This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Moderate deviations for systems of slow-fast stochastic reaction-diffusion equations

Ioannis Gasteratos ,  Michael Salins  and  Konstantinos Spiliopoulos
Abstract.

The goal of this paper is to study the Moderate Deviation Principle (MDP) for a system of stochastic reaction-diffusion equations with a time-scale separation in slow and fast components and small noise in the slow component. Based on weak convergence methods in infinite dimensions and related stochastic control arguments, we obtain an exact form for the moderate deviations rate function in different regimes as the small noise and time-scale separation parameters vanish. Many issues that appear due to the infinite dimensionality of the problem are completely absent in their finite-dimensional counterpart. In comparison to corresponding Large Deviation Principles, the moderate deviation scaling necessitates a more delicate approach to establishing tightness and properly identifying the limiting behavior of the underlying controlled problem. The latter involves regularity properties of a solution of an associated elliptic Kolmogorov equation on Hilbert space along with a finite-dimensional approximation argument.

Key words and phrases:
moderate deviations, stochastic reaction-diffusion equations, multiscale processes, weak convergence method, optimal control
2010 Mathematics Subject Classification:
60F10, 60H15, 35K57, 70K70
*Department of Mathematics and Statistics, Boston University, 111 Cummington Mall, Boston, MA , 02215, USA. E-mails: igaster@bu.edu, msalins@bu.edu, kspiliop@bu.edu. This work was partially supported by the National Science Foundation (DMS 1550918, DMS 2107856) and Simons Foundation Award 672441.

1. Introduction

In this paper we study the asymptotic tail behavior of the following system of stochastic reaction-diffusion equations (SRDEs) with slow-fast dynamics on the interval (0,L)(0,L)\subset\mathbb{R} :

{tXϵ(t,ξ)=𝒜1Xϵ(t,ξ)+f(ξ,Xϵ(t,ξ),Yϵ(t,ξ))+ϵσ(ξ,Xϵ(t,ξ),Yϵ(t,ξ))tw1(t,ξ)tYϵ(t,ξ)=1δ[𝒜2Yϵ(t,ξ)+g(ξ,Xϵ(t,ξ),Yϵ(t,ξ))]+1δtw2(t,ξ)Xϵ(0,ξ)=x0(ξ),Yϵ(0,ξ)=y0(ξ),ξ(0,L)𝒩1Xϵ(t,ξ)=𝒩2Yϵ(t,ξ)=0,t0,ξ{0,L}.\left\{\begin{aligned} &\partial_{t}X^{\epsilon}(t,\xi)=\mathcal{A}_{1}X^{\epsilon}(t,\xi)+f\big{(}\xi,X^{\epsilon}(t,\xi),Y^{\epsilon}(t,\xi)\big{)}+\sqrt{\epsilon}\sigma\big{(}\xi,X^{\epsilon}(t,\xi),Y^{\epsilon}(t,\xi)\big{)}\partial_{t}w_{1}(t,\xi)\\ &\partial_{t}Y^{\epsilon}(t,\xi)=\frac{1}{\delta}\big{[}\mathcal{A}_{2}Y^{\epsilon}(t,\xi)+g\big{(}\xi,X^{\epsilon}(t,\xi),Y^{\epsilon}(t,\xi)\big{)}\big{]}+\frac{1}{\sqrt{\delta}}\partial_{t}w_{2}(t,\xi)\\ &X^{\epsilon}(0,\xi)=x_{0}(\xi)\;,Y^{\epsilon}(0,\xi)=y_{0}(\xi)\;,\;\;\xi\in(0,L)\\ &\mathcal{N}_{1}X^{\epsilon}(t,\xi)=\mathcal{N}_{2}Y^{\epsilon}(t,\xi)=0\;\;,\;t\geq 0,\xi\in\{0,L\}.\end{aligned}\right. (1)

Here, ϵ\epsilon is considered a small parameter, δ=δ(ϵ)0\delta=\delta(\epsilon)\rightarrow 0 as ϵ0\epsilon\to 0 and L>0L>0. The operators 𝒜1,𝒜2\mathcal{A}_{1},\mathcal{A}_{2} are second-order uniformly elliptic differential operators which encode the diffusive behavior of the dynamics, while the reaction terms are given by the (nonlinear) measurable functions f,g:[0,L]×2f,g:[0,L]\times\mathbb{R}^{2}\rightarrow\mathbb{R}. The operators 𝒩1,𝒩2\mathcal{N}_{1},\mathcal{N}_{2} correspond to either Dirichlet or Robin boundary conditions and the initial values x0,y0x_{0},y_{0} are assumed to be in L2(0,L)L^{2}(0,L).

The system is driven by two independent space-time white noises tw1,tw2,\partial_{t}w_{1},\partial_{t}w_{2}, defined on a complete filtered probability space (Ω,,{t}t0,)(\Omega,\mathcal{F},\{\mathcal{F}_{t}\}_{t\geq 0},\mathbb{P}). These are interpreted as the distributional time-derivatives of two independent cylindrical Wiener processes w1,w2w_{1},w_{2}. The coefficient σ:[0,L]×2\sigma:[0,L]\times\mathbb{R}^{2}\rightarrow\mathbb{R} is a measurable function multiplied by the noise tw1\partial_{t}w_{1}.

Since 1/δ1/\delta is large as ϵ0\epsilon\to 0, we see that the first equation is perturbed by a small multiplicative noise of intensity ϵ\sqrt{\epsilon} while the second contains large parameters and, at least formally, runs on a time-scale of order 1/δ1/\delta. Thus, one can think of the solution XϵX^{\epsilon} of the former as the "slow" process (or slow motion) and the solution YϵY^{\epsilon} of the latter as the "fast" process (or fast motion). Note that, since δ\delta has a functional dependence on ϵ\epsilon, the δ\delta-dependence is suppressed from the notation.

As ϵ\epsilon (and hence δ\delta) are taken to 0 one expects, on the one hand, that the small noise will vanish. On the other hand, assuming that the fast dynamics exhibit ergodic behavior, YϵY^{\epsilon} will converge in distribution to an equilibrium and its contribution to the limiting dynamics of XϵX^{\epsilon} will be averaged out with respect to the invariant measure. In [10], Cerrai demonstrated the validity of such an averaging principle for a system of reaction-diffusion equations in spatial dimension d1d\geq 1, perturbed by multiplicative (colored) noise in both components. The setting of the present paper is closer to that of [12], where Cerrai and Freidlin proved an averaging principle in spatial dimension d=1d=1 and with (additive) noise only in the fast equation. In particular, letting xL2(0,L)x\in L^{2}(0,L) and assuming that the coefficients are sufficiently regular, the fast process Yϵ,xY^{\epsilon,x} with "frozen" slow component xx admits a unique strongly mixing invariant measure μx\mu^{x} and the slow process {Xϵ}ϵ\{X^{\epsilon}\}_{\epsilon} converges in probability, as ϵ0\epsilon\to 0, to the unique (deterministic) solution X¯\bar{X} of the averaged PDE

{tX¯(t,ξ)=𝒜1X¯(t,ξ)+F¯(X¯(t))(ξ)X¯(0,ξ)=x0(ξ),ξ(0,L)𝒩1X¯(t,ξ)=0,t0,ξ{0,L}.\left\{\begin{aligned} &\partial_{t}{\bar{X}(t,\xi)}=\mathcal{A}_{1}\bar{X}(t,\xi)+\bar{F}(\bar{X}(t))(\xi)\\ &\bar{X}(0,\xi)=x_{0}(\xi)\;,\;\;\xi\in(0,L)\\ &\mathcal{N}_{1}\bar{X}(t,\xi)=0\;,\;\;t\geq 0,\xi\in\{0,L\}.\end{aligned}\right. (2)

The nonlinearity F¯\bar{F} is given by the averaged reaction term

F¯(x)(ξ)=(f(,x(),y())𝑑μx(y))(ξ).\bar{F}(x)(\xi)=\bigg{(}\int_{\mathcal{H}}f(\cdot,x(\cdot),y(\cdot))\;d\mu^{x}(y)\bigg{)}(\xi). (3)

The averaging principle describes the typical dynamics of the slow process and thus can be viewed as a "Law of Large Numbers" for XϵX^{\epsilon}. One may then study the problem of characterizing large deviations from the averaging limit. In the Large Deviation theory of multiscale stochastic dynamics, the relative rate at which the intensity of the small noise and the scale separation parameter vanish plays a significant role. In particular, we distinguish the following asymptotic regimes:

limϵ0δϵ={0,Regime 1γ(0,),Regime 2,Regime 3.\displaystyle\lim_{\epsilon\to 0}\frac{\sqrt{\delta}}{\sqrt{\epsilon}}=\begin{cases}&0\;,\;\;\quad\quad\quad\quad\text{Regime 1}\\ &\gamma\in(0,\infty)\;,\;\;\text{Regime 2}\\ &\infty\;,\;\;\quad\quad\quad\;\;\text{Regime 3}.\end{cases} (4)

The problem of Large Deviations for slow-fast systems of stochastic reaction-diffusion equations has been considered in [36] in dimension one, with additive noise in the fast motion and no noise component in the slow motion. In [25], the authors proved a Large Deviation Principle (LDP) in Regime 1, for a system with spatial dimension d1d\geq 1 and multiplicative noise, using the weak convergence approach developed in [7].

Moderate deviations characterize the decay rates of rare event probabilities that lie on an asymptotic regime between the Central Limit Theorem (CLT) and the corresponding LDP. The goal of the present paper is to prove a Moderate Deviation Principle (MDP) for system (1) in Regimes 1 and 2. The latter is equivalent to deriving an LDP for the process

ηϵ(t,ξ)=Xϵ(t,ξ)X¯(t,ξ)ϵh(ϵ)\eta^{\epsilon}(t,\xi)=\frac{X^{\epsilon}(t,\xi)-\bar{X}(t,\xi)}{\sqrt{\epsilon}h(\epsilon)}

with speed h2(ϵ)h^{2}(\epsilon). The scaling factor h(ϵ)h(\epsilon) is such that

h(ϵ),ϵh(ϵ)0asϵ0.h(\epsilon)\longrightarrow\infty\;\;,\;\;\sqrt{\epsilon}h(\epsilon)\longrightarrow 0\;\;\text{as}\;\;\epsilon\to 0. (5)

Note that if we set h1h\equiv 1 and let ϵ0\epsilon\to 0 we would observe the behavior of normal deviations (CLT) around X¯\bar{X} while if we naively set h(ϵ)=1/ϵh(\epsilon)=1/\sqrt{\epsilon} we would observe the Large Deviations behavior. Hence, the MDP fills an asymptotic gap between the CLT and the LDP and, as such, it inherits characteristics of both.

One of the most effective methods in proving statements about the behavior of rare events (such as LDPs and MDPs) is the weak convergence method (see [4], [7], as well as the books [6] and [17]) which is the method we are using in this paper. The core of this approach lies in the use of a variational representation of exponential functionals of Wiener processes (see [4] for SDEs and [7] for SPDEs). Roughly speaking, one can represent the exponential functional of the moderate deviation process ηϵ\eta^{\epsilon} that appears in the Laplace Principle (LP) (which is equivalent to an MDP) as a variational infimum of a family of controlled moderate deviation processes ηϵ,u\eta^{\epsilon,u}, plus a quadratic cost, over a suitable family of stochastic controls uu. In particular, for any bounded continuous function Λ:C([0,T];L2(0,L))\Lambda:C([0,T];L^{2}(0,L))\rightarrow\mathbb{R}:

1h2(ϵ)log𝔼[eh2(ϵ)Λ(ηϵ)]=infu𝒫T(L2(0,L)2)𝔼[120T(u1(t)L2(0,L)2+u2(t)L2(0,L)2)𝑑t+Λ(ηϵ,u)],\small-\frac{1}{h^{2}(\epsilon)}\log\;\mathbb{E}\big{[}e^{-h^{2}(\epsilon)\Lambda(\eta^{\epsilon})}\big{]}=\inf_{u\in\mathcal{P}^{T}(L^{2}(0,L)^{2})}\mathbb{E}\bigg{[}\frac{1}{2}\int_{0}^{T}\big{(}\|u_{1}(t)\|^{2}_{L^{2}(0,L)}+\|u_{2}(t)\|^{2}_{L^{2}(0,L)}\big{)}\;dt+\Lambda\big{(}\eta^{\epsilon,u}\big{)}\bigg{]}, (6)

where u=(u1,u2)u=(u_{1},u_{2}) and 𝒫T(L2(0,L)2)\mathcal{P}^{T}(L^{2}(0,L)^{2}) is the family of L2(0,L)2L^{2}(0,L)^{2}-valued progressively-measurable control processes, where uiu_{i} is measurable with respect to the filtration Tw\mathcal{F}^{w}_{T} generated by
{(w1(t),w2(t)),t[0,T]}\{(w_{1}(t),w_{2}(t))\;,t\in[0,T]\} (i=1,2i=1,2) and has finite L2([0,T];L2(0,L))L^{2}([0,T];L^{2}(0,L))-norm.

The process ηϵ,u\eta^{\epsilon,u} that appears on the right hand side of (6) is defined by

ηϵ,u(t,ξ)=Xϵ,u(t,ξ)X¯(t,ξ)ϵh(ϵ).\eta^{\epsilon,u}(t,\xi)=\frac{X^{\epsilon,u}(t,\xi)-\bar{X}(t,\xi)}{\sqrt{\epsilon}h(\epsilon)}\;. (7)

Here, Xϵ,uX^{\epsilon,u} corresponds to a controlled slow-fast system (Xϵ,u,Yϵ,u)(X^{\epsilon,u},Y^{\epsilon,u}) (see (25) below) which results from (1) by perturbing the paths of the noise by an appropriately re-scaled control. It is due to the latter that this representation is called variational.

In light of (6), we see that in order to obtain a limit as ϵ0\epsilon\to 0 of the Laplace functional (i.e. to prove an MDP), one needs to analyze the limiting behavior of ηϵ,u\eta^{\epsilon,u} and, before doing so, obtain a priori estimates for the underlying controlled slow-fast system given in (25)\eqref{controlledsystem}. The latter is the first technical part of the current work (Section 4). As in the LDP case, the difficulty in these estimates is in that the stochastic controls are only known to be square integrable.

Compared to the corresponding LDP, the essential source of additional complexity in Moderate Deviations lies in the proof of tightness of the family {ηϵ,u;ϵ,u}\{\eta^{\epsilon,u};\epsilon,u\}. What complicates the analysis is the singular moderate deviation scaling 1/ϵh(ϵ)1/\sqrt{\epsilon}h(\epsilon). We overcome this difficulty by following, in spirit, the general method developed by Papanicolaou, Stroock and Varadhan in [29]. This involves the study of fluctuations with the aid of an elliptic Kolmogorov equation, associated to the fast dynamics and posed on the infinite-dimensional space L2(0,L)L^{2}(0,L). After projecting the controlled fast process Yϵ,uY^{\epsilon,u} to an nn-dimensional eigenspace of the elliptic operator 𝒜2\mathcal{A}_{2}, we are able to apply Itô’s formula to the solution Φϵ\Phi^{\epsilon} of the Kolmogorov equation and derive an expression for ηϵ,u\eta^{\epsilon,u} that is free from asymptotically singular coefficients. Using the a priori estimates from Section 4 along with regularity results for Φϵ\Phi^{\epsilon} from [12] and [8] we are then able to show tightness (Section 6).

Regarding the characterization of the limit in distribution of the process ηϵ,u\eta^{\epsilon,u}, note that the presence of stochastic controls uu leads to a limiting invariant measure of the controlled fast process Yϵ,uY^{\epsilon,u} which a priori depends on uu. In order to deal with this in a unified manner across regimes we use the so-called “viable pair” construction (see [25] and [19], [32] for the finite and infinite-dimensional settings respectively) to characterize the limit. The latter is a pair of a trajectory and measure (ψ,P)(\psi,P) that captures both the limit averaging dynamics of ηϵ,u\eta^{\epsilon,u} and the invariant measure of the controlled fast process Yϵ,uY^{\epsilon,u}. In particular, the function ψ\psi is the solution of the limiting averaged equation for ηϵ,u\eta^{\epsilon,u} and the probability measure PP characterizes both the structure of the invariant measure of Yϵ,uY^{\epsilon,u} and the control uu. Although, in general, these two objects are intertwined and coupled together into the measure PP, Regimes 1 and 2 lead to a decoupling of the form P(dudydt)=νt(du|y)μX¯(t)(dy)dtP(dudydt)=\nu_{t}(du|y)\mu^{\bar{X}(t)}(dy)dt, where νt(du|y)\nu_{t}(du|y) is a stochastic kernel characterizing the control and μX¯(t)\mu^{\bar{X}(t)} is the local invariant measure.

The measure P is obtained as the limit of a family of occupation measures Pϵ,ΔP^{\epsilon,\Delta}, that live on the product space of fast motion and control, with Δ=Δ(ϵ)0\Delta=\Delta(\epsilon)\rightarrow 0 to be specified later on. The result on the weak convergence of the pair (ηϵ,u,Pϵ,Δ)(\eta^{\epsilon,u},P^{\epsilon,\Delta}) in Regimes 1 and 2 is the content of Theorem 3.2.

With the analysis of the limit and the construction of a viable pair, we then prove the Laplace Principle (equivalently LDP) for the moderate deviation process ηϵ\eta^{\epsilon} in Regimes 1 and 2 (Section 7). The main result of the paper is stated in Theorem 3.3. Proving the Laplace principle amounts to finding an appropriate functional SS such that for any bounded and continuous function Λ:C([0,T];L2(0,L))\Lambda:C([0,T];L^{2}(0,L))\rightarrow\mathbb{R}

limϵ01h2(ϵ)log𝔼[eh2(ϵ)Λ(ηϵ)]=infϕC([0,T];L2(0,L))[S(ϕ)+Λ(ϕ)].\displaystyle\lim_{\epsilon\to 0}\frac{1}{h^{2}(\epsilon)}\log\;\mathbb{E}\big{[}e^{-h^{2}(\epsilon)\Lambda(\eta^{\epsilon})}\big{]}=-\inf_{\phi\in C([0,T];L^{2}(0,L))}\big{[}S(\phi)+\Lambda(\phi)\big{]}.

As is common in the relevant literature, the Laplace principle upper bound can be proven using the weak convergence of the pair (ηϵ,u,Pϵ,Δ)(\eta^{\epsilon,u},P^{\epsilon,\Delta}) per Theorem 3.2. The situation is more complicated for the Laplace principle lower bound for which we need to construct nearly optimal controls in feedback form (i.e. they are functions of both time and the fast motion) that achieve the bound.

In finite dimensions, the Large Deviation theory for multiscale diffusions with periodic coefficients has been established in all three interaction Regimes and with the use of the weak convergence approach (see [19], [32] and the references therein). The problem of Moderate Deviations in finite dimensions has been treated in [13, 18, 23, 24, 28] under different settings and assumptions. Specifically, the finite-dimensional work of [28] makes use of solutions to associated elliptic equations to treat Regimes 1 and 2. While the well-posedness and regularity theory of such equations are well-studied in finite dimensions (see e.g. [30]), their analysis on infinite-dimensional spaces becomes quite more involved and the relevant literature is more limited. The absence of available regularity results for a general class of such equations is the main reason why we only consider the fast equation with additive noise.

To the best of our knowledge, the problem of moderate deviations for systems of slow-fast stochastic reaction-diffusion is being considered for the first time in this paper. Its contribution is twofold:

On a theoretical level, it provides a way to study rare events for the infinite-dimensional dynamics in both Regimes 1 and 2. In the LDP setting, Regime 2 remains open as it does not lead to a decoupling of the limiting invariant measure of Yϵ,uY^{\epsilon,u} and the control uu. The regularity of the optimal controls has been studied in finite dimensions using their characterization through solutions to Hamilton-Jacobi-Bellman equations (see [32]). Such techniques have not been established on an infinite-dimensional setting. However, as shown in this paper, Regime 2 can be studied in the context of Moderate Deviations. In this regime the control of the fast equation survives in the limit. This reflects the fact that we are studying fluctuations very close to the CLT and a certain derivative of the Kolmogorov equation (see the term Ψ20u2\Psi_{2}^{0}u_{2} in Theorem 3.2) captures the contribution of these fluctuations. It is worth noting that normal deviations from the averaging limit for slow-fast stochastic reaction-diffusion equations have been studied in [11]. This was done with different techniques and no explicit connection was drawn between the covariance of the limiting Gaussian process and the solution of the Kolmogorov equation. More recently, the authors of [31] generalized the results of [11] and studied normal deviations from the averaging limit using the Kolmogorov equation approach.

On a computational level, the solution to the stochastic control problem gives vital information for the design of efficient Monte Carlo methods for the approximation of rare event probabilities on the moderate deviation range. In particular, the fact that the limiting equation is affine in ηϵ,u\eta^{\epsilon,u} is expected to make moderate deviation-based importance sampling for stochastic PDE easier to implement than its large deviation-based counterpart, see [33] for the related situation in finite dimensions. We plan to explore this in a future work.

The outline of this paper is as follows: in Section 2 we give background definitions, set-up as well as our assumptions. In Section 3 we review basic facts about the weak convergence method in infinite dimensions and we define viable pairs and occupation measures as well as state our main results on averaging for the controlled moderate deviation process ηϵ,u\eta^{\epsilon,u} and the MDP. In Section 4 we prove a priori bounds for the solution of the controlled system (Xϵ,u,Yϵ,u)(X^{\epsilon,u},Y^{\epsilon,u}). In Section 5 we prove a priori bounds for the process ηϵ,u\eta^{\epsilon,u} with the aid of the elliptic Kolmogorov equation while Section 6 is devoted to the analysis of the limit of the pairs (ηϵ,u,Pϵ,Δ)(\eta^{\epsilon,u},P^{\epsilon,\Delta}). In Section 7 we prove the MDP. Finally, Appendix A contains some classical regularity results for stochastic convolutions adapted to our multiscale setting while Appendix B contains the proof of Lemma 5.4.

2. Notation and Assumptions

We denote by \mathcal{H} the Hilbert space L2(0,L)L^{2}(0,L) endowed with the usual inner product ,\langle\cdot,\cdot\rangle_{\mathcal{H}}. The norm induced by the inner product is denoted by \|\cdot\|_{\mathcal{H}}. Throughout this paper, \oplus denotes the Hilbert space direct sum. The closed unit ball of any Banach space 𝒳\mathcal{X}, i.e. the set {x𝒳:x𝒳1}\{x\in\mathcal{X}:\|x\|_{\mathcal{X}}\leq 1\}, will be denoted by B𝒳B_{\mathcal{X}}. The lattice notation ,\wedge,\vee is used to indicate minimum and maximum respectively.

For θ>0\theta>0, we denote by Hθ(0,L)H^{\theta}(0,L) the fractional Sobolev space of xx\in\mathcal{H} such that

[x]Hθ:=[0,L]2|x(ξ2)x(ξ1)|2|ξ2ξ1|2θ+1𝑑λ2(ξ1,ξ2)<,[x]_{H^{\theta}}:=\int_{[0,L]^{2}}\frac{|x(\xi_{2})-x(\xi_{1})|^{2}}{|\xi_{2}-\xi_{1}|^{2\theta+1}}d\uplambda_{2}(\xi_{1},\xi_{2})<\infty\;,

where λ2\uplambda_{2} denotes Lebesgue measure on [0,L]2[0,L]^{2}. Hθ(0,L)H^{\theta}(0,L) is a Banach space when endowed with the norm Hθ:=+[]Hθ\|\cdot\|_{H^{\theta}}:=\|\cdot\|_{\mathcal{H}}+[\cdot]_{H^{\theta}}.

Moreover, for T>0T>0 and β[0,1)\beta\in[0,1), we denote by Cβ([0,T];)C^{\beta}([0,T];\mathcal{H}) the space of β\beta-Hölder continuous \mathcal{H}-valued paths defined on the interval [0,T][0,T]. Cβ([0,T];)C^{\beta}([0,T];\mathcal{H}) is a Banach space when endowed with the norm

XCβ([0,T];):=XC([0,T];)+[X]Cβ([0,T];):=supt[0,T]X(t)+suptss,t[0,T]X(t)X(s)|ts|β.\|X\|_{C^{\beta}([0,T];\mathcal{H})}:=\|X\|_{C([0,T];\mathcal{H})}+[X]_{C^{\beta}([0,T];\mathcal{H})}:=\sup_{t\in[0,T]}\|X(t)\|_{\mathcal{H}}+\sup_{\overset{s,t\in[0,T]}{t\neq s}}\frac{\|X(t)-X(s)\|_{\mathcal{H}}}{|t-s|^{\beta}}\;.

For any two Banach spaces 𝒳,𝒴\mathcal{X},\mathcal{Y} and kk\in\mathbb{N} we denote the space of kk-linear bounded operators Q:𝒳k𝒴Q:\mathcal{X}^{k}\rightarrow\mathcal{Y} by k(𝒳;𝒴)\mathscr{L}^{k}(\mathcal{X};\mathcal{Y}). The latter is a Banach space when endowed with the norm

Qk(𝒳;𝒴):=supxB𝒳kQx𝒴.\|Q\|_{\mathscr{L}^{k}(\mathcal{X};\mathcal{Y})}:=\sup_{x\in B^{k}_{\mathcal{X}}}\|Qx\|_{\mathcal{Y}}\;.

When the domain coincides with the co-domain, we use the simpler notation k(𝒳)\mathscr{L}^{k}(\mathcal{X}) while for k=1k=1 we often omit the superscript and write (𝒳;𝒴)1(𝒳;𝒴)\mathscr{L}(\mathcal{X};\mathcal{Y})\equiv\mathscr{L}^{1}(\mathcal{X};\mathcal{Y}).

The spaces of trace-class and Hilbert-Schmidt linear operators B:B:\mathcal{H}\rightarrow\mathcal{H} are denoted by 1()\mathscr{L}_{1}(\mathcal{H}) and 2()\mathscr{L}_{2}(\mathcal{H}) respectively. The former is a Banach space when endowed with the norm

B1():=tr(BB)\|B\|_{\mathscr{L}_{1}(\mathcal{H})}:=\text{tr}(\sqrt{B^{*}B})

while the latter is a Hilbert space when endowed with the inner product

B1,B22():=tr(B2B1).\langle B_{1},B_{2}\rangle_{\mathscr{L}_{2}(\mathcal{H})}:=\text{tr}(B_{2}^{*}B_{1}).

The class of (globally) Lipschitz real-valued functions on \mathcal{H} is denoted by Lip()Lip(\mathcal{H}) and the space of kk-times Fréchet differentiable real-valued functions on \mathcal{H} with bounded and uniformly continuous derivatives up to the kk-th order (kk\in\mathbb{N}) is denoted by Cbk()C_{b}^{k}(\mathcal{H}). The latter is a Banach space when endowed with the norm

XCbk():=supx|X(x)|+supxDX(x)+i=2ksupxDiX(x)i1().\|X\|_{C_{b}^{k}(\mathcal{H})}:=\sup_{x\in\mathcal{H}}|X(x)|+\sup_{x\in\mathcal{H}}\|DX(x)\|_{\mathcal{H}}+\sum_{i=2}^{k}\sup_{x\in\mathcal{H}}\|D^{i}X(x)\|_{\mathscr{L}^{i-1}(\mathcal{H})}\;.

For k=0k=0 we often omit the superscript and write Cb()Cb0()C_{b}(\mathcal{H})\equiv C_{b}^{0}(\mathcal{H}) for the space of bounded uniformly continuous functions on \mathcal{H}.

The operators 𝒜1,𝒜2,\mathcal{A}_{1},\mathcal{A}_{2}, appearing in (1), are uniformly elliptic second-order differential operators with continuous coefficients on [0,L][0,L]. The operators 𝒩1\mathcal{N}_{1} and 𝒩2\mathcal{N}_{2} act on the boundary {0,L}\{0,L\} and can be either the identity operator (corresponding to Dirichlet boundary conditions) or first-order differential operators of the type

𝒩u(ξ)=b(ξ)u(ξ)+c(ξ)u(ξ),ξ{0,L}\mathcal{N}u(\xi)=b(\xi)u^{\prime}(\xi)+c(\xi)u(\xi)\;,\;\xi\in\{0,L\}

for some b,cC1[0,L]b,c\in C^{1}[0,L] such that b0b\neq 0 on {0,L}\{0,L\} (corresponding to Neumann or Robin boundary conditions).

For i=1,2,i=1,2, AiA_{i} denotes the realization of the differential operator 𝒜i\mathcal{A}_{i} in \mathcal{H}, endowed with the boundary condition 𝒩i\mathcal{N}_{i}. It is defined on the dense subspace

Dom(Ai)={xH2(0,L):𝒩ix(0)=𝒩ix(L)=0}Dom(A_{i})=\{x\in H^{2}(0,L):\mathcal{N}_{i}x(0)=\mathcal{N}_{i}x(L)=0\}

and generates a C0C_{0}, analytic semigroup of operators Si={Si(t)}t0()S_{i}=\{S_{i}(t)\}_{t\geq 0}\subset\mathscr{L}(\mathcal{H}).

Regarding the spectral properties of AiA_{i}, we make the following assumptions:

Hypothesis 1(a).

For i=1,2i=1,2 the operator Ai-A_{i} is self-adjoint. As a result (see Theorem 8.8.37 in [20]), there exists a countable complete orthonormal basis {ei,n}n\{e_{i,n}\}_{n\in\mathbb{N}}\subset\mathcal{H} of eigenvectors of Ai-A_{i}. The corresponding sequence of nonnegative eigenvalues is denoted by {ai,n}n\{a_{i,n}\}_{n\in\mathbb{N}}.

As a consequence, for each x,t0x\in\mathcal{H},t\geq 0, i=1,2i=1,2, we have

Si(t)x2=n=1e2ai,ntx,ei,n2e2tinfnai,nxx.\|S_{i}(t)x\|_{\mathcal{H}}^{2}=\sum_{n=1}^{\infty}e^{-2a_{i,n}t}\langle x,e_{i,n}\rangle^{2}_{\mathcal{H}}\leq e^{-2t\underset{n\in\mathbb{N}}{\inf}a_{i,n}}\|x\|_{\mathcal{H}}\leq\|x\|_{\mathcal{H}}\;. (8)
Hypothesis 1(b).

For i=1,2i=1,2 we assume that

supnei,nL(0,L)<.\sup_{n\in\mathbb{N}}\|e_{i,n}\|_{L^{\infty}(0,L)}<\infty. (9)
Hypothesis 1(c).

A2A_{2} is self-adjoint and satisfies the strict dissipativity condition

λ:=infna2,n>0.\lambda:=\inf_{n\in\mathbb{N}}a_{2,n}>0. (10)

Under this assumption it is straightforward to verify that

S2(t)()eλt,t0.\|S_{2}(t)\|_{\mathscr{L}(\mathcal{H})}\leq e^{-\lambda t}\;,\;t\geq 0. (11)
Remark 1.

Without loss of generality, we can replace the operator A1A_{1} by A~1=A1cI\tilde{A}_{1}=A_{1}-cI for some c>0c>0 and the reaction term ff in (1), by f~(ξ,x(ξ),y(ξ)):=f(ξ,x(ξ),y(ξ))+cx(ξ)\tilde{f}(\xi,x(\xi),y(\xi)):=f(\xi,x(\xi),y(\xi))+cx(\xi). The slow equation is invariant under this transformation and, in light of Hypothesis 1(a), it follows that S~1(t)()ect\|\tilde{S}_{1}(t)\|_{\mathscr{L}(\mathcal{H})}\leq e^{-ct}. Throughout the rest of this work we will be using A1~,S1~\tilde{A_{1}},\tilde{S_{1}} and f~\tilde{f} with no further distinction in notation.

Let i=1,2i=1,2 and θ0\theta\geq 0. In view of Hypotheses 1(a) and 1(c), along with the previous remark, it follows that 0 is in the resolvent set of AiA_{i}. Hence the operator Ai-A_{i}, restricted to its image, has a densely defined bounded inverse (Ai)1(-A_{i})^{-1} which can then be uniquely extended to all of \mathcal{H}. One can then define (Ai)θ(-A_{i})^{-\theta} via interpolation and show that it is also injective.

Letting (Ai)θ2:=((Ai)θ2)1(-A_{i})^{\frac{\theta}{2}}:=((-A_{i})^{-\frac{\theta}{2}})^{-1} we define iθ:=Dom(Ai)θ2=Range(Ai)θ2\mathcal{H}_{i}^{\theta}:=Dom(-A_{i})^{\frac{\theta}{2}}=Range(-A_{i})^{-\frac{\theta}{2}}\subset\mathcal{H}. The latter is a Banach space when endowed with the norm

xiθ:=(Ai)θ2x.\|x\|_{\mathcal{H}_{i}^{\theta}}:=\big{\|}(-A_{i})^{\frac{\theta}{2}}x\big{\|}_{\mathcal{H}}\;.

This norm is equivalent, due to injectivity, to the graph norm (see [27], Chapter 2.2).

Remark 2.

For θ(0,12)\theta\in(0,\frac{1}{2}) the spaces Hθ(0,L)H^{\theta}(0,L) and iθ\mathcal{H}_{i}^{\theta} coincide, in light of the identity

Hθ(0,L)=iθ={x:xθ,:=supt(0,1]tθ/2Si(t)xx<},H^{\theta}(0,L)=\mathcal{H}^{\theta}_{i}=\big{\{}x\in\mathcal{H}:\|x\|_{\theta,\infty}:=\sup_{t\in(0,1]}t^{-\theta/2}\|S_{i}(t)x-x\|_{\mathcal{H}}<\infty\big{\}},

which holds with equivalence of norms. The latter implies that for each t0t\geq 0, the linear operator Si(t)I(Hθ;)S_{i}(t)-I\in\mathscr{L}(H^{\theta};\mathcal{H}) and there exists a constant C>0C>0 such that

Si(t)I(Hθ;)Ctθ/2.\big{\|}S_{i}(t)-I\big{\|}_{\mathscr{L}(H^{\theta};\mathcal{H})}\leq Ct^{\theta/2}. (12)

The analytic semigroups SiS_{i} possess the following regularizing properties (see e.g. section 4.1.1 in [8]) :

(i) For 0sr120\leq s\leq r\leq\frac{1}{2} and t>0t>0, SiS_{i} maps Hs(0,L)H^{s}(0,L) to Hr(0,L)H^{r}(0,L) and

Si(t)xHrCr,s(t1)rs2ecr,stxHs,xHs(0,L),\|S_{i}(t)x\|_{H^{r}}\leq C_{r,s}(t\wedge 1)^{-\frac{r-s}{2}}e^{c_{r,s}t}\|x\|_{H^{s}}\;\;,\;x\in H^{s}(0,L), (13)

for some positive constants cr,s,Cr,sc_{r,s},C_{r,s}.

(ii) SiS_{i} is ultracontractive, i.e. for t>0,t>0, Si(t)S_{i}(t) maps \mathcal{H} to L(0,L)L^{\infty}(0,L) and furthermore, for any 1pr1\leq p\leq r\leq\infty,

Si(t)xLr(0,L)C(t1)rp2prxLp(0,L),xLp(0,L).\|S_{i}(t)x\|_{L^{r}(0,L)}\leq C(t\wedge 1)^{-\frac{r-p}{2pr}}\|x\|_{L^{p}(0,L)}\;\;,\;x\in L^{p}(0,L). (14)
Remark 3.

The assumption that A1A_{1} is self-adjoint is made to simplify the exposition and is not necessary for the results of this paper to hold. Indeed, assuming that A1A_{1} has C1C^{1} coefficients and in view of section 2.1 of [9], we can write A1=C1+L1A_{1}=C_{1}+L_{1}, where C1C_{1} is a non-positive uniformly elliptic self-adjoint operator and L1L_{1} a densely defined first-order operator. Moreover, we have Dom(L1)=Dom(L1)=Dom((C1)12)Dom(L_{1})=Dom(L_{1}^{*})=Dom((-C_{1})^{\frac{1}{2}}). The fractional powers of A1-A_{1} can then be substituted throughout by fractional powers of C1-C_{1}. Finally, the mild formulations for Xϵ,uX^{\epsilon,u} and ηϵ,u\eta^{\epsilon,u} can be re-expressed in terms of the analytic semigroup SC1S_{C_{1}}, generated by C1C_{1}, with the addition of a linear term corresponding to the operator L1L_{1} (see Definition 3.1 and Proposition 3.1 in [9]).

The next set of assumptions concerns the regularity of the nonlinear reaction terms in (1). In particular, we assume that f,g:[0,L]×2f,g:[0,L]\times\mathbb{R}^{2}\rightarrow\mathbb{R} are measurable functions and:

Hypothesis 2(a).

For almost all ξ(0,L)\xi\in(0,L), the map (x,y)f(ξ,x,y)(\mathrm{x},\mathrm{y})\mapsto f(\xi,\mathrm{x},\mathrm{y}) is in C2(2)C^{2}(\mathbb{R}^{2}) and its derivatives are uniformly bounded with respect to ξ,x,y\xi,\mathrm{x},\mathrm{y}.

Hypothesis 2(b).

(i) For almost all ξ(0,L)\xi\in(0,L) and all y\mathrm{y}\in\mathbb{R}, the map xg(ξ,x,y)\mathrm{x}\mapsto g(\xi,\mathrm{x},\mathrm{y}) is in C2()C^{2}(\mathbb{R}) and its derivatives are uniformly bounded with respect to ξ,x,y\xi,\mathrm{x},\mathrm{y} .

(ii) For almost all ξ(0,L)\xi\in(0,L) and all x\mathrm{x}\in\mathbb{R}, the map yg(ξ,x,y)\mathrm{y}\mapsto g(\xi,\mathrm{x},\mathrm{y}) is in C3()C^{3}(\mathbb{R}) with uniformly bounded derivatives with respect to ξ,x,y\xi,\mathrm{x},\mathrm{y} and

supξ,x,y|yg(ξ,x,y)|=:Lg<λ,\sup_{\xi,\mathrm{x},\mathrm{y}}\big{|}\partial_{\mathrm{y}}g(\xi,\mathrm{x},\mathrm{y})\big{|}=:L_{g}<\lambda, (15)

with λ\lambda as in (10).

Hypothesis 2(c).

With λ,Lg\lambda,L_{g} as in Hypothesis 2(b) we assume that

ω:=λ3Lg2>0.\omega:=\frac{\lambda-3L_{g}}{2}>0. (16)

Hypothesis 2(c) is used to prove that a partial Fréchet derivative of the solution of the Kolmogorov equation associated to the fast process converges, as ϵ0\epsilon\to 0, to an operator-valued map that is Lipschitz continuous with respect to its arguments (see Lemma 6.10 and Corollary 6.1).

The last set of assumptions concerns the behavior of the diffusion coefficient σ\sigma. In particular, we assume that σ:[0,L]×2\sigma:[0,L]\times\mathbb{R}^{2}\rightarrow\mathbb{R} is measurable and satisfies either :

Hypothesis 3(a).

There exists c>0c>0 and ν[0,1/2)\nu\in[0,1/2) such that for almost all ξ[0,L]\xi\in[0,L] and all (x,y)2(\mathrm{x},\mathrm{y})\in\mathbb{R}^{2}

|σ(ξ,x,y)|c(1+|x|+|y|ν).|\sigma(\xi,\mathrm{x},\mathrm{y})|\leq c(1+|\mathrm{x}|+|\mathrm{y}|^{\nu}). (17)

or:

Hypothesis 3(a’).

There exist c1,c2>0c_{1},c_{2}>0 such that for almost all ξ[0,L]\xi\in[0,L] and all (x,y)2(\mathrm{x},\mathrm{y})\in\mathbb{R}^{2}

c1σ(ξ,x,y)c2.c_{1}\leq\sigma(\xi,\mathrm{x},\mathrm{y})\leq c_{2}. (18)
Remark 4.

The diffusion coefficient σ\sigma is allowed to grow at most like |y|1/2|\mathrm{y}|^{1/2} in the third argument. This is due to the fact that the stochastic controls are only known to be square integrable. As a result we can obtain estimates for Yϵ,uY^{\epsilon,u} in Lp([0,T];)L^{p}([0,T];\mathcal{H}), for p2p\leq 2 (see (48) and (58) in Section 4 below).

Hypothesis 3(b).

There exists Lσ>0L_{\sigma}>0 such that for almost all ξ[0,L],\xi\in[0,L], the map (x,y)σ(ξ,x,y)(\mathrm{x},\mathrm{y})\mapsto\sigma(\xi,\mathrm{x},\mathrm{y}) is LσL_{\sigma}-Lipschitz continuous.

Remark 5.

The a priori estimates in Sections 4-5 hold by assuming only Hypothesis 3(a). For the analysis of the limit (Section 6) we assume 3(a) along with 3(b). Finally, we strengthen the assumptions on σ\sigma and use the strictly stronger Hypothesis 3(a’) along with 3(b) to prove the Laplace Principle upper and lower bounds (Sections 7.1 and 7.2 respectively).

The reaction terms f,gf,g induce nonlinear superposition (or Nemytskii) operators denoted, respectively, by F,G:×F,G:\mathcal{H}\times\mathcal{H}\rightarrow\mathcal{H} and defined by

F(x,y)(ξ)=f(ξ,x(ξ),y(ξ)),G(x,y)(ξ)=g(ξ,x(ξ),y(ξ)),ξ[0,L].F(x,y)(\xi)=f(\xi,x(\xi),y(\xi)),\;\;G(x,y)(\xi)=g(\xi,x(\xi),y(\xi))\;,\;\;\xi\in[0,L]. (19)

In view of Hypotheses 2(a) and 2(b), FF and GG are (globally) Lipschitz continuous. Moreover, FF and GG are Gâteaux differentiable with respect to both variables and along the direction of any χ\chi\in\mathcal{H}. Their Gâteaux derivatives are given by

DxF(x,y)(χ)(ξ)=xf(ξ,x(ξ),y(ξ))χ(ξ),DyF(x,y)(χ)(ξ)=yf(ξ,x(ξ),y(ξ))χ(ξ)D_{x}F(x,y)(\chi)(\xi)=\partial_{\mathrm{x}}f(\xi,x(\xi),y(\xi))\chi(\xi)\;,\;\;D_{y}F(x,y)(\chi)(\xi)=\partial_{\mathrm{y}}f(\xi,x(\xi),y(\xi))\chi(\xi) (20)

and

DxG(x,y)(χ)(ξ)=xg(ξ,x(ξ),y(ξ))χ(ξ),DyG(x,y)(χ)(ξ)=yg(ξ,x(ξ),y(ξ))χ(ξ)D_{x}G(x,y)(\chi)(\xi)=\partial_{\mathrm{x}}g(\xi,x(\xi),y(\xi))\chi(\xi)\;,\;\;D_{y}G(x,y)(\chi)(\xi)=\partial_{\mathrm{y}}g(\xi,x(\xi),y(\xi))\chi(\xi)

for ξ[0,L]\xi\in[0,L]. Furthermore, for each fixed yy\in\mathcal{H} and χ1\chi_{1}\in\mathcal{H}, the map

xDxF(x,y)(χ1)L1(0,L)\mathcal{H}\ni x\longmapsto D_{x}F(x,y)(\chi_{1})\in L^{1}(0,L)

is Gâteaux differentiable along the direction of any χ2\chi_{2}\in\mathcal{H}. Equivalently, the nonlinear operator FF, when considered as a map from \mathcal{H} to L1(0,L)L^{1}(0,L), is twice Gâteaux differentiable with respect to xx, along any direction in ×\mathcal{H}\times\mathcal{H}. Its second partial Gâteaux derivative is given by

Dx2F(x,y)(χ1,χ2)(ξ)=xx2f(ξ,x(ξ),y(ξ))χ1(ξ)χ2(ξ),ξ[0,L].D^{2}_{x}F(x,y)(\chi_{1},\chi_{2})(\xi)=\partial^{2}_{\mathrm{x}\mathrm{x}}f(\xi,x(\xi),y(\xi))\chi_{1}(\xi)\chi_{2}(\xi)\;,\;\xi\in[0,L]. (21)
Remark 6.

Note that, for fixed x,yx,y, all the first-order partial Gâteaux derivatives above are in ()\mathscr{L}(\mathcal{H}) and Dx2F(x,y)2(;L1(0,L))D^{2}_{x}F(x,y)\in\mathscr{L}^{2}(\mathcal{H};L^{1}(0,L)). Nevertheless, FF and GG, considered as maps from ×\mathcal{H}\times\mathcal{H} to \mathcal{H}, are not Fréchet differentiable with respect to any of their variables. In fact, it can be shown that a Nemytskii operator from \mathcal{H} to \mathcal{H} is Fréchet differentiable if and only if it is an affine map (see Proposition 2.8 in [1]).

The diffusion coefficient σ\sigma is considered as a function multiplied by the noise and hence induces, for each x,yx,y\in\mathcal{H}, a multiplication operator

[Σ(x,y)χ](ξ):=σ(ξ,x(ξ),y(ξ))χ(ξ),χ,ξ(0,L).\big{[}\Sigma(x,y)\chi\big{]}(\xi):=\sigma(\xi,x(\xi),y(\xi))\chi(\xi),\;\chi\in\mathcal{H},\;\xi\in(0,L).

In view of Hypothesis 3(a) it follows that Σ(x,y)(L(0,L);)(;L1(0,L))\Sigma(x,y)\in\mathscr{L}(L^{\infty}(0,L);\mathcal{H})\cap\mathscr{L}(\mathcal{H};L^{1}(0,L)). Moreover, under Hypothesis 3(a’), we have Σ(x,y)()\Sigma(x,y)\in\mathscr{L}(\mathcal{H}).

For the purposes of this paper we consider a Polish space to be a completely metrizable, separable topological space. For a given topological space \mathcal{E} we denote the Borel σ\sigma-algebra by ()\mathscr{B}(\mathcal{E}) and the space of Borel probability measures on \mathcal{E} by 𝒫()\mathscr{P}(\mathcal{E}). If \mathcal{E} is Polish then 𝒫()\mathscr{P}(\mathcal{E}), endowed with the topology of weak convergence of measures, is also a Polish space.

3. Weak convergence method and moderate deviations

In this section we review the weak convergence approach to large and moderate deviations (see [17] as well as the more recent [6]) and then we state our main results of the paper on the averaging principle for the controlled process ηϵ,u\eta^{\epsilon,u} (see (7)) and on the moderate deviations for {Xϵ}\{X^{\epsilon}\}.

Let j=1,2j=1,2 and consider the cylindrical Wiener process wj:[0,)×L2(Ω)w_{j}:[0,\infty)\times\mathcal{H}\rightarrow L^{2}(\Omega) appearing in (1). For each fixed tt, {wj(t,χ)}χ\{w_{j}(t,\chi)\}_{\chi\in\mathcal{H}} is a Gaussian family of random variables and for each t1,t20t_{1},t_{2}\geq 0, χ1,χ2\chi_{1},\chi_{2}\in\mathcal{H}

𝔼[wj(t1,χ1)wj(t2,χ2)]=t1t2χ1,χ2.\mathbb{E}[w_{j}(t_{1},\chi_{1})w_{j}(t_{2},\chi_{2})]=t_{1}\wedge t_{2}\langle\chi_{1},\chi_{2}\rangle_{\mathcal{H}}.

The first step of the weak convergence method relies on a variational representation for functionals of the driving noise. For the infinite-dimensional setting of this paper, we will use the variational representation for QQ-Wiener processes that was proved in [7], Theorem 3. In order to apply this result in the context of space-time white noise, we introduce a separable Hilbert space (1,.,.1)(\mathcal{H}_{1},\langle.\;,.\rangle_{\mathcal{H}_{1}}) such that \mathcal{H} is a linear subspace of 1\mathcal{H}_{1} and the inclusion map 𝑖1\mathcal{H}\overset{i}{\rightarrow}\mathcal{H}_{1} is Hilbert-Schmidt (for more details on this construction we refer the reader to [21], [22]). Given a complete orthonormal basis {ej,n}n\{e_{j,n}\}_{n\in\mathbb{N}}\subset\mathcal{H}, the process

w~j(t)=n=1wj(t,ej,n)i(ej,n),t0\tilde{w}_{j}(t)=\sum_{n=1}^{\infty}w_{j}(t,e_{j,n})\;i(e_{j,n})\;\;,t\geq 0

is an 1\mathcal{H}_{1}-valued QQ-Wiener process with trace-class covariance operator Q=ii1(1)Q=ii^{*}\in\mathscr{L}_{1}(\mathcal{H}_{1}). In particular, for each t,s0t,s\geq 0 and χ1,χ21\chi_{1},\chi_{2}\in\mathcal{H}_{1} we have

𝔼[χ1,w~j(t)1χ2,w~j(s)1]=tsχ1,Qχ21=tsi(χ1),i(χ2).\mathbb{E}[\langle\chi_{1},\tilde{w}_{j}(t)\rangle_{\mathcal{H}_{1}}\langle\chi_{2},\tilde{w}_{j}(s)\rangle_{\mathcal{H}_{1}}]=t\wedge s\langle\chi_{1},Q\chi_{2}\rangle_{\mathcal{H}_{1}}=t\wedge s\langle i^{*}(\chi_{1}),i^{*}(\chi_{2})\rangle_{\mathcal{H}}.

This construction allows us to use the following representation.

Theorem 3.1 ([7], Theorem 3).

Let T<T<\infty, Λ:C([0,T];1)\Uplambda:C([0,T];\mathcal{H}_{1})\rightarrow\mathbb{R} be a bounded, Borel measurable map and WW be an 1\mathcal{H}_{1}-valued QQ-Wiener process. Moreover, let 𝒫T()\mathcal{P}^{T}(\mathcal{H}) denote the family of \mathcal{H}-valued, progressively-measurable stochastic processes for which

[0Tu(s)2𝑑s<]=1.\mathbb{P}\bigg{[}\int_{0}^{T}\|u(s)\|^{2}_{\mathcal{H}}\;ds<\infty\bigg{]}=1.

Then:

log𝔼[exp(Λ(W))]=infu𝒫T()𝔼[120Tu(s)2𝑑s+Λ(W+0u(s)𝑑s)].-\log\;\mathbb{E}[\exp(-\Uplambda(W))]=\inf_{u\in\mathcal{P}^{T}(\mathcal{H})}\mathbb{E}\bigg{[}\frac{1}{2}\int_{0}^{T}\|u(s)\|^{2}_{\mathcal{H}}\;ds+\Uplambda\bigg{(}W+\int_{0}^{\cdot}u(s)\;ds\bigg{)}\bigg{]}.

Since the processes w~1,w~2\tilde{w}_{1},\tilde{w}_{2} are independent, it follows that w~=(w~1,w~2)\widetilde{w}=(\tilde{w}_{1},\tilde{w}_{2}) is an 11\mathcal{H}_{1}\oplus\mathcal{H}_{1}-valued Wiener process with covariance operator (Q,Q)(Q,Q). Hence, we can replace WW, 1\mathcal{H}_{1} and \mathcal{H} by w~\widetilde{w}, 11\mathcal{H}_{1}\oplus\mathcal{H}_{1} and \mathcal{H}\oplus\mathcal{H} respectively to obtain

log𝔼[exp(Λ(w~))]=infu𝒫T()𝔼[120T(u1(s)2+u2(s)2)𝑑s+Λ(w~+0u(s)𝑑s)],-\log\;\mathbb{E}[\exp(-\Uplambda(\widetilde{w}))]=\inf_{u\in\mathcal{P}^{T}(\mathcal{H}\oplus\mathcal{H})}\mathbb{E}\bigg{[}\frac{1}{2}\int_{0}^{T}\big{(}\|u_{1}(s)\|^{2}_{\mathcal{H}}+\|u_{2}(s)\|^{2}_{\mathcal{H}}\big{)}ds+\Uplambda\bigg{(}\widetilde{w}+\int_{0}^{\cdot}u(s)\;ds\bigg{)}\bigg{]},

where u=(u1,u2)u=(u_{1},u_{2}) and Λ:C([0,T];11)\Uplambda:C([0,T];\mathcal{H}_{1}\oplus\mathcal{H}_{1})\rightarrow\mathbb{R} is measurable and bounded. In order to obtain a representation in the moderate deviation scaling, we replace uu and Λ\Uplambda by h(ϵ)uh(\epsilon)u and h2(ϵ)Λh^{2}(\epsilon)\Uplambda respectively and then divide throughout by h2(ϵ)h^{2}(\epsilon) to deduce that

1h2(ϵ)log𝔼[eh2(ϵ)Λ(w~)]=infu𝒫T()𝔼[120T(u1(s)2+u2(s)2)𝑑s+Λ(w~+h(ϵ)0u(s)𝑑s)].-\frac{1}{h^{2}(\epsilon)}\log\;\mathbb{E}\big{[}e^{-h^{2}(\epsilon)\Uplambda(\tilde{w})}\big{]}=\inf_{u\in\mathcal{P}^{T}(\mathcal{H}\oplus\mathcal{H})}\mathbb{E}\bigg{[}\frac{1}{2}\int_{0}^{T}\big{(}\|u_{1}(s)\|^{2}_{\mathcal{H}}+\|u_{2}(s)\|^{2}_{\mathcal{H}}\big{)}\;ds+\Uplambda\bigg{(}\tilde{w}+h(\epsilon)\int_{0}^{\cdot}u(s)\;ds\bigg{)}\bigg{]}. (22)

Now, the system (1) can be re-expressed in the mild formulation as

{Xϵ(t)=S1(t)x0+0tS1(ts)F(Xϵ(s),Yϵ(s))𝑑s+ϵ0tS1(ts)Σ(Xϵ(s),Yϵ(s))𝑑w1(s)Yϵ(t)=S2(tδ)y0+1δ0tS2(tsδ)G(Xϵ(s),Yϵ(s))𝑑s+1δ0tS2(tsδ)𝑑w2(s),\left\{\begin{aligned} &X^{\epsilon}(t)=S_{1}(t)x_{0}+\int_{0}^{t}S_{1}(t-s)F(X^{\epsilon}(s),Y^{\epsilon}(s))ds\\ &\quad\quad\quad+\sqrt{\epsilon}\int_{0}^{t}S_{1}(t-s)\Sigma\big{(}X^{\epsilon}(s),Y^{\epsilon}(s)\big{)}dw_{1}(s)\\ &Y^{\epsilon}(t)=S_{2}\bigg{(}\frac{t}{\delta}\bigg{)}y_{0}+\frac{1}{\delta}\int_{0}^{t}S_{2}\bigg{(}\frac{t-s}{\delta}\bigg{)}G(X^{\epsilon}(s),Y^{\epsilon}(s))ds\\ &\quad\quad\quad+\frac{1}{\sqrt{\delta}}\int_{0}^{t}S_{2}\bigg{(}\frac{t-s}{\delta}\bigg{)}dw_{2}(s),\end{aligned}\right.

where we recall that A1,A2A_{1},A_{2} are the realizations of 𝒜1,𝒜2\mathcal{A}_{1},\mathcal{A}_{2} on \mathcal{H} with the boundary conditions 𝒩1,𝒩2\mathcal{N}_{1},\mathcal{N}_{2}, {S1(t)}t0\{S_{1}(t)\}_{t\geq 0} is generated by A1A_{1} and {S2(t/δ)}t0\{S_{2}(t/\delta)\}_{t\geq 0} is generated by A2/δA_{2}/\delta.

For each fixed ϵ,T\epsilon,T and initial conditions x0,y0x_{0},y_{0}\in\mathcal{H}, the existence and uniqueness of a mild solution (Xϵ,x0,y0(t),Yϵ,x0,y0(t))(X^{\epsilon,x_{0},y_{0}}(t),Y^{\epsilon,x_{0},y_{0}}(t)) that takes values on C([0,T];)2C([0,T];\mathcal{H})^{2} implies the existence of a measurable solution map

ϵ,x0,y0:C([0,T];11)C([0,T];)\mathcal{I}^{\epsilon,x_{0},y_{0}}:C([0,T];\mathcal{H}_{1}\oplus\mathcal{H}_{1})\longrightarrow C([0,T];\mathcal{H})

such that

ηϵ(t)ηϵ,x0,y0(t):=1ϵh(ϵ)(Xϵ,x0,y0(t)X¯x0(t))=ϵ,x0,y0(w~).\eta^{\epsilon}(t)\equiv\eta^{\epsilon,x_{0},y_{0}}(t):=\frac{1}{\sqrt{\epsilon}h(\epsilon)}\big{(}X^{\epsilon,x_{0},y_{0}}(t)-\bar{X}^{x_{0}}(t)\big{)}=\mathcal{I}^{\epsilon,x_{0},y_{0}}(\widetilde{w}).

Here, X¯x0\bar{X}^{x_{0}} is the solution of the averaged equation (2). Returning to (22), we replace Λ\Uplambda by Λϵ,x0,y0\Lambda\circ\mathcal{I}^{\epsilon,x_{0},y_{0}}, where Λ:C([0,T];)\Lambda:C([0,T];\mathcal{H})\rightarrow\mathbb{R} is continuous and bounded, to obtain the representation

1h2(ϵ)log𝔼[eh2(ϵ)Λ(ηϵ)]=infu𝒫T()𝔼[120T(u1(t)2+u2(t)2)𝑑t+Λ(ηϵ,u)].-\frac{1}{h^{2}(\epsilon)}\log\;\mathbb{E}\big{[}e^{-h^{2}(\epsilon)\Lambda(\eta^{\epsilon})}\big{]}=\inf_{u\in\mathcal{P}^{T}(\mathcal{H}\oplus\mathcal{H})}\mathbb{E}\bigg{[}\frac{1}{2}\int_{0}^{T}\big{(}\|u_{1}(t)\|^{2}_{\mathcal{H}}+\|u_{2}(t)\|^{2}_{\mathcal{H}}\big{)}\;dt+\Lambda\big{(}\eta^{\epsilon,u}\big{)}\bigg{]}. (23)

The process ηϵ,u\eta^{\epsilon,u} on the right-hand side is defined by

ηϵ,u(t)=Xϵ,u(t)X¯(t)ϵh(ϵ)\eta^{\epsilon,u}(t)=\frac{X^{\epsilon,u}(t)-\bar{X}(t)}{\sqrt{\epsilon}h(\epsilon)} (24)

and Xϵ,uX^{\epsilon,u} corresponds to the controlled system of stochastic reaction-diffusion equations

{dXϵ,u(t)=[A1Xϵ,u(t)+F(Xϵ,u(t),Yϵ,u(t))+ϵh(ϵ)Σ(Xϵ,u(t),Yϵ,u(t))u1(t)]dt+ϵΣ(Xϵ,u(t),Yϵ,u(t))dw1(t)dYϵ,u(t)=1δ[A2Yϵ,u(t)+G(Xϵ,u(t),Yϵ,u(t))+δh(ϵ)u2(t)]dt+1δdw2(t)Xϵ,u(0)=x0,Yϵ,u(0)=y0.\left\{\begin{aligned} &dX^{\epsilon,u}(t)=\big{[}A_{1}X^{\epsilon,u}(t)+F\big{(}X^{\epsilon,u}(t),Y^{\epsilon,u}(t)\big{)}+\sqrt{\epsilon}h(\epsilon)\Sigma\big{(}X^{\epsilon,u}(t),Y^{\epsilon,u}(t)\big{)}u_{1}(t)\big{]}dt\\ &\quad\quad\quad\quad+\sqrt{\epsilon}\Sigma\big{(}X^{\epsilon,u}(t),Y^{\epsilon,u}(t)\big{)}dw_{1}(t)\\ &dY^{\epsilon,u}(t)=\frac{1}{\delta}\big{[}A_{2}Y^{\epsilon,u}(t)+G\big{(}X^{\epsilon,u}(t),Y^{\epsilon,u}(t)\big{)}+\sqrt{\delta}h(\epsilon)u_{2}(t)\big{]}dt+\frac{1}{\sqrt{\delta}}\;dw_{2}(t)\\ &X^{\epsilon,u}(0)=x_{0}\in\mathcal{H}\;,Y^{\epsilon,u}(0)=y_{0}\in\mathcal{H}.\end{aligned}\right. (25)

The mild solution of the latter is given by a pair of controlled stochastic processes that satisfy

{Xϵ,u(t)=S1(t)x0+0tS1(ts)F(Xϵ,u(s),Yϵ,u(s))𝑑s+ϵh(ϵ)0tS1(ts)Σ(Xϵ,u(s),Yϵ,u(s))u1(s)𝑑s+ϵ0tS1(ts)Σ(Xϵ,u(s),Yϵ,u(s))𝑑w1(s)Yϵ,u(t)=S2(tδ)y0+1δ0tS2(tsδ)G(Xϵ,u(s),Yϵ,u(s))𝑑s+h(ϵ)δ0tS2(tsδ)u2(s)𝑑s+1δ0tS2(tsδ)𝑑w2(s).\left\{\begin{aligned} &X^{\epsilon,u}(t)=S_{1}(t)x_{0}+\int_{0}^{t}S_{1}(t-s)F(X^{\epsilon,u}(s),Y^{\epsilon,u}(s))ds\\ &\quad\quad\quad+\sqrt{\epsilon}h(\epsilon)\int_{0}^{t}S_{1}(t-s)\Sigma\big{(}X^{\epsilon,u}(s),Y^{\epsilon,u}(s)\big{)}u_{1}(s)ds\\ &\quad\quad\quad+\sqrt{\epsilon}\int_{0}^{t}S_{1}(t-s)\Sigma\big{(}X^{\epsilon,u}(s),Y^{\epsilon,u}(s)\big{)}dw_{1}(s)\\ &Y^{\epsilon,u}(t)=S_{2}\bigg{(}\frac{t}{\delta}\bigg{)}y_{0}+\frac{1}{\delta}\int_{0}^{t}S_{2}\bigg{(}\frac{t-s}{\delta}\bigg{)}G(X^{\epsilon,u}(s),Y^{\epsilon,u}(s))ds\\ &\quad\quad\quad+\frac{h(\epsilon)}{\sqrt{\delta}}\int_{0}^{t}S_{2}\bigg{(}\frac{t-s}{\delta}\bigg{)}u_{2}(s)ds+\frac{1}{\sqrt{\delta}}\int_{0}^{t}S_{2}\bigg{(}\frac{t-s}{\delta}\bigg{)}dw_{2}(s).\end{aligned}\right. (26)

Next, let N>0N>0 and define

𝒫NT={u=(u1,u2)𝒫T():0T(u1(s)2+u2(s)2)𝑑sN,a.s.}.\mathcal{P}^{T}_{N}=\bigg{\{}u=(u_{1},u_{2})\in\mathcal{P}^{T}(\mathcal{H}\oplus\mathcal{H}):\int_{0}^{T}\big{(}\|u_{1}(s)\|^{2}_{\mathcal{H}}+\|u_{2}(s)\|^{2}_{\mathcal{H}}\big{)}ds\leq N,\;\mathbb{P}-\text{a.s.}\bigg{\}}. (27)

As in Theorem 10 of [7] and for each u𝒫NTu\in\mathcal{P}^{T}_{N} and ϵ>0\epsilon>0, there is a unique pair (Xϵ,u,Yϵ,u)(X^{\epsilon,u},Y^{\epsilon,u}) in Lp(Ω;C([0,T];)×C([0,T];))L^{p}(\Omega;C([0,T];\mathcal{H})\times C([0,T];\mathcal{H})) that satisfies (26).

Now, proving a Laplace Principle for ηϵ\eta^{\epsilon} amounts to finding the limit as ϵ0\epsilon\to 0 of the left hand side in (23). This is equivalent to proving an LDP for the family {ηϵ,ϵ>0}\{\eta^{\epsilon},\epsilon>0\} with speed h2(ϵ)h^{2}(\epsilon), which in turn is equivalent to an MDP for {Xϵ,ϵ>0}\{X^{\epsilon},\epsilon>0\}. This is the path that we follow in this paper for proving the MDP for the family {Xϵ,ϵ>0}\{X^{\epsilon},\epsilon>0\} in C([0,T];)C([0,T];\mathcal{H}). Also, as it is shown in [4], the representation implies that we can consider, without loss of generality, u=uϵ𝒫NTu=u^{\epsilon}\in\mathcal{P}^{T}_{N} for a sufficiently large but fixed N>0N>0 (see also [5], p.22).

As discussed in the introduction, the analysis of the limiting behavior of ηϵ,u\eta^{\epsilon,u} is more complicated, compared to that of Xϵ,uX^{\epsilon,u}, due to the singular coefficient 1/ϵh(ϵ)1/\sqrt{\epsilon}h(\epsilon). In view of (24) and (26) we can write

ηϵ,u(t)=\displaystyle\eta^{\epsilon,u}(t)= 1ϵh(ϵ)0tS1(ts)[F(X¯(s)+ϵh(ϵ)ηϵ,u(s),Yϵ,u(s))F(X¯(s),Yϵ,u(s))]𝑑s\displaystyle\frac{1}{\sqrt{\epsilon}h(\epsilon)}\int_{0}^{t}S_{1}(t-s)\big{[}F\big{(}\bar{X}(s)+\sqrt{\epsilon}h(\epsilon)\eta^{\epsilon,u}(s),Y^{\epsilon,u}(s)\big{)}-F\big{(}\bar{X}(s),Y^{\epsilon,u}(s)\big{)}\big{]}ds (28)
+0tS1(ts)Σ(Xϵ,u(s),Yϵ,u(s))u1(s)𝑑s\displaystyle+\int_{0}^{t}S_{1}(t-s)\Sigma\big{(}X^{\epsilon,u}(s),Y^{\epsilon,u}(s)\big{)}u_{1}(s)ds
+1h(ϵ)0tS1(ts)Σ(Xϵ,u(s),Yϵ,u(s))𝑑w1(s)\displaystyle+\frac{1}{h(\epsilon)}\int_{0}^{t}S_{1}(t-s)\Sigma\big{(}X^{\epsilon,u}(s),Y^{\epsilon,u}(s)\big{)}dw_{1}(s)
+1ϵh(ϵ)0tS1(ts)[F(X¯(s),Yϵ,u(s))F¯(X¯(s))]𝑑s,\displaystyle+\frac{1}{\sqrt{\epsilon}h(\epsilon)}\int_{0}^{t}S_{1}(t-s)\big{[}F\big{(}\bar{X}(s),Y^{\epsilon,u}(s)\big{)}-\bar{F}\big{(}\bar{X}(s)\big{)}\big{]}ds,

where h(ϵ)h(\epsilon)\to\infty, ϵh(ϵ)0\sqrt{\epsilon}h(\epsilon)\to 0 as ϵ0\epsilon\to 0 and F¯\bar{F} denotes the averaged Nemytskii operator (3).

The asymptotic analysis of the first term above, as ϵ0\epsilon\to 0, is straightforward. Indeed, its limiting behavior is captured by

0tS1(ts)DxF(X¯(s),Yϵ,u(s))ηϵ,u(s)𝑑s,\int_{0}^{t}S_{1}(t-s)D_{x}F\big{(}\bar{X}(s),Y^{\epsilon,u}(s)\big{)}\eta^{\epsilon,u}(s)ds,

(see (20) and Proposition 6.1). Moreover, the second term is of order 11 while the third is expected to vanish in the limit. In contrast, the last term requires a more delicate approach. This is connected to the solution of the following elliptic Kolmogorov equation on \mathcal{H}:

c(ϵ)Φχϵ(x,y)xΦχϵ(x,y)=F(x,y)F¯(x),χ,\displaystyle c(\epsilon)\Phi^{\epsilon}_{\chi}(x,y)-\mathcal{L}^{x}\Phi^{\epsilon}_{\chi}(x,y)=\big{\langle}F(x,y)-\bar{F}(x),\chi\big{\rangle}_{\mathcal{H}}\;, (29)

where χ,x\chi,x\in\mathcal{H}, yDom(A2)y\in Dom(A_{2}) and c(ϵ)c(\epsilon) vanishes as ϵ0\epsilon\to 0. The exact dependence of cc on ϵ\epsilon will be specified later (see Section 5.2). For ψ:×\psi:\mathcal{H}\times\mathcal{H}\rightarrow\mathbb{R} such that for each fixed x,y,x,y\in\mathcal{H}, ψ(x,)C2()\psi(x,\cdot)\in C^{2}(\mathcal{H}) and Dy2ψ(x,y)2()D^{2}_{y}\psi(x,y)\in\mathscr{L}_{2}(\mathcal{H}), the Kolmogorov operator x\mathcal{L}^{x} is a second-order differential operator defined by

xψ(x,y)=12tr[Dy2ψ(x,y)]+Dyψ(x,y),A2y+G(x,y),yDom(A2).\mathcal{L}^{x}\psi(x,y)=\frac{1}{2}\text{tr}\big{[}D^{2}_{y}\psi(x,y)\big{]}+\big{\langle}D_{y}\psi(x,y),A_{2}y+G(x,y)\big{\rangle}_{\mathcal{H}}\;,\;y\in Dom(A_{2}). (30)

Formally, x\mathcal{L}^{x} is called the infinitesimal generator of the (uncontrolled) fast process YxY^{x} with "frozen" slow component xx. The latter satisfies the stochastic evolution equation

{dYx,y(t)=A2Yx,y(t)dt+G(x,Yx,y(t))dt+dw2(t)Yx,y(0)=y.\left\{\begin{aligned} &dY^{x,y}(t)=A_{2}Y^{x,y}(t)dt+G\big{(}x,Y^{x,y}(t)\big{)}dt+dw_{2}(t)\\ &Y^{x,y}(0)=y.\end{aligned}\right. (31)
Remark 7.

If A2()A_{2}\in\mathscr{L}(\mathcal{H}), and hence Dom(A2)=Dom(A_{2})=\mathcal{H}, then x\mathcal{L}^{x} coincides with the infinitesimal generator of the transition semigroup PxP^{x} of the Markov process YxY^{x} defined by

Ptx[ϕ](y)=𝔼[ϕ(Yx,y(t))],t0,ϕLip().P^{x}_{t}[\phi](y)=\mathbb{E}[\phi(Y^{x,y}(t))]\;,\;t\geq 0,\phi\in Lip(\mathcal{H}). (32)

The latter is not rigorous in the present setting. Indeed, since A2A_{2} is a differential operator, the paths of Yx,yY^{x,y} do not take values in Dom(A2)Dom(A_{2}) and Itô’s formula cannot be directly applied to smooth functionals of Yx,yY^{x,y}.

As we have already mentioned in the introduction, our assumptions guarantee that for each xx\in\mathcal{H}, the process YxY^{x} admits a unique, strongly mixing local invariant measure μx\mu^{x} defined on (,())(\mathcal{H},\mathscr{B}(\mathcal{H})) (see e.g. Chapters 8, 11 of [15] as well as [12]). We state here an important result regarding the continuity properties of the averaged Nemytskii operator F¯\bar{F}.

Lemma 3.1.

Assume that F:×F:\mathcal{H}\times\mathcal{H}\rightarrow\mathcal{H} is Lipschitz continuous. Then the map

xF¯(x)=F(x,y)𝑑μx(y)\mathcal{H}\ni x\longmapsto\bar{F}(x)=\int_{\mathcal{H}}F(x,y)d\mu^{x}(y)\in\mathcal{H}

is Lipschitz continuous. In particular, under Hypothesis 2(a), the operator F¯\bar{F} in (28) is Lipschitz.

The proof relies on the ergodicity of the invariant measure μx\mu^{x} and can be found e.g. in Lemma 3.1 of [10].

Now, as shown in [12], (29) has a strict solution which is explicitly given by the probabilistic representation

Φχϵ(x,y)=0ec(ϵ)tPtx[F(x,)F¯(x),χ](y)𝑑t,x,yDom(A2),\Phi^{\epsilon}_{\chi}(x,y)=\int_{0}^{\infty}e^{-c(\epsilon)t}P_{t}^{x}[\langle F(x,\cdot)-\bar{F}(x),\chi\rangle](y)dt\;,x\in\mathcal{H},y\in Dom(A_{2}), (33)

with :=(λLg)/2\ell:=(\lambda-L_{g})/2 (see (10), (15)) and for some some C>0C>0 independent of ϵ\epsilon, the following estimates hold:

|Φχϵ(x,y)|C(1+x+y)χ,\displaystyle|\Phi^{\epsilon}_{\chi}(x,y)|\leq\frac{C}{\ell}\big{(}1+\|x\|_{\mathcal{H}}+\|y\|_{\mathcal{H}}\big{)}\|\chi\|_{\mathcal{H}}\;, (34)
DyΦχϵ(x,y)Cχ,\displaystyle\|D_{y}\Phi^{\epsilon}_{\chi}(x,y)\|_{\mathcal{H}}\leq\frac{C}{\ell}\|\chi\|_{\mathcal{H}}\;,
DxΦχϵ(x,y)Cc(ϵ)χ,\displaystyle\|D_{x}\Phi^{\epsilon}_{\chi}(x,y)\|_{\mathcal{H}}\leq\frac{C}{c(\epsilon)}\|\chi\|_{\mathcal{H}}\;,
|tr[D22Φχϵ(x,y)]|Cc(ϵ)(1+x+y)χ\displaystyle\big{|}\text{tr}\big{[}D^{2}_{2}\Phi^{\epsilon}_{\chi}(x,y)\big{]}\big{|}\leq\frac{C}{c(\epsilon)}\big{(}1+\|x\|_{\mathcal{H}}+\|y\|_{\mathcal{H}}\big{)}\|\chi\|_{\mathcal{H}}

(see 5.12-5.15 in [12]). In light of (33) and these estimates, we see that the maps

χ1Φχ1ϵ(x,y),\displaystyle\mathcal{H}\ni\chi_{1}\longmapsto\Phi_{\chi_{1}}^{\epsilon}(x,y)\in\mathbb{R},
×(χ1,χ2)DxΦχ1ϵ(x,y),χ2,\displaystyle\mathcal{H}\times\mathcal{H}\ni(\chi_{1},\chi_{2})\longmapsto\big{\langle}D_{x}\Phi_{\chi_{1}}^{\epsilon}\big{(}x,y),\chi_{2}\big{\rangle}_{\mathcal{H}}\in\mathbb{R},
×(χ1,χ2)DyΦχ1ϵ(x,y),χ2\displaystyle\mathcal{H}\times\mathcal{H}\ni(\chi_{1},\chi_{2})\longmapsto\big{\langle}D_{y}\Phi_{\chi_{1}}^{\epsilon}\big{(}x,y),\chi_{2}\big{\rangle}_{\mathcal{H}}\in\mathbb{R}

are in (;),2(;)\mathscr{L}(\mathcal{H};\mathbb{R}),\mathscr{L}^{2}(\mathcal{H};\mathbb{R}) and 2(;)\mathscr{L}^{2}(\mathcal{H};\mathbb{R}) respectively. From the Riesz representation theorem, there exist Ψϵ:×\Psi^{\epsilon}:\mathcal{H}\times\mathcal{H}\to\mathcal{H} and Ψ1ϵ,Ψ2ϵ:×()\Psi_{1}^{\epsilon},\Psi^{\epsilon}_{2}:\mathcal{H}\times\mathcal{H}\to\mathscr{L}(\mathcal{H}) such that for all χ1,χ2,x,ϵ>0\chi_{1},\chi_{2},x\in\mathcal{H},\epsilon>0 and yDom(A2)y\in Dom(A_{2})

Φχϵ(x,y)=Ψϵ(x,y),χ,\displaystyle\Phi_{\chi}^{\epsilon}(x,y)=\big{\langle}\Psi^{\epsilon}(x,y),\chi\big{\rangle}_{\mathcal{H}}\;, (35)
DxΦχ1ϵ(x,y),χ2=Ψ1ϵ(x,y)χ2,χ1,\displaystyle\big{\langle}D_{x}\Phi_{\chi_{1}}^{\epsilon}\big{(}x,y),\chi_{2}\big{\rangle}_{\mathcal{H}}=\big{\langle}\Psi_{1}^{\epsilon}(x,y)\chi_{2},\chi_{1}\big{\rangle}_{\mathcal{H}}\;,
DyΦχ1ϵ(x,y),χ2=Ψ2ϵ(x,y)χ2,χ1.\displaystyle\big{\langle}D_{y}\Phi_{\chi_{1}}^{\epsilon}\big{(}x,y),\chi_{2}\big{\rangle}_{\mathcal{H}}=\big{\langle}\Psi_{2}^{\epsilon}(x,y)\chi_{2},\chi_{1}\big{\rangle}_{\mathcal{H}}\;.

As a consequence of (34) we have

Ψϵ(x,y)C(1+x+y),\displaystyle\big{\|}\Psi^{\epsilon}(x,y)\big{\|}_{\mathcal{H}}\leq\frac{C}{\ell}\big{(}1+\|x\|_{\mathcal{H}}+\|y\|_{\mathcal{H}}\big{)}, (36)
Ψ1ϵ(x,y)()Cc(ϵ),\displaystyle\big{\|}\Psi_{1}^{\epsilon}(x,y)\big{\|}_{\mathscr{L}(\mathcal{H})}\leq\frac{C}{c(\epsilon)}\;,
Ψ2ϵ(x,y)()C.\displaystyle\big{\|}\Psi_{2}^{\epsilon}(x,y)\big{\|}_{\mathscr{L}(\mathcal{H})}\leq\frac{C}{\ell}\;.

Additionally, as shown in Lemma 6.9 below, there exists a map Ψ20:×()\Psi_{2}^{0}:\mathcal{H}\times\mathcal{H}\rightarrow\mathscr{L}(\mathcal{H}) such that

supx,yΨ2ϵ(x,y)Ψ20(x,y)()0,asϵ0.\sup_{x,y\in\mathcal{H}}\big{\|}\Psi_{2}^{\epsilon}(x,y)-\Psi^{0}_{2}\big{(}x,y\big{)}\big{\|}_{\mathscr{L}(\mathcal{H})}\longrightarrow 0\;,\;\text{as}\;\epsilon\to 0. (37)

Next, let Ynϵ,uY^{\epsilon,u}_{n} denote a projection of the Yϵ,uY^{\epsilon,u} to an nn-dimensional eigenspace of A2A_{2}. For each nn, the paths of Ynϵ,uY^{\epsilon,u}_{n} take values in Dom(A2)Dom(A_{2}). This allows us to apply Itô’s formula to the real-valued process

{Ψϵ(X¯(s),Ynϵ,u(s)),S1(ts)χ}s[0,t],t[0,T]\big{\{}\big{\langle}\Psi^{\epsilon}(\bar{X}(s),Y^{\epsilon,u}_{n}(s)),S_{1}(t-s)\chi\big{\rangle}_{\mathcal{H}}\big{\}}_{s\in[0,t]}\;,t\in[0,T]

to show that the asymptotic behavior of the last term in (28), as ϵ0\epsilon\to 0, is captured by

δϵ0tS1(ts)Ψ20(X¯(s),Yϵ,u(s))u2(s)𝑑s\frac{\sqrt{\delta}}{\sqrt{\epsilon}}\int_{0}^{t}S_{1}(t-s)\Psi^{0}_{2}\big{(}\bar{X}(s),Y^{\epsilon,u}(s)\big{)}u_{2}(s)ds

(see Lemma 5.4, Proposition 6.3 and (132) below).

We need to understand not just the limit of the process ηϵ,u\eta^{\epsilon,u} but also the measure with respect to which the averaging is being done. As in [32], [28], [25], the dependence of the dynamics on the unknown control process u=uϵu=u^{\epsilon} complicates the situation. Following the recipe of these works we introduce the family of random occupation measures

Pϵ,Δ(B1×B2×B3×B4)=1ΔB4tt+Δ𝟙B1(u1(s))𝟙B2(u2(s))𝟙B3(Yϵ,u(s))𝑑s𝑑t,P^{\epsilon,\Delta}(B_{1}\times B_{2}\times B_{3}\times B_{4})=\frac{1}{\Delta}\int_{B_{4}}\int_{t}^{t+\Delta}\mathds{1}_{B_{1}}\big{(}u_{1}(s)\big{)}\mathds{1}_{B_{2}}\big{(}u_{2}(s)\big{)}\mathds{1}_{B_{3}}\big{(}Y^{\epsilon,u}(s)\big{)}dsdt, (38)

defined on (×××[0,T])\mathscr{B}\big{(}\mathcal{H}\times\mathcal{H}\times\mathcal{H}\times[0,T]\big{)}. Here, the first two copies of \mathcal{H} are endowed with the weak topology, the third with the norm topology and [0,T][0,T] with the standard topology. For the sake of shortness we will call the resulting product topology WWNS. The parameter Δ=Δ(ϵ)\Delta=\Delta(\epsilon) is such that

Δ(ϵ)0,δh(ϵ)Δ0,asϵ0.\Delta(\epsilon)\longrightarrow 0\;\;,\;\frac{\sqrt{\delta}h(\epsilon)}{\sqrt{\Delta}}\longrightarrow 0\;\;,\;\text{as}\;\epsilon\to 0. (39)

These occupation measures encode the behavior of the control and the fast process. It is the correct way to study the problem because the fast motion’s behavior will not converge pathwise to anything, but its occupation measure will converge to a limiting measure. We adopt the convention that the control u(t)=uϵ(t)=0u(t)=u^{\epsilon}(t)=0 for t>Tt>T. Then, we consider the joint limit in distribution of the pair (ηϵ,u,Pϵ,Δ)(\eta^{\epsilon,u},P^{\epsilon,\Delta}) as ϵ0\epsilon\to 0.

In order to state our main results, we introduce the following definition of a viable pair corresponding to [19], but appropriately modified for the moderate deviation setting.

Definition 3.1.

Let T<T<\infty, Ξ:5\Xi:\mathcal{H}^{5}\rightarrow\mathcal{H} and X¯C([0,T];)\bar{X}\in C\big{(}[0,T];\mathcal{H}\big{)} solve (2). For each xx\in\mathcal{H}, let μx\mu^{x} denote the unique invariant measure of (31). A pair (ψ,P)C([0,T];)×𝒫(×××[0,T])(\psi,P)\in C\big{(}[0,T];\mathcal{H}\big{)}\times\mathscr{P}(\mathcal{H}\times\mathcal{H}\times\mathcal{H}\times[0,T]), where ×××[0,T]\mathcal{H}\times\mathcal{H}\times\mathcal{H}\times[0,T] is endowed with the WWNS topology, will be called viable with respect to (Ξ,μX¯)(\Xi,\mu^{\bar{X}}) if
(i) The measure PP has finite second moments in the sense that there exists θ>0\theta>0 such that

×××[0,T](u12+u22+yHθ2)𝑑P(u1,u2,y,t)<.\int_{\mathcal{H}\times\mathcal{H}\times\mathcal{H}\times[0,T]}\big{(}\|u_{1}\|^{2}_{\mathcal{H}}+\|u_{2}\|^{2}_{\mathcal{H}}+\|y\|^{2}_{H^{\theta}}\big{)}dP(u_{1},u_{2},y,t)<\infty. (40)

(ii) For all B1×B2×B3×B4(×××[0,T])B_{1}\times B_{2}\times B_{3}\times B_{4}\in\mathscr{B}(\mathcal{H}\times\mathcal{H}\times\mathcal{H}\times[0,T]),

P(B1×B2×B3×B4)=B4B3ν(B1×B2|y,t)𝑑μX¯(t)(y)𝑑t,P(B_{1}\times B_{2}\times B_{3}\times B_{4})=\int_{B_{4}}\int_{B_{3}}\nu(B_{1}\times B_{2}|y,t)d\mu^{\bar{X}(t)}(y)dt, (41)

where ν:(×)××[0,T][0,1]\nu:\mathscr{B}(\mathcal{H}\times\mathcal{H})\times\mathcal{H}\times[0,T]\rightarrow[0,1] is a stochastic kernel on \mathcal{H} given ×[0,T]\mathcal{H}\times[0,T] (see Appendix A.5 in [17] for stochastic kernels). This implies that the last marginal of PP is Lebesgue measure on [0,T][0,T] and in particular

P(×××[0,t])=t,for allt[0,T].P(\mathcal{H}\times\mathcal{H}\times\mathcal{H}\times[0,t])=t\;,\;\text{for all}\;t\in[0,T]. (42)

(iii) For all t[0,T]t\in[0,T],

ψ(t)=×××[0,t]S1(ts)Ξ(ψ(s),X¯(s),y,u1,u2)𝑑P(u1,u2,y,s).\psi(t)=\int_{\mathcal{H}\times\mathcal{H}\times\mathcal{H}\times[0,t]}S_{1}(t-s)\Xi\big{(}\psi(s),\bar{X}(s),y,u_{1},u_{2}\big{)}dP(u_{1},u_{2},y,s). (43)

The family of viable pairs with respect to (Ξ,μX¯)(\Xi,\mu^{\bar{X}}) will be denoted by 𝒱(Ξ,μX¯)\mathcal{V}_{(\Xi,\mu^{\bar{X}})}.

In view of (4), we also define

γi={0,i=1γ(0,),i=2.\gamma_{i}=\begin{cases}&0,\;i=1\\ &\gamma\in(0,\infty),\;i=2.\end{cases} (44)

Using the viable pair definition, we can then state the main results of our paper.

Theorem 3.2.

(Averaging for ηϵ,u\eta^{\epsilon,u}) Let i=1,2,i=1,2, T<T<\infty, a>0a>0 and u𝒫NTu\in\mathcal{P}_{N}^{T}. Moreover let (Xϵ,u,Yϵ,u)(X^{\epsilon,u},Y^{\epsilon,u}) be the mild solution of (25) with initial conditions x0,y0Ha(0,L)x_{0},y_{0}\in H^{a}(0,L) and ηϵ,u\eta^{\epsilon,u} as in (28). Let Ξi:5\Xi_{i}:\mathcal{H}^{5}\rightarrow\mathcal{H} be defined by

Ξi(ψ,x,y,u1,u2):=DxF(x,y)ψ+Σ(x,y)u1+γiΨ20(x,y)u2,i=1,2,\Xi_{i}(\psi,x,y,u_{1},u_{2}):=D_{x}F(x,y)\psi+\Sigma(x,y)u_{1}+\gamma_{i}\Psi^{0}_{2}(x,y)u_{2}\;,\;i=1,2\;, (45)

with γi\gamma_{i} and Ψ20\Psi_{2}^{0} as in (44) and (37) respectively. Assuming Hypotheses 1(a)-1(c), 2(a)-2(c), 3(a), 3(b) and Regime ii, the family of processes {ηϵ,u:ϵ(0,1),u𝒫NT}\{\eta^{\epsilon,u}:\epsilon\in(0,1),u\in\mathcal{P}_{N}^{T}\} is tight in C([0,T];)C([0,T];\mathcal{H}) and the family of occupation measures {Pϵ,Δ:ϵ(0,1),u𝒫NT}\{P^{\epsilon,\Delta}:\epsilon\in(0,1),u\in\mathcal{P}_{N}^{T}\} is tight in 𝒫(×××[0,T])\mathscr{P}(\mathcal{H}\times\mathcal{H}\times\mathcal{H}\times[0,T]), where ×××[0,T]\mathcal{H}\times\mathcal{H}\times\mathcal{H}\times[0,T] is endowed with the WWNS topology.

Then for any sequence in {(ηϵ,u,Pϵ,Δ),ϵ,Δ>0,u𝒫NT}\{(\eta^{\epsilon,u},P^{\epsilon,\Delta})\;,\epsilon,\Delta>0,u\in\mathcal{P}_{N}^{T}\} there exists a subsequence that converges in distribution with limit (ηi,Pi)(\eta_{i},P_{i}). With probability 11,

(ηi,Pi)𝒱(Ξi,μX¯).(\eta_{i},P_{i})\in\mathcal{V}_{(\Xi_{i},\mu^{\bar{X}})}.
Theorem 3.3.

(Moderate Deviation Principle) Let i=1,2i=1,2, T<T<\infty, a>0a>0 arbitrarily small and (Xϵ,x0,y0,Yϵ,x0,y0),X¯x(X^{\epsilon,x_{0},y_{0}},Y^{\epsilon,x_{0},y_{0}}),\bar{X}^{x} be the mild solutions to (1) and (2) with initial conditions x0,y0Hax_{0},y_{0}\in H^{a} . Define 𝒮i:C([0,T];)[0,]\mathcal{S}_{i}:C([0,T];\mathcal{H})\rightarrow[0,\infty],

𝒮i(ϕ):=inf(ϕ,P)𝒱(Ξi,μX¯)[12×××[0,T](u12+u22)𝑑P(u1,u2,y,t)],ϕC([0,T];)\mathcal{S}_{i}(\phi):=\inf_{(\phi,P)\in\mathcal{V}_{(\Xi_{i},\mu^{\bar{X}})}}\bigg{[}\frac{1}{2}\int_{\mathcal{H}\times\mathcal{H}\times\mathcal{H}\times[0,T]}\big{(}\|u_{1}\|^{2}_{\mathcal{H}}+\|u_{2}\|^{2}_{\mathcal{H}}\big{)}\;dP(u_{1},u_{2},y,t)\bigg{]}\;\;,\phi\in C\big{(}[0,T];\mathcal{H}\big{)}

with the convention that inf=\inf\varnothing=\infty. Assuming Hypotheses 1(a)-1(c), 2(a)-2(c), 3(a’),3(b) and Regime ii we have that for every bounded and continuous function Λ:C([0,T];)\Lambda:C([0,T];\mathcal{H})\rightarrow\mathbb{R}:

limϵ01h2(ϵ)log𝔼[eh2(ϵ)Λ(ηϵ)]=infϕC([0,T];)[𝒮i(ϕ)+Λ(ϕ)],\displaystyle\lim_{\epsilon\to 0}\frac{1}{h^{2}(\epsilon)}\log\mathbb{E}\big{[}e^{-h^{2}(\epsilon)\Lambda(\eta^{\epsilon})}\big{]}=-\inf_{\phi\in C([0,T];\mathcal{H})}\big{[}\mathcal{S}_{i}(\phi)+\Lambda(\phi)\big{]},

where

ηϵ=Xϵ,x0,y0X¯x0ϵh(ϵ).\eta^{\epsilon}=\frac{X^{\epsilon,x_{0},y_{0}}-\bar{X}^{x_{0}}}{\sqrt{\epsilon}h(\epsilon)}\;.

In particular, {Xϵ}\{X^{\epsilon}\} satisfies a Moderate Deviation Principle in C([0,T];)C([0,T];\mathcal{H}) in Regime ii with rate function 𝒮i\mathcal{S}_{i}.

The proof of Theorem 3.2 can be found in Section 6.3 while Theorem 3.3 is proved in Section 7. In fact, by letting Qi:()Q_{i}:\mathcal{H}\rightarrow\mathscr{L}(\mathcal{H}),

Qi(x)=(Σ(x,y)Σ(x,y)+γi2Ψ20(x,y)Ψ20(x,y))𝑑μx(y)Q_{i}(x)=\int_{\mathcal{H}}\bigg{(}\Sigma(x,y)\Sigma^{*}(x,y)+\gamma^{2}_{i}\Psi^{0}_{2}(x,y)\Psi^{0*}_{2}(x,y)\bigg{)}d\mu^{x}(y) (46)

with γi\gamma_{i} and Ψ20\Psi_{2}^{0} as in (44) and (37) respectively, we prove that our rate function 𝒮i\mathcal{S}_{i} has an explicit non-variational form given by

𝒮i(ψ)=120TQi(X¯(t))12[tψ(t)A1ψ(t)DxF¯(X¯(t))ψ(t)]2𝑑t\mathcal{S}_{i}(\psi)=\frac{1}{2}\int_{0}^{T}\bigg{\|}Q_{i}\big{(}\bar{X}(t)\big{)}^{-\frac{1}{2}}\big{[}\partial_{t}\psi(t)-A_{1}\psi(t)-\overline{D_{x}F}\big{(}\bar{X}(t)\big{)}\psi(t)\big{]}\bigg{\|}^{2}_{\mathcal{H}}dt (47)

for ψH01([0,T];)L2([0,T];Dom(A1))\psi\in H_{0}^{1}([0,T];\mathcal{H})\cap L^{2}([0,T];Dom(A_{1})) and 𝒮i=\mathcal{S}_{i}=\infty otherwise (see Proposition 7.1).

4. A priori bounds for the solution of the controlled system

As discussed in Section 3, the variational representation (23) gives rise to a slow-fast pair of controlled stochastic reaction-diffusion equations. In this section we prove a priori estimates for the mild solution pair (Xϵ,u,Yϵ,u)(X^{\epsilon,u},Y^{\epsilon,u}) (see (26)) that are uniform over compact time intervals, u𝒫NTu\in\mathcal{P}_{N}^{T} and ϵ\epsilon sufficiently small. These preliminary estimates hold in both Regimes 11 and 22 and we will use them to prove a priori bounds and tightness for the family {ηϵ,u;ϵ,u}\{\eta^{\epsilon,u};\epsilon,u\} in Sections 5 and 6.

We start with two auxiliary estimates for the moments of the space-time L2L^{2} norm and the C([0,T];)C([0,T];\mathcal{H}) norm of the controlled fast process Yϵ,uY^{\epsilon,u}. Due to the multiple scales, the latter is singular at δ=0\delta=0. The proofs rely on the dissipativity assumption (16). As is customary, we use the same notation for different but unimportant constants that may change from line to line.

Lemma 4.1.

Let T<T<\infty, p1p\geq 1, ϵ(0,1)\epsilon\in(0,1) and u𝒫NTu\in\mathcal{P}^{T}_{N}. In both Regimes 1 and 2, there exists a constant C>0C>0, independent of ϵ\epsilon, such that

𝔼Yϵ,uL2([0,T];)2p\displaystyle\mathbb{E}\|Y^{\epsilon,u}\|_{L^{2}([0,T];\mathcal{H})}^{2p} C(1+y02p+0T𝔼Xϵ,u(t)2p𝑑t).\displaystyle\leq C\bigg{(}1+\|y_{0}\|^{2p}_{\mathcal{H}}+\int_{0}^{T}\mathbb{E}\|X^{\epsilon,u}(t)\|^{2p}_{\mathcal{H}}dt\;\bigg{)}. (48)

Moreover, for any ρ(1/2,1)\rho\in(1/2,1) and ϵ\epsilon sufficiently small we have

𝔼supt[0,T]Yϵ,u(t)2\displaystyle\mathbb{E}\sup_{t\in[0,T]}\|Y^{\epsilon,u}(t)\|^{2}_{\mathcal{H}} C(1+y02+𝔼supt[0,T]Xϵ,u(t)2+h2(ϵ)+δρ1).\displaystyle\leq C\bigg{(}1+\|y_{0}\|^{2}_{\mathcal{H}}+\mathbb{E}\sup_{t\in[0,T]}\|X^{\epsilon,u}(t)\|^{2}_{\mathcal{H}}+h^{2}(\epsilon)+\delta^{\rho-1}\bigg{)}. (49)
Proof.

Let Yϵ,uY^{\epsilon,u} be the mild solution of the controlled fast equation (see (26)),

wA2δ(t)=1δ0tS2(tzδ)𝑑w2(z)w^{\delta}_{A_{2}}(t)=\frac{1}{\sqrt{\delta}}\int_{0}^{t}S_{2}\bigg{(}\frac{t-z}{\delta}\bigg{)}dw_{2}(z)

be the stochastic convolution term and

Γϵ,u(t):=Yϵ,u(t)wA2δ(t),t[0,T].\Gamma^{\epsilon,u}(t):=Y^{\epsilon,u}(t)-w^{\delta}_{A_{2}}(t)\;,\;\;t\in[0,T]. (50)

With probability 11, the process Γϵ,u\Gamma^{\epsilon,u} has weakly differentiable paths and satisfies

tΓϵ,u(t)=1δ[A2Γϵ,u(t)+G(Xϵ,u(t),Γϵ,u(t)+wA2δ(t))]+h(ϵ)δu2(t)\partial_{t}\Gamma^{\epsilon,u}(t)=\frac{1}{\delta}\big{[}A_{2}\Gamma^{\epsilon,u}(t)+G\big{(}X^{\epsilon,u}(t),\Gamma^{\epsilon,u}(t)+w^{\delta}_{A_{2}}(t)\big{)}\big{]}+\frac{h(\epsilon)}{\sqrt{\delta}}u_{2}(t)

in a weak sense. Hence,

12tΓϵ,u(t)2\displaystyle\frac{1}{2}\partial_{t}\|\Gamma^{\epsilon,u}(t)\|^{2}_{\mathcal{H}} =tΓϵ,u(t),Γϵ,u(t)=1δA2Γϵ,u(t),Γϵ,u(t)\displaystyle=\big{\langle}\partial_{t}\Gamma^{\epsilon,u}(t),\Gamma^{\epsilon,u}(t)\big{\rangle}_{\mathcal{H}}=\frac{1}{\delta}\big{\langle}A_{2}\Gamma^{\epsilon,u}(t),\Gamma^{\epsilon,u}(t)\big{\rangle}_{\mathcal{H}} (51)
+1δG(Xϵ,u(t),Γϵ,u(t)+wA2δ(t)),Γϵ,u(t)+h(ϵ)δu2(t),Γϵ,u(t).\displaystyle+\frac{1}{\delta}\big{\langle}G\big{(}X^{\epsilon,u}(t),\Gamma^{\epsilon,u}(t)+w^{\delta}_{A_{2}}(t)\big{)},\Gamma^{\epsilon,u}(t)\big{\rangle}_{\mathcal{H}}+\frac{h(\epsilon)}{\sqrt{\delta}}\big{\langle}u_{2}(t),\Gamma^{\epsilon,u}(t)\big{\rangle}_{\mathcal{H}}.

For the first term above we invoke Hypothesis 1(c) to obtain

A2Γϵ,u(t),Γϵ,u(t)=n=1(a2,n)Γϵ,u(t),e2,n2λΓϵ,u(t)2.\langle A_{2}\Gamma^{\epsilon,u}(t),\Gamma^{\epsilon,u}(t)\rangle_{\mathcal{H}}=\sum_{n=1}^{\infty}(-a_{2,n})\langle\Gamma^{\epsilon,u}(t),e_{2,n}\rangle^{2}_{\mathcal{H}}\leq-\lambda\|\Gamma^{\epsilon,u}(t)\|^{2}_{\mathcal{H}}\;. (52)

For the second term in (51) we invoke Hypothesis 2(b) which implies that G:×G:\mathcal{H}\times\mathcal{H}\rightarrow\mathcal{H} is LgL_{g}-Lipschitz and with Cg=(G(0,0)Lg)C_{g}=(\|G(0_{\mathcal{H}},0_{\mathcal{H}})\|_{\mathcal{H}}\vee L_{g}) we have

|G(Xϵ,u(t)\displaystyle\big{|}\big{\langle}G\big{(}X^{\epsilon,u}(t) ,Γϵ,u(t)+wA2δ(t)),Γϵ,u(t)||G(Xϵ,u(t),wA2δ(t)),Γϵ,u(t)|\displaystyle,\Gamma^{\epsilon,u}(t)+w^{\delta}_{A_{2}}(t)\big{)},\Gamma^{\epsilon,u}(t)\big{\rangle}_{\mathcal{H}}\big{|}\leq\big{|}\big{\langle}G\big{(}X^{\epsilon,u}(t),w^{\delta}_{A_{2}}(t)\big{)},\Gamma^{\epsilon,u}(t)\big{\rangle}_{\mathcal{H}}\big{|} (53)
+|G(Xϵ,u(t),Γϵ,u(t)+wA2δ(t))G(Xϵ,u(t),wA2δ(t)),Γϵ,u(t)|\displaystyle+\big{|}\big{\langle}G\big{(}X^{\epsilon,u}(t),\Gamma^{\epsilon,u}(t)+w^{\delta}_{A_{2}}(t)\big{)}-G\big{(}X^{\epsilon,u}(t),w^{\delta}_{A_{2}}(t)\big{)},\Gamma^{\epsilon,u}(t)\big{\rangle}_{\mathcal{H}}\big{|}
CgΓϵ,u(t)(1+wA2δ(t)+Xϵ,u(t))+LgΓϵ,u(t)2.\displaystyle\leq C_{g}\|\Gamma^{\epsilon,u}(t)\|_{\mathcal{H}}\bigg{(}1+\|w^{\delta}_{A_{2}}(t)\|_{\mathcal{H}}+\|X^{\epsilon,u}(t)\|_{\mathcal{H}}\bigg{)}+L_{g}\|\Gamma^{\epsilon,u}(t)\|^{2}_{\mathcal{H}}.

Combining (51), (52) and (53) we obtain

12tΓϵ,u(t)2\displaystyle\frac{1}{2}\partial_{t}\|\Gamma^{\epsilon,u}(t)\|^{2}_{\mathcal{H}} CgδΓϵ,u(t)(1+wA2δ(t)+Xϵ,u(t))\displaystyle\leq\frac{C_{g}}{\delta}\|\Gamma^{\epsilon,u}(t)\|_{\mathcal{H}}\bigg{(}1+\|w^{\delta}_{A_{2}}(t)\|_{\mathcal{H}}+\|X^{\epsilon,u}(t)\|_{\mathcal{H}}\bigg{)}
+LgλδΓϵ,u(t)2+h(ϵ)δΓϵ,u(t)u2(t).\displaystyle+\frac{L_{g}-\lambda}{\delta}\|\Gamma^{\epsilon,u}(t)\|^{2}_{\mathcal{H}}+\frac{h(\epsilon)}{\sqrt{\delta}}\|\Gamma^{\epsilon,u}(t)\|_{\mathcal{H}}\|u_{2}(t)\|_{\mathcal{H}}\;.

Next, let β1,β2>0\beta_{1},\beta_{2}>0. From an application of Young’s inequality for products on the first and third terms,

12tΓϵ,u(t)2\displaystyle\frac{1}{2}\partial_{t}\|\Gamma^{\epsilon,u}(t)\|^{2}_{\mathcal{H}} Cgβ124δΓϵ,u(t)2+2Cg2δβ12(1+wA2δ(t)2+Xϵ,u(t)2)\displaystyle\leq\frac{C_{g}\beta_{1}^{2}}{4\delta}\|\Gamma^{\epsilon,u}(t)\|^{2}_{\mathcal{H}}+\frac{2C_{g}}{2\delta\beta_{1}^{2}}\bigg{(}1+\|w^{\delta}_{A_{2}}(t)\|^{2}_{\mathcal{H}}+\|X^{\epsilon,u}(t)\|^{2}_{\mathcal{H}}\bigg{)}
+LgλδΓϵ,u(t)2+h(ϵ)4δβ22Γϵ,u(t)2+2h(ϵ)2δβ22u2(t)2.\displaystyle+\frac{L_{g}-\lambda}{\delta}\|\Gamma^{\epsilon,u}(t)\|^{2}_{\mathcal{H}}+\frac{h(\epsilon)}{4\sqrt{\delta}}\beta^{2}_{2}\|\Gamma^{\epsilon,u}(t)\|^{2}_{\mathcal{H}}+\frac{2h(\epsilon)}{2\sqrt{\delta}\beta^{2}_{2}}\|u_{2}(t)\|^{2}_{\mathcal{H}}\;.

From Hypothesis 2(b) we have λLg>0\lambda-L_{g}>0 and thus we can choose β12=(λLg)/Cg\beta_{1}^{2}=(\lambda-L_{g})/C_{g} and β22=(λLg)/(h(ϵ)δ)\beta_{2}^{2}=(\lambda-L_{g})/(h(\epsilon)\sqrt{\delta}) to obtain

12tΓϵ,u(t)2\displaystyle\frac{1}{2}\partial_{t}\|\Gamma^{\epsilon,u}(t)\|^{2}_{\mathcal{H}} λLg4δΓϵ,u(t)2+Cg2(λLg)δ(1+wA2δ(t)2+Xϵ,u(t)2)\displaystyle\leq\frac{\lambda-L_{g}}{4\delta}\|\Gamma^{\epsilon,u}(t)\|^{2}_{\mathcal{H}}+\frac{C^{2}_{g}}{(\lambda-L_{g})\delta}\bigg{(}1+\|w^{\delta}_{A_{2}}(t)\|^{2}_{\mathcal{H}}+\|X^{\epsilon,u}(t)\|^{2}_{\mathcal{H}}\bigg{)} (54)
+LgλδΓϵ,u(t)2+λLg4δΓϵ,u(t)2+h2(ϵ)λLgu2(t)2\displaystyle+\frac{L_{g}-\lambda}{\delta}\|\Gamma^{\epsilon,u}(t)\|^{2}_{\mathcal{H}}+\frac{\lambda-L_{g}}{4\delta}\|\Gamma^{\epsilon,u}(t)\|^{2}_{\mathcal{H}}+\frac{h^{2}(\epsilon)}{\lambda-L_{g}}\|u_{2}(t)\|^{2}_{\mathcal{H}}
=1δ(λLg2)Γϵ,u(t)2+Cg2(λLg)δ(1+wA2δ(t)2+Xϵ,u(t)2)\displaystyle=-\frac{1}{\delta}\bigg{(}\frac{\lambda-L_{g}}{2}\bigg{)}\|\Gamma^{\epsilon,u}(t)\|^{2}_{\mathcal{H}}+\frac{C^{2}_{g}}{(\lambda-L_{g})\delta}\bigg{(}1+\|w^{\delta}_{A_{2}}(t)\|^{2}_{\mathcal{H}}+\|X^{\epsilon,u}(t)\|^{2}_{\mathcal{H}}\bigg{)}
+h2(ϵ)λLgu2(t)2.\displaystyle+\frac{h^{2}(\epsilon)}{\lambda-L_{g}}\|u_{2}(t)\|^{2}_{\mathcal{H}}\;.

Integrating this inequality yields

12Γϵ,u(t)212y02\displaystyle\frac{1}{2}\|\Gamma^{\epsilon,u}(t)\|^{2}_{\mathcal{H}}-\frac{1}{2}\|y_{0}\|^{2}_{\mathcal{H}} 1δ(λLg2)0tΓϵ,u(s)2𝑑s\displaystyle\leq-\frac{1}{\delta}\bigg{(}\frac{\lambda-L_{g}}{2}\bigg{)}\int_{0}^{t}\|\Gamma^{\epsilon,u}(s)\|^{2}_{\mathcal{H}}ds (55)
+Cg2(λLg)δ0t(1+wA2δ(s)2+Xϵ,u(s)2)𝑑s+h2(ϵ)N2λLg,\displaystyle+\frac{C^{2}_{g}}{(\lambda-L_{g})\delta}\int_{0}^{t}\bigg{(}1+\|w^{\delta}_{A_{2}}(s)\|^{2}_{\mathcal{H}}+\|X^{\epsilon,u}(s)\|^{2}_{\mathcal{H}}\bigg{)}ds+\frac{h^{2}(\epsilon)N^{2}}{\lambda-L_{g}}\;,

where the last term follows from the fact that u2𝒫NTu_{2}\in\mathcal{P}_{N}^{T}. Letting =(λLg)/2\ell=(\lambda-L_{g})/2, multiplying throughout by δ/\delta/\ell and dropping the nonnegative term (δ/2)supt[0,T]Γϵ,u(t)2(\delta/2\ell)\sup_{t\in[0,T]}\|\Gamma^{\epsilon,u}(t)\|^{2}_{\mathcal{H}} we see that

0TΓϵ,u(s)2𝑑s\displaystyle\int_{0}^{T}\|\Gamma^{\epsilon,u}(s)\|^{2}_{\mathcal{H}}ds δ2supt[0,T]Γϵ,u(t)2+0TΓϵ,u(s)2𝑑s\displaystyle\leq\frac{\delta}{2\ell}\sup_{t\in[0,T]}\|\Gamma^{\epsilon,u}(t)\|^{2}_{\mathcal{H}}+\int_{0}^{T}\|\Gamma^{\epsilon,u}(s)\|^{2}_{\mathcal{H}}ds
δ2y02+Cg2(λLg)0T(1+wA2δ(s)2+Xϵ,u(s)2)𝑑s+N2δh2(ϵ)(λLg).\displaystyle\leq\frac{\delta}{2\ell}\|y_{0}\|^{2}_{\mathcal{H}}+\frac{C^{2}_{g}}{(\lambda-L_{g})\ell}\int_{0}^{T}\bigg{(}1+\|w^{\delta}_{A_{2}}(s)\|^{2}_{\mathcal{H}}+\|X^{\epsilon,u}(s)\|^{2}_{\mathcal{H}}\bigg{)}ds+\frac{N^{2}\delta h^{2}(\epsilon)}{(\lambda-L_{g})\ell}\;.

Regarding the last term on the right-hand side, note that, in both Regimes 11 and 22 (see (4), (5)),

δh2(ϵ)=(δϵ)ϵh2(ϵ)0,\delta h^{2}(\epsilon)=\bigg{(}\frac{\delta}{\epsilon}\bigg{)}\epsilon h^{2}(\epsilon)\longrightarrow 0\;,

as ϵ0\epsilon\to 0. Hence, for all sufficiently small ϵ\epsilon,

0TΓϵ,u(s)2𝑑s1+y02+C0T(1+wA2δ(s)2+Xϵ,u(s)2)𝑑s,\displaystyle\int_{0}^{T}\|\Gamma^{\epsilon,u}(s)\|^{2}_{\mathcal{H}}ds\leq 1+\|y_{0}\|^{2}_{\mathcal{H}}+C\int_{0}^{T}\bigg{(}1+\|w^{\delta}_{A_{2}}(s)\|^{2}_{\mathcal{H}}+\|X^{\epsilon,u}(s)\|^{2}_{\mathcal{H}}\bigg{)}ds,

and in view of (50) we have

0TYϵ,u(s)2𝑑s\displaystyle\int_{0}^{T}\|Y^{\epsilon,u}(s)\|^{2}_{\mathcal{H}}ds C10TΓϵ,u(s)2𝑑s+C20TwA2δ(s)2𝑑s\displaystyle\leq C_{1}\int_{0}^{T}\|\Gamma^{\epsilon,u}(s)\|^{2}_{\mathcal{H}}ds+C_{2}\int_{0}^{T}\|w^{\delta}_{A_{2}}(s)\|^{2}_{\mathcal{H}}ds
C1(1+y02)+C20T(1+wA2δ(s)2+Xϵ,u(s)2)𝑑s.\displaystyle\leq C_{1}(1+\|y_{0}\|^{2}_{\mathcal{H}})+C_{2}\int_{0}^{T}\bigg{(}1+\|w^{\delta}_{A_{2}}(s)\|^{2}_{\mathcal{H}}+\|X^{\epsilon,u}(s)\|^{2}_{\mathcal{H}}\bigg{)}ds.

After taking expectation we deduce that

𝔼(0TYϵ,u(s)2𝑑s)p\displaystyle\mathbb{E}\bigg{(}\int_{0}^{T}\|Y^{\epsilon,u}(s)\|^{2}_{\mathcal{H}}ds\bigg{)}^{p} Cp(1+y02p)+Cp0T(1+𝔼wA2δ(s)2p+𝔼Xϵ,u(s)2p)𝑑s\displaystyle\leq C_{p}(1+\|y_{0}\|^{2p}_{\mathcal{H}})+C^{\prime}_{p}\int_{0}^{T}\bigg{(}1+\mathbb{E}\|w^{\delta}_{A_{2}}(s)\|^{2p}_{\mathcal{H}}+\mathbb{E}\|X^{\epsilon,u}(s)\|^{2p}_{\mathcal{H}}\bigg{)}ds

and (48) follows upon invoking Lemma A.2(i).

It remains to prove (49). Returning to (54), we multiply throughout by e2t/δe^{2\ell t/\delta} to obtain

t(e2t/δΓϵ,u(t)2)\displaystyle\partial_{t}\big{(}e^{2\ell t/\delta}\|\Gamma^{\epsilon,u}(t)\|^{2}_{\mathcal{H}}\big{)} =e2t/δtΓϵ,u(t)2+2λδe2t/δΓϵ,u(t)2\displaystyle=e^{2\ell t/\delta}\partial_{t}\|\Gamma^{\epsilon,u}(t)\|^{2}_{\mathcal{H}}+\frac{2\lambda}{\delta}e^{2\ell t/\delta}\|\Gamma^{\epsilon,u}(t)\|^{2}_{\mathcal{H}} (56)
2Cg2(λLg)δe2t/δ(1+wA2δ(t)2+Xϵ,u(t)2)\displaystyle\leq\frac{2C^{2}_{g}}{(\lambda-L_{g})\delta}e^{2\ell t/\delta}\bigg{(}1+\|w^{\delta}_{A_{2}}(t)\|^{2}_{\mathcal{H}}+\|X^{\epsilon,u}(t)\|^{2}_{\mathcal{H}}\bigg{)}
+2h2(ϵ)λLge2t/δu2(t)2.\displaystyle+\frac{2h^{2}(\epsilon)}{\lambda-L_{g}}e^{2\ell t/\delta}\|u_{2}(t)\|^{2}_{\mathcal{H}}\;.

Integrating the latter on [0,t][0,t] then yields

Γϵ,u(t)2\displaystyle\|\Gamma^{\epsilon,u}(t)\|^{2}_{\mathcal{H}} y02+2Cg2(λLg)δ0te2(ts)/δ(1+wA2δ(s)2+Xϵ,u(s)2)𝑑s\displaystyle\leq\|y_{0}\|^{2}_{\mathcal{H}}+\frac{2C^{2}_{g}}{(\lambda-L_{g})\delta}\int_{0}^{t}e^{-2\ell(t-s)/\delta}\bigg{(}1+\|w^{\delta}_{A_{2}}(s)\|^{2}_{\mathcal{H}}+\|X^{\epsilon,u}(s)\|^{2}_{\mathcal{H}}\bigg{)}ds
+2h2(ϵ)λLg0te2(ts)/δu2(s)2𝑑sy02+C(1+sups[0,t]wA2δ(s)2+sups[0,t]Xϵ,u(s)2)\displaystyle+\frac{2h^{2}(\epsilon)}{\lambda-L_{g}}\int_{0}^{t}e^{-2\ell(t-s)/\delta}\|u_{2}(s)\|^{2}_{\mathcal{H}}ds\leq\|y_{0}\|^{2}_{\mathcal{H}}+C\bigg{(}1+\sup_{s\in[0,t]}\|w^{\delta}_{A_{2}}(s)\|^{2}_{\mathcal{H}}+\sup_{s\in[0,t]}\|X^{\epsilon,u}(s)\|^{2}_{\mathcal{H}}\bigg{)}
+Ch2(ϵ)0tu2(s)2𝑑s.\displaystyle+Ch^{2}(\epsilon)\int_{0}^{t}\|u_{2}(s)\|^{2}_{\mathcal{H}}ds.

Taking expectation and applying Lemma A.2(i) we deduce that

𝔼supt[0,T]Γϵ,u(t)2\displaystyle\mathbb{E}\sup_{t\in[0,T]}\|\Gamma^{\epsilon,u}(t)\|^{2}_{\mathcal{H}} y02+C(1+δρ1+𝔼sups[0,T]Xϵ,u(s)2)+CNh2(ϵ)\displaystyle\leq\|y_{0}\|^{2}_{\mathcal{H}}+C\bigg{(}1+\delta^{\rho-1}+\mathbb{E}\sup_{s\in[0,T]}\|X^{\epsilon,u}(s)\|^{2}_{\mathcal{H}}\bigg{)}+C_{N}h^{2}(\epsilon)

Hence, we can use Lemma A.2 (ii) to show that

𝔼supt[0,T]Yϵ,u(t)2\displaystyle\mathbb{E}\sup_{t\in[0,T]}\|Y^{\epsilon,u}(t)\|^{2}_{\mathcal{H}} C𝔼supt[0,T]Γϵ,u(t)2+C𝔼supt[0,T]wA2δ(t)2\displaystyle\leq C\mathbb{E}\sup_{t\in[0,T]}\|\Gamma^{\epsilon,u}(t)\|^{2}_{\mathcal{H}}+C^{\prime}\mathbb{E}\sup_{t\in[0,T]}\|w^{\delta}_{A_{2}}(t)\|^{2}_{\mathcal{H}}
C(1+y02+𝔼supt[0,T]Xϵ,u(t)2+h2(ϵ)+δρ1)\displaystyle\leq C\bigg{(}1+\|y_{0}\|^{2}_{\mathcal{H}}+\mathbb{E}\sup_{t\in[0,T]}\|X^{\epsilon,u}(t)\|^{2}_{\mathcal{H}}+h^{2}(\epsilon)+\delta^{\rho-1}\bigg{)}

and the proof is complete.∎

Remark 8.

Due to the presence of the stochastic controls uu, we can only prove uniform estimates for the fast process Yϵ,uY^{\epsilon,u} in Lp([0,T];)L^{p}([0,T];\mathcal{H}) for p2p\leq 2. This limitation is also reflected in the choice of the growth exponent ν<1/2\nu<1/2 in Hypothesis 3(a).

Using Lemma 4.1, we can prove the following a priori bounds for (Xϵ,u,Yϵ,u)(X^{\epsilon,u},Y^{\epsilon,u}) by means of the Grönwall inequality.

Proposition 4.1.

Let T<T<\infty and ν(0,1/2)\nu\in(0,1/2) be as in Hypothesis 3(a). In both Regimes 11 and 22, there exists ϵ0>0\epsilon_{0}>0 and a constant C>0C>0, independent of ϵ\epsilon, such that

sup0<ϵ<ϵ0,u𝒫NT𝔼supt[0,T]Xϵ,u(t)2νC(1+x02ν+y02ν)\displaystyle\sup_{0<\epsilon<\epsilon_{0},u\in\mathcal{P}^{T}_{N}}\mathbb{E}\sup_{t\in[0,T]}\|X^{\epsilon,u}(t)\|^{\frac{2}{\nu}}_{\mathcal{H}}\leq C\bigg{(}1+\|x_{0}\|^{\frac{2}{\nu}}_{\mathcal{H}}+\|y_{0}\|^{\frac{2}{\nu}}_{\mathcal{H}}\bigg{)} (57)

and

sup0<ϵ<ϵ0,u𝒫NT𝔼Yϵ,uL2([0,T];)2ν\displaystyle\sup_{0<\epsilon<\epsilon_{0},u\in\mathcal{P}^{T}_{N}}\mathbb{E}\|Y^{\epsilon,u}\|_{L^{2}([0,T];\mathcal{H})}^{\frac{2}{\nu}} C(1+x02ν+y02ν).\displaystyle\leq C\bigg{(}1+\|x_{0}\|^{\frac{2}{\nu}}_{\mathcal{H}}+\|y_{0}\|^{\frac{2}{\nu}}_{\mathcal{H}}\bigg{)}. (58)

Moreover, for any ρ(1/2,1)\rho\in(1/2,1) and ϵ\epsilon sufficiently small, there exists a positive constant CC, independent of ϵ\epsilon, such that

supu𝒫NT𝔼supt[0,T]Yϵ,u(t)2C(1+x02+y02+h2(ϵ)+δρ1).\displaystyle\sup_{u\in\mathcal{P}_{N}^{T}}\mathbb{E}\sup_{t\in[0,T]}\|Y^{\epsilon,u}(t)\|^{2}_{\mathcal{H}}\leq C\bigg{(}1+\|x_{0}\|_{\mathcal{H}}^{2}+\|y_{0}\|_{\mathcal{H}}^{2}+h^{2}(\epsilon)+\delta^{\rho-1}\bigg{)}. (59)

Estimates (57) and (58) are standard and their proofs will be omitted. Similar results can be found e.g. in [10, 25] among other places. The main difference here is in the moderate deviation scaling which does not change the proof in an essential way. Finally, (59) follows from the combination of (49) and (57).

Next, we provide an estimate for the Hölder seminorm of the controlled fast process Yϵ,uY^{\epsilon,u} which depends on the regularity of the initial conditions. The estimate is singular at δ=0\delta=0. As seen in the proof below, there is a trade-off between the Hölder exponent and the rate of divergence of the right-hand side as ϵ0\epsilon\to 0.

Proposition 4.2.

Let T<T<\infty, a(0,2]a\in(0,2], x0x_{0}\in\mathcal{H} and y0Ha(0,L)y_{0}\in H^{a}(0,L). For all u𝒫NTu\in\mathcal{P}^{T}_{N} and ϵ\epsilon sufficiently small there exists β<14a2\beta<\frac{1}{4}\land\frac{a}{2} and a constant C>0C>0 independent of ϵ\epsilon such that

𝔼[Yϵ,u]Cβ([0,T];)Ch(ϵ)δ12a2(1+x0+y0Ha).\mathbb{E}\big{[}Y^{\epsilon,u}\big{]}_{C^{\beta}([0,T];\mathcal{H})}\leq Ch(\epsilon)\delta^{-\frac{1}{2}\vee\frac{a}{2}}\bigg{(}1+\|x_{0}\|_{\mathcal{H}}+\|y_{0}\|_{H^{a}}\bigg{)}. (60)
Proof.

Letting 0s<tT0\leq s<t\leq T we can write

Yϵ,u(t)Yϵ,u(s)\displaystyle Y^{\epsilon,u}(t)-Y^{\epsilon,u}(s) =[S2(tδ)S2(sδ)]y0+1δstS2(tzδ)G(Xϵ,u(z),Yϵ,u(z))𝑑z\displaystyle=\bigg{[}S_{2}\bigg{(}\frac{t}{\delta}\bigg{)}-S_{2}\bigg{(}\frac{s}{\delta}\bigg{)}\bigg{]}y_{0}+\frac{1}{\delta}\int_{s}^{t}S_{2}\bigg{(}\frac{t-z}{\delta}\bigg{)}G\big{(}X^{\epsilon,u}(z),Y^{\epsilon,u}(z)\big{)}dz
+1δ[S2(tsδ)I]0sS2(szδ)G(Xϵ,u(z),Yϵ,u(z))𝑑z\displaystyle+\frac{1}{\delta}\bigg{[}S_{2}\bigg{(}\frac{t-s}{\delta}\bigg{)}-I\bigg{]}\int_{0}^{s}S_{2}\bigg{(}\frac{s-z}{\delta}\bigg{)}G\big{(}X^{\epsilon,u}(z),Y^{\epsilon,u}(z)\big{)}dz
+h(ϵ)δstS2(tzδ)u2(z)𝑑z\displaystyle+\frac{h(\epsilon)}{\sqrt{\delta}}\int_{s}^{t}S_{2}\bigg{(}\frac{t-z}{\delta}\bigg{)}u_{2}(z)dz
+h(ϵ)δ[S2(tsδ)I]0sS2(szδ)u2(z)𝑑z\displaystyle+\frac{h(\epsilon)}{\sqrt{\delta}}\bigg{[}S_{2}\bigg{(}\frac{t-s}{\delta}\bigg{)}-I\bigg{]}\int_{0}^{s}S_{2}\bigg{(}\frac{s-z}{\delta}\bigg{)}u_{2}(z)dz
+wA2δ(t)wA2δ(s)=:k=16Jkϵ,u(s,t).\displaystyle+w^{\delta}_{A_{2}}(t)-w^{\delta}_{A_{2}}(s)=:\sum_{k=1}^{6}J^{\epsilon,u}_{k}(s,t).

We shall estimate each term of this decomposition separately. For J1ϵ,uJ^{\epsilon,u}_{1}, we use the semigroup property and invoke (11), (12) to obtain

J1ϵ,u(s,t)\displaystyle\big{\|}J^{\epsilon,u}_{1}(s,t)\big{\|}_{\mathcal{H}} =S2(sδ)[S2(tsδ)I]y0\displaystyle=\bigg{\|}S_{2}\bigg{(}\frac{s}{\delta}\bigg{)}\bigg{[}S_{2}\bigg{(}\frac{t-s}{\delta}\bigg{)}-I\bigg{]}y_{0}\bigg{\|}_{\mathcal{H}} (61)
S2(sδ)()[S2(tsδ)I]y0\displaystyle\leq\bigg{\|}S_{2}\bigg{(}\frac{s}{\delta}\bigg{)}\bigg{\|}_{\mathscr{L}(\mathcal{H})}\bigg{\|}\bigg{[}S_{2}\bigg{(}\frac{t-s}{\delta}\bigg{)}-I\bigg{]}y_{0}\bigg{\|}_{\mathcal{H}}
eλs/δS2(tsδ)I(Ha;)y0Ha\displaystyle\leq e^{-\lambda s/\delta}\bigg{\|}S_{2}\bigg{(}\frac{t-s}{\delta}\bigg{)}-I\bigg{\|}_{\mathscr{L}(H^{a};\mathcal{H})}\|y_{0}\|_{H^{a}}
CTδa/2(ts)a/2y0Ha.\displaystyle\leq C_{T}\delta^{-a/2}(t-s)^{a/2}\|y_{0}\|_{H^{a}}\;.

Next, we use the Lipschitz continuity of GG along with Hölder’s inequality for q1q\geq 1 to obtain

J2ϵ,u(s,t)\displaystyle\big{\|}J^{\epsilon,u}_{2}(s,t)\big{\|}_{\mathcal{H}} Cgδsteλ(tz)δ(1+Xϵ,u(z)+Yϵ,u(z))𝑑z\displaystyle\leq\frac{C_{g}}{\delta}\int_{s}^{t}e^{-\frac{\lambda(t-z)}{\delta}}\big{(}1+\big{\|}X^{\epsilon,u}(z)\big{\|}_{\mathcal{H}}+\big{\|}Y^{\epsilon,u}(z)\big{\|}_{\mathcal{H}}\big{)}dz
(1+supt[0,T]Xϵ,u(t)+supt[0,T]Yϵ,u(t))Cgδ(stepλ(tz)δ𝑑z)1/p(ts)1/q\displaystyle\leq\bigg{(}1+\sup_{t\in[0,T]}\big{\|}X^{\epsilon,u}(t)\big{\|}_{\mathcal{H}}+\sup_{t\in[0,T]}\big{\|}Y^{\epsilon,u}(t)\big{\|}_{\mathcal{H}}\bigg{)}\frac{C_{g}}{\delta}\bigg{(}\int_{s}^{t}e^{-\frac{p\lambda(t-z)}{\delta}}dz\bigg{)}^{1/p}(t-s)^{1/q}
Cδ1/q(ts)1/q(1+supt[0,T]Xϵ,u(t)+supt[0,T]Yϵ,u(t))(0epλζ𝑑ζ)1/p.\displaystyle\leq C\delta^{-1/q}(t-s)^{1/q}\bigg{(}1+\sup_{t\in[0,T]}\big{\|}X^{\epsilon,u}(t)\big{\|}_{\mathcal{H}}+\sup_{t\in[0,T]}\big{\|}Y^{\epsilon,u}(t)\big{\|}_{\mathcal{H}}\bigg{)}\bigg{(}\int_{0}^{\infty}e^{-p\lambda\zeta}d\zeta\bigg{)}^{1/p}.

Letting ϵ\epsilon be sufficiently small, taking expectation and applying (57) and (59) we get

𝔼supt,s[0,T],tsJ2ϵ,u(s,t)|ts|1/qCpδ1q(1+x0+y0+h(ϵ)+δρ12).\mathbb{E}\sup_{t,s\in[0,T],t\neq s}\frac{\big{\|}J^{\epsilon,u}_{2}(s,t)\big{\|}_{\mathcal{H}}}{|t-s|^{1/q}}\leq C_{p}\delta^{-\frac{1}{q}}\bigg{(}1+\|x_{0}\|_{\mathcal{H}}+\|y_{0}\|_{\mathcal{H}}+h(\epsilon)+\delta^{\frac{\rho-1}{2}}\bigg{)}.

Choosing ρ=3/4(1/2,1)\rho=3/4\in(1/2,1) and q=9q=9 yields

1q+1ρ2=19+18<14.\frac{1}{q}+\frac{1-\rho}{2}=\frac{1}{9}+\frac{1}{8}<\frac{1}{4}\;.

Hence, for β1/9\beta\leq 1/9

𝔼supt,s[0,T],tsJ2ϵ,u(s,t)|ts|βCh(ϵ)δ1/4(1+x0+y0).\mathbb{E}\sup_{t,s\in[0,T],t\neq s}\frac{\big{\|}J^{\epsilon,u}_{2}(s,t)\big{\|}_{\mathcal{H}}}{|t-s|^{\beta}}\leq Ch(\epsilon)\delta^{-1/4}\bigg{(}1+\|x_{0}\|_{\mathcal{H}}+\|y_{0}\|_{\mathcal{H}}\bigg{)}. (62)

Next, for J3ϵ,uJ^{\epsilon,u}_{3}, we shall invoke (12) and then apply Lemma A.1(i) to obtain

J3ϵ,u(s,t)\displaystyle\big{\|}J^{\epsilon,u}_{3}(s,t)\big{\|}_{\mathcal{H}} 1δS2(tsδ)I(Hθ;)0sS2(szδ)G(Xϵ,u(z),Yϵ,u(z))Hθ𝑑z\displaystyle\leq\frac{1}{\delta}\bigg{\|}S_{2}\bigg{(}\frac{t-s}{\delta}\bigg{)}-I\bigg{\|}_{\mathscr{L}(H^{\theta};\mathcal{H})}\int_{0}^{s}\bigg{\|}S_{2}\bigg{(}\frac{s-z}{\delta}\bigg{)}G\big{(}X^{\epsilon,u}(z),Y^{\epsilon,u}(z)\big{)}\bigg{\|}_{H^{\theta}}dz
(Cδ)δθ/2(ts)θ/20s(A2)θ/2S2(szδ)G(Xϵ,u(z),Yϵ,u(z))𝑑z\displaystyle\leq\bigg{(}\frac{C}{\delta}\bigg{)}\delta^{-\theta/2}(t-s)^{\theta/2}\int_{0}^{s}\bigg{\|}(-A_{2})^{\theta/2}S_{2}\bigg{(}\frac{s-z}{\delta}\bigg{)}G\big{(}X^{\epsilon,u}(z),Y^{\epsilon,u}(z)\big{)}\bigg{\|}_{\mathcal{H}}dz
Cgδ1θ/2(ts)θ/20s(szδ)(ρ+θ)/2eλ(sz)4δ(1+Xϵ,u(z)+Yϵ,u(z))𝑑z,\displaystyle\leq C_{g}\delta^{-1-\theta/2}(t-s)^{\theta/2}\int_{0}^{s}\bigg{(}\frac{s-z}{\delta}\bigg{)}^{-(\rho+\theta)/2}e^{-\frac{\lambda(s-z)}{4\delta}}\bigg{(}1+\big{\|}X^{\epsilon,u}(z)\big{\|}_{\mathcal{H}}+\big{\|}Y^{\epsilon,u}(z)\big{\|}_{\mathcal{H}}\bigg{)}dz,

which holds for θ(0,1/2)\theta\in(0,1/2), ρ(1/2,1)\rho\in(1/2,1) and we used the Lipschitz continuity of GG to obtain the last line. Performing the substitution ζ=(sz)/δ\zeta=(s-z)/\delta then yields

J3ϵ,u\displaystyle\big{\|}J^{\epsilon,u}_{3} (s,t)Cδθ/2(ts)θ/2(1+supt[0,T]Xϵ,u(t)+supt[0,T]Yϵ,u(t))0s/δζ(ρ+θ)/2eλζ4𝑑ζ\displaystyle(s,t)\big{\|}_{\mathcal{H}}\leq C\delta^{-\theta/2}(t-s)^{\theta/2}\bigg{(}1+\sup_{t\in[0,T]}\big{\|}X^{\epsilon,u}(t)\big{\|}_{\mathcal{H}}+\sup_{t\in[0,T]}\big{\|}Y^{\epsilon,u}(t)\big{\|}_{\mathcal{H}}\bigg{)}\int_{0}^{s/\delta}\zeta^{-(\rho+\theta)/2}e^{-\frac{\lambda\zeta}{4}}d\zeta
Cλ,θδθ/2(ts)θ/2(1+supt[0,T]Xϵ,u(t)+supt[0,T]Yϵ,u(t))0(λζ/4)(ρ+θ)/2eλζ/4𝑑ζ\displaystyle\leq C_{\lambda,\theta}\delta^{-\theta/2}(t-s)^{\theta/2}\bigg{(}1+\sup_{t\in[0,T]}\big{\|}X^{\epsilon,u}(t)\big{\|}_{\mathcal{H}}+\sup_{t\in[0,T]}\big{\|}Y^{\epsilon,u}(t)\big{\|}_{\mathcal{H}}\bigg{)}\int_{0}^{\infty}(\lambda\zeta/4)^{-(\rho+\theta)/2}e^{-\lambda\zeta/4}d\zeta

where ρ+θ<3/2\rho+\theta<3/2. The integral on the right-hand side is finite and, in fact, can be explicitly computed in terms of Γ(1ρ+θ2)\Gamma(1-\frac{\rho+\theta}{2}) , where Γ\Gamma denotes the Gamma function. Letting ϵ\epsilon be sufficiently small, taking expectation and using (57) and (59) we deduce that

𝔼supt,s[0,T],tsJ3ϵ,u(s,t)|ts|θ/2Ch(ϵ)δρ12θ2(1+x0+y0).\mathbb{E}\sup_{t,s\in[0,T],t\neq s}\frac{\big{\|}J^{\epsilon,u}_{3}(s,t)\big{\|}_{\mathcal{H}}}{|t-s|^{\theta/2}}\leq Ch(\epsilon)\delta^{\frac{\rho-1}{2}-\frac{\theta}{2}}\bigg{(}1+\|x_{0}\|_{\mathcal{H}}+\|y_{0}\|_{\mathcal{H}}\bigg{)}.

Choosing θ=2/9\theta=2/9 and ρ=3/4\rho=3/4 we obtain, as we did for J2ϵ,uJ_{2}^{\epsilon,u}, that for all β<1/9\beta<1/9

𝔼supt,s[0,T],tsJ3ϵ,u(s,t)|ts|βCh(ϵ)δ1/4(1+x0+y0).\mathbb{E}\sup_{t,s\in[0,T],t\neq s}\frac{\big{\|}J^{\epsilon,u}_{3}(s,t)\big{\|}_{\mathcal{H}}}{|t-s|^{\beta}}\leq Ch(\epsilon)\delta^{-1/4}\bigg{(}1+\|x_{0}\|_{\mathcal{H}}+\|y_{0}\|_{\mathcal{H}}\bigg{)}. (63)

As for J4J_{4},

J4ϵ,u(s,t)\displaystyle\big{\|}J^{\epsilon,u}_{4}(s,t)\big{\|}_{\mathcal{H}} h(ϵ)δ(stS2(tzδ)2𝑑z)12uL2([0,T];)\displaystyle\leq\frac{h(\epsilon)}{\sqrt{\delta}}\bigg{(}\int_{s}^{t}\bigg{\|}S_{2}\bigg{(}\frac{t-z}{\delta}\bigg{)}\bigg{\|}^{2}_{\mathcal{H}}dz\bigg{)}^{\frac{1}{2}}\|u\|_{L^{2}([0,T];\mathcal{H})}
Nh(ϵ)δ(ste2λ(tz)δ𝑑z)12\displaystyle\leq N\frac{h(\epsilon)}{\sqrt{\delta}}\bigg{(}\int_{s}^{t}e^{-\frac{2\lambda(t-z)}{\delta}}dz\bigg{)}^{\frac{1}{2}}
=Nh(ϵ)(0tsδe2λz𝑑z)12CN,λh(ϵ)δ12(ts)12\displaystyle=Nh(\epsilon)\bigg{(}\int_{0}^{\frac{t-s}{\delta}}e^{-2\lambda z}dz\bigg{)}^{\frac{1}{2}}\leq C_{N,\lambda}h(\epsilon)\delta^{-\frac{1}{2}}(t-s)^{\frac{1}{2}}

with probability 11. Thus, for β1/2\beta\leq 1/2,

𝔼supt,s[0,T],tsJ4ϵ,u(s,t)|ts|βCh(ϵ)δ1/2.\mathbb{E}\sup_{t,s\in[0,T],t\neq s}\frac{\big{\|}J^{\epsilon,u}_{4}(s,t)\big{\|}_{\mathcal{H}}}{|t-s|^{\beta}}\leq Ch(\epsilon)\delta^{-1/2}. (64)

The analysis for J5ϵ,uJ^{\epsilon,u}_{5} is similar to J3ϵ,uJ^{\epsilon,u}_{3}. In particular,

J5ϵ,u(s,t)\displaystyle\big{\|}J^{\epsilon,u}_{5}(s,t)\big{\|}_{\mathcal{H}} (Ch(ϵ)δ)δθ/2(ts)θ/20s(A2)θ/2S2(szδ)u2(z)𝑑z\displaystyle\leq\bigg{(}\frac{Ch(\epsilon)}{\sqrt{\delta}}\bigg{)}\delta^{-\theta/2}(t-s)^{\theta/2}\int_{0}^{s}\bigg{\|}(-A_{2})^{\theta/2}S_{2}\bigg{(}\frac{s-z}{\delta}\bigg{)}u_{2}(z)\bigg{\|}_{\mathcal{H}}dz
Ch(ϵ)δθ/2(ts)θ/2(1δ)(0s(szδ)(ρ+θ)eλ(sz)2δ𝑑z)12u2L2([0,T];)\displaystyle\leq Ch(\epsilon)\delta^{-\theta/2}(t-s)^{\theta/2}\bigg{(}\frac{1}{\sqrt{\delta}}\bigg{)}\bigg{(}\int_{0}^{s}\bigg{(}\frac{s-z}{\delta}\bigg{)}^{-(\rho+\theta)}e^{-\frac{\lambda(s-z)}{2\delta}}dz\bigg{)}^{\frac{1}{2}}\|u_{2}\|_{L^{2}([0,T];\mathcal{H})}
CNh(ϵ)δθ/2(ts)θ/2(0ζρ+θeλζ/2𝑑ζ)12\displaystyle\leq C_{N}h(\epsilon)\delta^{-\theta/2}(t-s)^{\theta/2}\bigg{(}\int_{0}^{\infty}\zeta^{-\rho+\theta}e^{-\lambda\zeta/2}d\zeta\bigg{)}^{\frac{1}{2}}
Cλh(ϵ)δθ/2(ts)θ/2(Γ(1ρθ))12,\displaystyle\leq C_{\lambda}h(\epsilon)\delta^{-\theta/2}(t-s)^{\theta/2}(\Gamma(1-\rho-\theta))^{\frac{1}{2}},

where we have chosen ρ(1/2,1)\rho\in(1/2,1) and θ(0,1/2)\theta\in(0,1/2) to satisfy ρ+θ<1\rho+\theta<1. Thus, for β<θ/2<1/4\beta<\theta/2<1/4

𝔼supt,s[0,T],tsJ5ϵ,u(s,t)|ts|βCh(ϵ)δ1/2.\mathbb{E}\sup_{t,s\in[0,T],t\neq s}\frac{\big{\|}J^{\epsilon,u}_{5}(s,t)\big{\|}_{\mathcal{H}}}{|t-s|^{\beta}}\leq Ch(\epsilon)\delta^{-1/2}. (65)

Finally, from (182) (see Appendix A), there exists β<1/4\beta<1/4 such that

𝔼supt,s[0,T],tsJ6ϵ,u(s,t)|ts|β\displaystyle\mathbb{E}\sup_{t,s\in[0,T],t\neq s}\frac{\big{\|}J^{\epsilon,u}_{6}(s,t)\big{\|}_{\mathcal{H}}}{|t-s|^{\beta}} =𝔼[wA2δ]Cβ([0,T];)\displaystyle=\mathbb{E}\big{[}w_{A_{2}}^{\delta}\big{]}_{C^{\beta}([0,T];\mathcal{H})} Cδρ12Cδ1/4\displaystyle\leq C\delta^{\frac{\rho-1}{2}}\leq C\delta^{-1/4} (66)

and the latter holds since ρ(1/2,1/2+2β)\rho\in(1/2,1/2+2\beta). The argument is complete upon combining (61)-(66). ∎

Before we conclude this section, let us gather some auxiliary estimates regarding the spatio-temporal regularity of the solution X¯\bar{X} of the averaged slow equation (2). These will be needed in the subsequent analysis of the controlled moderate deviations process ηϵ,u\eta^{\epsilon,u}.

Lemma 4.2.

(i) For T<T<\infty, there exists a constant C>0C>0 such that

supt[0,T]X¯(t)2\displaystyle\sup_{t\in[0,T]}\|\bar{X}(t)\|^{2}_{\mathcal{H}} C(1+x02).\displaystyle\leq C(1+\|x_{0}\|^{2}_{\mathcal{H}}). (67)

(ii) Let T<T<\infty, a>0a>0 and x0Ha(0,L)x_{0}\in H^{a}(0,L). For all θ<14a2\theta<\frac{1}{4}\land\frac{a}{2}, there exists a constant C>0C>0 such that

X¯Cθ([0,T];)C(1+x0Ha).\|\bar{X}\|_{C^{\theta}([0,T];\mathcal{H})}\leq C\big{(}1+\|x_{0}\|_{H^{a}}\big{)}. (68)

(iii) Let T<,a(0,2]T<\infty,a\in(0,2] and x0Ha(0,L)x_{0}\in H^{a}(0,L). Then, for all t>0t>0 we have X¯(t)Dom(A1)\bar{X}(t)\in Dom(A_{1}). Moreover, there exists C>0C>0 independent of tt such that for all t(0,T]t\in(0,T]

A1X¯(t)\displaystyle\big{\|}A_{1}\bar{X}(t)\big{\|}_{\mathcal{H}} C(ta21x0Ha+1+x0Ha).\displaystyle\leq C\big{(}t^{\frac{a}{2}-1}\|x_{0}\|_{H^{a}}+1+\big{\|}x_{0}\|_{H^{a}}\big{)}. (69)

To prove these estimates, one has to use the Lipschitz continuity of F¯\bar{F} (see Lemma 3.1) along with the smoothing property (13) of the analytic semigroup S1S_{1}. These results are well-known and we will only present the proof of (69) in Appendix A.

5. A priori bounds for ηϵ,u\eta^{\epsilon,u} and the Kolmogorov equation

In this section we aim to prove regularity estimates for the controlled moderate deviation process ηϵ,u\eta^{\epsilon,u}, in Regimes 11 and 22, that are uniform over controls u𝒫NTu\in\mathcal{P}_{N}^{T} and small values of ϵ\epsilon. These will be used to show that the family {ηϵ,u,ϵ(0,1),u𝒫NT}\{\eta^{\epsilon,u},\epsilon\in(0,1),u\in\mathcal{P}^{T}_{N}\} is tight in C([0,T];)C([0,T];\mathcal{H}) (see Lemma 6.1 in Section 6). To be precise, we are interested in studying the spatial Sobolev and temporal Hölder regularity of the process ηϵ,u\eta^{\epsilon,u}. The main result of this section is given below:

Proposition 5.1.

Let T<T<\infty, a>0a>0 and x0,y0Ha(0,L)x_{0},y_{0}\in H^{a}(0,L). With ν\nu as in Hypotheses 3(a) and in both Regimes 11 and 22, there exist θ<(12ν)a\theta<(\frac{1}{2}-\nu)\wedge a, β<(14ν2)a2\beta<(\frac{1}{4}-\frac{\nu}{2})\wedge\frac{a}{2}, ϵ0>0\epsilon_{0}>0 and C>0C>0 independent of ϵ\epsilon such that
(i)

sup0<ϵ<ϵ0,u𝒫NT𝔼supt[0,T]ηϵ,u(t)Hθ2C(1+x0Ha2+y0Ha2)\sup_{0<\epsilon<\epsilon_{0},u\in\mathcal{P}_{N}^{T}}\mathbb{E}\sup_{t\in[0,T]}\|\eta^{\epsilon,u}(t)\|^{2}_{H^{\theta}}\leq C\big{(}1+\|x_{0}\|^{2}_{H^{a}}+\|y_{0}\|^{2}_{H^{a}}\big{)} (70)

(ii)

sup0<ϵ<ϵ0,u𝒫NT𝔼[ηϵ,u]Cβ([0,T];)C(1+x0Ha+y0Ha).\displaystyle\sup_{0<\epsilon<\epsilon_{0},u\in\mathcal{P}_{N}^{T}}\mathbb{E}\big{[}\eta^{\epsilon,u}\big{]}_{C^{\beta}([0,T];\mathcal{H})}\leq C\big{(}1+\|x_{0}\|_{H^{a}}+\|y_{0}\|_{H^{a}}\big{)}. (71)

To prove these estimates, we use a generalized version of decomposition (28). In particular, we fix θ[0,1/2),0s<tT\theta\in[0,1/2),0\leq s<t\leq T, χDom((A1)1+θ2)\chi\in Dom((-A_{1})^{1+\frac{\theta}{2}}) and write

ηϵ,u(t)\displaystyle\big{\langle}\eta^{\epsilon,u}(t) ηϵ,u(s)(S1(ts)I)ηϵ,u(s),(A1)θ2χ\displaystyle-\eta^{\epsilon,u}(s)-\big{(}S_{1}(t-s)-I\big{)}\eta^{\epsilon,u}(s),(-A_{1})^{\frac{\theta}{2}}\chi\big{\rangle}_{\mathcal{H}} (72)
=1ϵh(ϵ)stF(Xϵ,u(z),Yϵ,u(z))F(X¯(z),Yϵ,u(z)),S1(tz)(A1)θ2χ𝑑z\displaystyle=\frac{1}{\sqrt{\epsilon}h(\epsilon)}\int_{s}^{t}\big{\langle}F\big{(}X^{\epsilon,u}(z),Y^{\epsilon,u}(z)\big{)}-F\big{(}\bar{X}(z),Y^{\epsilon,u}(z)\big{)},S_{1}(t-z)(-A_{1})^{\frac{\theta}{2}}\chi\rangle_{\mathcal{H}}dz
+stS1(tz)Σ(Xϵ,u(z),Yϵ,u(z))u1(z),(A1)θ2χ𝑑z\displaystyle+\int_{s}^{t}\big{\langle}S_{1}(t-z)\Sigma\big{(}X^{\epsilon,u}(z),Y^{\epsilon,u}(z)\big{)}u_{1}(z),(-A_{1})^{\frac{\theta}{2}}\chi\rangle_{\mathcal{H}}dz
+1h(ϵ)stS1(tz)Σ(Xϵ,u(z),Yϵ,u(z))dw1(z),(A1)θ2χ\displaystyle+\frac{1}{h(\epsilon)}\int_{s}^{t}\langle S_{1}(t-z)\Sigma\big{(}X^{\epsilon,u}(z),Y^{\epsilon,u}(z)\big{)}dw_{1}(z),(-A_{1})^{\frac{\theta}{2}}\chi\rangle_{\mathcal{H}}
+1ϵh(ϵ)stF(X¯(z),Yϵ,u(z))F¯(X¯(z)),S1(tz)(A1)θ2χ𝑑z\displaystyle+\frac{1}{\sqrt{\epsilon}h(\epsilon)}\int_{s}^{t}\big{\langle}F\big{(}\bar{X}(z),Y^{\epsilon,u}(z)\big{)}-\bar{F}\big{(}\bar{X}(z)\big{)},S_{1}(t-z)(-A_{1})^{\frac{\theta}{2}}\chi\rangle_{\mathcal{H}}dz
=:Iϵ,u(s,t,θ,χ)+IIϵ,u(s,t,θ,χ)+IIIϵ,u(s,t,θ,χ)+IVϵ,u(s,t,θ,χ).\displaystyle=:I^{\epsilon,u}(s,t,\theta,\chi)+II^{\epsilon,u}(s,t,\theta,\chi)+III^{\epsilon,u}(s,t,\theta,\chi)+IV^{\epsilon,u}(s,t,\theta,\chi).

This decomposition allows us to study spatio-temporal regularity in a unified manner. In Section 5.1 we provide the necessary estimates for the terms Iϵ,uI^{\epsilon,u}, IIϵ,uII^{\epsilon,u}, IIIϵ,uIII^{\epsilon,u}. As we mentioned in Section 3, the term IVϵ,uIV^{\epsilon,u} requires a more careful analysis, which is done with the aid of the Kolmogorov equation (29). This is the subject of Section 5.2. Finally, we prove Proposition 5.1 in Section 5.3.

Remark 9.

The reason for choosing our test functions χDom((A1)1+θ2)\chi\in Dom((-A_{1})^{1+\frac{\theta}{2}}) is related to the treatment of term IVϵ,uIV^{\epsilon,u} and will become clear in Section 5.2 (see Lemma 5.4).

5.1. Estimates for Iϵ,uI^{\epsilon,u}, IIϵ,uII^{\epsilon,u}, IIIϵ,uIII^{\epsilon,u}

The proofs of the three lemmas in this section have the following structure: First, we prove a preliminary space-time estimate which depends linearly and continuously on the test function χ\chi in the topology of \mathcal{H}. Since χ\chi is smooth, we can extend the latter by density to arbitrary test functions in \mathcal{H}. Finally, we set s=0s=0 to prove a spatial Sobolev-type estimate, or θ=0\theta=0 to prove a temporal equicontinuity-type estimate, uniformly over χB\chi\in B_{\mathcal{H}}. These estimates hold in both Regimes 11 and 22 (see (4)).

Lemma 5.1.

Let T<T<\infty, t[0,T]t\in[0,T], θ[0,1/2)\theta\in[0,1/2) and Iϵ,uI^{\epsilon,u} as in (72). For all ϵ>0,u𝒫NT\epsilon>0,u\in\mathcal{P}^{T}_{N}, there exists a constant C>0C>0, independent of ϵ\epsilon, such that

supχB|Iϵ,u(0,t,θ,χ)|2C0t(tz)θsupr[0,z]ηϵ,u(r)2dz,a.s.\displaystyle\sup_{\chi\in B_{\mathcal{H}}}\big{|}I^{\epsilon,u}(0,t,\theta,\chi)\big{|}^{2}\leq C\int_{0}^{t}(t-z)^{-\theta}\sup_{r\in[0,z]}\big{\|}\eta^{\epsilon,u}(r)\big{\|}^{2}_{\mathcal{H}}dz,\;\;\mathbb{P}-\text{a.s.} (73)

and

𝔼(suptss,t[0,T]supχB|Iϵ,u(s,t,0,χ)||ts|)C𝔼supt[0,T]ηϵ,u(t).\displaystyle\mathbb{E}\bigg{(}\sup_{\overset{s,t\in[0,T]}{t\neq s}}\sup_{\chi\in B_{\mathcal{H}}}\frac{\big{|}I^{\epsilon,u}(s,t,0,\chi)\big{|}}{|t-s|}\bigg{)}\leq C\mathbb{E}\sup_{t\in[0,T]}\big{\|}\eta^{\epsilon,u}(t)\big{\|}_{\mathcal{H}}\;. (74)
Proof.

Let χDom((A1)1+θ/2)\chi\in Dom((-A_{1})^{1+\theta/2}). Using the analyticity of the semigroup S1S_{1} and the Lipschitz continuity of FF,

|Iϵ,u(s,t,θ,χ)|\displaystyle\big{|}I^{\epsilon,u}(s,t,\theta,\chi)\big{|} 1ϵh(ϵ)st(A1)θ2S1(tz)[F(Xϵ,u(z),Yϵ,u(z))F(X¯(z),Yϵ,u(z))]χ𝑑z\displaystyle\leq\frac{1}{\sqrt{\epsilon}h(\epsilon)}\int_{s}^{t}\big{\|}(-A_{1})^{\frac{\theta}{2}}S_{1}(t-z)\big{[}F\big{(}X^{\epsilon,u}(z),Y^{\epsilon,u}(z)\big{)}-F\big{(}\bar{X}(z),Y^{\epsilon,u}(z)\big{)}\big{]}\big{\|}_{\mathcal{H}}\|\chi\|_{\mathcal{H}}\;dz
Cfϵh(ϵ)χst(tz)θ/2Xϵ,u(z)X¯(z)𝑑z\displaystyle\leq\frac{C_{f}}{\sqrt{\epsilon}h(\epsilon)}\|\chi\|_{\mathcal{H}}\int_{s}^{t}(t-z)^{-\theta/2}\big{\|}X^{\epsilon,u}(z)-\bar{X}(z)\big{\|}_{\mathcal{H}}\;dz
Cχst(tz)θ/2supr[s,z]ηϵ,u(r)dz.\displaystyle\leq C\|\chi\|_{\mathcal{H}}\int_{s}^{t}(t-z)^{-\theta/2}\sup_{r\in[s,z]}\big{\|}\eta^{\epsilon,u}(r)\big{\|}_{\mathcal{H}}\;dz.

Since Dom((A1)1+θ2)Dom((-A_{1})^{1+\frac{\theta}{2}}) is dense as a subspace of \mathcal{H}, we can approximate any element of \mathcal{H} by a sequence {χm}mDom((A1)1+θ2)\{\chi_{m}\}_{m\in\mathbb{N}}\subset Dom((-A_{1})^{1+\frac{\theta}{2}}) in the topology of \mathcal{H}. Hence the last estimate holds, with probability 11, for each χ\chi\in\mathcal{H}. Choosing χB\chi\in B_{\mathcal{H}}, we set s=0s=0 and take expectation to obtain (73). Setting θ=0\theta=0 yields

|Iϵ,u(s,t,0,χ)|C(ts)supt[0,T]ηϵ,u(t)\displaystyle\big{|}I^{\epsilon,u}(s,t,0,\chi)\big{|}\leq C(t-s)\sup_{t\in[0,T]}\big{\|}\eta^{\epsilon,u}(t)\big{\|}_{\mathcal{H}}

and (74) follows by taking expectation. The proof is complete. ∎

Lemma 5.2.

Let T<,T<\infty, x0,y0x_{0},y_{0}\in\mathcal{H}, ν<1/2\nu<1/2 as in Hypothesis 3(a) and IIϵ,uII^{\epsilon,u} as in (72). There exist θ<1/2ν\theta<1/2-\nu, β<1/4ν/2\beta<1/4-\nu/2 and a constant C>0C>0, independent of ϵ\epsilon, such that

supϵ>0,u𝒫NT𝔼(supt[0,T]supχB|IIϵ,u(0,t,θ,χ)|2ν)C(1+x02ν+y02ν)\displaystyle\sup_{\epsilon>0,u\in\mathcal{P}^{T}_{N}}\mathbb{E}\bigg{(}\sup_{t\in[0,T]}\sup_{\chi\in B_{\mathcal{H}}}\big{|}II^{\epsilon,u}(0,t,\theta,\chi)\big{|}^{\frac{2}{\nu}}\bigg{)}\leq C\big{(}1+\|x_{0}\|_{\mathcal{H}}^{\frac{2}{\nu}}+\|y_{0}\|^{\frac{2}{\nu}}_{\mathcal{H}}\big{)} (75)

and

supϵ>0,u𝒫NT𝔼(suptss,t[0,T]supχB|IIϵ,u(s,t,0,χ)||ts|β)C(1+x0+y0).\displaystyle\sup_{\epsilon>0,u\in\mathcal{P}^{T}_{N}}\mathbb{E}\bigg{(}\sup_{\overset{s,t\in[0,T]}{t\neq s}}\sup_{\chi\in B_{\mathcal{H}}}\frac{\big{|}II^{\epsilon,u}(s,t,0,\chi)\big{|}}{|t-s|^{\beta}}\bigg{)}\leq C\big{(}1+\|x_{0}\|_{\mathcal{H}}+\|y_{0}\|_{\mathcal{H}}\big{)}. (76)
Proof.

Let χDom((A1)1+θ2)\chi\in Dom((-A_{1})^{1+\frac{\theta}{2}}). An application of Lemma A.1(i) yields

|IIϵ,u(s,t,θ,χ)\displaystyle|II^{\epsilon,u}(s,t,\theta,\chi) |st(A1)θ2S1(tz)Σ(Xϵ,u(z),Yϵ,u(z))u1(z)χdz\displaystyle\big{|}\leq\int_{s}^{t}\|(-A_{1})^{\frac{\theta}{2}}S_{1}(t-z)\Sigma\big{(}X^{\epsilon,u}(z),Y^{\epsilon,u}(z)\big{)}u_{1}(z)\|_{\mathcal{H}}\|\chi\|_{\mathcal{H}}dz
Cχst(tz)(ρ+θ)/2Σ(Xϵ,u(z),Yϵ,u(z))(L(0,L);)u1(z)𝑑z\displaystyle\leq C\|\chi\|_{\mathcal{H}}\int_{s}^{t}(t-z)^{-(\rho+\theta)/2}\big{\|}\Sigma^{*}\big{(}X^{\epsilon,u}(z),Y^{\epsilon,u}(z)\big{)}\big{\|}_{\mathscr{L}(L^{\infty}(0,L);\mathcal{H})}\|u_{1}(z)\|_{\mathcal{H}}dz
Cχst(tz)(ρ+θ)/2(1+Xϵ,u(z)+Yϵ,u(z)ν)u1(z)𝑑z,\displaystyle\leq C\|\chi\|_{\mathcal{H}}\int_{s}^{t}(t-z)^{-(\rho+\theta)/2}\bigg{(}1+\big{\|}X^{\epsilon,u}(z)\big{\|}_{\mathcal{H}}+\big{\|}Y^{\epsilon,u}(z)\big{\|}^{\nu}_{\mathcal{H}}\bigg{)}\|u_{1}(z)\|_{\mathcal{H}}dz,

where ρ(1/2,1)\rho\in(1/2,1) and we used Hypothesis 3(a) to obtain the third line. Using a density argument as in the proof of Lemma 5.1 it follows that the estimate holds for each χ\chi\in\mathcal{H}. Choosing χB\chi\in B_{\mathcal{H}}, we apply the Cauchy-Schwarz inequality to deduce that

|IIϵ,u(s,t,θ,χ)|\displaystyle|II^{\epsilon,u}(s,t,\theta,\chi)\big{|} C(0Tu1(z)2𝑑z)1/2[st(tz)ρθ(1+Xϵ,u(z)2+Yϵ,u(z)2ν)𝑑z]12,\displaystyle\leq C\bigg{(}\int_{0}^{T}\|u_{1}(z)\|^{2}_{\mathcal{H}}dz\bigg{)}^{1/2}\bigg{[}\int_{s}^{t}(t-z)^{-\rho-\theta}\bigg{(}1+\big{\|}X^{\epsilon,u}(z)\big{\|}^{2}_{\mathcal{H}}+\big{\|}Y^{\epsilon,u}(z)\big{\|}^{2\nu}_{\mathcal{H}}\bigg{)}dz\bigg{]}^{\frac{1}{2}},

with probability 11. Applying Hölder’s inequality with p=1/νp=1/\nu, q=1/(1ν)q=1/(1-\nu)

|IIϵ,u(s,t,θ,χ)|\displaystyle|II^{\epsilon,u}(s,t,\theta,\chi)\big{|} CN[0tszq(ρ+θ)𝑑z]12q[0T(1+Xϵ,u(z)2/ν+Yϵ,u(z)2)𝑑z]ν2.\displaystyle\leq CN\bigg{[}\int_{0}^{t-s}z^{-q(\rho+\theta)}dz\bigg{]}^{\frac{1}{2q}}\bigg{[}\int_{0}^{T}\bigg{(}1+\big{\|}X^{\epsilon,u}(z)\big{\|}^{2/\nu}_{\mathcal{H}}+\big{\|}Y^{\epsilon,u}(z)\big{\|}^{2}_{\mathcal{H}}\bigg{)}dz\bigg{]}^{\frac{\nu}{2}}. (77)

Since ν<1/2\nu<1/2 we can choose ρ(1/2,1ν)\rho\in(1/2,1-\nu) and θ<1νρ=ρ+1/q\theta<1-\nu-\rho=-\rho+1/q so that 0tszq(ρ+θ)𝑑zCT1q(ρ+θ)\int_{0}^{t-s}z^{-q(\rho+\theta)}dz\leq CT^{1-q(\rho+\theta)}. Setting s=0s=0 in (77) we obtain

|IIϵ,u(0,t,θ,χ)|\displaystyle|II^{\epsilon,u}(0,t,\theta,\chi)\big{|} CNT(1νρθ)/2[1+supt[0,T]Xϵ,u(z)2/ν+0TYϵ,u(z)2𝑑z]ν2\displaystyle\leq C_{N}T^{(1-\nu-\rho-\theta)/2}\bigg{[}1+\sup_{t\in[0,T]}\big{\|}X^{\epsilon,u}(z)\big{\|}^{2/\nu}_{\mathcal{H}}+\int_{0}^{T}\big{\|}Y^{\epsilon,u}(z)\big{\|}^{2}_{\mathcal{H}}dz\bigg{]}^{\frac{\nu}{2}}

and (75) follows by taking expectation and applying (57) and (58). As for (76), we set θ=0\theta=0 in (77) to deduce that

|IIϵ,u(s,t,θ,χ)|(ts)β\displaystyle\frac{|II^{\epsilon,u}(s,t,\theta,\chi)\big{|}}{(t-s)^{\beta}} C[1+supt[0,T]Xϵ,u(z)2/ν+0TYϵ,u(z)2𝑑z]ν2,\displaystyle\leq C\bigg{[}1+\sup_{t\in[0,T]}\big{\|}X^{\epsilon,u}(z)\big{\|}^{2/\nu}_{\mathcal{H}}+\int_{0}^{T}\big{\|}Y^{\epsilon,u}(z)\big{\|}^{2}_{\mathcal{H}}dz\bigg{]}^{\frac{\nu}{2}},

for β(1νρ)/2<(1ν)/2\beta\leq(1-\nu-\rho)/2<(1-\nu)/2. In view of the a priori bounds (57) and (58), the proof is complete.∎

Lemma 5.3.

Let T<T<\infty, ν<1/2\nu<1/2 as in Hypothesis 3(a) and IIIϵ,uIII^{\epsilon,u} as in (72) . There exist ϵ0>0\epsilon_{0}>0, θ<12ν\theta<\frac{1}{2}-\nu, β<14ν2\beta<\frac{1}{4}-\frac{\nu}{2} and a constant C>0C>0, independent of ϵ\epsilon, such that

supϵ<ϵ0,u𝒫NT𝔼(supt[0,T]supχB|IIIϵ,u(0,t,θ,χ)|2ν)C(1+x02ν+y02ν)\displaystyle\sup_{\epsilon<\epsilon_{0},u\in\mathcal{P}^{T}_{N}}\mathbb{E}\bigg{(}\sup_{t\in[0,T]}\sup_{\chi\in B_{\mathcal{H}}}\big{|}III^{\epsilon,u}(0,t,\theta,\chi)\big{|}^{\frac{2}{\nu}}\bigg{)}\leq C\big{(}1+\|x_{0}\|^{\frac{2}{\nu}}_{\mathcal{H}}+\|y_{0}\|_{\mathcal{H}}^{\frac{2}{\nu}}\big{)} (78)

and

supϵ<ϵ0,u𝒫NT𝔼(suptss,t[0,T]supχB|IIIϵ,u(s,t,0,χ)||ts|β)C(1+x0+y0).\displaystyle\sup_{\epsilon<\epsilon_{0},u\in\mathcal{P}^{T}_{N}}\mathbb{E}\bigg{(}\sup_{\overset{s,t\in[0,T]}{t\neq s}}\sup_{\chi\in B_{\mathcal{H}}}\frac{\big{|}III^{\epsilon,u}(s,t,0,\chi)\big{|}}{|t-s|^{\beta}}\bigg{)}\leq C\big{(}1+\|x_{0}\|_{\mathcal{H}}+\|y_{0}\|_{\mathcal{H}}\big{)}. (79)
Proof.

Let θ[0,1/2)\theta\in[0,1/2), χDom((A1)1+θ2)\chi\in Dom((-A_{1})^{1+\frac{\theta}{2}}) and a(0,1/2)a\in(0,1/2). From the stochastic factorization formula (176) we can write

IIIϵ,u(s,t,θ,χ)=sin(aπ)h(ϵ)πst(tz)a1(A1)θ2S1(tz)Maϵ,u(s,z,z;1)𝑑z,χ,III^{\epsilon,u}(s,t,\theta,\chi)=\frac{\sin(a\pi)}{h(\epsilon)\pi}\bigg{\langle}\int_{s}^{t}(t-z)^{a-1}(-A_{1})^{\frac{\theta}{2}}S_{1}(t-z)M^{\epsilon,u}_{a}(s,z,z;1)dz\;,\chi\bigg{\rangle}_{\mathcal{H}}\;,

where, for t1t2t3t_{1}\leq t_{2}\leq t_{3},

Maϵ,u(t1,t2,t3;1):=t1t2(t3ζ)aS1(t3ζ)Σ(Xϵ,u(ζ),Yϵ,u(ζ))𝑑w1(ζ).M^{\epsilon,u}_{a}(t_{1},t_{2},t_{3};1):=\int_{t_{1}}^{t_{2}}(t_{3}-\zeta)^{-a}S_{1}(t_{3}-\zeta)\Sigma\big{(}X^{\epsilon,u}(\zeta),Y^{\epsilon,u}(\zeta)\big{)}dw_{1}(\zeta).

Thus,

|IIIϵ,u(s,t,θ,χ)|Cah(ϵ)χst(tz)a1(A1)θ2Maϵ,u(s,z,z;1)𝑑z.\displaystyle\big{|}III^{\epsilon,u}(s,t,\theta,\chi)\big{|}\leq\frac{C_{a}}{h(\epsilon)}\|\chi\|_{\mathcal{H}}\int_{s}^{t}(t-z)^{a-1}\big{\|}(-A_{1})^{\frac{\theta}{2}}M^{\epsilon,u}_{a}(s,z,z;1)\big{\|}_{\mathcal{H}}dz. (80)

From a density argument (see proof of Lemma 5.1), the last estimate holds with probability 11 for all χB\chi\in B_{\mathcal{H}}.

We start by proving (79). To this end, set θ=0\theta=0 in (80) and apply Hölder’s inequality for q>1/a>2q>1/a>2 to deduce that

|IIIϵ,u(s,t,0,χ)|\displaystyle\big{|}III^{\epsilon,u}(s,t,0,\chi)\big{|} Cah(ϵ)χst(tz)a1Maϵ,u(s,z,z;1)𝑑z\displaystyle\leq\frac{C_{a}}{h(\epsilon)}\|\chi\|_{\mathcal{H}}\int_{s}^{t}(t-z)^{a-1}\big{\|}M^{\epsilon,u}_{a}(s,z,z;1)\big{\|}_{\mathcal{H}}dz
Ch(ϵ)χ(st(tz)p(a1)𝑑z)1p(stMaϵ,u(s,z,z;1)q𝑑z)1q.\displaystyle\leq\frac{C}{h(\epsilon)}\|\chi\|_{\mathcal{H}}\bigg{(}\int_{s}^{t}(t-z)^{p(a-1)}dz\bigg{)}^{\frac{1}{p}}\bigg{(}\int_{s}^{t}\big{\|}M^{\epsilon,u}_{a}(s,z,z;1)\big{\|}^{q}_{\mathcal{H}}dz\bigg{)}^{\frac{1}{q}}.

Since Maϵ,u(s,z,z)=Maϵ,u(0,z,z;1)Maϵ,u(0,s,z;1),M^{\epsilon,u}_{a}(s,z,z)=M^{\epsilon,u}_{a}(0,z,z;1)-M^{\epsilon,u}_{a}(0,s,z;1),

h(ϵ)supχB|IIIϵ,u(s,t,0,χ)|(ts)a1/q\displaystyle h(\epsilon)\sup_{\chi\in B_{\mathcal{H}}}\frac{\big{|}III^{\epsilon,u}(s,t,0,\chi)\big{|}}{(t-s)^{a-1/q}} Cq(0Tsups[0,z]Maϵ,u(0,s,z;1)qdz)1q.\displaystyle\leq C_{q}\bigg{(}\int_{0}^{T}\sup_{s\in[0,z]}\big{\|}M^{\epsilon,u}_{a}(0,s,z;1)\big{\|}^{q}_{\mathcal{H}}dz\bigg{)}^{\frac{1}{q}}.

Taking expectation, we apply Jensen’s inequality followed by the Burkholder-Davis-Gundy inequality to obtain

𝔼suptss,t[0,T]\displaystyle\mathbb{E}\sup_{\overset{s,t\in[0,T]}{t\neq s}} supχB|IIIϵ,u(s,t,0,χ)||ts|a1/qCh(ϵ)(0T𝔼sups[0,z]Maϵ,u(0,s,z;1)qdz)1q\displaystyle\sup_{\chi\in B_{\mathcal{H}}}\frac{\big{|}III^{\epsilon,u}(s,t,0,\chi)\big{|}}{|t-s|^{a-1/q}}\leq\frac{C}{h(\epsilon)}\bigg{(}\int_{0}^{T}\mathbb{E}\sup_{s\in[0,z]}\big{\|}M^{\epsilon,u}_{a}(0,s,z;1)\big{\|}^{q}_{\mathcal{H}}dz\bigg{)}^{\frac{1}{q}}
Ch(ϵ)(0T(0z(tζ)2a𝔼S1(tζ)Σ(Xϵ,u(ζ),Yϵ,u(ζ))2()2𝑑w1(ζ))q2𝑑z)1q.\displaystyle\leq\frac{C}{h(\epsilon)}\bigg{(}\int_{0}^{T}\bigg{(}\int_{0}^{z}(t-\zeta)^{-2a}\mathbb{E}\|S_{1}(t-\zeta)\Sigma\big{(}X^{\epsilon,u}(\zeta),Y^{\epsilon,u}(\zeta)\big{)}\|^{2}_{\mathscr{L}_{2}(\mathcal{H})}dw_{1}(\zeta)\bigg{)}^{\frac{q}{2}}dz\bigg{)}^{\frac{1}{q}}.

From Lemma A.1(ii) (with B=Σ(Xϵ,u(),Yϵ,u()),Pn=IB=\Sigma(X^{\epsilon,u}(\cdot),Y^{\epsilon,u}(\cdot)),P_{n}=I) and Hypothesis 3(a)

𝔼\displaystyle\mathbb{E} suptss,t[0,T]supχB|IIIϵ,u(s,t,0,χ)||ts|a1/qCh(ϵ)(0T(0z(zζ)2aρ(1+𝔼Xϵ,u(ζ)2+𝔼Yϵ,u(ζ)2ν)𝑑ζ)q2𝑑z)1q.\displaystyle\sup_{\overset{s,t\in[0,T]}{t\neq s}}\sup_{\chi\in B_{\mathcal{H}}}\frac{\big{|}III^{\epsilon,u}(s,t,0,\chi)\big{|}}{|t-s|^{a-1/q}}\leq\frac{C}{h(\epsilon)}\bigg{(}\int_{0}^{T}\bigg{(}\int_{0}^{z}(z-\zeta)^{-2a-\rho}\bigg{(}1+\mathbb{E}\big{\|}X^{\epsilon,u}(\zeta)\big{\|}^{2}_{\mathcal{H}}+\mathbb{E}\big{\|}Y^{\epsilon,u}(\zeta)\big{\|}^{2\nu}_{\mathcal{H}}\bigg{)}d\zeta\bigg{)}^{\frac{q}{2}}dz\bigg{)}^{\frac{1}{q}}. (81)

Next, choose a<14ν2(0,1/4)a<\frac{1}{4}-\frac{\nu}{2}\in(0,1/4) and ρ<1ν2a(1/2,1)\rho<1-\nu-2a\in(1/2,1). Applying Hölder’s inequality with exponents 1/ν1/\nu and 1/(1ν)1/(1-\nu), followed by Jensen’s inequality, we obtain

𝔼0z(zζ)2aρ\displaystyle\mathbb{E}\int_{0}^{z}(z-\zeta)^{-2a-\rho} (1+Xϵ,u(ζ)2+Yϵ,u(ζ)2ν)dζCT1ν2aρ[0T(1+𝔼Xϵ,u(ζ)2ν+𝔼Yϵ,u(ζ)2)𝑑ζ]ν.\displaystyle\bigg{(}1+\big{\|}X^{\epsilon,u}(\zeta)\big{\|}_{\mathcal{H}}^{2}+\big{\|}Y^{\epsilon,u}(\zeta)\big{\|}_{\mathcal{H}}^{2\nu}\bigg{)}d\zeta\leq CT^{1-\nu-2a-\rho}\bigg{[}\int_{0}^{T}\bigg{(}1+\mathbb{E}\big{\|}X^{\epsilon,u}(\zeta)\big{\|}_{\mathcal{H}}^{\frac{2}{\nu}}+\mathbb{E}\big{\|}Y^{\epsilon,u}(\zeta)\big{\|}_{\mathcal{H}}^{2}\bigg{)}d\zeta\bigg{]}^{\nu}.

Letting q=2/ν>2q=2/\nu>2, it follows that

[0T(𝔼\displaystyle\bigg{[}\int_{0}^{T}\bigg{(}\mathbb{E} 0z(zζ)2aρ(1+Xϵ,u(ζ)2+Yϵ,u(ζ)2ν)dζ)q2dz]1q\displaystyle\int_{0}^{z}(z-\zeta)^{-2a-\rho}\bigg{(}1+\big{\|}X^{\epsilon,u}(\zeta)\big{\|}_{\mathcal{H}}^{2}+\big{\|}Y^{\epsilon,u}(\zeta)\big{\|}_{\mathcal{H}}^{2\nu}\bigg{)}d\zeta\bigg{)}^{\frac{q}{2}}dz\bigg{]}^{\frac{1}{q}}
CTν/2(0T(1+𝔼Xϵ,u(ζ)2/ν+𝔼Yϵ,u(ζ)2)𝑑ζ)ν2.\displaystyle\leq CT^{\nu/2}\bigg{(}\int_{0}^{T}\bigg{(}1+\mathbb{E}\big{\|}X^{\epsilon,u}(\zeta)\big{\|}_{\mathcal{H}}^{2/\nu}+\mathbb{E}\big{\|}Y^{\epsilon,u}(\zeta)\big{\|}_{\mathcal{H}}^{2}\bigg{)}d\zeta\bigg{)}^{\frac{\nu}{2}}.

Combining the latter with (81) yields

𝔼\displaystyle\mathbb{E} suptss,t[0,T]supχB|IIIϵ,u(s,t,0,χ)||ts|a1/qCT,νh(ϵ)(0T(1+𝔼Xϵ,u(ζ)2/ν+𝔼Yϵ,u(ζ)2)𝑑ζ)ν2.\displaystyle\sup_{\overset{s,t\in[0,T]}{t\neq s}}\sup_{\chi\in B_{\mathcal{H}}}\frac{\big{|}III^{\epsilon,u}(s,t,0,\chi)\big{|}}{|t-s|^{a-1/q}}\leq\frac{C_{T,\nu}}{h(\epsilon)}\bigg{(}\int_{0}^{T}\bigg{(}1+\mathbb{E}\big{\|}X^{\epsilon,u}(\zeta)\big{\|}_{\mathcal{H}}^{2/\nu}+\mathbb{E}\big{\|}Y^{\epsilon,u}(\zeta)\big{\|}_{\mathcal{H}}^{2}\bigg{)}d\zeta\bigg{)}^{\frac{\nu}{2}}.

Using estimates (57) and (58) and noting that h(ϵ)h(\epsilon)\to\infty as ϵ0\epsilon\to 0, (79) follows. Similarly, (78) can be proved by setting s=0s=0 in (80). This yields

𝔼(supt[0,T]supχB|IIIϵ,u(0,t,θ,χ)|2ν)Cah(ϵ)𝔼0T(tz)a1S1(tz)Maϵ,u(0,z,z;1)𝑑zHθ2ν\displaystyle\mathbb{E}\bigg{(}\sup_{t\in[0,T]}\sup_{\chi\in B_{\mathcal{H}}}\big{|}III^{\epsilon,u}(0,t,\theta,\chi)\big{|}^{\frac{2}{\nu}}\bigg{)}\leq\frac{C_{a}}{h(\epsilon)}\mathbb{E}\bigg{\|}\int_{0}^{T}(t-z)^{a-1}S_{1}(t-z)M^{\epsilon,u}_{a}(0,z,z;1)dz\bigg{\|}^{\frac{2}{\nu}}_{H^{\theta}}
CaTa1/qh(ϵ)(0T𝔼(A1)θ2Maϵ,u(0,z,z;1)q𝑑z)2νq\displaystyle\leq\frac{C_{a}T^{a-1/q}}{h(\epsilon)}\bigg{(}\int_{0}^{T}\mathbb{E}\big{\|}(-A_{1})^{\frac{\theta}{2}}M^{\epsilon,u}_{a}(0,z,z;1)\big{\|}^{q}_{\mathcal{H}}dz\bigg{)}^{\frac{2}{\nu q}}
CT,ah(ϵ)(0T(0z(zζ)2a𝔼(A1)θ2S1(zζ)Σ(Xϵ,u(ζ),Yϵ,u(ζ))2()2𝑑ζ)q2𝑑z)2qν,\displaystyle\leq\frac{C_{T,a}}{h(\epsilon)}\bigg{(}\int_{0}^{T}\bigg{(}\int_{0}^{z}(z-\zeta)^{-2a}\mathbb{E}\big{\|}(-A_{1})^{\frac{\theta}{2}}S_{1}(z-\zeta)\Sigma\big{(}X^{\epsilon,u}(\zeta),Y^{\epsilon,u}(\zeta)\big{)}\big{\|}^{2}_{\mathscr{L}_{2}(\mathcal{H})}d\zeta\bigg{)}^{\frac{q}{2}}dz\bigg{)}^{\frac{2}{q\nu}},

for θ(0,1/2)\theta\in(0,1/2). In view of (179), we can choose θ<12ν(0,12)\theta<\frac{1}{2}-\nu\in(0,\frac{1}{2}), a<14ν2θ2(0,1/4)a<\frac{1}{4}-\frac{\nu}{2}-\frac{\theta}{2}\in(0,1/4) and ρ<1ν2a(θ+1/2,1)\rho<1-\nu-2a\in(\theta+1/2,1) and then apply Hölder’s inequality with exponents 1/ν1/\nu and 1/(1ν)1/(1-\nu) to obtain

𝔼(supt[0,T]\displaystyle\mathbb{E}\bigg{(}\sup_{t\in[0,T]} supχB|IIIϵ,u(0,t,θ,χ)|2ν)\displaystyle\sup_{\chi\in B_{\mathcal{H}}}\big{|}III^{\epsilon,u}(0,t,\theta,\chi)\big{|}^{\frac{2}{\nu}}\bigg{)}
Ch(ϵ)(0T(0z(zζ)2aρ𝔼Σ(Xϵ,u(ζ),Yϵ,u(ζ))(L(0,L);)2𝑑ζ)q2𝑑z)2qν\displaystyle\leq\frac{C}{h(\epsilon)}\bigg{(}\int_{0}^{T}\bigg{(}\int_{0}^{z}(z-\zeta)^{-2a-\rho}\mathbb{E}\big{\|}\Sigma\big{(}X^{\epsilon,u}(\zeta),Y^{\epsilon,u}(\zeta)\big{)}\big{\|}^{2}_{\mathscr{L}(L^{\infty}(0,L);\mathcal{H})}d\zeta\bigg{)}^{\frac{q}{2}}dz\bigg{)}^{\frac{2}{q\nu}}
C0T(1+𝔼Xϵ,u(ζ)2/ν+𝔼Yϵ,u(ζ)2)𝑑ζ.\displaystyle\leq C\int_{0}^{T}\bigg{(}1+\mathbb{E}\big{\|}X^{\epsilon,u}(\zeta)\big{\|}_{\mathcal{H}}^{2/\nu}+\mathbb{E}\big{\|}Y^{\epsilon,u}(\zeta)\big{\|}_{\mathcal{H}}^{2}\bigg{)}d\zeta.

Noting that a<1/2a<1/2 can be arbitrarily small, we apply (57) and (58) and the result follows. ∎

Remark 10.

The estimates derived in this section do not require any regularity for the initial conditions of the controlled system (25). Such considerations have to be taken into account in the next section.

5.2. The term IVϵ,uIV^{\epsilon,u}

This section is devoted to the analysis of the last term in the decomposition (72). As we mentioned above, this term requires additional work due to the singular coefficient 1/ϵh(ϵ)1/\sqrt{\epsilon}h(\epsilon). Throughout the rest of this paper we choose the small parameter c(ϵ)c(\epsilon) in the Kolmogorov equation (29) to be

c(ϵ):=ϵ.c(\epsilon):=\sqrt{\epsilon}. (82)

Now, let Pn:span{e2,1,,e2,n}P_{n}:\mathcal{H}\rightarrow\text{span}\{e_{2,1},\dots,e_{2,n}\} be an orthogonal projection onto the nn-dimensional subspace spanned by the eigenvectors e2,1,,e2,ne_{2,1},\dots,e_{2,n} of A2A_{2} (see Hypothesis 1(a)), u2,n:=Pnu2u_{2,n}:=P_{n}u_{2} be the projection of the control u2u_{2} and

w2,n(t)=k=1ne2,kw2(t,e2,k)w_{2,n}(t)=\sum_{k=1}^{n}e_{2,k}w_{2}(t,e_{2,k})

be the projection of the cylindrical Wiener process w2w_{2}. Consider the family of nn-dimensional processes

Ynϵ,u:=PnYϵ,u,n.Y_{n}^{\epsilon,u}:=P_{n}Y^{\epsilon,u}\;,\;\;n\in\mathbb{N}.

These processes satisfy the controlled stochastic evolution equations

{dYnϵ,u(t)=1δ[A2Ynϵ,u(t)+PnG(Xϵ,u(t),Yϵ,u(t))]+h(ϵ)δu2,n(t)dt+1δdw2,n(t)t>0,Ynϵ,u(0)=Pny0.\left\{\begin{aligned} &dY_{n}^{\epsilon,u}(t)=\frac{1}{\delta}\big{[}A_{2}Y_{n}^{\epsilon,u}(t)+P_{n}G\big{(}X^{\epsilon,u}(t),Y^{\epsilon,u}(t)\big{)}\big{]}+\frac{h(\epsilon)}{\sqrt{\delta}}u_{2,n}(t)dt+\frac{1}{\sqrt{\delta}}\;dw_{2,n}(t)\\ &t>0,Y_{n}^{\epsilon,u}(0)=P_{n}y_{0}\in\mathcal{H}.\end{aligned}\right. (83)

Next, recall that

IVϵ,u(s,t,θ,χ)=1ϵh(ϵ)stF(X¯(z),Yϵ,u(z))F¯(X¯(z)),S1(tz)(A1)θ2χ𝑑z.IV^{\epsilon,u}(s,t,\theta,\chi)=\frac{1}{\sqrt{\epsilon}h(\epsilon)}\int_{s}^{t}\big{\langle}F\big{(}\bar{X}(z),Y^{\epsilon,u}(z)\big{)}-\bar{F}\big{(}\bar{X}(z)\big{)},S_{1}(t-z)(-A_{1})^{\frac{\theta}{2}}\chi\rangle_{\mathcal{H}}dz.

For χDom((A1)1+θ2)\chi\in Dom((-A_{1})^{1+\frac{\theta}{2}}) we can further decompose this into

1ϵh(ϵ)stF(X¯(z),Ynϵ,u(z))F¯(X¯(z)),S1(tz)(A1)θ2χ𝑑z\displaystyle\frac{1}{\sqrt{\epsilon}h(\epsilon)}\int_{s}^{t}\big{\langle}F\big{(}\bar{X}(z),Y_{n}^{\epsilon,u}(z)\big{)}-\bar{F}\big{(}\bar{X}(z)\big{)},S_{1}(t-z)(-A_{1})^{\frac{\theta}{2}}\chi\big{\rangle}_{\mathcal{H}}dz (84)
+1ϵh(ϵ)stF(X¯(z),Yϵ,u(z))F(X¯(z),Ynϵ,u(z)),S1(tz)(A1)θ2χ𝑑z\displaystyle+\frac{1}{\sqrt{\epsilon}h(\epsilon)}\int_{s}^{t}\big{\langle}F\big{(}\bar{X}(z),Y^{\epsilon,u}(z)\big{)}-F\big{(}\bar{X}(z),Y_{n}^{\epsilon,u}(z)\big{)},S_{1}(t-z)(-A_{1})^{\frac{\theta}{2}}\chi\big{\rangle}_{\mathcal{H}}dz
=:T1ϵ,u(s,t,n,θ,χ)+T2ϵ,u(s,t,n,θ,χ)\displaystyle=:T_{1}^{\epsilon,u}(s,t,n,\theta,\chi)+T_{2}^{\epsilon,u}(s,t,n,\theta,\chi)

and then rewrite T1ϵ,uT_{1}^{\epsilon,u}, with the aid of Itô’s formula, in order to deal with the asymptotically singular scaling. In particular, consider the real-valued map

[s,t]××Dom(A2)(z,x,y)Θ(z,x,y):=ΦS1(tz)(A1)θ2χϵ(x,y),[s,t]\times\mathcal{H}\times Dom(A_{2})\ni(z,x,y)\longmapsto\Theta(z,x,y):=\Phi^{\epsilon}_{S_{1}(t-z)(-A_{1})^{\frac{\theta}{2}}\chi}(x,y)\in\mathbb{R},

where Φϵ\Phi^{\epsilon}_{\cdot} denotes the strict solution of the Kolmogorov equation given by (33). In view of (35),

Θ(z,x,y)=Ψϵ(x,y),S1(tz)(A1)θ2χ\Theta(z,x,y)=\langle\Psi^{\epsilon}(x,y),S_{1}(t-z)(-A_{1})^{\frac{\theta}{2}}\chi\rangle_{\mathcal{H}} (85)

and

zΘ(z,x,y)=Ψϵ(x,y),(A1)1+θ2S1(tz)χ,\displaystyle\partial_{z}\Theta(z,x,y)=\langle\Psi^{\epsilon}(x,y),(-A_{1})^{1+\frac{\theta}{2}}S_{1}(t-z)\chi\rangle_{\mathcal{H}}\;\;, (86)
DxvΘ(z,x,y)=DxvΦS1(tz)(A1)θ2χϵ(x,y)=Ψ1ϵ(x,y)v,S1(tz)(A1)θ2χ,\displaystyle D^{v}_{x}\Theta(z,x,y)=D^{v}_{x}\Phi^{\epsilon}_{S_{1}(t-z)(-A_{1})^{\frac{\theta}{2}}\chi}(x,y)=\langle\Psi^{\epsilon}_{1}(x,y)v,S_{1}(t-z)(-A_{1})^{\frac{\theta}{2}}\chi\rangle_{\mathcal{H}}\;\;,
DyvΘ(z,x,y)=DyvΦS1(tz)(A1)θ2χϵ(x,y)=Ψ2ϵ(x,y)v,S1(tz)(A1)θ2χ,\displaystyle D^{v}_{y}\Theta(z,x,y)=D^{v}_{y}\Phi^{\epsilon}_{S_{1}(t-z)(-A_{1})^{\frac{\theta}{2}}\chi}(x,y)=\langle\Psi^{\epsilon}_{2}(x,y)v,S_{1}(t-z)(-A_{1})^{\frac{\theta}{2}}\chi\rangle_{\mathcal{H}}\;,

where DvD^{v}_{\cdot} denotes partial Fréchet differentiation in the direction of vv\in\mathcal{H}. Moreover, from the last estimate in (34) and the Riesz representation theorem, there exists Ψ3ϵ,n(x,y)\Psi^{\epsilon,n}_{3}(x,y)\in\mathcal{H} such that

tr[(PnI)Dy2Φχϵ(x,y)]=Ψ3ϵ,n(x,y),χand\displaystyle\text{tr}\big{[}(P_{n}-I)D^{2}_{y}\Phi^{\epsilon}_{\chi}(x,y)\big{]}=\big{\langle}\Psi^{\epsilon,n}_{3}(x,y),\chi\big{\rangle}_{\mathcal{H}}\;\text{and} (87)
Ψ3ϵ,n(x,y)cc(ϵ)(1+x+y).\displaystyle\|\Psi^{\epsilon,n}_{3}(x,y)\|_{\mathcal{H}}\leq\frac{c}{c(\epsilon)}\big{(}1+\|x\|_{\mathcal{H}}+\|y\|_{\mathcal{H}}\big{)}.

The latter implies that

tr[(PnI)Dy2Θ(z,x,y)]=Ψ3ϵ,n(x,y),S1(tz)(A1)θ2χ.\displaystyle\text{tr}\big{[}(P_{n}-I)D^{2}_{y}\Theta(z,x,y)\big{]}=\langle\Psi^{\epsilon,n}_{3}(x,y),S_{1}(t-z)(-A_{1})^{\frac{\theta}{2}}\chi\rangle_{\mathcal{H}}. (88)

Noting that, for each t0t\geq 0, Ynϵ,u(t)Dom(A2)Y_{n}^{\epsilon,u}(t)\in Dom(A_{2}) almost surely, we can apply Itô’s formula to Θ(t,X¯(t),Ynϵ,u(t))\Theta(t,\bar{X}(t),Y_{n}^{\epsilon,u}(t)) to obtain the following:

Lemma 5.4.

Let n,T<,ϵ>0,θ0n\in\mathbb{N},T<\infty,\epsilon>0,\theta\geq 0, 0stT0\leq s\leq t\leq T, χDom((A1)1+θ/2)\chi\in Dom((-A_{1})^{1+\theta/2}) and define

T3ϵ,u(s,t,n,θ,χ):=12ϵh(ϵ)stΨ3ϵ,n(X¯(z),Ynϵ,u(z)),S1(tz)(A1)θ2χ𝑑z\displaystyle T_{3}^{\epsilon,u}(s,t,n,\theta,\chi):=\frac{1}{2\sqrt{\epsilon}h(\epsilon)}\int_{s}^{t}\big{\langle}\Psi^{\epsilon,n}_{3}\big{(}\bar{X}(z),Y_{n}^{\epsilon,u}(z)\big{)},S_{1}(t-z)(-A_{1})^{\frac{\theta}{2}}\chi\big{\rangle}_{\mathcal{H}}dz (89)
+1ϵh(ϵ)stΨ2ϵ(X¯(z),Ynϵ,u(z))[PnG(X¯(z),Yϵ,u(z))G(X¯(z),Ynϵ,u(z))],S1(tz)(A1)θ2χ𝑑z.\displaystyle+\frac{1}{\sqrt{\epsilon}h(\epsilon)}\int_{s}^{t}\big{\langle}\Psi^{\epsilon}_{2}\big{(}\bar{X}(z),Y_{n}^{\epsilon,u}(z)\big{)}\big{[}P_{n}G\big{(}\bar{X}(z),Y^{\epsilon,u}(z)\big{)}-G\big{(}\bar{X}(z),Y_{n}^{\epsilon,u}(z)\big{)}\big{]},S_{1}(t-z)(-A_{1})^{\frac{\theta}{2}}\chi\big{\rangle}_{\mathcal{H}}dz.

With Ψϵ,Ψ1ϵ,Ψ2ϵ,Ψ3ϵ,n,T1ϵ,u,T2ϵ,u\Psi^{\epsilon},\Psi^{\epsilon}_{1},\Psi^{\epsilon}_{2},\Psi^{\epsilon,n}_{3},T_{1}^{\epsilon,u},T_{2}^{\epsilon,u} as in (35), (87) and (84), we have

IVϵ,u\displaystyle IV^{\epsilon,u} (s,t,θ,χ)=\displaystyle(s,t,\theta,\chi)= (90)
δϵh(ϵ)Ψϵ(X¯(t),Ynϵ,u(t))Ψϵ(X¯(s),Ynϵ,u(s)),S1(ts)(A1)θ2χ\displaystyle-\frac{\delta}{\sqrt{\epsilon}h(\epsilon)}\big{\langle}\Psi^{\epsilon}\big{(}\bar{X}(t),Y_{n}^{\epsilon,u}(t)\big{)}-\Psi^{\epsilon}\big{(}\bar{X}(s),Y_{n}^{\epsilon,u}(s)\big{)},S_{1}(t-s)(-A_{1})^{\frac{\theta}{2}}\chi\big{\rangle}_{\mathcal{H}}
+δϵh(ϵ)stΨϵ(X¯(z),Ynϵ,u(z))Ψϵ(X¯(t),Ynϵ,u(t)),S1(tz)(A1)1+θ2χ𝑑z\displaystyle+\frac{\delta}{\sqrt{\epsilon}h(\epsilon)}\int_{s}^{t}\big{\langle}\Psi^{\epsilon}\big{(}\bar{X}(z),Y_{n}^{\epsilon,u}(z)\big{)}-\Psi^{\epsilon}\big{(}\bar{X}(t),Y_{n}^{\epsilon,u}(t)\big{)},S_{1}(t-z)(-A_{1})^{1+\frac{\theta}{2}}\chi\big{\rangle}_{\mathcal{H}}dz
+δϵh(ϵ)stΨ1ϵ(X¯(z),Ynϵ,u(z))[A1X¯(z)+F¯(X¯(z))],S1(tz)(A1)θ2χ𝑑z\displaystyle+\frac{\delta}{\sqrt{\epsilon}h(\epsilon)}\int_{s}^{t}\big{\langle}\Psi^{\epsilon}_{1}\big{(}\bar{X}(z),Y_{n}^{\epsilon,u}(z)\big{)}\big{[}A_{1}\bar{X}(z)+\bar{F}\big{(}\bar{X}(z)\big{)}\big{]},S_{1}(t-z)(-A_{1})^{\frac{\theta}{2}}\chi\big{\rangle}_{\mathcal{H}}dz
+c(ϵ)ϵh(ϵ)stΨϵ(X¯(z),Ynϵ,u(z)),S1(tz)(A1)θ2χ𝑑z\displaystyle+\frac{c(\epsilon)}{\sqrt{\epsilon}h(\epsilon)}\int_{s}^{t}\big{\langle}\Psi^{\epsilon}\big{(}\bar{X}(z),Y_{n}^{\epsilon,u}(z)\big{)},S_{1}(t-z)(-A_{1})^{\frac{\theta}{2}}\chi\big{\rangle}_{\mathcal{H}}dz
+δϵstΨ2ϵ(X¯(z),Ynϵ,u(z))u2,n(z),S1(tz)(A1)θ2χ𝑑z\displaystyle+\frac{\sqrt{\delta}}{\sqrt{\epsilon}}\int_{s}^{t}\big{\langle}\Psi^{\epsilon}_{2}\big{(}\bar{X}(z),Y_{n}^{\epsilon,u}(z)\big{)}u_{2,n}(z),S_{1}(t-z)(-A_{1})^{\frac{\theta}{2}}\chi\big{\rangle}_{\mathcal{H}}dz
+δϵh(ϵ)st(A1)θ2S1(tz)Ψ2ϵ(X¯(z),Ynϵ,u(z))dw2,n(z),χ+Rϵ,u(s,t,n,θ,χ)\displaystyle+\frac{\sqrt{\delta}}{\sqrt{\epsilon}h(\epsilon)}\int_{s}^{t}\big{\langle}(-A_{1})^{\frac{\theta}{2}}S_{1}(t-z)\Psi^{\epsilon}_{2}\big{(}\bar{X}(z),Y_{n}^{\epsilon,u}(z)\big{)}dw_{2,n}(z),\chi\big{\rangle}_{\mathcal{H}}+R^{\epsilon,u}(s,t,n,\theta,\chi)
=:k=16IVkϵ,u(s,t,n,θ,χ)+Rϵ,u(s,t,n,θ,χ),\displaystyle=:\sum_{k=1}^{6}IV_{k}^{\epsilon,u}(s,t,n,\theta,\chi)+R^{\epsilon,u}(s,t,n,\theta,\chi),

where

Rϵ,u(s,t,n,θ,χ):=T2ϵ,u(s,t,n,θ,χ)+T3ϵ,u(s,t,n,θ,χ).\displaystyle R^{\epsilon,u}(s,t,n,\theta,\chi):=T_{2}^{\epsilon,u}(s,t,n,\theta,\chi)+T_{3}^{\epsilon,u}(s,t,n,\theta,\chi). (91)

The proof of Lemma 5.4 is deferred to Appendix B.

Remark 11.

Note that the terms IVkϵ,uIV_{k}^{\epsilon,u}, k=1,,6k=1,\dots,6 are free from asymptotically singular coefficients. This comes at the cost of introducing the unbounded operator (A1)(-A_{1}) in the term IV2ϵ,uIV_{2}^{\epsilon,u}.

We can now proceed to estimate each term in (90) in both Regimes 11 and 22. The terms IV1ϵ,u,IV2ϵ,uIV_{1}^{\epsilon,u},IV_{2}^{\epsilon,u} are the most challenging and will be handled similarly. In particular, we apply the mean value inequality for Fréchet differentials along with the Schauder estimates (60) and (68) to obtain temporal equicontinuity and spatial Sobolev regularity estimates. This is done in the following two lemmas. Note that extra care is required in the choice of Hölder exponents, due to the fact that (60) introduces singular coefficients in ϵ\epsilon (see the comment preceding the proof of Proposition 4.2).

Lemma 5.5.

Let T<T<\infty a>0,a>0, x0,y0Ha(0,L)x_{0},y_{0}\in H^{a}(0,L) and IV1ϵ,uIV^{\epsilon,u}_{1} as in (90). There exist ϵ0>0\epsilon_{0}>0, θ<12a\theta<\frac{1}{2}\wedge a, β<14a2\beta<\frac{1}{4}\wedge\frac{a}{2} and a constant C>0C>0, independent of ϵ\epsilon, such that

supϵ<ϵ0,u𝒫NTsupn𝔼(supt[0,T]supχB|IV1ϵ,u(0,t,n,θ,χ)|2)C(1+x0Ha2+y0Ha2)\displaystyle\sup_{\epsilon<\epsilon_{0},u\in\mathcal{P}^{T}_{N}}\sup_{n\in\mathbb{N}}\mathbb{E}\bigg{(}\sup_{t\in[0,T]}\sup_{\chi\in B_{\mathcal{H}}}\big{|}IV_{1}^{\epsilon,u}(0,t,n,\theta,\chi)\big{|}^{2}\bigg{)}\leq C\big{(}1+\|x_{0}\|^{2}_{H^{a}}+\|y_{0}\|^{2}_{H^{a}}\big{)} (92)

and

supϵ<ϵ0,u𝒫NTsupn𝔼(suptss,t[0,T]supχB|IV1ϵ,u(s,t,n,0,χ)||ts|β)C(1+x0Ha+y0Ha).\displaystyle\sup_{\epsilon<\epsilon_{0},u\in\mathcal{P}^{T}_{N}}\sup_{n\in\mathbb{N}}\mathbb{E}\bigg{(}\sup_{\overset{s,t\in[0,T]}{t\neq s}}\sup_{\chi\in B_{\mathcal{H}}}\frac{\big{|}IV_{1}^{\epsilon,u}(s,t,n,0,\chi)\big{|}}{|t-s|^{\beta}}\bigg{)}\leq C\big{(}1+\|x_{0}\|_{H^{a}}+\|y_{0}\|_{H^{a}}\big{)}. (93)
Proof.

Let χDom((A1)1+θ2)\chi\in Dom((-A_{1})^{1+\frac{\theta}{2}}), x1,x2,ψx_{1},x_{2},\psi\in\mathcal{H} and y1,y2Dom(A2)y_{1},y_{2}\in Dom(A_{2}). Recall from (35) that

Ψϵ(x1,y1)Ψϵ(x2,y2),ψ=Φψϵ(x1,y1)Φψϵ(x2,y2).\langle\Psi^{\epsilon}(x_{1},y_{1})-\Psi^{\epsilon}(x_{2},y_{2}),\psi\rangle_{\mathcal{H}}=\Phi^{\epsilon}_{\psi}(x_{1},y_{1})-\Phi^{\epsilon}_{\psi}(x_{2},y_{2}).

An application of the mean value inequality for Fréchet derivatives then yields

|Ψϵ(x1,y1)Ψϵ(x2,y2),ψ|\displaystyle\big{|}\langle\Psi^{\epsilon}(x_{1},y_{1})-\Psi^{\epsilon}(x_{2},y_{2}),\psi\rangle_{\mathcal{H}}\big{|} supx,yDxΦψϵ(x,y)x1x2ψ\displaystyle\leq\sup_{x,y\in\mathcal{H}}\|D_{x}\Phi^{\epsilon}_{\psi}(x,y)\|_{\mathcal{H}}\|x_{1}-x_{2}\|_{\mathcal{H}}\|\psi\|_{\mathcal{H}}
+supx,yDyΦψϵ(x,y)y1y2ψ.\displaystyle+\sup_{x,y\in\mathcal{H}}\|D_{y}\Phi^{\epsilon}_{\psi}(x,y)\|_{\mathcal{H}}\|y_{1}-y_{2}\|_{\mathcal{H}}\|\psi\|_{\mathcal{H}}\;.

In view of estimates (34),

|Ψϵ(x1,y1)Ψϵ(x2,y2),ψ|\displaystyle\big{|}\langle\Psi^{\epsilon}(x_{1},y_{1})-\Psi^{\epsilon}(x_{2},y_{2}),\psi\rangle_{\mathcal{H}}\big{|} C(1c(ϵ)x1x2+y1y2)ψ.\displaystyle\leq C\bigg{(}\frac{1}{c(\epsilon)}\|x_{1}-x_{2}\|_{\mathcal{H}}+\|y_{1}-y_{2}\|_{\mathcal{H}}\bigg{)}\|\psi\|_{\mathcal{H}}\;. (94)

Using the latter, along with the self-adjointness of A1A_{1} and the analyticity of S1S_{1}

δϵh(ϵ)|\displaystyle\frac{\delta}{\sqrt{\epsilon}h(\epsilon)}\big{|} Ψϵ(X¯(t),Ynϵ,u(t))Ψϵ(X¯(s),Ynϵ,u(s)),S1(ts)(A1)θ2χ|\displaystyle\langle\Psi^{\epsilon}\big{(}\bar{X}(t),Y_{n}^{\epsilon,u}(t)\big{)}-\Psi^{\epsilon}\big{(}\bar{X}(s),Y_{n}^{\epsilon,u}(s)\big{)},S_{1}(t-s)(-A_{1})^{\frac{\theta}{2}}\chi\rangle_{\mathcal{H}}\big{|}
Cδϵh(ϵ)(A1)θ2S1(ts)[Ψϵ(X¯(t),Ynϵ,u(t))Ψϵ(X¯(s),Ynϵ,u(s))]χ\displaystyle\leq\frac{C\delta}{\sqrt{\epsilon}h(\epsilon)}\big{\|}(-A_{1})^{\frac{\theta}{2}}S_{1}(t-s)\big{[}\Psi^{\epsilon}\big{(}\bar{X}(t),Y_{n}^{\epsilon,u}(t)\big{)}-\Psi^{\epsilon}\big{(}\bar{X}(s),Y_{n}^{\epsilon,u}(s)\big{)}\big{]}\big{\|}_{\mathcal{H}}\|\chi\|_{\mathcal{H}}
Cδϵh(ϵ)χ(ts)θ/2Ψϵ(X¯(t),Ynϵ,u(t))Ψϵ(X¯(s),Ynϵ,u(s))\displaystyle\leq\frac{C\delta}{\sqrt{\epsilon}h(\epsilon)}\|\chi\|_{\mathcal{H}}(t-s)^{-\theta/2}\big{\|}\Psi^{\epsilon}\big{(}\bar{X}(t),Y_{n}^{\epsilon,u}(t)\big{)}-\Psi^{\epsilon}\big{(}\bar{X}(s),Y_{n}^{\epsilon,u}(s)\big{)}\big{\|}_{\mathcal{H}}
Cχ(ts)θ/2(δc(ϵ)ϵh(ϵ)X¯(t)X¯(s)+δϵh(ϵ)Ynϵ,u(t)Ynϵ,u(s)).\displaystyle\leq C\|\chi\|_{\mathcal{H}}(t-s)^{-\theta/2}\bigg{(}\frac{\delta}{c(\epsilon)\sqrt{\epsilon}h(\epsilon)}\big{\|}\bar{X}(t)-\bar{X}(s)\big{\|}_{\mathcal{H}}+\frac{\delta}{\sqrt{\epsilon}h(\epsilon)}\big{\|}Y_{n}^{\epsilon,u}(t)-Y_{n}^{\epsilon,u}(s)\big{\|}_{\mathcal{H}}\bigg{)}.

In view of the Schauder estimates (68) and (60), X¯\bar{X} and Yϵ,uY^{\epsilon,u} have finite Hölder seminorms with probability 11 and

δϵh(ϵ)\displaystyle\frac{\delta}{\sqrt{\epsilon}h(\epsilon)} |Ψϵ(X¯(t),Ynϵ,u(t))Ψϵ(X¯(s),Ynϵ,u(s)),S1(ts)(A1)θ2χ|\displaystyle\big{|}\langle\Psi^{\epsilon}\big{(}\bar{X}(t),Y_{n}^{\epsilon,u}(t)\big{)}-\Psi^{\epsilon}\big{(}\bar{X}(s),Y_{n}^{\epsilon,u}(s)\big{)},S_{1}(t-s)(-A_{1})^{\frac{\theta}{2}}\chi\rangle_{\mathcal{H}}\big{|}
Cχ(ts)θ/2(δc(ϵ)ϵh(ϵ)[X¯]Cθ1([0,T];)(ts)θ1+δϵh(ϵ)[Yϵ,u]Cθ2([0,T];)(ts)θ2),\displaystyle\leq C\|\chi\|_{\mathcal{H}}(t-s)^{-\theta/2}\bigg{(}\frac{\delta}{c(\epsilon)\sqrt{\epsilon}h(\epsilon)}\big{[}\bar{X}\big{]}_{C^{\theta_{1}}([0,T];\mathcal{H})}(t-s)^{\theta_{1}}+\frac{\delta}{\sqrt{\epsilon}h(\epsilon)}\big{[}Y^{\epsilon,u}\big{]}_{C^{\theta_{2}}([0,T];\mathcal{H})}(t-s)^{\theta_{2}}\bigg{)},

where θ1,θ2<14a2\theta_{1},\theta_{2}<\frac{1}{4}\wedge\frac{a}{2}. By the density argument used in the proof of Lemma 5.1, this estimate holds for any χ\chi\in\mathcal{H}. Letting θ=θ1θ2\theta^{\prime}=\theta_{1}\wedge\theta_{2} and χB\chi\in B_{\mathcal{H}}

δϵh(ϵ)\displaystyle\frac{\delta}{\sqrt{\epsilon}h(\epsilon)} |Ψϵ(X¯(t),Ynϵ,u(t))Ψϵ(X¯(s),Ynϵ,u(s)),S1(ts)A1θχ|\displaystyle\big{|}\langle\Psi^{\epsilon}\big{(}\bar{X}(t),Y_{n}^{\epsilon,u}(t)\big{)}-\Psi^{\epsilon}\big{(}\bar{X}(s),Y_{n}^{\epsilon,u}(s)\big{)},S_{1}(t-s)A_{1}^{\theta}\chi\rangle_{\mathcal{H}}\big{|} (95)
CT(ts)θθ/2(δc(ϵ)ϵh(ϵ)[X¯]Cθ1([0,T];)+δϵh(ϵ)[Yϵ,u]Cθ2([0,T];)).\displaystyle\leq C_{T}(t-s)^{\theta^{\prime}-\theta/2}\bigg{(}\frac{\delta}{c(\epsilon)\sqrt{\epsilon}h(\epsilon)}\big{[}\bar{X}\big{]}_{C^{\theta_{1}}([0,T];\mathcal{H})}+\frac{\delta}{\sqrt{\epsilon}h(\epsilon)}\big{[}Y^{\epsilon,u}\big{]}_{C^{\theta_{2}}([0,T];\mathcal{H})}\bigg{)}.

Setting s=0s=0 and taking θ<2θ<(1/2)a\theta<2\theta^{\prime}<(1/2)\wedge a we get

𝔼(supt[0,T]supχB|IV1ϵ,u(0,t,n,θ,χ)|2)CT(δ2c2(ϵ)ϵh2(ϵ)[X¯]Cθ1([0,T];)2+δ2ϵh2(ϵ)𝔼[Yϵ,u]Cθ2([0,T];)2).\displaystyle\mathbb{E}\bigg{(}\sup_{t\in[0,T]}\sup_{\chi\in B_{\mathcal{H}}}\big{|}IV_{1}^{\epsilon,u}(0,t,n,\theta,\chi)\big{|}^{2}\bigg{)}\leq C_{T}\bigg{(}\frac{\delta^{2}}{c^{2}(\epsilon)\epsilon h^{2}(\epsilon)}\big{[}\bar{X}\big{]}^{2}_{C^{\theta_{1}}([0,T];\mathcal{H})}+\frac{\delta^{2}}{\epsilon h^{2}(\epsilon)}\mathbb{E}\big{[}Y^{\epsilon,u}\big{]}^{2}_{C^{\theta_{2}}([0,T];\mathcal{H})}\bigg{)}.

Next, note that the Schauder estimates (68) and (60) can be easily seen to hold in L2(Ω)L^{2}(\Omega). In view of this we obtain

𝔼(supt[0,T]supχB|IV1ϵ,u(0,t,n,θ,χ)|2)\displaystyle\mathbb{E}\bigg{(}\sup_{t\in[0,T]}\sup_{\chi\in B_{\mathcal{H}}}\big{|}IV_{1}^{\epsilon,u}(0,t,n,\theta,\chi)\big{|}^{2}\bigg{)} Cδ2c2(ϵ)ϵh2(ϵ)(1+x0Ha2)\displaystyle\leq\frac{C\delta^{2}}{c^{2}(\epsilon)\epsilon h^{2}(\epsilon)}(1+\|x_{0}\|^{2}_{H^{a}})
+Cδ2ϵh2(ϵ)h2(ϵ)δ1a(1+x02+y0Ha2).\displaystyle+\frac{C\delta^{2}}{\epsilon h^{2}(\epsilon)}h^{2}(\epsilon)\delta^{-1\vee a}\big{(}1+\|x_{0}\|^{2}_{\mathcal{H}}+\|y_{0}\|^{2}_{H^{a}}\big{)}.

Since c(ϵ)=ϵc(\epsilon)=\sqrt{\epsilon} and the inclusion Ha(0,L)H^{a}(0,L)\subset\mathcal{H} is continuous, we can choose a<1a<1 to obtain

𝔼(supt[0,T]supχB|IV1ϵ,u(0,t,n,θ,χ)|2)Cδ2ϵ2h2(ϵ)(1+x0Ha2)+Cδϵ(1+x0Ha2+y0Ha2).\displaystyle\mathbb{E}\bigg{(}\sup_{t\in[0,T]}\sup_{\chi\in B_{\mathcal{H}}}\big{|}IV_{1}^{\epsilon,u}(0,t,n,\theta,\chi)\big{|}^{2}\bigg{)}\leq\frac{C\delta^{2}}{\epsilon^{2}h^{2}(\epsilon)}\big{(}1+\|x_{0}\|^{2}_{H^{a}}\big{)}+\frac{C\delta}{\epsilon}\big{(}1+\|x_{0}\|^{2}_{H^{a}}+\|y_{0}\|^{2}_{H^{a}}\big{)}.

In view of (4), the coefficients

δ2ϵ2h2(ϵ),δϵ\frac{\delta^{2}}{\epsilon^{2}h^{2}(\epsilon)},\frac{\delta}{\epsilon}

are bounded in both Regimes 11 and 22, for ϵ\epsilon sufficiently small and (92) follows.

It remains to prove (93). Setting θ=0\theta=0 in (95) we deduce that for any βθ\beta\leq\theta^{\prime}

𝔼(suptss,t[0,T]supχB|IV1ϵ,u(s,t,n,0,χ)||ts|β)Cδc(ϵ)ϵh(ϵ)[X¯]Cθ1([0,T];)+Cδϵh(ϵ)𝔼[Yϵ,u]Cθ2([0,T];)\displaystyle\mathbb{E}\bigg{(}\sup_{\overset{s,t\in[0,T]}{t\neq s}}\sup_{\chi\in B_{\mathcal{H}}}\frac{\big{|}IV_{1}^{\epsilon,u}(s,t,n,0,\chi)\big{|}}{|t-s|^{\beta}}\bigg{)}\leq\frac{C\delta}{c(\epsilon)\sqrt{\epsilon}h(\epsilon)}\big{[}\bar{X}\big{]}_{C^{\theta_{1}}([0,T];\mathcal{H})}+\frac{C\delta}{\sqrt{\epsilon}h(\epsilon)}\mathbb{E}\big{[}Y^{\epsilon,u}\big{]}_{C^{\theta_{2}}([0,T];\mathcal{H})}

and the estimate follows from the same argument. ∎

Lemma 5.6.

Let T<T<\infty, a>0a>0, x0,y0Ha(0,L)x_{0},y_{0}\in H^{a}(0,L) and IV2ϵ,uIV^{\epsilon,u}_{2} as in (90). There exist ϵ0>0\epsilon_{0}>0, θ<12a\theta<\frac{1}{2}\wedge a, β<14a2\beta<\frac{1}{4}\wedge\frac{a}{2} and a constant C>0C>0, independent of ϵ\epsilon, such that

supϵ<ϵ0,u𝒫NTsupn𝔼(supt[0,T]supχB|IV2ϵ,u(0,t,n,θ,χ)|2)C(1+x0Ha2+y0Ha2)\displaystyle\sup_{\epsilon<\epsilon_{0},u\in\mathcal{P}^{T}_{N}}\sup_{n\in\mathbb{N}}\mathbb{E}\bigg{(}\sup_{t\in[0,T]}\sup_{\chi\in B_{\mathcal{H}}}\big{|}IV_{2}^{\epsilon,u}(0,t,n,\theta,\chi)\big{|}^{2}\bigg{)}\leq C\big{(}1+\|x_{0}\|^{2}_{H^{a}}+\|y_{0}\|^{2}_{H^{a}}\big{)} (96)

and

supϵ<ϵ0,u𝒫NTsupn𝔼(suptss,t[0,T]supχB|IV2ϵ,u(s,t,n,0,χ)||ts|β)C(1+x0Ha+y0Ha).\displaystyle\sup_{\epsilon<\epsilon_{0},u\in\mathcal{P}^{T}_{N}}\sup_{n\in\mathbb{N}}\mathbb{E}\bigg{(}\sup_{\overset{s,t\in[0,T]}{t\neq s}}\sup_{\chi\in B_{\mathcal{H}}}\frac{\big{|}IV_{2}^{\epsilon,u}(s,t,n,0,\chi)\big{|}}{|t-s|^{\beta}}\bigg{)}\leq C\big{(}1+\|x_{0}\|_{H^{a}}+\|y_{0}\|_{H^{a}}\big{)}. (97)
Proof.

Let χDom((A1)1+θ2)\chi\in Dom((-A_{1})^{1+\frac{\theta}{2}}). From the analyticity of S1S_{1} along with (94)

|\displaystyle\big{|} IV2ϵ,u(s,t,n,θ,χ)|\displaystyle IV_{2}^{\epsilon,u}(s,t,n,\theta,\chi)\big{|}
δϵh(ϵ)χst(A1)1+θ2S1(tz)[Ψϵ(X¯(z),Ynϵ,u(z))Ψϵ(X¯(t),Ynϵ,u(t))]𝑑z\displaystyle\leq\frac{\delta}{\sqrt{\epsilon}h(\epsilon)}\|\chi\|_{\mathcal{H}}\int_{s}^{t}\big{\|}(-A_{1})^{1+\frac{\theta}{2}}S_{1}(t-z)\big{[}\Psi^{\epsilon}\big{(}\bar{X}(z),Y_{n}^{\epsilon,u}(z)\big{)}-\Psi^{\epsilon}\big{(}\bar{X}(t),Y_{n}^{\epsilon,u}(t)\big{)}\big{]}\big{\|}_{\mathcal{H}}dz
Cδϵh(ϵ)χst(tz)1θ/2Ψϵ(X¯(z),Ynϵ,u(z))Ψϵ(X¯(t),Ynϵ,u(t))𝑑z\displaystyle\leq\frac{C\delta}{\sqrt{\epsilon}h(\epsilon)}\|\chi\|_{\mathcal{H}}\int_{s}^{t}(t-z)^{-1-\theta/2}\big{\|}\Psi^{\epsilon}\big{(}\bar{X}(z),Y_{n}^{\epsilon,u}(z)\big{)}-\Psi^{\epsilon}\big{(}\bar{X}(t),Y_{n}^{\epsilon,u}(t)\big{)}\big{\|}_{\mathcal{H}}dz
Cχst(tz)1θ/2(δc(ϵ)ϵh(ϵ)[X¯]Cθ1([0,T];)(tz)θ1+δϵh(ϵ)[Yϵ,u]Cθ2([0,T];)(tz)θ2)𝑑z.\displaystyle\leq C\|\chi\|_{\mathcal{H}}\int_{s}^{t}(t-z)^{-1-\theta/2}\bigg{(}\frac{\delta}{c(\epsilon)\sqrt{\epsilon}h(\epsilon)}\big{[}\bar{X}\big{]}_{C^{\theta_{1}}([0,T];\mathcal{H})}(t-z)^{\theta_{1}}+\frac{\delta}{\sqrt{\epsilon}h(\epsilon)}\big{[}Y^{\epsilon,u}\big{]}_{C^{\theta_{2}}([0,T];\mathcal{H})}(t-z)^{\theta_{2}}\bigg{)}dz.

As in the proof of Lemma 5.5, this estimate can be shown to hold for all χB\chi\in B_{\mathcal{H}} and, letting θ=θ1θ2\theta^{\prime}=\theta_{1}\wedge\theta_{2},

|IV2ϵ,u\displaystyle\big{|}IV_{2}^{\epsilon,u} (s,t,n,θ,χ)|C(δc(ϵ)ϵh(ϵ)[X¯]Cθ1([0,T];)+δϵh(ϵ)[Yϵ,u]Cθ2([0,T];))st(tz)1+θθ/2dz.\displaystyle(s,t,n,\theta,\chi)\big{|}\leq C\bigg{(}\frac{\delta}{c(\epsilon)\sqrt{\epsilon}h(\epsilon)}\big{[}\bar{X}\big{]}_{C^{\theta_{1}}([0,T];\mathcal{H})}+\frac{\delta}{\sqrt{\epsilon}h(\epsilon)}\big{[}Y^{\epsilon,u}\big{]}_{C^{\theta_{2}}([0,T];\mathcal{H})}\bigg{)}\int_{s}^{t}(t-z)^{-1+\theta^{\prime}-\theta/2}dz. (98)

Thus, for s=0s=0 and θ<2θ\theta<2\theta^{\prime}

|IV2ϵ,u\displaystyle\big{|}IV_{2}^{\epsilon,u} (0,t,n,θ,χ)|CTθθ/2(δc(ϵ)ϵh(ϵ)[X¯]Cθ1([0,T];)+δϵh(ϵ)[Yϵ,u]Cθ2([0,T];))\displaystyle(0,t,n,\theta,\chi)\big{|}\leq CT^{\theta^{\prime}-\theta/2}\bigg{(}\frac{\delta}{c(\epsilon)\sqrt{\epsilon}h(\epsilon)}\big{[}\bar{X}\big{]}_{C^{\theta_{1}}([0,T];\mathcal{H})}+\frac{\delta}{\sqrt{\epsilon}h(\epsilon)}\big{[}Y^{\epsilon,u}\big{]}_{C^{\theta_{2}}([0,T];\mathcal{H})}\bigg{)}

and (96) follows using the same argument as in the proof of (92). Finally, letting θ=0\theta=0 in (98) and taking β<θ\beta<\theta^{\prime}, we obtain (97). ∎

Next, we estimate the term IV3ϵ,uIV_{3}^{\epsilon,u} in (90). The main ingredients of the proof are the spatial regularity estimate (69) along with the continuity of the averaged operator F¯\bar{F} (see Lemma 3.1).

Lemma 5.7.

Let T<T<\infty, a>0a>0, x0Ha(0,L)x_{0}\in H^{a}(0,L) and IV3ϵ,uIV^{\epsilon,u}_{3} as in (90). There exist ϵ0>0\epsilon_{0}>0, θ<a\theta<a, βa2\beta\leq\frac{a}{2} and a constant C>0C>0, independent of ϵ\epsilon, such that

supϵ<ϵ0,u𝒫NTsupn𝔼(supt[0,T]supχB|IV3ϵ,u(0,t,n,θ,χ)|2)C(1+x0Ha2)\displaystyle\sup_{\epsilon<\epsilon_{0},u\in\mathcal{P}^{T}_{N}}\sup_{n\in\mathbb{N}}\mathbb{E}\bigg{(}\sup_{t\in[0,T]}\sup_{\chi\in B_{\mathcal{H}}}\big{|}IV_{3}^{\epsilon,u}(0,t,n,\theta,\chi)\big{|}^{2}\bigg{)}\leq C\big{(}1+\|x_{0}\|^{2}_{H^{a}}\big{)} (99)

and

supϵ<ϵ0,u𝒫NTsupn𝔼(suptss,t[0,T]supχB|IV3ϵ,u(s,t,n,0,χ)||ts|β)C(1+x0Ha).\displaystyle\sup_{\epsilon<\epsilon_{0},u\in\mathcal{P}^{T}_{N}}\sup_{n\in\mathbb{N}}\mathbb{E}\bigg{(}\sup_{\overset{s,t\in[0,T]}{t\neq s}}\sup_{\chi\in B_{\mathcal{H}}}\frac{\big{|}IV_{3}^{\epsilon,u}(s,t,n,0,\chi)\big{|}}{|t-s|^{\beta}}\bigg{)}\leq C\big{(}1+\|x_{0}\|_{H^{a}}\big{)}. (100)
Proof.

Let χDom((A1)1+θ2)\chi\in Dom((-A_{1})^{1+\frac{\theta}{2}}). Using the analyticity of S1S_{1} along with the first estimate in (36)

|IV3ϵ,u(s,t,n,θ,χ)|\displaystyle\small\big{|}IV_{3}^{\epsilon,u}(s,t,n,\theta,\chi)\big{|} δϵh(ϵ)χstS1(tz)(A1)θ2Ψ1ϵ(X¯(z),Ynϵ,u(z))[A1X¯(z)+F¯(X¯(z))]𝑑z\displaystyle\leq\frac{\delta}{\sqrt{\epsilon}h(\epsilon)}\|\chi\|_{\mathcal{H}}\int_{s}^{t}\big{\|}S_{1}(t-z)(-A_{1})^{\frac{\theta}{2}}\Psi^{\epsilon}_{1}\big{(}\bar{X}(z),Y_{n}^{\epsilon,u}(z)\big{)}\big{[}A_{1}\bar{X}(z)+\bar{F}\big{(}\bar{X}(z)\big{)}\big{]}\big{\|}_{\mathcal{H}}dz
Cδc(ϵ)ϵh(ϵ)χst(tz)θ/2(A1X¯(z)+F¯(X¯(z)))𝑑z,\displaystyle\leq\frac{C\delta}{c(\epsilon)\sqrt{\epsilon}h(\epsilon)}\|\chi\|_{\mathcal{H}}\int_{s}^{t}(t-z)^{-\theta/2}\bigg{(}\big{\|}A_{1}\bar{X}(z)\big{\|}_{\mathcal{H}}+\big{\|}\bar{F}\big{(}\bar{X}(z)\big{)}\big{\|}_{\mathcal{H}}\bigg{)}dz,

with probability 11. As in the proof of Lemma 5.5, a density argument allows us to choose χB\chi\in B_{\mathcal{H}} and apply (69) to deduce that

|IV3ϵ,u\displaystyle\big{|}IV_{3}^{\epsilon,u} (s,t,n,θ,χ)|Cδc(ϵ)ϵh(ϵ)st(tz)θ/2[(z1+a/2+1)x0Ha+F¯(X¯(z))]dz.\displaystyle(s,t,n,\theta,\chi)\big{|}\leq\frac{C\delta}{c(\epsilon)\sqrt{\epsilon}h(\epsilon)}\int_{s}^{t}(t-z)^{-\theta/2}\big{[}(z^{-1+a/2}+1)\|x_{0}\|_{H^{a}}+\big{\|}\bar{F}\big{(}\bar{X}(z)\big{)}\big{\|}_{\mathcal{H}}\big{]}dz. (101)

Setting s=0s=0 and choosing pp large enough to satisfy θ<2/p<a\theta<2/p<a, we apply Hölder’s inequality to obtain

|IV3ϵ,u\displaystyle\big{|}IV_{3}^{\epsilon,u} (0,t,n,θ,χ)|CT1/pθ/2δc(ϵ)ϵh(ϵ){x0Ha[0T(za21+1)qdz]1q+T1qsupz[0,T]F¯(X¯(z))}.\displaystyle(0,t,n,\theta,\chi)\big{|}\leq\frac{CT^{1/p-\theta/2}\delta}{c(\epsilon)\sqrt{\epsilon}h(\epsilon)}\bigg{\{}\|x_{0}\|_{H^{a}}\bigg{[}\int_{0}^{T}(z^{\frac{a}{2}-1}+1)^{q}dz\bigg{]}^{\frac{1}{q}}+T^{\frac{1}{q}}\sup_{z\in[0,T]}\big{\|}\bar{F}\big{(}\bar{X}(z)\big{)}\big{\|}_{\mathcal{H}}\bigg{\}}.

From the Lipschitz continuity of F¯\bar{F} and the fact that c(ϵ)=ϵc(\epsilon)=\sqrt{\epsilon} (see (82)) we have

|IV3ϵ,u\displaystyle\big{|}IV_{3}^{\epsilon,u} (0,t,n,θ,χ)|CT,θ,pδϵh(ϵ)(1+x0Ha).\displaystyle(0,t,n,\theta,\chi)\big{|}\leq\frac{C_{T,\theta,p}\delta}{\epsilon h(\epsilon)}\big{(}1+\|x_{0}\|_{H^{a}}\big{)}.

This proves (99) since δ/(ϵh(ϵ))\delta/(\epsilon h(\epsilon)) is bounded for ϵ\epsilon small enough. As for (100), let θ=0\theta=0 and c(ϵ)=ϵc(\epsilon)=\sqrt{\epsilon} in (101) to obtain

|IV3ϵ,u\displaystyle\big{|}IV_{3}^{\epsilon,u} (s,t,n,0,χ)|Cδϵh(ϵ)st[(z1+a/2+1)x0Ha+F¯(X¯(z))]dz.\displaystyle(s,t,n,0,\chi)\big{|}\leq\frac{C\delta}{\epsilon h(\epsilon)}\int_{s}^{t}\big{[}(z^{-1+a/2}+1)\|x_{0}\|_{H^{a}}+\big{\|}\bar{F}\big{(}\bar{X}(z)\big{)}\big{\|}_{\mathcal{H}}\big{]}dz.

In view of the Lipschitz continuity of F¯\bar{F}, the proof is complete. ∎

The following two lemmas provide estimates for the terms IVkϵ,uIV_{k}^{\epsilon,u}, k=4,5k=4,5 in (90). These estimates do not require regularity of initial conditions and in fact are straightforward consequences of the analyticity of S1S_{1} and the a priori bounds (67) and (58) from Section 4.

Lemma 5.8.

Let T<,T<\infty, x0,y0x_{0},y_{0}\in\mathcal{H} and IV4ϵ,uIV^{\epsilon,u}_{4} as in (90). There exist ϵ0>0\epsilon_{0}>0 and a constant C>0C>0, independent of ϵ\epsilon, such that for all θ<1/2\theta<1/2 and β1/2\beta\leq 1/2

supϵ<ϵ0,u𝒫NTsupn𝔼(supt[0,T]supχB|IV4ϵ,u(0,t,n,θ,χ)|2)C(1+x02+y02)\displaystyle\sup_{\epsilon<\epsilon_{0},u\in\mathcal{P}^{T}_{N}}\sup_{n\in\mathbb{N}}\mathbb{E}\bigg{(}\sup_{t\in[0,T]}\sup_{\chi\in B_{\mathcal{H}}}\big{|}IV_{4}^{\epsilon,u}(0,t,n,\theta,\chi)\big{|}^{2}\bigg{)}\leq C\big{(}1+\|x_{0}\|^{2}_{\mathcal{H}}+\|y_{0}\|^{2}_{\mathcal{H}}\big{)} (102)

and

supϵ<ϵ0,u𝒫NTsupn𝔼(suptss,t[0,T]supχB|IV4ϵ,u(s,t,n,0,χ)||ts|β)C(1+x0+y0).\displaystyle\sup_{\epsilon<\epsilon_{0},u\in\mathcal{P}^{T}_{N}}\sup_{n\in\mathbb{N}}\mathbb{E}\bigg{(}\sup_{\overset{s,t\in[0,T]}{t\neq s}}\sup_{\chi\in B_{\mathcal{H}}}\frac{\big{|}IV_{4}^{\epsilon,u}(s,t,n,0,\chi)\big{|}}{|t-s|^{\beta}}\bigg{)}\leq C\big{(}1+\|x_{0}\|_{\mathcal{H}}+\|y_{0}\|_{\mathcal{H}}\big{)}. (103)
Proof.

Let χDom((A1)1+θ2)\chi\in Dom((-A_{1})^{1+\frac{\theta}{2}}) . Using the analyticity of S1S_{1} along with (36) we obtain

|IV4ϵ,u(s,t,n,θ,χ)|\displaystyle\big{|}IV_{4}^{\epsilon,u}(s,t,n,\theta,\chi)\big{|} c(ϵ)ϵh(ϵ)stS1(tz)(A1)θ2Ψϵ(X¯(z),Ynϵ,u(z))χ𝑑z\displaystyle\leq\frac{c(\epsilon)}{\sqrt{\epsilon}h(\epsilon)}\int_{s}^{t}\big{\|}S_{1}(t-z)(-A_{1})^{\frac{\theta}{2}}\Psi^{\epsilon}\big{(}\bar{X}(z),Y_{n}^{\epsilon,u}(z)\big{)}\big{\|}_{\mathcal{H}}\|\chi\|_{\mathcal{H}}dz
Cc(ϵ)ϵh(ϵ)χst(tz)θ/2(1+X¯(z)+Ynϵ,u(z))𝑑z.\displaystyle\leq\frac{Cc(\epsilon)}{\sqrt{\epsilon}h(\epsilon)}\|\chi\|_{\mathcal{H}}\int_{s}^{t}(t-z)^{-\theta/2}\bigg{(}1+\big{\|}\bar{X}(z)\big{\|}_{\mathcal{H}}+\big{\|}Y_{n}^{\epsilon,u}(z)\big{\|}_{\mathcal{H}}\bigg{)}dz.

Since θ<1/2\theta<1/2, the Cauchy-Schwarz inequality yields

|IV4ϵ,u(s,t,n,θ,χ)|\displaystyle\big{|}IV_{4}^{\epsilon,u}(s,t,n,\theta,\chi)\big{|} Cc(ϵ)ϵh(ϵ)χ(ts)1/2θ/2(0T[1+X¯(z)2+Ynϵ,u(z)2]𝑑z)1/2.\displaystyle\leq\frac{Cc(\epsilon)}{\sqrt{\epsilon}h(\epsilon)}\|\chi\|_{\mathcal{H}}(t-s)^{1/2-\theta/2}\bigg{(}\int_{0}^{T}\big{[}1+\big{\|}\bar{X}(z)\big{\|}^{2}_{\mathcal{H}}+\big{\|}Y_{n}^{\epsilon,u}(z)\big{\|}^{2}_{\mathcal{H}}\big{]}dz\bigg{)}^{1/2}. (104)

As in the proof of Lemma 5.5 we can use a density argument to show that the last estimate holds for all χ\chi\in\mathcal{H}. Setting s=0s=0 and taking expectation, we apply Jensen’s inequality along with (67) and (58) to obtain

𝔼supt[0,T]supχB|IV4ϵ,u(0,t,n,θ,χ)|2\displaystyle\mathbb{E}\sup_{t\in[0,T]}\sup_{\chi\in B_{\mathcal{H}}}\big{|}IV_{4}^{\epsilon,u}(0,t,n,\theta,\chi)\big{|}^{2} Cc2(ϵ)ϵh2(ϵ)0T[1+X¯(z)2+𝔼Ynϵ,u(z)2]𝑑z\displaystyle\leq\frac{Cc^{2}(\epsilon)}{\epsilon h^{2}(\epsilon)}\int_{0}^{T}\big{[}1+\big{\|}\bar{X}(z)\big{\|}^{2}_{\mathcal{H}}+\mathbb{E}\big{\|}Y_{n}^{\epsilon,u}(z)\big{\|}^{2}_{\mathcal{H}}\big{]}dz
Cc2(ϵ)ϵh2(ϵ)(1+x02+y02).\displaystyle\leq\frac{Cc^{2}(\epsilon)}{\epsilon h^{2}(\epsilon)}(1+\|x_{0}\|^{2}_{\mathcal{H}}+\|y_{0}\|^{2}_{\mathcal{H}}).

This completes the proof of (102) since

c2(ϵ)ϵh2(ϵ)=1h2(ϵ)0asϵ0.\frac{c^{2}(\epsilon)}{\epsilon h^{2}(\epsilon)}=\frac{1}{h^{2}(\epsilon)}\longrightarrow 0\;\;\text{as}\;\;\epsilon\to 0.

As for (103), we set θ=0\theta=0 in (104) to conclude that

𝔼supst[0,T]supχB|IV4ϵ,u(s,t,n,0,χ)||ts|12\displaystyle\mathbb{E}\sup_{s\neq t\in[0,T]}\sup_{\chi\in B_{\mathcal{H}}}\frac{\big{|}IV_{4}^{\epsilon,u}(s,t,n,0,\chi)\big{|}}{|t-s|^{\frac{1}{2}}} Ch(ϵ)(0T[1+X¯(z)2+𝔼Ynϵ,u(z)2]𝑑z)1/2\displaystyle\leq\frac{C}{h(\epsilon)}\bigg{(}\int_{0}^{T}\big{[}1+\big{\|}\bar{X}(z)\big{\|}^{2}_{\mathcal{H}}+\mathbb{E}\big{\|}Y_{n}^{\epsilon,u}(z)\big{\|}^{2}_{\mathcal{H}}\big{]}dz\bigg{)}^{1/2}
Ch(ϵ)(1+x02+y02)1/2,\displaystyle\leq\frac{C}{h(\epsilon)}(1+\|x_{0}\|^{2}_{\mathcal{H}}+\|y_{0}\|^{2}_{\mathcal{H}})^{1/2},

for ϵ\epsilon sufficiently small. ∎

Lemma 5.9.

Let T<T<\infty, x0,y0x_{0},y_{0}\in\mathcal{H} and IV5ϵ,uIV^{\epsilon,u}_{5} as in (90). There exist ϵ0>0\epsilon_{0}>0 and a constant C>0C>0, independent of ϵ\epsilon, such that for all θ<1/2\theta<1/2 and β1/2\beta\leq 1/2

supϵ<ϵ0,u𝒫NTsupn𝔼(supt[0,T]supχB|IV5ϵ,u(0,t,n,θ,χ)|2)C\displaystyle\sup_{\epsilon<\epsilon_{0},u\in\mathcal{P}^{T}_{N}}\sup_{n\in\mathbb{N}}\mathbb{E}\bigg{(}\sup_{t\in[0,T]}\sup_{\chi\in B_{\mathcal{H}}}\big{|}IV_{5}^{\epsilon,u}(0,t,n,\theta,\chi)\big{|}^{2}\bigg{)}\leq C (105)

and

supϵ<ϵ0,u𝒫NTsupn𝔼(suptss,t[0,T]supχB|IV5ϵ,u(s,t,n,0,χ)||ts|β)C.\displaystyle\sup_{\epsilon<\epsilon_{0},u\in\mathcal{P}^{T}_{N}}\sup_{n\in\mathbb{N}}\mathbb{E}\bigg{(}\sup_{\overset{s,t\in[0,T]}{t\neq s}}\sup_{\chi\in B_{\mathcal{H}}}\frac{\big{|}IV_{5}^{\epsilon,u}(s,t,n,0,\chi)\big{|}}{|t-s|^{\beta}}\bigg{)}\leq C. (106)
Proof.

Let χDom((A1)1+θ2)\chi\in Dom((-A_{1})^{1+\frac{\theta}{2}}) . Using the analyticity of S1S_{1} along with the second estimate in (36) we have that, with probability 11,

|IV5ϵ,u(s,t,n,θ,χ)|\displaystyle\big{|}IV_{5}^{\epsilon,u}(s,t,n,\theta,\chi)\big{|} Cδϵχst(tz)θ/2Ψ2ϵ(X¯(z),Ynϵ,u(z))()u2,n(z)𝑑z\displaystyle\leq\frac{C\sqrt{\delta}}{\sqrt{\epsilon}}\|\chi\|_{\mathcal{H}}\int_{s}^{t}(t-z)^{-\theta/2}\big{\|}\Psi^{\epsilon}_{2}\big{(}\bar{X}(z),Y_{n}^{\epsilon,u}(z)\big{)}\big{\|}_{\mathscr{L}(\mathcal{H})}\|u_{2,n}(z)\|_{\mathcal{H}}dz (107)
Cδϵχ(ts)1/2θ/2u2L2([0,T];)CNδϵχ(ts)1/2θ/2,\displaystyle\leq\frac{C\sqrt{\delta}}{\sqrt{\epsilon}}\|\chi\|_{\mathcal{H}}(t-s)^{1/2-\theta/2}\|u_{2}\|_{L^{2}([0,T];\mathcal{H})}\leq\frac{CN\sqrt{\delta}}{\sqrt{\epsilon}}\|\chi\|_{\mathcal{H}}(t-s)^{1/2-\theta/2},

where we applied the Cauchy-Schwarz inequality and the fact that u2𝒫NTu_{2}\in\mathcal{P}^{T}_{N} to obtain the last line. From a density argument (see proof of Lemma 5.5), the last estimate holds for all χ\chi\in\mathcal{H}. In view of (4), δ/ϵ\sqrt{\delta}/\sqrt{\epsilon} is bounded in both Regimes 1,21,2, for ϵ\epsilon sufficiently small. Thus we set s=0s=0 in (107) to obtain (105) and θ=0\theta=0 to obtain (106). ∎

Next, we bound the stochastic convolution term IV6ϵ,uIV_{6}^{\epsilon,u}. The estimates rely on the stochastic factorization formula and, to avoid repetition, many of the arguments will be omitted.

Lemma 5.10.

Let T<T<\infty and IV6ϵ,uIV_{6}^{\epsilon,u} as in (90). There exist ϵ0>0\epsilon_{0}>0 and a constant C>0C>0, independent of ϵ\epsilon, such that for all θ<12\theta<\frac{1}{2} and β<14\beta<\frac{1}{4}

supϵ<ϵ0,u𝒫NTsupn𝔼(supt[0,T]supχB|IV6ϵ,u(0,t,n,θ,χ)|2)C\displaystyle\sup_{\epsilon<\epsilon_{0},u\in\mathcal{P}^{T}_{N}}\sup_{n\in\mathbb{N}}\mathbb{E}\bigg{(}\sup_{t\in[0,T]}\sup_{\chi\in B_{\mathcal{H}}}\big{|}IV_{6}^{\epsilon,u}(0,t,n,\theta,\chi)\big{|}^{2}\bigg{)}\leq C (108)

and

supϵ<ϵ0,u𝒫NTsupn𝔼(suptss,t[0,T]supχB|IV6ϵ,u(s,t,n,0,χ)||ts|β)C.\displaystyle\sup_{\epsilon<\epsilon_{0},u\in\mathcal{P}^{T}_{N}}\sup_{n\in\mathbb{N}}\mathbb{E}\bigg{(}\sup_{\overset{s,t\in[0,T]}{t\neq s}}\sup_{\chi\in B_{\mathcal{H}}}\frac{\big{|}IV_{6}^{\epsilon,u}(s,t,n,0,\chi)\big{|}}{|t-s|^{\beta}}\bigg{)}\leq C. (109)
Proof.

Let χDom((A1)1+θ2)\chi\in Dom((-A_{1})^{1+\frac{\theta}{2}}) and apply the stochastic factorization formula (see (176)) to obtain

IV6ϵ,u(s,t,n,θ,χ)=δsin(aπ)ϵh(ϵ)πst(tz)a1(A1)θ2S1(tz)Man,ϵ,u(s,z,z)𝑑z,χ,IV_{6}^{\epsilon,u}(s,t,n,\theta,\chi)=\frac{\sqrt{\delta}\sin(a\pi)}{\sqrt{\epsilon}h(\epsilon)\pi}\bigg{\langle}\int_{s}^{t}(t-z)^{a-1}(-A_{1})^{\frac{\theta}{2}}S_{1}(t-z)M^{n,\epsilon,u}_{a}(s,z,z)dz\;,\chi\bigg{\rangle}_{\mathcal{H}}\;, (110)

where,

Man,ϵ,u(t1,t2,t3;1)=t1t2(t3ζ)aS1(t3ζ)Ψ2ϵ(X¯(ζ),Ynϵ,u(ζ))Pn𝑑w2(ζ)M^{n,\epsilon,u}_{a}(t_{1},t_{2},t_{3};1)=\int_{t_{1}}^{t_{2}}(t_{3}-\zeta)^{-a}S_{1}(t_{3}-\zeta)\\ \Psi^{\epsilon}_{2}\big{(}\bar{X}(\zeta),Y_{n}^{\epsilon,u}(\zeta)\big{)}P_{n}dw_{2}(\zeta) (111)

and PnP_{n} is an orthogonal projection on an nn-dimensional eigenspace of A2A_{2}. It follows that

|IV6ϵ,u(s,t,n,θ,χ)|Cδϵh(ϵ)χst(tz)a1(A1)θ2Man,ϵ,u(s,z,z;1)𝑑z.\displaystyle\big{|}IV_{6}^{\epsilon,u}(s,t,n,\theta,\chi)\big{|}\leq\frac{C\sqrt{\delta}}{\sqrt{\epsilon}h(\epsilon)}\|\chi\|_{\mathcal{H}}\int_{s}^{t}(t-z)^{a-1}\big{\|}(-A_{1})^{\frac{\theta}{2}}M^{n,\epsilon,u}_{a}(s,z,z;1)\big{\|}_{\mathcal{H}}dz. (112)

From a density argument (see proof of Lemma 5.1), the last estimate holds with probability 11 for all χB\chi\in B_{\mathcal{H}}.

Due to the similarity of the estimates with those in Lemma 5.3, we will only prove (109). To this end, set θ=0\theta=0 in (112) and let q>1/a>2q>1/a>2. Repeating the arguments of Lemma 5.3 we see that

𝔼suptss,t[0,T]\displaystyle\mathbb{E}\sup_{\overset{s,t\in[0,T]}{t\neq s}} supχB|IV6ϵ,u(s,t,n,0,χ)||ts|a1/q\displaystyle\sup_{\chi\in B_{\mathcal{H}}}\frac{\big{|}IV_{6}^{\epsilon,u}(s,t,n,0,\chi)\big{|}}{|t-s|^{a-1/q}}
Cδϵh(ϵ)(0T(0z(zζ)2a𝔼S1(zζ)Ψ2ϵ(X¯(ζ),Ynϵ,u(ζ))Pn2()2𝑑ζ)q2𝑑z)1q.\displaystyle\leq\frac{C\sqrt{\delta}}{\sqrt{\epsilon}h(\epsilon)}\bigg{(}\int_{0}^{T}\bigg{(}\int_{0}^{z}(z-\zeta)^{-2a}\mathbb{E}\big{\|}S_{1}(z-\zeta)\Psi^{\epsilon}_{2}\big{(}\bar{X}(\zeta),Y_{n}^{\epsilon,u}(\zeta)\big{)}P_{n}\big{\|}^{2}_{\mathscr{L}_{2}(\mathcal{H})}d\zeta\bigg{)}^{\frac{q}{2}}dz\bigg{)}^{\frac{1}{q}}.

Invoking Lemma A.1(ii) (with B(ζ)=Ψ2ϵ(X¯(ζ),Ynϵ,u(ζ))B(\zeta)=\Psi^{\epsilon}_{2}(\bar{X}(\zeta),Y_{n}^{\epsilon,u}(\zeta)) ) along with the first estimate in (36), we can choose a<14a<\frac{1}{4} and 12<ρ<12a\frac{1}{2}<\rho<1-2a so that

𝔼suptss,t[0,T]supχB|IV6ϵ,u(s,t,n,0,χ)||ts|a1/q\displaystyle\mathbb{E}\sup_{\overset{s,t\in[0,T]}{t\neq s}}\sup_{\chi\in B_{\mathcal{H}}}\frac{\big{|}IV_{6}^{\epsilon,u}(s,t,n,0,\chi)\big{|}}{|t-s|^{a-1/q}} Cδϵh(ϵ)(0T(0z(zζ)2aρ𝑑ζ)q2𝑑z)1q\displaystyle\leq\frac{C\sqrt{\delta}}{\sqrt{\epsilon}h(\epsilon)}\bigg{(}\int_{0}^{T}\bigg{(}\int_{0}^{z}(z-\zeta)^{-2a-\rho}d\zeta\bigg{)}^{\frac{q}{2}}dz\bigg{)}^{\frac{1}{q}}
Cδϵh(ϵ)(0Tzq2(12aρ)𝑑z)1q<.\displaystyle\leq\frac{C\sqrt{\delta}}{\sqrt{\epsilon}h(\epsilon)}\bigg{(}\int_{0}^{T}z^{\frac{q}{2}(1-2a-\rho)}dz\bigg{)}^{\frac{1}{q}}<\infty.

Since δ/ϵ\sqrt{\delta}/\sqrt{\epsilon} is bounded for ϵ\epsilon sufficiently small and h(ϵ)h(\epsilon)\to\infty as ϵ0\epsilon\to 0, (109) follows.

Taking (110), (111) and (36) into account, we see that the proof of (108) is nearly identical to that of estimate (78) and thus will be omitted. ∎

The last remaining step before estimating IVϵ,uIV^{\epsilon,u} involves bounding the finite-dimensional approximation error Rϵ,uR^{\epsilon,u} in (90), given by (91). This term has singular prefactors of order 1/ϵh(ϵ)1/\sqrt{\epsilon}h(\epsilon). However, if we fix ϵ\epsilon and let nn\to\infty, Rϵ,uR^{\epsilon,u} vanishes. Thus, for each ϵ>0\epsilon>0, we can choose an integer n(ϵ)n(\epsilon) that makes Rϵ,uR^{\epsilon,u} small. This is done in the following lemma.

Lemma 5.11.

Let T<T<\infty, θ<1/2\theta<1/2 and Rϵ,uR^{\epsilon,u} as in (91). For all ϵ>0\epsilon>0 there exists n(ϵ)n(\epsilon)\in\mathbb{N} such that

supu𝒫NT𝔼supt[0,T]supχB|Rϵ,u(0,t,n(ϵ),θ,χ)|2ϵ\sup_{u\in\mathcal{P}^{T}_{N}}\mathbb{E}\sup_{t\in[0,T]}\sup_{\chi\in B_{\mathcal{H}}}\big{|}R^{\epsilon,u}(0,t,n(\epsilon),\theta,\chi)\big{|}^{2}\leq\epsilon (113)

and

supu𝒫NT𝔼suptss,t[0,T]supχB|Rϵ,u(s,t,n(ϵ),0,χ)||ts|1/2ϵ.\displaystyle\sup_{u\in\mathcal{P}^{T}_{N}}\mathbb{E}\sup_{\overset{s,t\in[0,T]}{t\neq s}}\sup_{\chi\in B_{\mathcal{H}}}\frac{\big{|}R^{\epsilon,u}(s,t,n(\epsilon),0,\chi)\big{|}}{|t-s|^{1/2}}\leq\epsilon. (114)
Proof.

Let χDom((A1)θ2),n\chi\in Dom((-A_{1})^{\frac{\theta}{2}}),n\in\mathbb{N} and recall that

Rϵ,u(s,t,n,θ,χ)=1ϵh(ϵ)stF(X¯(z),Yϵ,u(z))F(X¯(z),Ynϵ,u(z)),S1(tz)(A1)θ2χ𝑑z\displaystyle R^{\epsilon,u}(s,t,n,\theta,\chi)=\frac{1}{\sqrt{\epsilon}h(\epsilon)}\int_{s}^{t}\big{\langle}F\big{(}\bar{X}(z),Y^{\epsilon,u}(z)\big{)}-F\big{(}\bar{X}(z),Y_{n}^{\epsilon,u}(z)\big{)},S_{1}(t-z)(-A_{1})^{\frac{\theta}{2}}\chi\big{\rangle}_{\mathcal{H}}\;dz (115)
+1ϵh(ϵ)stΨ2ϵ(X¯(z),Ynϵ,u(z))[PnG(X¯(z),Yϵ,u(z))G(X¯(z),Ynϵ,u(z))],S1(tz)(A1)θ2χ𝑑z\displaystyle+\frac{1}{\sqrt{\epsilon}h(\epsilon)}\int_{s}^{t}\big{\langle}\Psi^{\epsilon}_{2}\big{(}\bar{X}(z),Y_{n}^{\epsilon,u}(z)\big{)}\big{[}P_{n}G\big{(}\bar{X}(z),Y^{\epsilon,u}(z)\big{)}-G\big{(}\bar{X}(z),Y_{n}^{\epsilon,u}(z)\big{)}\big{]},S_{1}(t-z)(-A_{1})^{\frac{\theta}{2}}\chi\big{\rangle}_{\mathcal{H}}dz
+12ϵh(ϵ)stΨ3ϵ,n(X¯(z),Ynϵ,u(z)),S1(tz)(A1)θ2χ𝑑z.\displaystyle+\frac{1}{2\sqrt{\epsilon}h(\epsilon)}\int_{s}^{t}\big{\langle}\Psi^{\epsilon,n}_{3}\big{(}\bar{X}(z),Y_{n}^{\epsilon,u}(z)\big{)},S_{1}(t-z)(-A_{1})^{\frac{\theta}{2}}\chi\big{\rangle}_{\mathcal{H}}dz.

We start by estimating the first term in the last display. Using the analyticity of S1S_{1} along with the Lipschitz continuity of FF

|1ϵh(ϵ)\displaystyle\bigg{|}\frac{1}{\sqrt{\epsilon}h(\epsilon)} stF(X¯(z),Yϵ,u(z))F(X¯(z),Ynϵ,u(z)),S1(tz)(A1)θ2χdz|\displaystyle\int_{s}^{t}\big{\langle}F\big{(}\bar{X}(z),Y^{\epsilon,u}(z)\big{)}-F\big{(}\bar{X}(z),Y_{n}^{\epsilon,u}(z)\big{)},S_{1}(t-z)(-A_{1})^{\frac{\theta}{2}}\chi\big{\rangle}_{\mathcal{H}}\;dz\bigg{|}
Cϵh(ϵ)χst(tz)θ/2F(X¯(z),Yϵ,u(z))F(X¯(z),Ynϵ,u(z))𝑑z\displaystyle\leq\frac{C}{\sqrt{\epsilon}h(\epsilon)}\|\chi\|_{\mathcal{H}}\int_{s}^{t}(t-z)^{-\theta/2}\big{\|}F\big{(}\bar{X}(z),Y^{\epsilon,u}(z)\big{)}-F\big{(}\bar{X}(z),Y_{n}^{\epsilon,u}(z)\big{)}\big{\|}_{\mathcal{H}}\;dz
Cfϵh(ϵ)χ(0TYϵ,u(z)Ynϵ,u(z)2𝑑z)1/2(ts)1θ2,\displaystyle\leq\frac{C_{f}}{\sqrt{\epsilon}h(\epsilon)}\|\chi\|_{\mathcal{H}}\bigg{(}\int_{0}^{T}\big{\|}Y^{\epsilon,u}(z)-Y_{n}^{\epsilon,u}(z)\big{\|}^{2}_{\mathcal{H}}\;dz\bigg{)}^{1/2}(t-s)^{\frac{1-\theta}{2}},

where we also applied the Cauchy-Schwarz inequality to obtain the last line. As in the proof of Lemma 5.1, we can use a density argument to deduce that the last estimate holds for all χB\chi\in B_{\mathcal{H}}. Setting s=0s=0

𝔼supχB\displaystyle\mathbb{E}\sup_{\chi\in B_{\mathcal{H}}} |1ϵh(ϵ)0tF(X¯(z),Yϵ,u(z))F(X¯(z),Ynϵ,u(z)),S1(tz)(A1)θ2χ𝑑z|2\displaystyle\bigg{|}\frac{1}{\sqrt{\epsilon}h(\epsilon)}\int_{0}^{t}\big{\langle}F\big{(}\bar{X}(z),Y^{\epsilon,u}(z)\big{)}-F\big{(}\bar{X}(z),Y_{n}^{\epsilon,u}(z)\big{)},S_{1}(t-z)(-A_{1})^{\frac{\theta}{2}}\chi\big{\rangle}_{\mathcal{H}}\;dz\bigg{|}^{2} (116)
Cϵh2(ϵ)𝔼0TYϵ,u(z)Ynϵ,u(z)2𝑑z,\displaystyle\leq\frac{C}{\epsilon h^{2}(\epsilon)}\mathbb{E}\int_{0}^{T}\big{\|}Y^{\epsilon,u}(z)-Y_{n}^{\epsilon,u}(z)\big{\|}^{2}_{\mathcal{H}}\;dz,

while for θ=0\theta=0 we obtain

𝔼suptss,t[0,T]supχB1|ts|1/2\displaystyle\mathbb{E}\sup_{\overset{s,t\in[0,T]}{t\neq s}}\sup_{\chi\in B_{\mathcal{H}}}\frac{1}{|t-s|^{1/2}} |1ϵh(ϵ)stF(X¯(z),Yϵ,u(z))F(X¯(z),Ynϵ,u(z)),S1(tz)χ𝑑z|\displaystyle\bigg{|}\frac{1}{\sqrt{\epsilon}h(\epsilon)}\int_{s}^{t}\big{\langle}F\big{(}\bar{X}(z),Y^{\epsilon,u}(z)\big{)}-F\big{(}\bar{X}(z),Y_{n}^{\epsilon,u}(z)\big{)},S_{1}(t-z)\chi\big{\rangle}_{\mathcal{H}}\;dz\bigg{|} (117)
Cϵh(ϵ)(𝔼0TYϵ,u(z)Ynϵ,u(z)2𝑑z)1/2.\displaystyle\leq\frac{C}{\sqrt{\epsilon}h(\epsilon)}\bigg{(}\mathbb{E}\int_{0}^{T}\big{\|}Y^{\epsilon,u}(z)-Y_{n}^{\epsilon,u}(z)\big{\|}^{2}_{\mathcal{H}}\;dz\bigg{)}^{1/2}.

Next, recall that YnY_{n} solves (83) and note that for fixed ϵ\epsilon and all z[0,T]z\in[0,T]

Ynϵ,u(z)Yϵ,u(z),asna.s.Y_{n}^{\epsilon,u}(z)\longrightarrow Y^{\epsilon,u}(z)\;,\text{as}\;\;n\to\infty\;\;\mathbb{P}-a.s.

Moreover,

supn𝔼0TYnϵ,u(z)Yϵ,u(z)22𝔼Yϵ,uL2([0,T];)2\sup_{n\in\mathbb{N}}\mathbb{E}\int_{0}^{T}\|Y_{n}^{\epsilon,u}(z)-Y^{\epsilon,u}(z)\|^{2}_{\mathcal{H}}\leq 2\mathbb{E}\|Y^{\epsilon,u}\|^{2}_{L^{2}([0,T];\mathcal{H})}

and the last expression is finite due to (58). An application of the Dominated Convergence theorem yields that for each fixed ϵ>0\epsilon>0

1ϵh(ϵ)limn(𝔼0TYϵ,u(z)Ynϵ,u(z)2𝑑z)1/2=0.\displaystyle\frac{1}{\sqrt{\epsilon}h(\epsilon)}\lim_{n\to\infty}\bigg{(}\mathbb{E}\int_{0}^{T}\big{\|}Y^{\epsilon,u}(z)-Y_{n}^{\epsilon,u}(z)\big{\|}^{2}_{\mathcal{H}}\;dz\bigg{)}^{1/2}=0.

Combining the latter with (116) and (117) yields

limn𝔼suptss,t[0,T]supχB1|ts|1/2|1ϵh(ϵ)stF(X¯(z),Yϵ,u(z))F(X¯(z),Ynϵ,u(z)),S1(tz)χ𝑑z|\displaystyle\lim_{n\to\infty}\mathbb{E}\sup_{\overset{s,t\in[0,T]}{t\neq s}}\sup_{\chi\in B_{\mathcal{H}}}\frac{1}{|t-s|^{1/2}}\bigg{|}\frac{1}{\sqrt{\epsilon}h(\epsilon)}\int_{s}^{t}\big{\langle}F\big{(}\bar{X}(z),Y^{\epsilon,u}(z)\big{)}-F\big{(}\bar{X}(z),Y_{n}^{\epsilon,u}(z)\big{)},S_{1}(t-z)\chi\big{\rangle}_{\mathcal{H}}dz\bigg{|}
=limn𝔼supχB|1ϵh(ϵ)0tF(X¯(z),Yϵ,u(z))F(X¯(z),Ynϵ,u(z)),S1(tz)(A1)θ2χ𝑑z|=0.\displaystyle=\lim_{n\to\infty}\mathbb{E}\sup_{\chi\in B_{\mathcal{H}}}\bigg{|}\frac{1}{\sqrt{\epsilon}h(\epsilon)}\int_{0}^{t}\big{\langle}F\big{(}\bar{X}(z),Y^{\epsilon,u}(z)\big{)}-F\big{(}\bar{X}(z),Y_{n}^{\epsilon,u}(z)\big{)},S_{1}(t-z)(-A_{1})^{\frac{\theta}{2}}\chi\big{\rangle}_{\mathcal{H}}dz\bigg{|}=0.

Thus, for all ϵ>0\epsilon>0 we can find n(ϵ)n(\epsilon)\in\mathbb{N} large enough to satisfy

𝔼suptss,t[0,T]supχB1|ts|1/2|1ϵh(ϵ)stF(X¯(z),Yϵ,u(z))F(X¯(z),Yn(ϵ)ϵ,u(z)),S1(tz)(A1)θ2χ𝑑z|\displaystyle\mathbb{E}\sup_{\overset{s,t\in[0,T]}{t\neq s}}\sup_{\chi\in B_{\mathcal{H}}}\frac{1}{|t-s|^{1/2}}\bigg{|}\frac{1}{\sqrt{\epsilon}h(\epsilon)}\int_{s}^{t}\big{\langle}F\big{(}\bar{X}(z),Y^{\epsilon,u}(z)\big{)}-F\big{(}\bar{X}(z),Y_{n(\epsilon)}^{\epsilon,u}(z)\big{)},S_{1}(t-z)(-A_{1})^{\frac{\theta}{2}}\chi\big{\rangle}_{\mathcal{H}}dz\bigg{|} (118)
+𝔼supχB|1ϵh(ϵ)0tF(X¯(z),Yϵ,u(z))F(X¯(z),Yn(ϵ)ϵ,u(z)),S1(tz)(A1)θ2χ𝑑z|ϵ3.\displaystyle+\mathbb{E}\sup_{\chi\in B_{\mathcal{H}}}\bigg{|}\frac{1}{\sqrt{\epsilon}h(\epsilon)}\int_{0}^{t}\big{\langle}F\big{(}\bar{X}(z),Y^{\epsilon,u}(z)\big{)}-F\big{(}\bar{X}(z),Y_{n(\epsilon)}^{\epsilon,u}(z)\big{)},S_{1}(t-z)(-A_{1})^{\frac{\theta}{2}}\chi\big{\rangle}_{\mathcal{H}}dz\bigg{|}\leq\frac{\epsilon}{3}\;.

For the second term in (115) we can use the first estimate in (36) along with similar arguments to show that for each χB\chi\in B_{\mathcal{H}}

|1ϵh(ϵ)\displaystyle\bigg{|}\frac{1}{\sqrt{\epsilon}h(\epsilon)} stΨ2ϵ(X¯(z),Ynϵ,u(z))[PnG(X¯(z),Yϵ,u(z))G(X¯(z),Ynϵ,u(z))],S1(tz)(A1)θ2χdz|\displaystyle\int_{s}^{t}\big{\langle}\Psi^{\epsilon}_{2}\big{(}\bar{X}(z),Y_{n}^{\epsilon,u}(z)\big{)}\big{[}P_{n}G\big{(}\bar{X}(z),Y^{\epsilon,u}(z)\big{)}-G\big{(}\bar{X}(z),Y_{n}^{\epsilon,u}(z)\big{)}\big{]},S_{1}(t-z)(-A_{1})^{\frac{\theta}{2}}\chi\big{\rangle}_{\mathcal{H}}dz\bigg{|}
Cϵh(ϵ)(0TPnG(X¯(z),Yϵ,u(z))G(X¯(z),Ynϵ,u(z))2𝑑z)1/2(ts)1θ2.\displaystyle\leq\frac{C}{\sqrt{\epsilon}h(\epsilon)}\bigg{(}\int_{0}^{T}\big{\|}P_{n}G\big{(}\bar{X}(z),Y^{\epsilon,u}(z)\big{)}-G\big{(}\bar{X}(z),Y_{n}^{\epsilon,u}(z)\big{)}\big{\|}^{2}_{\mathcal{H}}\;dz\bigg{)}^{1/2}(t-s)^{\frac{1-\theta}{2}}.

Since GG is continuous in yy, for each fixed ϵ\epsilon and z[0,T]z\in[0,T],

PnG(X¯(z),Yϵ,u(z))G(X¯(z),Ynϵ,u(z))20,asna.s.\big{\|}P_{n}G\big{(}\bar{X}(z),Y^{\epsilon,u}(z)\big{)}-G\big{(}\bar{X}(z),Y_{n}^{\epsilon,u}(z)\big{)}\big{\|}^{2}_{\mathcal{H}}\longrightarrow 0\;\;,\;\text{as}\;\;n\to\infty\;\;\mathbb{P}-a.s.

From the linear growth of GG in both variables along with estimates and (67) and (58) we have

supn𝔼0T\displaystyle\sup_{n\in\mathbb{N}}\mathbb{E}\int_{0}^{T} PnG(X¯(z),Yϵ,u(z))G(X¯(z),Ynϵ,u(z))2dzCg(1+supt[0,T]X¯(t)2+0T𝔼Yϵ,u(z)2𝑑z)<.\displaystyle\big{\|}P_{n}G\big{(}\bar{X}(z),Y^{\epsilon,u}(z)\big{)}-G\big{(}\bar{X}(z),Y_{n}^{\epsilon,u}(z)\big{)}\big{\|}^{2}_{\mathcal{H}}dz\leq C_{g}\bigg{(}1+\sup_{t\in[0,T]}\|\bar{X}(t)\|^{2}_{\mathcal{H}}+\int_{0}^{T}\mathbb{E}\|Y^{\epsilon,u}(z)\|^{2}_{\mathcal{H}}dz\bigg{)}<\infty.

Applying a dominated convergence argument as before we can show that, for all ϵ>0\epsilon>0, there exists n(ϵ)n(\epsilon)\in\mathbb{N} large enough to satisfy

𝔼suptss,t[0,T]supχB1|ts|1/2|1ϵh(ϵ)stΨ2ϵ(X¯(z),Yn(ϵ)ϵ,u(z))[Pn(ϵ)G(X¯(z),Yϵ,u(z))\displaystyle\mathbb{E}\sup_{\overset{s,t\in[0,T]}{t\neq s}}\sup_{\chi\in B_{\mathcal{H}}}\frac{1}{|t-s|^{1/2}}\bigg{|}\frac{1}{\sqrt{\epsilon}h(\epsilon)}\int_{s}^{t}\big{\langle}\Psi^{\epsilon}_{2}\big{(}\bar{X}(z),Y_{n(\epsilon)}^{\epsilon,u}(z)\big{)}\big{[}P_{n(\epsilon)}G\big{(}\bar{X}(z),Y^{\epsilon,u}(z)\big{)} (119)
G(X¯(z),Yn(ϵ)ϵ,u(z))],S1(tz)χdz|2+𝔼supχB|1ϵh(ϵ)0tΨ2ϵ(X¯(z),Yn(ϵ)ϵ,u(z))[Pn(ϵ)G(X¯(z),Yϵ,u(z))\displaystyle-G\big{(}\bar{X}(z),Y_{n(\epsilon)}^{\epsilon,u}(z)\big{)}\big{]},S_{1}(t-z)\chi\big{\rangle}_{\mathcal{H}}dz\bigg{|}^{2}+\mathbb{E}\sup_{\chi\in B_{\mathcal{H}}}\bigg{|}\frac{1}{\sqrt{\epsilon}h(\epsilon)}\int_{0}^{t}\big{\langle}\Psi^{\epsilon}_{2}\big{(}\bar{X}(z),Y_{n(\epsilon)}^{\epsilon,u}(z)\big{)}\big{[}P_{n(\epsilon)}G\big{(}\bar{X}(z),Y^{\epsilon,u}(z)\big{)}
G(X¯(z),Yn(ϵ)ϵ,u(z))],S1(tz)(A1)θ2χdz|2ϵ3.\displaystyle-G\big{(}\bar{X}(z),Y_{n(\epsilon)}^{\epsilon,u}(z)\big{)}\big{]},S_{1}(t-z)(-A_{1})^{\frac{\theta}{2}}\chi\big{\rangle}_{\mathcal{H}}dz\bigg{|}^{2}\leq\frac{\epsilon}{3}\;.

It remains to estimate the last term in (115). Since the arguments are very similar to the ones above we will only sketch the proof. In view of (88) and the continuity of Dy2Φχϵ(x,y)D^{2}_{y}\Phi^{\epsilon}_{\chi}(x,y) in yy

Ψ3ϵ,n(X¯(z),Ynϵ,u(z)),χ=tr[(PnI)Dy2Φχϵ(X¯(z),Ynϵ,u(z))]0asn\big{\langle}\Psi^{\epsilon,n}_{3}\big{(}\bar{X}(z),Y_{n}^{\epsilon,u}(z)\big{)},\chi\big{\rangle}_{\mathcal{H}}=\text{tr}\big{[}(P_{n}-I)D^{2}_{y}\Phi^{\epsilon}_{\chi}\big{(}\bar{X}(z),Y_{n}^{\epsilon,u}(z)\big{)}\big{]}\longrightarrow 0\;\;\text{as}\;\;n\to\infty

and this convergence is uniform over χB\chi\in B_{\mathcal{H}}. In view of the estimate in (87), which is uniform in nn,

supn𝔼0TΨ3ϵ,n(ϵ,X¯(z),Ynϵ,u(z))2𝑑zcc(ϵ)(1+supz[0,T]X¯(z)2+𝔼Yϵ,uL2([0,T];)2)\sup_{n\in\mathbb{N}}\mathbb{E}\int_{0}^{T}\big{\|}\Psi^{\epsilon,n}_{3}\big{(}\epsilon,\bar{X}(z),Y_{n}^{\epsilon,u}(z)\big{)}\big{\|}^{2}_{\mathcal{H}}dz\leq\frac{c}{c(\epsilon)}\bigg{(}1+\sup_{z\in[0,T]}\|\bar{X}(z)\|^{2}_{\mathcal{H}}+\mathbb{E}\|Y^{\epsilon,u}\|^{2}_{L^{2}([0,T];\mathcal{H})}\bigg{)}

and for each fixed ϵ\epsilon the right-hand is finite due to estimates (67) and (58). Using the analyticity of S1S_{1} along with the Dominated Convergence theorem as before we deduce that for each θ<1/2\theta<1/2 and ϵ>0\epsilon>0, there exists n(ϵ)n(\epsilon)\in\mathbb{N} large enough to satisfy

𝔼suptss,t[0,T]supχB1|ts|1/2|12ϵh(ϵ)stΨ3ϵ,n(ϵ)(ϵ,X¯(z),Yn(ϵ)ϵ,u(z)),S1(tz)χ𝑑z|\displaystyle\mathbb{E}\sup_{\overset{s,t\in[0,T]}{t\neq s}}\sup_{\chi\in B_{\mathcal{H}}}\frac{1}{|t-s|^{1/2}}\bigg{|}\frac{1}{2\sqrt{\epsilon}h(\epsilon)}\int_{s}^{t}\big{\langle}\Psi^{\epsilon,n(\epsilon)}_{3}\big{(}\epsilon,\bar{X}(z),Y_{n(\epsilon)}^{\epsilon,u}(z)\big{)},S_{1}(t-z)\chi\big{\rangle}_{\mathcal{H}}dz\bigg{|} (120)
+𝔼supχB|12ϵh(ϵ)0tΨ3ϵ,n(ϵ)(ϵ,X¯(z),Yn(ϵ)ϵ,u(z)),S1(tz)(A1)θ2χ𝑑z|2ϵ3.\displaystyle+\mathbb{E}\sup_{\chi\in B_{\mathcal{H}}}\bigg{|}\frac{1}{2\sqrt{\epsilon}h(\epsilon)}\int_{0}^{t}\big{\langle}\Psi^{\epsilon,n(\epsilon)}_{3}\big{(}\epsilon,\bar{X}(z),Y_{n(\epsilon)}^{\epsilon,u}(z)\big{)},S_{1}(t-z)(-A_{1})^{\frac{\theta}{2}}\chi\big{\rangle}_{\mathcal{H}}dz\bigg{|}^{2}\leq\frac{\epsilon}{3}\;.

The proof is complete upon combining (118), (119), (120). ∎

Collecting the estimates we proved for IVkϵ,uIV^{\epsilon,u}_{k}, k=1,,6k=1,\dots,6 and Rϵ,uR^{\epsilon,u} we can finally prove the following:

Lemma 5.12.

Let T<T<\infty, a>0a>0, x0,y0Ha(0,L)x_{0},y_{0}\in H^{a}(0,L) and IVϵ,uIV^{\epsilon,u} as in (90). There exist ϵ0>0\epsilon_{0}>0, θ<12a\theta<\frac{1}{2}\wedge a, β<14a2\beta<\frac{1}{4}\wedge\frac{a}{2} and a constant C>0C>0 independent of ϵ\epsilon such that

supϵ<ϵ0,u𝒫NT𝔼(supt[0,T]supχB|IVϵ,u(0,t,θ,χ)|2)C(1+x0Ha2+y0Ha2)\displaystyle\sup_{\epsilon<\epsilon_{0},u\in\mathcal{P}^{T}_{N}}\mathbb{E}\bigg{(}\sup_{t\in[0,T]}\sup_{\chi\in B_{\mathcal{H}}}\big{|}IV^{\epsilon,u}(0,t,\theta,\chi)\big{|}^{2}\bigg{)}\leq C\big{(}1+\|x_{0}\|^{2}_{H^{a}}+\|y_{0}\|^{2}_{H^{a}}\big{)} (121)

and

supϵ<ϵ0,u𝒫NT𝔼(suptss,t[0,T]supχB|IVϵ,u(s,t,0,χ)||ts|β)C(1+x0Ha+y0Ha).\displaystyle\sup_{\epsilon<\epsilon_{0},u\in\mathcal{P}^{T}_{N}}\mathbb{E}\bigg{(}\sup_{\overset{s,t\in[0,T]}{t\neq s}}\sup_{\chi\in B_{\mathcal{H}}}\frac{\big{|}IV^{\epsilon,u}(s,t,0,\chi)\big{|}}{|t-s|^{\beta}}\bigg{)}\leq C\big{(}1+\|x_{0}\|_{H^{a}}+\|y_{0}\|_{H^{a}}\big{)}. (122)
Proof.

In view of (92), (96), (99), (102), (105), (108) and (113) there exist ϵ0>0\epsilon_{0}>0, θ<12a\theta<\frac{1}{2}\wedge a and, for each ϵ>0\epsilon>0, a n(ϵ)n(\epsilon)\in\mathbb{N} such that

supϵ<ϵ0𝔼(supt[0,T]supχB|IVϵ,u(0,t,θ,χ)|2)\displaystyle\sup_{\epsilon<\epsilon_{0}}\mathbb{E}\bigg{(}\sup_{t\in[0,T]}\sup_{\chi\in B_{\mathcal{H}}}\big{|}IV^{\epsilon,u}(0,t,\theta,\chi)\big{|}^{2}\bigg{)} Ck=16supϵ<ϵ0𝔼(supt[0,T]supχB|IVkϵ,u(0,t,n(ϵ),θ,χ)|2)\displaystyle\leq C\sum_{k=1}^{6}\sup_{\epsilon<\epsilon_{0}}\mathbb{E}\bigg{(}\sup_{t\in[0,T]}\sup_{\chi\in B_{\mathcal{H}}}\big{|}IV_{k}^{\epsilon,u}(0,t,n(\epsilon),\theta,\chi)\big{|}^{2}\bigg{)} (123)
+Csupϵ<ϵ0𝔼(supt[0,T]supχB|Rϵ,u(0,t,n(ϵ),θ,χ)|2)\displaystyle+C\sup_{\epsilon<\epsilon_{0}}\mathbb{E}\bigg{(}\sup_{t\in[0,T]}\sup_{\chi\in B_{\mathcal{H}}}\big{|}R^{\epsilon,u}(0,t,n(\epsilon),\theta,\chi)\big{|}^{2}\bigg{)}
C(1+x0Ha2+y0Ha2),\displaystyle\leq C\big{(}1+\|x_{0}\|^{2}_{H^{a}}+\|y_{0}\|^{2}_{H^{a}}\big{)},

which proves (121). Finally, in view of (93), (97), (100), (103), (106), (109) and (114) there exist ϵ0>0\epsilon_{0}>0, β<14a2\beta<\frac{1}{4}\wedge\frac{a}{2} and, for each ϵ>0\epsilon>0, a n(ϵ)n(\epsilon)\in\mathbb{N} such that

supϵ<ϵ0𝔼(suptss,t[0,T]supχB|IVϵ,u(s,t,0,χ)||ts|β)\displaystyle\sup_{\epsilon<\epsilon_{0}}\mathbb{E}\bigg{(}\sup_{\overset{s,t\in[0,T]}{t\neq s}}\sup_{\chi\in B_{\mathcal{H}}}\frac{\big{|}IV^{\epsilon,u}(s,t,0,\chi)\big{|}}{|t-s|^{\beta}}\bigg{)} k=16supϵ<ϵ0𝔼(suptss,t[0,T]supχB|IVkϵ,u(s,t,n(ϵ),0,χ)||ts|β)\displaystyle\leq\sum_{k=1}^{6}\sup_{\epsilon<\epsilon_{0}}\mathbb{E}\bigg{(}\sup_{\overset{s,t\in[0,T]}{t\neq s}}\sup_{\chi\in B_{\mathcal{H}}}\frac{\big{|}IV_{k}^{\epsilon,u}(s,t,n(\epsilon),0,\chi)\big{|}}{|t-s|^{\beta}}\bigg{)}
+supϵ<ϵ0𝔼(suptss,t[0,T]supχB|Rϵ,u(s,t,n(ϵ),0,χ)||ts|β)\displaystyle+\sup_{\epsilon<\epsilon_{0}}\mathbb{E}\bigg{(}\sup_{\overset{s,t\in[0,T]}{t\neq s}}\sup_{\chi\in B_{\mathcal{H}}}\frac{\big{|}R^{\epsilon,u}(s,t,n(\epsilon),0,\chi)\big{|}}{|t-s|^{\beta}}\bigg{)}
C(1+x0Ha+y0Ha),\displaystyle\leq C\big{(}1+\|x_{0}\|_{H^{a}}+\|y_{0}\|_{H^{a}}\big{)},

which proves (122) and completes the argument. ∎

5.3. Proof of Proposition 5.1

We can now combine the estimates of this section and prove the desired a priori estimates for ηϵ,u\eta^{\epsilon,u}.

(i) Setting s=0s=0 in the decomposition (72) (recall that ηϵ,u(0)=0\eta^{\epsilon,u}(0)=0_{\mathcal{H}})

ηϵ,u(t)Hθ2=supχB|ηϵ,u(t),(A1)θ2χ|2\displaystyle\|\eta^{\epsilon,u}(t)\|^{2}_{H^{\theta}}=\sup_{\chi\in B_{\mathcal{H}}}\big{|}\big{\langle}\eta^{\epsilon,u}(t),(-A_{1})^{\frac{\theta}{2}}\chi\big{\rangle}_{\mathcal{H}}\big{|}^{2} supχB|Iϵ,u(0,t,θ,χ)|2+supχB|IIϵ,u(0,t,θ,χ)|2\displaystyle\leq\sup_{\chi\in B_{\mathcal{H}}}\big{|}I^{\epsilon,u}(0,t,\theta,\chi)\big{|}^{2}+\sup_{\chi\in B_{\mathcal{H}}}\big{|}II^{\epsilon,u}(0,t,\theta,\chi)\big{|}^{2}
+supχB|IIIϵ,u(0,t,θ,χ)|2+supχB|IVϵ,u(0,t,θ,χ)|2.\displaystyle+\sup_{\chi\in B_{\mathcal{H}}}\big{|}III^{\epsilon,u}(0,t,\theta,\chi)\big{|}^{2}+\sup_{\chi\in B_{\mathcal{H}}}\big{|}IV^{\epsilon,u}(0,t,\theta,\chi)\big{|}^{2}.

In view of (73)\eqref{ISob},

ηϵ,u(t)Hθ2\displaystyle\|\eta^{\epsilon,u}(t)\|^{2}_{H^{\theta}} C0t(tz)θηϵ,u(z)Hθ2𝑑z+supt[0,T]supχB|IIϵ,u(0,t,θ,χ)|2\displaystyle\leq C\int_{0}^{t}(t-z)^{-\theta}\big{\|}\eta^{\epsilon,u}(z)\big{\|}^{2}_{H^{\theta}}dz+\sup_{t\in[0,T]}\sup_{\chi\in B_{\mathcal{H}}}\big{|}II^{\epsilon,u}(0,t,\theta,\chi)\big{|}^{2}
+supt[0,T]supχB|IIIϵ,u(0,t,θ,χ)|2+supt[0,T]supχB|IVϵ,u(0,t,θ,χ)|2.\displaystyle+\sup_{t\in[0,T]}\sup_{\chi\in B_{\mathcal{H}}}\big{|}III^{\epsilon,u}(0,t,\theta,\chi)\big{|}^{2}+\sup_{t\in[0,T]}\sup_{\chi\in B_{\mathcal{H}}}\big{|}IV^{\epsilon,u}(0,t,\theta,\chi)\big{|}^{2}.

An application of Grönwall’s inequality then yields

ηϵ,u(t)Hθ2CT,θ(\displaystyle\|\eta^{\epsilon,u}(t)\|^{2}_{H^{\theta}}\leq C_{T,\theta}\bigg{(} supt[0,T]supχB|IIϵ,u(0,t,θ,χ)|2+supt[0,T]supχB|IIIϵ,u(0,t,θ,χ)|2\displaystyle\sup_{t\in[0,T]}\sup_{\chi\in B_{\mathcal{H}}}\big{|}II^{\epsilon,u}(0,t,\theta,\chi)\big{|}^{2}+\sup_{t\in[0,T]}\sup_{\chi\in B_{\mathcal{H}}}\big{|}III^{\epsilon,u}(0,t,\theta,\chi)\big{|}^{2}
+supt[0,T]supχB|IVϵ,u(0,t,θ,χ)|2).\displaystyle+\sup_{t\in[0,T]}\sup_{\chi\in B_{\mathcal{H}}}\big{|}IV^{\epsilon,u}(0,t,\theta,\chi)\big{|}^{2}\bigg{)}.

Taking expectation and invoking (73), (75), (78) and (121) we obtain

𝔼supt[0,T]ηϵ,u(t)Hθ2C(1+x0Ha2+y0Ha2),\displaystyle\mathbb{E}\sup_{t\in[0,T]}\|\eta^{\epsilon,u}(t)\|^{2}_{H^{\theta}}\leq C\big{(}1+\|x_{0}\|^{2}_{H^{a}}+\|y_{0}\|^{2}_{H^{a}}\big{)},

which holds for ϵ\epsilon sufficiently small, θ<(12ν)a\theta<(\frac{1}{2}-\nu)\wedge a and proves (70).

(ii) Setting θ=0\theta=0 in the decomposition (72) we apply a reverse triangle inequality to obtain

ηϵ,u(t)ηϵ,u(s)\displaystyle\|\eta^{\epsilon,u}(t)-\eta^{\epsilon,u}(s)\|_{\mathcal{H}} (S1(ts)I)ηϵ,u(s)+supχB|Iϵ,u(s,t,0,χ)|+supχB|IIϵ,u(s,t,0,χ)|\displaystyle\leq\|(S_{1}(t-s)-I\big{)}\eta^{\epsilon,u}(s)\|_{\mathcal{H}}+\sup_{\chi\in B_{\mathcal{H}}}\big{|}I^{\epsilon,u}(s,t,0,\chi)\big{|}+\sup_{\chi\in B_{\mathcal{H}}}\big{|}II^{\epsilon,u}(s,t,0,\chi)\big{|}
+supχB|IIIϵ,u(s,t,0,χ)|+supχB|IVϵ,u(s,t,0,χ)|\displaystyle+\sup_{\chi\in B_{\mathcal{H}}}\big{|}III^{\epsilon,u}(s,t,0,\chi)\big{|}+\sup_{\chi\in B_{\mathcal{H}}}\big{|}IV^{\epsilon,u}(s,t,0,\chi)\big{|}
C(ts)θ/2ηϵ,u(s)Hθ+supχB|Iϵ,u(s,t,0,χ)|+supχB|IIϵ,u(s,t,0,χ)|\displaystyle\leq C(t-s)^{\theta/2}\|\eta^{\epsilon,u}(s)\|_{H^{\theta}}+\sup_{\chi\in B_{\mathcal{H}}}\big{|}I^{\epsilon,u}(s,t,0,\chi)\big{|}+\sup_{\chi\in B_{\mathcal{H}}}\big{|}II^{\epsilon,u}(s,t,0,\chi)\big{|}
+supχB|IIIϵ,u(s,t,0,χ)|+supχB|IVϵ,u(s,t,0,χ)|,\displaystyle+\sup_{\chi\in B_{\mathcal{H}}}\big{|}III^{\epsilon,u}(s,t,0,\chi)\big{|}+\sup_{\chi\in B_{\mathcal{H}}}\big{|}IV^{\epsilon,u}(s,t,0,\chi)\big{|},

where we used (12) to obtain the last inequality. Hence for any β<θ/2<(14ν2)a2\beta<\theta/2<(\frac{1}{4}-\frac{\nu}{2})\wedge\frac{a}{2} we take expectation and apply (74), (76), (79) and (122) along with (70) to deduce that

𝔼suptss,t[0,T]\displaystyle\mathbb{E}\sup_{\overset{s,t\in[0,T]}{t\neq s}} ηϵ,u(t)ηϵ,u(s)|ts|βC𝔼supt[0,T]ηϵ,u(t)Hθ+𝔼suptss,t[0,T]supχB|Iϵ,u(s,t,0,χ)||ts|β\displaystyle\frac{\big{\|}\eta^{\epsilon,u}(t)-\eta^{\epsilon,u}(s)\big{\|}_{\mathcal{H}}}{|t-s|^{\beta}}\leq C\mathbb{E}\sup_{t\in[0,T]}\big{\|}\eta^{\epsilon,u}(t)\big{\|}_{H^{\theta}}+\mathbb{E}\sup_{\overset{s,t\in[0,T]}{t\neq s}}\sup_{\chi\in B_{\mathcal{H}}}\frac{\big{|}I^{\epsilon,u}(s,t,0,\chi)\big{|}}{|t-s|^{\beta}}
+𝔼suptss,t[0,T]supχB|IIϵ,u(s,t,0,χ)||ts|β+𝔼suptss,t[0,T]supχB|IIIϵ,u(s,t,0,χ)||ts|β\displaystyle+\mathbb{E}\sup_{\overset{s,t\in[0,T]}{t\neq s}}\sup_{\chi\in B_{\mathcal{H}}}\frac{\big{|}II^{\epsilon,u}(s,t,0,\chi)\big{|}}{|t-s|^{\beta}}+\mathbb{E}\sup_{\overset{s,t\in[0,T]}{t\neq s}}\sup_{\chi\in B_{\mathcal{H}}}\frac{\big{|}III^{\epsilon,u}(s,t,0,\chi)\big{|}}{|t-s|^{\beta}}
+𝔼suptss,t[0,T]supχB|IVϵ,u(s,t,0,χ)||ts|βC(1+x0Ha+y0Ha).\displaystyle+\mathbb{E}\sup_{\overset{s,t\in[0,T]}{t\neq s}}\sup_{\chi\in B_{\mathcal{H}}}\frac{\big{|}IV^{\epsilon,u}(s,t,0,\chi)\big{|}}{|t-s|^{\beta}}\leq C\big{(}1+\|x_{0}\|_{H^{a}}+\|y_{0}\|_{H^{a}}\big{)}.

The proof is complete.

6. Tightness of the pairs (ηϵ,u,Pϵ,Δ)(\eta^{\epsilon,u},P^{\epsilon,\Delta}) and analysis of the limit

Let ηϵ,u\eta^{\epsilon,u} denote the controlled moderate deviation processes defined in (24) and Pϵ,ΔP^{\epsilon,\Delta} the random occupation measures defined in (38). In this section, we prove the first main result of this paper, Theorem 3.2. To do so, we first show that the family {(ηϵ,u,Pϵ,Δ),ϵ>0,u𝒫NT}\{(\eta^{\epsilon,u},P^{\epsilon,\Delta}),\epsilon>0,u\in\mathcal{P}_{N}^{T}\} is tight in Section 6.1 and then identify the limiting dynamics in Section 6.2. We complete the proof of Theorem 3.2 in Section 6.3.

Before we proceed to the main body of this section, let us recall the notion of tightness for a family of probability measures and then state an extension of the classical theorem of Prokhorov which will be used in the sequel.

Definition 6.1.

Let \mathcal{E} be a Hausdorff topological space and Π𝒫()\Pi\subset\mathscr{P}(\mathcal{E}) be a set of Borel probability measures on \mathcal{E}. (i) We say that a sequence {Pn}Π\{P_{n}\}\subset\Pi converges weakly to a measure P𝒫()P\in\mathscr{P}(\mathcal{E}) if for every fCb()f\in C_{b}(\mathcal{E})

limnf𝑑Pn=f𝑑P.\lim_{n\to\infty}\int_{\mathcal{E}}fdP_{n}=\int_{\mathcal{E}}fdP.

(ii) We say that Π\Pi is tight if for each ϵ>0\epsilon>0 there exists a compact set KϵK_{\epsilon}\subset\mathcal{E} such that for all PΠP\in\Pi,

P(Kϵ)<ϵ.P(\mathcal{E}\setminus K_{\epsilon})<\epsilon. (124)

The classical version of Prokhorov’s theorem asserts that the notions of tightness and relative weak sequential compactness on 𝒫()\mathscr{P}(\mathcal{E}) are equivalent, provided that \mathcal{E} is a Polish space. The following generalization can be found e.g. in [3] (see Theorem 8.6.7).

Theorem 6.1.

(Prokhorov) Let \mathcal{E} be a completely regular Hausdorff topological space and Π𝒫()\Pi\subset\mathscr{P}(\mathcal{E}) be a tight family of Borel probability measures. Then Π\Pi has compact closure in the topology of weak convergence of measures. In addition, if for each ϵ>0\epsilon>0 the set KϵK_{\epsilon} in (124) is metrizable, then every sequence in Π\Pi contains a weakly convergent subsequence.

6.1. Tightness of {(ηϵ,u,Pϵ,Δ),ϵ(0,1),u𝒫NT}\{(\eta^{\epsilon,u},P^{\epsilon,\Delta}),\epsilon\in(0,1),u\in\mathcal{P}_{N}^{T}\}

Lemma 6.1.

Let T<,N>0T<\infty,N>0, a>0a>0 and (Xϵ,u,Yϵ,u)(X^{\epsilon,u},Y^{\epsilon,u}) denote the mild solution of (25) with initial conditions x0,y0Ha(0,L)x_{0},y_{0}\in H^{a}(0,L). Then the family {ηϵ,u,ϵ(0,1),u𝒫NT}\{\eta^{\epsilon,u},\epsilon\in(0,1),u\in\mathcal{P}_{N}^{T}\} is tight in C([0,T];)C\big{(}[0,T];\mathcal{H}\big{)}.

Proof.

Let M,β,θ>0M,\beta,\theta>0. From an infinite-dimensional version of the Arzelà-Ascoli theorem, sets of the form

𝒦M,β,θ={XC([0,T];):XCβ([0,T];)M,supt[0,T]X(t)HθM}\mathcal{K}_{M,\beta,\theta}=\bigg{\{}X\in C([0,T];\mathcal{H}):\|X\|_{C^{\beta}([0,T];\mathcal{H})}\leq M\;,\;\sup_{t\in[0,T]}\|X(t)\|_{H^{\theta}}\leq M\bigg{\}}

are compact in C([0,T];)C([0,T];\mathcal{H}). Indeed, since the inclusion Hθ(0,L)H^{\theta}(0,L)\subset\mathcal{H} is compact, we see that 𝒦M,β,θ\mathcal{K}_{M,\beta,\theta} contain uniformly equicontinuous paths with values on compact subsets of \mathcal{H}. In view of Proposition 5.1 in Section 4, there exist θ0<12ν\theta_{0}<\frac{1}{2}-\nu and β0<14ν2\beta_{0}<\frac{1}{4}-\frac{\nu}{2} such that

limMsupϵ(0,1),u𝒫NT[ηϵ,u𝒦M,β0,θ0]=0.\lim_{M\to\infty}\sup_{\epsilon\in(0,1),u\in\mathcal{P}_{N}^{T}}\mathbb{P}\big{[}\eta^{\epsilon,u}\notin\mathcal{K}_{M,\beta_{0},\theta_{0}}\big{]}=0.

Equivalently, the probability laws of the processes ηϵ,u\eta^{\epsilon,u} are concentrated in compact subsets of C([0,T];)C([0,T];\mathcal{H}), uniformly in ϵ,u\epsilon,u. The proof is complete. ∎

In order to show that the laws of the random occupation measures Pϵ,ΔP^{\epsilon,\Delta} form a tight subset of 𝒫(𝒫(×××[0,T]))\mathscr{P}(\mathscr{P}(\mathcal{H}\times\mathcal{H}\times\mathcal{H}\times[0,T])) we need the following auxiliary lemma regarding the spatial regularity of the fast process Yϵ,uY^{\epsilon,u}.

Lemma 6.2.

Let T<T<\infty. There exists θ>0\theta>0 and a constant C>0C>0, independent of ϵ\epsilon, such that

supϵ>0,u𝒫NT𝔼0TYϵ,u(t)Hθ2𝑑tC(1+x02+y02).\sup_{\epsilon>0,u\in\mathcal{P}^{T}_{N}}\mathbb{E}\int_{0}^{T}\big{\|}Y^{\epsilon,u}(t)\big{\|}^{2}_{H^{\theta}}dt\leq C\big{(}1+\|x_{0}\|_{\mathcal{H}}^{2}+\|y_{0}\|_{\mathcal{H}}^{2}\big{)}. (125)
Proof.

Recall that the mild solution of the controlled fast equation (see (25)) is given by

Yϵ,u(t)=\displaystyle Y^{\epsilon,u}(t)= S2(tδ)y0+1δ0tS2(tsδ)G(Xϵ,u(s),Yϵ,u(s))𝑑s+h(ϵ)δ0tS2(tsδ)u2(s)𝑑s\displaystyle S_{2}\bigg{(}\frac{t}{\delta}\bigg{)}y_{0}+\frac{1}{\delta}\int_{0}^{t}S_{2}\bigg{(}\frac{t-s}{\delta}\bigg{)}G\big{(}X^{\epsilon,u}(s),Y^{\epsilon,u}(s)\big{)}ds+\frac{h(\epsilon)}{\delta}\int_{0}^{t}S_{2}\bigg{(}\frac{t-s}{\delta}\bigg{)}u_{2}(s)ds
+1δ0tS2(tsδ)𝑑w2(s).\displaystyle+\frac{1}{\sqrt{\delta}}\int_{0}^{t}S_{2}\bigg{(}\frac{t-s}{\delta}\bigg{)}dw_{2}(s).

Using the analytic properties of the semigroup and the linear growth of GG, we can estimate the first two terms by

0TS2(tδ)y0Hθ2𝑑tC0T(tδ)θeλtδy02𝑑tCλ,θδy02\int_{0}^{T}\bigg{\|}S_{2}\bigg{(}\frac{t}{\delta}\bigg{)}y_{0}\bigg{\|}^{2}_{H^{\theta}}dt\leq C\int_{0}^{T}\bigg{(}\frac{t}{\delta}\bigg{)}^{-\theta}e^{-\frac{\lambda t}{\delta}}\|y_{0}\|_{\mathcal{H}}^{2}dt\leq C_{\lambda,\theta}\delta\|y_{0}\|_{\mathcal{H}}^{2} (126)

and

0tS2(tsδ)G(Xϵ,u(s),Yϵ,u(s))𝑑sHθC0t(tsδ)θ/2eλ(ts)2δG(Xϵ,u(s),Yϵ,u(s))𝑑s.\displaystyle\bigg{\|}\int_{0}^{t}S_{2}\bigg{(}\frac{t-s}{\delta}\bigg{)}G\big{(}X^{\epsilon,u}(s),Y^{\epsilon,u}(s)\big{)}ds\bigg{\|}_{H^{\theta}}\leq C\int_{0}^{t}\bigg{(}\frac{t-s}{\delta}\bigg{)}^{-\theta/2}e^{-\frac{\lambda(t-s)}{2\delta}}\big{\|}G\big{(}X^{\epsilon,u}(s),Y^{\epsilon,u}(s)\big{)}\big{\|}_{\mathcal{H}}ds.

Applying Young’s inequality for convolutions in the form fg2f1g2\|f\star g\|_{2}\leq\|f\|_{1}\|g\|_{2} we obtain

𝔼0T1δ0t\displaystyle\mathbb{E}\int_{0}^{T}\bigg{\|}\frac{1}{\delta}\int_{0}^{t} S2(tsδ)G(Xϵ,u(s),Yϵ,u(s))dsHθ2dt\displaystyle S_{2}\bigg{(}\frac{t-s}{\delta}\bigg{)}G\big{(}X^{\epsilon,u}(s),Y^{\epsilon,u}(s)\big{)}ds\bigg{\|}^{2}_{H^{\theta}}dt (127)
C(0tθ/2eλt2𝑑t)2𝔼0T(1+Xϵ,u(t)2+Yϵ,u(t)2)𝑑t\displaystyle\leq C\bigg{(}\int_{0}^{\infty}t^{-\theta/2}e^{-\frac{\lambda t}{2}}dt\bigg{)}^{2}\mathbb{E}\int_{0}^{T}\big{(}1+\big{\|}X^{\epsilon,u}(t)\big{\|}^{2}_{\mathcal{H}}+\big{\|}Y^{\epsilon,u}(t)\big{\|}^{2}_{\mathcal{H}}\big{)}dt
C(1+x02+y02),\displaystyle\leq C\big{(}1+\|x_{0}\|_{\mathcal{H}}^{2}+\|y_{0}\|_{\mathcal{H}}^{2}\big{)},

where the last inequality follows from the a priori bounds (57), (58) in Section 4. It remains to estimate the control and stochastic convolution terms. The first can be bounded by Young’s inequality for convolutions and the L2L^{2} bound on the controls as follows:

0Th(ϵ)δ0tS2(tsδ)u(s)𝑑sHθ2𝑑t\displaystyle\int_{0}^{T}\bigg{\|}\frac{h(\epsilon)}{\sqrt{\delta}}\int_{0}^{t}S_{2}\bigg{(}\frac{t-s}{\delta}\bigg{)}u(s)ds\bigg{\|}^{2}_{H^{\theta}}dt h2(ϵ)δ(0T(t/δ)θ/2eλt2δ𝑑t)20Tu(t)2𝑑t\displaystyle\leq\frac{h^{2}(\epsilon)}{\delta}\bigg{(}\int_{0}^{T}(t/\delta)^{-\theta/2}e^{-\frac{\lambda t}{2\delta}}dt\bigg{)}^{2}\int_{0}^{T}\|u(t)\|^{2}_{\mathcal{H}}dt (128)
Nh2(ϵ)δδ2(0sθ/2eλs2𝑑s)2\displaystyle\leq N\frac{h^{2}(\epsilon)}{\delta}\delta^{2}\bigg{(}\int_{0}^{\infty}s^{-\theta/2}e^{-\frac{\lambda s}{2}}ds\bigg{)}^{2}
Cδh2(ϵ)0,asϵ0.\displaystyle\leq C\delta h^{2}(\epsilon)\longrightarrow 0\;,\;\text{as}\;\epsilon\to 0.

The last line above follows from the change of variables s=t/δs=t/\delta and the integral is finite provided that θ<2\theta<2. Finally, for the stochastic convolution term, we can proceed as in [25] (see Lemma 4.6, (33) and set Σ=I\Sigma=I) to show that

𝔼0T1δ0tS2(tsδ)𝑑w2(s)Hθ2𝑑tC.\mathbb{E}\int_{0}^{T}\bigg{\|}\frac{1}{\sqrt{\delta}}\int_{0}^{t}S_{2}\bigg{(}\frac{t-s}{\delta}\bigg{)}dw_{2}(s)\bigg{\|}^{2}_{H^{\theta}}dt\leq C. (129)

The proof is complete upon combining (126)-(129). ∎

We can now argue that the family of occupation measures Pϵ,ΔP^{\epsilon,\Delta} is tight. The difference with the finite-dimensional case (see Proposition 3.1 in [17]) is that the controls take values on the infinite-dimensional space \mathcal{H}. Since the occupation measures are defined on ×××[0,T]\mathcal{H}\times\mathcal{H}\times\mathcal{H}\times[0,T] with the WWNS topology and the weak topology is not globally metrizable, it follows that ×××[0,T]\mathcal{H}\times\mathcal{H}\times\mathcal{H}\times[0,T] is not a Polish space (and consequently neither is 𝒫(×××[0,T])\mathscr{P}(\mathcal{H}\times\mathcal{H}\times\mathcal{H}\times[0,T]) with the topology of weak convergence of measures). This is why we need Theorem 6.1.

Lemma 6.3.

The family {Pϵ,Δ,ϵ>0}\{P^{\epsilon,\Delta},\epsilon>0\} is tight in 𝒫(×××[0,T])\mathscr{P}(\mathcal{H}\times\mathcal{H}\times\mathcal{H}\times[0,T]) where ×××[0,T]\mathcal{H}\times\mathcal{H}\times\mathcal{H}\times[0,T] is endowed with the WWNS topology.

Proof.

Let M>0M>0 and define

𝒦M={(u1,u2,y)××:u12+u22+yHθ2M}×[0,T].\mathcal{K}_{M}=\big{\{}(u_{1},u_{2},y)\in\mathcal{H}\times\mathcal{H}\times\mathcal{H}:\|u_{1}\|^{2}_{\mathcal{H}}+\|u_{2}\|^{2}_{\mathcal{H}}+\|y\|^{2}_{H^{\theta}}\leq M\big{\}}\times[0,T].

Since

𝒦M{(u1,u2)×:u12+u22M}×{y:yHθ2M}×[0,T],\displaystyle\mathcal{K}_{M}\subset\big{\{}(u_{1},u_{2})\in\mathcal{H}\times\mathcal{H}:\|u_{1}\|^{2}_{\mathcal{H}}+\|u_{2}\|^{2}_{\mathcal{H}}\leq M\big{\}}\times\{y\in\mathcal{H}:\|y\|^{2}_{H^{\theta}}\leq M\big{\}}\times[0,T],

we invoke the Banach-Alaoglu theorem along with the compact inclusion Hθ(0,L)H^{\theta}(0,L)\subset\mathcal{H} to deduce that 𝒦M\mathcal{K}_{M} is compact in the WWNS topology. Next define

Πi,j=LiMj{P𝒫(×××[0,T]):P(𝒦Mc)<1L},i,j.\displaystyle\Pi_{i,j}=\bigcap_{L\geq i}\bigcup_{M\geq j}\bigg{\{}P\in\mathscr{P}(\mathcal{H}\times\mathcal{H}\times\mathcal{H}\times[0,T]):P(\mathcal{K}^{c}_{M})<\frac{1}{L}\bigg{\}}\;,i,j\in\mathbb{N}.

By Definition 6.1 it follows that, for each i,j,i,j, Πi,j\Pi_{i,j} is a tight family of measures. Since \mathcal{H} is a separable Hilbert space and the weak topology on BB_{\mathcal{H}} is metrizable, the sets 𝒦M\mathcal{K}_{M} are compact, metrizable. Thus, in light of Theorem 6.1, the sets Πi,j\Pi_{i,j} are relatively compact and, in fact, relatively sequentially compact in the topology of 𝒫(×××[0,T])\mathscr{P}(\mathcal{H}\times\mathcal{H}\times\mathcal{H}\times[0,T]). Now, an application of Chebyshev’s inequality along with estimate (125) yields

𝔼[Pϵ,Δ(𝒦Mc)]\displaystyle\mathbb{E}\big{[}P^{\epsilon,\Delta}(\mathcal{K}_{M}^{c})\big{]} =1Δ0Ttt+Δ[(u1(s),u2(s),Yϵ,u(s))𝒦Mc]𝑑s𝑑t\displaystyle=\frac{1}{\Delta}\int_{0}^{T}\int_{t}^{t+\Delta}\mathbb{P}[(u_{1}(s),u_{2}(s),Y^{\epsilon,u}(s))\in\mathcal{K}_{M}^{c}]\;dsdt
1MΔ0T𝔼tt+Δ(u1(s)2+u2(s)2+Yϵ,u(s)Hθ2)𝑑s𝑑t\displaystyle\leq\frac{1}{M\Delta}\int_{0}^{T}\mathbb{E}\int_{t}^{t+\Delta}\big{(}\|u_{1}(s)\|_{\mathcal{H}}^{2}+\|u_{2}(s)\|_{\mathcal{H}}^{2}+\|Y^{\epsilon,u}(s)\|^{2}_{H^{\theta}}\big{)}dsdt
1M0T+Δ(𝔼u1(s)2+𝔼u2(s)2+𝔼Yϵ,u(s)Hθ2)𝑑sCNM(1+x02+y02).\displaystyle\leq\frac{1}{M}\int_{0}^{T+\Delta}\big{(}\mathbb{E}\|u_{1}(s)\|_{\mathcal{H}}^{2}+\mathbb{E}\|u_{2}(s)\|_{\mathcal{H}}^{2}+\mathbb{E}\|Y^{\epsilon,u}(s)\|^{2}_{H^{\theta}}\big{)}ds\leq\frac{C_{N}}{M}(1+\|x_{0}\|_{\mathcal{H}}^{2}+\|y_{0}\|_{\mathcal{H}}^{2}).

Yet another application of Chebyshev’s inequality implies that

[Pϵ,Δ(𝒦Mc)1L]\displaystyle\mathbb{P}\bigg{[}P^{\epsilon,\Delta}(\mathcal{K}_{M}^{c})\geq\frac{1}{L}\bigg{]} CNLM(1+x02+y02).\displaystyle\leq\frac{C_{N}L}{M}(1+\|x_{0}\|_{\mathcal{H}}^{2}+\|y_{0}\|_{\mathcal{H}}^{2}).

Next, let i,ρ>0i\in\mathbb{N},\rho>0 and take LiL\geq i and

MCNL(1+x02+y02)/ρ[CNi(1+x02+y02)/ρ]=:j(i,ρ),M\geq C_{N}L(1+\|x_{0}\|_{\mathcal{H}}^{2}+\|y_{0}\|_{\mathcal{H}}^{2})/\rho\geq[C_{N}i(1+\|x_{0}\|_{\mathcal{H}}^{2}+\|y_{0}\|_{\mathcal{H}}^{2})/\rho]=:j(i,\rho),

where [][\cdot] indicates the floor function. It follows that

[Pϵ,ΔΠi,j(i,ρ)]=limMlimL[Pϵ,Δ(𝒦Mc)1L]ρ,\displaystyle\mathbb{P}\big{[}P^{\epsilon,\Delta}\notin\Pi_{i,j(i,\rho)}\big{]}=\lim_{M\to\infty}\lim_{L\to\infty}\mathbb{P}\bigg{[}P^{\epsilon,\Delta}(\mathcal{K}_{M}^{c})\geq\frac{1}{L}\bigg{]}\leq\rho,

uniformly in ϵ,u\epsilon,u. Since ρ\rho is arbitrary the proof is complete. ∎

Finally, we state here, without proof, a result regarding the tail behavior of the random measures Pϵ,ΔP^{\epsilon,\Delta}. The proof follows the same strategy as that of Proposition 3.1 in [19] (see also Lemma 4.14 in [25]).

Lemma 6.4.

Let M,θ>0,T<M,\theta>0,T<\infty and

UM,θ,T:={(u1,u2,y,t):u1M,u2M,yHθM,t[0,T]}.U_{M,\theta,T}:=\big{\{}(u_{1},u_{2},y,t):\|u_{1}\|_{\mathcal{H}}\geq M,\;\|u_{2}\|_{\mathcal{H}}\geq M,\;\|y\|_{H^{\theta}}\geq M,t\in[0,T]\big{\}}.

For all TT there exists θ\theta such that the occupation measures Pϵ,ΔP^{\epsilon,\Delta} are uniformly integrable, in the sense that

limMsupϵ>0𝔼UM,θ,T(u1+u2+yHθ)𝑑Pϵ,Δ(u1,u2,y,t)=0.\lim_{M\to\infty}\sup_{\epsilon>0}\mathbb{E}\int_{U_{M,\theta,T}}\big{(}\|u_{1}\|_{\mathcal{H}}+\|u_{2}\|_{\mathcal{H}}+\|y\|_{H^{\theta}}\big{)}dP^{\epsilon,\Delta}(u_{1},u_{2},y,t)=0.

6.2. Identification of the limit points

Let i=1,2i=1,2. In view of Lemmas 6.1 and 6.3 along with Prokhorov’s theorem, each sequence of ϵ>0,u𝒫NT\epsilon>0,u\in\mathcal{P}_{N}^{T} contains a subsequence ϵn,un\epsilon_{n},u_{n} such that (ηϵn,un,Pϵn,Δn)(\eta^{\epsilon_{n},u_{n}},P^{\epsilon_{n},\Delta_{n}}) converges in distribution to a random element (ηi,Pi)(\eta_{i},P_{i}) in Regime ii. Returning to the decomposition (72), we can use very similar arguments to the ones found in Sections 5.1, 5.2 and Lemma 6.1 to show that each one of the terms Iϵ,u(0,t,0,χ),IIϵ,u(0,t,0,χ),IIIϵ,u(0,t,0,χ)I^{\epsilon,u}(0,t,0,\chi),II^{\epsilon,u}(0,t,0,\chi),III^{\epsilon,u}(0,t,0,\chi), IVϵ,u(0,t,0,χ)IV^{\epsilon,u}(0,t,0,\chi) are tight. Invoking Prokhorov’s theorem once again, each of these terms have subsequential limits in distribution on C([0,T];)C([0,T];\mathcal{H}). The goal of this section is to identify these limits.

At this point we will use the Skorokhod representation theorem which allows us to assume that the aforementioned sequences of random elements converge almost surely. The Skorokhod representation theorem involves the introduction of another probability space but this distinction is ignored in the notation.

In view of Lemma 5.3 we immediately see that the third term in (72) converges to 0 in distribution. Hence, it suffices to study the limits of Iϵ,uI^{\epsilon,u}, IIϵ,uII^{\epsilon,u} and IVϵ,uIV^{\epsilon,u}. This is done in Propositions 6.1, 6.2 and 6.3 below. The proofs of these Propositions are based on a few preliminary lemmas which follow the general strategy of Lemmas 4.16, 4.17 in [25]. Thus, to avoid repetition, some intermediate steps in the proof of Proposition 6.1 as well as the proof of Proposition 6.2 will be omitted. Let us remark at this point that the averaging of IVϵ,uIV^{\epsilon,u} presents challenges that are absent from both the finite-dimensional MDP and the infinite-dimensional LDP. These are related to continuity properties of the operator-valued map Ψ20\Psi_{2}^{0} in (137), which are here investigated with the aid of the first variation equation corresponding to the Markov process Yx,yY^{x,y} (31) (see Lemma 6.10). For this reason, we will present the proof of Proposition 6.3 in full detail.

We start with Iϵ,uI^{\epsilon,u}. Using Taylor approximation we can show that the limit of this term is linear in ηi\eta_{i}.

Lemma 6.5.

Let T<T<\infty. Under Hypothesis 2(a) we have

𝔼supt[0,T]1ϵh(ϵ)\displaystyle\mathbb{E}\sup_{t\in[0,T]}\bigg{\|}\frac{1}{\sqrt{\epsilon}h(\epsilon)} 0tS1(ts)[F(X¯(s)+ϵh(ϵ)ηϵ,uϵ(s),Yϵ,uϵ(s))F(X¯(s),Yϵ,uϵ(s))]𝑑s\displaystyle\int_{0}^{t}S_{1}(t-s)\big{[}F\big{(}\bar{X}(s)+\sqrt{\epsilon}h(\epsilon)\eta^{\epsilon,u^{\epsilon}}(s),Y^{\epsilon,u^{\epsilon}}(s)\big{)}-F\big{(}\bar{X}(s),Y^{\epsilon,u^{\epsilon}}(s)\big{)}\big{]}ds
0tS1(ts)DxF(X¯(s),Yϵ,uϵ(s))(ηϵ,uϵ(s))𝑑s0,asϵ0.\displaystyle-\int_{0}^{t}S_{1}(t-s)D_{x}F\big{(}\bar{X}(s),Y^{\epsilon,u^{\epsilon}}(s)\big{)}\big{(}\eta^{\epsilon,u^{\epsilon}}(s)\big{)}ds\bigg{\|}_{\mathcal{H}}\longrightarrow 0\;,\;\text{as}\;\epsilon\to 0.
Proof.

Let x,y,hx,y,h\in\mathcal{H}. A first-order Taylor expansion for Gâteaux derivatives yields

F(x+h,y)=F(x,y)+DxF(x,y)(h)+12Dx2F(x+θ0h,y)(h,h),F(x+h,y)=F(x,y)+D_{x}F(x,y)(h)+\frac{1}{2}D^{2}_{x}F(x+\theta_{0}h,y)(h,h),

for some θ0(0,1)\theta_{0}\in(0,1) (note that here we are considering F:×L1(0,L)F:\mathcal{H}\times\mathcal{H}\rightarrow L^{1}(0,L)). Letting x=X¯(s),y=Yϵ,uϵ(s)x=\bar{X}(s),y=Y^{\epsilon,u^{\epsilon}}(s) and h=ϵh(ϵ)ηϵ,uϵ(s)h=\sqrt{\epsilon}h(\epsilon)\eta^{\epsilon,u^{\epsilon}}(s), we integrate over [0,t][0,t] to obtain

1ϵh(ϵ)\displaystyle\frac{1}{\sqrt{\epsilon}h(\epsilon)} 0tS1(ts)[F(X¯(s)+ϵh(ϵ)ηϵ,uϵ(s),Yϵ,uϵ(s))F(X¯(s),Yϵ,uϵ(s))]𝑑s\displaystyle\int_{0}^{t}S_{1}(t-s)\big{[}F\big{(}\bar{X}(s)+\sqrt{\epsilon}h(\epsilon)\eta^{\epsilon,u^{\epsilon}}(s),Y^{\epsilon,u^{\epsilon}}(s)\big{)}-F\big{(}\bar{X}(s),Y^{\epsilon,u^{\epsilon}}(s)\big{)}\big{]}ds
=0tS1(ts)DxF(X¯(s),Yϵ,uϵ(s))(ηϵ,uϵ(s))𝑑s\displaystyle=\int_{0}^{t}S_{1}(t-s)D_{x}F\big{(}\bar{X}(s),Y^{\epsilon,u^{\epsilon}}(s)\big{)}\big{(}\eta^{\epsilon,u^{\epsilon}}(s)\big{)}ds
+ϵh(ϵ)20tS1(ts)Dx2F(X¯(s)+θ0ϵh(ϵ)ηϵ,uϵ(s),Yϵ,uϵ(s))(ηϵ,uϵ(s),ηϵ,uϵ(s))𝑑s,\displaystyle+\frac{\sqrt{\epsilon}h(\epsilon)}{2}\int_{0}^{t}S_{1}(t-s)D^{2}_{x}F\big{(}\bar{X}(s)+\theta_{0}\sqrt{\epsilon}h(\epsilon)\eta^{\epsilon,u^{\epsilon}}(s),Y^{\epsilon,u^{\epsilon}}(s)\big{)}\big{(}\eta^{\epsilon,u^{\epsilon}}(s),\eta^{\epsilon,u^{\epsilon}}(s)\big{)}ds,

where we used the homogeneity of the Gâteaux derivative to simplify the ϵ\epsilon-dependent coefficients. In view of the regularizing property (14) (with r=2,p=1r=2,p=1), along with (21), we obtain

ϵh(ϵ)\displaystyle\sqrt{\epsilon}h(\epsilon) 0tS1(ts)Dx2F(X¯(s)+θ0ϵh(ϵ)ηϵ,uϵ(s),Yϵ,uϵ(s))(ηϵ,uϵ(s),ηϵ,uϵ(s))𝑑s\displaystyle\bigg{\|}\int_{0}^{t}S_{1}(t-s)D^{2}_{x}F\big{(}\bar{X}(s)+\theta_{0}\sqrt{\epsilon}h(\epsilon)\eta^{\epsilon,u^{\epsilon}}(s),Y^{\epsilon,u^{\epsilon}}(s)\big{)}\big{(}\eta^{\epsilon,u^{\epsilon}}(s),\eta^{\epsilon,u^{\epsilon}}(s)\big{)}ds\bigg{\|}_{\mathcal{H}}
cϵh(ϵ)0t(ts)14Dx2F(X¯(s)+θ0ϵh(ϵ)ηϵ,uϵ(s),Yϵ,uϵ(s))(ηϵ,uϵ(s),ηϵ,uϵ(s))L1(0,L)𝑑s\displaystyle\leq c\sqrt{\epsilon}h(\epsilon)\int_{0}^{t}(t-s)^{-\frac{1}{4}}\|D^{2}_{x}F\big{(}\bar{X}(s)+\theta_{0}\sqrt{\epsilon}h(\epsilon)\eta^{\epsilon,u^{\epsilon}}(s),Y^{\epsilon,u^{\epsilon}}(s)\big{)}\big{(}\eta^{\epsilon,u^{\epsilon}}(s),\eta^{\epsilon,u^{\epsilon}}(s)\big{)}\big{\|}_{L^{1}(0,L)}ds
cϵh(ϵ)xx2f0t(ts)14ηϵ,uϵ(s)2𝑑sCT3/4ϵh(ϵ)xx2fsups[0,T]ηϵ,uϵ(s)2.\displaystyle\leq c\sqrt{\epsilon}h(\epsilon)\big{\|}\partial_{\mathrm{x}\mathrm{x}}^{2}f\big{\|}_{\infty}\int_{0}^{t}(t-s)^{-\frac{1}{4}}\|\eta^{\epsilon,u^{\epsilon}}(s)\|^{2}_{\mathcal{H}}ds\leq CT^{3/4}\sqrt{\epsilon}h(\epsilon)\big{\|}\partial_{\mathrm{x}\mathrm{x}}^{2}f\big{\|}_{\infty}\sup_{s\in[0,T]}\|\eta^{\epsilon,u^{\epsilon}}(s)\|^{2}_{\mathcal{H}}.

Taking expectation, we use (70) to deduce

ϵh(ϵ)𝔼supt[0,T]\displaystyle\sqrt{\epsilon}h(\epsilon)\mathbb{E}\sup_{t\in[0,T]}\bigg{\|} 0tS1(ts)Dx2F(X¯(s)+θ0ϵh(ϵ)ηϵ,uϵ(s),Yϵ,uϵ(s))(ηϵ,uϵ(s),ηϵ,uϵ(s))𝑑s\displaystyle\int_{0}^{t}S_{1}(t-s)D^{2}_{x}F\big{(}\bar{X}(s)+\theta_{0}\sqrt{\epsilon}h(\epsilon)\eta^{\epsilon,u^{\epsilon}}(s),Y^{\epsilon,u^{\epsilon}}(s)\big{)}\big{(}\eta^{\epsilon,u^{\epsilon}}(s),\eta^{\epsilon,u^{\epsilon}}(s)\big{)}ds\bigg{\|}_{\mathcal{H}}
Cϵh(ϵ)𝔼sups[0,T]ηϵ,uϵ(s)2Cϵh(ϵ)(1+x0Ha2+y0Ha2)0\displaystyle\leq C\sqrt{\epsilon}h(\epsilon)\mathbb{E}\sup_{s\in[0,T]}\|\eta^{\epsilon,u^{\epsilon}}(s)\|^{2}_{\mathcal{H}}\leq C\sqrt{\epsilon}h(\epsilon)\big{(}1+\|x_{0}\|^{2}_{H^{a}}+\|y_{0}\|^{2}_{H^{a}}\big{)}\longrightarrow 0

as ϵ0\epsilon\to 0. The proof is complete. ∎

Lemma 6.6.

Let Δ\Delta as in (39) and T<T<\infty. Under Hypothesis 2(a) we have

𝔼supt[0,T]1Δ\displaystyle\mathbb{E}\sup_{t\in[0,T]}\bigg{\|}\frac{1}{\Delta} 0tss+ΔS1(ts)DxF(X¯(s),Yϵ,uϵ(r))(ηϵ,uϵ(s))𝑑r𝑑s\displaystyle\int_{0}^{t}\int_{s}^{s+\Delta}S_{1}(t-s)D_{x}F\big{(}\bar{X}(s),Y^{\epsilon,u^{\epsilon}}(r)\big{)}\big{(}\eta^{\epsilon,u^{\epsilon}}(s)\big{)}drds
1Δ0tss+ΔS1(ts)DxF(X¯(r),Yϵ,uϵ(r))(ηϵ,uϵ(s))𝑑r𝑑s0,asϵ0.\displaystyle-\frac{1}{\Delta}\int_{0}^{t}\int_{s}^{s+\Delta}S_{1}(t-s)D_{x}F\big{(}\bar{X}(r),Y^{\epsilon,u^{\epsilon}}(r)\big{)}\big{(}\eta^{\epsilon,u^{\epsilon}}(s)\big{)}drds\bigg{\|}_{\mathcal{H}}\longrightarrow 0\;,\;\text{as}\;\epsilon\to 0.
Proof.

In view of the regularizing property (14),

1Δ\displaystyle\bigg{\|}\frac{1}{\Delta} 0tss+ΔS1(ts)[DxF(X¯(s),Yϵ,uϵ(r))DxF(X¯(r),Yϵ,uϵ(r))](ηϵ,uϵ(s))𝑑r𝑑s\displaystyle\int_{0}^{t}\int_{s}^{s+\Delta}S_{1}(t-s)\big{[}D_{x}F\big{(}\bar{X}(s),Y^{\epsilon,u^{\epsilon}}(r)\big{)}-D_{x}F\big{(}\bar{X}(r),Y^{\epsilon,u^{\epsilon}}(r)\big{)}\big{]}\big{(}\eta^{\epsilon,u^{\epsilon}}(s)\big{)}drds\bigg{\|}_{\mathcal{H}}
CΔ0tss+Δ(ts)14[DxF(X¯(s),Yϵ,uϵ(r))DxF(X¯(r),Yϵ,uϵ(r))](ηϵ,uϵ(s))L1(0,L)𝑑r𝑑s.\displaystyle\leq\frac{C}{\Delta}\int_{0}^{t}\int_{s}^{s+\Delta}(t-s)^{-\frac{1}{4}}\big{\|}\big{[}D_{x}F\big{(}\bar{X}(s),Y^{\epsilon,u^{\epsilon}}(r)\big{)}-D_{x}F\big{(}\bar{X}(r),Y^{\epsilon,u^{\epsilon}}(r)\big{)}\big{]}\big{(}\eta^{\epsilon,u^{\epsilon}}(s)\big{)}\big{\|}_{L^{1}(0,L)}drds.

Next, let r[s,s+Δ]r\in[s,s+\Delta]. An application of the Cauchy-Schwarz and mean value inequalities yields

[DxF(X¯(s)\displaystyle\big{\|}\big{[}D_{x}F\big{(}\bar{X}(s) ,Yϵ,uϵ(r))DxF(X¯(r),Yϵ,uϵ(r))](ηϵ,uϵ(s))L1(0,L)\displaystyle,Y^{\epsilon,u^{\epsilon}}(r)\big{)}-D_{x}F\big{(}\bar{X}(r),Y^{\epsilon,u^{\epsilon}}(r)\big{)}\big{]}\big{(}\eta^{\epsilon,u^{\epsilon}}(s)\big{)}\big{\|}_{L^{1}(0,L)}
ηϵ,uϵ(s)(0L|xf(ξ,X¯(s,ξ),Yϵ,uϵ(r,ξ))xf(ξ,X¯(r,ξ),Yϵ,uϵ(r,ξ))|2𝑑ξ)12\displaystyle\leq\big{\|}\eta^{\epsilon,u^{\epsilon}}(s)\|_{\mathcal{H}}\bigg{(}\int_{0}^{L}\big{|}\partial_{\mathrm{x}}f\big{(}\xi,\bar{X}(s,\xi),Y^{\epsilon,u^{\epsilon}}(r,\xi)\big{)}-\partial_{\mathrm{x}}f\big{(}\xi,\bar{X}(r,\xi),Y^{\epsilon,u^{\epsilon}}(r,\xi)\big{)}\big{|}^{2}\ d\xi\bigg{)}^{\frac{1}{2}}
xx2fsupt[0,T]ηϵ,uϵ(t)X¯(s)X¯(r).\displaystyle\leq\big{\|}\partial^{2}_{\mathrm{x}\mathrm{x}}f\|_{\infty}\sup_{t\in[0,T]}\big{\|}\eta^{\epsilon,u^{\epsilon}}(t)\|_{\mathcal{H}}\|\bar{X}(s)-\bar{X}(r)\|_{\mathcal{H}}\;.

In view of the Schauder estimate (68) we obtain

[DxF(X¯(s),Yϵ,uϵ(r))DxF(X¯(r),Yϵ,uϵ(r))](ηϵ,uϵ(s))L1(0,L)Cfsupt[0,T]ηϵ,uϵ(t)Δθ(1+x0Ha),\displaystyle\big{\|}\big{[}D_{x}F\big{(}\bar{X}(s),Y^{\epsilon,u^{\epsilon}}(r)\big{)}-D_{x}F\big{(}\bar{X}(r),Y^{\epsilon,u^{\epsilon}}(r)\big{)}\big{]}\big{(}\eta^{\epsilon,u^{\epsilon}}(s)\big{)}\big{\|}_{L^{1}(0,L)}\leq C_{f}\sup_{t\in[0,T]}\big{\|}\eta^{\epsilon,u^{\epsilon}}(t)\|_{\mathcal{H}}\Delta^{\theta}(1+\|x_{0}\|_{H^{a}}),

where θ<14a2\theta<\frac{1}{4}\wedge\frac{a}{2}. Thus,

1Δ0tss+ΔS1(ts)\displaystyle\bigg{\|}\frac{1}{\Delta}\int_{0}^{t}\int_{s}^{s+\Delta}S_{1}(t-s) [DxF(X¯(s),Yϵ,uϵ(r))DxF(X¯(r),Yϵ,uϵ(r))](ηϵ,uϵ(s))drds\displaystyle\big{[}D_{x}F\big{(}\bar{X}(s),Y^{\epsilon,u^{\epsilon}}(r)\big{)}-D_{x}F\big{(}\bar{X}(r),Y^{\epsilon,u^{\epsilon}}(r)\big{)}\big{]}\big{(}\eta^{\epsilon,u^{\epsilon}}(s)\big{)}drds\bigg{\|}_{\mathcal{H}}
CΔθ(1+x0Ha)supt[0,T]ηϵ,uϵ(t)0t(ts)14𝑑s\displaystyle\leq C\Delta^{\theta}(1+\|x_{0}\|_{H^{a}})\sup_{t\in[0,T]}\big{\|}\eta^{\epsilon,u^{\epsilon}}(t)\|_{\mathcal{H}}\int_{0}^{t}(t-s)^{-\frac{1}{4}}ds
CT34Δθ(1+x0Ha)supt[0,T]ηϵ,uϵ(t).\displaystyle\leq CT^{\frac{3}{4}}\Delta^{\theta}(1+\|x_{0}\|_{H^{a}})\sup_{t\in[0,T]}\big{\|}\eta^{\epsilon,u^{\epsilon}}(t)\|_{\mathcal{H}}.

In view of (70) it follows that

𝔼supt[0,T]1Δ0tss+ΔS1(ts)\displaystyle\mathbb{E}\sup_{t\in[0,T]}\bigg{\|}\frac{1}{\Delta}\int_{0}^{t}\int_{s}^{s+\Delta}S_{1}(t-s) [DxF(X¯(s),Yϵ,uϵ(r))DxF(X¯(r),Yϵ,uϵ(r))](ηϵ,uϵ(s))drds\displaystyle\big{[}D_{x}F\big{(}\bar{X}(s),Y^{\epsilon,u^{\epsilon}}(r)\big{)}-D_{x}F\big{(}\bar{X}(r),Y^{\epsilon,u^{\epsilon}}(r)\big{)}\big{]}\big{(}\eta^{\epsilon,u^{\epsilon}}(s)\big{)}drds\bigg{\|}_{\mathcal{H}}
CTΔθ(1+x0Ha)(1+x0Ha+y0Ha).\displaystyle\leq C_{T}\Delta^{\theta}(1+\|x_{0}\|_{H^{a}})(1+\|x_{0}\|_{H^{a}}+\|y_{0}\|_{H^{a}}).

The proof is complete upon taking Δ0\Delta\rightarrow 0. ∎

Lemma 6.7.

Let i=1,2i=1,2, T<T<\infty and assume that the pair (ηϵ,uϵ,Pϵ,Δ)(\eta^{\epsilon,u^{\epsilon}},P^{\epsilon,\Delta}) converges in distribution, in Regime ii, to (ηi,Pi)(\eta_{i},P_{i}) in C([0,T];)×𝒫(×××[0,T])C([0,T];\mathcal{H})\times\mathscr{P}(\mathcal{H}\times\mathcal{H}\times\mathcal{H}\times[0,T]). Then the following limit is valid with probability 11:

supt[0,T]1Δ0t\displaystyle\sup_{t\in[0,T]}\bigg{\|}\frac{1}{\Delta}\int_{0}^{t} ss+ΔS1(ts)DxF(X¯(r),Yϵ,uϵ(r))(ηϵ,uϵ(s))𝑑r𝑑s\displaystyle\int_{s}^{s+\Delta}S_{1}(t-s)D_{x}F\big{(}\bar{X}(r),Y^{\epsilon,u^{\epsilon}}(r)\big{)}\big{(}\eta^{\epsilon,u^{\epsilon}}(s)\big{)}drds
×××[0,t]S1(ts)DxF(X¯(s),y)ηi(s)𝑑Pϵ,Δ(u1,u2,y,s)0,asϵ0.\displaystyle-\int_{\mathcal{H}\times\mathcal{H}\times\mathcal{H}\times[0,t]}S_{1}(t-s)D_{x}F\big{(}\bar{X}(s),y\big{)}\eta_{i}(s)dP^{\epsilon,\Delta}(u_{1},u_{2},y,s)\bigg{\|}_{\mathcal{H}}\longrightarrow 0\;,\;\text{as}\;\epsilon\to 0.
Proof.

Recall that for each fixed x,yx,y\in\mathcal{H}, DxF(x,y)()D_{x}F(x,y)\in\mathscr{L}(\mathcal{H}) with

supx,yDxF(x,y)()xf<.\sup_{x,y\in\mathcal{H}}\big{\|}D_{x}F(x,y)\big{\|}_{\mathscr{L}(\mathcal{H})}\leq\|\partial_{\mathrm{x}}f\|_{\infty}<\infty. (130)

By virtue of the Skorokhod representation theorem it follows that \mathbb{P}-a.s.

supt[0,T]\displaystyle\sup_{t\in[0,T]}\bigg{\|} 1Δ0tss+ΔS1(ts)DxF(X¯(r),Yϵ,uϵ(r))(ηϵ,uϵ(s)ηi(s))𝑑r𝑑s\displaystyle\frac{1}{\Delta}\int_{0}^{t}\int_{s}^{s+\Delta}S_{1}(t-s)D_{x}F\big{(}\bar{X}(r),Y^{\epsilon,u^{\epsilon}}(r)\big{)}\big{(}\eta^{\epsilon,u^{\epsilon}}(s)-\eta_{i}(s)\big{)}drds\bigg{\|}_{\mathcal{H}}
CΔΔTsupx,yDxF(x,y)()sups[0,T]ηϵ,uϵ(s)ηi(s)0,asϵ0.\displaystyle\leq\frac{C}{\Delta}\Delta T\sup_{x,y\in\mathcal{H}}\big{\|}D_{x}F(x,y)\big{\|}_{\mathscr{L}(\mathcal{H})}\sup_{s\in[0,T]}\big{\|}\eta^{\epsilon,u^{\epsilon}}(s)-\eta_{i}(s)\|_{\mathcal{H}}\longrightarrow 0\;,\;\text{as}\;\epsilon\to 0.

Hence, it suffices to study the term

1Δ0tss+ΔS1(ts)DxF(X¯(r),Yϵ,uϵ(r))(ηi(s))𝑑r𝑑s.\frac{1}{\Delta}\int_{0}^{t}\int_{s}^{s+\Delta}S_{1}(t-s)D_{x}F\big{(}\bar{X}(r),Y^{\epsilon,u^{\epsilon}}(r)\big{)}\big{(}\eta_{i}(s)\big{)}drds.

The rest of the proof is omitted as the arguments are identical to the ones used in the proof of Lemma 4.16 in [25]. ∎

Lemma 6.8.

Let i=1,2i=1,2, T<T<\infty and assume that the pair (ηϵ,uϵ,Pϵ,Δ)(\eta^{\epsilon,u^{\epsilon}},P^{\epsilon,\Delta}) converges in distribution, in Regime ii, to (ηi,Pi)(\eta_{i},P_{i}) in C([0,T];)×𝒫(×××[0,T])C([0,T];\mathcal{H})\times\mathscr{P}(\mathcal{H}\times\mathcal{H}\times\mathcal{H}\times[0,T]). Then the following limit is valid with probability 11:

supt[0,T]\displaystyle\sup_{t\in[0,T]}\bigg{\|} ×××[0,t]S1(ts)DxF(X¯(s),y)ηi(s)𝑑Pϵ,Δ(u1,u2,y,s)\displaystyle\int_{\mathcal{H}\times\mathcal{H}\times\mathcal{H}\times[0,t]}S_{1}(t-s)D_{x}F\big{(}\bar{X}(s),y\big{)}\eta_{i}(s)dP^{\epsilon,\Delta}(u_{1},u_{2},y,s)
×××[0,t]S1(ts)DxF(X¯(s),y)ηi(s)𝑑Pi(u1,u2,y,s)0,asϵ0.\displaystyle-\int_{\mathcal{H}\times\mathcal{H}\times\mathcal{H}\times[0,t]}S_{1}(t-s)D_{x}F\big{(}\bar{X}(s),y\big{)}\eta_{i}(s)dP_{i}(u_{1},u_{2},y,s)\bigg{\|}_{\mathcal{H}}\longrightarrow 0\;,\;\text{as}\;\epsilon\to 0.
Proof.

The argument is identical to the proof of Lemma 4.15 in [25]. In fact, the present setting is even simpler since the family {DxF(x,y)}x,y()\big{\{}D_{x}F\big{(}x,y\big{)}\big{\}}_{x,y\in\mathcal{H}}\subset\mathscr{L}(\mathcal{H}) is uniformly bounded in the operator norm topology (see (130)). ∎

Combining Lemmas 6.5, 6.6, 6.7 and (6.8) we obtain the following:

Proposition 6.1.

Let i=1,2i=1,2, T<T<\infty and assume that the pair (ηϵ,uϵ,Pϵ,Δ)(\eta^{\epsilon,u^{\epsilon}},P^{\epsilon,\Delta}) converges in distribution, in Regime ii, to (ηi,Pi)(\eta_{i},P_{i}) in C([0,T];)×𝒫(×××[0,T])C([0,T];\mathcal{H})\times\mathscr{P}(\mathcal{H}\times\mathcal{H}\times\mathcal{H}\times[0,T]). Then the following limit is valid with probability 11:

limϵ0supt[0,T]1ϵh(ϵ)\displaystyle\lim_{\epsilon\to 0}\sup_{t\in[0,T]}\bigg{\|}\frac{1}{\sqrt{\epsilon}h(\epsilon)} 0tS1(ts)[F(X¯(s)+ϵh(ϵ)ηϵ,uϵ(s),Yϵ,uϵ(s))F(X¯(s),Yϵ,uϵ(s))]𝑑s\displaystyle\int_{0}^{t}S_{1}(t-s)\big{[}F\big{(}\bar{X}(s)+\sqrt{\epsilon}h(\epsilon)\eta^{\epsilon,u^{\epsilon}}(s),Y^{\epsilon,u^{\epsilon}}(s)\big{)}-F\big{(}\bar{X}(s),Y^{\epsilon,u^{\epsilon}}(s)\big{)}\big{]}ds
××[0,t]S1(ts)DxF(X¯(s),y)ηi(s)𝑑Pi(u1,u2,y,s)=0.\displaystyle-\int_{\mathcal{H}\times\mathcal{H}\times[0,t]}S_{1}(t-s)D_{x}F\big{(}\bar{X}(s),y\big{)}\eta_{i}(s)dP_{i}(u_{1},u_{2},y,s)\bigg{\|}_{\mathcal{H}}=0.

Regarding the averaging of the term IIϵ,uII^{\epsilon,u}, first note that Xϵ,u=X¯+ϵh(ϵ)ηϵ,uX^{\epsilon,u}=\bar{X}+\sqrt{\epsilon}h(\epsilon)\eta^{\epsilon,u} and by the Skorokhod representation theorem ηϵ,uηi\eta^{\epsilon,u}\rightarrow\eta_{i} in C([0,T];)C([0,T];\mathcal{H}) with probability 11. Using the latter along with the uniform integrability of the occupation measures (see Lemma 6.4) and the fact that, for each t>0,x,yt>0,x,y\in\mathcal{H}, the operator uS1(t)Σ(x,y)uu\mapsto S_{1}(t)\Sigma(x,y)u is compact, we can follow the proofs of lemmas 4.15, 4.16 of [25] verbatim to show Proposition 6.2 below.

Proposition 6.2.

Let i=1,2i=1,2, T<T<\infty and assume that the pair (ηϵ,uϵ,Pϵ,Δ)(\eta^{\epsilon,u^{\epsilon}},P^{\epsilon,\Delta}) converges in distribution, in Regime ii, to (ηi,Pi)(\eta_{i},P_{i}) in C([0,T];)×𝒫(×××[0,T])C([0,T];\mathcal{H})\times\mathscr{P}(\mathcal{H}\times\mathcal{H}\times\mathcal{H}\times[0,T]). Then the following limit is valid with probability 11:

limϵ0supt[0,T]0t\displaystyle\lim_{\epsilon\to 0}\sup_{t\in[0,T]}\bigg{\|}\int_{0}^{t} S1(ts)Σ(X¯(s),Yϵ,u(s))u1ϵ(s)ds\displaystyle S_{1}(t-s)\Sigma\big{(}\bar{X}(s),Y^{\epsilon,u}(s)\big{)}u^{\epsilon}_{1}(s)ds (131)
×××[0,t]S1(ts)Σ(X¯(s),y)u1𝑑Pi(u1,u2,y,s)=0.\displaystyle-\ \int_{\mathcal{H}\times\mathcal{H}\times\mathcal{H}\times[0,t]}S_{1}(t-s)\Sigma\big{(}\bar{X}(s),y\big{)}u_{1}dP_{i}(u_{1},u_{2},y,s)\bigg{\|}_{\mathcal{H}}=0.

It remains to study the limiting behavior of the term IVϵ,uIV^{\epsilon,u} in (72). To this end, let us set θ=0,s=0\theta=0,s=0 in (90). In view of this decomposition, along with Lemmas 5.5- 5.12, we see that for all ϵ>0\epsilon>0 there exists n=n(ϵ)>0n=n(\epsilon)>0 and ϵ0>0\epsilon_{0}>0 such that for all ϵ<ϵ0\epsilon<\epsilon_{0}

𝔼supt[0,T]supχB\displaystyle\mathbb{E}\sup_{t\in[0,T]}\sup_{\chi\in B_{\mathcal{H}}} |IVϵ,u(0,t,0,χ)δϵ0tS1(tz)Ψ2ϵ(X¯(z),Yn(ϵ)ϵ,u(z))u2,n(ϵ)(z),χ𝑑z|\displaystyle\bigg{|}IV^{\epsilon,u}(0,t,0,\chi)-\frac{\sqrt{\delta}}{\sqrt{\epsilon}}\int_{0}^{t}\langle S_{1}(t-z)\Psi^{\epsilon}_{2}\big{(}\bar{X}(z),Y_{n(\epsilon)}^{\epsilon,u}(z)\big{)}u_{2,n(\epsilon)}(z),\chi\rangle_{\mathcal{H}}dz\bigg{|} (132)
=𝔼supt[0,T]supχB|IVϵ,u(0,t,0,χ)IV5ϵ,u(0,t,n(ϵ),0,χ)|<ϵ.\displaystyle=\mathbb{E}\sup_{t\in[0,T]}\sup_{\chi\in B_{\mathcal{H}}}\big{|}IV^{\epsilon,u}(0,t,0,\chi)-IV_{5}^{\epsilon,u}(0,t,n(\epsilon),0,\chi)\big{|}<\epsilon.

Thus, it suffices to study the term

δϵ0tS1(tz)Ψ2ϵ(X¯(z),Ynϵ,u(z))u2,n(z)𝑑z.\frac{\sqrt{\delta}}{\sqrt{\epsilon}}\int_{0}^{t}S_{1}(t-z)\Psi^{\epsilon}_{2}\big{(}\bar{X}(z),Y_{n}^{\epsilon,u}(z)\big{)}u_{2,n}(z)dz.

In fact, since for all T>0T>0 we have u2,nu2L2([0,T];)0\|u_{2,n}-u_{2}\|_{L^{2}([0,T];\mathcal{H})}\rightarrow 0, \mathbb{P}-a.s. and Ψ2ϵ(x,y)()C/\|\Psi^{\epsilon}_{2}(x,y)\big{\|}_{\mathscr{L}(\mathcal{H})}\leq C/\ell uniformly in x,yx,y (see (36)) we can directly work with

γi0tS1(tz)Ψ2ϵ(X¯(z),Ynϵ,u(z))u2(z)𝑑z.\gamma_{i}\int_{0}^{t}S_{1}(t-z)\Psi^{\epsilon}_{2}\big{(}\bar{X}(z),Y_{n}^{\epsilon,u}(z)\big{)}u_{2}(z)dz. (133)

where γi=limϵ0δ/ϵ\gamma_{i}=\lim_{\epsilon\to 0}\sqrt{\delta/\epsilon} in Regime ii. First, we need to find the limit of the operator-valued map Ψ2ϵ\Psi^{\epsilon}_{2} as ϵ0\epsilon\to 0. In view of (35) and estimates (36) we have that, for all x,χ,vx,\chi,v\in\mathcal{H} and yDom(A2)y\in Dom(A_{2}),

Ψ2ϵ(x,y)v,\displaystyle\big{\langle}\Psi^{\epsilon}_{2}\big{(}x,y\big{)}v, χ=DyΦχϵ(x,y),v,\displaystyle\chi\big{\rangle}_{\mathcal{H}}=\big{\langle}D_{y}\Phi^{\epsilon}_{\chi}\big{(}x,y\big{)},v\big{\rangle}_{\mathcal{H}},

where DyΦχϵD_{y}\Phi_{\chi}^{\epsilon} is the partial Fréchet derivative of the solution of the Kolmogorov equation (29). Recall that the latter is explicitly given by (33). Hence we can write

Ψ2ϵ(x,y)v,χ\displaystyle\big{\langle}\Psi^{\epsilon}_{2}\big{(}x,y\big{)}v,\chi\big{\rangle}_{\mathcal{H}} =0ec(ϵ)tDyPtx(F(x,y)F¯(x),χ)(v)𝑑t\displaystyle=\int_{0}^{\infty}e^{-c(\epsilon)t}D_{y}P^{x}_{t}\big{(}\langle F\big{(}x,y\big{)}-\bar{F}(x),\chi\rangle_{\mathcal{H}}\big{)}(v)dt (134)
=0ec(ϵ)tDy𝔼[F(x,Yx,y(t))F¯(x),χ](v)𝑑t,\displaystyle=\int_{0}^{\infty}e^{-c(\epsilon)t}D_{y}\mathbb{E}\big{[}\langle F\big{(}x,Y^{x,y}(t)\big{)}-\bar{F}(x),\chi\rangle_{\mathcal{H}}\big{]}(v)dt,

where PtxP_{t}^{x} denotes the transition semigroup corresponding to the fast process Yx,yY^{x,y} (see (31), (32)). Now, for each fixed xx\in\mathcal{H}, the map

yF(x,y),χ\mathcal{H}\ni y\longmapsto\langle F(x,y),\chi\rangle_{\mathcal{H}}\in\mathbb{R}

is Fréchet differentiable with

DyF(x,y),χ(v)=DyF(x,y)χ,v,D_{y}\langle F(x,y),\chi\rangle_{\mathcal{H}}(v)=\langle D_{y}F(x,y)\chi,v\rangle_{\mathcal{H}},

along the direction of any vv\in\mathcal{H}. Therefore, we can differentiate under the sign of expectation and use the chain rule for Fréchet differentials to obtain

Dy𝔼[F(x,Yx,y(t))F¯(x),χ](v)=𝔼DyF(x,Yx,y(t))χ,DyYx,y(t)v.D_{y}\mathbb{E}\big{[}\big{\langle}F\big{(}x,Y^{x,y}(t)\big{)}-\bar{F}(x),\chi\big{\rangle}_{\mathcal{H}}\big{]}(v)=\mathbb{E}\big{\langle}D_{y}F\big{(}x,Y^{x,y}(t)\big{)}\chi,D_{y}Y^{x,y}(t)v\big{\rangle}_{\mathcal{H}}. (135)

In view of the latter, (134) yields

Ψ2ϵ(x,y)v,\displaystyle\big{\langle}\Psi^{\epsilon}_{2}\big{(}x,y\big{)}v, χ=0ec(ϵ)t𝔼DyF(x,Yx,y(t))χ,DyYx,y(t)vdt.\displaystyle\chi\big{\rangle}_{\mathcal{H}}=\int_{0}^{\infty}e^{-c(\epsilon)t}\mathbb{E}\big{\langle}D_{y}F(x,Y^{x,y}(t))\chi,D_{y}Y^{x,y}(t)v\big{\rangle}_{\mathcal{H}}dt. (136)

Under Hypothesis 2(a), the following lemma addresses the limiting behavior of Ψ2ϵ\Psi^{\epsilon}_{2} in (133) as the correction term in the Kolmogorov equation vanishes.

Lemma 6.9.

Let T<T<\infty and define a map

×(x,y)Ψ20(x,y)()\mathcal{H}\times\mathcal{H}\ni(x,y)\longmapsto\Psi^{0}_{2}\big{(}x,y\big{)}\in\mathscr{L}\big{(}\mathcal{H}\big{)}

by

Ψ20(x,y)v,χ:=0𝔼DyF(x,Yx,y(t))χ,DyYx,y(t)v𝑑t,χ,v.\big{\langle}\Psi^{0}_{2}\big{(}x,y\big{)}v,\chi\big{\rangle}_{\mathcal{H}}:=\int_{0}^{\infty}\mathbb{E}\big{\langle}D_{y}F(x,Y^{x,y}(t))\chi,D_{y}Y^{x,y}(t)v\big{\rangle}_{\mathcal{H}}dt\;,\;\chi,v\in\mathcal{H}. (137)

The following limit is valid \mathbb{P}-almost surely:

limϵ0supt[0,T]0tS1(tz)Ψ2ϵ(X¯(z),Ynϵ,u(z))u2(z)𝑑z0tS1(tz)Ψ20(X¯(z),Ynϵ,u(z))u2(z)𝑑z=0.\displaystyle\lim_{\epsilon\to 0}\sup_{t\in[0,T]}\bigg{\|}\int_{0}^{t}S_{1}(t-z)\Psi^{\epsilon}_{2}\big{(}\bar{X}(z),Y_{n}^{\epsilon,u}(z)\big{)}u_{2}(z)dz-\int_{0}^{t}S_{1}(t-z)\Psi^{0}_{2}\big{(}\bar{X}(z),Y_{n}^{\epsilon,u}(z)\big{)}u_{2}(z)dz\bigg{\|}_{\mathcal{H}}=0.
Proof.

Let χ\chi\in\mathcal{H} and vv\in\mathcal{H}. Under our dissipativity assumptions, the yy-Fréchet derivative of Yx,yY^{x,y} at the point yy and along the direction vv satisfies

supx,yDyYx,y(t)vetv,a.s.,\sup_{x,y\in\mathcal{H}}\big{\|}D_{y}Y^{x,y}(t)v\big{\|}_{\mathcal{H}}\leq e^{-\ell t}\|v\|_{\mathcal{H}}\;,\;\mathbb{P}-\text{a.s.}\;, (138)

where =λLg2\ell=\frac{\lambda-L_{g}}{2} (see 3.7 in [12]). Hence,

supϵ>0|Ψ2ϵ(x,y)v,χ|\displaystyle\sup_{\epsilon>0}\big{|}\big{\langle}\Psi^{\epsilon}_{2}\big{(}x,y\big{)}v,\chi\big{\rangle}_{\mathcal{H}}\big{|} supϵ>00ec(ϵ)t𝔼DyF(x,Yx,y(t))χDyYx,y(t)v𝑑t\displaystyle\leq\sup_{\epsilon>0}\int_{0}^{\infty}e^{-c(\epsilon)t}\mathbb{E}\big{\|}D_{y}F(x,Y^{x,y}(t))\chi\big{\|}_{\mathcal{H}}\big{\|}D_{y}Y^{x,y}(t)v\big{\|}_{\mathcal{H}}dt (139)
yfχvsupϵ>00ec(ϵ)tet𝑑t\displaystyle\leq\|\partial_{\mathrm{y}}f\|_{\infty}\|\chi\|_{\mathcal{H}}\|v\|_{\mathcal{H}}\sup_{\epsilon>0}\int_{0}^{\infty}e^{-c(\epsilon)t}e^{-\ell t}dt
Cfχv0et𝑑t<.\displaystyle\leq C_{f}\|\chi\|_{\mathcal{H}}\|v\|_{\mathcal{H}}\int_{0}^{\infty}e^{-\ell t}dt<\infty.

An application of the Dominated Convergence theorem yields that for each fixed x,yx,y\in\mathcal{H}

limϵ0Ψ2ϵ(x,y)v,χ\displaystyle\lim_{\epsilon\to 0}\big{\langle}\Psi^{\epsilon}_{2}\big{(}x,y\big{)}v,\chi\big{\rangle}_{\mathcal{H}} =0limϵ0ec(ϵ)t𝔼DyF(x,Yx,y(t))χ,DyYx,y(t)vdt\displaystyle=\int_{0}^{\infty}\lim_{\epsilon\to 0}e^{-c(\epsilon)t}\mathbb{E}\big{\langle}D_{y}F(x,Y^{x,y}(t))\chi,D_{y}Y^{x,y}(t)v\big{\rangle}_{\mathcal{H}}dt
=0𝔼DyF(x,Yx,y(t))χ,DyYx,y(t)v𝑑t\displaystyle=\int_{0}^{\infty}\mathbb{E}\big{\langle}D_{y}F(x,Y^{x,y}(t))\chi,D_{y}Y^{x,y}(t)v\big{\rangle}_{\mathcal{H}}dt
=Ψ20(x,y)v,χ.\displaystyle=\big{\langle}\Psi^{0}_{2}\big{(}x,y\big{)}v,\chi\big{\rangle}_{\mathcal{H}}.

In fact, estimate (139) is uniform in x,yx,y and χ,vB\chi,v\in B_{\mathcal{H}} hence we obtain

supx,yΨ2ϵ(x,y)Ψ20(x,y)()0,asϵ0.\sup_{x,y\in\mathcal{H}}\big{\|}\Psi^{\epsilon}_{2}\big{(}x,y\big{)}-\Psi^{0}_{2}\big{(}x,y\big{)}\big{\|}_{\mathscr{L}(\mathcal{H})}\longrightarrow 0\;,\;\text{as}\;\epsilon\to 0.

The proof is complete. ∎

To proceed in finding the averaging limit of

0tS1(tz)Ψ20(X¯(z),Ynϵ,u(z))u2(z)𝑑z,\int_{0}^{t}S_{1}(t-z)\Psi^{0}_{2}\big{(}\bar{X}(z),Y_{n}^{\epsilon,u}(z)\big{)}u_{2}(z)dz,

we need to establish uniform continuity properties of the map (x,y)Ψ20(x,y)(x,y)\mapsto\Psi_{2}^{0}(x,y). In view of (136), this is related to the continuity of the map

xDyPtx[F(x,)F¯(x),χ](y)(v)=Dy𝔼F(x,Yx,y(t))F¯(x),χ(v),x\longmapsto D_{y}P^{x}_{t}\big{[}\langle F(x,\cdot)-\bar{F}(x),\chi\rangle_{\mathcal{H}}\big{]}(y)(v)=D_{y}\mathbb{E}\langle F(x,Y^{x,y}(t))-\bar{F}(x),\chi\rangle_{\mathcal{H}}(v),

for each fixed t>0,y,vt>0,y,v\in\mathcal{H}. This is done in the next two lemmas. Note that, in order to obtain continuity properties of DyYx,yD_{y}Y^{x,y} with respect to x,y,x,y, we need to assume the stronger dissipativity from Hypothesis 2(c).

Lemma 6.10.

Let t>0t>0, v,y1,y2,x1,x2v,y_{1},y_{2},x_{1},x_{2}\in\mathcal{H} and ω=λ3Lg2>0\omega=\frac{\lambda-3L_{g}}{2}>0 as in Hypothesis 2(c). Under Hypotheses 2(b) and 2(c) there exists C>0C>0 independent of tt, such that

(i)supx,yDyYx,y(t)vL(0,L)C(t1)14etv.(i)\quad\quad\quad\sup_{x,y\in\mathcal{H}}\big{\|}D_{y}Y^{x,y}(t)v\big{\|}_{L^{\infty}(0,L)}\leq C(t\wedge 1)^{-\frac{1}{4}}e^{-\ell t}\|v\|_{\mathcal{H}}. (140)

Moreover, for each t0,vt\geq 0,v\in\mathcal{H} the maps x,yDyYx,y(t)x,y\mapsto D_{y}Y^{x,y}(t) are Lipschitz continuous with

(ii)DyYx1,y(t)vDyYx2,y(t)vC(1+t)eωtvx1x2(ii)\quad\quad\big{\|}D_{y}Y^{x_{1},y}(t)v-D_{y}Y^{x_{2},y}(t)v\big{\|}_{\mathcal{H}}\leq C(1+t)e^{-\omega t}\|v\|_{\mathcal{H}}\|x_{1}-x_{2}\|_{\mathcal{H}} (141)

and

(iii)DyYx,y1(t)vDyYx,y2(t)vC(1+t)eωtvy1y2.(iii)\quad\quad\big{\|}D_{y}Y^{x,y_{1}}(t)v-D_{y}Y^{x,y_{2}}(t)v\big{\|}_{\mathcal{H}}\leq C(1+t)e^{-\omega t}\|v\|_{\mathcal{H}}\|y_{1}-y_{2}\|_{\mathcal{H}}. (142)
Proof.

(i) For xx\in\mathcal{H}, the first-order derivative DyYx,y(t)vD_{y}Y^{x,y}(t)v at the point yy\in\mathcal{H} and along the direction vv\in\mathcal{H} solves the first variation equation

{tZx,yv(t)=A2Zx,yv(t)+DyG(x,y)Zx,yv(t),t>0Zx,yv(0)=v.\left\{\begin{aligned} &\partial_{t}{Z^{v}_{x,y}(t)}=A_{2}Z^{v}_{x,y}(t)+D_{y}G(x,y\big{)}Z^{v}_{x,y}(t)\;\;,\;t>0\\ &Z^{v}_{x,y}(0)=v\in\mathcal{H}.\end{aligned}\right. (143)

Under our dissipativity assumptions it follows that for all p1p\geq 1, Zx,yv(t)Lp(0,L)Z^{v}_{x,y}(t)\in L^{p}(0,L), \mathbb{P}-a.s. and for p=2p=2 we have

supx,yZx,yv(t)Cetv,\sup_{x,y\in\mathcal{H}}\big{\|}Z^{v}_{x,y}(t)\big{\|}_{\mathcal{H}}\leq Ce^{-\ell t}\|v\|_{\mathcal{H}}\;, (144)

for all t>0t>0, where =λLg2>0\ell=\frac{\lambda-L_{g}}{2}>0 (see eg (3.7) in [12]). For a proof of (144) we refer the reader to [8], Prop. 4.2.1. In order to prove (140) we use the mild formulation of (143) along with (144) and the ultracontractivity of S2S_{2} (see (14)) to obtain

Zx,yv(t)L(0,L)\displaystyle\big{\|}Z^{v}_{x,y}(t)\|_{L^{\infty}(0,L)} S2(t)vL(0,L)+0tS2(ts)DyG(x,y)Zx,yv(s)L(0,L)𝑑s\displaystyle\leq\|S_{2}(t)v\|_{L^{\infty}(0,L)}+\int_{0}^{t}\big{\|}S_{2}(t-s)D_{y}G(x,y)Z^{v}_{x,y}(s)\big{\|}_{L^{\infty}(0,L)}ds
Ct14v+C0t(ts)14DyG(x,y)Zx,yv(s)𝑑s\displaystyle\leq Ct^{-\frac{1}{4}}\|v\|_{\mathcal{H}}+C\int_{0}^{t}(t-s)^{-\frac{1}{4}}\big{\|}D_{y}G(x,y)Z^{v}_{x,y}(s)\big{\|}_{\mathcal{H}}ds
Ct14v+CLg0t(ts)14esv𝑑s.\displaystyle\leq Ct^{-\frac{1}{4}}\|v\|_{\mathcal{H}}+CL_{g}\int_{0}^{t}(t-s)^{-\frac{1}{4}}e^{-\ell s}\|v\|_{\mathcal{H}}ds.

Hence, for t1t\leq 1 we have

Zx,yv(t)L(0,L)\displaystyle\big{\|}Z^{v}_{x,y}(t)\|_{L^{\infty}(0,L)} Ct14v.\displaystyle\leq Ct^{-\frac{1}{4}}\|v\|_{\mathcal{H}}. (145)

As for t>1t>1 we use the latter along with the linearity of (143) to deduce that

Zx,yv(t)L(0,L)\displaystyle\big{\|}Z^{v}_{x,y}(t)\|_{L^{\infty}(0,L)} =Zx,yZx,yv(t1)(1)L(0,L)C114Zx,yv(t1)Ce(t1)v,\displaystyle=\|Z_{x,y}^{Z^{v}_{x,y}(t-1)}(1)\|_{L^{\infty}(0,L)}\leq C1^{-\frac{1}{4}}\big{\|}Z^{v}_{x,y}(t-1)\big{\|}_{\mathcal{H}}\leq Ce^{-\ell(t-1)}\|v\|_{\mathcal{H}}, (146)

where we invoked (144) once more to obtain the last inequality. Combining (145) and (146), we get that (140) holds.

(ii) From the mild formulation of (143) we have

Zx1,yv(t)Zx2,yv(t)\displaystyle Z^{v}_{x_{1},y}(t)-Z^{v}_{x_{2},y}(t) =0tS2(ts)[DyG(x1,y)Zx1,yv(s)DyG(x2,y)Zx2,yv(s)]𝑑s\displaystyle=\int_{0}^{t}S_{2}(t-s)\big{[}D_{y}G(x_{1},y)Z^{v}_{x_{1},y}(s)-D_{y}G(x_{2},y)Z^{v}_{x_{2},y}(s)\big{]}ds
=0tS2(ts)DyG(x1,y)[Zx1,yv(s)Zx2,yv(s)]𝑑s\displaystyle=\int_{0}^{t}S_{2}(t-s)D_{y}G(x_{1},y)\big{[}Z^{v}_{x_{1},y}(s)-Z^{v}_{x_{2},y}(s)\big{]}ds
+0tS2(ts)[DyG(x1,y)DyG(x2,y)]Zx2,yv(s)𝑑s.\displaystyle+\int_{0}^{t}S_{2}(t-s)\big{[}D_{y}G(x_{1},y)-D_{y}G(x_{2},y)\big{]}Z^{v}_{x_{2},y}(s)ds.

Using (140) on the second term we estimate

Zx1,yv(t)Zx2,yv(t)\displaystyle\big{\|}Z^{v}_{x_{1},y}(t)-Z^{v}_{x_{2},y}(t)\big{\|}_{\mathcal{H}} Lg0teλ(ts)Zx1,yv(s)Zx2,yv(s)𝑑s\displaystyle\leq L_{g}\int_{0}^{t}e^{-\lambda(t-s)}\big{\|}Z^{v}_{x_{1},y}(s)-Z^{v}_{x_{2},y}(s)\big{\|}_{\mathcal{H}}ds
+0teλ(ts)DyG(x1,y)DyG(x2,y)(L(0,L);)Zx,yv(s)L(0,L)𝑑s\displaystyle+\int_{0}^{t}e^{-\lambda(t-s)}\|D_{y}G(x_{1},y)-D_{y}G(x_{2},y)\|_{\mathscr{L}(L^{\infty}(0,L);\mathcal{H})}\big{\|}Z^{v}_{x,y}(s)\|_{L^{\infty}(0,L)}ds
Lg0teλ(ts)Zx1,yv(s)Zx2,yv(s)𝑑s\displaystyle\leq L_{g}\int_{0}^{t}e^{-\lambda(t-s)}\big{\|}Z^{v}_{x_{1},y}(s)-Z^{v}_{x_{2},y}(s)\big{\|}_{\mathcal{H}}ds
+CeλtvDyG(x1,y)DyG(x2,y)(L(0,L);)0t(s1)14e(λ)s𝑑s.\displaystyle+Ce^{-\lambda t}\|v\|_{\mathcal{H}}\|D_{y}G(x_{1},y)-D_{y}G(x_{2},y)\|_{\mathscr{L}(L^{\infty}(0,L);\mathcal{H})}\int_{0}^{t}(s\wedge 1)^{-\frac{1}{4}}e^{(\lambda-\ell)s}ds.

An application of the mean value inequality then yields

Zx1,yv(t)Zx2,yv(t)\displaystyle\big{\|}Z^{v}_{x_{1},y}(t)-Z^{v}_{x_{2},y}(t)\big{\|}_{\mathcal{H}} Lgeλt0teλsZx1,yv(s)Zx2,yv(s)𝑑s\displaystyle\leq L_{g}e^{-\lambda t}\int_{0}^{t}e^{\lambda s}\big{\|}Z^{v}_{x_{1},y}(s)-Z^{v}_{x_{2},y}(s)\big{\|}_{\mathcal{H}}ds
+Cgeλtx1x2v0t(s1)14e(λ)s𝑑s\displaystyle+C_{g}e^{-\lambda t}\|x_{1}-x_{2}\|_{\mathcal{H}}\|v\|_{\mathcal{H}}\int_{0}^{t}(s\wedge 1)^{-\frac{1}{4}}e^{(\lambda-\ell)s}ds

and λ=λ+Lg2>0\lambda-\ell=\frac{\lambda+L_{g}}{2}>0. Hence

eλtZx1,yv(t)Zx2,yv(t)\displaystyle e^{\lambda t}\big{\|}Z^{v}_{x_{1},y}(t)-Z^{v}_{x_{2},y}(t)\big{\|}_{\mathcal{H}} Lg0teλsZx1,yv(s)Zx2,yv(s)𝑑s\displaystyle\leq L_{g}\int_{0}^{t}e^{\lambda s}\big{\|}Z^{v}_{x_{1},y}(s)-Z^{v}_{x_{2},y}(s)\big{\|}_{\mathcal{H}}ds (147)
+Cx1x2ve(λ)t[t34𝟙(0,1)(t)+(1+t)𝟙[1,)(t)]\displaystyle+C\|x_{1}-x_{2}\|_{\mathcal{H}}\|v\|_{\mathcal{H}}e^{(\lambda-\ell)t}\big{[}t^{\frac{3}{4}}\mathds{1}_{(0,1)}(t)+(1+t)\mathds{1}_{[1,\infty)}(t)\big{]}

and the second term on the right-hand side is increasing in tt. Invoking Grönwall’s inequality we obtain

eλtZx1,yv(t)Zx2,yv(t)C(1+t)e(Lg+λ)tx1x2v\displaystyle e^{\lambda t}\big{\|}Z^{v}_{x_{1},y}(t)-Z^{v}_{x_{2},y}(t)\big{\|}_{\mathcal{H}}\leq C\big{(}1+t\big{)}e^{(L_{g}+\lambda-\ell)t}\|x_{1}-x_{2}\|_{\mathcal{H}}\|v\|_{\mathcal{H}}

and Lg=LgλLg2=ωL_{g}-\ell=L_{g}-\frac{\lambda-L_{g}}{2}=-\omega is negative in view of (16). The proof of (141) is complete.

(iii) Similarly, we can write

Zx,y1v(t)Zx,y2v(t)\displaystyle Z^{v}_{x,y_{1}}(t)-Z^{v}_{x,y_{2}}(t) =0tS2(ts)[DyG(x,y1)Zx,y1v(s)DyG(x,y2)Zx,y2v(s)]𝑑s\displaystyle=\int_{0}^{t}S_{2}(t-s)\big{[}D_{y}G(x,y_{1})Z^{v}_{x,y_{1}}(s)-D_{y}G(x,y_{2})Z^{v}_{x,y_{2}}(s)\big{]}ds
=0tS2(ts)DyG(x,y1)[Zx,y1v(s)Zx,y2v(s)]𝑑s\displaystyle=\int_{0}^{t}S_{2}(t-s)D_{y}G(x,y_{1})\big{[}Z^{v}_{x,y_{1}}(s)-Z^{v}_{x,y_{2}}(s)\big{]}ds
+0tS2(ts)[DyG(x,y1)DyG(x,y2)]Zx,y2v(s)𝑑s.\displaystyle+\int_{0}^{t}S_{2}(t-s)\big{[}D_{y}G(x,y_{1})-D_{y}G(x,y_{2})\big{]}Z^{v}_{x,y_{2}}(s)ds.

Using an identical argument as in (i), the result follows by Grönwall’s inequality. ∎

Lemma 6.11.

Let t>0,χ,x1,x2,y1,y2,vt>0,\chi,x_{1},x_{2},y_{1},y_{2},v\in\mathcal{H} and c(t):=1+t+(t1)14c(t):=1+t+(t\wedge 1)^{-\frac{1}{4}} . Under Hypotheses 2(a)-2(c) and for all x,yx,y\in\mathcal{H} we have
(i)(i)

|𝔼[DyF(x1,Yx1,y(t)),χ(v)DyF(x2,Yx2,y(t)),χ(v)]|Cχvx1x2c(t)eωt,\displaystyle\big{|}\mathbb{E}\big{[}D_{y}\big{\langle}F\big{(}x_{1},Y^{x_{1},y}(t)\big{)},\chi\big{\rangle}_{\mathcal{H}}(v)-D_{y}\big{\langle}F(x_{2},Y^{x_{2},y}(t)),\chi\big{\rangle}_{\mathcal{H}}(v)\big{]}\big{|}\leq C\|\chi\|_{\mathcal{H}}\|v\|_{\mathcal{H}}\|x_{1}-x_{2}\|_{\mathcal{H}}c(t)e^{-\omega t}\;,
(ii)|𝔼[DyF(x,Yx,y1(t)),χ(v)DyF(x,Yx,y2(t)),χ(v)]|Cχvy1y2c(t)eωt,(ii)\quad\quad\big{|}\mathbb{E}\big{[}D_{y}\big{\langle}F\big{(}x,Y^{x,y_{1}}(t)\big{)},\chi\big{\rangle}_{\mathcal{H}}(v)-D_{y}\big{\langle}F(x,Y^{x,y_{2}}(t)),\chi\big{\rangle}_{\mathcal{H}}(v)\big{]}\big{|}\leq C\|\chi\|_{\mathcal{H}}\|v\|_{\mathcal{H}}\|y_{1}-y_{2}\|_{\mathcal{H}}c(t)e^{-\omega t}\;,

with ω\omega as in (16).

Proof.

(i)(i) Let Zx,yv(t):=DyYx,y(t)vZ^{v}_{x,y}(t):=D_{y}Y^{x,y}(t)v as in the previous lemma. In view of (135),

𝔼[Dy\displaystyle\mathbb{E}\big{[}D_{y}\big{\langle} F(x1,Yx1,y(t)),χ(v)DyF(x2,Yx2,y(t)),χ(v)]\displaystyle F\big{(}x_{1},Y^{x_{1},y}(t)\big{)},\chi\big{\rangle}_{\mathcal{H}}(v)-D_{y}\big{\langle}F(x_{2},Y^{x_{2},y}(t)),\chi\big{\rangle}_{\mathcal{H}}(v)\big{]}
=𝔼DyF(x1,Yx1,y(t))χ,Zx1,yv(t)Zx2,yv(t)\displaystyle=\mathbb{E}\big{\langle}D_{y}F\big{(}x_{1},Y^{x_{1},y}(t)\big{)}\chi,Z^{v}_{x_{1},y}(t)-Z^{v}_{x_{2},y}(t)\big{\rangle}_{\mathcal{H}}
+𝔼DyF(x1,Yx1,y(t))χDyF(x2,Yx2,y(t))χ,Zx2,yv(t)=:I1+I2.\displaystyle+\mathbb{E}\big{\langle}D_{y}F\big{(}x_{1},Y^{x_{1},y}(t)\big{)}\chi-D_{y}F\big{(}x_{2},Y^{x_{2},y}(t)\big{)}\chi,Z^{v}_{x_{2},y}(t)\big{\rangle}_{\mathcal{H}}=:I_{1}+I_{2}.

From (141) we obtain

|I1|\displaystyle\big{|}I_{1}\big{|} DyF(x,Yx1,y(t))χL2(Ω×(0,L))Zx1,yv(t)Zx2,yv(t)L2(Ω×(0,L))\displaystyle\leq\big{\|}D_{y}F\big{(}x,Y^{x_{1},y}(t)\big{)}\chi\big{\|}_{L^{2}(\Omega\times(0,L))}\|Z^{v}_{x_{1},y}(t)-Z^{v}_{x_{2},y}(t)\big{\|}_{L^{2}(\Omega\times(0,L))} (148)
C(1+t)eωtyfχvx1x2.\displaystyle\leq C(1+t)e^{-\omega t}\|\partial_{\mathrm{y}}f\big{\|}_{\infty}\|\chi\|_{\mathcal{H}}\|v\|_{\mathcal{H}}\|x_{1}-x_{2}\|_{\mathcal{H}}.

As for I2I_{2}, we apply (140) along with the mean value inequality to deduce that

|I2|\displaystyle\big{|}I_{2}\big{|} 𝔼[Zx2,yv(t)L(0,L)DyF(x1,Yx1,y(t))χDyF(x2,Yx2,y(t))χL1(0,L)]\displaystyle\leq\mathbb{E}\bigg{[}\big{\|}Z^{v}_{x_{2},y}(t)\big{\|}_{L^{\infty}(0,L)}\big{\|}D_{y}F\big{(}x_{1},Y^{x_{1},y}(t)\big{)}\chi-D_{y}F\big{(}x_{2},Y^{x_{2},y}(t)\big{)}\chi\|_{L^{1}(0,L)}\bigg{]} (149)
C(t1)14etvχ(xy2fx1x2+yy2f𝔼Yx1,y(t)Yx2,y(t))\displaystyle\leq C(t\wedge 1)^{-\frac{1}{4}}e^{-\ell t}\|v\|_{\mathcal{H}}\|\chi\|_{\mathcal{H}}\big{(}\|\partial^{2}_{\mathrm{x}\mathrm{y}}f\big{\|}_{\infty}\|x_{1}-x_{2}\|_{\mathcal{H}}+\|\partial^{2}_{\mathrm{y}\mathrm{y}}f\big{\|}_{\infty}\mathbb{E}\big{\|}Y^{x_{1},y}(t)-Y^{x_{2},y}(t)\big{\|}_{\mathcal{H}}\big{)}
Cf(t1)14etvχ(x1x2+𝔼supx,yDxYx,y(t)()x1x2)\displaystyle\leq C_{f}(t\wedge 1)^{-\frac{1}{4}}e^{-\ell t}\|v\|_{\mathcal{H}}\|\chi\|_{\mathcal{H}}\big{(}\|x_{1}-x_{2}\|_{\mathcal{H}}+\mathbb{E}\sup_{x,y\in\mathcal{H}}\big{\|}D_{x}Y^{x,y}(t)\big{\|}_{\mathscr{L}(\mathcal{H})}\|x_{1}-x_{2}\|_{\mathcal{H}}\big{)}
Cf(t1)14etvχx1x2(1+et),\displaystyle\leq C_{f}(t\wedge 1)^{-\frac{1}{4}}e^{-\ell t}\|v\|_{\mathcal{H}}\|\chi\|_{\mathcal{H}}\|x_{1}-x_{2}\|_{\mathcal{H}}\big{(}1+e^{-\ell t}\big{)},

where we invoked (3.9) in [12] to obtain the last line. Combining the latter with (148) concludes the argument. Finally, (ii)(ii) follows from a similar argument along with estimate (142).∎

Corollary 6.1.

Let x,x1,x2,y,y1,y2x,x_{1},x_{2},y,y_{1},y_{2}\in\mathcal{H}. There exists C>0C>0 such that
(i) The ()\mathscr{L}(\mathcal{H})-valued map xΨ20(x,y)x\mapsto\Psi^{0}_{2}(x,y) is CC-Lipschitz continuous uniformly in yy i.e.

Ψ20(x1,y)Ψ20(x2,y)()Cx1x2.\big{\|}\Psi^{0}_{2}(x_{1},y)-\Psi^{0}_{2}(x_{2},y)\big{\|}_{\mathscr{L}(\mathcal{H})}\leq C\big{\|}x_{1}-x_{2}\big{\|}_{\mathcal{H}}\;.

(ii) The ()\mathscr{L}(\mathcal{H})-valued map yΨ20(x,y)y\mapsto\Psi^{0}_{2}(x,y) is CC-Lipschitz continuous uniformly in xx i.e.

Ψ20(x,y1)Ψ20(x,y2)()Cy1y2.\big{\|}\Psi^{0}_{2}(x,y_{1})-\Psi^{0}_{2}(x,y_{2})\big{\|}_{\mathscr{L}(\mathcal{H})}\leq C\big{\|}y_{1}-y_{2}\big{\|}_{\mathcal{H}}\;. (150)
Proof.

(i) From (137) and Lemma 6.11(i) it follows that

supv,χB|Ψ20(x1,y)vΨ20(x2,y)v,χ|\displaystyle\sup_{v,\chi\in B_{\mathcal{H}}}\big{|}\big{\langle}\Psi^{0}_{2}(x_{1},y)v-\Psi^{0}_{2}(x_{2},y)v,\chi\big{\rangle}_{\mathcal{H}}\big{|}
0supv,χB|DyPtx1[F(x1,y)F¯(x1),χ](v)DyPtx2[F(x2,y)F¯(x2),χ](v)|dt\displaystyle\leq\int_{0}^{\infty}\sup_{v,\chi\in B_{\mathcal{H}}}\big{|}D_{y}P^{x_{1}}_{t}\big{[}\langle F(x_{1},y)-\bar{F}(x_{1}),\chi\rangle_{\mathcal{H}}\big{]}(v)-D_{y}P^{x_{2}}_{t}\big{[}\langle F(x_{2},y)-\bar{F}(x_{2}),\chi\rangle_{\mathcal{H}}\big{]}(v)\big{|}dt
Cx1x20c(t)eωt𝑑t=Cx1x20[1+t+(t1)14]eωt𝑑t,\displaystyle\leq C\|x_{1}-x_{2}\|_{\mathcal{H}}\int_{0}^{\infty}c(t)e^{-\omega t}dt=C\|x_{1}-x_{2}\|_{\mathcal{H}}\int_{0}^{\infty}\big{[}1+t+(t\wedge 1)^{-\frac{1}{4}}\big{]}e^{-\omega t}dt,

and the last integral is finite. As for (ii)(ii), the estimate follows from an identical argument along with Lemma 6.11(ii)(ii). ∎

The next lemma is analogous to Lemma 6.6 that was proved for Iϵ,uI^{\epsilon,u}.

Lemma 6.12.

For Δ>0\Delta>0 as in (39) and T<T<\infty we have

supnsupt[0,T]\displaystyle\sup_{n\in\mathbb{N}}\sup_{t\in[0,T]} 1Δ0tss+ΔS1(ts)Ψ20(X¯(s),Ynϵ,u(r))u2(r)drds\displaystyle\bigg{\|}\frac{1}{\Delta}\int_{0}^{t}\int_{s}^{s+\Delta}S_{1}(t-s)\Psi^{0}_{2}(\bar{X}(s),Y_{n}^{\epsilon,u}(r)\big{)}u_{2}(r)drds
1Δ0tss+ΔS1(ts)Ψ20(X¯(r),Ynϵ,u(r))u2(r)𝑑r𝑑s0,asϵ0,a.s.\displaystyle-\frac{1}{\Delta}\int_{0}^{t}\int_{s}^{s+\Delta}S_{1}(t-s)\Psi^{0}_{2}(\bar{X}(r),Y_{n}^{\epsilon,u}(r)\big{)}u_{2}(r)drds\bigg{\|}_{\mathcal{H}}\longrightarrow 0\;,\;\text{as}\;\epsilon\to 0\;\;,\mathbb{P}-\text{a.s.}
Proof.

The proof is a direct application of Corollary 6.1. In particular, we have

0tss+Δ\displaystyle\bigg{\|}\int_{0}^{t}\int_{s}^{s+\Delta} S1(ts)Ψ20(X¯(s),Ynϵ,u(r))Ψ20(X¯(r),Ynϵ,u(r))]u2(r)drds\displaystyle S_{1}(t-s)\Psi^{0}_{2}\big{(}\bar{X}(s),Y_{n}^{\epsilon,u}(r)\big{)}-\Psi^{0}_{2}\big{(}\bar{X}(r),Y_{n}^{\epsilon,u}(r)\big{)}\big{]}u_{2}(r)drds\bigg{\|}_{\mathcal{H}}
C0tss+ΔΨ20(X¯(s),Ynϵ,u(r))Ψ20(X¯(r),Ynϵ,u(r))()u2(r)𝑑r𝑑s\displaystyle\leq C\int_{0}^{t}\int_{s}^{s+\Delta}\big{\|}\Psi^{0}_{2}\big{(}\bar{X}(s),Y_{n}^{\epsilon,u}(r)\big{)}-\Psi^{0}_{2}\big{(}\bar{X}(r),Y_{n}^{\epsilon,u}(r)\big{)}\big{\|}_{\mathscr{L}(\mathcal{H})}\big{\|}u_{2}(r)\|_{\mathcal{H}}drds
C0tss+ΔX¯(s)X¯(r)u2(r)𝑑r𝑑s\displaystyle\leq C\int_{0}^{t}\int_{s}^{s+\Delta}\big{\|}\bar{X}(s)-\bar{X}(r)\big{\|}_{\mathcal{H}}\big{\|}u_{2}(r)\|_{\mathcal{H}}drds
C[X¯]Cθ([0,T+1])0tss+Δ|sr|θu2(r)𝑑r𝑑s\displaystyle\leq C\big{[}\bar{X}\big{]}_{C^{\theta}([0,T+1])}\int_{0}^{t}\int_{s}^{s+\Delta}|s-r|^{\theta}\big{\|}u_{2}(r)\|_{\mathcal{H}}drds
C(1+x0Ha)Δθ0tss+Δu2(r)𝑑r𝑑s\displaystyle\leq C(1+\|x_{0}\|_{H^{a}})\Delta^{\theta}\int_{0}^{t}\int_{s}^{s+\Delta}\big{\|}u_{2}(r)\|_{\mathcal{H}}drds
C(1+x0Ha)Δθ+10T+Δu2(s)𝑑sCT,N(1+x0Ha)Δθ+1,\displaystyle\leq C(1+\|x_{0}\|_{H^{a}})\Delta^{\theta+1}\int_{0}^{T+\Delta}\big{\|}u_{2}(s)\|_{\mathcal{H}}ds\leq C_{T,N}(1+\|x_{0}\|_{H^{a}})\Delta^{\theta+1},

where θ<14a2\theta<\frac{1}{4}\wedge\frac{a}{2} and we used (68) to obtain the third inequality and the Cauchy-Schwarz inequality, along with fact that u𝒫NTu\in\mathcal{P}_{N}^{T}, to obtain the last line.

Therefore,

1Δsupn,t[0,T]\displaystyle\frac{1}{\Delta}\sup_{n\in\mathbb{N},t\in[0,T]} 0tss+ΔS1(tz)[Ψ20(X¯(s),Ynϵ,u(r))u2(r)Ψ20(X¯(r),Ynϵ,u(r))]u2(r)𝑑r𝑑s\displaystyle\bigg{\|}\int_{0}^{t}\int_{s}^{s+\Delta}S_{1}(t-z)\big{[}\Psi^{0}_{2}\big{(}\bar{X}(s),Y_{n}^{\epsilon,u}(r)\big{)}u_{2}(r)-\Psi^{0}_{2}\big{(}\bar{X}(r),Y_{n}^{\epsilon,u}(r)\big{)}\big{]}u_{2}(r)drds\bigg{\|}_{\mathcal{H}}
CΔθ(1+x0Ha).\displaystyle\leq C\Delta^{\theta}(1+\|x_{0}\|_{H^{a}}).

The proof is complete upon taking ϵ0\epsilon\to 0.∎

For nn\in\mathbb{N} and Δ\Delta as in Definition 39, define the projected occupation measures

Pnϵ,Δ(Γ1×Γ2×Γ3×Γ4)=Pϵ,Δ(Γ1×Γ2×Pn1(Γ3)×Γ4)\displaystyle P_{n}^{\epsilon,\Delta}(\Gamma_{1}\times\Gamma_{2}\times\Gamma_{3}\times\Gamma_{4})=P^{\epsilon,\Delta}(\Gamma_{1}\times\Gamma_{2}\times P_{n}^{-1}\big{(}\Gamma_{3}\big{)}\times\Gamma_{4})
=1ΔΓ4tt+Δ𝟙Γ1(u1(s))𝟙Γ2(u2(s))𝟙Γ3(Ynϵ,u(s))𝑑s𝑑t,\displaystyle=\frac{1}{\Delta}\int_{\Gamma_{4}}\int_{t}^{t+\Delta}\mathds{1}_{\Gamma_{1}}\big{(}u_{1}(s)\big{)}\mathds{1}_{\Gamma_{2}}\big{(}u_{2}(s)\big{)}\mathds{1}_{\Gamma_{3}}\big{(}Y_{n}^{\epsilon,u}(s)\big{)}dsdt,

Γ1×Γ2×Γ3×Γ4(×××[0,T])\Gamma_{1}\times\Gamma_{2}\times\Gamma_{3}\times\Gamma_{4}\in\mathcal{B}\big{(}\mathcal{H}\times\mathcal{H}\times\mathcal{H}\times[0,T]\big{)} i.e. Pnϵ,ΔP_{n}^{\epsilon,\Delta} is the push-forward of Pϵ,ΔP^{\epsilon,\Delta} induced by the nn-dimensional orthogonal projection PnP_{n} on the third marginal. It is straightforward to verify that Pnϵ,ΔP_{n}^{\epsilon,\Delta} inherit the tightness and uniform integrability properties from the occupation measures Pϵ,ΔP^{\epsilon,\Delta} (see Lemmas 6.3 and 6.4). Moreover, for each ϵ>0\epsilon>0 there exists n=n(ϵ)>0n=n(\epsilon)>0 large enough so that, after passing to subsequences, Pnϵ,ΔP_{n}^{\epsilon,\Delta} and Pϵ,ΔP^{\epsilon,\Delta} share the same limit in distribution (denoted by PiP_{i}) as ϵ0\epsilon\to 0 in the topology of weak convergence of measures on ×××[0,T]\mathcal{H}\times\mathcal{H}\times\mathcal{H}\times[0,T].

Indeed, the class of Lipschitz-continuous functions fCb(×××[0,T])f\in C_{b}(\mathcal{H}\times\mathcal{H}\times\mathcal{H}\times[0,T]) characterizes weak convergence of measures (see [17], Remark A.3.5.) and for any such ff we fix ϵ>0\epsilon>0 and apply the dominated convergence theorem to obtain

|×××[0,T]\displaystyle\bigg{|}\int_{\mathcal{H}\times\mathcal{H}\times\mathcal{H}\times[0,T]} f(u1,u2,y,t)dPnϵ,Δ(u1,u2,y,t)×××[0,T]f(u1,u2,y,t)dPϵ,Δ(u1,u2,y,t)|\displaystyle f\big{(}u_{1},u_{2},y,t\big{)}dP_{n}^{\epsilon,\Delta}(u_{1},u_{2},y,t)-\int_{\mathcal{H}\times\mathcal{H}\times\mathcal{H}\times[0,T]}f\big{(}u_{1},u_{2},y,t\big{)}dP^{\epsilon,\Delta}(u_{1},u_{2},y,t)\bigg{|}
=|1Δ0Ttt+Δf(u1ϵ(s),u2ϵ(s),Ynϵ,uϵ(s),t)f(u1ϵ(s),u2ϵ(s),Yϵ,uϵ(s),t)dsdt|\displaystyle=\bigg{|}\frac{1}{\Delta}\int_{0}^{T}\int_{t}^{t+\Delta}f\big{(}u_{1}^{\epsilon}(s),u_{2}^{\epsilon}(s),Y_{n}^{\epsilon,u^{\epsilon}}(s),t\big{)}-f\big{(}u_{1}^{\epsilon}(s),u_{2}^{\epsilon}(s),Y^{\epsilon,u^{\epsilon}}(s),t\big{)}dsdt\bigg{|}
1Δ0Ttt+ΔPnYϵ,uϵ(s)Yϵ,uϵ(s)𝑑s𝑑t0asn.\displaystyle\leq\frac{1}{\Delta}\int_{0}^{T}\int_{t}^{t+\Delta}\big{\|}P_{n}Y^{\epsilon,u^{\epsilon}}(s)-Y^{\epsilon,u^{\epsilon}}(s)\big{\|}_{\mathcal{H}}dsdt\longrightarrow 0\;\;\text{as}\;n\to\infty.

Using the latter, along with Lemma 6.12, we can now prove the following asymptotics:

Lemma 6.13.

Let i=1,2i=1,2, T>0T>0 and assume that the pair (ηϵ,uϵ,Pϵ,Δ)(\eta^{\epsilon,u^{\epsilon}},P^{\epsilon,\Delta}) converges in distribution, in Regime ii, to (ηi,Pi)(\eta_{i},P_{i}) in C([0,T];)×𝒫(×××[0,T])C([0,T];\mathcal{H})\times\mathscr{P}(\mathcal{H}\times\mathcal{H}\times\mathcal{H}\times[0,T]). Then there exists n=n(ϵ)>0n=n(\epsilon)>0 large enough, such that the following limits hold with probability 11:

supt[0,T]\displaystyle\sup_{t\in[0,T]}\bigg{\|} 0tS1(ts)Ψ20(X¯(s),Ynϵ,u(s))u2ϵ(s)𝑑s\displaystyle\int_{0}^{t}S_{1}(t-s)\Psi^{0}_{2}\big{(}\bar{X}(s),Y_{n}^{\epsilon,u}(s)\big{)}u_{2}^{\epsilon}(s)ds (151)
×××[0,t]S1(ts)Ψ20(X¯(s),y)u2𝑑Pnϵ,Δ(u1,u2,y,s)0,asϵ0\displaystyle-\int_{\mathcal{H}\times\mathcal{H}\times\mathcal{H}\times[0,t]}S_{1}(t-s)\Psi^{0}_{2}\big{(}\bar{X}(s),y\big{)}u_{2}dP^{\epsilon,\Delta}_{n}(u_{1},u_{2},y,s)\bigg{\|}_{\mathcal{H}}\longrightarrow 0\;,\;\text{as}\;\epsilon\to 0

and

supt[0,T]\displaystyle\sup_{t\in[0,T]}\bigg{\|} ×××[0,t]S1(ts)Ψ20(X¯(s),y)u2𝑑Pnϵ,Δ(u1,u2,y,s)\displaystyle\int_{\mathcal{H}\times\mathcal{H}\times\mathcal{H}\times[0,t]}S_{1}(t-s)\Psi^{0}_{2}\big{(}\bar{X}(s),y\big{)}u_{2}dP^{\epsilon,\Delta}_{n}(u_{1},u_{2},y,s) (152)
×××[0,t]S1(ts)Ψ20(X¯(s),y)u2𝑑Pi(u1,u2,y,s)0,asϵ0.\displaystyle-\int_{\mathcal{H}\times\mathcal{H}\times\mathcal{H}\times[0,t]}S_{1}(t-s)\Psi^{0}_{2}\big{(}\bar{X}(s),y\big{)}u_{2}dP_{i}(u_{1},u_{2},y,s)\bigg{\|}_{\mathcal{H}}\longrightarrow 0\;,\;\text{as}\;\epsilon\to 0.
Proof.

We start with (151). Notice that

×××[0,t]S1(ts)Ψ20(X¯(s),y)u2𝑑Pnϵ,Δ(u1,u2,y,s)\displaystyle\int_{\mathcal{H}\times\mathcal{H}\times\mathcal{H}\times[0,t]}S_{1}(t-s)\Psi^{0}_{2}\big{(}\bar{X}(s),y\big{)}u_{2}dP^{\epsilon,\Delta}_{n}(u_{1},u_{2},y,s)
=0tss+ΔS1(ts)Ψ20(X¯(s),Ynϵ,u(r))u2(r)𝑑r𝑑s.\displaystyle=\int_{0}^{t}\int_{s}^{s+\Delta}S_{1}(t-s)\Psi^{0}_{2}\big{(}\bar{X}(s),Y_{n}^{\epsilon,u}(r)\big{)}u_{2}(r)drds.

In view of Lemma 6.12 it is enough to study the term

0tss+ΔS1(ts)Ψ20(X¯(r),Ynϵ,u(r))u2(r)𝑑r𝑑s.\displaystyle\int_{0}^{t}\int_{s}^{s+\Delta}S_{1}(t-s)\Psi^{0}_{2}\big{(}\bar{X}(r),Y_{n}^{\epsilon,u}(r)\big{)}u_{2}(r)drds.

Changing the order of integration, the latter is equal to

0Δ0rS1(ts)Ψ20(X¯(r),Ynϵ,u(r))u2(r)𝑑s𝑑r\displaystyle\int_{0}^{\Delta}\int_{0}^{r}S_{1}(t-s)\Psi^{0}_{2}\big{(}\bar{X}(r),Y_{n}^{\epsilon,u}(r)\big{)}u_{2}(r)dsdr
+ΔtrΔrS1(ts)Ψ20(X¯(r),Ynϵ,u(r))u2(r)𝑑s𝑑r\displaystyle+\int_{\Delta}^{t}\int_{r-\Delta}^{r}S_{1}(t-s)\Psi^{0}_{2}\big{(}\bar{X}(r),Y_{n}^{\epsilon,u}(r)\big{)}u_{2}(r)dsdr
+tt+ΔrΔtS1(ts)Ψ20(X¯(r),Ynϵ,u(r))u2(r)𝑑s𝑑r.\displaystyle+\int_{t}^{t+\Delta}\int_{r-\Delta}^{t}S_{1}(t-s)\Psi^{0}_{2}\big{(}\bar{X}(r),Y_{n}^{\epsilon,u}(r)\big{)}u_{2}(r)dsdr.

The first and third terms in this expression converge to zero as ϵ0\epsilon\to 0, so we only need to focus on the second term. In view of (12),

ΔtrrΔ\displaystyle\bigg{\|}\int_{\Delta}^{t}\int_{r}^{r-\Delta} S1(ts)Ψ20(X¯(r),Ynϵ,u(r))u2(r)drdsΔtS1(tr)Ψ20(X¯(r),Ynϵ,u(r))u2(r)𝑑r\displaystyle S_{1}(t-s)\Psi^{0}_{2}\big{(}\bar{X}(r),Y_{n}^{\epsilon,u}(r)\big{)}u_{2}(r)drds-\int_{\Delta}^{t}S_{1}(t-r)\Psi^{0}_{2}\big{(}\bar{X}(r),Y_{n}^{\epsilon,u}(r)\big{)}u_{2}(r)dr\bigg{\|}_{\mathcal{H}}
Δt1Δ0ΔS1(s)𝑑sI(Hθ;)S1(tr)Ψ20(X¯(r),Ynϵ,u(r))u2(r)Hθ𝑑r\displaystyle\leq\int_{\Delta}^{t}\bigg{\|}\frac{1}{\Delta}\int_{0}^{\Delta}S_{1}(s)ds-I\bigg{\|}_{\mathscr{L}(H^{\theta};\mathcal{H})}\big{\|}S_{1}(t-r)\Psi^{0}_{2}\big{(}\bar{X}(r),Y_{n}^{\epsilon,u}(r)\big{)}u_{2}(r)\|_{H^{\theta}}dr
CΔΔt(0Δsθ/2𝑑s)S1(tr)Ψ20(X¯(r),Ynϵ,u(r))u2(r)Hθ𝑑r.\displaystyle\leq\frac{C}{\Delta}\int_{\Delta}^{t}\bigg{(}\int_{0}^{\Delta}s^{\theta/2}ds\bigg{)}\big{\|}S_{1}(t-r)\Psi^{0}_{2}\big{(}\bar{X}(r),Y_{n}^{\epsilon,u}(r)\big{)}u_{2}(r)\|_{H^{\theta}}dr.

Finally, we invoke Lemma A.1(ii) to conclude that

ΔtrrΔ\displaystyle\bigg{\|}\int_{\Delta}^{t}\int_{r}^{r-\Delta} S1(ts)Ψ20(X¯(r),Ynϵ,u(r))u2(r)drdsΔtS1(tr)Ψ20(X¯(r),Ynϵ,u(r))u2ϵ(r)𝑑r\displaystyle S_{1}(t-s)\Psi^{0}_{2}\big{(}\bar{X}(r),Y_{n}^{\epsilon,u}(r)\big{)}u_{2}(r)drds-\int_{\Delta}^{t}S_{1}(t-r)\Psi^{0}_{2}\big{(}\bar{X}(r),Y_{n}^{\epsilon,u}(r)\big{)}u_{2}^{\epsilon}(r)dr\bigg{\|}_{\mathcal{H}}
CθΔθ/2Δt(tr)ρΨ20(X¯(r),Ynϵ,u(r))()u2ϵ(r)𝑑r\displaystyle\leq C_{\theta}\Delta^{\theta/2}\int_{\Delta}^{t}(t-r)^{-\rho}\big{\|}\Psi^{0}_{2}\big{(}\bar{X}(r),Y_{n}^{\epsilon,u}(r)\big{)}\big{\|}_{\mathscr{L}(\mathcal{H})}\|u_{2}^{\epsilon}(r)\|_{\mathcal{H}}dr
CθΔθ/2NΔt(tr)2ρ𝑑r,\displaystyle\leq C_{\theta}\Delta^{\theta/2}N\int_{\Delta}^{t}(t-r)^{-2\rho}dr,

where ρ>θ+1/2\rho>\theta+1/2 and we used the Cauchy-Schwarz inequality to obtain the last line. Since θ\theta can be chosen to be arbitrarily small, (151) follows.

It remains to prove (152). To this end, let PmiP_{m}^{i} denote orthogonal projection to an mm-dimensional eigenspace of A1A_{1}. From a slight modification of Lemma A.1(ii) we have

(IPm1)S1(t)Ψ20(x,y)()2\displaystyle\big{\|}(I-P_{m}^{1})S_{1}(t)\Psi^{0}_{2}\big{(}x,y\big{)}\big{\|}^{2}_{\mathscr{L}(\mathcal{H})} CΨ20(x,y)()(ts)ρeλt2j=m+1a2,jρ\displaystyle\leq C\|\Psi_{2}^{0}(x,y)\big{\|}_{\mathscr{L}(\mathcal{H})}(t-s)^{\rho}e^{-\frac{\lambda t}{2}}\sum_{j=m+1}^{\infty}a^{-\rho}_{2,j} (153)
C(ts)ρeλt2j=m+1a2,jρ,\displaystyle\leq C(t-s)^{\rho}e^{-\frac{\lambda t}{2}}\sum_{j=m+1}^{\infty}a^{-\rho}_{2,j},

for some ρ>1/2\rho>1/2. The last term on the right-hand side is the tail of a convergent sum. Thus, for fixed t>0t>0, the operator uS1(t)Ψ20(x,y)uu\mapsto S_{1}(t)\Psi^{0}_{2}\big{(}x,y\big{)}u is a uniform limit of finite-dimensional operators, hence a compact operator. As such, it is continuous from the weak topology of \mathcal{H} to the norm topology of \mathcal{H} and for each kk\in\mathbb{N} the real-valued map

(s,y,u2)S1(ts)Ψ20(X¯(s),y)u2,e1,k(s,y,u_{2})\longmapsto\big{\langle}S_{1}(t-s)\Psi^{0}_{2}\big{(}\bar{X}(s),y\big{)}u_{2},e_{1,k}\big{\rangle}_{\mathcal{H}}

is continuous in the WWNS topology on ×××[0,T]\mathcal{H}\times\mathcal{H}\times\mathcal{H}\times[0,T]. Appealing to the Skorokhod representation theorem once again, there exists n(ϵ)n(\epsilon)\in\mathbb{N} such that Pn(ϵ)ϵ,ΔP_{n(\epsilon)}^{\epsilon,\Delta} converges weakly to PiP_{i} as ϵ0\epsilon\to 0 with probability 11. Combining this with the uniform integrability of Pn(ϵ)ϵ,ΔP_{n(\epsilon)}^{\epsilon,\Delta} (see Lemma 6.4), we have that for each mm\in\mathbb{N},

\displaystyle\bigg{\|} ×××[0,t]Pm1S1(ts)Ψ20(X¯(s),y)u2𝑑Pnϵ,Δ(u1,u2,y,s)\displaystyle\int_{\mathcal{H}\times\mathcal{H}\times\mathcal{H}\times[0,t]}P^{1}_{m}S_{1}(t-s)\Psi^{0}_{2}\big{(}\bar{X}(s),y\big{)}u_{2}dP^{\epsilon,\Delta}_{n}(u_{1},u_{2},y,s)
×××[0,t]Pm1S1(ts)Ψ20(X¯(s),y)u2𝑑Pi(u1,u2,y,s)2\displaystyle-\int_{\mathcal{H}\times\mathcal{H}\times\mathcal{H}\times[0,t]}P^{1}_{m}S_{1}(t-s)\Psi^{0}_{2}\big{(}\bar{X}(s),y\big{)}u_{2}dP_{i}(u_{1},u_{2},y,s)\bigg{\|}^{2}_{\mathcal{H}}
=k=1m(×××[0,t]S1(ts)Ψ20(X¯(s),y)u2,e1,kdPnϵ,Δ(u1,u2,y,s)\displaystyle=\sum_{k=1}^{m}\bigg{(}\int_{\mathcal{H}\times\mathcal{H}\times\mathcal{H}\times[0,t]}\big{\langle}S_{1}(t-s)\Psi^{0}_{2}\big{(}\bar{X}(s),y\big{)}u_{2},e_{1,k}\big{\rangle}_{\mathcal{H}}dP^{\epsilon,\Delta}_{n}(u_{1},u_{2},y,s)
×××[0,t]S1(ts)Ψ20(X¯(s),y)u2,e1,kdPi(u1,u2,y,s))20\displaystyle-\int_{\mathcal{H}\times\mathcal{H}\times\mathcal{H}\times[0,t]}\big{\langle}S_{1}(t-s)\Psi^{0}_{2}\big{(}\bar{X}(s),y\big{)}u_{2},e_{1,k}\big{\rangle}_{\mathcal{H}}dP_{i}(u_{1},u_{2},y,s)\bigg{)}^{2}\longrightarrow 0

as ϵ0\epsilon\to 0. Finally, we use (153), (36) to show that the remainders

×××[0,t](IPm1)S1(ts)Ψ20(X¯(s),y)u2𝑑Pnϵ,Δ(u1,u2,y,s)2\bigg{\|}\int_{\mathcal{H}\times\mathcal{H}\times\mathcal{H}\times[0,t]}(I-P^{1}_{m})S_{1}(t-s)\Psi^{0}_{2}\big{(}\bar{X}(s),y\big{)}u_{2}dP^{\epsilon,\Delta}_{n}(u_{1},u_{2},y,s)\bigg{\|}^{2}_{\mathcal{H}}

are uniformly bounded in ϵ,t,n\epsilon,t,n and small as mm\to\infty. The proof is complete. ∎

To conclude this section, we combine Lemma 6.9, Lemma 6.12 and Lemma 6.13 to obtain the following, regarding the limiting behavior of the term IVϵ,uIV^{\epsilon,u} in (72):

Proposition 6.3.

Let i=1,2,γii=1,2,\gamma_{i} as in (44) and T<T<\infty. Assume that the pair (ηϵ,uϵ,Pϵ,Δ)(\eta^{\epsilon,u^{\epsilon}},P^{\epsilon,\Delta}) converges in distribution, in Regime ii, to (ηi,Pi)(\eta_{i},P_{i}) in C([0,T];)×𝒫(×××[0,T])C([0,T];\mathcal{H})\times\mathscr{P}(\mathcal{H}\times\mathcal{H}\times\mathcal{H}\times[0,T]). Then there exists n=n(ϵ)>0n=n(\epsilon)>0 such that the following limit is valid with probability 11:

limϵ0supt[0,T]δϵ0t\displaystyle\lim_{\epsilon\to 0}\sup_{t\in[0,T]}\bigg{\|}\frac{\sqrt{\delta}}{\sqrt{\epsilon}}\int_{0}^{t} S1(ts)Ψ2ϵ(X¯(s),Ynϵ,u(s))u2ϵ(s)dz\displaystyle S_{1}(t-s)\Psi^{\epsilon}_{2}\big{(}\bar{X}(s),Y_{n}^{\epsilon,u}(s)\big{)}u_{2}^{\epsilon}(s)dz
γi×××[0,t]S1(ts)Ψ20(X¯(s),y)u2𝑑Pi(u1,u2,y,s)=0.\displaystyle-\gamma_{i}\ \int_{\mathcal{H}\times\mathcal{H}\times\mathcal{H}\times[0,t]}S_{1}(t-s)\Psi^{0}_{2}\big{(}\bar{X}(s),y\big{)}u_{2}dP_{i}(u_{1},u_{2},y,s)\bigg{\|}_{\mathcal{H}}=0.

6.3. Proof of Theorem 3.2

Let i=1,2i=1,2. In this section we will show that the limiting pair (ηi,Pi)(\eta_{i},P_{i}) in Regime ii is, with probability 11, a viable pair in 𝒱(Ξi,μX¯)\mathcal{V}_{(\Xi_{i},\mu^{\bar{X}})}. In particular, we shall show that (ηi,Pi)(\eta_{i},P_{i}) satisfies (i), (ii) and (iii) in Definition (3.1).

First, note that Propositions 6.1, 6.2, 6.3 from Section 6.2, along with (132), imply that any sequence in {(ηϵ,u,Pϵ,Δ:ϵ(0,1),u𝒫NT}\{(\eta^{\epsilon,u},P^{\epsilon,\Delta}:\epsilon\in(0,1),u\in\mathcal{P}_{N}^{T}\} has a subsequence that converges in distribution to a pair (ηi,Pi)(\eta_{i},P_{i}). This pair satisfies the integral equation

ηi(t)\displaystyle\eta_{i}(t) =×××[0,t]S1(ts)[DxF(X¯(s),y)ηi(t)+Σ(X¯(s),y)u1+γiΨ20(X¯(s),y)u2]𝑑Pi(u1,u2,y,s)\displaystyle=\int_{\mathcal{H}\times\mathcal{H}\times\mathcal{H}\times[0,t]}S_{1}(t-s)\bigg{[}D_{x}F\big{(}\bar{X}(s),y\big{)}\eta_{i}(t)+\Sigma(\bar{X}(s),y)u_{1}+\gamma_{i}\Psi^{0}_{2}\big{(}\bar{X}(s),y\big{)}u_{2}\bigg{]}dP_{i}(u_{1},u_{2},y,s)
=×××[0,t]S1(ts)Ξi(ηi(s),X¯(s),y,u1,u2)𝑑Pi(u1,u2,y,s)\displaystyle=\int_{\mathcal{H}\times\mathcal{H}\times\mathcal{H}\times[0,t]}S_{1}(t-s)\Xi_{i}\big{(}\eta_{i}(s),\bar{X}(s),y,u_{1},u_{2}\big{)}dP_{i}(u_{1},u_{2},y,s)

with probability 1. Hence, (ηi,Pi)(\eta_{i},P_{i}) satisfies (43). As for (40), the weak convergence of Pϵ,ΔP^{\epsilon,\Delta} to PiP_{i} along with the uniform integrability of Pϵ,ΔP^{\epsilon,\Delta} (Lemma 6.4) imply the square integrability of the measures PiP_{i}.

Regarding (42), note that this property holds at the prelimit level. Since the map tPi(×××[0,t])t\mapsto P_{i}(\mathcal{H}\times\mathcal{H}\times\mathcal{H}\times[0,t]) is continuous and Pi(×××{t})=0P_{i}(\mathcal{H}\times\mathcal{H}\times\mathcal{H}\times\{t\})=0 the result follows as in the finite-dimensional case (see [19]).

Finally, we verify the decomposition (41). For this it suffices to show that the third and fourth marginals of PiP_{i} are given by the product dμX¯(t)×dtd\mu^{\bar{X}(t)}\times dt of the local invariant measure and Lebesgue measure. Indeed, we shall show that for any fCb()f\in C_{b}(\mathcal{H}),

×××[0,T]f(y)𝑑Pi(u1,u2,y,t)=0Tf(y)𝑑μX¯(t)(y)𝑑t.\int_{\mathcal{H}\times\mathcal{H}\times\mathcal{H}\times[0,T]}f(y)dP_{i}(u_{1},u_{2},y,t)=\int_{0}^{T}\int_{\mathcal{H}}f(y)d\mu^{\bar{X}(t)}(y)dt.

To this end, let Y~uϵ\tilde{Y}^{\epsilon}_{u} denote the uncontrolled fast process depending on the controlled slow process Xϵ,uX^{\epsilon,u}, i.e. Y~uϵ\tilde{Y}^{\epsilon}_{u} solves

dY~uϵ(t)=1δ[A2Y~uϵ(t)+G(Xϵ,u(t),Y~uϵ(t))]dt+1δdw2(t),Y~uϵ(0)=y0.d\tilde{Y}^{\epsilon}_{u}(t)=\frac{1}{\delta}\big{[}A_{2}\tilde{Y}^{\epsilon}_{u}(t)+G\big{(}X^{\epsilon,u}(t),\tilde{Y}^{\epsilon}_{u}(t)\big{)}\big{]}dt+\frac{1}{\sqrt{\delta}}\;dw_{2}(t)\;,\tilde{Y}_{u}^{\epsilon}(0)=y_{0}.

The following lemma, whose proof is deferred to the end of this section, shows that the process Y~uϵ(t)\tilde{Y}^{\epsilon}_{u}(t) is close to the controlled fast process Yϵ,uY^{\epsilon,u} in an appropriate ergodic sense.

Lemma 6.14.

Let T<,u𝒫NTT<\infty,u\in\mathcal{P}_{N}^{T} and Δ=Δ(ϵ)>0\Delta=\Delta(\epsilon)>0 as in Definition 39. Then

1Δ𝔼0TYϵ,u(t)Y~uϵ(t)2𝑑tCT,gδh2(ϵ)Δ0,asϵ0.\frac{1}{\Delta}\mathbb{E}\int_{0}^{T}\big{\|}Y^{\epsilon,u}(t)-\tilde{Y}_{u}^{\epsilon}(t)\big{\|}^{2}_{\mathcal{H}}dt\leq C_{T,g}\frac{\delta h^{2}(\epsilon)}{\Delta}\longrightarrow 0\;,\text{as}\;\epsilon\to 0. (154)

Similarly, for sts\geq t, we can define the two parameter process Yϵ,Xϵ,u(t)(s;t)Y^{\epsilon,X^{\epsilon,u}(t)}(s;t) solving

dYϵ,Xϵ,u(t)(s;t)=1δ[A2Yϵ,Xϵ,u(t)(s;t)+G(Xϵ,u(t),Yϵ,Xϵ,u(t)(s;t))]ds+1δdw2(s),\displaystyle dY^{\epsilon,X^{\epsilon,u}(t)}(s;t)=\frac{1}{\delta}\big{[}A_{2}Y^{\epsilon,X^{\epsilon,u}(t)}(s;t)+G\big{(}X^{\epsilon,u}(t),Y^{\epsilon,X^{\epsilon,u}(t)}(s;t)\big{)}\big{]}ds+\frac{1}{\sqrt{\delta}}\;dw_{2}(s)\;,
Yϵ,Xϵ,u(t)(t;t)=Yϵ(t)\displaystyle Y^{\epsilon,X^{\epsilon,u}(t)}(t;t)=Y^{\epsilon}(t)

and show that for any t>0t>0 there exists ϵ0(t)>0\epsilon_{0}(t)>0 such that for all ϵ<ϵ0\epsilon<\epsilon_{0} we have

1Δ𝔼tt+ΔY~uϵ(t)dtYϵ,Xϵ,u(t)(s;t)2𝑑sCt,ϵ,\frac{1}{\Delta}\mathbb{E}\int_{t}^{t+\Delta}\big{\|}\tilde{Y}_{u}^{\epsilon}(t)dt-Y^{\epsilon,X^{\epsilon,u}(t)}(s;t)\big{\|}^{2}_{\mathcal{H}}ds\leq C_{t,\epsilon}, (155)

with Δ\Delta as in (39) and for each fixed t>0t>0, Ct,ϵ0C_{t,\epsilon}\rightarrow 0 as ϵ0\epsilon\to 0. This shows that, in small time intervals, we can consider the effect of Xϵ,uX^{\epsilon,u} as frozen.

In view of (154) and (155) we can now apply Lemma 4.19 from [25] to show that, for any fCb()f\in C_{b}(\mathcal{H}),

×××[0,T]f(y)𝑑Pi(u1,u2,y,t)=0Tf(y)𝑑μX¯(t)(y)𝑑t.\int_{\mathcal{H}\times\mathcal{H}\times\mathcal{H}\times[0,T]}f(y)dP_{i}(u_{1},u_{2},y,t)=\int_{0}^{T}\int_{\mathcal{H}}f(y)d\mu^{\bar{X}(t)}(y)dt.

This completes the proof of the decomposition (41). Let us now conclude this section with the proof of Lemma 6.14.

Proof of Lemma 6.14.

Let Γϵ,u=Yϵ,uY~uϵ\Gamma^{\epsilon,u}=Y^{\epsilon,u}-\tilde{Y}_{u}^{\epsilon}. This process has weakly differentiable paths and solves the equation

tΓϵ,u(t)=1δ[A2Γϵ,u(t)+G(Xϵ,u(t),Y~uϵ(t))G(Xϵ,u(t),Yϵ(t))]+h(ϵ)δu2(t),Γϵ,u(0)=0.\partial_{t}\Gamma^{\epsilon,u}(t)=\frac{1}{\delta}\big{[}A_{2}\Gamma^{\epsilon,u}(t)+G(X^{\epsilon,u}(t),\tilde{Y}_{u}^{\epsilon}(t))-G(X^{\epsilon,u}(t),Y^{\epsilon}(t))\big{]}+\frac{h(\epsilon)}{\sqrt{\delta}}u_{2}(t),\;\Gamma^{\epsilon,u}(0)=0_{\mathcal{H}}\;.

As in Lemma 4.1 we have

12tΓϵ,u(t)2\displaystyle\frac{1}{2}\partial_{t}\|\Gamma^{\epsilon,u}(t)\|^{2}_{\mathcal{H}} LgλδΓϵ,u(t)2+h(ϵ)δΓϵ,u(t)u2(t)\displaystyle\leq\frac{L_{g}-\lambda}{\delta}\|\Gamma^{\epsilon,u}(t)\|^{2}_{\mathcal{H}}+\frac{h(\epsilon)}{\sqrt{\delta}}\|\Gamma^{\epsilon,u}(t)\|_{\mathcal{H}}\|u_{2}(t)\|_{\mathcal{H}}
Lgλ2δΓϵ,u(t)2+h2(ϵ)cgu2(t)2.\displaystyle\leq\frac{L_{g}-\lambda}{2\delta}\|\Gamma^{\epsilon,u}(t)\|^{2}_{\mathcal{H}}+\frac{h^{2}(\epsilon)}{c_{g}}\|u_{2}(t)\|^{2}_{\mathcal{H}}.

Integrating yields

12supt[0,T]Γϵ,u(t)2+λLg2δ0TΓϵ,u(t)2𝑑th2(ϵ)cg0Tu2(t)2𝑑tNh2(ϵ)cg.\displaystyle\frac{1}{2}\sup_{t\in[0,T]}\|\Gamma^{\epsilon,u}(t)\|^{2}_{\mathcal{H}}+\frac{\lambda-L_{g}}{2\delta}\int_{0}^{T}\|\Gamma^{\epsilon,u}(t)\|^{2}_{\mathcal{H}}dt\leq\frac{h^{2}(\epsilon)}{c_{g}}\int_{0}^{T}\|u_{2}(t)\|^{2}_{\mathcal{H}}dt\leq\frac{Nh^{2}(\epsilon)}{c_{g}}\;.

The latter completes the proof, since it implies 0TΓϵ,u(t)2𝑑tCg,Nδh2(ϵ).\int_{0}^{T}\|\Gamma^{\epsilon,u}(t)\|^{2}_{\mathcal{H}}dt\leq C_{g,N}\delta h^{2}(\epsilon).

7. Proof of the Moderate Deviation Principle

This section is devoted to the proof of Theorem 3.3. Recall from Section 3 that the MDP for the family {Xϵ,ϵ>0}\{X^{\epsilon}\;,\epsilon>0\} of slow processes is equivalent to an LDP for the family {ηϵ,ϵ>0}\{\eta^{\epsilon}\;,\epsilon>0\} with speed h2(ϵ)h^{2}(\epsilon).

In Section 7.1 we use the variational representation (23) to show that, in Regime i=1,2i=1,2, {ηϵ,ϵ>0}\{\eta^{\epsilon}\;,\epsilon>0\} satisfies the Laplace Principle upper bound with rate function

𝒮i(ϕ):=inf(ϕ,P)𝒱(Ξi,μX¯)[12×××[0,T](u12+u22)𝑑P(u1,u2,y,t)],ϕC([0,T];),\displaystyle\mathcal{S}_{i}(\phi):=\inf_{(\phi,P)\in\mathcal{V}_{(\Xi_{i},\mu^{\bar{X}})}}\bigg{[}\frac{1}{2}\int_{\mathcal{H}\times\mathcal{H}\times\mathcal{H}\times[0,T]}\big{(}\|u_{1}\|^{2}_{\mathcal{H}}+\|u_{2}\|^{2}_{\mathcal{H}}\big{)}\;dP(u_{1},u_{2},y,t)\bigg{]}\;\;,\phi\in C\big{(}[0,T];\mathcal{H}\big{)}, (156)

where Ξi\Xi_{i} is given in (45) and the infimum runs over the family 𝒱(Ξi,μX¯)\mathcal{V}_{(\Xi_{i},\mu^{\bar{X}})} of viable pairs (Definition 3.1). The upper bound is a straightforward consequence of Theorem 3.2 and the Portmanteau lemma.

The Laplace Principle lower bound in Regime ii is proved in Section 7.2. The situation for the lower bound is more complicated, as we have to construct nearly optimal controls that achieve the bound. To do so, we take advantage of the affine structure of the limiting dynamics, captured by Ξi\Xi_{i}, to express the rate function in an explicit, non-variational form (47). This allows us to construct nearly optimal controls which, in principle, depend on the fast process in feedback form, but have sufficient regularity properties for the averaging principle to hold.

Finally, we verify in Section 7.3 that the rate function has compact sublevel sets. This guarantees that the LDP is equivalent to the LP and completes the analysis.

Note that throughout Section 7.2 we switch from Hypothesis 3(a) to the stronger Hypothesis 3(a’). The reasons for this will become clear below.

7.1. Laplace Principle upper bound

We aim to prove that for T<T<\infty and any bounded, continuous Λ:C([0,T];)\Lambda:C\big{(}[0,T];\mathcal{H}\big{)}\rightarrow\mathbb{R},

lim supϵ01h2(ϵ)log𝔼[eh2(ϵ)Λ(ηϵ)]infϕC([0,T];)[𝒮i(ϕ)+Λ(ϕ)],i=1,2.\displaystyle\limsup_{\epsilon\to 0}\frac{1}{h^{2}(\epsilon)}\log\mathbb{E}\big{[}e^{-h^{2}(\epsilon)\Lambda(\eta^{\epsilon})}\big{]}\leq-\inf_{\phi\in C([0,T];\mathcal{H})}\big{[}\mathcal{S}_{i}(\phi)+\Lambda(\phi)\big{]}\;,i=1,2. (157)

It suffices to verify the above limit along any convergent subsequence in ϵ\epsilon. Such a subsequence exists since, for ϵ\epsilon small enough,

|1h2(ϵ)log𝔼[eh2(ϵ)Λ(ηϵ)]|supϕC([0,T];)|Λ(ϕ)|.\bigg{|}\frac{1}{h^{2}(\epsilon)}\log\mathbb{E}\big{[}e^{-h^{2}(\epsilon)\Lambda(\eta^{\epsilon})}\big{]}\bigg{|}\leq\sup_{\phi\in C([0,T];\mathcal{H})}\big{|}\Lambda(\phi)\big{|}.

Next let ρ>0\rho>0. In view of the variational representation (23), it follows that for each ϵ>0\epsilon>0 there exists a family of controls {(u1ϵ,u2ϵ)}ϵ>0𝒫T()\{(u_{1}^{\epsilon},u_{2}^{\epsilon})\}_{\epsilon>0}\subset\mathcal{P}^{T}(\mathcal{H}\oplus\mathcal{H}) such that

1h2(ϵ)log𝔼[eh2(ϵ)Λ(ηϵ)]𝔼[120T(u1ϵ(t)2+u2ϵ(t)2)𝑑t+Λ(ηϵ,uϵ)]+ρ.\frac{1}{h^{2}(\epsilon)}\log\mathbb{E}\big{[}e^{-h^{2}(\epsilon)\Lambda(\eta^{\epsilon})}\big{]}\leq-\mathbb{E}\bigg{[}\frac{1}{2}\int_{0}^{T}\big{(}\|u_{1}^{\epsilon}(t)\|^{2}_{\mathcal{H}}+\|u_{2}^{\epsilon}(t)\|^{2}_{\mathcal{H}}\big{)}\;dt+\Lambda\big{(}\eta^{\epsilon,u^{\epsilon}}\big{)}\bigg{]}+\rho. (158)

In fact, we can assume without loss of generality that {(u1ϵ,u2ϵ)}ϵ>0𝒫NT()\{(u_{1}^{\epsilon},u_{2}^{\epsilon})\}_{\epsilon>0}\subset\mathcal{P}_{N}^{T}(\mathcal{H}\oplus\mathcal{H}) for N=N(ρ)N=N(\rho) large enough (see [7] and [5],p.22). Using this family of controls and the associated controlled moderate deviations processes ηϵ,uϵ\eta^{\epsilon,u^{\epsilon}} we can define occupation measures Pϵ,ΔP^{\epsilon,\Delta} and, from Theorem 3.2, the family {(ηϵ,uϵ,Pϵ,Δ),ϵ,Δ>0}\{(\eta^{\epsilon,u^{\epsilon}},P^{\epsilon,\Delta}),\epsilon,\Delta>0\} is tight. From the same theorem, any sequence of ϵ\epsilon, contains a further subsequence for which (ηϵ,uϵ,Pϵ,Δ)(\eta^{\epsilon,u^{\epsilon}},P^{\epsilon,\Delta}) converges in distribution, in Regime ii, to a viable pair (ηi,Pi)𝒱(Ξi,μX¯)(\eta_{i},P_{i})\in\mathcal{V}_{(\Xi_{i},\mu^{\bar{X}})}. Taking limits along this subsequence in (158) yields

lim supϵ01h2(ϵ)log𝔼[\displaystyle\limsup_{\epsilon\to 0}\frac{1}{h^{2}(\epsilon)}\log\;\mathbb{E}\big{[} eh2(ϵ)Λ(ηϵ)]lim supϵ0𝔼[120T1Δtt+Δ(u1ϵ(s)2+u2ϵ(t)2)dsdt+Λ(ηϵ,uϵ)]+ρ\displaystyle e^{-h^{2}(\epsilon)\Lambda(\eta^{\epsilon})}\big{]}\leq\limsup_{\epsilon\to 0}-\mathbb{E}\bigg{[}\frac{1}{2}\int_{0}^{T}\frac{1}{\Delta}\int_{t}^{t+\Delta}\big{(}\|u_{1}^{\epsilon}(s)\|^{2}_{\mathcal{H}}+\|u_{2}^{\epsilon}(t)\|^{2}_{\mathcal{H}}\big{)}\;dsdt+\Lambda\big{(}\eta^{\epsilon,u^{\epsilon}}\big{)}\bigg{]}+\rho
=lim infϵ0𝔼[12×××[0,T](u12+u22)𝑑Pϵ,Δ(u1,u2,y,t)+Λ(ηϵ,uϵ)]+ρ.\displaystyle=-\liminf_{\epsilon\to 0}\mathbb{E}\bigg{[}\frac{1}{2}\int_{\mathcal{H}\times\mathcal{H}\times\mathcal{H}\times[0,T]}\big{(}\|u_{1}\|^{2}_{\mathcal{H}}+\|u_{2}\|^{2}_{\mathcal{H}}\big{)}\;dP^{\epsilon,\Delta}(u_{1},u_{2},y,t)+\Lambda\big{(}\eta^{\epsilon,u^{\epsilon}}\big{)}\bigg{]}+\rho.

Since the map

𝒫(×××[0,T])ν×××[0,T](u12+u22)𝑑ν(u1,u2,y,t)\mathscr{P}\big{(}\mathcal{H}\times\mathcal{H}\times\mathcal{H}\times[0,T]\big{)}\ni\nu\longmapsto\int_{\mathcal{H}\times\mathcal{H}\times\mathcal{H}\times[0,T]}\big{(}\|u_{1}\|^{2}_{\mathcal{H}}+\|u_{2}\|^{2}_{\mathcal{H}}\big{)}d\nu(u_{1},u_{2},y,t)\in\mathbb{R}

is nonnegative and lower semi-continuous, we use the Portmanteau lemma to obtain

lim supϵ01h2(ϵ)log\displaystyle\limsup_{\epsilon\to 0}\frac{1}{h^{2}(\epsilon)}\log 𝔼[eh2(ϵ)Λ(ηϵ)]𝔼[12×××[0,T](u12+u22)𝑑Pi(u1,u2,y,t)+Λ(ηi)]+ρ\displaystyle\mathbb{E}\big{[}e^{-h^{2}(\epsilon)\Lambda(\eta^{\epsilon})}\big{]}\leq-\mathbb{E}\bigg{[}\frac{1}{2}\int_{\mathcal{H}\times\mathcal{H}\times\mathcal{H}\times[0,T]}\big{(}\|u_{1}\|^{2}_{\mathcal{H}}+\|u_{2}\|^{2}_{\mathcal{H}}\big{)}\;dP_{i}(u_{1},u_{2},y,t)+\Lambda(\eta_{i})\bigg{]}+\rho
inf(ϕ,P)𝒱(Ξi,μX¯)[12×××[0,T](u12+u22)𝑑P(u1,u2,y,t)+Λ(ϕ)]+ρ.\displaystyle\leq-\inf_{(\phi,P)\in\mathcal{V}_{(\Xi_{i},\mu^{\bar{X}})}}\bigg{[}\frac{1}{2}\int_{\mathcal{H}\times\mathcal{H}\times\mathcal{H}\times[0,T]}\big{(}\|u_{1}\|^{2}_{\mathcal{H}}+\|u_{2}\|^{2}_{\mathcal{H}}\big{)}\;dP(u_{1},u_{2},y,t)+\Lambda(\phi)\bigg{]}+\rho.

Since ρ>0\rho>0 is arbitrary, the proof of (157) is complete.

7.2. Laplace Principle lower bound

Assume Hypotheses 3(a’) and 3(b). We aim to prove that for T<T<\infty and any bounded, continuous Λ:C([0,T];)\Lambda:C\big{(}[0,T];\mathcal{H}\big{)}\rightarrow\mathbb{R}

lim infϵ01h2(ϵ)log𝔼[eh2(ϵ)Λ(ηϵ)]infϕC([0,T];)[𝒮i(ϕ)+Λ(ϕ)],i=1,2.\liminf_{\epsilon\to 0}\frac{1}{h^{2}(\epsilon)}\log\mathbb{E}\big{[}e^{-h^{2}(\epsilon)\Lambda(\eta^{\epsilon})}\big{]}\geq-\inf_{\phi\in C([0,T];\mathcal{H})}\big{[}\mathcal{S}_{i}(\phi)+\Lambda(\phi)\big{]}\;,i=1,2. (159)

From our definition of viable pairs and Theorem 6.3 we see that the third marginal of the invariant measure PP does not depend on the control variables u1,u2u_{1},u_{2} and is in fact given by the local invariant measure μx\mu^{x}. This decoupling is further exploited in the following lemma, which allows to rewrite the rate function 𝒮i\mathcal{S}_{i} (see (156)) in a convenient ordinary control formulation.

Lemma 7.1.

With i=1,2i=1,2 and Ξi,μx\Xi_{i},\mu^{x} as in Theorem 3.3, let

𝒜i,ψ,Tr=\displaystyle\mathscr{A}^{r}_{i,\psi,T}= {P:[0,T]𝒫(××):Pt(B1×B2×B3)=B3ν(B1×B2|y,t)dμX¯(t)(y),\displaystyle\bigg{\{}P:[0,T]\longrightarrow\mathscr{P}(\mathcal{H}\times\mathcal{H}\times\mathcal{H}):P_{t}(B_{1}\times B_{2}\times B_{3})=\int_{B_{3}}\nu(B_{1}\times B_{2}|y,t)d\mu^{\bar{X}(t)}(y)\;,
0T××(u12+u22+yHθ2)𝑑Ps(u1,u2,y)𝑑s<for someθ>0,\displaystyle\int_{0}^{T}\int_{\mathcal{H}\times\mathcal{H}\times\mathcal{H}}\big{(}\|u_{1}\|^{2}_{\mathcal{H}}+\|u_{2}\|^{2}_{\mathcal{H}}+\|y\|^{2}_{H^{\theta}}\big{)}dP_{s}(u_{1},u_{2},y)ds<\infty\;\;\text{for some}\;\theta>0,
ψ(t)=0t××S1(ts)Ξi(X¯(s),ψ(s),y,u1,u2)dPs(u1,u2,y)ds}\displaystyle\psi(t)=\int_{0}^{t}\int_{\mathcal{H}\times\mathcal{H}\times\mathcal{H}}S_{1}(t-s)\Xi_{i}\big{(}\bar{X}(s),\psi(s),y,u_{1},u_{2}\big{)}dP_{s}(u_{1},u_{2},y)ds\bigg{\}}

and

𝒜i,ψ,To=\displaystyle\mathscr{A}^{o}_{i,\psi,T}= {(u1,u2):[0,T]××:\displaystyle\bigg{\{}(u_{1},u_{2}):[0,T]\times\mathcal{H}\longrightarrow\mathcal{H}\times\mathcal{H}:
0T(u1(s,y)2+u2(s,y)2+yHθ2)𝑑μX¯(s)(y)𝑑s<for someθ>0,\displaystyle\int_{0}^{T}\int_{\mathcal{H}}\big{(}\|u_{1}(s,y)\|^{2}_{\mathcal{H}}+\|u_{2}(s,y)\|^{2}_{\mathcal{H}}+\|y\|^{2}_{H^{\theta}}\big{)}d\mu^{\bar{X}(s)}(y)ds<\infty\;\;\text{for some}\;\theta>0,
ψ(t)=0tS1(ts)Ξi(X¯(s),ψ(s),y,u1(s,y),u2(s,y))dμX¯(s)(y)ds}\displaystyle\psi(t)=\int_{0}^{t}\int_{\mathcal{H}}S_{1}(t-s)\Xi_{i}\big{(}\bar{X}(s),\psi(s),y,u_{1}(s,y),u_{2}(s,y)\big{)}d\mu^{\bar{X}(s)}(y)ds\bigg{\}}

(the superscripts r,or,o refer to the relaxed and ordinary control formulations respectively). For ψC([0,T];)\psi\in C\big{(}[0,T];\mathcal{H}\big{)} we have

𝒮i(ψ)\displaystyle\mathcal{S}_{i}(\psi) =infP𝒜i,ψ,Tr[120T××(u12+u22)𝑑Ps(u1,u2,y)𝑑s]\displaystyle=\inf_{P\in\mathscr{A}^{r}_{i,\psi,T}}\bigg{[}\frac{1}{2}\int_{0}^{T}\int_{\mathcal{H}\times\mathcal{H}\times\mathcal{H}}\big{(}\|u_{1}\|^{2}_{\mathcal{H}}+\|u_{2}\|^{2}_{\mathcal{H}}\big{)}\;dP_{s}(u_{1},u_{2},y)ds\bigg{]} (160)
=inf(u1,u2)𝒜i,ψ,To[120T(u1(s,y)2+u2(s,y)2)𝑑μX¯(s)(y)𝑑s].\displaystyle=\inf_{(u_{1},u_{2})\in\mathscr{A}^{o}_{i,\psi,T}}\bigg{[}\frac{1}{2}\int_{0}^{T}\int_{\mathcal{H}}\big{(}\|u_{1}(s,y)\|^{2}_{\mathcal{H}}+\|u_{2}(s,y)\|^{2}_{\mathcal{H}}\big{)}\;d\mu^{\bar{X}(s)}(y)ds\bigg{]}.

This result is standard and a proof can be found e.g. in [25], Section 5.2. Proceeding to the main proof, let ρ>0\rho>0 and ψC([0,T];)\psi\in C\big{(}[0,T];\mathcal{H}\big{)} such that

𝒮i(ψ)+Λ(ψ)infϕC([0,T];)[𝒮i(ϕ)+Λ(ϕ)]+ρ<.\mathcal{S}_{i}(\psi)+\Lambda(\psi)\leq\inf_{\phi\in C([0,T];\mathcal{H})}\big{[}\mathcal{S}_{i}(\phi)+\Lambda(\phi)\big{]}+\rho<\infty. (161)

For each (u1,u2)𝒜i,ψ,To(u_{1},u_{2})\in\mathscr{A}^{o}_{i,\psi,T},

ψ(t)=0tS1(ts)Ξi(X¯(s),ψ(s),y,u1(s,y),u2(s,y))𝑑μX¯(s)(y)𝑑s\displaystyle\psi(t)=\int_{0}^{t}\int_{\mathcal{H}}S_{1}(t-s)\Xi_{i}\big{(}\bar{X}(s),\psi(s),y,u_{1}(s,y),u_{2}(s,y)\big{)}d\mu^{\bar{X}(s)}(y)ds
=0tS1(ts)DxF(X¯(s),y)ψ(s)𝑑μX¯(s)(y)𝑑s+0tS1(ts)Σ(X¯(s),y)u1(s,y)𝑑μX¯(s)(y)𝑑s\displaystyle=\int_{0}^{t}\int_{\mathcal{H}}S_{1}(t-s)D_{x}F\big{(}\bar{X}(s),y\big{)}\psi(s)d\mu^{\bar{X}(s)}(y)ds+\int_{0}^{t}\int_{\mathcal{H}}S_{1}(t-s)\Sigma\big{(}\bar{X}(s),y\big{)}u_{1}(s,y)d\mu^{\bar{X}(s)}(y)ds
+γi0tS1(ts)Ψ20(X¯(s),y)u2(s,y)𝑑μX¯(s)(y)𝑑s.\displaystyle+\gamma_{i}\int_{0}^{t}\int_{\mathcal{H}}S_{1}(t-s)\Psi^{0}_{2}\big{(}\bar{X}(s),y\big{)}u_{2}(s,y)d\mu^{\bar{X}(s)}(y)ds.

Hence, ψ\psi is the mild solution of the semilinear evolution equation

{tψ(t)=A1ψ(t)+DxF¯(X¯(t))ψ(t)+[Σ(X¯(t),y)u1(t,y)+γiΨ20(X¯(t),y)u2(t,y)]𝑑μX¯(t)(y)ψ(0)=0,\left\{\begin{aligned} &\partial_{t}\psi(t)=A_{1}\psi(t)+\overline{D_{x}F}\big{(}\bar{X}(t)\big{)}\psi(t)+\int_{\mathcal{H}}\big{[}\Sigma\big{(}\bar{X}(t),y\big{)}u_{1}(t,y)+\gamma_{i}\Psi^{0}_{2}\big{(}\bar{X}(t),y\big{)}u_{2}(t,y)\big{]}d\mu^{\bar{X}(t)}(y)\\ &\psi(0)=0_{\mathcal{H}}\;,\end{aligned}\right. (162)

where

DxF¯(X¯(t)):=DxF(X¯(t),y)𝑑μX¯(t)(y).\overline{D_{x}F}\big{(}\bar{X}(t)\big{)}:=\int_{\mathcal{H}}D_{x}F\big{(}\bar{X}(t),y\big{)}d\mu^{\bar{X}(t)}(y). (163)

In view of Hypotheses 2(a) and 3(a’), the maps

tDxF(X¯(t),y)ψ(t)𝑑μX¯(t)(y),[Σ(X¯(t),y)u1(t,y)+γiΨ20(X¯(t),y)u2(t,y)]𝑑μX¯(t)(y)t\longmapsto\int_{\mathcal{H}}D_{x}F\big{(}\bar{X}(t),y\big{)}\psi(t)d\mu^{\bar{X}(t)}(y)\;,\int_{\mathcal{H}}\big{[}\Sigma\big{(}\bar{X}(t),y\big{)}u_{1}(t,y)+\gamma_{i}\Psi^{0}_{2}\big{(}\bar{X}(t),y\big{)}u_{2}(t,y)\big{]}d\mu^{\bar{X}(t)}(y)

belong to L2([0,T];)L^{2}([0,T];\mathcal{H}). From standard theory of deterministic parabolic equations it follows that ψ\psi is a weak solution of (162) in the sense that ψH01([0,T];)L2([0,T];Dom(A1))\psi\in H_{0}^{1}([0,T];\mathcal{H})\cap L^{2}([0,T];Dom(A_{1})).

The next step is to show that 𝒮i\mathcal{S}_{i} has a non-variational form. To this end, let xx\in\mathcal{H} and define Q~i(x):L2(,μx;)L2(,μx;)\widetilde{Q}_{i}(x):L^{2}(\mathcal{H},\mu^{x};\mathcal{H})\oplus L^{2}(\mathcal{H},\mu^{x};\mathcal{H})\rightarrow\mathcal{H} with

Q~i(x)(u1,u2):=[Σ(x,y)u1(y)+γiΨ20(x,y)u2(y)]𝑑μx(y),i=1,2.\widetilde{Q}_{i}(x)(u_{1},u_{2}):=\int_{\mathcal{H}}\big{[}\Sigma(x,y)u_{1}(y)+\gamma_{i}\Psi^{0}_{2}(x,y)u_{2}(y)\big{]}d\mu^{x}(y)\;,\;i=1,2.

Note that Q~i(x):L2(,μx;)L2(,μx;)\widetilde{Q}_{i}^{*}(x):\mathcal{H}\rightarrow L^{2}(\mathcal{H},\mu^{x};\mathcal{H})\oplus L^{2}(\mathcal{H},\mu^{x};\mathcal{H}) is given by

Q~i(x)v:=(Σ(x,y)v,γiΨ20(x,y)v).\widetilde{Q}_{i}^{*}(x)v:=\big{(}\Sigma^{*}(x,y)v,\gamma_{i}\Psi^{0*}_{2}(x,y)v\big{)}. (164)

Next, define Qi(x)()Q_{i}(x)\in\mathscr{L}(\mathcal{H}) by

Qi(x):=Q~i(x)Q~i(x)=[Σ(x,y)Σ(x,y)+γi2Ψ20(x,y)Ψ20(x,y)]𝑑μx(y).Q_{i}(x):=\widetilde{Q}_{i}(x)\widetilde{Q}_{i}^{*}(x)=\int_{\mathcal{H}}\big{[}\Sigma(x,y)\Sigma^{*}(x,y)+\gamma^{2}_{i}\Psi^{0}_{2}(x,y)\Psi^{0*}_{2}(x,y)\big{]}d\mu^{x}(y). (165)

We can now prove the following:

Proposition 7.1.

Under Hypothesis 3(a’) the following hold:
(i) For i=1,2i=1,2 and each xx\in\mathcal{H}, Qi(x)Q_{i}(x) has a bounded inverse that satisfies

supxQi1(x)()c12.\sup_{x\in\mathcal{H}}\|Q^{-1}_{i}(x)\|_{\mathscr{L}(\mathcal{H})}\leq c^{-2}_{1}. (166)

Furthermore, Q~i(x)\widetilde{Q}_{i}(x) has a bounded right inverse given by

Q~i+(x)=Q~i(x)Qi1(x).\widetilde{Q}^{+}_{i}(x)=\widetilde{Q}^{*}_{i}(x)Q^{-1}_{i}(x). (167)

(ii) For i=1,2i=1,2 and T<,T<\infty, 𝒮i(ψ)<\mathcal{S}_{i}(\psi)<\infty if and only if ψH01([0,T];)L2([0,T];Dom(A1))\psi\in H_{0}^{1}([0,T];\mathcal{H})\cap L^{2}([0,T];Dom(A_{1})). Moreover, the infimum in (160) is attained and letting

v1i(t,y)=Σ(X¯(t),y)Qi1(X¯(t))(tψ(t)A1ψ(t)DxF¯(X¯(t))ψ(t)),v^{i}_{1}(t,y)=\Sigma^{*}\big{(}\bar{X}(t),y\big{)}Q^{-1}_{i}\big{(}\bar{X}(t)\big{)}\bigg{(}\partial_{t}\psi(t)-A_{1}\psi(t)-\overline{D_{x}F}\big{(}\bar{X}(t)\big{)}\psi(t)\bigg{)}, (168)
v2i(t,y)=γiΨ20(X¯(t),y)Qi1(X¯(t))(tψ(t)A1ψ(t)DxF¯(X¯(t))ψ(t))v^{i}_{2}(t,y)=\gamma_{i}\Psi^{0*}_{2}\big{(}\bar{X}(t),y\big{)}Q^{-1}_{i}\big{(}\bar{X}(t)\big{)}\bigg{(}\partial_{t}\psi(t)-A_{1}\psi(t)-\overline{D_{x}F}\big{(}\bar{X}(t)\big{)}\psi(t)\bigg{)} (169)

we have

(v1i,v2i)argmin(u1,u2)𝒜i,ψ,To{0T(u1(t,y)2+u2(t,y)2)𝑑μX¯(t)(y)𝑑t}.(v_{1}^{i},v_{2}^{i})\in\mathrm{argmin}_{(u_{1},u_{2})\in\mathscr{A}^{o}_{i,\psi,T}}\bigg{\{}\int_{0}^{T}\int_{\mathcal{H}}\big{(}\|u_{1}(t,y)\|^{2}_{\mathcal{H}}+\|u_{2}(t,y)\|^{2}_{\mathcal{H}}\big{)}d\mu^{\bar{X}(t)}(y)dt\bigg{\}}.

Hence, the rate function in Regime ii takes the non-variational form

𝒮i(ψ)=120TQi(X¯(t))12[tψ(t)A1ψ(t)DxF¯(X¯(t))ψ(t)]2𝑑t,\displaystyle\mathcal{S}_{i}(\psi)=\frac{1}{2}\int_{0}^{T}\bigg{\|}Q_{i}\big{(}\bar{X}(t)\big{)}^{-\frac{1}{2}}\big{[}\partial_{t}\psi(t)-A_{1}\psi(t)-\overline{D_{x}F}\big{(}\bar{X}(t)\big{)}\psi(t)\big{]}\bigg{\|}^{2}_{\mathcal{H}}dt,

for ψH01([0,T];)L2([0,T];Dom(A1))\psi\in H_{0}^{1}([0,T];\mathcal{H})\cap L^{2}([0,T];Dom(A_{1})) and 𝒮i=\mathcal{S}_{i}=\infty otherwise.

Proof.

(i) Let uu\in\mathcal{H}. By definition, Qi(x)Q_{i}(x) is self-adjoint and from Hypothesis 3(a’) we have

Qi(x)u,u\displaystyle\langle Q_{i}(x)u,u\rangle_{\mathcal{H}} =Q~i(x)uL2(,μx;)L2(,μx;)2\displaystyle=\|\widetilde{Q}^{*}_{i}(x)u\|^{2}_{L^{2}(\mathcal{H},\mu^{x};\mathcal{H})\oplus L^{2}(\mathcal{H},\mu^{x};\mathcal{H})}
=Σ(x,y)u2𝑑μx(y)+γi2Ψ20(x,y)u2𝑑μx(y)\displaystyle=\int_{\mathcal{H}}\|\Sigma^{*}(x,y)u\|^{2}_{\mathcal{H}}d\mu^{x}(y)+\gamma_{i}^{2}\int_{\mathcal{H}}\|\Psi^{0*}_{2}(x,y)u\|^{2}_{\mathcal{H}}d\mu^{x}(y)
c12u2μx()=c12u2.\displaystyle\geq c_{1}^{2}\|u\|^{2}_{\mathcal{H}}\mu^{x}(\mathcal{H})=c_{1}^{2}\|u\|^{2}_{\mathcal{H}}\;.

Thus, Qi(x)Q_{i}(x) is injective and

Q~i(x)uc12u,\|\widetilde{Q}_{i}(x)u\|_{\mathcal{H}}\geq c^{2}_{1}\|u\|_{\mathcal{H}},

which implies that Q~i(x)\widetilde{Q}_{i}(x) has a closed range in \mathcal{H}. It follows that Qi(x)()=Qi(x)()¯=ker(Qi(x))=ker(Qi(x))={0}=Q_{i}(x)(\mathcal{H})=\overline{Q_{i}(x)(\mathcal{H})}=\ker(Q^{*}_{i}(x))^{\perp}=\ker(Q_{i}(x))^{\perp}=\{0_{\mathcal{H}}\}^{\perp}=\mathcal{H}. By virtue of the inverse mapping theorem we deduce that Qi1(x)()Q^{-1}_{i}(x)\in\mathscr{L}(\mathcal{H}) and (166) follows. Lastly, it is straightforward to check that Q~i+(x)\widetilde{Q}_{i}^{+}(x) is a right inverse of Q~i(x)\widetilde{Q}_{i}(x) and in view of (164) and (166), Q~i+(x)(;L2(,μx;)L2(,μx;))\widetilde{Q}_{i}^{+}(x)\in\mathscr{L}(\mathcal{H};L^{2}(\mathcal{H},\mu^{x};\mathcal{H})\oplus L^{2}(\mathcal{H},\mu^{x};\mathcal{H})).

(ii) Letting ψC([0,T];)\psi\in C([0,T];\mathcal{H}) such that 𝒮i(ψ)<\mathcal{S}_{i}(\psi)<\infty it follows that 𝒜i,ψ,To\mathscr{A}^{o}_{i,\psi,T}\neq\varnothing. From our previous discussion, there exists (u1,u2)𝒜i,ψ,To(u_{1},u_{2})\in\mathscr{A}^{o}_{i,\psi,T} such that ψ\psi is the strong solution of (162)\eqref{limequation}. Hence ψH01([0,T];)L2([0,T];Dom(A1))\psi\in H_{0}^{1}([0,T];\mathcal{H})\cap L^{2}([0,T];Dom(A_{1})) and for t[0,T]t\in[0,T] we have

(u1(t,),u2(t,))Q~i(X¯(t))1(tψ(t)A1ψ(t)DxF¯(X¯(t))ψ(t))L2(,μX¯(t);)L2(,μX¯(t);).(u_{1}(t,\cdot),u_{2}(t,\cdot))\in\widetilde{Q}_{i}(\bar{X}(t))^{-1}\bigg{(}\partial_{t}\psi(t)-A_{1}\psi(t)-\overline{D_{x}F}\big{(}\bar{X}(t)\big{)}\psi(t)\bigg{)}\subset L^{2}(\mathcal{H},\mu^{\bar{X}(t)};\mathcal{H})\oplus L^{2}(\mathcal{H},\mu^{\bar{X}(t)};\mathcal{H}).

Since Q~i+(X¯(t))(tψ(t)A1ψ(t)DxF¯(X¯(t))ψ(t))\widetilde{Q}^{+}_{i}(\bar{X}(t))\big{(}\partial_{t}\psi(t)-A_{1}\psi(t)-\overline{D_{x}F}\big{(}\bar{X}(t)\big{)}\psi(t)\big{)} is an element of

Q~i(X¯(t))1(tψ(t)A1ψ(t)DxF¯(X¯(t))ψ(t))\widetilde{Q}_{i}(\bar{X}(t))^{-1}\bigg{(}\partial_{t}\psi(t)-A_{1}\psi(t)-\overline{D_{x}F}\big{(}\bar{X}(t)\big{)}\psi(t)\bigg{)}

with minimal L2(,μX¯(t);)L2(,μX¯(t);)L^{2}(\mathcal{H},\mu^{\bar{X}(t)};\mathcal{H})\oplus L^{2}(\mathcal{H},\mu^{\bar{X}(t)};\mathcal{H})-norm it follows that

0T\displaystyle\int_{0}^{T} (u1(t,y)2+u2(t,y)2)𝑑μX¯(t)(y)𝑑t=0T(u1(t,),u2(t,))L2(,μX¯(t);)L2(,μX¯(t);)2𝑑t\displaystyle\int_{\mathcal{H}}\big{(}\|u_{1}(t,y)\|^{2}_{\mathcal{H}}+\|u_{2}(t,y)\|^{2}_{\mathcal{H}}\big{)}d\mu^{\bar{X}(t)}(y)dt=\int_{0}^{T}\|(u_{1}(t,\cdot),u_{2}(t,\cdot))\|^{2}_{L^{2}(\mathcal{H},\mu^{\bar{X}(t)};\mathcal{H})\oplus L^{2}(\mathcal{H},\mu^{\bar{X}(t)};\mathcal{H})}dt (170)
0TQ~i+(X¯(t))(tψ(t)A1ψ(t)DxF¯(X¯(t))ψ(t))L2(,μX;)L2(,μX;)2𝑑t\displaystyle\geq\int_{0}^{T}\big{\|}\widetilde{Q}^{+}_{i}(\bar{X}(t))\big{(}\partial_{t}\psi(t)-A_{1}\psi(t)-\overline{D_{x}F}\big{(}\bar{X}(t)\big{)}\psi(t)\big{)}\big{\|}^{2}_{L^{2}(\mathcal{H},\mu^{X};\mathcal{H})\oplus L^{2}(\mathcal{H},\mu^{X};\mathcal{H})}dt
=0TQ~i(X¯(t))Qi1(X¯(t))(tψ(t)A1ψ(t)DxF¯(X¯(t))ψ(t))L2(,μX¯(t);)L2(,μX¯(t);)2𝑑t\displaystyle=\int_{0}^{T}\big{\|}\widetilde{Q}^{*}_{i}(\bar{X}(t))Q^{-1}_{i}(\bar{X}(t))\big{(}\partial_{t}\psi(t)-A_{1}\psi(t)-\overline{D_{x}F}\big{(}\bar{X}(t)\big{)}\psi(t)\big{)}\big{\|}^{2}_{L^{2}(\mathcal{H},\mu^{\bar{X}(t)};\mathcal{H})\oplus L^{2}(\mathcal{H},\mu^{\bar{X}(t)};\mathcal{H})}dt
=0TΣ(X¯(t),y)Qi1(X¯(t))(tψ(t)A1ψ(t)DxF¯(X¯(t))ψ(t))2𝑑μX¯(t)(y)𝑑t\displaystyle=\int_{0}^{T}\int_{\mathcal{H}}\big{\|}\Sigma^{*}(\bar{X}(t),y)Q^{-1}_{i}(\bar{X}(t))\big{(}\partial_{t}\psi(t)-A_{1}\psi(t)-\overline{D_{x}F}\big{(}\bar{X}(t)\big{)}\psi(t)\big{)}\big{\|}^{2}_{\mathcal{H}}d\mu^{\bar{X}(t)}(y)dt
+0TγiΨ20(X¯(t),y)Qi1(X¯(t))(tψ(t)A1ψ(t)DxF¯(X¯(t))ψ(t))2𝑑μX¯(t)(y)𝑑t\displaystyle+\int_{0}^{T}\int_{\mathcal{H}}\big{\|}\gamma_{i}\Psi_{2}^{0*}(\bar{X}(t),y)Q^{-1}_{i}(\bar{X}(t))\big{(}\partial_{t}\psi(t)-A_{1}\psi(t)-\overline{D_{x}F}\big{(}\bar{X}(t)\big{)}\psi(t)\big{)}\big{\|}^{2}_{\mathcal{H}}d\mu^{\bar{X}(t)}(y)dt
=0Ttψ(t)A1ψ(t)DxF¯(X¯(t))ψ(t),Qi1(X¯(t))[tψ(t)A1ψ(t)DxF¯(X¯(t))ψ(t)]𝑑t.\displaystyle=\int_{0}^{T}\bigg{\langle}\partial_{t}\psi(t)-A_{1}\psi(t)-\overline{D_{x}F}\big{(}\bar{X}(t)\big{)}\psi(t),Q_{i}^{-1}\big{(}\bar{X}(t)\big{)}\big{[}\partial_{t}\psi(t)-A_{1}\psi(t)-\overline{D_{x}F}\big{(}\bar{X}(t)\big{)}\psi(t)\big{]}\bigg{\rangle}_{\mathcal{H}}dt.

Now, in view of (160),

𝒮i(ψ)\displaystyle\mathcal{S}_{i}(\psi) =12inf(u1,u2)𝒜i,ψ,To0T(u1(t,y)2+u2(t,y)2)𝑑μX¯(t)(y)𝑑t\displaystyle=\frac{1}{2}\inf_{(u_{1},u_{2})\in\mathscr{A}^{o}_{i,\psi,T}}\int_{0}^{T}\int_{\mathcal{H}}\big{(}\|u_{1}(t,y)\|^{2}_{\mathcal{H}}+\|u_{2}(t,y)\|^{2}_{\mathcal{H}}\big{)}d\mu^{\bar{X}(t)}(y)dt
120TQi(X¯(t))12[tψ(t)A1ψ(t)DxF¯(X¯(t))ψ(t)]2𝑑t.\displaystyle\geq\frac{1}{2}\int_{0}^{T}\big{\|}Q_{i}\big{(}\bar{X}(t)\big{)}^{-\frac{1}{2}}\big{[}\partial_{t}\psi(t)-A_{1}\psi(t)-\overline{D_{x}F}\big{(}\bar{X}(t)\big{)}\psi(t)\big{]}\big{\|}^{2}_{\mathcal{H}}dt.

From (167) and (164) we see that

(v1i,v2i)=Q~i+(X¯(t))[tψ(t)A1ψ(t)DxF¯(X¯(t))ψ(t)](v^{i}_{1},v^{i}_{2})=\widetilde{Q}^{+}_{i}(\bar{X}(t))\big{[}\partial_{t}\psi(t)-A_{1}\psi(t)-\overline{D_{x}F}\big{(}\bar{X}(t)\big{)}\psi(t)\big{]}

and since the ()\mathscr{L}(\mathcal{H})-valued maps Qi1,Σ,Ψ20Q^{-1}_{i},\Sigma^{*},\Psi^{0*}_{2} are bounded uniformly in xx and yy (see (166), (18) and (36) respectively) we conclude that (v1i,v2i)𝒜i,ψ,To(v^{i}_{1},v^{i}_{2})\in\mathscr{A}^{o}_{i,\psi,T} and achieves the lower bound in (170). The proof is complete. ∎

We are now ready to prove regularity properties for the pair (v1i,v2i)(v^{i}_{1},v^{i}_{2}).

Lemma 7.2.

For i=1,2,i=1,2, T<T<\infty and (v1i,v2i)(v^{i}_{1},v^{i}_{2}) as in (168), (169) there exists κiL2[0,T]\kappa_{i}\in L^{2}[0,T] such that :
(i) For each t[0,T]t\in[0,T],

supyv1i(t,y)+supyv2i(t,y)κi(t).\sup_{y\in\mathcal{H}}\|v^{i}_{1}(t,y)\|_{\mathcal{H}}+\sup_{y\in\mathcal{H}}\|v^{i}_{2}(t,y)\|_{\mathcal{H}}\leq\kappa_{i}(t).

(ii) For each t[0,T]t\in[0,T] and y1,y2y_{1},y_{2}\in\mathcal{H},

v1i(t,y1)v1i(t,y2)+v2i(t,y1)v2i(t,y2)κi(t)y1y2.\|v^{i}_{1}(t,y_{1})-v^{i}_{1}(t,y_{2})\|_{\mathcal{H}}+\|v^{i}_{2}(t,y_{1})-v^{i}_{2}(t,y_{2})\|_{\mathcal{H}}\leq\kappa_{i}(t)\|y_{1}-y_{2}\|_{\mathcal{H}}\;.
Proof.

(i) From Hypothesis 3(a’) and (36),

v1i(t,y)+v2i(t,y)\displaystyle\|v^{i}_{1}(t,y)\|_{\mathcal{H}}+\|v^{i}_{2}(t,y)\|_{\mathcal{H}} Σ(X¯(t),y)Qi1(X¯(t))(tψ(t)A1ψ(t)DxF¯(X¯(t))ψ(t))\displaystyle\leq\big{\|}\Sigma^{*}\big{(}\bar{X}(t),y\big{)}Q^{-1}_{i}\big{(}\bar{X}(t)\big{)}\big{(}\partial_{t}\psi(t)-A_{1}\psi(t)-\overline{D_{x}F}\big{(}\bar{X}(t)\big{)}\psi(t)\big{)}\big{\|}_{\mathcal{H}}
+γiΨ20(X¯(t),y)Qi1(X¯(t))(tψ(t)A1ψ(t)DxF¯(X¯(t))ψ(t))\displaystyle+\big{\|}\gamma_{i}\Psi^{0*}_{2}\big{(}\bar{X}(t),y\big{)}Q^{-1}_{i}\big{(}\bar{X}(t)\big{)}\big{(}\partial_{t}\psi(t)-A_{1}\psi(t)-\overline{D_{x}F}\big{(}\bar{X}(t)\big{)}\psi(t)\big{)}\big{\|}_{\mathcal{H}}
CiQi1(X¯(t))()tψ(t)A1ψ(t)DxF¯(X¯(t))ψ(t)\displaystyle\leq C_{i}\|Q^{-1}_{i}\big{(}\bar{X}(t)\big{)}\|_{\mathscr{L}(\mathcal{H})}\|\partial_{t}\psi(t)-A_{1}\psi(t)-\overline{D_{x}F}\big{(}\bar{X}(t)\big{)}\psi(t)\big{\|}_{\mathcal{H}}
Cic22tψ(t)A1ψ(t)DxF¯(X¯(t))ψ(t),\displaystyle\leq C_{i}c_{2}^{-2}\big{\|}\partial_{t}\psi(t)-A_{1}\psi(t)-\overline{D_{x}F}\big{(}\bar{X}(t)\big{)}\psi(t)\big{\|}_{\mathcal{H}}\;,

where the last line follows from (166). Since ψiH01([0,T];)L2([0,T];Dom(A1))\psi_{i}\in H_{0}^{1}([0,T];\mathcal{H})\cap L^{2}([0,T];Dom(A_{1})) and, in view of Hypothesis 2(a), supt[0,T]DxF¯(X¯(t))()<\sup_{t\in[0,T]}\|\overline{D_{x}F}\big{(}\bar{X}(t)\big{)}\|_{\mathscr{L}(\mathcal{H})}<\infty we deduce that

0Ttψ(t)A1ψ(t)DxF¯(X¯(t))ψ(t)2𝑑tC(ψC([0,T];)2+ψL2([0,T];Dom(A1))+ψH01([0,T];))<.\small\int_{0}^{T}\big{\|}\partial_{t}\psi(t)-A_{1}\psi(t)-\overline{D_{x}F}\big{(}\bar{X}(t)\big{)}\psi(t)\big{\|}^{2}_{\mathcal{H}}dt\leq C\big{(}\|\psi\|^{2}_{C([0,T];\mathcal{H})}+\|\psi\|_{L^{2}([0,T];Dom(A_{1}))}+\|\psi\|_{H^{1}_{0}([0,T];\mathcal{H})}\big{)}<\infty.

The argument is complete upon setting

κi(t):=tψ(t)A1ψ(t)DxF¯(X¯(t))ψ(t).\kappa_{i}(t):=\|\partial_{t}\psi(t)-A_{1}\psi(t)-\overline{D_{x}F}\big{(}\bar{X}(t)\big{)}\psi(t)\big{\|}_{\mathcal{H}}\;. (171)

(ii) With κi\kappa_{i} as in (171),

v1i(t,y1)v1i(t,y2)\displaystyle\|v^{i}_{1}(t,y_{1})-v^{i}_{1}(t,y_{2})\|_{\mathcal{H}} +v2i(t,y1)v2i(t,y2)\displaystyle+\|v^{i}_{2}(t,y_{1})-v^{i}_{2}(t,y_{2})\|_{\mathcal{H}}
Qi1(X¯(t))()κi(t)Σ(X¯(t),y1)Σ(X¯(t),y2)()\displaystyle\leq\|Q^{-1}_{i}\big{(}\bar{X}(t)\big{)}\|_{\mathscr{L}(\mathcal{H})}\|\kappa_{i}(t)\|_{\mathcal{H}}\|\Sigma\big{(}\bar{X}(t),y_{1}\big{)}-\Sigma\big{(}\bar{X}(t),y_{2}\big{)}\|_{\mathscr{L}(\mathcal{H})}
+γiΨ20(X¯(t),y1)Ψ20(X¯(t),y2)().\displaystyle+\gamma_{i}\|\Psi_{2}^{0*}\big{(}\bar{X}(t),y_{1}\big{)}-\Psi_{2}^{0*}\big{(}\bar{X}(t),y_{2}\big{)}\|_{\mathscr{L}(\mathcal{H})}.

In light of Hypothesis 3(b) and (150) it follows that

v1i(t,y1)v1i(t,y2)+v2i(t,y1)v2i(t,y2)Ciκi(t)y1y2.\displaystyle\|v^{i}_{1}(t,y_{1})-v^{i}_{1}(t,y_{2})\|_{\mathcal{H}}+\|v^{i}_{2}(t,y_{1})-v^{i}_{2}(t,y_{2})\|_{\mathcal{H}}\leq C_{i}\|\kappa_{i}(t)\|_{\mathcal{H}}\|y_{1}-y_{2}\|_{\mathcal{H}}\;.

The proof is complete.∎

Appealing to a mollification argument (see e.g. [17], Section 6.5 as well as [25], Theorem 5.6) we can also assume, without loss of generality, that v1i,v2iv^{i}_{1},v^{i}_{2} are continuous in time. Having established these regularity properties we can now use the optimal pair (v1i,v2i)(v^{i}_{1},v^{i}_{2}) to construct a pair of stochastic controls in feedback form that approximate the lower bound (161). To this end, let

vi,ϵ(t):=(v1i([t/Δ]Δ,Y~ϵ,X¯(t)),v2i([t/Δ]Δ,Y~ϵ,X¯(t))),t[0,T],i=1,2v^{i,\epsilon}(t):=\big{(}v^{i}_{1}([t/\Delta]\Delta,\widetilde{Y}^{\epsilon,\bar{X}}(t)),v^{i}_{2}([t/\Delta]\Delta,\widetilde{Y}^{\epsilon,\bar{X}}(t)))\;,t\in[0,T]\;,i=1,2

where [][\cdot] denotes the floor function, Δ=Δ(ϵ)\Delta=\Delta(\epsilon) is such that Δ/δ\Delta/\delta\rightarrow\infty as ϵ0\epsilon\to 0 and Y~ϵ,X¯\widetilde{Y}^{\epsilon,\bar{X}} solves the evolution equation

dY~ϵ,X¯(t)=1δ[A2Y~ϵ,X¯(t)+G(X¯([t/Δ]Δ),Y~ϵ,X¯(t))]dt+1δdw2(t),Y~ϵ,X¯(0)=y0.d\widetilde{Y}^{\epsilon,\bar{X}}(t)=\frac{1}{\delta}\big{[}A_{2}\widetilde{Y}^{\epsilon,\bar{X}}(t)+G\big{(}\bar{X}([t/\Delta]\Delta),\widetilde{Y}^{\epsilon,\bar{X}}(t)\big{)}\big{]}dt+\frac{1}{\sqrt{\delta}}dw_{2}(t)\;,\widetilde{Y}^{\epsilon,\bar{X}}(0)=y_{0}\in\mathcal{H}\;.

An application of Lemma 5.7 in [25] yields

limϵ012𝔼[0Tvi,ϵ(t)2𝑑t]\displaystyle\lim_{\epsilon\to 0}\frac{1}{2}\mathbb{E}\bigg{[}\int_{0}^{T}\|v^{i,\epsilon}(t)\|^{2}_{\mathcal{H}\oplus\mathcal{H}}dt\bigg{]} =120T(v1i(t,y)2+v2i(t,y)2)𝑑μX¯(t)(y)𝑑t=𝒮i(ψ),\displaystyle=\frac{1}{2}\int_{0}^{T}\int_{\mathcal{H}}\big{(}\|v^{i}_{1}(t,y)\|^{2}_{\mathcal{H}}+\|v^{i}_{2}(t,y)\|^{2}_{\mathcal{H}}\big{)}\;d\mu^{\bar{X}(t)}(y)dt=\mathcal{S}_{i}(\psi), (172)

where the last equality follows from Proposition 7.1(ii). Next consider, in Regime ii, the family of moderate deviations processes ηϵ,vi,ϵ\eta^{\epsilon,v^{i,\epsilon}} controlled by vi,ϵv^{i,\epsilon}. Repeating the arguments of Section 6 it follows that

ηϵ,vi,ϵψasϵ0in distribution inC([0,T];).\eta^{\epsilon,v^{i,\epsilon}}\longrightarrow\psi\;\text{as}\;\epsilon\to 0\;\text{in distribution in}\;C([0,T];\mathcal{H}). (173)

To verify the latter, the only additional step is to show that the control terms IIϵ,vi,ϵ,IVϵ,vi,ϵII^{\epsilon,v^{i,\epsilon}},IV^{\epsilon,v^{i,\epsilon}} converge to the averaging limit. In particular, we can apply the arguments of Lemma 5.8 in [25] to show that, as ϵ0\epsilon\to 0,

0tS1(ts)Σ(X¯(s),Y~ϵ,X¯(s))v1i([s/Δ]Δ,Y~ϵ,X¯(s))𝑑s0tS1(ts)Σ(X¯(s),y)v1i(s,y)𝑑μX¯(s)(y)𝑑s\displaystyle\int_{0}^{t}S_{1}(t-s)\Sigma\big{(}\bar{X}(s),\widetilde{Y}^{\epsilon,\bar{X}}(s)\big{)}v^{i}_{1}([s/\Delta]\Delta,\widetilde{Y}^{\epsilon,\bar{X}}(s))ds\rightarrow\int_{0}^{t}\int_{\mathcal{H}}S_{1}(t-s)\Sigma\big{(}\bar{X}(s),y\big{)}v^{i}_{1}(s,y)d\mu^{\bar{X}(s)}(y)ds

and

δϵ0tS1(ts)Ψ20(X¯(s),Y~ϵ,X¯(s))v2i([s/Δ]Δ,Y~ϵ,X¯(s))𝑑sγi0tS1(ts)Ψ20(X¯(s),y)v2i(s,y)𝑑μX¯(s)(y)𝑑s\displaystyle\frac{\sqrt{\delta}}{\sqrt{\epsilon}}\int_{0}^{t}S_{1}(t-s)\Psi_{2}^{0}\big{(}\bar{X}(s),\widetilde{Y}^{\epsilon,\bar{X}}(s)\big{)}v^{i}_{2}([s/\Delta]\Delta,\widetilde{Y}^{\epsilon,\bar{X}}(s))ds\rightarrow\gamma_{i}\int_{0}^{t}\int_{\mathcal{H}}S_{1}(t-s)\Psi_{2}^{0}\big{(}\bar{X}(s),y\big{)}v^{i}_{2}(s,y)d\mu^{\bar{X}(s)}(y)ds

in L1(Ω;C([0,T];))L^{1}(\Omega;C([0,T];\mathcal{H})).

In view of (172) and (173) along with the variational representation (23), the Laplace Principle lower bound follows. Indeed, for any bounded, continuous Λ:C([0,T];)\Lambda:C([0,T];\mathcal{H})\rightarrow\mathbb{R}

lim supϵ01h2(ϵ)log𝔼[eh2(ϵ)Λ(ηϵ)]\displaystyle\limsup_{\epsilon\to 0}-\frac{1}{h^{2}(\epsilon)}\log\;\mathbb{E}\big{[}e^{-h^{2}(\epsilon)\Lambda(\eta^{\epsilon})}\big{]} =lim supϵ0infu𝒫T()𝔼[120Tu(t)2𝑑t+Λ(ηϵ,u)]\displaystyle=\limsup_{\epsilon\to 0}\inf_{u\in\mathcal{P}^{T}(\mathcal{H}\oplus\mathcal{H})}\mathbb{E}\bigg{[}\frac{1}{2}\int_{0}^{T}\|u(t)\|^{2}_{\mathcal{H}\oplus\mathcal{H}}dt+\Lambda\big{(}\eta^{\epsilon,u}\big{)}\bigg{]}
lim supϵ0𝔼[120Tviϵ(t)2𝑑t+Λ(ηϵ,viϵ)]\displaystyle\leq\limsup_{\epsilon\to 0}\mathbb{E}\bigg{[}\frac{1}{2}\int_{0}^{T}\|v^{\epsilon}_{i}(t)\|^{2}_{\mathcal{H}\oplus\mathcal{H}}\;dt+\Lambda\big{(}\eta^{\epsilon,v_{i}^{\epsilon}}\big{)}\bigg{]}
=120T(v1i(t,y)2+v2i(t,y)2)𝑑μX¯(t)(y)𝑑t+Λ(ψ)\displaystyle=\frac{1}{2}\int_{0}^{T}\int_{\mathcal{H}}\big{(}\|v^{i}_{1}(t,y)\|^{2}_{\mathcal{H}}+\|v^{i}_{2}(t,y)\|^{2}_{\mathcal{H}}\big{)}\;d\mu^{\bar{X}(t)}(y)dt+\Lambda(\psi)
=𝒮i(ψ)+Λ(ψ)infϕC([0,T];)[𝒮i(ϕ)+Λ(ϕ)]+ρ.\displaystyle=\mathcal{S}_{i}(\psi)+\Lambda(\psi)\leq\inf_{\phi\in C([0,T];\mathcal{H})}\big{[}\mathcal{S}_{i}(\phi)+\Lambda(\phi)\big{]}+\rho.

where the equality on the last line follows from the optimality of v1i,v2iv^{i}_{1},v^{i}_{2} and the last inequality is due to the fact that ψi\psi_{i} was chosen to satisfy (161). Since ρ\rho is arbitrary, the result follows.

7.3. Compactness of the sublevel sets

In this section we show that 𝒮i,\mathcal{S}_{i}, i=1,2i=1,2 (see (156)) is a good rate function, i.e. for each M>0M>0 the sublevel set

𝒵i(M)={ψC([0,T];):𝒮i(ψ)M}\mathcal{Z}_{i}(M)=\{\psi\in C([0,T];\mathcal{H}):\mathcal{S}_{i}(\psi)\leq M\}

is compact. To this end, consider a sequence of viable pairs {(ψn,Pn)}n𝒱(Ξi,μX¯)\{(\psi_{n},P_{n})\}_{n\in\mathbb{N}}\subset\mathcal{V}_{(\Xi_{i},\mu^{\bar{X}})} such that

×××[0,T](u12+u22+yHθ2)𝑑Pn(u1,u2,y,t)M.\int_{\mathcal{H}\times\mathcal{H}\times\mathcal{H}\times[0,T]}\big{(}\|u_{1}\|^{2}_{\mathcal{H}}+\|u_{2}\|^{2}_{\mathcal{H}}+\|y\|^{2}_{H^{\theta}}\big{)}\;dP_{n}(u_{1},u_{2},y,t)\leq M.

Now for each nn\in\mathbb{N}, ψnH01([0,T];)L2([0,T];Dom(A1))\psi_{n}\in H_{0}^{1}([0,T];\mathcal{H})\cap L^{2}([0,T];Dom(A_{1})) is the strong solution of (162). Since the last marginal of PnP_{n} is Lebesgue measure we can work with the mild solution of (162) to prove estimates similar to those of Lemma 5.1 that are uniform in nn\in\mathbb{N}. By an Arzelà-Ascoli argument we conclude that {ψn}nC([0,T];)\{\psi_{n}\}_{n\in\mathbb{N}}\subset C([0,T];\mathcal{H}) is relatively compact. Moreover, we can use Prokhorov’s theorem exactly as we did in Lemma 6.3 to show that the sequence of (deterministic) measures {Pn}n𝒫(×××[0,T])\{P_{n}\}_{n\in\mathbb{N}}\subset\mathscr{P}(\mathcal{H}\times\mathcal{H}\times\mathcal{H}\times[0,T]) is weakly relatively sequentially compact.

Next, we claim that the limit (ψ,P)(\psi,P) of any convergent sequence of {(ψn,Pn)}\{(\psi_{n},P_{n})\} is also a viable pair. To this end, note that the Portmanteau lemma immediately implies that

×××[0,T](u12+u22+yHθ2)𝑑P(u1,u2,y,t)<;\int_{\mathcal{H}\times\mathcal{H}\times\mathcal{H}\times[0,T]}\big{(}\|u_{1}\|^{2}_{\mathcal{H}}+\|u_{2}\|^{2}_{\mathcal{H}}+\|y\|^{2}_{H^{\theta}}\big{)}\;dP(u_{1},u_{2},y,t)<\infty\;;

hence (40) holds. For each nn\in\mathbb{N} we have

ψn(t)=×××[0,t]S1(ts)Ξi(ψn(s),X¯(s),y,u1,u2)𝑑Pn(u1,u2,y,s)\psi_{n}(t)=\int_{\mathcal{H}\times\mathcal{H}\times\mathcal{H}\times[0,t]}S_{1}(t-s)\Xi_{i}\big{(}\psi_{n}(s),\bar{X}(s),y,u_{1},u_{2}\big{)}dP_{n}(u_{1},u_{2},y,s)

and we can show that PnP_{n} are uniformly integrable as in Lemma 6.4. Since Ξi\Xi_{i} is affine in ψ\psi, uu and (ψn,Pn)(\psi_{n},P_{n}) converges to (ψ,P)(\psi,P), the latter will also satisfy (43). Proving that (ψ,P)(\psi,P) satisfies (41) is straightforward since, at the prelimit level, we have

dPn(u1,u2,y,t)=dνn(u1,u2|y,t)dμX¯(t)(y)dt,dP_{n}(u_{1},u_{2},y,t)=d\nu_{n}(u_{1},u_{2}|y,t)d\mu^{\bar{X}(t)}(y)dt,

where νn\nu_{n} is a sequence of stochastic kernels. Finally, PP satisfies (42)\eqref{viableleb} since, for each nn, the last marginal of PnP_{n} is Lebesgue measure and P(×××[0,t])=tP(\mathcal{H}\times\mathcal{H}\times\mathcal{H}\times[0,t])=t. Therefore, (ψ,P)(\psi,P) is indeed in 𝒱(Ξi,μX¯)\mathcal{V}_{(\Xi_{i},\mu^{\bar{X}})}.

At this point we have established that for i=1,2i=1,2 and M>0M>0 the sublevel set 𝒵i(M)\mathcal{Z}_{i}(M) is relatively compact. To show compactness it remains to prove that it is closed. This will be done by showing that 𝒮i\mathcal{S}_{i} is lower-semicontinuous. Indeed, let {(ψn,Pn)}\{(\psi_{n},P_{n})\} be a sequence of viable pairs converging to a pair (ψ,P)(\psi,P). Assuming that lim infn𝒮i(ψn)=M<\liminf_{n\to\infty}\mathcal{S}_{i}(\psi_{n})=M<\infty we can pass to a subsequence that satisfies

×××[0,T](u12+u22+yHθ2)𝑑Pn(u1,u2,y,t)M\int_{\mathcal{H}\times\mathcal{H}\times\mathcal{H}\times[0,T]}\big{(}\|u_{1}\|^{2}_{\mathcal{H}}+\|u_{2}\|^{2}_{\mathcal{H}}+\|y\|^{2}_{H^{\theta}}\big{)}\;dP_{n}(u_{1},u_{2},y,t)\leq M^{\prime} (174)

and

𝒮i(ψn)×××[0,T](u12+u22)𝑑Pn(u1,u2,y,t)1n.\mathcal{S}_{i}(\psi_{n})\geq\int_{\mathcal{H}\times\mathcal{H}\times\mathcal{H}\times[0,T]}\big{(}\|u_{1}\|^{2}_{\mathcal{H}}+\|u_{2}\|^{2}_{\mathcal{H}}\big{)}\;dP_{n}(u_{1},u_{2},y,t)-\frac{1}{n}\;.

From (174) and our previous discussion, {(ψn,Pn)}\{(\psi_{n},P_{n})\} has a subsequence that converges to a viable pair {(ψ,P)}\{(\psi^{\prime},P^{\prime})\} and by uniqueness of the limit (ψ,P)=(ψ,P)(\psi^{\prime},P^{\prime})=(\psi,P). It follows that

lim infn𝒮i(ψn)\displaystyle\liminf_{n\to\infty}\mathcal{S}_{i}(\psi_{n}) lim infn×××[0,T](u12+u22)𝑑Pn(u1,u2,y,t)\displaystyle\geq\liminf_{n\to\infty}\int_{\mathcal{H}\times\mathcal{H}\times\mathcal{H}\times[0,T]}\big{(}\|u_{1}\|^{2}_{\mathcal{H}}+\|u_{2}\|^{2}_{\mathcal{H}}\big{)}\;dP_{n}(u_{1},u_{2},y,t)
×××[0,T](u12+u22)𝑑P(u1,u2,y,t)\displaystyle\geq\int_{\mathcal{H}\times\mathcal{H}\times\mathcal{H}\times[0,T]}\big{(}\|u_{1}\|^{2}_{\mathcal{H}}+\|u_{2}\|^{2}_{\mathcal{H}}\big{)}\;dP(u_{1},u_{2},y,t)
inf(ψ,P)𝒱(Ξi,μX¯)×××[0,T](u12+u22)𝑑P(u1,u2,y,t)=𝒮i(ψ);\displaystyle\geq\inf_{(\psi,P)\in\mathcal{V}_{(\Xi_{i},\mu^{\bar{X}})}}\int_{\mathcal{H}\times\mathcal{H}\times\mathcal{H}\times[0,T]}\big{(}\|u_{1}\|^{2}_{\mathcal{H}}+\|u_{2}\|^{2}_{\mathcal{H}}\big{)}\;dP(u_{1},u_{2},y,t)=\mathcal{S}_{i}(\psi);

hence 𝒮i\mathcal{S}_{i} is lower semicontinuous. The proof is complete.

Appendix A

In this section we collect a few preliminary estimates concerning the regularity properties of stochastic convolutions that are used throughout the paper. Some of them are well known when δ=1\delta=1. In the context of the present work, these estimates depend on the fast scale parameter δ\delta. The reason we present them here is to showcase this dependence when δ\delta is close to 0. Finally, we provide the proof of estimate (69) in Lemma 4.2.

For i=1,2,δ>0,i=1,2,\delta>0, t0t\geq 0 and an operator-valued map Bi:[0,)()B_{i}:[0,\infty)\rightarrow\mathscr{L}(\mathcal{H}) we define the re-scaled stochastic convolution wAiδw^{\delta}_{A_{i}} by

wAiδ(t):=1δ0tSi(tzδ)Bi(z)𝑑wi(z).w_{A_{i}}^{\delta}(t):=\frac{1}{\sqrt{\delta}}\int_{0}^{t}S_{i}\bigg{(}\frac{t-z}{\delta}\bigg{)}B_{i}(z)dw_{i}(z). (175)

We consider B2B_{2} to be constant in ss equal to identity. To study the space-time regularity of wAiδw^{\delta}_{A_{i}}, we use the stochastic factorization formula

wAiδ(t)=sin(aπ)δπ0t(tz)a1Si(tzδ)Maδ(0,z,z;i)𝑑z,a(0,1/2),\displaystyle w^{\delta}_{A_{i}}(t)=\frac{\sin(a\pi)}{\sqrt{\delta}\pi}\int_{0}^{t}(t-z)^{a-1}S_{i}\bigg{(}\frac{t-z}{\delta}\bigg{)}M^{\delta}_{a}(0,z,z;i)dz,\;a\in(0,1/2), (176)

where, for any t1t2t3t_{1}\leq t_{2}\leq t_{3}, we define

Maδ(t1,t2,t3;i):=t1t2(t3ζ)aSi(t3ζδ)Bi(ζ)𝑑wi(ζ).\displaystyle M^{\delta}_{a}(t_{1},t_{2},t_{3};i):=\int_{t_{1}}^{t_{2}}(t_{3}-\zeta)^{-a}S_{i}\bigg{(}\frac{t_{3}-\zeta}{\delta}\bigg{)}B_{i}(\zeta)dw_{i}(\zeta). (177)

The stochastic convolution wAiδw^{\delta}_{A_{i}} is a well-defined \mathcal{H}-valued process and has a version with continuous paths (see [16], Theorem 5.11). Before we proceed to the main estimates we need the following auxiliary lemma:

Lemma A.1.

Let i=1,2,i=1,2, 0s<t,θ0\leq s<t,\theta\in\mathbb{R} and Bi:[0,)()B_{i}:[0,\infty)\rightarrow\mathscr{L}(\mathcal{H}) be an operator-valued map. Furthermore, let Bi(s)B_{i}^{*}(s) denote the \mathcal{H}-adjoint of the bounded linear operator Bi(s)B_{i}(s). Under Hypotheses 1(a) and 1(b) the following hold:
(i) For ρ(1/2,1)\rho\in(1/2,1) and uu\in\mathcal{H} there exists a constant Ci>0C_{i}>0 such that

Si(ts)(Ai)θ2Bi(s)uCi(ts)(ρ+θ)/2Bi(s)(L(0,L);)u.\quad\quad\big{\|}S_{i}(t-s)(-A_{i})^{\frac{\theta}{2}}B_{i}(s)u\big{\|}_{\mathcal{H}}\leq C_{i}(t-s)^{-(\rho+\theta)/2}\big{\|}B_{i}^{*}(s)\big{\|}_{\mathscr{L}(L^{\infty}(0,L);\mathcal{H})}\|u\|_{\mathcal{H}}\;. (178)

(ii) Let Pni()P^{i}_{n}\in\mathscr{L}(\mathcal{H}) denote the orthogonal projection to the nn-dimensional subspace of \mathcal{H} spanned by {ei,k,k=1,,n}\{e_{i,k},k=1,\dots,n\}. For ρ>θ+12\rho>\theta+\frac{1}{2} there exists a constant Ci>0C_{i}>0 such that

supn(Ai)θ2Si(ts)\displaystyle\sup_{n\in\mathbb{N}}\big{\|}(-A_{i})^{\frac{\theta}{2}}S_{i}(t-s) Bi(s)Pni2()2CiBi(s)(L(0,L);)2(ts)ρ.\displaystyle B_{i}(s)P^{i}_{n}\big{\|}^{2}_{\mathscr{L}_{2}(\mathcal{H})}\leq C_{i}\|B_{i}^{*}(s)\|^{2}_{\mathscr{L}(L^{\infty}(0,L);\mathcal{H})}(t-s)^{-\rho}. (179)

These estimates are obtained by expanding with respect to the orthonormal basis {ei,k,k}\{e_{i,k},k\in\mathbb{N}\} and using Hypothesis 1(b), along with the fact that the eigenvalues of the elliptic operator Ai-A_{i} satisfy ai,kk2a_{i,k}\sim k^{2}, for each kk\in\mathbb{N}. Such arguments can be found e.g. in Lemma 4.2 and Lemma 4.3 of [25].

In view of the strict dissipativity of A2A_{2} (see Hypothesis 1(c)), we can prove that the Hilbert-Schmidt norm of the fast semigroup S2S_{2} decays exponentially for large enough tt. In particular, we set θ=0,Pni=I,BI\theta=0,P^{i}_{n}=I,B\equiv I in (179) and then invoke (11) to show that, for all ρ(12,1),\rho\in(\frac{1}{2},1),

S2(t)2()C(t1)ρ2eλt,t>0.\big{\|}S_{2}(t)\big{\|}_{\mathscr{L}_{2}(\mathcal{H})}\leq C(t\wedge 1)^{-\frac{\rho}{2}}e^{-\lambda t},\;t>0. (180)

The next lemma provides temporal continuity estimates for the stochastic convolution wA2δw^{\delta}_{A_{2}}. As seen below, the estimate for the mean C([0,T];)C([0,T];\mathcal{H}) norm is singular of order δ12\delta^{-{\frac{1}{2}}^{-}} as ϵ0\epsilon\to 0.

Lemma A.2.

Let T<T<\infty, δ>0\delta>0 and wA2δw^{\delta}_{A_{2}} be as in (175).
(i) Let p1p\geq 1. There exists C>0C>0 independent of δ\delta such that

supδ>0,t0𝔼[wA2δ(t)2p]C.\sup_{\delta>0,t\geq 0}\mathbb{E}\big{[}\|w_{A_{2}}^{\delta}(t)\|^{2p}_{\mathcal{H}}\big{]}\leq C.

(ii) For all ρ(1/2,1)\rho\in(1/2,1) there exists CT>0C_{T}>0 independent of δ\delta such that

𝔼supt[0,T]wA2δ(t)2CTδρ1.\mathbb{E}\sup_{t\in[0,T]}\|w_{A_{2}}^{\delta}(t)\|^{2}_{\mathcal{H}}\leq C_{T}\delta^{\rho-1}.
Proof.

(i)(i) An application of the Burkholder-Davis-Gundy inequality, along with the substitution ztδζz\mapsto t-\delta\zeta, yields

𝔼wA2δ(t)2p\displaystyle\mathbb{E}\|w_{A_{2}}^{\delta}(t)\|^{2p}_{\mathcal{H}} 1δp𝔼sups[0,t]0sS2(tzδ)𝑑w2(z)2p\displaystyle\leq\frac{1}{\delta^{p}}\mathbb{E}\sup_{s\in[0,t]}\bigg{\|}\int_{0}^{s}S_{2}\bigg{(}\frac{t-z}{\delta}\bigg{)}dw_{2}(z)\bigg{\|}^{2p}_{\mathcal{H}}
Cδp(0tS2(tzδ)2()2𝑑z)p=C(0t/δS2(ζ)2()2𝑑ζ)p.\displaystyle\leq\frac{C}{\delta^{p}}\bigg{(}\int_{0}^{t}\bigg{\|}S_{2}\bigg{(}\frac{t-z}{\delta}\bigg{)}\bigg{\|}^{2}_{\mathscr{L}_{2}(\mathcal{H})}dz\bigg{)}^{p}=C\bigg{(}\int_{0}^{t/\delta}\big{\|}S_{2}(\zeta)\big{\|}^{2}_{\mathscr{L}_{2}(\mathcal{H})}d\zeta\bigg{)}^{p}.

In view of (180) it follows that

𝔼wA2δ(t)2p\displaystyle\mathbb{E}\|w_{A_{2}}^{\delta}(t)\|^{2p}_{\mathcal{H}} C0(1+ζρ)e2λζ𝑑ζ=C(2λ)1+(2λ)ρ1Γ(1ρ)<,\displaystyle\leq C\int_{0}^{\infty}(1+\zeta^{-\rho})e^{-2\lambda\zeta}d\zeta=C(2\lambda)^{-1}+(2\lambda)^{\rho-1}\Gamma(1-\rho)<\infty,

where ρ<1\rho<1 and Γ\Gamma denotes the Gamma function.

(ii)(ii) Appealing to the stochastic factorization formula we have

wA2δ(t)\displaystyle\|w_{A_{2}}^{\delta}(t)\|_{\mathcal{H}} sin(aπ)δπ0t(tz)a1S2(tzδ)Maδ(0,z,z;2)𝑑z\displaystyle\leq\frac{\sin(a\pi)}{\sqrt{\delta}\pi}\int_{0}^{t}(t-z)^{a-1}\bigg{\|}S_{2}\bigg{(}\frac{t-z}{\delta}\bigg{)}M^{\delta}_{a}(0,z,z;2)\bigg{\|}_{\mathcal{H}}dz
Caδ0t(tz)a1eλ(tz)δMaδ(0,z,z;2)𝑑z.\displaystyle\leq\frac{C_{a}}{\sqrt{\delta}}\int_{0}^{t}(t-z)^{a-1}e^{-\frac{\lambda(t-z)}{\delta}}\big{\|}M^{\delta}_{a}(0,z,z;2)\big{\|}_{\mathcal{H}}dz.

An application of Hölder’s inequality for q>1/a>2q>1/a>2 then yields

wA2δ(t)\displaystyle\|w_{A_{2}}^{\delta}(t)\|_{\mathcal{H}} Cδ(0T(tz)p(a1)𝑑z)1p(0TMaδ(0,z,z;2)q𝑑z)1q\displaystyle\leq\frac{C}{\sqrt{\delta}}\bigg{(}\int_{0}^{T}(t-z)^{p(a-1)}dz\bigg{)}^{\frac{1}{p}}\bigg{(}\int_{0}^{T}\big{\|}M^{\delta}_{a}(0,z,z;2)\big{\|}^{q}_{\mathcal{H}}dz\bigg{)}^{\frac{1}{q}}
CTa1qδ(0Tsups[0,z]Maδ(0,s,z;2)qdz)1q.\displaystyle\leq\frac{CT^{a-\frac{1}{q}}}{\sqrt{\delta}}\bigg{(}\int_{0}^{T}\sup_{s\in[0,z]}\big{\|}M^{\delta}_{a}(0,s,z;2)\big{\|}^{q}_{\mathcal{H}}dz\bigg{)}^{\frac{1}{q}}.

Thus, we apply Jensen’s inequality to obtain

𝔼supt[0,T]wA2δ(t)2\displaystyle\mathbb{E}\sup_{t\in[0,T]}\|w_{A_{2}}^{\delta}(t)\|^{2}_{\mathcal{H}} CTδ(0T𝔼sups[0,z]Maδ(0,s,z;2)qdz)2q\displaystyle\leq\frac{C_{T}}{\delta}\bigg{(}\int_{0}^{T}\mathbb{E}\sup_{s\in[0,z]}\big{\|}M^{\delta}_{a}(0,s,z;2)\big{\|}^{q}_{\mathcal{H}}dz\bigg{)}^{\frac{2}{q}}
CTδ(0T(0z(zζ)2a𝔼S2(zζδ)2()2𝑑ζ)q2𝑑z)2q\displaystyle\leq\frac{C_{T}}{\delta}\bigg{(}\int_{0}^{T}\bigg{(}\int_{0}^{z}(z-\zeta)^{-2a}\mathbb{E}\bigg{\|}S_{2}\bigg{(}\frac{z-\zeta}{\delta}\bigg{)}\bigg{\|}^{2}_{\mathscr{L}_{2}(\mathcal{H})}d\zeta\bigg{)}^{\frac{q}{2}}dz\bigg{)}^{\frac{2}{q}}
Cδρ1(0T(0z(zζ)2aρ𝑑ζ)q2𝑑z)2q,\displaystyle\leq C\delta^{\rho-1}\bigg{(}\int_{0}^{T}\bigg{(}\int_{0}^{z}(z-\zeta)^{-2a-\rho}d\zeta\bigg{)}^{\frac{q}{2}}dz\bigg{)}^{\frac{2}{q}},

where the second line follows from the Burkholder-Davis-Gundy inequality and the third from (180). The last integral is finite, provided that we choose a<(1ρ)/2<1/4a<(1-\rho)/2<1/4. The proof is complete. ∎

Next, we provide estimates of spatial Sobolev regularity and temporal Hölder regularity for wA2δw_{A_{2}}^{\delta}. Both estimates are singular as ϵ0\epsilon\to 0.

Lemma A.3.

Let T<T<\infty and δ(0,1)\delta\in(0,1).
(i)(i) For any a,θ<1/2a,\theta<1/2 and ρ(θ+1/2,12a)\rho\in(\theta+1/2,1-2a) we have

𝔼supt[0,T]wA2δ(t)Hθ\displaystyle\mathbb{E}\sup_{t\in[0,T]}\|w_{A_{2}}^{\delta}(t)\|_{H^{\theta}} CTδρ12.\displaystyle\leq C_{T}\delta^{\frac{\rho-1}{2}}. (181)

(ii) There exists β<1/4\beta<1/4 such that for any ρ(1/2,1/2+2β)\rho\in(1/2,1/2+2\beta)

𝔼[wA2δ]Cβ([0,T];)\displaystyle\mathbb{E}\big{[}w_{A_{2}}^{\delta}\big{]}_{C^{\beta}([0,T];\mathcal{H})} CTδρ12.\displaystyle\leq C_{T}\delta^{\frac{\rho-1}{2}}. (182)
Proof.

(i)(i) Using the stochastic factorization formula and Hölder’s inequality with q>1/a>2q>1/a>2, as in the proof of Lemma A.2(ii), we obtain

wA2δ(t)HθCaTa1qδ(0Tsups[0,z](A2)θ2Maδ(0,s,z;2)qdz)1q.\|w_{A_{2}}^{\delta}(t)\|_{H^{\theta}}\leq\frac{C_{a}T^{a-\frac{1}{q}}}{\sqrt{\delta}}\bigg{(}\int_{0}^{T}\sup_{s\in[0,z]}\big{\|}(-A_{2})^{\frac{\theta}{2}}M^{\delta}_{a}(0,s,z;2)\big{\|}^{q}_{\mathcal{H}}dz\bigg{)}^{\frac{1}{q}}.

Assuming momentarily that the integrand in (177) is in Dom((A2)θ2)Dom((-A_{2})^{\frac{\theta}{2}}), we can interchange stochastic integral and unbounded operator and then apply Jensen’s inequality followed by the Burkholder-Davis-Gundy inequality to obtain

𝔼supt[0,T]wA2δ(s)Hθ\displaystyle\mathbb{E}\sup_{t\in[0,T]}\|w_{A_{2}}^{\delta}(s)\|_{H^{\theta}} CTδ(0T(0z(zζ)2a(A2)θ2S2(zζδ)2()2𝑑ζ)q2𝑑z)1q\displaystyle\leq\frac{C_{T}}{\sqrt{\delta}}\bigg{(}\int_{0}^{T}\bigg{(}\int_{0}^{z}(z-\zeta)^{-2a}\bigg{\|}(-A_{2})^{\frac{\theta}{2}}S_{2}\bigg{(}\frac{z-\zeta}{\delta}\bigg{)}\bigg{\|}^{2}_{\mathscr{L}_{2}(\mathcal{H})}d\zeta\bigg{)}^{\frac{q}{2}}dz\bigg{)}^{\frac{1}{q}}
CTδρ12(0T(0z(zζ)2aρ𝑑ζ)q2𝑑z)1q,\displaystyle\leq C_{T}\delta^{\frac{\rho-1}{2}}\bigg{(}\int_{0}^{T}\bigg{(}\int_{0}^{z}(z-\zeta)^{-2a-\rho}d\zeta\bigg{)}^{\frac{q}{2}}dz\bigg{)}^{\frac{1}{q}},

where ρ>θ+1/2\rho>\theta+1/2 and the last line follows from Lemma A.1(ii). The last integral is finite provided that θ<122a\theta<\frac{1}{2}-2a and θ+12<ρ<12a\theta+\frac{1}{2}<\rho<1-2a.

(ii)(ii) Let 0s<tT0\leq s<t\leq T. From the stochastic factorization formula (176) it follows that

δπsin(aπ)(wA2δ(t)wA2δ(s))\displaystyle\frac{\sqrt{\delta}\pi}{\sin(a\pi)}\big{(}w_{A_{2}}^{\delta}(t)-w_{A_{2}}^{\delta}(s)\big{)} =st(tz)a1S2(tzδ)Maδ(s,z,z;2)𝑑z\displaystyle=\int_{s}^{t}(t-z)^{a-1}S_{2}\bigg{(}\frac{t-z}{\delta}\bigg{)}M^{\delta}_{a}(s,z,z;2)dz
+[S2(tsδ)I]wA2δ(s)=:J1δ(s,t)+J2δ(s,t).\displaystyle+\bigg{[}S_{2}\bigg{(}\frac{t-s}{\delta}\bigg{)}-I\bigg{]}w_{A_{2}}^{\delta}(s)=:J^{\delta}_{1}(s,t)+J^{\delta}_{2}(s,t).

For the first term we apply Hölder’s inequality with q>1/a>2q>1/a>2 to obtain

J1δ(s,t)\displaystyle\big{\|}J_{1}^{\delta}(s,t)\big{\|}_{\mathcal{H}} 1δ(st(tz)p(a1)𝑑z)1p(0TMaδ(s,z,z;2)q𝑑z)1q\displaystyle\leq\frac{1}{\sqrt{\delta}}\bigg{(}\int_{s}^{t}(t-z)^{p(a-1)}dz\bigg{)}^{\frac{1}{p}}\bigg{(}\int_{0}^{T}\big{\|}M^{\delta}_{a}(s,z,z;2)\big{\|}^{q}_{\mathcal{H}}dz\bigg{)}^{\frac{1}{q}}
Caδ(ts)a1q(0TMaδ(s,z,z;2)q𝑑z)1q.\displaystyle\leq\frac{C_{a}}{\sqrt{\delta}}(t-s)^{a-\frac{1}{q}}\bigg{(}\int_{0}^{T}\big{\|}M^{\delta}_{a}(s,z,z;2)\big{\|}^{q}_{\mathcal{H}}dz\bigg{)}^{\frac{1}{q}}.

Recalling (177), we see that Maδ(s,z,z;2)=Maδ(0,z,z;2)Maδ(0,s,z;2)M^{\delta}_{a}(s,z,z;2)=M^{\delta}_{a}(0,z,z;2)-M^{\delta}_{a}(0,s,z;2). Therefore,

J1δ(s,t)\displaystyle\big{\|}J_{1}^{\delta}(s,t)\big{\|}_{\mathcal{H}} Ca,qδ(ts)a1q(0Tsups[0,z]Maδ(s,z,z)qdz)1q.\displaystyle\leq\frac{C_{a,q}}{\sqrt{\delta}}(t-s)^{a-\frac{1}{q}}\bigg{(}\int_{0}^{T}\sup_{s\in[0,z]}\big{\|}M^{\delta}_{a}(s,z,z)\big{\|}^{q}_{\mathcal{H}}dz\bigg{)}^{\frac{1}{q}}\;.

Proceeding as in the proof of Lemma A.2, we deduce that

𝔼supst[0,T]J1δ(s,t)|ts|a1q\displaystyle\mathbb{E}\sup_{s\neq t\in[0,T]}\frac{\big{\|}J_{1}^{\delta}(s,t)\big{\|}_{\mathcal{H}}}{|t-s|^{a-\frac{1}{q}}} Cδρ12(0T(0z(zζ)2aρ𝑑ζ)q2𝑑z)1q.\displaystyle\leq C\delta^{\frac{\rho-1}{2}}\bigg{(}\int_{0}^{T}\bigg{(}\int_{0}^{z}(z-\zeta)^{-2a-\rho}d\zeta\bigg{)}^{\frac{q}{2}}dz\bigg{)}^{\frac{1}{q}}\;. (183)

Note that qq is arbitrarily large and the last integral is finite, provided that 2α<1ρ<1/22\alpha<1-\rho<1/2.
As for J2δJ_{2}^{\delta}, we invoke (12) to obtain

J2δ(s,t)\displaystyle\big{\|}J_{2}^{\delta}(s,t)\big{\|}_{\mathcal{H}} CS2(tsδ)I(Hθ;)wA2δ(s)Hθ\displaystyle\leq C\bigg{\|}S_{2}\bigg{(}\frac{t-s}{\delta}\bigg{)}-I\bigg{\|}_{\mathscr{L}(H^{\theta};\mathcal{H})}\|w_{A_{2}}^{\delta}(s)\|_{H^{\theta}}
Cδθ/2(ts)θ/2wA2δ(s)Hθ,\displaystyle\leq C\delta^{-\theta/2}(t-s)^{\theta/2}\|w_{A_{2}}^{\delta}(s)\|_{H^{\theta}}\;,

where θ(0,1/2)\theta\in(0,1/2). In view of (181), we have

𝔼supst[0,T]J2δ(s,t)|ts|θ/2\displaystyle\mathbb{E}\sup_{s\neq t\in[0,T]}\frac{\big{\|}J_{2}^{\delta}(s,t)\big{\|}_{\mathcal{H}}}{|t-s|^{\theta/2}} Cδθ/2𝔼sups[0,T]wA2δ(s)HθCδρ1θ2,\displaystyle\leq C\delta^{-\theta/2}\mathbb{E}\sup_{s\in[0,T]}\|w_{A_{2}}^{\delta}(s)\|_{H^{\theta}}\leq C\delta^{\frac{\rho^{\prime}-1-\theta}{2}},

where ρ(1/2+θ,12a)\rho^{\prime}\in(1/2+\theta,1-2a^{\prime}) and a<1/2a^{\prime}<1/2 can be arbitrarily small. Choosing ρ(1/2,1/2+θ)\rho\in(1/2,1/2+\theta) and θ=ρρ<1/22a\theta=\rho^{\prime}-\rho<1/2-2a^{\prime} it follows that

𝔼supst[0,T]J2δ(s,t)|ts|θ/2\displaystyle\mathbb{E}\sup_{s\neq t\in[0,T]}\frac{\big{\|}J_{2}^{\delta}(s,t)\big{\|}_{\mathcal{H}}}{|t-s|^{\theta/2}} Cδθ/2𝔼sups[0,T]wA2δ(s)HθCδρ12.\displaystyle\leq C\delta^{-\theta/2}\mathbb{E}\sup_{s\in[0,T]}\|w_{A_{2}}^{\delta}(s)\|_{H^{\theta}}\leq C\delta^{\frac{\rho-1}{2}}. (184)

The proof is complete upon combining (183) and (184). ∎

We conclude this appendix with the proof of estimate (69) of Lemma 4.2.

Proof of Lemma 4.2 (iii).

From the mild formulation of (2) we have

X¯(t)\displaystyle\bar{X}(t) =S1(t)x0+0tS1(ts)F¯(X¯(t))𝑑s+0tS1(ts)[F¯(X¯(s))F¯(X¯(t))]𝑑s.\displaystyle=S_{1}(t)x_{0}+\int_{0}^{t}S_{1}(t-s)\bar{F}\big{(}\bar{X}(t)\big{)}ds+\int_{0}^{t}S_{1}(t-s)\big{[}\bar{F}\big{(}\bar{X}(s)\big{)}-\bar{F}\big{(}\bar{X}(t)\big{)}\big{]}ds.

Using this decomposition along with (12) and the Lipschitz continuity of F¯\bar{F} we obtain

A1X¯(t)\displaystyle\big{\|}A_{1}\bar{X}(t)\big{\|}_{\mathcal{H}} A1S1(t)x0+0tA1S1(ts)F¯(X¯(t))𝑑s+0tA1S1(ts)[F¯(X¯(s))F¯(X¯(t))]𝑑s\displaystyle\leq\big{\|}A_{1}S_{1}(t)x_{0}\big{\|}_{\mathcal{H}}+\bigg{\|}\int_{0}^{t}A_{1}S_{1}(t-s)\bar{F}\big{(}\bar{X}(t)\big{)}ds\bigg{\|}_{\mathcal{H}}+\int_{0}^{t}\big{\|}A_{1}S_{1}(t-s)\big{[}\bar{F}\big{(}\bar{X}(s)\big{)}-\bar{F}\big{(}\bar{X}(t)\big{)}\big{]}\big{\|}_{\mathcal{H}}ds
Cta21x0Ha+(S1(t)I)F¯(X¯(t))+Cf0t(ts)1X¯(s)X¯(t)𝑑s\displaystyle\leq Ct^{\frac{a}{2}-1}\|x_{0}\|_{H^{a}}+\big{\|}\big{(}S_{1}(t)-I\big{)}\bar{F}\big{(}\bar{X}(t)\big{)}\big{\|}_{\mathcal{H}}+C_{f}\int_{0}^{t}(t-s)^{-1}\big{\|}\bar{X}(s)-\bar{X}(t)\big{\|}_{\mathcal{H}}ds
Cta21x0Ha+cT(1+Lfsupt[0,T]X¯(t))+C[X¯]Cθ([0,T];)0t(ts)1+θ𝑑s\displaystyle\leq Ct^{\frac{a}{2}-1}\|x_{0}\|_{H^{a}}+c_{T}\bigg{(}1+L_{f}\sup_{t\in[0,T]}\big{\|}\bar{X}(t)\|_{\mathcal{H}}\bigg{)}+C\big{[}\bar{X}\big{]}_{C^{\theta}([0,T];\mathcal{H})}\int_{0}^{t}(t-s)^{-1+\theta}\ ds
Cta21x0Ha+C(1+x0Ha)+Cf,θ(1+x0Ha)Tθ\displaystyle\leq Ct^{\frac{a}{2}-1}\|x_{0}\|_{H^{a}}+C\big{(}1+\big{\|}x_{0}\|_{H^{a}}\big{)}+C_{f,\theta}(1+\|x_{0}\|_{H^{a}})T^{\theta}
C(ta21x0Ha+1+x0Ha),\displaystyle\leq C\bigg{(}t^{\frac{a}{2}-1}\|x_{0}\|_{H^{a}}+1+\big{\|}x_{0}\|_{H^{a}}\bigg{)},

where we used (67) and (68) to obtain the last inequality. ∎

Appendix B

Here we give the proof of Lemma 5.4.

Proof.

By virtue of the Itô formula and (86) we have

Θ(t,X¯(t),Ynϵ,u(t))Θ(s,X¯(s),Ynϵ,u(s))=stΨϵ(X¯(z),Ynϵ,u(z)),S1(tz)(A1)1+θ2χ𝑑z\displaystyle\Theta\big{(}t,\bar{X}(t),Y_{n}^{\epsilon,u}(t)\big{)}-\Theta\big{(}s,\bar{X}(s),Y_{n}^{\epsilon,u}(s)\big{)}=\int_{s}^{t}\big{\langle}\Psi^{\epsilon}\big{(}\bar{X}(z),Y_{n}^{\epsilon,u}(z)\big{)},S_{1}(t-z)(-A_{1})^{1+\frac{\theta}{2}}\chi\big{\rangle}_{\mathcal{H}}dz (185)
+stΨ1ϵ(X¯(z),Ynϵ,u(z))[A1X¯(z)+F¯(X¯(z))],S1(tz)(A1)θ2χ𝑑z\displaystyle+\int_{s}^{t}\big{\langle}\Psi^{\epsilon}_{1}\big{(}\bar{X}(z),Y_{n}^{\epsilon,u}(z)\big{)}\big{[}A_{1}\bar{X}(z)+\bar{F}\big{(}\bar{X}(z)\big{)}\big{]},S_{1}(t-z)(-A_{1})^{\frac{\theta}{2}}\chi\big{\rangle}_{\mathcal{H}}dz
+1δstΨ2ϵ(X¯(z),Ynϵ,u(z))[A2Ynϵ,u(z)+PnG(X¯(z),Yϵ,u(z))],S1(tz)(A1)θ2χ𝑑z\displaystyle+\frac{1}{\delta}\int_{s}^{t}\big{\langle}\Psi^{\epsilon}_{2}\big{(}\bar{X}(z),Y_{n}^{\epsilon,u}(z)\big{)}\big{[}A_{2}Y_{n}^{\epsilon,u}(z)+P_{n}G\big{(}\bar{X}(z),Y^{\epsilon,u}(z)\big{)}\big{]},S_{1}(t-z)(-A_{1})^{\frac{\theta}{2}}\chi\big{\rangle}_{\mathcal{H}}dz
+12δsttr[PnDy2ΦS1(tz)(A1)θ2χϵ(X¯(z),Ynϵ,u(z))]𝑑z\displaystyle+\frac{1}{2\delta}\int_{s}^{t}\text{tr}\big{[}P_{n}D^{2}_{y}\Phi^{\epsilon}_{S_{1}(t-z)(-A_{1})^{\frac{\theta}{2}}\chi}\big{(}\bar{X}(z),Y_{n}^{\epsilon,u}(z)\big{)}\big{]}dz
+h(ϵ)δstΨ2ϵ(X¯(z),Ynϵ,u(z))u2,n(z),S1(tz)(A1)θ2χ𝑑z\displaystyle+\frac{h(\epsilon)}{\sqrt{\delta}}\int_{s}^{t}\big{\langle}\Psi^{\epsilon}_{2}\big{(}\bar{X}(z),Y_{n}^{\epsilon,u}(z)\big{)}u_{2,n}(z),S_{1}(t-z)(-A_{1})^{\frac{\theta}{2}}\chi\big{\rangle}_{\mathcal{H}}dz
+1δst(A1)θ2S1(tz)Ψ2ϵ(X¯(z),Ynϵ,u(z))dw2,n(z),χ.\displaystyle+\frac{1}{\sqrt{\delta}}\int_{s}^{t}\big{\langle}(-A_{1})^{\frac{\theta}{2}}S_{1}(t-z)\Psi^{\epsilon}_{2}\big{(}\bar{X}(z),Y_{n}^{\epsilon,u}(z)\big{)}dw_{2,n}(z),\chi\big{\rangle}_{\mathcal{H}}\;.

In view of (35), we can express the sum of the third and fourth terms on the right-hand side of the last display in terms of the Kolmogorov operator x\mathcal{L}^{x} (see (30)) via the identity

1δstΨ2ϵ(X¯(z),Ynϵ,u(z))[A2Ynϵ,u(z)+PnG(X¯(z),Yϵ,u(z))],S1(tz)(A1)θ2χ𝑑z\displaystyle\frac{1}{\delta}\int_{s}^{t}\big{\langle}\Psi^{\epsilon}_{2}\big{(}\bar{X}(z),Y_{n}^{\epsilon,u}(z)\big{)}\big{[}A_{2}Y_{n}^{\epsilon,u}(z)+P_{n}G\big{(}\bar{X}(z),Y^{\epsilon,u}(z)\big{)}\big{]},S_{1}(t-z)(-A_{1})^{\frac{\theta}{2}}\chi\big{\rangle}_{\mathcal{H}}dz (186)
+12δsttr[PnDy2ΦS1(tz)(A1)θ2χϵ(X¯(z),Ynϵ,u(z))]𝑑z=1δstX¯(z)ΦS1(tz)(A1)θ2χϵ(X¯(z),Ynϵ,u(z))𝑑z\displaystyle+\frac{1}{2\delta}\int_{s}^{t}\text{tr}\big{[}P_{n}D^{2}_{y}\Phi^{\epsilon}_{S_{1}(t-z)(-A_{1})^{\frac{\theta}{2}}\chi}\big{(}\bar{X}(z),Y_{n}^{\epsilon,u}(z)\big{)}\big{]}dz=\frac{1}{\delta}\int_{s}^{t}\mathcal{L}^{\bar{X}(z)}\Phi_{S_{1}(t-z)(-A_{1})^{\frac{\theta}{2}}\chi}^{\epsilon}\big{(}\bar{X}(z),Y_{n}^{\epsilon,u}(z)\big{)}dz
+ϵh(ϵ)δT3ϵ,u(s,t,n,θ,χ).\displaystyle+\frac{\sqrt{\epsilon}h(\epsilon)}{\delta}T_{3}^{\epsilon,u}(s,t,n,\theta,\chi).

In view of (186), we return to (185), apply (85) on the left-hand side and then multiply throughout by δ\delta to obtain

δ[Ψϵ(X¯(t),Ynϵ,u(t)),(A1)θ2χΨϵ(X¯(s),Ynϵ,u(s)),S1(ts)(A1)θ2χ]\displaystyle\delta\big{[}\langle\Psi^{\epsilon}\big{(}\bar{X}(t),Y_{n}^{\epsilon,u}(t)\big{)},(-A_{1})^{\frac{\theta}{2}}\chi\rangle_{\mathcal{H}}-\langle\Psi^{\epsilon}\big{(}\bar{X}(s),Y_{n}^{\epsilon,u}(s)\big{)},S_{1}(t-s)(-A_{1})^{\frac{\theta}{2}}\chi\rangle_{\mathcal{H}}\big{]} (187)
=δstΨϵ(X¯(z),Ynϵ,u(z)),S1(tz)(A1)1+θ2χ𝑑z\displaystyle=\delta\int_{s}^{t}\big{\langle}\Psi^{\epsilon}\big{(}\bar{X}(z),Y_{n}^{\epsilon,u}(z)\big{)},S_{1}(t-z)(-A_{1})^{1+\frac{\theta}{2}}\chi\big{\rangle}_{\mathcal{H}}dz
+δstΨ1ϵ(X¯(z),Ynϵ,u(z))[A1X¯(z)+F¯(X¯(z))],S1(tz)(A1)θ2χ𝑑z\displaystyle+\delta\int_{s}^{t}\big{\langle}\Psi^{\epsilon}_{1}\big{(}\bar{X}(z),Y_{n}^{\epsilon,u}(z)\big{)}\big{[}A_{1}\bar{X}(z)+\bar{F}\big{(}\bar{X}(z)\big{)}\big{]},S_{1}(t-z)(-A_{1})^{\frac{\theta}{2}}\chi\big{\rangle}_{\mathcal{H}}dz
+stX¯(z)ΦS1(tz)(A1)θ2χϵ(X¯(z),Ynϵ,u(z))𝑑z\displaystyle+\int_{s}^{t}\mathcal{L}^{\bar{X}(z)}\Phi_{S_{1}(t-z)(-A_{1})^{\frac{\theta}{2}}\chi}^{\epsilon}\big{(}\bar{X}(z),Y_{n}^{\epsilon,u}(z)\big{)}dz
+δh(ϵ)stΨ2ϵ(X¯(z),Ynϵ,u(z))u2,n(z),S1(tz)(A1)θ2χ𝑑z\displaystyle+\sqrt{\delta}h(\epsilon)\int_{s}^{t}\big{\langle}\Psi^{\epsilon}_{2}\big{(}\bar{X}(z),Y_{n}^{\epsilon,u}(z)\big{)}u_{2,n}(z),S_{1}(t-z)(-A_{1})^{\frac{\theta}{2}}\chi\big{\rangle}_{\mathcal{H}}dz
+δst(A1)θ2S1(tz)Ψ2ϵ(X¯(z),Ynϵ,u(z))dw2,n(z),χ+ϵh(ϵ)T3ϵ,u(s,t,n,θ,χ),\displaystyle+\sqrt{\delta}\int_{s}^{t}\big{\langle}(-A_{1})^{\frac{\theta}{2}}S_{1}(t-z)\Psi^{\epsilon}_{2}\big{(}\bar{X}(z),Y_{n}^{\epsilon,u}(z)\big{)}dw_{2,n}(z),\chi\big{\rangle}_{\mathcal{H}}+\sqrt{\epsilon}h(\epsilon)T_{3}^{\epsilon,u}(s,t,n,\theta,\chi),

Since Φϵ\Phi^{\epsilon}_{\cdot} solves the Kolmogorov equation (29),

X¯(t)ΦS1(tz)(A1)θ2χϵ(X¯(z),Ynϵ,u(z))=c(ϵ)ΦS1(tz)(A1)θ2χϵ(X¯(z),Ynϵ,u(z))\displaystyle\mathcal{L}^{\bar{X}(t)}\Phi_{S_{1}(t-z)(-A_{1})^{\frac{\theta}{2}}\chi}^{\epsilon}\big{(}\bar{X}(z),Y_{n}^{\epsilon,u}(z)\big{)}=c(\epsilon)\Phi_{S_{1}(t-z)(-A_{1})^{\frac{\theta}{2}}\chi}^{\epsilon}\big{(}\bar{X}(z),Y_{n}^{\epsilon,u}(z)\big{)}
F(X¯(z),Ynϵ,u(z))F¯(X¯(z)),S1(tz)(A1)θ2χ=c(ϵ)Ψϵ(X¯(z),Ynϵ,u(z)),S1(tz)(A1)θ2χ\displaystyle-\big{\langle}F\big{(}\bar{X}(z),Y_{n}^{\epsilon,u}(z)\big{)}-\bar{F}\big{(}\bar{X}(z)\big{)},S_{1}(t-z)(-A_{1})^{\frac{\theta}{2}}\chi\big{\rangle}_{\mathcal{H}}=c(\epsilon)\big{\langle}\Psi^{\epsilon}\big{(}\bar{X}(z),Y_{n}^{\epsilon,u}(z)\big{)},S_{1}(t-z)(-A_{1})^{\frac{\theta}{2}}\chi\big{\rangle}_{\mathcal{H}}
F(X¯(z),Ynϵ,u(z))F¯(X¯(z)),S1(tz)(A1)θ2χ.\displaystyle-\big{\langle}F\big{(}\bar{X}(z),Y_{n}^{\epsilon,u}(z)\big{)}-\bar{F}\big{(}\bar{X}(z)\big{)},S_{1}(t-z)(-A_{1})^{\frac{\theta}{2}}\chi\big{\rangle}_{\mathcal{H}}\;.

Consequently, we can rearrange (187) to obtain

stF(X¯(z),Ynϵ,u(z))F¯(X¯(z)),S1(tz)(A1)θ2χ𝑑z\displaystyle\int_{s}^{t}\big{\langle}F\big{(}\bar{X}(z),Y_{n}^{\epsilon,u}(z)\big{)}-\bar{F}\big{(}\bar{X}(z)\big{)},S_{1}(t-z)(-A_{1})^{\frac{\theta}{2}}\chi\big{\rangle}_{\mathcal{H}}dz (188)
=δ[Ψϵ(X¯(t),Ynϵ,u(t)),(A1)θ2χΨϵ(X¯(s),Ynϵ,u(s)),S1(ts)(A1)θ2χ]\displaystyle=-\delta\big{[}\langle\Psi^{\epsilon}\big{(}\bar{X}(t),Y_{n}^{\epsilon,u}(t)\big{)},(-A_{1})^{\frac{\theta}{2}}\chi\rangle_{\mathcal{H}}-\langle\Psi^{\epsilon}\big{(}\bar{X}(s),Y_{n}^{\epsilon,u}(s)\big{)},S_{1}(t-s)(-A_{1})^{\frac{\theta}{2}}\chi\rangle_{\mathcal{H}}\big{]}
+δstΨϵ(X¯(z),Ynϵ,u(z)),S1(tz)(A1)1+θ2χ𝑑z\displaystyle+\delta\int_{s}^{t}\big{\langle}\Psi^{\epsilon}\big{(}\bar{X}(z),Y_{n}^{\epsilon,u}(z)\big{)},S_{1}(t-z)(-A_{1})^{1+\frac{\theta}{2}}\chi\big{\rangle}_{\mathcal{H}}dz
+δstΨ1ϵ(X¯(z),Ynϵ,u(z))[A1X¯(z)+F¯(X¯(z))],S1(tz)(A1)θ2χ𝑑z\displaystyle+\delta\int_{s}^{t}\big{\langle}\Psi^{\epsilon}_{1}\big{(}\bar{X}(z),Y_{n}^{\epsilon,u}(z)\big{)}\big{[}A_{1}\bar{X}(z)+\bar{F}\big{(}\bar{X}(z)\big{)}\big{]},S_{1}(t-z)(-A_{1})^{\frac{\theta}{2}}\chi\big{\rangle}_{\mathcal{H}}dz
+c(ϵ)stΨϵ(X¯(z),Ynϵ,u(z)),S1(tz)(A1)θ2χ𝑑z\displaystyle+c(\epsilon)\int_{s}^{t}\big{\langle}\Psi^{\epsilon}\big{(}\bar{X}(z),Y_{n}^{\epsilon,u}(z)\big{)},S_{1}(t-z)(-A_{1})^{\frac{\theta}{2}}\chi\big{\rangle}_{\mathcal{H}}dz
+δh(ϵ)stΨ2ϵ(X¯(z),Ynϵ,u(z))u2,n(z),S1(tz)(A1)θ2χ𝑑z\displaystyle+\sqrt{\delta}h(\epsilon)\int_{s}^{t}\big{\langle}\Psi^{\epsilon}_{2}\big{(}\bar{X}(z),Y_{n}^{\epsilon,u}(z)\big{)}u_{2,n}(z),S_{1}(t-z)(-A_{1})^{\frac{\theta}{2}}\chi\big{\rangle}_{\mathcal{H}}dz
+δst(A1)θ2S1(tz)Ψ2ϵ(X¯(z),Ynϵ,u(z))dw2,n(z),χ+ϵh(ϵ)T3ϵ,u(s,t,n,θ,χ).\displaystyle+\sqrt{\delta}\int_{s}^{t}\big{\langle}(-A_{1})^{\frac{\theta}{2}}S_{1}(t-z)\Psi^{\epsilon}_{2}\big{(}\bar{X}(z),Y_{n}^{\epsilon,u}(z)\big{)}dw_{2,n}(z),\chi\big{\rangle}_{\mathcal{H}}+\sqrt{\epsilon}h(\epsilon)T_{3}^{\epsilon,u}(s,t,n,\theta,\chi).

Regarding the second term on the right-hand side of the last display we can write

st\displaystyle\int_{s}^{t}\big{\langle} Ψϵ(X¯(z),Ynϵ,u(z)),S1(tz)(A1)1+θ2χdz\displaystyle\Psi^{\epsilon}\big{(}\bar{X}(z),Y_{n}^{\epsilon,u}(z)\big{)},S_{1}(t-z)(-A_{1})^{1+\frac{\theta}{2}}\chi\big{\rangle}_{\mathcal{H}}dz
=Ψϵ(X¯(t),Ynϵ,u(t)),stS1(tz)(A1)1+θ2χ𝑑z\displaystyle=\big{\langle}\Psi^{\epsilon}\big{(}\bar{X}(t),Y_{n}^{\epsilon,u}(t)\big{)},\int_{s}^{t}S_{1}(t-z)(-A_{1})^{1+\frac{\theta}{2}}\chi dz\big{\rangle}_{\mathcal{H}}
+stΨϵ(X¯(z),Ynϵ,u(z))Ψϵ(X¯(t),Ynϵ,u(t)),S1(tz)(A1)1+θ2χ𝑑z\displaystyle+\int_{s}^{t}\big{\langle}\Psi^{\epsilon}\big{(}\bar{X}(z),Y_{n}^{\epsilon,u}(z)\big{)}-\Psi^{\epsilon}\big{(}\bar{X}(t),Y_{n}^{\epsilon,u}(t)\big{)},S_{1}(t-z)(-A_{1})^{1+\frac{\theta}{2}}\chi\big{\rangle}_{\mathcal{H}}dz
=Ψϵ(X¯(t),Ynϵ,u(t)),[IS1(ts)](A1)θ2χ\displaystyle=\big{\langle}\Psi^{\epsilon}\big{(}\bar{X}(t),Y_{n}^{\epsilon,u}(t)\big{)},\big{[}I-S_{1}(t-s)\big{]}(-A_{1})^{\frac{\theta}{2}}\chi\big{\rangle}_{\mathcal{H}}
+stΨϵ(X¯(z),Ynϵ,u(z))Ψϵ(X¯(t),Ynϵ,u(t)),S1(tz)(A1)1+θ2χ𝑑z,\displaystyle+\int_{s}^{t}\big{\langle}\Psi^{\epsilon}\big{(}\bar{X}(z),Y_{n}^{\epsilon,u}(z)\big{)}-\Psi^{\epsilon}\big{(}\bar{X}(t),Y_{n}^{\epsilon,u}(t)\big{)},S_{1}(t-z)(-A_{1})^{1+\frac{\theta}{2}}\chi\big{\rangle}_{\mathcal{H}}dz,

where we used the fact that S1(tz)(A1)1+θ2χ=ddzS1(tz)(A1)θ2χS_{1}(t-z)(-A_{1})^{1+\frac{\theta}{2}}\chi=\frac{d}{dz}S_{1}(t-z)(-A_{1})^{\frac{\theta}{2}}\chi. With T1ϵ,uT_{1}^{\epsilon,u}, T3ϵ,uT_{3}^{\epsilon,u} as in (84), (89) respectively, we can further rearrange (188) and divide throughout by ϵh(ϵ)\sqrt{\epsilon}h(\epsilon) to obtain

T1ϵ,u(s,t,n,θ,χ)=δϵh(ϵ)[Ψϵ(X¯(t),Ynϵ,u(t))Ψϵ(X¯(s),Ynϵ,u(s)),S1(ts)(A1)θ2χ]\displaystyle T_{1}^{\epsilon,u}(s,t,n,\theta,\chi)=-\frac{\delta}{\sqrt{\epsilon}h(\epsilon)}\big{[}\langle\Psi^{\epsilon}\big{(}\bar{X}(t),Y_{n}^{\epsilon,u}(t)\big{)}-\Psi^{\epsilon}\big{(}\bar{X}(s),Y_{n}^{\epsilon,u}(s)\big{)},S_{1}(t-s)(-A_{1})^{\frac{\theta}{2}}\chi\rangle_{\mathcal{H}}\big{]} (189)
δϵh(ϵ)stΨϵ(X¯(t),Ynϵ,u(t))Ψϵ(X¯(z),Ynϵ,u(z)),S1(tz)(A1)1+θ2χ𝑑z\displaystyle-\frac{\delta}{\sqrt{\epsilon}h(\epsilon)}\int_{s}^{t}\big{\langle}\Psi^{\epsilon}\big{(}\bar{X}(t),Y_{n}^{\epsilon,u}(t)\big{)}-\Psi^{\epsilon}\big{(}\bar{X}(z),Y_{n}^{\epsilon,u}(z)\big{)},S_{1}(t-z)(-A_{1})^{1+\frac{\theta}{2}}\chi\big{\rangle}_{\mathcal{H}}dz
+δϵh(ϵ)stΨ1ϵ(X¯(z),Ynϵ,u(z))[A1X¯(z)+F¯(X¯(z))],S1(tz)(A1)θ2χ𝑑z\displaystyle+\frac{\delta}{\sqrt{\epsilon}h(\epsilon)}\int_{s}^{t}\big{\langle}\Psi^{\epsilon}_{1}\big{(}\bar{X}(z),Y_{n}^{\epsilon,u}(z)\big{)}\big{[}A_{1}\bar{X}(z)+\bar{F}\big{(}\bar{X}(z)\big{)}\big{]},S_{1}(t-z)(-A_{1})^{\frac{\theta}{2}}\chi\big{\rangle}_{\mathcal{H}}dz
+c(ϵ)ϵh(ϵ)stΨϵ(X¯(z),Ynϵ,u(z)),S1(tz)(A1)θ2χ𝑑z\displaystyle+\frac{c(\epsilon)}{\sqrt{\epsilon}h(\epsilon)}\int_{s}^{t}\big{\langle}\Psi^{\epsilon}\big{(}\bar{X}(z),Y_{n}^{\epsilon,u}(z)\big{)},S_{1}(t-z)(-A_{1})^{\frac{\theta}{2}}\chi\big{\rangle}_{\mathcal{H}}dz
+δϵstΨ2ϵ(X¯(z),Ynϵ,u(z))u2,n(z),S1(tz)(A1)θ2χ𝑑z\displaystyle+\frac{\sqrt{\delta}}{\sqrt{\epsilon}}\int_{s}^{t}\big{\langle}\Psi^{\epsilon}_{2}\big{(}\bar{X}(z),Y_{n}^{\epsilon,u}(z)\big{)}u_{2,n}(z),S_{1}(t-z)(-A_{1})^{\frac{\theta}{2}}\chi\big{\rangle}_{\mathcal{H}}dz
+δϵh(ϵ)st(A1)θ2S1(tz)Ψ2ϵ(X¯(z),Ynϵ,u(z))dw2,n(z),χ+T3ϵ,u(s,t,n,θ,χ).\displaystyle+\frac{\sqrt{\delta}}{\sqrt{\epsilon}h(\epsilon)}\int_{s}^{t}\big{\langle}(-A_{1})^{\frac{\theta}{2}}S_{1}(t-z)\Psi^{\epsilon}_{2}\big{(}\bar{X}(z),Y_{n}^{\epsilon,u}(z)\big{)}dw_{2,n}(z),\chi\big{\rangle}_{\mathcal{H}}+T_{3}^{\epsilon,u}(s,t,n,\theta,\chi).

In view of (84), the argument is complete upon adding T2ϵ,u(s,t,n,θ,χ)T_{2}^{\epsilon,u}(s,t,n,\theta,\chi) in both sides of the last display. ∎

References

  • [1] Antonio Ambrosetti and Giovanni Prodi. A primer of nonlinear analysis. Number 34. Cambridge University Press, 1995.
  • [2] Wolfgang Arendt. Gaussian estimates and interpolation of the spectrum in Lp{L}^{p}. Differential Integral Equations, 7(5-6):1153–1168, 1994.
  • [3] Vladimir I Bogachev. Measure theory, volume 2. Springer Science & Business Media, 2007.
  • [4] Michelle Boué and Paul Dupuis. A variational representation for certain functionals of Brownian motion. The Annals of Probability, 26(4):1641–1659, 1998.
  • [5] Amarjit Budhiraja and Paul Dupuis. A variational representation for positive functionals of infinite dimensional Brownian motion. Probability and mathematical statistics-Wroclaw University, 20(1):39–61, 2000.
  • [6] Amarjit Budhiraja and Paul Dupuis. Analysis and Approximation of Rare Events: Representations and Weak Convergence Methods, volume 94. Springer, 2019.
  • [7] Amarjit Budhiraja, Paul Dupuis, and Vasileios Maroulas. Large deviations for infinite dimensional stochastic dynamical systems. The Annals of Probability, pages 1390–1420, 2008.
  • [8] Sandra Cerrai. Second order PDE’s in finite and infinite dimension: A probabilistic approach, volume 1762. Springer Science & Business Media, 2001.
  • [9] Sandra Cerrai. Stochastic reaction-diffusion systems with multiplicative noise and non-Lipschitz reaction term. Probability Theory and Related Fields, 125(2):271–304, 2003.
  • [10] Sandra Cerrai. A Khasminskii type averaging principle for stochastic reaction–diffusion equations. The Annals of Applied Probability, 19(3):899–948, 2009.
  • [11] Sandra Cerrai. Normal deviations from the averaged motion for some reaction-diffusion equations with fast oscillating perturbation. Journal de Matématiques Pures et Appliqués, 91:614–647, 2009.
  • [12] Sandra Cerrai and Mark Freidlin. Averaging principle for a class of stochastic reaction–diffusion equations. Probability theory and related fields, 144(1-2):137–177, 2009.
  • [13] P. Chigansky and R. Lipster. Moderate deviations for a diffusion-type process in a random environment. Theory of Probability and Applications, 54(1):29–50, 2010.
  • [14] Giuseppe Da Prato and Alessandra Lunardi. On the Ornstein-Uhlenbeck operator in spaces of continuous functions. Journal of Functional Analysis, 131(1):94–114, 1995.
  • [15] Giuseppe Da Prato and Jerzy Zabczyk. Ergodicity for infinite dimensional systems, volume 229. Cambridge University Press, 1996.
  • [16] Giuseppe Da Prato and Jerzy Zabczyk. Stochastic equations in infinite dimensions. Cambridge university press, 2014.
  • [17] Paul Dupuis and Richard S Ellis. A weak convergence approach to the theory of large deviations, volume 902. John Wiley & Sons, 2011.
  • [18] Paul Dupuis and Dane Johnson. Moderate deviations for recursive stochastic algorithms. Stochastic Systems, 5(1):87–119, 2015.
  • [19] Paul Dupuis and Konstantinos Spiliopoulos. Large deviations for multiscale diffusion via weak convergence methods. Stochastic Processes and their Applications, 122(4):1947–1987, 2012.
  • [20] David Gilbarg and Neil S Trudinger. Elliptic partial differential equations of second order. springer, 2015.
  • [21] Leonard Gross. Measurable functions on Hilbert space. Transactions of the American Mathematical Society, 105(3):372–390, 1962.
  • [22] Leonard Gross. Abstract Wiener spaces. Technical report, Cornell University Ithaca, USA, 1967.
  • [23] Arnaud Guillin. Averaging principle of SDE with small diffusion: moderate deviations. The Annals of Probability, 31(1):413–443, 2003.
  • [24] Arnaud Guillin and R. Lipster. MDP for integral functionals of fast and slow processes with averaging. Stochastic Processes and their Applications, 115(7):1187–1207, 2005.
  • [25] Wenqing Hu, Michael Salins, and Konstantinos Spiliopoulos. Large deviations and averaging for systems of slow-fast stochastic reaction–diffusion equations. Stochastics and Partial Differential Equations: Analysis and Computations, 7(4):808–874, 2019.
  • [26] Antoine Jacquier and Konstantinos Spiliopoulos. Pathwise moderate deviations for option pricing. Mathematical Finance, 30(2):426–463, 2020.
  • [27] Alessandra Lunardi. Analytic semigroups and optimal regularity in parabolic problems. Springer Science & Business Media, 2012.
  • [28] Matthew R Morse and Konstantinos Spiliopoulos. Moderate deviations for systems of slow-fast diffusions. Asymptotic Analysis, 105(3-4):97–135, 2017.
  • [29] George Papanicolaou, Danniel Stroock, and SRS Varadhan. Martingale approach to some limit theorems. Papers from the Duke turbulence conference (Duke Univ. Durham, NC, 1976), papr no. 6, ii+120pp. Duke Univ. Math. Series 3.
  • [30] E Pardoux and A Yu Veretennikov. On the Poisson equation and diffusion approximation. I. Annals of probability, pages 1061–1085, 2001.
  • [31] Michael Röckner, Longjie Xie, and Li Yang. Asymptotic behavior of multiscale stochastic partial differential equations. arXiv preprint: 2010.14897, 2020.
  • [32] Konstantinos Spiliopoulos. Large deviations and importance sampling for systems of slow-fast motion. Applied Mathematics and Optimization, 67(1):123–161, 2013.
  • [33] Konstantinos Spiliopoulos and Matthew R Morse. Importance sampling for slow-fast diffusions based on moderate deviations. Multiscale Modeling & Simulation, 18(1):315–350, 2020.
  • [34] Alexander Yur’evich Veretennikov. On the averaging principle for systems of stochastic differential equations. Matematicheskii Sbornik, 181(2):256–268, 1990.
  • [35] John B Walsh. An introduction to stochastic partial differential equations. In École d’Été de Probabilités de Saint Flour XIV-1984, pages 265–439. Springer, 1986.
  • [36] Wei Wang, AJ Roberts, and Jinqiao Duan. Large deviations and approximations for slow–fast stochastic reaction–diffusion equations. Journal of Differential Equations, 253(12):3501–3522, 2012.
  • [37] Lutz Weis. The stability of positive semigroups on LpL^{p} spaces. Proceedings of the American Mathematical Society, 123(10):3089–3094, 1995.