836pt}}_{A}B. By Proposition 4.11 a type pSn(A)p\in S_{n}(A) admits a unique non-forking extension to a type over BB (i.e., all types over sublattices of 𝒰\mathcal{U} are stationary). We will use pBp{\restriction}^{B} to denote the unique non-forking extension.

The group of automorphisms Aut(𝒰)\operatorname{Aut}(\mathcal{U}) acts on types over subsets of 𝒰\mathcal{U} naturally, by acting on their parameters. We wish to distinguish those automorphisms fAut(𝒰)f\in\operatorname{Aut}(\mathcal{U}) which essentially fix pp. In order to compare the two types pp and f(p)f(p), which may have distinct domains AA and f(A)f(A), we compare their unique non-forking extensions to Af(A)A\cup f(A). We say that pp and f(p)f(p) are parallel if pAf(A)=f(p)Af(A)p{\restriction}^{A\cup f(A)}=f(p){\restriction}^{A\cup f(A)}, or equivalently, if p𝒰=f(p)𝒰p{\restriction}^{\mathcal{U}}=f(p){\restriction}^{\mathcal{U}}, noticing that the latter is always equal to f(p𝒰)f(p{\restriction}^{\mathcal{U}}).

This leads us to:

Definition 6.1.

A canonical base for a type pSn(A)p\in S_{n}(A) is a subset C𝒰C\subseteq\mathcal{U} such that an automorphism fAut(𝒰)f\in\operatorname{Aut}(\mathcal{U}) fixes p𝒰p{\restriction}^{\mathcal{U}} if and only if it fixes each member of CC.

(In a general stable theory we will usually only define canonical bases for stationary types.)

Notice that fAut(𝒰)f\in\operatorname{Aut}(\mathcal{U}) fixes p𝒰p{\restriction}^{\mathcal{U}} if and only if it fixes set-wise the class {qSn(B):B𝒰,q𝒰=p𝒰}\{q\in S_{n}(B)\colon B\leq\mathcal{U},q{\restriction}^{\mathcal{U}}=p{\restriction}^{\mathcal{U}}\}, called the parallelism class of pp.

It follows from the definition that if CC and CC^{\prime} are two canonical bases for pp then dcl(C)=dcl(C)\operatorname{dcl}(C)=\operatorname{dcl}(C^{\prime}), so it is legitimate in a sense to speak of the canonical base of a type. In a general stable theory canonical bases of types need not always exist as sets of ordinary elements as we defined above. They do exist in general as sets of imaginary elements, a topic which we will not discuss in the present paper (see [BU, Section 5]).

Our goal in this section is to show that in atomless LpL_{p} Banach lattices canonical bases always exist as sets of ordinary elements (some would call this having built-in canonical bases). In fact, this has already been essentially proved above in Section 5.

Theorem 6.2.

Let f¯𝒰n\bar{f}\in\mathcal{U}^{n} be a tuple and A𝒰A\leq\mathcal{U} a sublattice. Let

Cb(f¯/A)={𝕊r(t(f¯)/A):r(0,1) and term t in n variables}.\displaystyle\mathrm{Cb}(\bar{f}/A)=\{\mathbb{S}_{r}(t(\bar{f})/A)\colon r\in(0,1)\text{ and term }t\text{ in }n\text{ variables}\}.

Then Cb(f¯/A)\mathrm{Cb}(\bar{f}/A) only depends on p=tp(f¯/A)p=\operatorname{tp}(\bar{f}/A) and is a canonical base for pp.

In the case where n=1n=1 the set {𝕊r(f/A):r(0,1)}\{\mathbb{S}_{r}(f/A)\colon r\in(0,1)\} suffices.

Proof.

We have Cb(f¯/A)A\mathrm{Cb}(\bar{f}/A)\subseteq A by construction. Let C=dcl(Cb(f¯/A))AC=\operatorname{dcl}\big{(}\mathrm{Cb}(\bar{f}/A)\big{)}\leq A. Then pp does not fork over CC and Cb(f¯/A)=Cb(f¯/C)\mathrm{Cb}(\bar{f}/A)=\mathrm{Cb}(\bar{f}/C) by Proposition 5.12, so we might as well assume that C=AC=A, i.e., that Cb(f¯/A)\mathrm{Cb}(\bar{f}/A) generates AA. Thus, if θAut(𝒰)\theta\in\operatorname{Aut}(\mathcal{U}) fixes Cb(f¯/A)\mathrm{Cb}(\bar{f}/A) pointwise then it fixes AA pointwise, so θ(p)=p\theta(p)=p and therefore θ(p𝒰)=p𝒰\theta(p{\restriction}^{\mathcal{U}})=p{\restriction}^{\mathcal{U}}.

Conversely, assume that θ(p𝒰)=p𝒰\theta(p{\restriction}^{\mathcal{U}})=p{\restriction}^{\mathcal{U}}. For a term t(x¯)t(\bar{x}) let pt=tp(t(f¯)/A)p^{t}=\operatorname{tp}(t(\bar{f})/A), noticing that this indeed only depends on pp, and we may apply the same definition to arbitrary nn-types. Observe then that (p𝒰)t=(pt)𝒰(p{\restriction}^{\mathcal{U}})^{t}=(p^{t}){\restriction}^{\mathcal{U}}. A member of Cb(f¯/A)\mathrm{Cb}(\bar{f}/A) is of the form 𝕊r(t(f¯/A))=𝕊r(pt)=𝕊r((p𝒰)t)\mathbb{S}_{r}(t(\bar{f}/A))=\mathbb{S}_{r}(p^{t})=\mathbb{S}_{r}((p{\restriction}^{\mathcal{U}})^{t}), so each is fixed by θ\theta.

The case n=1n=1 is proved similarly using Lemma 5.11. ∎

Notice that it follows that Cb(f¯/A)dcl(A)\mathrm{Cb}(\bar{f}/A)\subseteq\operatorname{dcl}(A) and that f¯Cb(f¯/A)A\bar{f}\mathop{\mathchoice{\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\kern 4.53473pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 2.71246pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 4.53473pt}{\kern 3.95836pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 1.93747pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 3.95836pt}}_{\mathrm{Cb}(\bar{f}/A)}A by Proposition 5.12 and Proposition 4.13. Moreover, Cb(f¯/A)\mathrm{Cb}(\bar{f}/A) is minimal as such, in the sense that if Bdcl(A)B\subseteq\operatorname{dcl}(A) and f¯BA\bar{f}\mathop{\mathchoice{\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\kern 4.53473pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 2.71246pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 4.53473pt}{\kern 3.95836pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hbox to0.0pt{$$\hss}\hss}\lower 1.93747pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 3.95836pt}}_{B}A then Cb(f¯/A)dcl(B)\mathrm{Cb}(\bar{f}/A)\subseteq\operatorname{dcl}(B). These are indeed properties of canonical bases in an arbitrary stable theory.

References

  • [AAB93] Y. A. Abramovich, C. D. Aliprantis, and O. Burkinshaw, An elementary proof of Douglas’ theorem on contractive projections on L1L_{1}-spaces, J. Math. Anal. Appl. 177 (1993), no. 2, 641–644.
  • [And66] T. Andô, Contractive projections in LpL_{p} spaces, Pacific J. Math. 17 (1966), 391–405.
  • [BB04] Alexander Berenstein and Steven Buechler, Simple stable homogeneous expansions of Hilbert spaces, Annals of Pure and Applied Logic 128 (2004), 75–101.
  • [BBHU08] Itaï Ben Yaacov, Alexander Berenstein, C. Ward Henson, and Alexander Usvyatsov, Model theory for metric structures, Model theory with Applications to Algebra and Analysis, volume 2 (Zoé Chatzidakis, Dugald Macpherson, Anand Pillay, and Alex Wilkie, eds.), London Math Society Lecture Note Series, vol. 350, Cambridge University Press, 2008, pp. 315–427.
  • [BDCK67] J. Bretagnolle, D. Dacunha-Castelle, and J.-L. Krivine, Lois stables et espaces LpL^{p}, Symposium on Probability Methods in Analysis (Loutraki, 1966), Springer, Berlin, 1967, pp. 48–54.
  • [Ben03a] Itaï Ben Yaacov, Positive model theory and compact abstract theories, Journal of Mathematical Logic 3 (2003), no. 1, 85–118.
  • [Ben03b] by same author, Simplicity in compact abstract theories, Journal of Mathematical Logic 3 (2003), no. 2, 163–191.
  • [BL03] Steven Buechler and Olivier Lessmann, Simple homogeneous models, Journal of the American Mathematical Society 16 (2003), 91–121.
  • [BR85] István Berkes and Haskell P. Rosenthal, Almost exchangeable sequences of random variables, Z. Wahrsch. Verw. Gebiete 70 (1985), no. 4, 473–507.
  • [BU] Itaï Ben Yaacov and Alexander Usvyatsov, Continuous first order logic and local stability, Transactions of the American Mathematical Society, to appear, arXiv:0801.4303.
  • [Dou65] R. G. Douglas, Contractive projections on an L1L_{1} space, Pacific J. Math. 15 (1965), 443–462.
  • [Fol84] Gerald B. Folland, Real analysis, Pure and Applied Mathematics (New York), John Wiley & Sons Inc., New York, 1984, Modern techniques and their applications, A Wiley-Interscience Publication.
  • [Fre04] D. H. Fremlin, Measure theory volume 3: Measure algebras, Torres Fremlin, 25 Ireton Road, Colchester CO3 3AT, England, 2004.
  • [Hen76] C. Ward Henson, Nonstandard hulls of Banach spaces, Israel Journal of Mathematics 25 (1976), 108–144.
  • [Hen87] by same author, Model theory of separable Banach spaces, Journal of Symbolic Logic 52 (1987), 1059–1060, abstract.
  • [HI02] C. Ward Henson and José Iovino, Ultraproducts in analysis, Analysis and Logic (Catherine Finet and Christian Michaux, eds.), London Mathematical Society Lecture Notes Series, no. 262, Cambridge University Press, 2002.
  • [HLR91] R. Haydon, M. Levy, and Y. Raynaud, Randomly normed spaces, Travaux en Cours [Works in Progress], vol. 41, Hermann, Paris, 1991.
  • [Iov99] José Iovino, Stable Banach spaces and Banach space structures, I and II, Models, algebras, and proofs (Bogotá, 1995), Lecture Notes in Pure and Appl. Math., vol. 203, Dekker, New York, 1999, pp. 77–117.
  • [Kal02] Olav Kallenberg, Foundations of modern probability, second ed., Probability and its Applications (New York), Springer-Verlag, New York, 2002.
  • [KM81] Jean-Louis Krivine and Bernard Maurey, Espaces de Banach stables, Israel Journal of Mathematics 39 (1981), no. 4, 273–295.
  • [Lac74] H. Elton Lacey, The isometric theory of classical Banach spaces, Springer-Verlag, New York, 1974, Die Grundlehren der mathematischen Wissenschaften, Band 208.
  • [LT79] Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. II, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 97, Springer-Verlag, Berlin, 1979, Function spaces.
  • [Pom00] Markus Pomper, Types over Banach spaces, Ph.D. thesis, Université of Illinois at Urbana-Champaign, 2000.
  • [Sch74] Helmut H. Schaefer, Banach lattices and positive operators, Springer-Verlag, New York, 1974, Die Grundlehren der mathematischen Wissenschaften, Band 215.