This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Moments of central values of quartic Dirichlet LL-functions

Peng Gao and Liangyi Zhao
Abstract.

In this paper, we study moments of the central values of quartic Dirichlet LL-functions and establish quantitative non-vanishing result for these LL-values.

Mathematics Subject Classification (2010): 11A15, 11L05, 11M06, 11N37

Keywords: quartic Dirichlet character, quartic large sieve, moments of LL-functions

1. Introduction

Moments of LL-functions at the central point over a family of characters of a fixed order have been extensively studied in the literature. The first and second moments of quadratic Dirichlet LL-functions were evaluated by M. Jutila [Jutila]. The error term for the first moment in [Jutila] was improved in [DoHo, MPY, ViTa]. Asymptotic formulas for the second and third moments for the same family with power savings in the error terms were obtained by K. Soundararajan [sound1]. The error term for the third moment was subsequently improved in [DGH] and [Young1]. In the number field case, the authors studied in [G&Zhao6] the first and second moments of quadratic Hecke LL-functions in (i)\mathbb{Q}(i) and (ω)\mathbb{Q}(\omega), where ω=1+3i2\omega=\frac{-1+\sqrt{3}i}{2}. In [Luo], W. Luo considered the first two moments of cubic Hecke LL-functions in (ω)\mathbb{Q}(\omega). Moments of various families of higher order Hecke LL-functions were studied in [FaHL, FHL, Diac, BFH], using the method of double Dirichlet series.

Although many results are available on moments of quadratic Dirichlet LL-functions, less is known for the moments of higher order Dirichlet LL-functions. For the family of cubic Dirichlet LL-functions, this is investigated by S. Baier and M. P. Young in [B&Y] and they also mentioned that it is plausible to extend their methods to study moments of quartic and sextic Dirichlet LL-functions. Motivated by this, it is our goal in this paper to investigate the quartic case. Writing χ0\chi_{0} for the principal character and letting w:(0,)w:(0,\infty)\rightarrow\mathbb{R} be any smooth, compactly supported function whose Fourier transform is denoted by w^\widehat{w}, we begin with a result that establishes an asymptotic expression for the first moment.

Theorem 1.1.

With notations as above and assuming the truth of the Lindelöf hypothesis, we have

(q,2)=1χmodqχ4=χ0L(12,χ)w(qQ)=CQw^(0)+O(Q9/10+ε),\sum_{(q,2)=1}\;\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\bmod{q}\\ \chi^{4}=\chi_{0}\end{subarray}}L(\tfrac{1}{2},\chi)w\left(\frac{q}{Q}\right)=CQ\widehat{w}(0)+O(Q^{9/10+\varepsilon}),

where CC is a positive explicit constant given in (3.5) and the asterisk on the sum over χ\chi restricts the sum to primitive characters χ\chi such that χ2\chi^{2} remains primitive.

It is a conjecture that goes back to S. Chowla [chow] that L(1/2,χ)0L(1/2,\chi)\neq 0 for all primitive Dirichlet characters χ\chi. As a consequence of Theorem 1.1, a partial answer can be given for this conjecture for the character under our consideration. We argue similar to the proof of [B&Y, Corollary 1.2], using Hölder’s inequality together with the well-known bound for the eighth moment of Dirichlet LL-functions and the lower bound implied by the asymptotic formula in Theorem 1.1, to obtain following non-vanishing result on the central values of quartic Dirichlet LL-functions.

Corollary 1.2.

Assume that the Lindelöf hypothesis is true. There exist infinitely many primitive Dirichlet characters χ\chi of order 44 such that L(1/2,χ)0L(1/2,\chi)\neq 0. More precisely, the number of such characters with conductor Q\leq Q is Q6/7ε\gg Q^{6/7-\varepsilon}.

For m,n[i],(n,2)=1m\in\mathbb{Z},n\in\mathbb{Z}[i],(n,2)=1, let ψm((n))=(mn)4\psi_{m}((n))=\left(\frac{m}{n}\right)_{4} where ()4\left(\frac{\cdot}{\cdot}\right)_{4} is the quartic residue symbol in (i)\mathbb{Q}(i) defined in Section 2.1. It is also shown there that ψm\psi_{m} is a quartic Hecke character of trivial infinite type modulo 16m16m. Our next result concerns bounds on the second moment.

Theorem 1.3.

We have for any Q1Q\geq 1 that

(1.1) qQχmodqχ4=χ0|L(12+it,χ)|2Q7/6+ε(1+|t|)1/2+ε.\sum\limits_{\begin{subarray}{c}q\leq Q\end{subarray}}\ \sideset{}{{}^{*}}{\sum}\limits_{\begin{subarray}{c}\chi\bmod q\\ \chi^{4}=\chi_{0}\end{subarray}}\left|L(\tfrac{1}{2}+it,\chi)\right|^{2}\ll Q^{7/6+\varepsilon}(1+|t|)^{1/2+\varepsilon}.

Further denote for any rational integer mm,

(1.2) L(s,ψm)=n[i]n1mod(1+i)3ψm(n)N(n)s.L(s,\psi_{m})=\sum_{\begin{subarray}{c}n\in\mathbb{Z}[i]\\ n\equiv 1\bmod{(1+i)^{3}}\end{subarray}}\psi_{m}(n)N(n)^{-s}.

Then we have

(1.3) mM|L(1/2+it,ψm)|2M3/2+ε(1+|t|)5/4+ε,\sideset{}{{}^{\prime}}{\sum}_{m\leq M}\left|L(1/2+it,\psi_{m})\right|^{2}\ll M^{3/2+\varepsilon}(1+|t|)^{5/4+\varepsilon},

where \sum^{\prime} means that the sum runs over square-free elements of \mathbb{Z}.

As the proof of the above result is similar to that of [B&Y, Theorem 1.3] (using the approximate functional equation and then the appropriate version of the large sieve inequality Lemmas 2.9 and 2.10), we shall therefore omit it in the paper.

We point out here that the proof of (1.1) uses a large sieve inequality for quartic Dirichlet characters given in Lemma 2.10 by using the term Q7/6+Q2/3MQ^{7/6}+Q^{2/3}M in the minimum there. Similarly, the proof of (1.3) follows from recalling the definition of C1(M,Q)C_{1}(M,Q) in [G&Zhao, p. 907] and the bound C1(M,Q)(QM)ε(Q5/4+Q1/2M)C_{1}(M,Q)\ll(QM)^{\varepsilon}(Q^{5/4}+Q^{1/2}M) by Lemma 2.10. A variant of this for the cubic case plays a key role in the treatment of the error term in the work of Baier and Young [B&Y] on the first moment of cubic Dirichlet LL-functions. However, our Lemma 2.10 is just short of producing admissible error term in our first moment result, even after incorporating the recursive technique of Baier and Young (see third arXiv version of the paper [B&Y] arXiv:0804.2233v3). This observation drives us to seek for bounds of individual quartic Dirichlet LL-functions in order to control the error term and leads us to derive our Theorem 1.1 under the Lindelöf hypothesis since the current best known subconvexity bounds for the LL-functions under our consideration do not provide a satisfactory error term either.

1.4. Notations

The following notations and conventions are used throughout the paper.
e(z)=exp(2πiz)=e2πize(z)=\exp(2\pi iz)=e^{2\pi iz}.
f=O(g)f=O(g) or fgf\ll g means |f|cg|f|\leq cg for some unspecified positive constant cc.
μ[i]\mu_{[i]} denotes the Möbius function on [i]\mathbb{Z}[i].
ζ(i)(s)\zeta_{\mathbb{Q}(i})(s) is the Dedekind zeta function for the field (i)\mathbb{Q}(i).

2. Preliminaries

In this section we provide various tools used throughout the paper.

2.1. Quartic symbol and primitive quartic Dirichlet characters

The symbol ((n))4(\left(\frac{\cdot}{n}\right))_{4} is the quartic residue symbol in the ring [i]\mathbb{Z}[i]. For a prime ϖ[i]\varpi\in\mathbb{Z}[i] with N(ϖ)2N(\varpi)\neq 2, the quartic residue symbol is defined for a[i]a\in\mathbb{Z}[i], (a,ϖ)=1(a,\varpi)=1 by (aϖ)4a(N(ϖ)1)/4(modϖ)\left(\frac{a}{\varpi}\right)_{4}\equiv a^{(N(\varpi)-1)/4}\pmod{\varpi}, with (aϖ)4{±1,±i}\left(\frac{a}{\varpi}\right)_{4}\in\{\pm 1,\pm i\}. When ϖ|a\varpi|a, we define (aϖ)4=0\left(\frac{a}{\varpi}\right)_{4}=0. Then the quartic residue symbol can be extended to any composite nn with (N(n),2)=1(N(n),2)=1 multiplicatively. We further set (n)4=1\left(\frac{\cdot}{n}\right)_{4}=1 when nn is a unit in [i]\mathbb{Z}[i]. We also define the quadratic residue symbol (n)\left(\frac{\cdot}{n}\right) so that (n)=(n)42\left(\frac{\cdot}{n}\right)=\left(\frac{\cdot}{n}\right)^{2}_{4}.

Note that in [i]\mathbb{Z}[i], every ideal co-prime to 22 has a unique generator congruent to 1 modulo (1+i)3(1+i)^{3}. Such a generator is called primary. Observe that n=a+bi,a,bn=a+bi,a,b\in\mathbb{Z} in [i]\mathbb{Z}[i] is congruent to 1mod(1+i)31\bmod{(1+i)^{3}} if and only if a1(mod4),b0(mod4)a\equiv 1\pmod{4},b\equiv 0\pmod{4} or a3(mod4),b2(mod4)a\equiv 3\pmod{4},b\equiv 2\pmod{4} by [I&R, Lemma 6, p. 121]. It follows from this that we have

(2.1) a(1)N(n)14(mod4),b1(1)N(n)14(mod4).\displaystyle a\equiv(-1)^{\frac{N(n)-1}{4}}\quad\pmod{4},\quad b\equiv 1-(-1)^{\frac{N(n)-1}{4}}\quad\pmod{4}.

Recall that [Lemmermeyer, Theorem 6.9] the quartic reciprocity law states that for two primary integers m,n[i]m,n\in\mathbb{Z}[i],

(mn)4=(nm)4(1)((N(n)1)/4)((N(m)1)/4).\displaystyle\left(\frac{m}{n}\right)_{4}=\left(\frac{n}{m}\right)_{4}(-1)^{((N(n)-1)/4)((N(m)-1)/4)}.

Also, the supplement laws to the quartic reciprocity law states that for n=a+bin=a+bi being primary,

(2.2) (in)4=i(1a)/2and(1+in)4=i(ab1b2)/4.\displaystyle\left(\frac{i}{n}\right)_{4}=i^{(1-a)/2}\qquad\mbox{and}\qquad\hskip 7.22743pt\left(\frac{1+i}{n}\right)_{4}=i^{(a-b-1-b^{2})/4}.

This implies that for any n1(mod16)n\equiv 1\pmod{16}, we have

(in)4=(1+in)4=1.\displaystyle\ \left(\frac{i}{n}\right)_{4}=\left(\frac{1+i}{n}\right)_{4}=1.

Hence the functions n(in)4n\rightarrow\left(\frac{i}{n}\right)_{4} and n(1+in)4n\rightarrow\left(\frac{1+i}{n}\right)_{4} can be regarded as Hecke characters (mod16)\pmod{16} of trivial infinite type. From this we see that ψm\psi_{m} is a quartic Hecke character of trivial infinite type modulo 16m16m for every mm\in\mathbb{Z}.

Using the quartic residue symbols, we have the following classification of all the primitive quartic Dirichlet characters of conductor qq co-prime to 22:

Lemma 2.2.

The primitive quartic Dirichlet characters of conductor qq coprime to 22 such that their squares remain primitive are of the form χn:m(mn)4\chi_{n}:m\mapsto\left(\frac{m}{n}\right)_{4} for some n[i]n\in\mathbb{Z}[i], n1(mod(1+i)3)n\equiv 1\pmod{(1+i)^{3}}, nn square-free and not divisible by any rational primes, with norm N(n)=qN(n)=q.

The above result is given in [G&Zhao, Section 2.2], but the correspondence given there is not exact. We take this opportunity to thank Francesca Balestrieri and Nick Rome for some helpful discussions on this topic.

2.3. The Gauss sums

For any n[i]n\in\mathbb{Z}[i], (n,2)=1(n,2)=1, the quartic Gauss sum g(n)g(n) is defined by

g(n)=xmodn(xn)4e~(xn),\displaystyle g(n)=\sum_{x\bmod{n}}\left(\frac{x}{n}\right)_{4}\widetilde{e}\left(\frac{x}{n}\right),

where e~(z)=exp(2πi(z2iz¯2i))\widetilde{e}(z)=\exp\left(2\pi i(\frac{z}{2i}-\frac{\overline{z}}{2i})\right).

The following well-known formula (see [P, p. 195]) holds for all nn:

(2.3) |g(n)|\displaystyle|g(n)| ={N(n)if n is square-free,0otherwise.\displaystyle=\begin{cases}\sqrt{N(n)}\qquad&\text{if $n$ is square-free},\\ 0\qquad&\text{otherwise}.\end{cases}

More generally, we define for n,k[i],(n,2)=1n,k\in\mathbb{Z}[i],(n,2)=1,

g(k,n)=xmodn(xn)4e~(kxn).\displaystyle g(k,n)=\sum_{x\bmod{n}}\left(\frac{x}{n}\right)_{4}\widetilde{e}\left(\frac{kx}{n}\right).

We note two properties of g(r,n)g(r,n) that can be found in [Diac]:

(2.4) g(rs,n)\displaystyle g(rs,n) =(sn)4¯g(r,n),(s,n)=1,\displaystyle=\overline{\left(\frac{s}{n}\right)_{4}}g(r,n),\quad(s,n)=1,
(2.5) g(r,n1n2)\displaystyle g(r,n_{1}n_{2}) =(n2n1)4(n1n2)4g(r,n1)g(r,n2),(n1,n2)=1.\displaystyle=\left(\frac{n_{2}}{n_{1}}\right)_{4}\left(\frac{n_{1}}{n_{2}}\right)_{4}g(r,n_{1})g(r,n_{2}),\quad(n_{1},n_{2})=1.

We further define the Gauss sum τ(χ)\tau(\chi) associated to a primitive Dirichlet character χ(modq)\chi\pmod{q} by

τ(χ)=1xqχ(x)e(xq).\tau(\chi)=\sum_{1\leq x\leq q}\chi(x)e\left(\frac{x}{q}\right).

When χ\chi is a primitive quartic Dirichlet character identified with χn\chi_{n} by Lemma 2.2, we have ([G&Zhao, p. 894])

(2.6) τ(χn)=(n¯n)4g(n).\tau(\chi_{n})=\left(\frac{\overline{n}}{n}\right)_{4}g(n).

Here we have n1(mod(1+i)3)n\equiv 1\pmod{(1+i)^{3}} and nn free of rational prime divisors. If we write n=a+bin=a+bi with a,ba,b\in\mathbb{Z}, then we deduce from this that (a,b)=1(a,b)=1 so that

(2.7) (n¯n)4=(abia+bi)4=(2aa+bi)4=(2(1)N(n)14a+bi)4((1)N(n)14aa+bi)4.\displaystyle\left(\frac{\overline{n}}{n}\right)_{4}=\left(\frac{a-bi}{a+bi}\right)_{4}=\left(\frac{2a}{a+bi}\right)_{4}=\left(\frac{2(-1)^{\frac{N(n)-1}{4}}}{a+bi}\right)_{4}\left(\frac{(-1)^{\frac{N(n)-1}{4}}a}{a+bi}\right)_{4}.

As (1)N(n)14a(-1)^{\frac{N(n)-1}{4}}a is primary according to (2.1), we have by the quartic reciprocity law,

(2.8) ((1)N(n)14aa+bi)4=(1)((N(a)1)/4)((N(n)1)/4)(a+bia)4=(a+bia)4=(bia)4=(ba)4(ia)4=(ia)4,\displaystyle\left(\frac{(-1)^{\frac{N(n)-1}{4}}a}{a+bi}\right)_{4}=(-1)^{((N(a)-1)/4)((N(n)-1)/4)}\left(\frac{a+bi}{a}\right)_{4}=\left(\frac{a+bi}{a}\right)_{4}=\left(\frac{bi}{a}\right)_{4}=\left(\frac{b}{a}\right)_{4}\left(\frac{i}{a}\right)_{4}=\left(\frac{i}{a}\right)_{4},

where the last equality follows from [I&R, Proposition 9.8.5], which states that for a,b,(a,2b)=1a,b\in\mathbb{Z},(a,2b)=1 ,

(ba)4=1.\left(\frac{b}{a}\right)_{4}=1.

It follows from (2.2) that

(2.9) (ia)4=i(1(1)N(n)14a)/2=(1)a218.\displaystyle\left(\frac{i}{a}\right)_{4}=i^{(1-(-1)^{\frac{N(n)-1}{4}}a)/2}=(-1)^{\frac{a^{2}-1}{8}}.

On the other hand, note that by the definition that

(2.10) ((1)N(n)14a+bi)4=(1)N(n)14N(n)14=(1)N(n)14=(1n)4.\displaystyle\left(\frac{(-1)^{\frac{N(n)-1}{4}}}{a+bi}\right)_{4}=(-1)^{\frac{N(n)-1}{4}\cdot\frac{N(n)-1}{4}}=(-1)^{\frac{N(n)-1}{4}}=\left(\frac{-1}{n}\right)_{4}.

We then deduce that, putting together (2.7), (2.8), (2.9) and (2.10),

(n¯n)4=(2n)4(1)a218={(2in)4=((2i)3n)¯4if (1n)4=1,i1(2in)4=i1((2i)3n)¯4if (1n)4=1 .\displaystyle\left(\frac{\overline{n}}{n}\right)_{4}=\left(\frac{-2}{n}\right)_{4}(-1)^{\frac{a^{2}-1}{8}}=\begin{cases}\left(\frac{-2i}{n}\right)_{4}=\overline{\left(\frac{(-2i)^{3}}{n}\right)}_{4}\qquad&\text{if $\left(\frac{-1}{n}\right)_{4}=1$},\\ \\ i^{-1}\left(\frac{-2i}{n}\right)_{4}=i^{-1}\overline{\left(\frac{(-2i)^{3}}{n}\right)}_{4}\qquad&\text{if $\left(\frac{-1}{n}\right)_{4}=-1$ }.\end{cases}

Thus from this and (2.6),

(2.11) τ(χn)={((2i)3n)¯4g(n)if (1n)4=1,i1((2i)3n)¯4g(n)if (1n)4=1 .\displaystyle\tau(\chi_{n})=\begin{cases}\overline{\left(\frac{(-2i)^{3}}{n}\right)}_{4}g(n)\qquad&\text{if $\left(\frac{-1}{n}\right)_{4}=1$},\\ \\ i^{-1}\overline{\left(\frac{(-2i)^{3}}{n}\right)}_{4}g(n)\qquad&\text{if $\left(\frac{-1}{n}\right)_{4}=-1$ }.\end{cases}

2.4. The approximate functional equation

Let G(s)G(s) be any even function which is holomorphic and bounded in the strip 4<(s)<4-4<\Re(s)<4 satisfying G(0)=1G(0)=1. It follows from [iwakow, Theorem 5.3] that we have the following approximate functional equation for Dirichlet LL-functions.

Proposition 2.5.

Let χ\chi be a primitive Dirichlet character of conductor qq. For any α,j{±1}\alpha\in\mathbb{C},j\in\{\pm 1\}, let

(2.12) aj=1j2,ϵ(χ)=iaχ(1)q1/2τ(χ),Xα,j=(qπ)αΓ(1/2+ajα2)Γ(1/2+aj+α2).a_{j}=\frac{1-j}{2},\quad\epsilon(\chi)=i^{-a_{\chi(-1)}}q^{-1/2}\tau(\chi),\quad X_{\alpha,j}=\left(\frac{q}{\pi}\right)^{-\alpha}\frac{\Gamma\left(\tfrac{1/2+a_{j}-\alpha}{2}\right)}{\Gamma\left(\tfrac{1/2+a_{j}+\alpha}{2}\right)}.

We define

Vα,j(x)=12πi(2)G(s)sγα,j(s)xsds,whereγα,j(s)=πs/2Γ(1/2+aj+α+s2)Γ(1/2+aj+α2).V_{\alpha,j}(x)=\frac{1}{2\pi i}\int\limits_{(2)}\frac{G(s)}{s}\gamma_{\alpha,j}(s)x^{-s}\mathrm{d}s,\quad\text{where}\quad\gamma_{\alpha,j}(s)=\pi^{-s/2}\frac{\Gamma\left(\tfrac{1/2+a_{j}+\alpha+s}{2}\right)}{\Gamma\left(\tfrac{1/2+a_{j}+\alpha}{2}\right)}.

Furthermore, let AA and BB be positive real numbers such that AB=qAB=q. Then for any |(α)|<1/2|\Re(\alpha)|<1/2 we have

L(1/2+α,χ)=m=1χ(m)m1/2+αVα,χ(1)(mA)+ϵ(χ)Xα,χ(1)m=1χ¯(m)m1/2αVα,χ(1)(mB).L(1/2+\alpha,\chi)=\sum_{m=1}^{\infty}\frac{\chi(m)}{m^{1/2+\alpha}}V_{\alpha,\chi(-1)}\left(\frac{m}{A}\right)+\epsilon(\chi)X_{\alpha,\chi(-1)}\sum_{m=1}^{\infty}\frac{\overline{\chi}(m)}{m^{1/2-\alpha}}V_{-\alpha,\chi(-1)}\left(\frac{m}{B}\right).

For α=0\alpha=0 we set γ1=γ0,1\gamma_{1}=\gamma_{0,1}, γ1=γ0,1\gamma_{-1}=\gamma_{0,-1}, V1=V0,1V_{1}=V_{0,1}, V1=V0,1V_{-1}=V_{0,-1}.

With a suitable G(s)G(s) (for example G(s)=es2G(s)=e^{s^{2}}), we have for any c>0c>0 (see [HIEK, Proposition 5.4]):

Vα,j(ξ)(1+ξ1+|α|)c.\displaystyle V_{\alpha,j}\left(\xi\right)\ll\left(1+\frac{\xi}{1+|\alpha|}\right)^{-c}.

On the other hand, when G(s)=1G(s)=1, we have (see [sound1, Lemma 2.1]) that V±1(ξ)V_{\pm 1}(\xi) is real-valued and smooth on [0,)[0,\infty) and for the jj-th derivative of V±1(ξ)V_{\pm 1}(\xi),

(2.13) V±1(ξ)=1+O(ξ1/2ϵ)for 0<ξ<1andV±1(j)(ξ)=O(eξ)forξ>0,j0.V_{\pm 1}\left(\xi\right)=1+O(\xi^{1/2-\epsilon})\;\mbox{for}\;0<\xi<1\quad\mbox{and}\quad V^{(j)}_{\pm 1}\left(\xi\right)=O(e^{-\xi})\;\mbox{for}\;\xi>0,\;j\geq 0.

2.6. Analytic behavior of Dirichlet series associated with Gauss sums

For any Hecke character χ(mod16)\chi\pmod{16} of trivial infinite type, we let

h(r,s;χ)=(n,r)=1n1mod(1+i)3χ(n)g(r,n)N(n)s.\displaystyle h(r,s;\chi)=\sum_{\begin{subarray}{c}(n,r)=1\\ n\equiv 1\bmod{(1+i)^{3}}\end{subarray}}\frac{\chi(n)g(r,n)}{N(n)^{s}}.

The following lemma gives the analytic behavior of h(r,s;χ)h(r,s;\chi) on (s)>1\Re(s)>1.

Lemma 2.7.

[G&Zhao1, Lemma 2.5] The function h(r,s;χ)h(r,s;\chi) has meromorphic continuation to the entire complex plane. It is holomorphic in the region σ=(s)>1\sigma=\Re(s)>1 except possibly for a pole at s=5/4s=5/4. For any ε>0\varepsilon>0, letting σ1=3/2+ε\sigma_{1}=3/2+\varepsilon, then for σ1σσ11/2\sigma_{1}\geq\sigma\geq\sigma_{1}-1/2, |s5/4|>1/8|s-5/4|>1/8, we have for t=(s)t=\Im(s),

h(r,s;χ)N(r)(σ1σ)/2+ε(1+t2)3(σ1σ)/2+ε.h(r,s;\chi)\ll N(r)^{(\sigma_{1}-\sigma)/2+\varepsilon}(1+t^{2})^{3(\sigma_{1}-\sigma)/2+\varepsilon}.

Moreover, the residue satisfies

Ress=5/4h(r,s;χ)N(r)1/8+ε.\mathop{\mathrm{Res}}_{s=5/4}h(r,s;\chi)\ll N(r)^{1/8+\varepsilon}.

2.8. The large sieve with quartic Dirichlet characters

The following large sieve inequality for quadratic residue symbols is needed in the proof.

Lemma 2.9.

[Onodera, Theorem 1] Let M,NM,N be positive integers, and let (an)n(a_{n})_{n\in\mathbb{N}} be an arbitrary sequence of complex numbers, where nn runs over [i]\mathbb{Z}[i]. Then we have for any ε>0\varepsilon>0,

m[i](m,2)=1N(m)M|n[i](n,2)=1N(n)Nan(nm)|2ε(MN)ε(M+N)N(n)N|an|2,\sideset{}{{}^{\prime}}{\sum}_{\begin{subarray}{c}m\in\mathbb{Z}[i]\\ (m,2)=1\\ N(m)\leq M\end{subarray}}\left|\ \sideset{}{{}^{\prime}}{\sum}_{\begin{subarray}{c}n\in\mathbb{Z}[i]\\ (n,2)=1\\ N(n)\leq N\end{subarray}}a_{n}\left(\frac{n}{m}\right)\right|^{2}\ll_{\varepsilon}(MN)^{\varepsilon}(M+N)\sum_{N(n)\leq N}|a_{n}|^{2},

where \sum^{\prime} means that the sum runs over square-free elements of [i]\mathbb{Z}[i] and (m)(\frac{\cdot}{m}) is the quadratic residue symbol.

Besides the notation C1(M,Q)C_{1}(M,Q) mentioned in the Introduction, we also recall the norm C2(M,Q)C_{2}(M,Q) defined in [G&Zhao, p. 907]. Notice that for square-free n[i]n\in\mathbb{Z}[i] satisfying (n,2)=1(n,2)=1, the square of the quartic symbol (n)42\left(\frac{\cdot}{n}\right)_{4}^{2} becomes the quadratic residue symbol (n)\left(\frac{\cdot}{n}\right). Thus, using Lemma 2.9 in [G&Zhao, (39)] and proceed to the estimate [G&Zhao, (40)], we see that the estimation given in [G&Zhao, (24)] can be replaced by

(2.14) C2(M,Q)(QM)ε(M+Q3/2),C_{2}(M,Q)\ll(QM)^{\varepsilon}\left(M+Q^{3/2}\right),

As we have by [G&Zhao, (23)] that C1(M,Q)C2(M,Q)C_{1}(M,Q)\leq C_{2}(M,Q), we see that the bound given in (2.14) is also valid for C1(M,Q)C_{1}(M,Q), which leads to the following large sieve inequality for quartic Dirichlet characters.

Lemma 2.10.

Let (am)m(a_{m})_{m\in\mathbb{N}} be an arbitrary sequence of complex numbers. Then

Q<q2Qχmodqχ4=χ0|M<m2Mamχ(m)|2(QM)εmin{Q3/2+M,Q5/4+Q1/2M,Q7/6+Q2/3M,Q+Q1/3M5/3+M7/3}M<m2M|am|2,\begin{split}\sum\limits_{\begin{subarray}{c}Q<q\leq 2Q\end{subarray}}\ \sideset{}{{}^{*}}{\sum}\limits_{\begin{subarray}{c}\chi\bmod q\\ \chi^{4}=\chi_{0}\end{subarray}}&\left|\ \sideset{}{{}^{*}}{\sum}\limits_{\begin{subarray}{c}M<m\leq 2M\end{subarray}}a_{m}\chi(m)\right|^{2}\\ \ll&(QM)^{\varepsilon}\min\left\{Q^{3/2}+M,Q^{5/4}+Q^{1/2}M,Q^{7/6}+Q^{2/3}M,Q+Q^{1/3}M^{5/3}+M^{7/3}\right\}\sideset{}{{}^{*}}{\sum}\limits_{\begin{subarray}{c}M<m\leq 2M\end{subarray}}\left|a_{m}\right|^{2},\end{split}

where the asterisk on the sum over χ\chi restricts the sum to primitive characters whose square remain primitive and the asterisks attached to the sum over mm indicates that mm runs over square-free integers.

3. Proof of Theorem 1.1

We start by setting

:=(q,2)=1χmodqχ4=χ0L(12,χ)w(qQ).\mathcal{M}:=\sum_{(q,2)=1}\;\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\bmod{q}\\ \chi^{4}=\chi_{0}\end{subarray}}L(\tfrac{1}{2},\chi)w\left(\frac{q}{Q}\right).

Applying Proposition 2.5 (the approximate functional equation) with G(s)=1,AqB=qG(s)=1,A_{q}B=q yields =1+2\mathcal{M}=\mathcal{M}_{1}+\mathcal{M}_{2}, where

1\displaystyle\mathcal{M}_{1} =(q,2)=1χmodqχ4=χ0m=1χ(m)mVχ(1)(mAq)w(qQ),\displaystyle=\sum_{(q,2)=1}\;\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\bmod{q}\\ \chi^{4}=\chi_{0}\end{subarray}}\ \sum_{m=1}^{\infty}\frac{\chi(m)}{\sqrt{m}}V_{\chi(-1)}\left(\frac{m}{A_{q}}\right)w\left(\frac{q}{Q}\right),
2\displaystyle\mathcal{M}_{2} =(q,2)=1χmodqχ4=χ0ϵ(χ)m=1χ¯(m)mVχ(1)(mB)w(qQ).\displaystyle=\sum_{(q,2)=1}\;\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\bmod{q}\\ \chi^{4}=\chi_{0}\end{subarray}}\epsilon(\chi)\sum_{m=1}^{\infty}\frac{\overline{\chi}(m)}{\sqrt{m}}V_{\chi(-1)}\left(\frac{m}{B}\right)w\left(\frac{q}{Q}\right).

For each primitive quartic Dirichlet character χ\chi whose square remains primitive, we write it as χn\chi_{n} via the correspondence given in Lemma 2.2. It then follows from (2.6), (2.12) and this correspondence that

ϵ(χn)=ϵ(χ)=iaχn(1)N(n)1/2(n¯n)4g(n).\displaystyle\epsilon(\chi_{n})=\epsilon(\chi)=i^{-a_{\chi_{n}(-1)}}N(n)^{-1/2}\left(\frac{\bar{n}}{n}\right)_{4}g(n).

The above allows us to further decompose M1M_{1} and M2M_{2} as 1=1++1\mathcal{M}_{1}=\mathcal{M}^{+}_{1}+\mathcal{M}^{-}_{1} and 2=2++2\mathcal{M}_{2}=\mathcal{M}^{+}_{2}+\mathcal{M}^{-}_{2}, where

1±\displaystyle\mathcal{M}^{\pm}_{1} =n1mod(1+i)31±χn(1)2m=1χn(m)mVχn(1)(mAn)w(N(n)Q),\displaystyle=\sideset{}{{}^{\prime\prime}}{\sum}_{\begin{subarray}{c}n\equiv 1\bmod(1+i)^{3}\end{subarray}}\frac{1\pm\chi_{n}(-1)}{2}\ \sum_{m=1}^{\infty}\frac{\chi_{n}(m)}{\sqrt{m}}V_{\chi_{n}(-1)}\left(\frac{m}{A_{n}}\right)w\left(\frac{N(n)}{Q}\right),
2±\displaystyle\mathcal{M}^{\pm}_{2} =n1mod(1+i)31±χn(1)2ϵ(χn)m=1χ¯n(m)mVχn(1)(mB)w(N(n)Q).\displaystyle=\sideset{}{{}^{\prime\prime}}{\sum}_{\begin{subarray}{c}n\equiv 1\bmod(1+i)^{3}\end{subarray}}\frac{1\pm\chi_{n}(-1)}{2}\epsilon(\chi_{n})\sum_{m=1}^{\infty}\frac{\overline{\chi}_{n}(m)}{\sqrt{m}}V_{\chi_{n}(-1)}\left(\frac{m}{B}\right)w\left(\frac{N(n)}{Q}\right).

Here ′′\sum^{\prime\prime} means that the sum runs over square-free elements n[i]n\in\mathbb{Z}[i] that have no rational prime divisors. Also, the parameters An,BA_{n},B sastify that AnB=N(n)A_{n}B=N(n). We now introduce another parameter AA defined by AB=QAB=Q and we note that we have An=AN(n)/QAA_{n}=AN(n)/Q\asymp A for all nn under consideration because of the compact support of ww.

It remains to evaluate 1±\mathcal{M}^{\pm}_{1} and 2±\mathcal{M}^{\pm}_{2}. As the arguments are similar, we will only evaluate 1+\mathcal{M}^{+}_{1} and 2+\mathcal{M}^{+}_{2} in what follows. We summarize the results in the following lemma.

Lemma 3.1.

We have

(3.1) 1±=\displaystyle\mathcal{M}^{\pm}_{1}= 12CQw~(1)+O(Q1/2+εA1/2+ε+QA1/4+ε),\displaystyle\frac{1}{2}CQ\widetilde{w}(1)+O\left(Q^{1/2+\varepsilon}A^{1/2+\varepsilon}+QA^{-1/4+\varepsilon}\right),
(3.2) 2±\displaystyle\mathcal{M}^{\pm}_{2}\ll Q3/4+εB3/4+ε,\displaystyle Q^{3/4+\varepsilon}B^{3/4+\varepsilon},

where the constant CC is given explicitly in (3.5).

Theorem 1.1 follows from Lemma 3.1 by setting B=Q1/5B=Q^{1/5} and A=Q4/5A=Q^{4/5} in Lemma 3.1. Thus the remainder of the paper is devoted to the proof of this lemma.

3.2. Evaluating 1+\mathcal{M}^{+}_{1}, the main term

We write μ\mu for Möbius function and we define μ(d)=μ(|d|)\mu_{\mathbb{Z}}(d)=\mu(|d|) for dd\in\mathbb{Z}. Then for any n1(mod(1+i)3)n\equiv 1\pmod{(1+i)^{3}}, we note the following relation

(3.3) d|n,dd1mod4μ(d)={1,n has no rational prime divisors,0,otherwise.\sum_{\begin{subarray}{c}d|n,d\in\mathbb{Z}\\ d\equiv 1\bmod 4\end{subarray}}\mu_{\mathbb{Z}}(d)=\begin{cases}1,\quad\text{$n$ has no rational prime divisors},\\ 0,\quad\text{otherwise}.\end{cases}

We apply the above and change variables ndnn\rightarrow dn to the sum over nn. Note that any square-free d,d1(mod4)d\in\mathbb{Z},d\equiv 1\pmod{4} is also square-free when regarded as an element of [i]\mathbb{Z}[i] and this implies that the condition that dndn is square-free then is equivalent to nn being square-free and (d,n)=1(d,n)=1. We then deduce that M1+=M1,1++M1,2+M^{+}_{1}=M^{+}_{1,1}+M^{+}_{1,2}, with

1,1+\displaystyle\mathcal{M}^{+}_{1,1} =12dd1mod4μ(d)m=1(md)4mn1mod(1+i)3(n,d)=1(mn)4V1(mAQN(nd))w(N(nd)Q),\displaystyle=\frac{1}{2}\sum_{\begin{subarray}{c}d\in\mathbb{Z}\\ d\equiv 1\bmod 4\end{subarray}}\mu_{\mathbb{Z}}(d)\sum_{m=1}^{\infty}\frac{\left(\frac{m}{d}\right)_{4}}{\sqrt{m}}\sideset{}{{}^{\prime}}{\sum}_{\begin{subarray}{c}n\equiv 1\bmod(1+i)^{3}\\ (n,d)=1\end{subarray}}\left(\frac{m}{n}\right)_{4}V_{1}\left(\frac{m}{A}\frac{Q}{N(nd)}\right)w\left(\frac{N(nd)}{Q}\right),
1,2+\displaystyle\mathcal{M}^{+}_{1,2} =12dd1mod4μ(d)m=1(md)4mn1mod(1+i)3(n,d)=1(mn)4V1(mAQN(nd))w(N(nd)Q),\displaystyle=\frac{1}{2}\sum_{\begin{subarray}{c}d\in\mathbb{Z}\\ d\equiv 1\bmod 4\end{subarray}}\mu_{\mathbb{Z}}(d)\sum_{m=1}^{\infty}\frac{\left(\frac{-m}{d}\right)_{4}}{\sqrt{m}}\sideset{}{{}^{\prime}}{\sum}_{\begin{subarray}{c}n\equiv 1\bmod(1+i)^{3}\\ (n,d)=1\end{subarray}}\left(\frac{-m}{n}\right)_{4}V_{1}\left(\frac{m}{A}\frac{Q}{N(nd)}\right)w\left(\frac{N(nd)}{Q}\right),

where, as before, \sum^{\prime} denotes a sum over the square-free elements of [i]\mathbb{Z}[i].

We first evaluate 1,1+\mathcal{M}^{+}_{1,1} by using Möbius inversion to detect the square-free condition that nn. So

1,1+=12dd1mod4μ(d)l1mod(1+i)3(l,d)=1μ[i](l)m=1(mdl2)4m1(d,l,m),\mathcal{M}^{+}_{1,1}=\frac{1}{2}\sum_{\begin{subarray}{c}d\in\mathbb{Z}\\ d\equiv 1\bmod 4\end{subarray}}\mu_{\mathbb{Z}}(d)\sum_{\begin{subarray}{c}l\equiv 1\bmod(1+i)^{3}\\ (l,d)=1\end{subarray}}\mu_{[i]}(l)\sum_{m=1}^{\infty}\frac{\left(\frac{m}{dl^{2}}\right)_{4}}{\sqrt{m}}\mathcal{M}_{1}(d,l,m),

where

1(d,l,m)=n1mod(1+i)3(n,d)=1(mn)4V1(mAQN(ndl2))w(N(ndl2)Q).\mathcal{M}_{1}(d,l,m)=\sum_{\begin{subarray}{c}n\equiv 1\bmod(1+i)^{3}\\ (n,d)=1\end{subarray}}\left(\frac{m}{n}\right)_{4}V_{1}\left(\frac{m}{A}\frac{Q}{N(ndl^{2})}\right)w\left(\frac{N(ndl^{2})}{Q}\right).

Now Mellin inversion gives

V1(mAQN(ndl2))w(N(ndl2)Q)=12πi(2)(QN(ndl2))sf~(s)ds,V_{1}\left(\frac{m}{A}\frac{Q}{N(ndl^{2})}\right)w\left(\frac{N(ndl^{2})}{Q}\right)=\frac{1}{2\pi i}\int\limits_{(2)}\left(\frac{Q}{N(ndl^{2})}\right)^{s}\widetilde{f}(s)\mathrm{d}s,

where

f~(s)=0V1(mAx1)w(x)xs1dx.\widetilde{f}(s)=\int\limits_{0}^{\infty}V_{1}\left(\frac{m}{A}x^{-1}\right)w(x)x^{s-1}\mathrm{d}x.

Integration by parts and using (2.13) shows that f~(s)\widetilde{f}(s) is a function satisfying the bound

f~(s)(1+|s|)E(1+m/A)E,\widetilde{f}(s)\ll(1+|s|)^{-E}\left(1+m/A\right)^{-E},

for any (s)>0\Re(s)>0 and any integer E>0E>0.

Thus we deduce from the above bound that

1(d,l,m)=12πi(2)(QN(dl2))sL(s,ψmd4)f~(s)ds,\mathcal{M}_{1}(d,l,m)=\frac{1}{2\pi i}\int\limits_{(2)}\left(\frac{Q}{N(dl^{2})}\right)^{s}L(s,\psi_{md^{4}})\widetilde{f}(s)\mathrm{d}s,

with L(s,ψmd4)L(s,\psi_{md^{4}}) given in (1.2).

We estimate 1,1+\mathcal{M}^{+}_{1,1} by moving the contour to the line s=1/2\Re s=1/2. Observe that the Hecke LL-function has a pole at s=1s=1 when mm is a fourth power. We write 0\mathcal{M}_{0} for the contribution to 1,1+\mathcal{M}^{+}_{1,1} from these residues and 1\mathcal{M}_{1}^{\prime} for the remainder.

We evaluate 0\mathcal{M}_{0} by noting that

0=12dd1mod4μ(d)l1mod(1+i)3(l,d)=1μ[i](l)m=1(mdl2)4mQN(dl2)f~(1)Ress=1L(s,ψmd4),\mathcal{M}_{0}=\frac{1}{2}\sum_{\begin{subarray}{c}d\in\mathbb{Z}\\ d\equiv 1\bmod{4}\end{subarray}}\mu_{\mathbb{Z}}(d)\sum_{\begin{subarray}{c}l\equiv 1\bmod(1+i)^{3}\\ (l,d)=1\end{subarray}}\mu_{[i]}(l)\sum_{m=1}^{\infty}\frac{\left(\frac{m}{dl^{2}}\right)_{4}}{\sqrt{m}}\frac{Q}{N(dl^{2})}\widetilde{f}(1)\mathop{\text{Res}}_{s=1}L(s,\psi_{md^{4}}),

where using the Mellin convolution formula shows that

(3.4) f~(1)=0V1(mAx1)w(x)dx=12πi(2)(Am)sw~(1+s)G(s)sγ1(s)ds,withw~(s)=0w(x)xs1dx.\widetilde{f}(1)=\int\limits_{0}^{\infty}V_{1}\left(\frac{m}{A}x^{-1}\right)w(x)\mathrm{d}x=\frac{1}{2\pi i}\int\limits_{(2)}\left(\frac{A}{m}\right)^{s}\widetilde{w}(1+s)\frac{G(s)}{s}\gamma_{1}(s)\mathrm{d}s,\quad\mbox{with}\;\widetilde{w}(s)=\int\limits_{0}^{\infty}w(x)x^{s-1}\mathrm{d}x.

From the discussions in Section 2.1, we see that ψmd4\psi_{md^{4}} is the principal character only when mm is a fourth power, in which case

L(s,ψmd4)=ζ(i)(s)ϖ|2dm(1N(ϖ)s),L(s,\psi_{md^{4}})=\zeta_{\mathbb{Q}(i)}(s)\prod_{\varpi|2dm}\left(1-N(\varpi)^{-s}\right),

where ϖ\varpi denotes a prime in [i]\mathbb{Z}[i] in this section.

Let C0=π4C_{0}=\frac{\pi}{4}, the residue of ζ(i)(s)\zeta_{\mathbb{Q}(i)}(s) at s=1s=1, so that

0=12C0Qm=1f~(1)m2ϖ|2m(1N(ϖ)1)d,(d,m)=1d1mod4μ(d)d2ϖ|d(1N(ϖ)1)(l,md)=1l1mod(1+i)3μ[i](l)N(l2).\mathcal{M}_{0}=\frac{1}{2}C_{0}Q\sum_{m=1}^{\infty}\frac{\widetilde{f}(1)}{m^{2}}\prod_{\varpi|2m}\left(1-N(\varpi)^{-1}\right)\sum_{\begin{subarray}{c}d\in\mathbb{Z},(d,m)=1\\ d\equiv 1\bmod{4}\end{subarray}}\frac{\mu_{\mathbb{Z}}(d)}{d^{2}}\prod_{\varpi|d}\left(1-N(\varpi)^{-1}\right)\sum_{\begin{subarray}{c}(l,md)=1\\ l\equiv 1\bmod{(1+i)^{3}}\end{subarray}}\frac{\mu_{[i]}(l)}{N(l^{2})}.

Computing the sum over ll explicitly, we obtain that

0\displaystyle\mathcal{M}_{0} =12C0ζ(i)1(2)Qm=1f~(1)m2ϖ|2m(1N(ϖ)1)d,(d,m)=1d1mod4μ(d)d2ϖ|d(1N(ϖ)1)ϖ|2md(1N(ϖ)2)1\displaystyle=\frac{1}{2}C_{0}\zeta^{-1}_{\mathbb{Q}(i)}(2)Q\sum_{m=1}^{\infty}\frac{\widetilde{f}(1)}{m^{2}}\prod_{\varpi|2m}\left(1-N(\varpi)^{-1}\right)\sum_{\begin{subarray}{c}d\in\mathbb{Z},(d,m)=1\\ d\equiv 1\bmod{4}\end{subarray}}\frac{\mu_{\mathbb{Z}}(d)}{d^{2}}\prod_{\varpi|d}\left(1-N(\varpi)^{-1}\right)\prod_{\varpi|2md}\left(1-N(\varpi)^{-2}\right)^{-1}
=12C0ζ(i)1(2)Qm=1f~(1)m2ϖ|2m(1+N(ϖ)1)1d,(d,m)=1d1mod4μ(d)d2ϖ|d(1+N(ϖ)1)1.\displaystyle=\frac{1}{2}C_{0}\zeta^{-1}_{\mathbb{Q}(i)}(2)Q\sum_{m=1}^{\infty}\frac{\widetilde{f}(1)}{m^{2}}\prod_{\varpi|2m}\left(1+N(\varpi)^{-1}\right)^{-1}\sum_{\begin{subarray}{c}d\in\mathbb{Z},(d,m)=1\\ d\equiv 1\bmod{4}\end{subarray}}\frac{\mu_{\mathbb{Z}}(d)}{d^{2}}\prod_{\varpi|d}\left(1+N(\varpi)^{-1}\right)^{-1}.

We define

C1=dd1mod4μ(d)d2ϖ|d(1+N(ϖ)1)1.\displaystyle C_{1}=\sum_{\begin{subarray}{c}d\in\mathbb{Z}\\ d\equiv 1\bmod{4}\end{subarray}}\frac{\mu_{\mathbb{Z}}(d)}{d^{2}}\prod_{\varpi|d}\left(1+N(\varpi)^{-1}\right)^{-1}.

It is clear that C1C_{1} is a constant. Using this, we have that

0=12C0C1ζ(i)1(2)Qm=1f~(1)m2ϖ|2m(1+N(ϖ)1)1p|m/(m,2)(1p2ϖ|p(1+N(ϖ)1)1)1.\displaystyle\mathcal{M}_{0}=\frac{1}{2}C_{0}C_{1}\zeta^{-1}_{\mathbb{Q}(i)}(2)Q\sum_{m=1}^{\infty}\frac{\widetilde{f}(1)}{m^{2}}\prod_{\varpi|2m}\left(1+N(\varpi)^{-1}\right)^{-1}\prod_{p|m/(m,2)}\left(1-p^{-2}\prod_{\varpi|p}(1+N(\varpi)^{-1})^{-1}\right)^{-1}.

Let

Z(u)=m=1muϖ|2m(1+N(ϖ)1)1p|m/(m,2)(1p2ϖ|p(1+N(ϖ)1)1)1,Z(u)=\sum_{m=1}^{\infty}m^{-u}\prod_{\varpi|2m}\left(1+N(\varpi)^{-1}\right)^{-1}\prod_{p|m/(m,2)}\left(1-p^{-2}\prod_{\varpi|p}(1+N(\varpi)^{-1})^{-1}\right)^{-1},

which is holomorphic and bounded for (u)1+δ>1\Re(u)\geq 1+\delta>1. Then

0=12C0C1ζ(i)1(2)Q12πi(1)AsZ(2+4s)w~(1+s)G(s)sγ1(s)ds.\mathcal{M}_{0}=\frac{1}{2}C_{0}C_{1}\zeta^{-1}_{\mathbb{Q}(i)}(2)Q\frac{1}{2\pi i}\int\limits_{(1)}A^{s}Z(2+4s)\widetilde{w}(1+s)\frac{G(s)}{s}\gamma_{1}(s)\mathrm{d}s.

We move the contour of integration to 1/4+ε-1/4+\varepsilon, crossing a pole at s=0s=0 only. The integral over the new contour is O(A1/4+εQ)O(A^{-1/4+\varepsilon}Q), while residue of the pole at s=0s=0 gives

(3.5) 12CQw~(1),whereC=C0C1ζ(i)1(2)Z(2).\frac{1}{2}CQ\widetilde{w}(1),\quad\text{where}\quad C=C_{0}C_{1}\zeta^{-1}_{\mathbb{Q}(i)}(2)Z(2).

Note that Z(u)Z(u) converges absolutely at u=2u=2 so that one may express Z(2)Z(2) explicitly as an Euler product if interested. We then conclude that

(3.6) 0=12CQw~(1)+O(QA1/4+ε).\displaystyle\mathcal{M}_{0}=\frac{1}{2}CQ\widetilde{w}(1)+O\left(QA^{-1/4+\varepsilon}\right).

3.3. Evaluating 1+\mathcal{M}^{+}_{1}, the remainder term

In this section, we estimate 1\mathcal{M}^{\prime}_{1} and 1,2+\mathcal{M}^{+}_{1,2}. Since the arguments are similar, we shall only estimate 1\mathcal{M}^{\prime}_{1} here. We bound everything with absolute values to see that for some large EE\in\mathbb{N},

|1|dc1QN(l)c2Q1N(dl2)mQm(1+m/A)E0|L(1/2+it,ψm)|(1+|t|)Edt.|\mathcal{M}_{1}^{\prime}|\ll\sum_{d\leq c_{1}\sqrt{Q}}\sum_{N(l)\leq c_{2}\sqrt{Q}}\frac{1}{\sqrt{N(dl^{2})}}\sum_{m}\frac{\sqrt{Q}}{\sqrt{m}}(1+m/A)^{-E}\int\limits^{\infty}_{0}\left|L(1/2+it,\psi_{m})\right|\left(1+|t|\right)^{-E}\mathrm{d}t.

Here c1c_{1} and c2c_{2} are constants, chosen according to the size of the support the weight function ww. In view of the factor (1+m/A)E(1+m/A)^{-E}, we may truncate the sum over mm above to mMA1+εm\leq M\ll A^{1+\varepsilon} for ε>0\varepsilon>0 with a small error.

Assuming the truth of the Lindelöf hypothesis, we have for any ε>0\varepsilon>0 (see [iwakow, Corollary 5.20]),

|L(1/2+it,ψm)|(|m|(1+|t|))ϵ.\displaystyle|L(1/2+it,\psi_{m})|\ll(|m|(1+|t|))^{\epsilon}.

We apply this to bound the sum over mm as

mM1m|L(1/2+it,ψm)|M1/2+ε(1+|t|)ε.\sum_{m\leq M}\frac{1}{\sqrt{m}}|L(1/2+it,\psi_{m})|\ll M^{1/2+\varepsilon}(1+|t|)^{\varepsilon}.

Since dd\in\mathbb{Z}, we have N(d)=d2N(d)=d^{2} so that summing trivially over dd and ll, we obtain

|1|+|1,2+|Q1/2+εA1/2+ε.|\mathcal{M}_{1}^{\prime}|+|\mathcal{M}^{+}_{1,2}|\ll Q^{1/2+\varepsilon}A^{1/2+\varepsilon}.

This combined with (3.6) gives (3.1).

3.4. Estimating 2+\mathcal{M}^{+}_{2}

Using (2.11), we have M2+=M2,1++M2,2+M^{+}_{2}=M^{+}_{2,1}+M^{+}_{2,2}, where

2,1+\displaystyle\mathcal{M}^{+}_{2,1} =12m=11mV1(mB)n1mod(1+i)3χ¯n(8im)g(n)N(n)w(N(n)Q),\displaystyle=\frac{1}{2}\sum_{m=1}^{\infty}\frac{1}{\sqrt{m}}V_{1}\left(\frac{m}{B}\right)\sideset{}{{}^{\prime}}{\sum}_{\begin{subarray}{c}n\equiv 1\bmod(1+i)^{3}\end{subarray}}\frac{\overline{\chi}_{n}(8im)g(n)}{\sqrt{N(n)}}w\left(\frac{N(n)}{Q}\right),
2,2+\displaystyle\mathcal{M}^{+}_{2,2} =12m=11mV1(mB)n1mod(1+i)3χ¯n(8im)g(n)N(n)w(N(n)Q).\displaystyle=\frac{1}{2}\sum_{m=1}^{\infty}\frac{1}{\sqrt{m}}V_{1}\left(\frac{m}{B}\right)\sideset{}{{}^{\prime}}{\sum}_{\begin{subarray}{c}n\equiv 1\bmod(1+i)^{3}\end{subarray}}\frac{\overline{\chi}_{n}(-8im)g(n)}{\sqrt{N(n)}}w\left(\frac{N(n)}{Q}\right).

To estimate the above expressions, we need the following result.

Lemma 3.5.

For any l[i]l\in\mathbb{Z}[i], we have

H(l,Q):=n[i]n1mod(1+i)3χ¯n(l)g(n)N(n)w(N(n)Q)Q3/4+εN(l)1/8+ε.H^{\prime}(l,Q):=\sideset{}{{}^{\prime}}{\sum}_{\begin{subarray}{c}n\in\mathbb{Z}[i]\\ n\equiv 1\bmod(1+i)^{3}\end{subarray}}\frac{\overline{\chi}_{n}(l)g(n)}{\sqrt{N(n)}}w\left(\frac{N(n)}{Q}\right)\ll Q^{3/4+\varepsilon}N(l)^{1/8+\varepsilon}.

To prove Lemma 3.5, we first use (3.3) to remove the condition that nn has no rational prime divisors. Note that it follows from (2.5) and the quartic reciprocity that for d,n[i],(dn,2)=1,(d,n)=1d\in\mathbb{Z},n\in\mathbb{Z}[i],(dn,2)=1,(d,n)=1 and dd primary,

g(dn)=(nd)4(dn)4g(d)g(n)=χ¯n(d2)g(d)g(n).\displaystyle g(dn)=\left(\frac{n}{d}\right)_{4}\left(\frac{d}{n}\right)_{4}g(d)g(n)=\overline{\chi}_{n}(d^{2})g(d)g(n).

We use the notation g~(d)=g(d)N(d)1/2\widetilde{g}(d)=g(d)N(d)^{-1/2} so that |g~(d)|1|\widetilde{g}(d)|\leq 1 by (2.3). It follows further from (2.3) that g(n)=0g(n)=0 unless nn is square-free. This gives that

H(l,Q)=dd1mod4μ(d)g~(d)χ¯d(l)H(d2l,Q/d2),H^{\prime}(l,Q)=\sum_{\begin{subarray}{c}d\in\mathbb{Z}\\ d\equiv 1\bmod{4}\end{subarray}}\mu_{\mathbb{Z}}(d)\tilde{g}(d)\overline{\chi}_{d}(l)H(d^{2}l,Q/d^{2}),

where

H(d2l,X)=n[i]n1mod(1+i)3χ¯n(d2l)g(n)N(n)w(N(n)X).H(d^{2}l,X)=\sum_{\begin{subarray}{c}n\in\mathbb{Z}[i]\\ n\equiv 1\bmod{(1+i)^{3}}\end{subarray}}\frac{\overline{\chi}_{n}(d^{2}l)g(n)}{\sqrt{N(n)}}w\left(\frac{N(n)}{X}\right).

We estimate HH with the next lemma.

Lemma 3.6.

For any l[i]l\in\mathbb{Z}[i], write l=l0l1l=l_{0}l_{1} where l0l_{0} is a unit times a power of 1+i1+i, and l11(mod(1+i)3)l_{1}\equiv 1\pmod{(1+i)^{3}}. Then we have

H(l,X)X1/2+εN(l1)1/4+X3/4N(l1)1/8+ε.H(l,X)\ll X^{1/2+\varepsilon}N(l_{1})^{1/4}+X^{3/4}N(l_{1})^{1/8+\varepsilon}.
Proof.

Writing l=l0l1l=l_{0}l_{1} as above, we set

(ln)¯4=(l1n)¯4(l0n)¯4.\overline{\left(\frac{l}{n}\right)}_{4}=\overline{\left(\frac{l_{1}}{n}\right)}_{4}\cdot\overline{\left(\frac{l_{0}}{n}\right)}_{4}.

From the discussion in Section 2.1, the function λ(n)=(l0n)¯4\lambda(n)=\overline{\left(\frac{l_{0}}{n}\right)}_{4} is a Hecke character (mod16)\pmod{16} of trivial infinite type. Thus

H(l,X)=n[i]n1mod(1+i)3λ(n)(l1n)¯4g(n)N(n)w(N(n)X).H(l,X)=\sum_{\begin{subarray}{c}n\in\mathbb{Z}[i]\\ n\equiv 1\bmod{(1+i)^{3}}\end{subarray}}\frac{\lambda(n)\overline{\left(\frac{l_{1}}{n}\right)}_{4}g(n)}{\sqrt{N(n)}}w\left(\frac{N(n)}{X}\right).

Note that the identity (2.4) implies (l1n)¯4g(n)=g(l1,n)\overline{\left(\frac{l_{1}}{n}\right)}_{4}g(n)=g(l_{1},n) for (n,l1)=1(n,l_{1})=1. Upon introducing the Mellin transform of ww, we get

(3.7) H(l,X)=12πi(2)w~(s)Xsh(l1,1/2+s;λ)ds,H(l,X)=\frac{1}{2\pi i}\int\limits_{(2)}\widetilde{w}(s)X^{s}h(l_{1},1/2+s;\lambda)\mathrm{d}s,

where w~(s)\widetilde{w}(s) is defined as in (3.4).

We move the line of integration in (3.7) to (s)=1/2+ε\Re(s)=1/2+\varepsilon, crossing a pole at s=3/4s=3/4, which contributes

X3/4N(l1)1/8+ε.\ll X^{3/4}N(l_{1})^{1/8+\varepsilon}.

The contribution from the new line of integration is

X1/2+εN(l1)1/4.\ll X^{1/2+\varepsilon}N(l_{1})^{1/4}.

This completes the proof of Lemma 3.6. ∎

Now, to prove Lemma 3.5, we treat |d|Y|d|\leq Y and |d|>Y|d|>Y separately, where YY is a parameter to be chosen later. For |d|Y|d|\leq Y we use Lemma 3.6, while for |d|>Y|d|>Y we use the trivial bound H(l,X)XH(l,X)\ll X. Thus

H(l,Q)|d|Y(Qd2)1/2+εN(d2l)1/4+|d|Y(Qd2)3/4N(d2l)1/8+ε+|d|>YQd2,H^{\prime}(l,Q)\ll\sum_{|d|\leq Y}\left(\frac{Q}{d^{2}}\right)^{1/2+\varepsilon}N(d^{2}l)^{1/4}+\sum_{|d|\leq Y}\left(\frac{Q}{d^{2}}\right)^{3/4}N(d^{2}l)^{1/8+\varepsilon}+\sum_{|d|>Y}\frac{Q}{d^{2}},

which simplifies as

H(l,Q)Q1/2+εY12εN(l)1/4+QY1+Q3/4N(l)1/8+εYε.H^{\prime}(l,Q)\ll Q^{1/2+\varepsilon}Y^{1-2\varepsilon}N(l)^{1/4}+QY^{-1}+Q^{3/4}N(l)^{1/8+\varepsilon}Y^{\varepsilon}.

The optimal choice of YY is Y=Q1/4N(l)1/8Y=Q^{1/4}N(l)^{-1/8} and gives Lemma 3.5. Applying this lemma and summing trivially over mm in the expressions for M2,1+M^{+}_{2,1} and M2,2+M^{+}_{2,2}, one easily deduces (3.2). This completes the proof of Lemma 3.1.

Acknowledgments. P. G. is supported in part by NSFC grant 11871082 and L. Z. by the FRG grant PS43707 and the Faculty Goldstar Award PS53450. Parts of this work were done when P. G. visited the University of New South Wales (UNSW). He wishes to thank UNSW for the invitation, financial support and warm hospitality during his pleasant stay.

References

School of Mathematical Sciences School of Mathematics and Statistics
Beihang University University of New South Wales
Beijing 100191 China Sydney NSW 2052 Australia
Email: penggao@buaa.edu.cn Email: l.zhao@unsw.edu.au