This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Momentum Space Feynman Integral for the Bound State Aharonov-Bohm Effect

Alviu Rey Nasir111Corresponding author. E-mail: alviurey.nasir@g.msuiit.edu.ph Department of Physics, College of Science and Mathematics
& Premier Research Institute of Science and Mathematics
Mindanao State University-Iligan Institute of Technology
Iligan City 9200, Philippines
Jingle Magallanes Department of Physics, College of Science and Mathematics
& Premier Research Institute of Science and Mathematics
Mindanao State University-Iligan Institute of Technology
Iligan City 9200, Philippines
Herry Pribawanto Suryawan Department of Mathematics, Faculty of Science and Technology
Sanata Dharma University, Yogyakarta 55283, Indonesia
José Luís Da Silva CIMA Faculdade de Cências Exatas e da Engenharia
Campus Universitário da Penteada, Universidade da Madeira
9020-105 Funchal, Portugal
Abstract

We construct the Feynman integral for the Schrödinger propagator in the polar conjugate momentum space, which describes the bound state Aharonov-Bohm effect, as a well-defined white noise functional.

1 Introduction

In quantum mechanics, Feynman integrals have been shown to produce quantum propagators that solve the corresponding Schrödinger equation for the system (see, e.g., Ref. [9]). As a mathematically rigorous framework justifying the heuristic formulation of the Feynman integrals, White Noise Analysis (WNA) [13] has become a handy tool for a physicist to derive quantum propagators for select quantum systems in either the coordinate space or the momentum space; see, e.g., Refs. [15, 4].

Regarding the Feynman path integrals in the polar coordinates, Peak and Inomata first published their expression in terms of the Hamiltonian that contains the conjugate momenta of the polar coordinates [19]. Gerry and Singh [10] were the first to investigate the Feynman path integral approach to the Aharonov-Bohm (AB) effect, a quantum mechanical phenomenon initially established by Aharonov and Bohm [1]. Using WNA, Bernido and Bernido [3] derived the propagators for the particle on a circle and with the bound state AB potential in the coordinate space. However, in these cases, they did not consider and obtain propagators in the conjugate momentum space. On the other hand, the case of the momentum space AB effect (but not the bound state) in the Cartesian coordinates has already been considered (see, e.g., Ref. [7]). The case of the bound state AB effect in the conjugate momentum space has not yet been considered elsewhere.

Inspired by the advantageous role of momentum variables in experimental design, this paper focuses on a quantum system for the bound state AB effect [1, 17] in the conjugate momentum space using the WNA framework. We show that the propagator reduces to that for the case of the particle on a circle when the magnetic flux is switched off.

The paper is organized as follows. In Section 2, we give a brief review of the WNA. In Section 3, we describe the quantum system considered and define the Feynman integral for the system in the WNA framework. We derive its propagator and show that it solves the corresponding Schrödinger equation in the conjugate momentum space. In Section 4, we write an alternative result within the WNA framework as a perturbation on a particle-on-a-circle system employing experimentally confirmed values. Finally, in Section 5, we conclude and give a brief discussion of the results obtained.

2 White Noise Analysis

In this section, we give a rather short introduction to WNA; see, e.g., Refs. [14, 4] for more details. The starting point is the basic nuclear triple

SdLd2Sd,S_{d}\subset L_{d}^{2}\subset S_{d}^{\prime}, (1)

where Ld2L_{d}^{2} is the real separable Hilbert space of square integrable functions with norm

|f|02:=j=1dfj2(s)ds,fLd2|f|_{0}^{2}:=\sum_{j=1}^{d}\int_{\mathbb{R}}f_{j}^{2}(s)\,\mathrm{d}s,\quad f\in L_{d}^{2}

and SdS_{d} is the nuclear space of dd-dimensional vectors where each component is a Schwartz test function. SdS_{d}^{\prime} is the topological dual of SdS_{d}, the so-called vector-valued tempered distributions. The dual pairing between SdS^{\prime}_{d} and SdS_{d} is denoted by ,\langle\cdot,\cdot\rangle. The space SdS^{\prime}_{d} is provided with the σ\sigma-algebra of the cylinder sets \mathscr{B}. We define the Gaussian measure on the measurable space (Sd,)(S^{\prime}_{d},\mathscr{B}) using Minlos’ theorem by fixing the characteristic function,

Sdexp(iω,φ)dμ(ω)=exp(12φ,φ),φSd.\int_{S^{\prime}_{d}}\exp(\mathrm{i}\langle\omega,\varphi\rangle)\,\mathrm{d}\mu(\omega)=\exp\left(-\frac{1}{2}\langle\varphi,\varphi\rangle\right),\quad\varphi\in S_{d}.

The triple (Sd,,μ)(S^{\prime}_{d},\mathscr{B},\mu) is called the vector-valued white noise space. Let L2(μ):=L2(Sd,,μ;)L^{2}(\mu):=L^{2}(S^{\prime}_{d},\mathscr{B},\mu;\mathbb{C}) be the complex Hilbert space with a scalar product

((F,G))=SdF¯(ω)G(ω)dμ(ω),F,GL2(μ).(\!(F,G)\!)=\int_{S_{d}^{\prime}}\bar{F}(\omega)G(\omega)\,\mathrm{d}\mu(\omega),\quad F,G\in L^{2}(\mu).

Choosing a special subspace (Sd)1(S_{d})^{1} of test functionals, we construct a Gelfand triple around L2(μ)L^{2}(\mu)

(Sd)1L2(μ)(Sd)1.(S_{d})^{1}\subset L^{2}(\mu)\subset(S_{d})^{-1}. (2)

The elements of the space (Sd)1(S_{d})^{-1} are called generalized white noise functionals or Kondratiev distributions, and the well-known Hida distributions (Sd)(S_{d})^{*} (or generalized Brownian functionals) form a subspace, that is, L2(μ)(Sd)(Sd)1L^{2}(\mu)\subset(S_{d})^{*}\subset(S_{d})^{-1}. The dual pairing between (Sd)1(S_{d})^{-1} and (Sd)1(S_{d})^{1} is given as a bilinear extension of the inner product in L2(μ)L^{2}(\mu) and is denoted by ,μ\langle\!\langle\cdot,\cdot\rangle\!\rangle_{\mu}. Distributions can be characterized by the so-called TT-transform; see Theorem 2.2 below. Given Φ(Sd)1\Phi\in(S_{d})^{-1}, there exists p,q0p,q\in\mathbb{N}_{0} such that we may define

TΦ(ξ):=Φ,ei,ξμ,ξUp,q:={ξSd|ξ|p2<2q}.T\Phi(\xi):=\left\langle\!\!\left\langle\Phi,\mathrm{e}^{\mathrm{i}\langle\cdot,\xi\rangle}\right\rangle\!\!\right\rangle_{\mu},\quad\xi\in U_{p,q}:=\big{\{}\xi\in S_{d}\mid|\xi|_{p}^{2}<2^{-q}\big{\}}. (3)

It should be noted here that the definition of the TT-transform can be extended via analytic continuation to the complexification of SdS_{d} which is denoted by Sd,S_{d,\mathbb{C}}.

Definition 2.1.

Let USd,U\subseteq S_{d,\mathbb{C}} be an open set and F:UF:U\longrightarrow\mathbb{C} a given function. Then FF is holomorphic on UU iff for all φ0U\varphi_{0}\in U

  • 1.

    for any φSd,\varphi\in S_{d,\mathbb{C}} the map zF(φ0+zφ)\mathbb{C}\ni z\mapsto F(\varphi_{0}+z\varphi)\in\mathbb{C} is holomorphic in a neighborhood of zero in \mathbb{C},

  • 2.

    there exists an open neighborhood UU^{\prime} of φ0\varphi_{0} such that FF is bounded on UU^{\prime}.

FF is holomorphic at zero iff FF is holomorphic in a neighborhood of zero.

Theorem 2.2.

Let USd,U\subseteq S_{d,\mathbb{C}} be an open set and F:UF:U\rightarrow\mathbb{C} be holomorphic at zero, then there exists a unique Φ(Sd)1\Phi\in(S_{d})^{-1} such that TΦ=FT\Phi=F. Conversely, given Φ(Sd)1\Phi\in(S_{d})^{-1}, then TΦT\Phi is holomorphic at zero. The correspondence between FF and Φ\Phi is bijective if we identify holomorphic functions that coincide on an open neighborhood of zero.

In applications, we have to handle the convergence of sequences of distributions from (Sd)1(S_{d})^{-1} as well as integrals of (Sd)1(S_{d})^{-1}-valued functions. The following two corollaries are a consequence of Theorem 2.2 and will be applied in what follows.

Corollary 2.3.

Let (Φn)n(Sd)1\left(\Phi_{n}\right)_{n\in\mathbb{N}}\subset(S_{d})^{-1} be a sequence such that there exists Up,qSdU_{p,q}\subset S_{d}, p,q0p,q\in\mathbb{N}_{0}, so that

  • 1.

    all TΦnT\Phi_{n} are holomorphic on Up,qU_{p,q},

  • 2.

    there exists a C>0C>0 such that |TΦn(φ)|C|T\Phi_{n}(\varphi)|\leq C for all φUp,q\varphi\in U_{p,q} and all nn\in\mathbb{N},

  • 3.

    (TΦn(φ))n\left(T\Phi_{n}(\varphi)\right)_{n\in\mathbb{N}} is a Cauchy sequence in \mathbb{C} for all φUp,q\varphi\in U_{p,q}.

Then (Φn)n\left(\Phi_{n}\right)_{n\in\mathbb{N}} converges strongly in (Sd)1(S_{d})^{-1}.

Corollary 2.4.

Let (Λ,𝒜,ν)(\Lambda,\mathscr{A},\nu) be a measure space and λΦλ\lambda\mapsto\Phi_{\lambda} a mapping from Λ\Lambda to (Sd)1\left(S_{d}\right)^{-1}. We assume that there exist Up,qSdU_{p,q}\subset S_{d}, p,q0p,q\in\mathbb{N}_{0}, such that

  • 1.

    TΦλT\Phi_{\lambda} is holomorphic on Up,qU_{p,q} for every λΛ\lambda\in\Lambda,

  • 2.

    the mapping λTΦλ(φ)\lambda\mapsto T\Phi_{\lambda}(\varphi) is measurable for every φUp,q\varphi\in U_{p,q},

  • 3.

    there exists CL1(Λ,𝒜,ν)C\in L^{1}(\Lambda,\mathscr{A},\nu) such that

    |TΦλ(φ)|C(λ)|T\Phi_{\lambda}(\varphi)|\leq C(\lambda) (4)

    for all φUp,q\varphi\in U_{p,q} and for ν\nu-almost all λΛ\lambda\in\Lambda.

Then Φλ\Phi_{\lambda} is Bochner integrable. In particular,

ΛΦλdν(λ)(Sd)1\int_{\Lambda}\Phi_{\lambda}\,\mathrm{d}\nu(\lambda)\in\left(S_{d}\right)^{-1} (5)

and we may interchange dual pairing and integration

ΛΦλdν(λ),ξμ=ΛΦλ,ξμdν(λ),ξ(Sd)1.\left\langle\!\!\!\left\langle\int_{\Lambda}\Phi_{\lambda}\,\mathrm{d}\nu(\lambda),\xi\right\rangle\!\!\!\right\rangle_{\mu}=\int_{\Lambda}\langle\!\langle\Phi_{\lambda},\xi\rangle\!\rangle_{\mu}\,\mathrm{d}\nu(\lambda),\quad\xi\in(S_{d})^{1}. (6)
Lemma 2.5 (cf. Lemma 2.17 in Ref. [5]).

Let K{K} be a d×dd\times d block operator matrix on Ld,2L^{2}_{d,\mathbb{C}}, such that 𝐍:=Id+K{\bm{N}}:={\mathrm{Id}}+{K} is bounded with bounded inverse. Furthermore, assume that det(Id+K)\det({\mathrm{Id}}+{K}) exists and is different from zero. Let M𝐍1M_{\bm{N}^{-1}} be the matrix given by an orthogonal system (ηk)k=1,,J(\eta_{k})_{k=1,\dots,J}, JJ\in\mathbb{N}, of nonzero functions of Ld,2L^{2}_{d,\mathbb{C}} in the bilinear form (,𝐍1)(\cdot,{\bm{N}}^{-1}\cdot), that is, (M𝐍1)i,j=(ηi,𝐍1ηj),  1i,jJ(M_{{\bm{N}}^{-1}})_{i,j}=(\eta_{i},{\bm{N}}^{-1}\eta_{j}),\;\;1\leq i,j\leq J. Under the assumption that for every fLd,2f\in L^{2}_{d,\mathbb{C}} either

(f,(M𝑵1)f)0>0or(M𝑵1)=0and(f,(M𝑵1)f)00,\big{(}f,\Re(M_{\bm{N}^{-1}})f\big{)}_{0}>0\quad\mathrm{or}\quad\Re(M_{\bm{N}^{-1}})=0\quad\mathrm{and}\quad\big{(}f,\Im(M_{\bm{N}^{-1}})f\big{)}_{0}\neq 0, (7)

where M𝐍1=(M𝐍1)+i(M𝐍1)M_{\bm{N}^{-1}}=\Re(M_{\bm{N}^{-1}})+\mathrm{i}\Im(M_{\bm{N}^{-1}}) with real matrices (M𝐍1)\Re(M_{\bm{N}^{-1}}) and (M𝐍1)\Im(M_{\bm{N}^{-1}}), then

ΦK:=Nexp(12,K)exp(i,g)k=1Jδ0(,ηkyk),\displaystyle\Phi_{{K}}:=\mathrm{N}\exp(-\frac{1}{2}\langle\cdot,{K}\cdot\rangle)\cdot\exp(\mathrm{i}\langle\cdot,g\rangle)\prod_{k=1}^{J}\delta_{0}(\langle\cdot,\eta_{k}\rangle-y_{k}), (8)

for gLd,2g\in L^{2}_{d,\mathbb{C}}, t>0t>0, yk,k=1,,Jy_{k}\in\mathbb{R},k=1,\dots,J, exists as a Hida distribution.

Moreover for fSdf\in S_{d}

TΦK(f)=1(2π)Jdet(M𝑵1)1det(Id+K))×exp(12f+g,(Id+K)1(f+g))exp(12(u(M𝑵11)u)),T\Phi_{{K}}(f)=\frac{1}{\sqrt{(2\pi)^{J}\det(M_{\bm{N}^{-1}})}}\frac{1}{\sqrt{\det({\mathrm{Id}}+{K}))}}\\ \times\exp\left(-\frac{1}{2}\langle{f+g},({\mathrm{Id}}+{K})^{-1}{(f+g)}\rangle\right)\exp\left(\frac{1}{2}(u^{\top}(M_{\bm{N}^{-1}}^{-1})u)\right), (9)

where

u=(iy1+(η1,𝑵1(f+g)),,iyJ+(ηJ,𝑵1(f+g)).u=\big{(}\mathrm{i}y_{1}+(\eta_{1},\bm{N}^{-1}(f+g)),\dots,\mathrm{i}y_{J}+(\eta_{J},\bm{N}^{-1}(f+g)\big{)}. (10)
Remark 2.6 (cf. Remark 2.13 in Ref. [5]).

In case of a divergent or undefined factor 1/det(Id+K)1/\sqrt{\det({\mathrm{Id}}+{K})}, the normalization constant N\mathrm{N} can be chosen properly to “eliminate” the factor in Eq. (9).

3 The Feynman Integrals for the Bound State AB Effect

Consider an illustration of the bound state AB system as depicted in Figure 1.

Figure 1: An illustration of the paths taken by a spinning electron around the solenoid from which came the magnetic flux “inducing” Aharonov-Bohm effect.
cwccwChargedParticleϕ\phiR0R_{0}RR

The circular path taken by a charged particle of charge e-e has a radius RR that is distant from the radius R0R_{0} of the solenoid from which the magnetic flux ϕ\phi comes. The charged particle can either go cw or ccw with a conjugate momentum pθ,0p_{\theta,0} starting on the angular position θ0\theta_{0} at time t00t_{0}\geq 0, and will gain a conjugate momentum of pθp_{\theta} on an angular position θ\theta at a later time t>t0t>t_{0}. In a later calculation, we shall pin the final conjugate momentum at pθp_{\theta}^{\prime}. Note that the charged particle does not pass through a region where the magnetic flux is present, nor does it penetrate the solenoid. In other words, the magnetic flux is in the excluded region.

The AB potential for the bound state has the form (See, e.g., Refs. [10, 3, 17, 21])

VAB:=eϕ2πcθ˙=αθ˙,V_{\mathrm{AB}}:=-\frac{e\phi}{2\pi\hbar c}\dot{\theta}=\alpha\dot{\theta}, (11)

where =h/(2π)\hbar=h/(2\pi) with hh being the Planck’s constant, cc is the speed of light in vacuum, α:=eϕ/(2πc)\alpha:=-e\phi/(2\pi\hbar c) is the magnetic flux parameter, and θ˙:=dθ/dt\dot{\theta}:=\mathrm{d}\theta/\mathrm{d}t is the angular velocity.

In the polar coordinates, r=(r,θ)\vec{r}=(r,\theta), the Hamiltonian of the system is

H\displaystyle H :=\displaystyle:= H(r,θ,θ˙,t,t0)\displaystyle H(r,\theta,\dot{\theta},t,t_{0}) (12)
=\displaystyle= 12m0v2+VAB=12m0(r˙2+r2θ˙2)+VAB,\displaystyle\frac{1}{2}m_{0}v^{2}+V_{\mathrm{AB}}=\frac{1}{2}m_{0}(\dot{r}^{2}+r^{2}\dot{\theta}^{2})+V_{\mathrm{AB}},
=\displaystyle= 12m0R2θ˙2+VAB,\displaystyle\frac{1}{2}m_{0}R^{2}\dot{\theta}^{2}+V_{\mathrm{AB}},

where m0m_{0} is the mass of the particle. With pθ:=m0Rθ˙p_{\theta}:=m_{0}R\dot{\theta}, the momentum conjugated to the angular position θ\theta, we have

H=C1pθ2C2pθ,C1:=12m0,C2:=αm0R.H=C_{1}p_{\theta}^{2}-C_{2}p_{\theta},\quad C_{1}:=\frac{1}{2m_{0}},\quad C_{2}:=\frac{-\alpha}{m_{0}R}. (13)

From Refs. [4, 3], we model the parametric expressions for θ\theta and pθp_{\theta} as an adaptation therein but with slight modifications,

θ(s)=pθ,0m0R(st0+a)+ωθ,E𝟙[t0,s),E:=m0R2,a{0},|a|t\theta(s)=\frac{p_{\theta,0}}{m_{0}R}(s-t_{0}+a)+\langle\omega_{\theta},E\mathbbm{1}_{[t_{0},s)}\rangle,\quad E:=\sqrt{\frac{\hbar}{m_{0}R^{2}}},\;a\in\mathbb{R}\setminus\{0\},\;|a|\leq t (14)

and

pθ(s)=pθ,0+Dωθ(s),D:=m0,0t0st,p_{\theta}(s)=p_{\theta,0}+D\omega_{\theta}(s),\quad D:=\sqrt{\hbar m_{0}},\qquad 0\leq t_{0}\leq s\leq t, (15)

which are chosen to conform with the Heisenberg uncertainty principle: we want to do a “measurement” (i.e., in this case, obtain a propagator) in the conjugate momentum space, therefore we cannot ascertain the initial value of θ\theta (that’s why θ\theta is expressed in terms of pθ,0p_{\theta,0} and not of θ0\theta_{0}). Furthermore, aa is chosen to physically mean that as the electron “enters” the circular path before t0t_{0}, it will have to “pick up” a certain momentum and so at t0t_{0} it is already at a certain angular position (pθ,0a)/(m0R)(p_{\theta,0}a)/(m_{0}R).

We model the action of the classical paths as an adaptation of Refs. [4, 19, 16]

S=t0t(Rθ(s)pθ˙(s)+H(s))ds.S=-\int_{t_{0}}^{t}\big{(}R\theta(s)\dot{p_{\theta}}(s)+H(s)\big{)}\,\mathrm{d}s. (16)

Note that with Eqs. (14) and (15) (in the variable ω=(ωθ,ωp)\omega=(\omega_{\theta},\omega_{p}))

t0tdds(θ(s)pθ(s))ds=t0tθ˙(s)pθ(s)ds+t0tθ(s)p˙θ(s)ds.\int_{t_{0}}^{t}\frac{\mathrm{d}}{\mathrm{d}s}\big{(}\theta(s)p_{\theta}(s)\big{)}\,\mathrm{d}s=\int_{t_{0}}^{t}\dot{\theta}(s)p_{\theta}(s)\,\mathrm{d}s+\int_{t_{0}}^{t}\theta(s)\dot{p}_{\theta}(s)\,\mathrm{d}s.

From which follows

t0tθ(s)p˙θ(s)ds=t0tdds(θ(s)pθ(s))dst0tθ˙(s)pθ(s)ds=θ(t)pθ(t)θ(t0)pθ(t0)t0tθ˙(s)pθ(s)ds=(pθ,0m0R(tt0+a)+<ωθ,E𝟙[t0,t)>)pθ(t)pθ,0m0Rapθ(t0)t0tθ˙(s)pθ(s)ds=pθ,0m0R[pθ(t)(tt0)+a(pθ(t)pθ,0)]+<ωθ,Epθ(t)𝟙[t0,t)>t0tθ˙(s)pθ(s)ds,\int_{t_{0}}^{t}\theta(s)\dot{p}_{\theta}(s)\,\mathrm{d}s=\int_{t_{0}}^{t}\frac{\mathrm{d}}{\mathrm{d}s}\big{(}\theta(s)p_{\theta}(s)\big{)}\,\mathrm{d}s-\int_{t_{0}}^{t}\dot{\theta}(s)p_{\theta}(s)\,\mathrm{d}s\\ =\theta(t)p_{\theta}(t)-\theta(t_{0})p_{\theta}(t_{0})-\int_{t_{0}}^{t}\dot{\theta}(s)p_{\theta}(s)\,\mathrm{d}s\\ =\left(\frac{p_{\theta,0}}{m_{0}R}(t-t_{0}+a)+\big{<}\omega_{\theta},E\mathbbm{1}_{[t_{0},t)}\big{>}\right)p_{\theta}(t)-\frac{p_{\theta,0}}{m_{0}R}ap_{\theta}(t_{0})-\int_{t_{0}}^{t}\dot{\theta}(s)p_{\theta}(s)\,\mathrm{d}s\\ =\frac{p_{\theta,0}}{m_{0}R}\big{[}p_{\theta}(t)(t-t_{0})+a\left(p_{\theta}(t)-p_{\theta,0}\right)\big{]}+\big{<}\omega_{\theta},Ep_{\theta}(t)\mathbbm{1}_{[t_{0},t)}\big{>}-\int_{t_{0}}^{t}\dot{\theta}(s)p_{\theta}(s)\,\mathrm{d}s, (17)

where we have set ωθ(t0)=0\omega_{\theta}(t_{0})=0, which implies that the starting momentum is fixed at pθ,0p_{\theta,0} on t0t_{0}. Therefore, the action SS in Eq. (16) becomes

S(ω)=t0t(Rθ(s)p˙θ(s)H(s))ds=pθ,0m0[pθ(t)(tt0)+a(pθ(t)pθ,0)]<ωθ,REpθ(t)𝟙[t0,t)>+Rt0tθ˙(s)pθ(s)dst0tH(s)ds=pθ,0m0[pθ(t)(tt0)+a(pθ(t)pθ,0)]<ωθ,REpθ(t)𝟙[t0,t)>+1m0t0tpθ2(s)dst0tH(s)ds.S(\omega)=\int_{t_{0}}^{t}\big{(}-R\theta(s)\dot{p}_{\theta}(s)-H(s)\big{)}\,\mathrm{d}s\\ =-\frac{p_{\theta,0}}{m_{0}}\left[p_{\theta}(t)(t-t_{0})+a\left(p_{\theta}(t)-p_{\theta,0}\right)\right]-\big{<}\omega_{\theta},REp_{\theta}(t)\mathbbm{1}_{[t_{0},t)}\big{>}\\ +R\int_{t_{0}}^{t}\dot{\theta}(s)p_{\theta}(s)\,\mathrm{d}s-\int_{t_{0}}^{t}H(s)\,\mathrm{d}s\\ =-\frac{p_{\theta,0}}{m_{0}}\left[p_{\theta}(t)(t-t_{0})+a\left(p_{\theta}(t)-p_{\theta,0}\right)\right]-\big{<}\omega_{\theta},REp_{\theta}(t)\mathbbm{1}_{[t_{0},t)}\big{>}\\ +\frac{1}{m_{0}}\int_{t_{0}}^{t}p^{2}_{\theta}(s)\,\mathrm{d}s-\int_{t_{0}}^{t}H(s)\,\mathrm{d}s. (18)

With the Hamiltonian HH in Eq. (12) and ω=(ωθ,ωp)\omega=(\omega_{\theta},\omega_{p}), we have

S(ω)=pθ,0m0[(pθ(t)12pθ,0)(tt0)+a(pθ(t)pθ,0)]m0ωθ,(pθ(t)pθ,0)𝟙[t0,t)+2t0tωθ2(s)dsαm0Rpθ,0(tt0)m0αRωθ,𝟙[t0,t)=pθ,02m0[(pθ(t)+2αR)(tt0)+(pθ(t)pθ,0)(tt0+2a)]+2t0tωθ2(s)ds+m0<ωθ,(αR1(pθ(t)pθ,0))𝟙[t0,t)>.S(\omega)\\ =-\frac{p_{\theta,0}}{m_{0}}\left[\left(p_{\theta}(t)-\frac{1}{2}p_{\theta,0}\right)(t-t_{0})+a\left(p_{\theta}(t)-p_{\theta,0}\right)\right]-\sqrt{\frac{\hbar}{m_{0}}}\langle\omega_{\theta},(p_{\theta}(t)-p_{\theta,0})\mathbbm{1}_{[t_{0},t)}\rangle\\ +\frac{\hbar}{2}\int_{t_{0}}^{t}\omega^{2}_{\theta}(s)\,\mathrm{d}s-\frac{\alpha}{m_{0}R}p_{\theta,0}(t-t_{0})-\sqrt{\frac{\hbar}{m_{0}}}\frac{\alpha}{R}\langle\omega_{\theta},\mathbbm{1}_{[t_{0},t)}\rangle\\ =-\frac{p_{\theta,0}}{2m_{0}}\left[\left(p_{\theta}(t)+\frac{2\alpha}{R}\right)(t-t_{0})+\left(p_{\theta}(t)-p_{\theta,0}\right)(t-t_{0}+2a)\right]\\ +\frac{\hbar}{2}\int_{t_{0}}^{t}\omega^{2}_{\theta}(s)\,\mathrm{d}s+\sqrt{\frac{\hbar}{m_{0}}}\big{<}\omega_{\theta},\big{(}-\alpha R^{-1}-(p_{\theta}(t)-p_{\theta,0})\big{)}\mathbbm{1}_{[t_{0},t)}\big{>}. (19)

3.1 Incomplete Single Winding Case

Consider now the case where the charged particle is constrained or guided to move in less than a single winding, either cw (with pθ<0p_{\theta}<0) or ccw (with pθ>0p_{\theta}>0).

The Feynman integrand IVABI_{V_{\mathrm{AB}}} in terms of white noise variables ω=(ωθ,ωp)\omega=(\omega_{\theta},\omega_{p}) is given by (cf. Ref. [6])

IVAB\displaystyle I_{V_{\mathrm{AB}}} :=\displaystyle:= Nexp[iS(ω)]exp[12t0t(ωθ2(s)+ωp2(s))ds]\displaystyle\mathrm{N}\exp\Biggl{[}{\frac{\mathrm{i}}{\hbar}S(\omega)}\Biggr{]}\exp\Biggl{[}{\frac{1}{2}\int_{t_{0}}^{t}(\omega^{2}_{\theta}(s)+\omega^{2}_{p}(s))\,\mathrm{d}s}\Biggr{]} (20)
×δ(pθ,0+Dtt0(ωθ,ωp),(𝟙[t0,t),0)pθ),\displaystyle\times\delta\Big{(}p_{\theta,0}+\frac{D}{t-t_{0}}\langle(\omega_{\theta},\omega_{p}),(\mathbbm{1}_{[t_{0},t)},0)\rangle-p_{\theta}^{\prime}\Big{)},

where N\mathrm{N} is a normalization constant, the second exponential is a term to compensate for the Gaussian fall-off, and the delta function is to pin the end point at pθp_{\theta}^{\prime}. It is important to note that, in the delta function, we match the indicator function 𝟙[t0,t)\mathbbm{1}_{[t_{0},t)} with the ωθ\omega_{\theta} based on our conjugate momentum expression, Eq. (15) (cf. Ref. [6], wherein it was matched with ωp\omega_{p} based on the momentum expression therein).

Substitution of Eq. (19) into Eq. (20) yields,

IVAB\displaystyle I_{V_{\textrm{AB}}} =\displaystyle= Nexp{ipθ,02m0[(pθ(t)+2αR)(tt0)+(pθ(t)pθ,0)(tt0+2a)]}\displaystyle\mathrm{N}\exp\left\{-\frac{\textrm{i}p_{\theta,0}}{2\hbar m_{0}}\left[\left(p_{\theta}(t)+\frac{2\alpha}{R}\right)(t-t_{0})+\left(p_{\theta}(t)-p_{\theta,0}\right)(t-t_{0}+2a)\right]\right\}
exp{i2t0tωθ2(s)ds+iC<ωθ,𝟙[t0,t)>}\displaystyle\cdot\exp\left\{\frac{\mathrm{i}}{2}\int_{t_{0}}^{t}\omega_{\theta}^{2}(s)\,\mathrm{d}s+\mathrm{i}C\big{<}\omega_{\theta},\mathbbm{1}_{[t_{0},t)}\big{>}\right\}
exp[12t0t(ωθ2(s)+ωp2(s))ds]δ(pθ,0+Dtt0(ωθ,ωp),(𝟙[t0,t),0)pθ)\displaystyle\cdot\exp\Biggl{[}\frac{1}{2}\int_{t_{0}}^{t}(\omega^{2}_{\theta}(s)+\omega^{2}_{p}(s))\,\mathrm{d}s\Biggr{]}\delta\Big{(}p_{\theta,0}+\frac{D}{t-t_{0}}\langle(\omega_{\theta},\omega_{p}),(\mathbbm{1}_{[t_{0},t)},0)\rangle-p_{\theta}^{\prime}\Big{)}
=\displaystyle= Nexp{ipθ,02m0[(pθ(t)+2αR)(tt0)+(pθ(t)pθ,0)(tt0+2a)]}\displaystyle\mathrm{N}\exp\left\{-\frac{\textrm{i}p_{\theta,0}}{2\hbar m_{0}}\left[\left(p_{\theta}(t)+\frac{2\alpha}{R}\right)(t-t_{0})+\left(p_{\theta}(t)-p_{\theta,0}\right)(t-t_{0}+2a)\right]\right\}
exp{12ω,Kω+iω,g}δ(pθ,0+Dtt0(ωθ,ωp),(𝟙[t0,t),0)pθ),\displaystyle\cdot\exp\left\{-\frac{1}{2}\langle\omega,K\omega\rangle+\mathrm{i}\langle\omega,g\rangle\right\}\delta\Big{(}p_{\theta,0}+\frac{D}{t-t_{0}}\langle(\omega_{\theta},\omega_{p}),(\mathbbm{1}_{[t_{0},t)},0)\rangle-p_{\theta}^{\prime}\Big{)},

where ωθ,δt\langle\omega_{\theta},\delta_{t}\rangle, t0t\geq 0, exists in the sense of Corollary 2.4, the matrix KK has the form

K:=(𝟙[t0,t)i𝟙[t0,t)𝟙[t0,t)𝟙[t0,t)𝟙[t0,t)),K:=\begin{pmatrix}-\mathbbm{1}_{[t_{0},t)}-\mathrm{i}\mathbbm{1}_{[t_{0},t)}&-\mathbbm{1}_{[t_{0},t)}\\ \mathbbm{1}_{[t_{0},t)}&-\mathbbm{1}_{[t_{0},t)}\end{pmatrix}, (22)

and gg, ηt\eta_{t} are given by

g:=(gθ,0)=C(𝟙[t0,t),0),C:=1m0(αR(pθ(t)pθ,0)),g:=(g_{{\theta}},0)=C\begin{pmatrix}\mathbbm{1}_{[t_{0},t)},&0\end{pmatrix},\qquad C:=\frac{1}{\sqrt{\hbar m_{0}}}\left(\frac{-\alpha}{R}-(p_{\theta}(t)-p_{\theta,0})\right), (23)
ηt:=Dtt0(𝟙[t0,t), 0).\eta_{t}:=\frac{D}{t-t_{0}}\left(\mathbbm{1}_{[t_{0},t)},\,0\right). (24)

Having our notations and calculations based on Lemma 10 and Remark 2.6 above, we particularly have, with a small perturbation ε>0\varepsilon>0 (to meet the conditions in Eq. (7) of Lemma 10, as demonstrated in Refs. [4, 6])

𝑵ε1:=(Id+K)ε1=(𝟙[t0,t)c00𝟙[t0,t)c)+(ε𝟙[t0,t)𝟙[t0,t)i𝟙[t0,t)),\bm{N}^{-1}_{\varepsilon}:=(\mathrm{Id}+K)^{-1}_{\varepsilon}=\begin{pmatrix}\mathbbm{1}_{[t_{0},t)^{c}}&0\\ 0&\mathbbm{1}_{[t_{0},t)^{c}}\end{pmatrix}+\begin{pmatrix}\varepsilon&\mathbbm{1}_{[t_{0},t)}\\ -\mathbbm{1}_{[t_{0},t)}&-\mathrm{i}\mathbbm{1}_{[t_{0},t)}\end{pmatrix}, (25)

and so,

M𝑵ε1=(ηt,𝑵ε1ηt)=εD2tt0=εm0tt0.M_{\bm{N}_{\varepsilon}^{-1}}=\left(\eta_{t},\bm{N}^{-1}_{\varepsilon}\eta_{t}\right)=\frac{\varepsilon D^{2}}{t-t_{0}}=\frac{\varepsilon\hbar m_{0}}{t-t_{0}}. (26)

For any f,gL22()f,g\in L^{2}_{2}(\mathbb{R}) of the form f=(fθ,fpθ)f=(f_{\theta},f_{p_{\theta}}) and g=(gθ,gpθ)g=(g_{\theta},g_{p_{\theta}}), using the bilinear property of ,\langle\cdot,\cdot\rangle, it is easy to obtain

<f+g,𝑵ε1(f+g)>=(ε+1)[t0,t)c(fθ(s)+gθ(s))2ds+εt0t(fθ(s)+gθ(s))2dsit0t(fpθ(s)+gpθ(s))2ds+[t0,t)c(fpθ(s)+gpθ(s))2ds.\big{<}f+g,\bm{N}_{\varepsilon}^{-1}(f+g)\big{>}=(\varepsilon+1)\int_{[t_{0},t)^{c}}(f_{\theta}(s)+g_{\theta}(s))^{2}\,\mathrm{d}s+\varepsilon\int_{t_{0}}^{t}(f_{\theta}(s)+g_{\theta}(s))^{2}\,\mathrm{d}s\\ -\mathrm{i}\int_{t_{0}}^{t}(f_{p_{\theta}}(s)+g_{p_{\theta}}(s))^{2}\,\mathrm{d}s+\int_{[t_{0},t)^{c}}(f_{p_{\theta}}(s)+g_{p_{\theta}}(s))^{2}\,\mathrm{d}s.

In particular, for gg given in Eq. (23), yields

<f+g,𝑵ε1(f+g)>=(ε+1)[t0,t)cfθ2(s)ds+εt0t(fθ(s)+1m0(αR(pθ(t)pθ,0)))2dsit0tfpθ2(s)ds+[t0,t)cfpθ2(s)ds.\big{<}f+g,\bm{N}_{\varepsilon}^{-1}(f+g)\big{>}\\ =(\varepsilon+1)\int_{[t_{0},t)^{c}}f^{2}_{\theta}(s)\,\mathrm{d}s+\varepsilon\int_{t_{0}}^{t}\left(f_{\theta}(s)+\frac{1}{\sqrt{\hbar m_{0}}}\left(\frac{-\alpha}{R}-(p_{\theta}(t)-p_{\theta,0})\right)\right)^{2}\,\mathrm{d}s\\ -\mathrm{i}\int_{t_{0}}^{t}f^{2}_{p_{\theta}}(s)\,\mathrm{d}s+\int_{[t_{0},t)^{c}}f^{2}_{p_{\theta}}(s)\,\mathrm{d}s. (27)

Furthermore, for ηt\eta_{t} given in Eq. (24), we have

<ηt,𝑵ε1(f+g)>=εDtt0t0tfθ(s)ds+εCD+Dtt0t0tfpθ(s)ds.\big{<}\eta_{t},\bm{N}_{\varepsilon}^{-1}(f+g)\big{>}=\frac{\varepsilon D}{t-t_{0}}\int_{t_{0}}^{t}f_{\theta}(s)\,\mathrm{d}s+\varepsilon CD+\frac{D}{t-t_{0}}\int_{t_{0}}^{t}f_{p_{\theta}}(s)\,\mathrm{d}s.

Calculating further and substituting the functions CC and DD yields

<ηt,𝑵ε1(f+g)>=εm0tt0t0tfθ(s)ds+ε(αR(pθ(t)pθ,0))+m0tt0t0tfpθ(s)ds.\big{<}\eta_{t},\bm{N}_{\varepsilon}^{-1}(f+g)\big{>}\\ =\frac{\varepsilon\sqrt{\hbar m_{0}}}{t-t_{0}}\int_{t_{0}}^{t}f_{\theta}(s)\,\mathrm{d}s+\varepsilon\left(\frac{-\alpha}{R}-(p_{\theta}(t)-p_{\theta,0})\right)+\frac{\sqrt{\hbar m_{0}}}{t-t_{0}}\int_{t_{0}}^{t}f_{p_{\theta}}(s)\,\mathrm{d}s.

This implies that

u\displaystyle u =\displaystyle= i(pθ(t)pθ,0)+ηt,𝑵ε1(f+g)\displaystyle\mathrm{i}(p_{\theta}(t)-p_{\theta,0})+\langle\eta_{t},\bm{N}_{\varepsilon}^{-1}(f+g)\rangle
=\displaystyle= i(pθ(t)pθ,0)\displaystyle\mathrm{i}(p_{\theta}(t)-p_{\theta,0})
+εm0tt0t0tfθ(s)ds+ε(αR(pθ(t)pθ,0))+m0tt0t0tfpθ(s)ds.\displaystyle+\frac{\varepsilon\sqrt{\hbar m_{0}}}{t-t_{0}}\int_{t_{0}}^{t}f_{\theta}(s)\,\mathrm{d}s+\varepsilon\left(\frac{-\alpha}{R}-(p_{\theta}(t)-p_{\theta,0})\right)+\frac{\sqrt{\hbar m_{0}}}{t-t_{0}}\int_{t_{0}}^{t}f_{p_{\theta}}(s)\,\mathrm{d}s.

Hence, we have

exp(12u(M𝑵ε11)u)=exp{tt02εm0[i(pθ(t)pθ,0)+(εm0tt0t0tfθ(s)ds+ε(αR(pθ(t)pθ,0))+m0tt0t0tfpθ(s)ds)]2}=exp{tt02εm0[(pθ(t)pθ,0)2+2i(pθ(t)pθ,0)(εm0tt0t0tfθ(s)ds+ε(αR(pθ(t)pθ,0))+m0tt0t0tfpθ(s)ds)+(εm0tt0t0tfθ(s)ds+ε(αR(pθ(t)pθ,0))+m0tt0t0tfpθ(s)ds)2]}.\exp\left(\frac{1}{2}u^{\top}(M_{\bm{N}_{\varepsilon}^{-1}}^{-1})u\right)=\exp\Biggl{\{}\frac{t-t_{0}}{2\varepsilon\hbar m_{0}}\Biggl{[}\mathrm{i}(p_{\theta}(t)-p_{\theta,0})+\Biggl{(}\frac{\varepsilon\sqrt{\hbar m_{0}}}{t-t_{0}}\int_{t_{0}}^{t}f_{\theta}(s)\,\mathrm{d}s\\ +\varepsilon\left(\frac{-\alpha}{R}-(p_{\theta}(t)-p_{\theta,0})\right)+\frac{\sqrt{\hbar m_{0}}}{t-t_{0}}\int_{t_{0}}^{t}f_{p_{\theta}}(s)\,\mathrm{d}s\Biggr{)}\Biggr{]}^{2}\Biggr{\}}\\ =\exp\Biggl{\{}\frac{t-t_{0}}{2\varepsilon\hbar m_{0}}\Biggl{[}-(p_{\theta}(t)-p_{\theta,0})^{2}+2\mathrm{i}(p_{\theta}(t)-p_{\theta,0})\Biggl{(}\frac{\varepsilon\sqrt{\hbar m_{0}}}{t-t_{0}}\int_{t_{0}}^{t}f_{\theta}(s)\,\mathrm{d}s\\ +\varepsilon\left(\frac{-\alpha}{R}-(p_{\theta}(t)-p_{\theta,0})\right)+\frac{\sqrt{\hbar m_{0}}}{t-t_{0}}\int_{t_{0}}^{t}f_{p_{\theta}}(s)\,\mathrm{d}s\Biggr{)}+\Biggl{(}\frac{\varepsilon\sqrt{\hbar m_{0}}}{t-t_{0}}\int_{t_{0}}^{t}f_{\theta}(s)\,\mathrm{d}s\\ +\varepsilon\left(\frac{-\alpha}{R}-(p_{\theta}(t)-p_{\theta,0})\right)+\frac{\sqrt{\hbar m_{0}}}{t-t_{0}}\int_{t_{0}}^{t}f_{p_{\theta}}(s)\,\mathrm{d}s\Biggr{)}^{2}\Biggr{]}\Biggr{\}}. (29)

Therefore, we have for f=0f=0 the TT-transform of the integrand, Eq. (LABEL:I)

TIVAB,ε(0)=tt02πεm0exp{ipθ,02m0[(pθ+2αR)(tt0)+(pθpθ,0)(tt0+2a)]}×exp{tt02εm0[(pθ(t)pθ,0)2+2iε(pθ(t)pθ,0)(αR(pθ(t)pθ,0))]}TI_{V_{\mathrm{AB}},\varepsilon}(0)\\ =\sqrt{\frac{t-t_{0}}{2\pi\varepsilon\hbar m_{0}}}\exp\Biggl{\{}-\frac{\mathrm{i}p_{\theta,0}}{2\hbar m_{0}}\Biggl{[}\left(p_{\theta}^{\prime}+\frac{2\alpha}{R}\right)(t-t_{0})+\left(p_{\theta}^{\prime}-p_{\theta,0}\right)(t-t_{0}+2a)\Biggr{]}\Biggr{\}}\\ \times\exp\Biggl{\{}\frac{t-t_{0}}{2\varepsilon\hbar m_{0}}\Biggl{[}-(p_{\theta}(t)-p_{\theta,0})^{2}+2\mathrm{i}\varepsilon(p_{\theta}(t)-p_{\theta,0})\left(\frac{-\alpha}{R}-(p_{\theta}(t)-p_{\theta,0})\right)\Biggr{]}\Biggr{\}} (30)

where we have chosen the normalization N=det(Id+K)\mathrm{N}=\sqrt{\det(Id+K)}. “Switching off” the perturbation, that is, taking the limit ε0\varepsilon\rightarrow 0, we have obtained a propagator for the bound state AB effect in 2D in the polar conjugate momentum space

TIVAB(0)=δ(pθpθ,0)exp{ipθ,02m0[(pθ+2αR)(tt0)+(pθpθ,0)(tt0+2a)]}=δ(pθpθ,0)exp[ipθ,02m0(pθ+2αR)(tt0)].TI_{V_{\mathrm{AB}}}(0)\\ =\delta\big{(}p_{\theta}^{\prime}-p_{\theta,0}\big{)}\exp\Biggl{\{}-\frac{\mathrm{i}p_{\theta,0}}{2\hbar m_{0}}\Biggl{[}\left(p_{\theta}^{\prime}+\frac{2\alpha}{R}\right)(t-t_{0})+\left(p_{\theta}^{\prime}-p_{\theta,0}\right)(t-t_{0}+2a)\Biggr{]}\Biggr{\}}\\ =\delta\big{(}p_{\theta}^{\prime}-p_{\theta,0}\big{)}\exp\Biggl{[}-\frac{\mathrm{i}p_{\theta,0}}{2\hbar m_{0}}\left(p_{\theta}^{\prime}+\frac{2\alpha}{R}\right)(t-t_{0})\Biggr{]}. (31)

Similar to that in Ref. [4], the delta function here serves to conserve the magnitude of the conjugate momentum.

Proposition 3.1.

For all pθ,pθ,0,t>t00p_{\theta}^{\prime},p_{\theta,0},t>t_{0}\geq 0, the propagator

K(pθ,t|pθ,0,t0):=TIVAB(0)=δ(pθpθ,0)exp[ipθ,02m0(pθ,0eϕπcR)(tt0)],K(p_{\theta}^{\prime},t|p_{\theta,0},t_{0}):=TI_{V_{\mathrm{AB}}}(0)=\delta\left(p_{\theta}^{\prime}-p_{\theta,0}\right)\exp\Biggl{[}-\frac{\mathrm{i}p_{\theta,0}}{2m_{0}\hbar}\Big{(}p_{\theta,0}-\frac{e\phi}{\pi\hbar cR}\Big{)}(t-t_{0})\Biggr{]}, (32)

solves the Schrödinger equation

itK(pθ,t|pθ,0,t0)=(pθ)22m0K(pθ,t|pθ,0,t0)+dpθ,1W(pθpθ,1)K(pθ,1,t|pθ,0,t0),\mathrm{i}\hbar\frac{\partial}{\partial t}K(p_{\theta}^{\prime},t|p_{\theta,0},t_{0})\\ =\frac{(p_{\theta}^{\prime})^{2}}{2m_{0}}K(p_{\theta}^{\prime},t|p_{\theta,0},t_{0})+\int_{-\infty}^{\infty}\mathrm{d}p_{\theta,1}W(p_{\theta}^{\prime}-p_{\theta,1})K(p_{\theta,1},t|p_{\theta,0},t_{0}), (33)

where

W(pθpθ,1)=12π02πdθei(pθpθ,1)θ/V(θ˙(s)),W(p_{\theta}^{\prime}-p_{\theta,1})=\frac{1}{2\pi}\int_{0}^{2\pi}\mathrm{d}\theta\,\mathrm{e}^{-\mathrm{i}(p_{\theta}^{\prime}-p_{\theta,1})\theta/\hbar}V(\dot{\theta}(s)), (34)

and

V(θ˙(s))=eϕ2πcθ˙(s),V(\dot{\theta}(s))=-\frac{e\phi}{2\pi\hbar c}\dot{\theta}(s), (35)

with the initial condition

limtt0K(pθ,t|pθ,0,t0)=δ(pθpθ,0).\lim_{t\searrow t_{0}}K(p_{\theta}^{\prime},t|p_{\theta,0},t_{0})=\delta(p_{\theta}^{\prime}-p_{\theta,0}). (36)
Proof.

Note that, using α:=(eϕ)/(2πc)\alpha:=(-e\phi)/(2\pi\hbar c) we can write V(θ˙(s))V(\dot{\theta}(s)) as

V(θ˙(s))=eϕ2πcθ˙(s)=eϕ2πcpθ(s)m0R=αpθ(s)m0R.V(\dot{\theta}(s))=-\frac{e\phi}{2\pi\hbar c}\dot{\theta}(s)=-\frac{e\phi}{2\pi\hbar c}\frac{p_{\theta}(s)}{m_{0}R}=\alpha\frac{p_{\theta}(s)}{m_{0}R}. (37)

Imposing that the conjugate momentum has always been conserved, that is, in this case, pθ=pθ,1p_{\theta}^{\prime}=p_{\theta,1} and pθ=pθp_{\theta}=p_{\theta}^{\prime}, we have the following

W(pθpθ,1)=αpθ,1m0R12π02πdθei(0)θ/=αpθ,1m0R.W(p_{\theta}^{\prime}-p_{\theta,1})=\alpha\frac{p_{\theta,1}}{m_{0}R}\frac{1}{2\pi}\int_{0}^{2\pi}\mathrm{d}\theta\,\mathrm{e}^{-\mathrm{i}(0)\theta/\hbar}=\alpha\frac{p_{\theta,1}}{m_{0}R}. (38)

Now,

dpθ,1W(pθpθ,1)K(pθ,1,t|pθ,0,t0)=αm0Rdpθ,1(pθ,1)δ(pθ,1pθ,0)exp[ipθ,02m0(pθ,0+2αR)(tt0)]=αm0Rexp[ipθ,02m0(pθ,0+2αR)(tt0)]dpθ,1(pθ,1)δ(pθ,1pθ,0)=(αpθ,0m0R)exp[ipθ,02m0(pθ,0+2αR)(tt0)].\int_{-\infty}^{\infty}\mathrm{d}p_{\theta,1}W(p_{\theta}^{\prime}-p_{\theta,1})K(p_{\theta,1},t|p_{\theta,0},t_{0})\\ =\frac{\alpha}{m_{0}R}\int_{-\infty}^{\infty}\mathrm{d}p_{\theta,1}\,(p_{\theta,1})\delta\left(p_{\theta,1}-p_{\theta,0}\right)\exp\Biggl{[}-\frac{\mathrm{i}p_{\theta,0}}{2m_{0}\hbar}\Big{(}p_{\theta,0}+\frac{2\alpha}{R}\Big{)}(t-t_{0})\Biggr{]}\\ =\frac{\alpha}{m_{0}R}\exp\Biggl{[}-\frac{\mathrm{i}p_{\theta,0}}{2m_{0}\hbar}\Big{(}p_{\theta,0}+\frac{2\alpha}{R}\Big{)}(t-t_{0})\Biggr{]}\int_{-\infty}^{\infty}\mathrm{d}p_{\theta,1}\,(p_{\theta,1})\delta\left(p_{\theta,1}-p_{\theta,0}\right)\\ =\left(\frac{\alpha p_{\theta,0}}{m_{0}R}\right)\exp\Biggl{[}-\frac{\mathrm{i}p_{\theta,0}}{2m_{0}\hbar}\Big{(}p_{\theta,0}+\frac{2\alpha}{R}\Big{)}(t-t_{0})\Biggr{]}. (39)

Therefore,

itK(pθ,t|pθ,0,t0)=(pθ)22m0K(pθ,t|pθ,0,t0)+dpθ,1W(pθpθ,1)K(pθ,1,t|pθ,0,t0)pθ,02m0(pθ,0+2αR)δ(pθpθ,0)exp[ipθ,02m0(pθ,0+2αR)(tt0)]=(pθ)22m0δ(pθpθ,0)exp[ipθ,02m0(pθ,0+2αR)(tt0)]+(αpθ,0m0R)exp[ipθ,02m0(pθ,0+2αR)(tt0)]pθ,02m0(pθ,0+2αR)=(pθ,0)22m0+αpθ,0m0R.\mathrm{i}\hbar\frac{\partial}{\partial t}K(p_{\theta}^{\prime},t|p_{\theta,0},t_{0})\\ =\frac{(p_{\theta}^{\prime})^{2}}{2m_{0}}K(p_{\theta}^{\prime},t|p_{\theta,0},t_{0})+\int_{-\infty}^{\infty}\mathrm{d}p_{\theta,1}W(p_{\theta}^{\prime}-p_{\theta,1})K(p_{\theta,1},t|p_{\theta,0},t_{0})\\ \implies\frac{p_{\theta,0}}{2m_{0}}\Big{(}p_{\theta,0}+\frac{2\alpha}{R}\Big{)}\delta(p_{\theta}^{\prime}-p_{\theta,0})\exp\Biggl{[}-\frac{\mathrm{i}p_{\theta,0}}{2m_{0}\hbar}\Big{(}p_{\theta,0}+\frac{2\alpha}{R}\Big{)}(t-t_{0})\Biggr{]}\\ =\frac{(p_{\theta}^{\prime})^{2}}{2m_{0}}\delta(p_{\theta}^{\prime}-p_{\theta,0})\exp\Biggl{[}-\frac{\mathrm{i}p_{\theta,0}}{2m_{0}\hbar}\Big{(}p_{\theta,0}+\frac{2\alpha}{R}\Big{)}(t-t_{0})\Biggr{]}\\ +\left(\frac{\alpha p_{\theta,0}}{m_{0}R}\right)\exp\Biggl{[}-\frac{\mathrm{i}p_{\theta,0}}{2m_{0}\hbar}\Big{(}p_{\theta,0}+\frac{2\alpha}{R}\Big{)}(t-t_{0})\Biggr{]}\\ \implies\frac{p_{\theta,0}}{2m_{0}}\Big{(}p_{\theta,0}+\frac{2\alpha}{R}\Big{)}=\frac{(p_{\theta,0})^{2}}{2m_{0}}+\frac{\alpha p_{\theta,0}}{m_{0}R}. (40)

In the absence of the magnetic flux, that is, α=0\alpha=0, the propagator, Eq. (31), reduces to that for the case of a particle on a circle going less than a single winding around the circle (either cw or ccw), given by

TI0(0):=TIVAB=0(0)=δ(pθpθ,0)exp[ip2θ,02m0(tt0)],TI_{0}(0):=TI_{V_{\mathrm{AB}}=0}(0)=\delta\left(p_{\theta}^{\prime}-p_{\theta,0}\right)\exp\Biggl{[}-\frac{\mathrm{i}p^{2}_{\theta,0}}{2m_{0}\hbar}(t-t_{0})\Biggr{]}, (41)

which also solves the corresponding Schrödinger equation.

3.2 With Winding Case

Let us now consider the case where the charged particle is allowed to have the possibility of at least one complete winding in either cw or ccw direction (or a combination of both). Furthermore, we impose the assumption that the winding number has a direct effect not only on the angular position of the charged particle but also on its conjugate momentum. To account for this, we modify the expression of the delta function in Eq. (20) to have the form

l=δ(pθ(t)pθ+2πm0Rll0tt0),\sum_{l=-\infty}^{\infty}\delta\left(p_{\theta}(t)-p_{\theta}^{\prime}+2\pi m_{0}R\frac{l-l_{0}}{t-t_{0}}\right), (42)

where ll is the integer quantum number associated with the winding (see, e.g., Refs. [8, 10, 3]), which takes negative values when cw (of |l+1||l+1| times around the circle) and positive when ccw (of ll times around the circle), and l0l_{0} is the value of ll at time t0t_{0}. Thus, the Feynman integrand for this case has the form

IVAB\displaystyle I_{V_{\mathrm{AB}}} :=\displaystyle:= Nexp[iS(ω)]exp[12t0t(ω2θ(s)+ω2p(s))ds]\displaystyle\mathrm{N}\exp\Biggl{[}{\frac{\mathrm{i}}{\hbar}S(\omega)}\Biggr{]}\exp\Biggl{[}{\frac{1}{2}\int_{t_{0}}^{t}(\omega^{2}_{\theta}(s)+\omega^{2}_{p}(s))\,\mathrm{d}s}\Biggr{]} (43)
×l=δ(pθ(t)pθ+2πm0Rll0tt0).\displaystyle\times\sum_{l=-\infty}^{\infty}\delta\left(p_{\theta}(t)-p_{\theta}^{\prime}+2\pi m_{0}R\frac{l-l_{0}}{t-t_{0}}\right).

Employing the Poisson sum formula (see, e.g., Refs. [12, 2]), which, in our case (setting l0=0l_{0}=0, where we begin with zero winding at t0t_{0}) is

l=δ(pθ(t)pθ+2πm0Rltt0)=tt02πm0Rl=exp[il(pθ(t)pθ)(tt0)m0R],\sum_{l=-\infty}^{\infty}\delta\left(p_{\theta}(t)-p_{\theta}^{\prime}+2\pi m_{0}R\frac{l}{t-t_{0}}\right)=\frac{t-t_{0}}{2\pi m_{0}R}\sum_{l=-\infty}^{\infty}\exp\left[\mathrm{i}l\frac{\left(p_{\theta}(t)-p_{\theta}^{\prime}\right)(t-t_{0})}{m_{0}R}\right], (44)

we have (compare with Eq. (LABEL:I))

IVAB=Ntt02πm0Rexp{ipθ,02m0[(pθ(t)+2αR)(tt0)+(pθ(t)pθ,0)(tt0+2a)]}×exp(12(ωθ,ωp),K(ωθ,ωp))exp(i(ωθ,ωp),g)×l=exp[iltt0m0R(pθ,0pθ)]exp(i(ωθ,ωp),g+kl),I_{V_{\mathrm{AB}}}=\mathrm{N}\frac{t-t_{0}}{2\pi m_{0}R}\exp\Biggl{\{}-\frac{\mathrm{i}p_{\theta,0}}{2\hbar m_{0}}\left[\left(p_{\theta}(t)+\frac{2\alpha}{R}\right)(t-t_{0})+\left(p_{\theta}(t)-p_{\theta,0}\right)(t-t_{0}+2a)\right]\Biggr{\}}\\ \times\exp\Biggl{(}-\frac{1}{2}\langle(\omega_{\theta},\omega_{p}),K(\omega_{\theta},\omega_{p})\rangle\Biggr{)}\exp\Biggl{(}\mathrm{i}\langle(\omega_{\theta},\omega_{p}),g\rangle\Biggr{)}\\ \times\sum_{l=-\infty}^{\infty}\exp\left[\mathrm{i}l\frac{t-t_{0}}{m_{0}R}\left(p_{\theta,0}-p_{\theta}^{\prime}\right)\right]\exp\bigg{(}\mathrm{i}\left\langle(\omega_{\theta},\omega_{p}),g+k_{l}\right\rangle\bigg{)}, (45)

where kl:=l(tt0)m0Rηtk_{l}:=l\frac{(t-t_{0})}{m_{0}R}\eta_{t}.

Taking the T-transform of IVABI_{V_{\mathrm{AB}}} at the point f=(fθ,fpθ)f=(f_{\theta},f_{p_{\theta}}), yields

TIVAB(f)=tt02πm0Rexp{ipθ,02m0[(pθ+2αR)(tt0)+(pθpθ,0)(tt0+2a)]}×l=exp[iltt0m0R(pθ,0pθ)]S2Nexp(12(ωθ,ωp),K(ωθ,ωp))×exp(i(ωθ,ωp),g+kl)exp(i(ωθ,ωp),f)dμ(ω)=tt02πm0Rexp{ipθ,02m0[(pθ+2αR)(tt0)+(pθpθ,0)(tt0+2a)]}×l=exp[iltt0m0R(pθ,0pθ)]×T(Nexp(12(ωθ,ωp),K(ωθ,ωp)))(f+g+kl).TI_{V_{\mathrm{AB}}}(f)\\ =\frac{t-t_{0}}{2\pi m_{0}R}\exp\Biggl{\{}-\frac{\mathrm{i}p_{\theta,0}}{2\hbar m_{0}}\left[\left(p_{\theta}^{\prime}+\frac{2\alpha}{R}\right)(t-t_{0})+\left(p_{\theta}^{\prime}-p_{\theta,0}\right)(t-t_{0}+2a)\right]\Biggr{\}}\\ \times\sum_{l=-\infty}^{\infty}\exp\left[\mathrm{i}l\frac{t-t_{0}}{m_{0}R}\left(p_{\theta,0}-p_{\theta}^{\prime}\right)\right]\int_{S_{2}^{\prime}}\mathrm{N}\exp\Biggl{(}-\frac{1}{2}\langle(\omega_{\theta},\omega_{p}),K(\omega_{\theta},\omega_{p})\rangle\Biggr{)}\\ \times\exp\bigg{(}\mathrm{i}\left\langle(\omega_{\theta},\omega_{p}),g+k_{l}\right\rangle\bigg{)}\exp\bigg{(}\mathrm{i}\left\langle(\omega_{\theta},\omega_{p}),f\right\rangle\bigg{)}\mathrm{d}\mu(\omega)\\ =\frac{t-t_{0}}{2\pi m_{0}R}\exp\Biggl{\{}-\frac{\mathrm{i}p_{\theta,0}}{2\hbar m_{0}}\left[\left(p_{\theta}^{\prime}+\frac{2\alpha}{R}\right)(t-t_{0})+\left(p_{\theta}^{\prime}-p_{\theta,0}\right)(t-t_{0}+2a)\right]\Biggr{\}}\\ \times\sum_{l=-\infty}^{\infty}\exp\left[\mathrm{i}l\frac{t-t_{0}}{m_{0}R}\left(p_{\theta,0}-p_{\theta}^{\prime}\right)\right]\\ \times T\left(\mathrm{N}\exp\Biggl{(}-\frac{1}{2}\langle(\omega_{\theta},\omega_{p}),K(\omega_{\theta},\omega_{p})\rangle\Biggr{)}\right)(f+g+k_{l}). (46)

In particular, following Lemma 10, we have

T(Nexp(12,K))(f+g+kl)=(2πm0Rtt0det(Id+K))1det(Id+K)×exp(12f+g+kl,(Id+K)1(f+g+kl))=(2πm0Rtt0)exp(12f+g+kl,(Id+K)1(f+g+kl)),T\left(\mathrm{N}\exp\Biggl{(}-\frac{1}{2}\langle\cdot,K\cdot\rangle\Biggr{)}\right)(f+g+k_{l})\\ =\left(\frac{2\pi m_{0}R}{t-t_{0}}\sqrt{\det({\mathrm{Id}}+{K})}\right)\frac{1}{\sqrt{\det({\mathrm{Id}}+{K})}}\\ \times\exp\left(-\frac{1}{2}\left\langle{f+g+k_{l}},({\mathrm{Id}}+{K})^{-1}{(f+g+k_{l})}\right\rangle\right)\\ =\left(\frac{2\pi m_{0}R}{t-t_{0}}\right)\exp\left(-\frac{1}{2}\left\langle{f+g+k_{l}},({\mathrm{Id}}+{K})^{-1}{(f+g+k_{l})}\right\rangle\right), (47)

where we have chosen the normalization N=((2πm0R/(tt0))det(Id+K))\mathrm{N}=\left(({2\pi m_{0}R}/{(t-t_{0})})\sqrt{\det({\mathrm{Id}}+{K})}\right) in such a way to also “eliminate” (tt0)/2πm0R(t-t_{0})/2\pi m_{0}R and the divergent factor 1/det(Id+K)1/{\sqrt{\det({\mathrm{Id}}+{K})}}.

With

f+g+kl,(Id+K)1(f+g+kl)=[t0,t)c(f2θ(s)+f2pθ(s))dsit0tf2pθ(s)ds,\left\langle{f+g+k_{l}},({\mathrm{Id}}+{K})^{-1}{(f+g+k_{l})}\right\rangle\\ =\int_{[t_{0},t)^{c}}\left(f^{2}_{\theta}(s)+f^{2}_{p_{\theta}}(s)\right)\mathrm{d}s-\mathrm{i}\int_{t_{0}}^{t}f^{2}_{p_{\theta}}(s)\,\mathrm{d}s, (48)

we have

TIVAB(f)=exp{ipθ,02m0[(pθ+2αR)(tt0)+(pθpθ,0)(tt0+2a)]}×exp{12[[t0,t)c(f2θ(s)+f2pθ(s))dsit0tf2pθ(s)ds]}×l=exp[iltt0m0R(pθ,0pθ)].TI_{V_{\mathrm{AB}}}(f)=\exp\Biggl{\{}-\frac{\mathrm{i}p_{\theta,0}}{2\hbar m_{0}}\left[\left(p_{\theta}^{\prime}+\frac{2\alpha}{R}\right)(t-t_{0})+\left(p_{\theta}^{\prime}-p_{\theta,0}\right)(t-t_{0}+2a)\right]\Biggr{\}}\\ \times\exp\Biggl{\{}-\frac{1}{2}\Biggl{[}\int_{[t_{0},t)^{c}}\left(f^{2}_{\theta}(s)+f^{2}_{p_{\theta}}(s)\right)\,\mathrm{d}s-\mathrm{i}\int_{t_{0}}^{t}f^{2}_{p_{\theta}}(s)\,\mathrm{d}s\Biggr{]}\Biggr{\}}\\ \times\sum_{l=-\infty}^{\infty}\exp\left[\mathrm{i}l\frac{t-t_{0}}{m_{0}R}\left(p_{\theta,0}-p_{\theta}^{\prime}\right)\right]. (49)

Setting f=0f=0, we obtain the quantum propagator in the polar conjugate momentum space for the bound state AB effect for t>t0t>t_{0}

TIVAB(0)=exp{ipθ,02m0[(pθ+2αR)(tt0)+(pθpθ,0)(tt0+2a)]}×l=exp[iltt0m0R(pθ,0pθ)].TI_{V_{\mathrm{AB}}}(0)=\exp\Biggl{\{}-\frac{\mathrm{i}p_{\theta,0}}{2\hbar m_{0}}\left[\left(p_{\theta}^{\prime}+\frac{2\alpha}{R}\right)(t-t_{0})+\left(p_{\theta}^{\prime}-p_{\theta,0}\right)(t-t_{0}+2a)\right]\Biggr{\}}\\ \times\sum_{l=-\infty}^{\infty}\exp\left[\mathrm{i}l\frac{t-t_{0}}{m_{0}R}\left(p_{\theta,0}-p_{\theta}^{\prime}\right)\right]. (50)

We note here that Eq. (50) suggests that as the conservation of the magnitude of the polar conjugate momentum is imposed, that is, in the limit pθpθ,0p_{\theta}^{\prime}\rightarrow p_{\theta,0}, the propagator reduces to that in Eq. (31).

Proposition 3.2.

If pθ=pθ,0p_{\theta}^{\prime}=p_{\theta,0}, t>t00t>t_{0}\geq 0, then the propagator

K(pθ,t|pθ,0,t0)\displaystyle K(p_{\theta}^{\prime},t|p_{\theta,0},t_{0}) :=\displaystyle:= TIVAB(0)\displaystyle TI_{V_{\mathrm{AB}}}(0) (51)
=\displaystyle= exp{ipθ,02m0[(pθ+2αR)(tt0)+(pθpθ,0)(tt0+2a)]}\displaystyle\exp\Biggl{\{}-\frac{\mathrm{i}p_{\theta,0}}{2\hbar m_{0}}\left[\left(p_{\theta}^{\prime}+\frac{2\alpha}{R}\right)(t-t_{0})+\left(p_{\theta}^{\prime}-p_{\theta,0}\right)(t-t_{0}+2a)\right]\Biggr{\}}
×l=exp[iltt0m0R(pθ,0pθ)],\displaystyle\times\sum_{l=-\infty}^{\infty}\exp\left[\mathrm{i}l\frac{t-t_{0}}{m_{0}R}\left(p_{\theta,0}-p_{\theta}^{\prime}\right)\right],

solves the Schrödinger equation

itK(pθ,t|pθ,0,t0)=(pθ)22m0K(pθ,t|pθ,0,t0)+dpθ,1W(pθpθ,1)K(pθ,1,t|pθ,0,t0),\mathrm{i}\hbar\frac{\partial}{\partial t}K(p_{\theta}^{\prime},t|p_{\theta,0},t_{0})\\ =\frac{(p_{\theta}^{\prime})^{2}}{2m_{0}}K(p_{\theta}^{\prime},t|p_{\theta,0},t_{0})+\int_{-\infty}^{\infty}\mathrm{d}p_{\theta,1}W(p_{\theta}^{\prime}-p_{\theta,1})K(p_{\theta,1},t|p_{\theta,0},t_{0}), (52)

where

W(pθpθ,1)=12π02πdθei(pθpθ,1)θ/V(θ˙(s)),W(p_{\theta}^{\prime}-p_{\theta,1})=\frac{1}{2\pi}\int_{0}^{2\pi}\mathrm{d}\theta\,\mathrm{e}^{-\mathrm{i}(p_{\theta}^{\prime}-p_{\theta,1})\theta/\hbar}V(\dot{\theta}(s)), (53)

and

V(θ˙(s))=eϕ2πcθ˙(s),V(\dot{\theta}(s))=-\frac{e\phi}{2\pi\hbar c}\dot{\theta}(s), (54)

with the initial condition

limtt0K(pθ,t|pθ,0,t0)=δ(pθpθ,0).\lim_{t\searrow t_{0}}K(p_{\theta}^{\prime},t|p_{\theta,0},t_{0})=\delta(p_{\theta}^{\prime}-p_{\theta,0}). (55)
Proof.

This can be verified explicitly by trying to solve directly the Schrödinger equation using the propagator Eq. (51). The equality of the Schrödinger equation can be shown to hold only when preserving the magnitude of the conjugate momentum.

We begin with the lhs of Eq. (52):

itK(pθ,t|pθ,0,t0)=iexp{ipθ,02m0[(pθ+2αR)(tt0)+(pθpθ,0)(tt0+2a)]}×l=exp[iltt0m0R(pθ,0pθ)]×[ipθ,02m0(pθeϕπcR+pθpθ,0)+(il1m0R)(pθ,0pθ)].\mathrm{i}\hbar\frac{\partial}{\partial t}K(p_{\theta}^{\prime},t|p_{\theta,0},t_{0})\\ =\mathrm{i}\hbar\exp\Biggl{\{}-\frac{\mathrm{i}p_{\theta,0}}{2\hbar m_{0}}\left[\left(p_{\theta}^{\prime}+\frac{2\alpha}{R}\right)(t-t_{0})+\left(p_{\theta}^{\prime}-p_{\theta,0}\right)(t-t_{0}+2a)\right]\Biggr{\}}\\ \times\sum_{l=-\infty}^{\infty}\exp\left[\mathrm{i}l\frac{t-t_{0}}{m_{0}R}\left(p_{\theta,0}-p_{\theta}^{\prime}\right)\right]\\ \times\Biggl{[}-\frac{\mathrm{i}p_{\theta,0}}{2m_{0}\hbar}\Big{(}p_{\theta}^{\prime}-\frac{e\phi}{\pi\hbar cR}+p_{\theta}^{\prime}-p_{\theta,0}\Big{)}+\left(\mathrm{i}l\frac{1}{m_{0}R}\right)\left(p_{\theta,0}-p_{\theta}^{\prime}\right)\Biggr{]}. (56)

Now, note that the term (il1m0R+ipθ,02m0)(pθ,0pθ)\left(\mathrm{i}l\frac{1}{m_{0}R}+\frac{\mathrm{i}p_{\theta,0}}{2m_{0}\hbar}\right)\left(p_{\theta,0}-p_{\theta}^{\prime}\right) has no counterpart in the rhs of the Schrödinger equation since the only expression

W(pθpθ,1)=eϕ2πc12π02πdθei(pθpθ,1)θ/θ˙W(p_{\theta}^{\prime}-p_{\theta,1})=-\frac{e\phi}{2\pi\hbar c}\frac{1}{2\pi}\int_{0}^{2\pi}\mathrm{d}\theta\,\mathrm{e}^{-\mathrm{i}(p_{\theta}^{\prime}-p_{\theta,1})\theta/\hbar}\dot{\theta} (57)

that could contain this term has the potential term α:=eϕ2πc\alpha:=\frac{-e\phi}{2\pi\hbar c}. Thus, the only way around this is when pθ=pθ,0p_{\theta}^{\prime}=p_{\theta,0}, so as to make (il1m0R+ipθ,02m0)(pθ,0pθ)=0\left(\mathrm{i}l\frac{1}{m_{0}R}+\frac{\mathrm{i}p_{\theta,0}}{2m_{0}\hbar}\right)\left(p_{\theta,0}-p_{\theta}^{\prime}\right)=0 and the Schrödinger equation is satisfied.

Having examined the above two cases, namely, “Incomplete Winding Case” and “With Winding Case” (see Subsections 3.1 and 3.2, respectively), we are therefore led to the following main result.

Theorem 3.3 (Particle in a Bound State AB Potential Momentum Space Propagator).

For a charged particle undergoing a bound state AB effect as described and depicted in Fig. 1, the momentum- (specifically the polar-conjugate-momentum-) space propagator is given by

K(pθ,t|pθ,0,t0)=δ(pθpθ,0)exp[ipθ,02m0(pθ,0eϕπcR)(tt0)].K(p_{\theta}^{\prime},t|p_{\theta,0},t_{0})=\delta\left(p_{\theta}^{\prime}-p_{\theta,0}\right)\exp\Biggl{[}-\frac{\mathrm{i}p_{\theta,0}}{2m_{0}\hbar}\Big{(}p_{\theta,0}-\frac{e\phi}{\pi\hbar cR}\Big{)}(t-t_{0})\Biggr{]}. (58)

This further implies that the magnitude of the conjugate momentum of the particle is conserved through the time interval [t0,t][t_{0},t] with t>t00t>t_{0}\geq 0, regardless of the winding number ll taken by the motion of the particle.

Remark 3.4 (Particle on a Circle Momentum Space Propagator).

The main result also implies that, for the case where the magnetic flux ϕ=0\phi=0, which is the case of a particle on a circle, the momentum- (specifically the polar-conjugate-momentum-) space propagator is given by

K(pθ,t|pθ,0,t0)=δ(pθpθ,0)exp[ipθ,022m0(tt0)],K(p_{\theta}^{\prime},t|p_{\theta,0},t_{0})=\delta\left(p_{\theta}^{\prime}-p_{\theta,0}\right)\exp\Biggl{[}-\frac{\mathrm{i}p_{\theta,0}^{2}}{2m_{0}\hbar}(t-t_{0})\Biggr{]}, (59)

which also obeys the conservation of momentum regardless of the winding number similar to that in the main result above.

4 Alternative WNA Approach in Achieving the Bound State AB Effect

Here we outline another WNA approach for the bound state AB effect based on a perturbation series of the Feynman integrand for the particle on a circle.

4.1 Particle on a Circle Perturbed by a Potential that is Growing Exponentially in Angular Velocity

Definition 4.1 (cf. Ref. [18]).

We define a potential V:V:\mathbb{R}\longrightarrow\mathbb{R} by

V(x)=eβxdm(β)x,V(x)=\int_{\mathbb{R}}\mathrm{e}^{\beta x}\,\mathrm{d}m(\beta)\qquad x\in\mathbb{R}, (60)

with mm being a complex measure on the Borel sets on \mathbb{R} fulfilling the condition

eC|β|d|m|(β)<,C>0.\int_{\mathbb{R}}\mathrm{e}^{C|\beta|}\,\mathrm{d}|m|(\beta)<\infty,\qquad\forall C>0. (61)

For each s[t0,t]s\in[t_{0},t], setting x:=dθ/ds=:θ˙(s)x:=\mathrm{d}\theta/\mathrm{d}s=:\dot{\theta}(s), we have adapted a version of the exponentially growing potential, V(θ˙(s))V(\dot{\theta}(s)), which we call a class of potentials that are exponentially growing in angular velocity.

We first set up the Feynman integrand as a perturbation series of the form

IV=I0exp(it0tV(θ˙(s))ds)=I0n=0(i/)nn![t0,t)ndnsnj=1ndm(βj)ej=1nβjθ˙(sj)=n=0(i/)nn![t0,t)ndnsnj=1ndm(βj)I0ej=1nβjθ˙(sj).I_{V}=I_{0}\exp\Biggl{(}-\frac{\mathrm{i}}{\hbar}\int_{t_{0}}^{t}V(\dot{\theta}(s))\,\mathrm{d}s\Biggr{)}\\ =I_{0}\sum_{n=0}^{\infty}\frac{(-\mathrm{i}/\hbar)^{n}}{n!}\int_{[t_{0},t)^{n}}\mathrm{d}^{n}s\int_{\mathbb{R}^{n}}\prod_{j=1}^{n}\mathrm{d}m(\beta_{j})\,\mathrm{e}^{\sum_{j=1}^{n}\beta_{j}\dot{\theta}(s_{j})}\\ =\sum_{n=0}^{\infty}\frac{(-\mathrm{i/\hbar})^{n}}{n!}\int_{[t_{0},t)^{n}}\mathrm{d}^{n}s\int_{\mathbb{R}^{n}}\prod_{j=1}^{n}\mathrm{d}m(\beta_{j})\,I_{0}\mathrm{e}^{\sum_{j=1}^{n}\beta_{j}\dot{\theta}(s_{j})}. (62)

Then, we need to show that IVI_{V} is a white noise object before we can proceed to solve the propagator.

Consider the functional Ψ:=I0ej=1nβjθ˙(sj)\Psi:=I_{0}\mathrm{e}^{\sum_{j=1}^{n}\beta_{j}\dot{\theta}(s_{j})}. As an adaptation of Refs. [6, 18], we can have our version for the polar coordinates starting with Eq. (14) to have

pθ(sj)=pθ,0+Dωθ(sj)=pθ,0+<ωθ,Dδsj>,p_{\theta}(s_{j})=p_{\theta,0}+D\omega_{\theta}(s_{j})=p_{\theta,0}+\big{<}\omega_{\theta},D\delta_{s_{j}}\big{>}, (63)

or

pθ(t)=pθ(sj)+D(ωθ(t)ωθ(sj))=pθ(sj)+<ωθ,D(δtδsj)>pθ(sj)=pθ(t)<ωθ,D(δtδsj)>.p_{\theta}(t)=p_{\theta}(s_{j})+D(\omega_{\theta}(t)-\omega_{\theta}(s_{j}))=p_{\theta}(s_{j})+\big{<}\omega_{\theta},D(\delta_{t}-\delta_{s_{j}})\big{>}\\ \implies p_{\theta}(s_{j})=p_{\theta}(t)-\big{<}\omega_{\theta},D(\delta_{t}-\delta_{s_{j}})\big{>}. (64)

With Theorem. 2.2, it is enough to characterize Ψ\Psi with its T-transform at the point φ=(φθ,φpθ)\varphi=(\varphi_{\theta},\varphi_{p_{\theta}}):

TΨ(φ)=S2Ψ(ω)exp(iω,φ)dμ(ω)=S2I0(ω)exp[j=1nβj(pθ(t)m0R<ωθ,E(δtδsj)>)]exp(iω,φ)dμ(ω)=exp(pθ(t)m0Rj=1nβj)×S2I0(ω)exp(i(ωθ,ωp),i(Ej=1nβj(δtδsj), 0))exp(iω,φ)dμ(ω)=exp(pθm0Rj=1nβj)S2I0(ω)exp(iω,iξt)exp(iω,φ)dμ(ω)=exp(pθm0Rj=1nβj)TI0(φ+iξt)T\Psi(\varphi)=\int_{S_{2}^{\prime}}\Psi(\omega)\exp\left(\mathrm{i}\left\langle\omega,\varphi\right\rangle\right)\mathrm{d}\mu(\omega)\\ =\int_{S_{2}^{\prime}}I_{0}(\omega)\exp\left[\sum_{j=1}^{n}\beta_{j}\Biggl{(}\frac{p_{\theta}(t)}{m_{0}R}-\big{<}\omega_{\theta},E(\delta_{t}-\delta_{s_{j}})\big{>}\Biggr{)}\right]\exp\left(\mathrm{i}\left\langle\omega,\varphi\right\rangle\right)\mathrm{d}\mu(\omega)\\ =\exp\left(\frac{p_{\theta}(t)}{m_{0}R}\sum_{j=1}^{n}\beta_{j}\right)\\ \times\int_{S_{2}^{\prime}}I_{0}(\omega)\exp\left(\mathrm{i}\left\langle(\omega_{\theta},\omega_{p}),\mathrm{i}\left(E\sum_{j=1}^{n}\beta_{j}(\delta_{t}-\delta_{s_{j}}),\,0\right)\right\rangle\right)\exp\left(\mathrm{i}\left\langle\omega,\varphi\right\rangle\right)\mathrm{d}\mu(\omega)\\ =\exp\left(\frac{p_{\theta}^{\prime}}{m_{0}R}\sum_{j=1}^{n}\beta_{j}\right)\int_{S_{2}^{\prime}}I_{0}(\omega)\exp\left(\mathrm{i}\left\langle\omega,\mathrm{i}\xi_{t}\right\rangle\right)\exp\left(\mathrm{i}\left\langle\omega,\varphi\right\rangle\right)\mathrm{d}\mu(\omega)\\ =\exp\left(\frac{p_{\theta}^{\prime}}{m_{0}R}\sum_{j=1}^{n}\beta_{j}\right)TI_{0}(\varphi+\mathrm{i}\xi_{t}) (65)

where ξt:=(Ej=1nβj(δtδsj), 0)\xi_{t}:=\left(E\sum_{j=1}^{n}\beta_{j}(\delta_{t}-\delta_{s_{j}}),\,0\right).

We note here that since both of the cases considered above (see Subsections 3.1 and 3.2) produce results that have the conservation of the magnitude of the conjugate momentum, we may as well choose the calculations of the T-transform of the particle on a circle integrand that from either of the two (i.e., when α=0\alpha=0), which we expect to produce the same results.

With Eqs. (26), (27), and (29), we may explicitly calculate for Eq. (65) with a small perturbation ε>0\varepsilon>0 using Lemma 10 (let ξt,θ=Ej=1nβj(δtδsj)\xi_{t,\theta}=E\sum_{j=1}^{n}\beta_{j}(\delta_{t}-\delta_{s_{j}})):

TΨε(φ)=exp(pθm0Rj=1nβj)tt02πm0ε×exp{ipθ,02m0[pθ(tt0)+(pθpθ,0)(tt0+2a)]}×exp{12[(ε+1)[t0,t)c(φθ(s)+ξt,θ(s))2ds+εt0t(φθ(s)+ξt,θ(s)1m0(pθ(t)pθ,0))2dsit0tφ2pθ(s)ds+[t0,t)cφ2pθ(s)ds]+tt02εm0[(pθpθ,0)2+2i(pθpθ,0)[ε(m0tt0t0t(φθ(s)+ξt,θ(s))ds(pθpθ,0))+m0tt0t0tφpθ(s)ds]+[ε(m0tt0t0t(φθ(s)+ξt,θ(s))ds(pθpθ,0))+m0tt0t0tφpθ(s)ds]2]}=TI0,ε(φ)Gε(pθ,pθ,0,ξt,θ,t,t0),T\Psi_{\varepsilon}(\varphi)=\exp\left(\frac{p_{\theta}^{\prime}}{m_{0}R}\sum_{j=1}^{n}\beta_{j}\right)\frac{\sqrt{t-t_{0}}}{\sqrt{2\pi\hbar m_{0}\varepsilon}}\\ \times\exp\Biggl{\{}-\frac{\mathrm{i}p_{\theta,0}}{2\hbar m_{0}}\Biggl{[}p_{\theta}^{\prime}(t-t_{0})+\left(p_{\theta}^{\prime}-p_{\theta,0}\right)(t-t_{0}+2a)\Biggr{]}\Biggr{\}}\\ \times\exp\Biggl{\{}-\frac{1}{2}\Biggl{[}(\varepsilon+1)\int_{[t_{0},t)^{c}}(\varphi_{\theta}(s)+\xi_{t,\theta}(s))^{2}\,\mathrm{d}s\\ +\varepsilon\int_{t_{0}}^{t}\left(\varphi_{\theta}(s)+\xi_{t,\theta}(s)-\frac{1}{\sqrt{\hbar m_{0}}}(p_{\theta}(t)-p_{\theta,0})\right)^{2}\,\mathrm{d}s\\ -\mathrm{i}\int_{t_{0}}^{t}\varphi^{2}_{p_{\theta}}(s)\,\mathrm{d}s+\int_{[t_{0},t)^{c}}\varphi^{2}_{p_{\theta}}(s)\,\mathrm{d}s\Biggr{]}+\frac{t-t_{0}}{2\varepsilon\hbar m_{0}}\Biggl{[}-(p_{\theta}^{\prime}-p_{\theta,0})^{2}\\ +2\mathrm{i}(p_{\theta}^{\prime}-p_{\theta,0})\biggl{[}\varepsilon\biggl{(}\frac{\sqrt{\hbar m_{0}}}{t-t_{0}}\int_{t_{0}}^{t}(\varphi_{\theta}(s)+\xi_{t,\theta}(s))\,\mathrm{d}s-(p_{\theta}^{\prime}-p_{\theta,0})\biggr{)}\\ +\frac{\sqrt{\hbar m_{0}}}{t-t_{0}}\int_{t_{0}}^{t}\varphi_{p_{\theta}}(s)\,\mathrm{d}s\biggr{]}+\biggl{[}\varepsilon\biggl{(}\frac{\sqrt{\hbar m_{0}}}{t-t_{0}}\int_{t_{0}}^{t}(\varphi_{\theta}(s)+\xi_{t,\theta}(s))\,\mathrm{d}s-(p_{\theta}^{\prime}-p_{\theta,0})\biggr{)}\\ +\frac{\sqrt{\hbar m_{0}}}{t-t_{0}}\int_{t_{0}}^{t}\varphi_{p_{\theta}}(s)\,\mathrm{d}s\biggr{]}^{2}\Biggr{]}\Biggr{\}}\\ =TI_{0,\varepsilon}(\varphi)G_{\varepsilon}(p_{\theta}^{\prime},p_{\theta,0},\xi_{t,\theta},t,t_{0}), (66)

where

Gε(pθ,pθ,0,ξt,θ,t,t0)=exp(pθm0Rj=1nβj)×exp{12[(ε+1)[t0,t)c(2φθ(s)ξt,θ(s)+ξ2t,θ(s))ds+εt0t(2ξt,θ(s)(φθ(s)1m0(pθ(t)pθ,0))+(ξt,θ(s))2)ds]+tt02εm0[2i(pθpθ,0)εm0tt0t0tξt,θ(s)ds+2ε2m0tt0t0tξt,θ(s)ds×(m0tt0t0tφθ(s)ds(pθpθ,0)+m0ε(tt0)t0tφpθ(s)ds)+(εm0tt0t0tξt,θ(s)ds)2]}.G_{\varepsilon}(p_{\theta}^{\prime},p_{\theta,0},\xi_{t,\theta},t,t_{0})=\exp\left(\frac{p_{\theta}^{\prime}}{m_{0}R}\sum_{j=1}^{n}\beta_{j}\right)\\ \times\exp\Biggl{\{}-\frac{1}{2}\Biggl{[}(\varepsilon+1)\int_{[t_{0},t)^{c}}(2\varphi_{\theta}(s)\xi_{t,\theta}(s)+\xi^{2}_{t,\theta}(s))\,\mathrm{d}s+\varepsilon\int_{t_{0}}^{t}\biggl{(}2\xi_{t,\theta}(s)\Big{(}\varphi_{\theta}(s)\\ -\frac{1}{\sqrt{\hbar m_{0}}}(p_{\theta}(t)-p_{\theta,0})\Big{)}+\Big{(}\xi_{t,\theta}(s)\Big{)}^{2}\biggr{)}\,\mathrm{d}s\Biggr{]}\\ +\frac{t-t_{0}}{2\varepsilon\hbar m_{0}}\Biggl{[}2\mathrm{i}(p_{\theta}^{\prime}-p_{\theta,0})\varepsilon\frac{\sqrt{\hbar m_{0}}}{t-t_{0}}\int_{t_{0}}^{t}\xi_{t,\theta}(s)\,\mathrm{d}s+2\varepsilon^{2}\frac{\sqrt{\hbar m_{0}}}{t-t_{0}}\int_{t_{0}}^{t}\xi_{t,\theta}(s)\,\mathrm{d}s\\ \times\biggl{(}\frac{\sqrt{\hbar m_{0}}}{t-t_{0}}\int_{t_{0}}^{t}\varphi_{\theta}(s)\,\mathrm{d}s-(p_{\theta}^{\prime}-p_{\theta,0})+\frac{\sqrt{\hbar m_{0}}}{\varepsilon(t-t_{0})}\int_{t_{0}}^{t}\varphi_{p_{\theta}}(s)\,\mathrm{d}s\biggr{)}\\ +\biggl{(}\varepsilon\frac{\sqrt{\hbar m_{0}}}{t-t_{0}}\int_{t_{0}}^{t}\xi_{t,\theta}(s)\,\mathrm{d}s\biggr{)}^{2}\Biggr{]}\Biggr{\}}. (67)

Taking the limit of ε0\varepsilon\rightarrow 0, we have

TΨ(φ)=TI0(φ)G(pθ,pθ,0,ξt,θ,t,t0)=exp(pθm0Rj=1nβj)TI0(φ)exp{1tt0t0tξt,θ(s)dst0tφpθ(s)ds+tt0m0[i(pθpθ,0)m0tt0t0tξt,θ(s)ds]}=exp(pθm0Rj=1nβj)TI0(φ)exp(1tt0t0tξt,θ(s)dst0tφpθ(s)ds)=exp(pθm0Rj=1nβj)TI0(φ)exp(1tt0m0R2t0tφpθ(s)dsj=1nβj(tsj))T\Psi(\varphi)=TI_{0}(\varphi)G(p_{\theta}^{\prime},p_{\theta,0},\xi_{t,\theta},t,t_{0})\\ =\exp\left(\frac{p_{\theta}^{\prime}}{m_{0}R}\sum_{j=1}^{n}\beta_{j}\right)TI_{0}(\varphi)\exp\Biggl{\{}\frac{1}{t-t_{0}}\int_{t_{0}}^{t}\xi_{t,\theta}(s)\,\mathrm{d}s\int_{t_{0}}^{t}\varphi_{p_{\theta}}(s)\,\mathrm{d}s\\ +\frac{t-t_{0}}{\hbar m_{0}}\Biggl{[}\mathrm{i}(p_{\theta}^{\prime}-p_{\theta,0})\frac{\sqrt{\hbar m_{0}}}{t-t_{0}}\int_{t_{0}}^{t}\xi_{t,\theta}(s)\,\mathrm{d}s\Biggr{]}\Biggr{\}}\\ =\exp\left(\frac{p_{\theta}^{\prime}}{m_{0}R}\sum_{j=1}^{n}\beta_{j}\right)TI_{0}(\varphi)\exp\left(\frac{1}{t-t_{0}}\int_{t_{0}}^{t}\xi_{t,\theta}(s)\,\mathrm{d}s\int_{t_{0}}^{t}\varphi_{p_{\theta}}(s)\,\mathrm{d}s\right)\\ =\exp\left(\frac{p_{\theta}^{\prime}}{m_{0}R}\sum_{j=1}^{n}\beta_{j}\right)TI_{0}(\varphi)\exp\left(\frac{1}{t-t_{0}}\sqrt{\frac{\hbar}{m_{0}R^{2}}}\int_{t_{0}}^{t}\varphi_{p_{\theta}}(s)\,\mathrm{d}s\sum_{j=1}^{n}\beta_{j}(t-s_{j})\right) (68)

since the exponential term containing (pθpθ,0)(p_{\theta}^{\prime}-p_{\theta,0}) vanishes due to the delta function that serves to conserve the magnitude of the conjugate momentum contained in the TI0(φ)TI_{0}(\varphi). As already pointed out, we would also have obtained a result similar to that in Eq. (68) had we used the T-transform of the integrand in Eq. (49) (with α\alpha = 0).

Proposition 4.2.

Let n0n\in\mathbb{N}_{0}, sj[t0,t]s_{j}\in[t_{0},t], and βj\beta_{j}\in\mathbb{R}, 1jn1\leq j\leq n be given. Then, the product

Ψn=I0exp(j=1nβjθ˙(sj))\Psi_{n}=I_{0}\exp\left(\sum_{j=1}^{n}\beta_{j}\dot{\theta}(s_{j})\right) (69)

defined for any φS2\varphi\in S_{2} by

TΨn(φ)=exp(θ˙(t)j=1nβj)TI0(φ+iξt)T\Psi_{n}(\varphi)=\exp\left(\dot{\theta}(t)\sum_{j=1}^{n}\beta_{j}\right)TI_{0}(\varphi+\mathrm{i}\xi_{t}) (70)

is a well-defined element in the Kondratiev distribution space (S2)1(S_{2})^{-1}.

Proof.

Let

TΨn(φ)=TI0(φ)Gn(φ,ξt),T\Psi_{n}(\varphi)=TI_{0}(\varphi)G_{n}(\varphi,\xi_{t}), (71)

with

Gn(φ,ξt):=exp(pθm0Rj=1nβj)exp(1tt0m0R2t0tφpθ(s)dsj=1nβj(tsj)).G_{n}(\varphi,\xi_{t}):=\exp\left(\frac{p_{\theta}^{\prime}}{m_{0}R}\sum_{j=1}^{n}\beta_{j}\right)\exp\left(\frac{1}{t-t_{0}}\sqrt{\frac{\hbar}{m_{0}R^{2}}}\int_{t_{0}}^{t}\varphi_{p_{\theta}}(s)\,\mathrm{d}s\sum_{j=1}^{n}\beta_{j}(t-s_{j})\right). (72)

We note that in Eq. (71), since I0(φ)I_{0}(\varphi) has already been shown to be a Hida distribution as guaranteed by Lemma 10, hence we only need to show that Gn(φ,ξt)G_{n}(\varphi,\xi_{t}) satisfies the conditions of Definition 2.1 and Theorem 2.2. This will show that Ψn\Psi_{n} is an element in (S2)1(S_{2})^{-1}. As Gn(φ0+zφ,ξt)G_{n}(\varphi_{0}+z\varphi,\xi_{t}) entire in zz being obvious, we proceed to calculate the boundedness of Gn(φ,ξt)G_{n}(\varphi,\xi_{t}):

|Gn(φ,ξt)|exp|pθm0Rj=1nβj|exp|1tt0m0R2t0tφpθ(s)dsj=1nβj(tsj)|exp(|pθ|m0Rj=1n|βj|)exp(m0R2tt0|φpθ,Δ|0j=1n|βj|)=j=1nexp(C|βj|)withC=C(tt0,|φΔ|0,|pθ|).\left|G_{n}(\varphi,\xi_{t})\right|\leq\exp\left|\frac{p_{\theta}^{\prime}}{m_{0}R}\sum_{j=1}^{n}\beta_{j}\right|\exp\left|\frac{1}{t-t_{0}}\sqrt{\frac{\hbar}{m_{0}R^{2}}}\int_{t_{0}}^{t}\varphi_{p_{\theta}}(s)\,\mathrm{d}s\sum_{j=1}^{n}\beta_{j}(t-s_{j})\right|\\ \leq\exp\left(\frac{|p_{\theta}^{\prime}|}{m_{0}R}\sum_{j=1}^{n}|\beta_{j}|\right)\exp\left(\sqrt{\frac{\hbar}{m_{0}R^{2}}}\sqrt{t-t_{0}}\left|\varphi_{p_{\theta},\Delta}\right|_{0}\sum_{j=1}^{n}|\beta_{j}|\right)\\ =\prod_{j=1}^{n}\exp\left(C|\beta_{j}|\right)\quad\quad\mathrm{with}\quad\quad C=C(t-t_{0},\left|\varphi_{\Delta}\right|_{0},|p_{\theta}|). (73)

where Δ:=tt0\Delta:=t-t_{0}. ∎

Lemma 4.3.

For every n0n\in\mathbb{N}_{0}, the integral

[t0,t)ndnsnj=1ndm(βj)I0ej=1nβjθ˙(sj)\int_{[t_{0},t)^{n}}\mathrm{d}^{n}s\int_{\mathbb{R}^{n}}\prod_{j=1}^{n}\mathrm{d}m(\beta_{j})\,I_{0}\mathrm{e}^{\sum_{j=1}^{n}\beta_{j}\dot{\theta}(s_{j})}

defined for any φS2\varphi\in S_{2} by

[t0,t)ndnsnj=1ndm(βj)T(I0ej=1nβjθ˙(sj))(φ)\displaystyle\int_{[t_{0},t)^{n}}\mathrm{d}^{n}s\int_{\mathbb{R}^{n}}\prod_{j=1}^{n}\mathrm{d}m(\beta_{j})\,T\left(I_{0}\mathrm{e}^{\sum_{j=1}^{n}\beta_{j}\dot{\theta}(s_{j})}\right)(\varphi)
=TI0(φ)[t0,t)ndnsnj=1ndm(βj)Gn(φ,ξt)\displaystyle=TI_{0}(\varphi)\int_{[t_{0},t)^{n}}\mathrm{d}^{n}s\int_{\mathbb{R}^{n}}\prod_{j=1}^{n}\mathrm{d}m(\beta_{j})\,G_{n}(\varphi,\xi_{t}) (74)

is a Kondratiev distribution.

Proof.

It follow from Eq. (73), the term Gn(φ,ξt)G_{n}(\varphi,\xi_{t}) is linearly bound, and so TΨn(φ)T\Psi_{n}(\varphi) is measurable for any φS2\varphi\in S_{2}. Thus in order to apply Corollary 2.4 (Bochner integrability) we only need to see the absolute integrability of Gn(φ,ξt)G_{n}(\varphi,\xi_{t}) through the following bound

|[t0,t)ndnsdm(β1)dm(βn)Gn(φ,ξt)|\displaystyle\left|\int_{[t_{0},t)^{n}}\mathrm{d}^{n}s\int_{\mathbb{R}}\mathrm{d}m(\beta_{1})\ldots\mathrm{d}m(\beta_{n})\,G_{n}(\varphi,\xi_{t})\right|
[t0,t)ndnsdm(β1)dm(βn)j=1nexp(C|βj|)\displaystyle\leq\int_{[t_{0},t)^{n}}\mathrm{d}^{n}s\int_{\mathbb{R}}\mathrm{d}m(\beta_{1})\ldots\mathrm{d}m(\beta_{n})\,\prod_{j=1}^{n}\exp\left(C|\beta_{j}|\right)
=((tt0)exp(C|β|)dm(β))n,\displaystyle=\left((t-t_{0})\int_{\mathbb{R}}\exp\left(C|\beta|\right)\mathrm{d}m(\beta)\right)^{n}, (75)

which is finite since the measure satisfies the condition in Eq. (61). ∎

Due to Lemma 4.3 there exists an open neighborhood UU independent of nn and

IV,n:=[t0,t)ndnsj=1ndm(βj)Ψn(S2)1,n0I_{V,n}:=\int_{[t_{0},t)^{n}}\mathrm{d}^{n}s\int_{\mathbb{R}}\prod_{j=1}^{n}\mathrm{d}m(\beta_{j})\,\Psi_{n}\in(S_{2})^{-1},\;\forall n\in\mathbb{N}_{0} (76)

is holomorphic on UU, fulfilling first part of Corollary 2.3. Then, recalling that TI0(φ)TI_{0}(\varphi) has been proven as a Hida distribution and thus a UU-functional, we can bound TIV,n(φ)TI_{V,n}(\varphi) by

|TIV(φ)|n=01n!|TIV,n(φ)|(φ)|TI0(φ)|n=0(1/)nn![t0,t)ndnsnj=1ndm(βj)|Gn(φ,ξt)||TI0(φ)|n=0(1/)nn!((tt0)exp(C|β|)dm(β))n=|TI0(φ)|exp((tt0)exp(C|β|)dm(β))<\left|TI_{V}(\varphi)\right|\leq\sum_{n=0}^{\infty}\frac{1}{n!}\left|TI_{V,n}(\varphi)\right|(\varphi)\\ \leq\left|TI_{0}(\varphi)\right|\sum_{n=0}^{\infty}\frac{(1/\hbar)^{n}}{n!}\int_{[t_{0},t)^{n}}\mathrm{d}^{n}s\int_{\mathbb{R}^{n}}\prod_{j=1}^{n}\mathrm{d}m(\beta_{j})\,\left|G_{n}(\varphi,\xi_{t})\right|\\ \leq\left|TI_{0}(\varphi)\right|\sum_{n=0}^{\infty}\frac{(1/\hbar)^{n}}{n!}\left((t-t_{0})\int_{\mathbb{R}}\exp\left(C|\beta|\right)\mathrm{d}m(\beta)\right)^{n}\\ =\left|TI_{0}(\varphi)\right|\exp\left((t-t_{0})\int_{\mathbb{R}}\exp\left(C|\beta|\right)\mathrm{d}m(\beta)\right)<\infty (77)

for φU\varphi\in U, so that we have shown that the series converges in (S2)1(S_{2})^{-1}.

We therefore have the following

Theorem 4.4.

For a potential of the form

V(θ˙(s))=eβθ˙(s)dm(β)θ˙(s),V(\dot{\theta}(s))=\int_{\mathbb{R}}\mathrm{e}^{\beta\dot{\theta}(s)}\,\mathrm{d}m(\beta)\qquad\dot{\theta}(s)\in\mathbb{R}, (78)

where mm is any complex measure satisfying

eC|b|d|m|(b)<,C>0,\int_{\mathbb{R}}\mathrm{e}^{C|b|}\,\mathrm{d}|m|(b)<\infty,\qquad\forall C>0, (79)

the Feynman integrand

IV=I0exp(it0tV(θ˙(s))ds)=n=0(i/)nn![t0,t)ndnsnj=1ndm(βj)I0exp(j=1nβjθ˙(sj))I_{V}=I_{0}\exp\Biggl{(}-\frac{\mathrm{i}}{\hbar}\int_{t_{0}}^{t}V(\dot{\theta}(s))\,\mathrm{d}s\Biggr{)}\\ =\sum_{n=0}^{\infty}\frac{(-\mathrm{i/\hbar})^{n}}{n!}\int_{[t_{0},t)^{n}}\mathrm{d}^{n}s\int_{\mathbb{R}^{n}}\prod_{j=1}^{n}\mathrm{d}m(\beta_{j})\,I_{0}\exp\left({\sum_{j=1}^{n}\beta_{j}\dot{\theta}(s_{j})}\right) (80)

exists as a generalized white noise functional. The series converges strongly in (S2)1(S_{2})^{-1}, and the integrals exist in the sense of Bochner integrals.

Remark 4.5.

It is straightforward to generalize to time-dependent potential; see Refs. [18, 11].

Remark 4.6.

For all pθp_{\theta}^{\prime}, pθ,0p_{\theta,0}, and 0t0<t0\leq t_{0}<t,

KV(pθ,t|pθ,0,t0):=TIV(0)=TI0(0)n=0(i/)nn![t0,t)ndnsnj=1ndm(βj)exp(pθm0Rj=1nβj)=δ(pθpθ,0)exp[ipθ,022m0(tt0)]×n=0(i/)nn![t0,t)ndnsnj=1ndm(βj)exp(pθm0Rj=1nβj)=δ(pθpθ,0)exp[ipθ,022m0(tt0)]×n=0(i/)nn!(tt0)n[dm(β)exp(pθm0Rβ)]n=δ(pθpθ,0)exp[ipθ,022m0(tt0)]exp[i(tt0)dm(β)exp(pθm0Rβ)]=δ(pθpθ,0)exp{i(tt0)[pθ,022m0+dm(β)exp(pθm0Rβ)]}.K_{V}(p_{\theta}^{\prime},t|p_{\theta,0},t_{0}):=TI_{V}(0)\\ =TI_{0}(0)\sum_{n=0}^{\infty}\frac{(-\mathrm{i/\hbar})^{n}}{n!}\int_{[t_{0},t)^{n}}\mathrm{d}^{n}s\int_{\mathbb{R}^{n}}\prod_{j=1}^{n}\mathrm{d}m(\beta_{j})\,\exp\left(\frac{p_{\theta}^{\prime}}{m_{0}R}\sum_{j=1}^{n}\beta_{j}\right)\\ =\delta\left(p_{\theta}^{\prime}-p_{\theta,0}\right)\exp\Biggl{[}-\frac{\mathrm{i}p_{\theta,0}^{2}}{2m_{0}\hbar}(t-t_{0})\Biggr{]}\\ \times\sum_{n=0}^{\infty}\frac{(-\mathrm{i/\hbar})^{n}}{n!}\int_{[t_{0},t)^{n}}\mathrm{d}^{n}s\int_{\mathbb{R}^{n}}\prod_{j=1}^{n}\mathrm{d}m(\beta_{j})\,\exp\left(\frac{p_{\theta}^{\prime}}{m_{0}R}\sum_{j=1}^{n}\beta_{j}\right)\\ =\delta\left(p_{\theta}^{\prime}-p_{\theta,0}\right)\exp\Biggl{[}-\frac{\mathrm{i}p_{\theta,0}^{2}}{2m_{0}\hbar}(t-t_{0})\Biggr{]}\\ \times\sum_{n=0}^{\infty}\frac{(-\mathrm{i/\hbar})^{n}}{n!}(t-t_{0})^{n}\left[\int_{\mathbb{R}}\mathrm{d}m(\beta)\,\exp\left(\frac{p_{\theta}^{\prime}}{m_{0}R}\beta\right)\right]^{n}\\ =\delta\left(p_{\theta}^{\prime}-p_{\theta,0}\right)\exp\Biggl{[}-\frac{\mathrm{i}p_{\theta,0}^{2}}{2m_{0}\hbar}(t-t_{0})\Biggr{]}\exp\left[-\frac{\mathrm{i}}{\hbar}(t-t_{0})\int_{\mathbb{R}}\mathrm{d}m(\beta)\,\exp\left(\frac{p_{\theta}^{\prime}}{m_{0}R}\beta\right)\right]\\ =\delta\left(p_{\theta}^{\prime}-p_{\theta,0}\right)\exp\Biggl{\{}-\frac{\mathrm{i}}{\hbar}(t-t_{0})\Biggl{[}\frac{p_{\theta,0}^{2}}{2m_{0}}+\int_{\mathbb{R}}\mathrm{d}m(\beta)\,\exp\left(\frac{p_{\theta}^{\prime}}{m_{0}R}\beta\right)\Biggr{]}\Biggr{\}}. (81)

solves the Schrödinger equation

itK(pθ,t|pθ,0,t0)=(pθ)22m0K(pθ,t|pθ,0,t0)+dpθ,1W(pθpθ,1)K(pθ,1,t|pθ,0,t0),\mathrm{i}\hbar\frac{\partial}{\partial t}K(p_{\theta}^{\prime},t|p_{\theta,0},t_{0})\\ =\frac{(p_{\theta}^{\prime})^{2}}{2m_{0}}K(p_{\theta}^{\prime},t|p_{\theta,0},t_{0})+\int_{-\infty}^{\infty}\mathrm{d}p_{\theta,1}W(p_{\theta}^{\prime}-p_{\theta,1})K(p_{\theta,1},t|p_{\theta,0},t_{0}), (82)

where

W(pθpθ,1)=12π02πdθei(pθpθ,1)θ/V(θ˙(s)),W(p_{\theta}^{\prime}-p_{\theta,1})=\frac{1}{2\pi}\int_{0}^{2\pi}\mathrm{d}\theta\,\mathrm{e}^{-\mathrm{i}(p_{\theta}^{\prime}-p_{\theta,1})\theta/\hbar}V(\dot{\theta}(s)), (83)

and

V(θ˙(s))=eβθ˙(s)dm(β)V(\dot{\theta}(s))=\int_{\mathbb{R}}\mathrm{e}^{\beta\dot{\theta}(s)}\,\mathrm{d}m(\beta) (84)

with the initial condition

limtt0K(pθ,t|pθ,0,t0)=δ(pθpθ,0).\lim_{t\searrow t_{0}}K(p_{\theta}^{\prime},t|p_{\theta,0},t_{0})=\delta(p_{\theta}^{\prime}-p_{\theta,0}). (85)
Proof.

With pθ=pθ,0=pθ,1p_{\theta}^{\prime}=p_{\theta,0}=p_{\theta,1}, we have

W(pθpθ,1)=12π02πdθV(θ˙(s))=exp(βm0Rpθ,1)dm(β)W(p_{\theta}^{\prime}-p_{\theta,1})=\frac{1}{2\pi}\int_{0}^{2\pi}\mathrm{d}\theta\,V(\dot{\theta}(s))=\int_{\mathbb{R}}\exp\left({\frac{\beta}{m_{0}R}}p_{\theta,1}\right)\,\mathrm{d}m(\beta)

and so

dpθ,1W(pθpθ,1)K(pθ,1,t|pθ,0,t0)=dpθ,1exp(βm0Rpθ,1)dm(β)K(pθ,1,t|pθ,0,t0)=dpθ,1[exp(βm0Rpθ,1)dm(β)]×δ(pθ,1pθ,0)exp{i(tt0)[pθ,022m0+dm(β)exp(pθ,1m0Rβ)]}=[exp(βm0Rpθ,0)dm(β)]×exp{i(tt0)[pθ,022m0+dm(β)exp(pθ,0m0Rβ)]}.\int_{-\infty}^{\infty}\mathrm{d}p_{\theta,1}W(p_{\theta}^{\prime}-p_{\theta,1})K(p_{\theta,1},t|p_{\theta,0},t_{0})\\ =\int_{-\infty}^{\infty}\mathrm{d}p_{\theta,1}\int_{\mathbb{R}}\exp\left(\frac{\beta}{m_{0}R}p_{\theta,1}\right)\,\mathrm{d}m(\beta)K(p_{\theta,1},t|p_{\theta,0},t_{0})\\ =\int_{-\infty}^{\infty}\mathrm{d}p_{\theta,1}\left[\int_{\mathbb{R}}\exp\left(\frac{\beta}{m_{0}R}p_{\theta,1}\right)\,\mathrm{d}m(\beta)\right]\\ \times\delta\left(p_{\theta,1}-p_{\theta,0}\right)\exp\Biggl{\{}-\frac{\mathrm{i}}{\hbar}(t-t_{0})\Biggl{[}\frac{p_{\theta,0}^{2}}{2m_{0}}+\int_{\mathbb{R}}\mathrm{d}m(\beta)\,\exp\left(\frac{p_{\theta,1}}{m_{0}R}\beta\right)\Biggr{]}\Biggr{\}}\\ =\left[\int_{\mathbb{R}}\exp\left(\frac{\beta}{m_{0}R}p_{\theta,0}\right)\,\mathrm{d}m(\beta)\right]\\ \times\exp\Biggl{\{}-\frac{\mathrm{i}}{\hbar}(t-t_{0})\Biggl{[}\frac{p_{\theta,0}^{2}}{2m_{0}}+\int_{\mathbb{R}}\mathrm{d}m(\beta)\,\exp\left(\frac{p_{\theta,0}}{m_{0}R}\beta\right)\Biggr{]}\Biggr{\}}.\\

It would then be straightforward to show that the Schrödinger equation, Eq. (82), is satisfied by the propagator. ∎

4.2 Bound State AB Effect in terms of the Perturbation of the Particle on a Circle

Here, we consider in the WNA framework a particular case treated in Subsection 4.1 when we specify the measure mm. We obtain the propagator for the bound state AB effect starting from the case of the particle on a circle perturbed by a potential that is exponentially growing in angular velocity, Eq. (81).

A well-known fact as confirmed by experiments (see, e.g., the theoretical description in Refs. [1, 21] and some confirming experiments in Refs. [20, 22]) is that the AB effect is undetectable for a magnetic flux ϕ\phi that is integer-multiple of 2πc/e2\pi\hbar c/e (called the London’s unit). In other words, it is detectable only for a fractional part of the London’s unit as units of the magnetic flux. Therefore, we are motivated to attempt to modify the potential VV to fit into the description of the bound state AB effect. Incorporating these values, we have

α=ke2πcϕ=ke2πc2πcne=kn,k,n{0},\alpha=\frac{ke}{2\pi\hbar c}\phi=\frac{ke}{2\pi\hbar c}\frac{2\pi\hbar c}{ne}=\frac{k}{n},\quad k,n\in\mathbb{Z}\setminus\{0\}, (86)

where kk and nn has been chosen so as to conform with the fact that a charge is always a multiple of the elementary charge ee. More particularly, the ratio of two charges, say q1=keq_{1}=ke and q2=neq_{2}=ne, must be q1/q2=k/nq_{1}/q_{2}=k/n in order to obtain a fraction.

Definition 4.7.

The AB effect is detectable if (k/n)({k}/{n})\in\mathbb{Q}\setminus\mathbb{Z}, otherwise, if (k/n)({k}/{n})\in\mathbb{Z}, then the AB effect is not detectable.

Let us now consider the following measure:

m:=gδbα,g,bm:=g\delta_{b\alpha},\quad g,b\in\mathbb{R} (87)

where gg is a coupling constant and bb is some parameter, so that we have chosen a measure concentrated on the magnetic flux parameter “α\alpha” of the AB effect multiplied by bb.

Substituting Eq. (87) into the propagator, Eq. (81), we have obtained a propagator in the polar conjugate momentum space for a particle on a circle perturbed by an exponentially growing potential containing the magnetic term α\alpha:

KV(pθ,t|pθ,0,t0)=δ(pθpθ,0)exp{i(tt0)[pθ,022m0+gexp(bαpθm0R)]}.K_{V}(p_{\theta}^{\prime},t|p_{\theta,0},t_{0})=\delta(p_{\theta}^{\prime}-p_{\theta,0})\exp\Biggl{\{}-\frac{\mathrm{i}}{\hbar}(t-t_{0})\Biggl{[}\frac{p_{\theta,0}^{2}}{2m_{0}}+g\exp\left(b\alpha\frac{p_{\theta}^{\prime}}{m_{0}R}\right)\Biggr{]}\Biggr{\}}. (88)

With α\alpha given in Eq. (86), we have the potential VV of the form (let θ˙:=pθ/(m0R)\dot{\theta}^{\prime}:=p_{\theta}^{\prime}/(m_{0}R))

V=gj=0(1)jj!(bknpθm0R)j=gj=0(1)jj!(bknθ˙)j=g[1(bkn)θ˙+12(bkn)2θ˙216(bkn)3θ˙3+].V=g\sum_{j=0}^{\infty}\frac{(-1)^{j}}{j!}\left(\frac{bk}{n}\frac{p_{\theta}^{\prime}}{m_{0}R}\right)^{j}=g\sum_{j=0}^{\infty}\frac{(-1)^{j}}{j!}\left(\frac{bk}{n}\dot{\theta}^{\prime}\right)^{j}\\ =g\Biggl{[}1-\left(\frac{bk}{n}\right)\dot{\theta}^{\prime}+\frac{1}{2}\left(\frac{bk}{n}\right)^{2}\dot{\theta}^{\prime 2}-\frac{1}{6}\left(\frac{bk}{n}\right)^{3}\dot{\theta}^{\prime 3}+\ldots\Biggr{]}.\\ (89)

The first order approximation of VV given in Eq. (LABEL:Vwithvalues) is given by

Vggbknθ˙,V\approx g-\frac{gbk}{n}\dot{\theta}^{\prime}, (90)

and the polar conjugate momentum space propagator is given by

KV(pθ,t|pθ,0,t0)=δ(pθpθ,0)exp{i(tt0)[pθ,022m0+gj=0(1)jj!(bknpθm0R)j]}δ(pθpθ,0)exp{i(tt0)[g+pθ,022m0gbknpθm0R]}.K_{V}(p_{\theta}^{\prime},t|p_{\theta,0},t_{0})\\ =\delta\left(p_{\theta}^{\prime}-p_{\theta,0}\right)\exp\Biggl{\{}-\frac{\mathrm{i}}{\hbar}(t-t_{0})\Biggl{[}\frac{p_{\theta,0}^{2}}{2m_{0}}+g\sum_{j=0}^{\infty}\frac{(-1)^{j}}{j!}\left(\frac{bk}{n}\frac{p_{\theta}^{\prime}}{m_{0}R}\right)^{j}\Biggr{]}\Biggr{\}}\\ \approx\delta\left(p_{\theta}^{\prime}-p_{\theta,0}\right)\exp\Biggl{\{}-\frac{\mathrm{i}}{\hbar}(t-t_{0})\Biggl{[}g+\frac{p_{\theta,0}^{2}}{2m_{0}}-\frac{gbk}{n}\frac{p_{\theta}^{\prime}}{m_{0}R}\Biggr{]}\Biggr{\}}. (91)

This scenario can be deemed as a bound state AB effect potential when g=1g=1 and b=(1+B1)b=(1+B^{-1}) where B=(kpθ)/(ncm0R)B=({k\hbar p_{\theta}^{\prime}})/({nc}{m_{0}R}) for pθ0p_{\theta}^{\prime}\neq 0.

We now state our alternative result in obtaining a bound state AB effect momentum space propagator:

Theorem 4.8.

If the potential VV is given by

V(θ)=gexp(bkncθ˙),(k/n)V(\theta)=g\exp\left(\frac{bk\hbar}{nc}\dot{\theta}\right),\quad\quad({k}/{n})\in\mathbb{Q}\setminus\mathbb{Z} (92)

then VV will lead to an approximation of the bound state AB effect potential with the appropriate values of gg and bb.The conjugate momentum space propagator is given by Eq. (91).

5 Conclusion and Discussion

In this paper, we have demonstrated that within the WNA framework, ignoring the winding, a charged particle in a bound state AB potential maintains the conservation of the magnitude of the conjugate momentum. This phenomenon can be attributed to the conservation of the total angular momentum of the system L\vec{L}. Classically, L=r×p\vec{L}=\vec{r}\times\vec{p}, and since the magnitude of r\vec{r} is constant, the magnitude of p\vec{p} must also remain constant to preserve L\vec{L}. This is also true for a particle on a circle without potential energy and no winding; for example, refer to Eq. (41).

Moreover, it might initially appear that, when considering the possibility for winding (with its associated quantized energy levels), quantum mechanics (e.g., Eq. (50)) suggests that

  • the quantization of energy, reliant on the integer ll (also seen in Eq. (50), the propagator in momentum space), suggests that the magnitude of the conjugate momentum (pθp_{\theta}) may not generally be conserved; and

  • if we apply a “driving force”, e.g., a centripetal force, to preserve pθp_{\theta} or if pθp_{\theta} remains conserved (either continuously or at specific moments), then Eq. (50) simplifies to Eq. (31), signifying the classical conservation of angular momentum. Within these time intervals, Eq. (50) also indicates that the winding does not directly influence the likelihood of detecting the charged particle with momentum pθp_{\theta}^{\prime} at a later time t>t0t>t_{0} in the presence of the AB effect potential VABV_{\mathrm{AB}}.

The nature of the AB effect is such that, in cases like the bound state with a fixed radius and a constant magnetic flux, the total angular momentum is conserved; as stated in, e.g., Ref. [21]. In the WNA framework, we have shown that, despite the presence of the potential VABV_{\mathrm{AB}}, the magnitude of the conjugate momentum associated with the angular position remains conserved (See Eq. (31)). The AB effect, therefore, does not alter the system’s “general equilibrium” (total angular momentum) as depicted in Fig. 1. Instead, it only affects the probability through the magnetic flux term 2α/R:=eϕ/(πcR)2\alpha/R:=e\phi/(\pi\hbar cR), as shown in Eq. (31). Moreover, we have also shown that, even when considering winding, the condition for the propagator (Eq. (50)) to satisfy the corresponding Schrödinger equation is that the magnitude of the conjugate momentum must remain conserved.

However, one question that remains is: Why were we unable to incorporate the winding number information into the momentum space propagator? The explanation is rooted in the Heisenberg uncertainty principle; in this scenario, determining the conjugate momentum of a charged particle at a specific time results in the loss of information about its precise position, including the winding number. Using WNA methods, our findings thus verify the physics of the bound state AB effect with constant radius and magnetic flux. These results can serve as a springboard for the design of experiments to further analyze the bound state AB effect.

Driven by the incomplete exploration of the AB effect and thus the potentiality to examine it from a different perspective, we used another method within the WNA framework, detailed in Sec. 4. This alternative method entails a mathematical model capable of generating an approximation to the AB effect in a bound state, provided that the appropriate parameters are applied.

Acknowledgment

ARN would like to thank the Department of Science and Technology - Science Education Institute (DOST-SEI) of the Philippine Government for financial support in the form of a graduate scholarship. ARN would also like to thank the Indonesian Government for granting the one-year research stay at the Sanata Dharma University, Yogyakarta, where this collaborative research work with its Mathematics Department was done. JLS was partially supported by the Center for Research in Mathematics and Applications (CIMA) related to the Statistics, Stochastic Processes and Applications (SSPA) group, through the grant UIDB/MAT/04674/2020 of FCT–Fundação para a Ciência e a Tecnologia, Portugal.

References

  • [1] Y. Aharonov and D. Bohm, Significance of electromagnetic potentials in the quantum theory, Phys. Rev. 115(3) (1959) p. 485.
  • [2] R. Bellman, A Brief Introduction to Theta Functions (Courier Corporation, 2013).
  • [3] C. C. Bernido and V. C. Bernido, Path integrals for boundaries and topological constraints: A white noise functional approach, J. Math. Phys. 43(4) (2002) 1728–1736.
  • [4] W. Bock, Hamiltonian path integrals in white noise analysis, PhD thesis, University of Kaiserlautern (jan 2013), pp. x + 102.
  • [5] W. Bock and M. Grothaus, A white noise approach to phase space Feynman path integrals, Theory Probab. Math. Statist. 85 (12 2013) 7–22.
  • [6] W. Bock, Hamiltonian path integrals in momentum space representation via white noise techniques, R. Math. Phys. 73(1) (2014) 91–107.
  • [7] D. Dragoman and S. Bogdan, The Aharonov-Bohm effect in the momentum space, Opt. Commun. 281(9) (2008) 2685–2689.
  • [8] S. F. Edwards, Statistical mechanics with topological constraints: I, Proceedings of the Physical Society 91(3) (1967) p. 513.
  • [9] R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, New York and London, 1965).
  • [10] C. C. Gerry and V. A. Singh, Feynman path-integral approach to the Aharonov-Bohm effect, Physical Review D 20(10) (1979) p. 2550.
  • [11] M. Grothaus, D. C. Khandekar, J. L. da Silva and L. Streit, The Feynman integral for time dependent anharmonic oscillators, J. Math. Phys. 38(6) (1997) 3278–3299.
  • [12] A. Guinand, On Poisson’s summation formula, Ann. of Math. 42(3) (1941) 591–603.
  • [13] T. Hida, Analysis of Brownian Functionals, Carleton Mathematical Lecture Notes,, Vol. 13 (Princeton University, 1975).
  • [14] T. Hida, H.-H. Kuo, J. Potthoff and L. Streit, White Noise. An Infinite Dimensional Calculus (Kluwer Academic Publishers, Dordrecht, 1993).
  • [15] T. Hida and L. Streit, Generalized Brownian functionals and the Feynman integral, Stoch. Proc. Appl. 16 (1983) 55–69.
  • [16] H. Kleinert, Path Integrals in Quantum Mechanics, Statistics and Polymer Physics (World Scientific, Singapore, 1990).
  • [17] M. Kretzschmar, On the Aharonov-Bohm effect for bound states, Z. Physik 185 (1965) 97–110.
  • [18] T. Kuna, L. Streit and W. Westerkamp, Feynman integrals for a class of exponentially growing potentials, J. Math. Phys. 39(9) (1998) 4476–4491.
  • [19] D. Peak and A. Inomata, Summation over Feynman histories in polar coordinates, J. Math. Phys. 10(8) (1969) 1422–1428.
  • [20] H. Peng, K. Lai, D. Kong, S. Meister, Y. Chen, X.-L. Qi, S.-C. Zhang, Z.-X. Shen and Y. Cui, Aharonov–Bohm interference in topological insulator nanoribbons, Nat. Mater. 9(3) (2010) 225–229.
  • [21] M. Peshkin, A. Tonomura and D. M. Greenberger, The Aharonov-Bohm effect, Amer. J. Phys. 58(10) (1990) 1021–1022.
  • [22] F. Xiu, L. He, Y. Wang, L. Cheng, L.-T. Chang, M. Lang, G. Huang, X. Kou, Y. Zhou, X. Jiang et al., Manipulating surface states in topological insulator nanoribbons, Nat. Nanotechnol. 6(4) (2011) 216–221.