This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Monogamy of entanglement for tripartite systems

Xue-Na Zhu1    Gui Bao1    Zhi-Xiang Jin2    Shao-Ming Fei3 1School of Mathematics and Statistics Science, Ludong University, Yantai 264025, China
2School of Computer Science and Technology, Dongguan University of Technology, Dongguan, 523808, China
3School of Mathematical Sciences, Capital Normal University, Beijing 100048, China
Abstract

We study the monogamy of arbitrary quantum entanglement measures EE for tripartite quantum systems. Both sufficient and necessary conditions for EE to be monogamous in terms of the α\alphath power of EE are explicitly derived. It is shown that such monogamy of a entanglement measure EE only depends on the boundedness of the solution set of certain equations. Moreover, the monogamy conditions have been also obtained with respect to certain subsets of quantum states for a given quantum correlation. Detailed examples are given to illustrate our results.

I Introduction

Quantum entanglement Q1 among the subsystems of a multipartite system play significant roles in many information processing tasks. A fundamental property of quantum entanglement is the monogamy. The monogamy relations give rise to the distributions of quantum entanglement in the multipartite setting. Monogamy is also an essential feature allowing for security in quantum key distribution. For a tripartite system AA, BB and CC associated with finite dimensional Hilbert spaces HAH_{A}, HBH_{B} and HCH_{C}, respectively, the monogamy of an quantum entanglement measure EE implies that the correlation E(ρA|BC)E(\rho_{A|BC}) between AA and BCBC satisfies m1

E(ρA|BC)E(ρAB)+E(ρAC)E(\rho_{A|BC})\geq E(\rho_{AB})+E(\rho_{AC}) (1)

for any ρABCHAHBHC\rho_{ABC}\in H_{A}\otimes H_{B}\otimes H_{C}, where ρAB=TrC(ρABC)\rho_{AB}=Tr_{C}(\rho_{ABC}) and ρAC=TrB(ρABC)\rho_{AC}=Tr_{B}(\rho_{ABC}) are the corresponding reduced bipartite states. An important issue is to determine whether a given entanglement measure EE is monogamous or not. Considerable efforts have been devoted to this problem E1 ; E2 ; E3 ; E4 ; PRL.117.060501 ; G1 ; G2 ; G3 ; JIn for quantum correlations such as entanglement of formation (EOF) E3 , concurrence C1 ; C2 ; C3 , negativity N1 ; N2 ; N3 and concurrence of assistance zhu2 .

If EE does not satisfy the relation (1), it is still possible to find a positive power α(0,+)\alpha\in(0,+\infty) such that EαE^{\alpha} satisfies the relation (1) for α>0\alpha>0 G1 ,

Eα(ρA|BC)Eα(ρAB)+Eα(ρAC).E^{\alpha}(\rho_{A|BC})\geq E^{\alpha}(\rho_{AB})+E^{\alpha}(\rho_{AC}). (2)

The α\alphath (α2)(\alpha\geq 2) power of concurrence and the α\alphath (α2)(\alpha\geq\sqrt{2}) power entanglement of formation for nn-qubit states satisfy the relation (2) zhu1 .

In Ref. PRL.117.060501 the authors show that EE is monogamous if there exists a nontrivial continuous function ff such that the following generalized monogamy relation

E(ρA|BC)f(E(ρAB),E(ρAC)),E(\rho_{A|BC})\geq f(E(\rho_{AB}),E(\rho_{AC})), (3)

is satisfied for states ρABC\rho_{ABC}. In Ref. JIn the authors presented a new parameterized monogamy relation of entanglement with equality,

E(ρA|BC)=μE(ρAB)+E(ρAC),E(\rho_{A|BC})=\mu E(\rho_{AB})+E(\rho_{AC}), (4)

where μ>0\mu>0 and E(ρAB)E(ρAC)E(\rho_{AB})\leq E(\rho_{AC}). Monogamy relations satisfied by the α\alphath power of entanglement measures are presented based on Eq. (4) Ref. JIn .

In this paper, we investigate the monogamy properties of arbitrary quantum entanglement measures for tripartite quantum systems. We derive explicitly both the sufficient and necessary conditions for EE to be monogamous in terms of the α\alphath power of EE, with respect to either all the quantum states. And, the monogamy conditions have been also obtained with respect to certain subsets of quantum states for quantum correlations.

II Monogamy relations for tripartite systems

In the following we say a quantum entanglement measure EE is α\alpha-monogamous if there exists a real number α>0\alpha>0 such that EE satisfies (2), and EE is non-monogamous if there is at least one state ρABCHAHBHC\rho_{ABC}\in H_{A}\otimes H_{B}\otimes H_{C} such that (2) is not satisfied for any given α\alpha.

With respect to each quantum state ρABCHAHBHC\rho_{ABC}\in H_{A}\otimes H_{B}\otimes H_{C}, we define a state dependent parameter xρABCx_{\rho_{ABC}} such that the following equation is satisfied,

xρABC(Ey(ρA|BC)max{Ey(ρAB),Ey(ρAC)})=min{Ey(ρAB),Ey(ρAC)},x_{\rho_{ABC}}\left(E^{y}(\rho_{A|BC})-\max\{E^{y}(\rho_{AB}),E^{y}(\rho_{AC})\}\right)=\min\{E^{y}(\rho_{AB}),E^{y}(\rho_{AC})\}, (5)

where yy is a positive number. If Eq.(5) has non-zero solution xρABCx_{\rho_{ABC}} for each ρABC\rho_{ABC} with y=1y=1, then Eq. (5) becomes Eq.(4), i.e., xρABC=1μx_{\rho_{ABC}}=\frac{1}{\mu}. Hereafter, we take xρABC=0x_{\rho_{ABC}}=0 for any yy when E(ρA|BC)=max{E(ρAB),E(ρAC)E(\rho_{A|BC})=\max\{E(\rho_{AB}),E(\rho_{AC}) and min{E(ρAB),E(ρAC)}=0\min\{E(\rho_{AB}),E(\rho_{AC})\}=0. For simplicity, we denote the set of parameters xρABCx_{\rho_{ABC}} by

Xy={xρABC|xρABC(Ey(ρA|BC)max{Ey(ρAB),Ey(ρAC)})=min{Ey(ρAB),Ey(ρAC)},ρABCHAHBHC}.X_{y}=\left\{x_{\rho_{ABC}}|x_{\rho_{ABC}}\left(E^{y}(\rho_{A|BC})-\max\{E^{y}(\rho_{AB}),E^{y}(\rho_{AC})\}\right)=\min\{E^{y}(\rho_{AB}),E^{y}(\rho_{AC})\},\rho_{ABC}\in H_{A}\otimes H_{B}\otimes H_{C}\right\}.
Theorem 1

A quantum entanglement measure EE is α\alpha-monogamous if and only if there exists a real number y0>0y_{0}>0 such that Xy0X_{y_{0}} is a bounded set.

[Proof]  Since as a measure of quantum entanglement, EE does not increase under local operations and classical communication, we have E(ρA|BC)max{E(ρAB),E(ρAC)}E(\rho_{A|BC})\geq\max\{E(\rho_{AB}),E(\rho_{AC})\}. Without loss of generality, we assume E(ρAB)E(ρAC)E(\rho_{AB})\geq E(\rho_{AC}) (The case for EACEABE_{AC}\geq E_{AB} is similarly treated).

()(\Rightarrow)   If EE is α\alpha-monogamous, then EE satisfies (2) for any ρABCHAHBHC\rho_{ABC}\in H_{A}\otimes H_{B}\otimes H_{C}.

(Case 1) For a given state ρABC\rho_{ABC}, if E(ρA|BC)>E(ρAB)E(\rho_{A|BC})>E(\rho_{AB}), we take y=αy=\alpha, then xρABC=Eα(ρAC)Eα(ρA|BC)Eα(ρAB).x_{\rho_{ABC}}=\frac{E^{\alpha}(\rho_{AC})}{E^{\alpha}(\rho_{A|BC})-E^{\alpha}(\rho_{AB})}. From (2) we have xρABC1.x_{\rho_{ABC}}\leq 1.

(Case 2) If E(ρA|BC)=E(ρAB)E(\rho_{A|BC})=E(\rho_{AB}), since EA|BCαEABα+EACαE^{\alpha}_{A|BC}\geq E^{\alpha}_{AB}+E^{\alpha}_{AC}, we have EAC=0E_{AC}=0. The solution of Eq. (5) is xρABC=0x_{\rho_{ABC}}=0 for any yy, especially for y=αy=\alpha.

From Case 1 and Case 2 we have xρABC[0,1]x_{\rho_{ABC}}\in[0,1] for each xρABCXαx_{\rho_{ABC}}\in X_{\alpha}. Therefore, XαX_{\alpha} is a bounded set.

()(\Leftarrow)   If Xy0X_{y_{0}} is a bounded set, then there exists a number M>0M>0 such that 0xρABCM0\leq x_{\rho_{ABC}}\leq M for any xρABCXy0x_{\rho_{ABC}}\in X_{y_{0}}.

(Case 1) If xρABC>0x_{\rho_{ABC}}>0, we have E(ρA|BC)>E(ρAB)E(ρAC)>0E(\rho_{A|BC})>E(\rho_{AB})\geq E(\rho_{AC})>0. Let g(β)=Eβ(ρA|BC)Eβ(ρAB)Eβ(ρAC)g(\beta)=E^{\beta}(\rho_{A|BC})-E^{\beta}(\rho_{AB})-E^{\beta}(\rho_{AC}). We get

g(β)\displaystyle g(\beta) =Eβ(ρA|BC)Eβ(ρAB)Eβ(ρAC)\displaystyle=E^{\beta}(\rho_{A|BC})-E^{\beta}(\rho_{AB})-E^{\beta}(\rho_{AC})
=(Ey0(ρAB)+1xρABCEy0(ρAC))βy0Eβ(ρAB)Eβ(ρAC)\displaystyle=\left(E^{y_{0}}(\rho_{AB})+\frac{1}{x_{\rho_{ABC}}}E^{y_{0}}(\rho_{AC})\right)^{\frac{\beta}{y_{0}}}-E^{\beta}(\rho_{AB})-E^{\beta}(\rho_{AC})
=Eβ(ρAB)(1+1xρABCEy0(ρAC)Ey0(ρAB))βy0Eβ(ρAB)Eβ(ρAC)\displaystyle=E^{\beta}(\rho_{AB})\left(1+\frac{1}{x_{\rho_{ABC}}}\frac{E^{y_{0}}(\rho_{AC})}{E^{y_{0}}(\rho_{AB})}\right)^{\frac{\beta}{y_{0}}}-E^{\beta}(\rho_{AB})-E^{\beta}(\rho_{AC})
Eβ(ρAB)(1+βxρABCy0Ey0(ρAC)Ey0(ρAB))Eβ(ρAB)Eβ(ρAC)\displaystyle\geq E^{\beta}(\rho_{AB})\left(1+\frac{\beta}{x_{\rho_{ABC}}y_{0}}\frac{E^{y_{0}}(\rho_{AC})}{E^{y_{0}}(\rho_{AB})}\right)-E^{\beta}(\rho_{AB})-E^{\beta}(\rho_{AC})
=Ey0(ρAC)(βxρABCy0Eβy0(ρAB)Eβy0(ρAC)),\displaystyle=E^{y_{0}}(\rho_{AC})\left(\frac{\beta}{x_{\rho_{ABC}}y_{0}}E^{\beta-y_{0}}(\rho_{AB})-E^{\beta-y_{0}}(\rho_{AC})\right),

where the second equality is due to (5) and the first inequality is due to that (1+t)n1+nt(1+t)^{n}\geq 1+nt for n1n\geq 1 and t0t\geq 0. Setting β=max{My0,y0}\beta=\max\{My_{0},y_{0}\}, we obtain g(β)0g(\beta)\geq 0 for the given state ρABC\rho_{ABC} since 0<xρABCM0<x_{\rho_{ABC}}\leq M and E(ρAB)E(ρAC)E(\rho_{AB})\geq E(\rho_{AC}).

(Case 2) If xρABC=0x_{\rho_{ABC}}=0 for the quantum state ρABC\rho_{ABC}, one has E(ρAC)=0E(\rho_{AC})=0. Then Eα(ρA|BC)Eα(ρAB)+Eα(ρAC)E^{\alpha}(\rho_{A|BC})\geq E^{\alpha}(\rho_{AB})+E^{\alpha}(\rho_{AC}) for any α>0\alpha>0.

In conclusion, if there exists a real number y0y_{0} such that Xy0X_{y_{0}} is a bounded set, we take α=maxxρABC>0{β}=max{My0,y0}\alpha=\max_{x_{\rho_{ABC}}>0}\{\beta\}=\max\{My_{0},y_{0}\}. Then g(α)0g(\alpha)\geq 0, i.e., Eα(ρA|BC)Eα(ρAB)+Eα(ρAC)E^{\alpha}(\rho_{A|BC})\geq E^{\alpha}(\rho_{AB})+E^{\alpha}(\rho_{AC}) for each ρABCHAHBHC.\rho_{ABC}\in H_{A}\otimes H_{B}\otimes H_{C}.       

In fact, from the proof of the Theorem 1, we have g(β)0g(\beta)\geq 0 for all βα.\beta\geq\alpha. Namely, if EE is ll-monogamous, EE must be LL-monogamous with LlL\geq l. From Theorem 1 we can conclude that the monogamy of EE is determined by XyX_{y}.

As applications let us consider the concurrence and three-qubit systems. For any arbitrary bipartite pure state |ψAB|\psi\rangle_{AB}, the concurrence is given by C(|ψAB)=1Tr(ρA2)C(|\psi\rangle_{AB})=\sqrt{1-Tr(\rho^{2}_{A})}, where ρA=TrB(|ψABψ|)\rho_{A}=Tr_{B}(|\psi\rangle_{AB}\langle\psi|). We first consider the solution of Eq. (5) for three-qubit with E=CE=C and y=2y=2. Any three-qubit state |ψABC|\psi\rangle_{ABC} can be written in the generalized Schmidt decomposition gx ,

|ψABC=λ0|000+λ1eiφ|100+λ2|101+λ3|110+λ4|111,\begin{array}[]{rcl}|\psi\rangle_{ABC}&=&\lambda_{0}|000\rangle+\lambda_{1}e^{i\varphi}|100\rangle+\lambda_{2}|101\rangle+\lambda_{3}|110\rangle+\lambda_{4}|111\rangle,\end{array} (6)

where λi0\lambda_{i}\geq 0, i=0,,4i=0,...,4, and i=04λi2=1\sum_{i=0}^{4}\lambda_{i}^{2}=1. We have CA|BC=2λ0λ22+λ32+λ42,C_{A|BC}=2\lambda_{0}\sqrt{\lambda^{2}_{2}+\lambda^{2}_{3}+\lambda^{2}_{4}}, CAB=2λ0λ2C_{AB}=2\lambda_{0}\lambda_{2} and CAC=2λ0λ3.C_{AC}=2\lambda_{0}\lambda_{3}.

Denote λ=min{λ2,λ3}\lambda=\min\{\lambda_{2},\lambda_{3}\}. Eq. (5) becomes x|ψABCλ02(λ2+λ42)=λ02λ2x_{|\psi\rangle_{ABC}}\lambda^{2}_{0}(\lambda^{2}+\lambda^{2}_{4})=\lambda^{2}_{0}\lambda^{2}. We obtain the following solutions,

x|ψABC={0,λ0=0;0,λ00andλ=0;λ2λ2+λ42,λ00andλ0.x_{|\psi\rangle_{ABC}}=\left\{\begin{aligned} &~{}~{}~{}0,~{}~{}~{}~{}~{}~{}~{}~{}~{}\lambda_{0}=0;\\ &~{}~{}~{}0,~{}~{}~{}~{}~{}~{}~{}~{}~{}\lambda_{0}\not=0~{}~{}and~{}~{}\lambda=0;\\ &\frac{\lambda^{2}}{\lambda^{2}+\lambda^{2}_{4}},~{}~{}~{}\lambda_{0}\not=0~{}~{}and~{}~{}\lambda\not=0.\end{aligned}\right. (7)

We have X2={x|ψABC|x|ψABCλ02(λ2+λ42)=λ02λ2}X_{2}=\{x_{|\psi\rangle_{ABC}}|x_{|\psi\rangle_{ABC}}\lambda^{2}_{0}(\lambda^{2}+\lambda^{2}_{4})=\lambda^{2}_{0}\lambda^{2}\} and max{x|ψABC}=1\max\{x_{|\psi\rangle_{ABC}}\}=1. According the proof of Theorem 1, we take M=1M=1. Then α=max{2M,2}=2\alpha=\max\{2M,2\}=2, i.e., C2(|ψA|BC)C2(ρAB)+C2(ρAC)C^{2}(|\psi\rangle_{A|BC})\geq C^{2}(\rho_{AB})+C^{2}(\rho_{AC}) for any pure states |ψABC|\psi\rangle_{ABC}.

Since the concurrence of any mixed state ρAB=ipi|ψiψ|\rho_{AB}=\sum_{i}p_{i}|\psi\rangle_{i}\langle\psi| is given by the convex roof extension, C(ρAB)=min{pi,|ψi}ipiC(|ψi)C(\rho_{AB})=\min_{\{p_{i},|\psi\rangle_{i}\}}\sum_{i}p_{i}C(|\psi\rangle_{i}), for three-qubit mixed states ρA|BC\rho_{A|BC}, we have also C2(ρA|BC)C2(ρAB)+C2(ρAC)C^{2}(\rho_{A|BC})\geq C^{2}(\rho_{AB})+C^{2}(\rho_{AC}).

In Theorem 1, we established a necessary and sufficient condition for the monogamy of a quantum entanglement measure EE. In the following, we consider the generalized measures of quantum correlation beside entanglement measure EE, such as entanglement of assistancega , quantum discord85040102 and quantum deficit85012103 and so on. Hereafter, we also say QQ is α\alpha-monogamous if there exists a real number α>0\alpha>0 such that QQ satisfies (2) and QQ is non-monogamous if there is at least one state ρABCHAHBHC\rho_{ABC}\in H_{A}\otimes H_{B}\otimes H_{C} such that (2) is not satisfied for any given α\alpha.

Different from the concurrence, the concurrence of assistance CaC_{a} fails to be α\alpha-monogamous in general. For a tripartite state |ψABC|\psi\rangle_{ABC}, the concurrence of assistance is defined by ca

Ca(|ψABC)Ca(ρAB)=max{pi,|ψi}ipiC(|ψi),C_{a}(|\psi\rangle_{ABC})\equiv C_{a}(\rho_{AB})=\max_{\{p_{i},|\psi_{i}\rangle\}}\sum_{i}p_{i}C(|\psi_{i}\rangle), (8)

where the maximum takes over all possible ensemble realizations of ρAB=TrC(|ψABCψ|)=ipi|ψiABψi|\rho_{AB}=Tr_{C}(|\psi\rangle_{ABC}\langle\psi|)=\sum_{i}p_{i}|\psi_{i}\rangle_{AB}\langle\psi_{i}|. Consider the 2222\otimes 2\otimes 2 pure state |ψABC|\psi\rangle_{ABC} given in (6). One has Ca(ρAB)=2λ0λ32+λ42C_{a}(\rho_{AB})=2\lambda_{0}\sqrt{\lambda^{2}_{3}+\lambda^{2}_{4}} , Ca(ρAC)=2λ0λ22+λ42C_{a}(\rho_{AC})=2\lambda_{0}\sqrt{\lambda^{2}_{2}+\lambda^{2}_{4}} and Ca(|ψA|BC)=2λ0λ22+λ32+λ42C_{a}(|\psi\rangle_{A|BC}\rangle)=2\lambda_{0}\sqrt{\lambda^{2}_{2}+\lambda^{2}_{3}+\lambda^{2}_{4}}. In particular, when λ00,\lambda_{0}\not=0, λ2=0\lambda_{2}=0 and λ40\lambda_{4}\not=0, i.e., Ca(|ψA|BC)=Ca(ρAB)>0C_{a}(|\psi\rangle_{A|BC}\rangle)=C_{a}(\rho_{AB})>0 and Ca(ρAC)>0C_{a}(\rho_{AC})>0, the Eq. (5) has no bounded solution for any yy. The set Γ={β(0<β<+)|Caβ(ρA|BC)Caβ(ρAB)+Caβ(ρAC)forallρ222}\Gamma=\left\{\beta\,(0<\beta<+\infty)|C^{\beta}_{a}(\rho_{A|BC})\geq C_{a}^{\beta}(\rho_{AB})+C_{a}^{\beta}(\rho_{AC})~{}for~{}all~{}\rho\in 2\otimes 2\otimes 2\right\} is just an empty set.

Theorem 2

For a given measure of quantum correlation QQ with Q(ρA|BC)max{Q(ρAB),Q(ρAC)}Q(\rho_{A|BC})\geq\max\{Q(\rho_{AB}),Q(\rho_{AC})\}, if there exists a state ρABCHAHBHC\rho_{ABC}\in H_{A}\otimes H_{B}\otimes H_{C} such that Q(ρA|BC)=max{Q(ρAB),Q(ρAC)}Q(\rho_{A|BC})=\max\{Q(\rho_{AB}),Q(\rho_{AC})\} and min{Q(ρAB),Q(ρAC)}>0\min\{Q(\rho_{AB}),Q(\rho_{AC})\}>0, then QQ is non-monogamous for the quantum system ABCABC.

[Proof] If ρABC\rho_{ABC} satisfies Q(ρA|BC)=max{Q(ρAB),Q(ρAC)}Q(\rho_{A|BC})=\max\{Q(\rho_{AB}),Q(\rho_{AC})\} and min{Q(ρAB),Q(ρAC)}>0\min\{Q(\rho_{AB}),Q(\rho_{AC})\}>0, then Qα(ρA|BC)<Qα(ρAB)+Qα(ρAC)Q^{\alpha}(\rho_{A|BC})<Q^{\alpha}(\rho_{AB})+Q^{\alpha}(\rho_{AC}) for any α>0\alpha>0.

Therefore, there is no positive number α\alpha such that (2) is satisfied.       

Example 1 Let us consider the 2232\otimes 2\otimes 3 pure state

|ψABC=13(|000+|111+|φ+|2),|\psi\rangle_{ABC}=\frac{1}{\sqrt{3}}(|000\rangle+|111\rangle+|\varphi^{+}\rangle|2\rangle), (9)

where |φ+=12(|01+(|10))|\varphi^{+}\rangle=\frac{1}{\sqrt{2}}(|01\rangle+(|10\rangle)) is one of the Bell states. One has zhu3 , Ca(|ψA|BC)=Ca(ρAB)=1C_{a}(|\psi\rangle_{A|BC}\rangle)=C_{a}(\rho_{AB})=1 and Ca(ρAC)=223C_{a}(\rho_{AC})=\frac{2\sqrt{2}}{3}. According to Theorem 2, CaC_{a} is non-monogamous for the 2232\otimes 2\otimes 3 quantum system.

The above results show that the concurrence of assistance CaC_{a} is non-monogamous in general for the 22n2\otimes 2\otimes n (n{2,3}n\in\{2,3\}) quantum systems. Nevertheless, for particular states, CaC_{a} may be α\alpha-monogamous. In zhu2 it is shown that CaC_{a} satisfies the monogamy relation, Caβ(|ψABC)Caβ(ρAB)+Caβ(ρAC)C_{a}^{\beta}(|\psi\rangle_{ABC})\geq C_{a}^{\beta}(\rho_{AB})+C_{a}^{\beta}(\rho_{AC}), for the three-qubit W-class states |ψABC|\psi\rangle_{ABC} with β2\beta\geq 2. Therefore, with respect to a given measure of quantum correlation QQ, there may be exist α\alpha, which QQ satisfied Qα(ρA|BC)Qα(ρAB)+Qα(ρAC)Q^{\alpha}(\rho_{A|BC})\geq Q^{\alpha}(\rho_{AB})+Q^{\alpha}(\rho_{AC}) for specifically states ρABC\rho_{ABC}. We denote

Xy,Ω={xρABC|xρABC(Qy(ρA|BC)max{Qy(ρAB),Qy(ρAC)})=min{Qy(ρAB),Qy(ρAC)},whereρABCΩ}.X_{y,\Omega}=\left\{x_{\rho_{ABC}}|x_{\rho_{ABC}}\left(Q^{y}(\rho_{A|BC})-\max\{Q^{y}(\rho_{AB}),Q^{y}(\rho_{AC})\}\right)=\min\{Q^{y}(\rho_{AB}),Q^{y}(\rho_{AC})\},where~{}\rho_{ABC}\in\Omega\right\}.

Together with the Theorem 1 and Theorem 2, we have the following result.

Corollary 1

Given a given measure of quantum correlation QQ and a nonempty set of quantum states Ω={ρABC|Q(ρA|BC)max{Q(ρAB),Q(ρAC)}}\Omega=\left\{\rho_{ABC}|Q(\rho_{A|BC})\geq\max\{Q(\rho_{AB}),Q(\rho_{AC})\}\right\}. QQ is α\alpha-monogamous for ρABCΩ\rho_{ABC}\in\Omega if and only if there exists a real number y0y_{0} such that Xy0,ΩX_{y_{0},\Omega} is a bounded set.

The concurrence of assistance CaC_{a} is an entanglement monotone for 22n(n2)2\otimes 2\otimes n(n\geq 2) pure states72042329 , i,e Ca(|ψA|BC)max{Ca(ρAB),Ca(ρAC)}C_{a}(|\psi\rangle_{A|BC})\geq\max\{C_{a}(\rho_{AB}),C_{a}(\rho_{AC})\} for quantum state |ψABC22n(n2)|\psi\rangle_{ABC}\in 2\otimes 2\otimes n(n\geq 2). Then we can study the monogamy of CaC_{a} for 22n(n2)2\otimes 2\otimes n(n\geq 2) pure states by the corollary 1.

Example 2 Consider the three-qubit W-class states |ψABC|\psi\rangle_{ABC} zhu2 ,

|ψABC=b0|000+b1|100+b2|010+b3|001,|\psi\rangle_{ABC}=b_{0}|000\rangle+b_{1}|100\rangle+b_{2}|010\rangle+b_{3}|001\rangle, (10)

where i=03|bi|2=1\sum_{i=0}^{3}|b_{i}|^{2}=1. Denote Ω={ρABC|ρABC=|ψABCψ|}\Omega=\left\{\rho_{ABC}|\rho_{ABC}=|\psi\rangle_{ABC}\langle\psi|\right\}. One has Ca(|ψABC)=2|b1||b2|2+|b3|2C_{a}(|\psi\rangle_{ABC})=2|b_{1}|\sqrt{|b_{2}|^{2}+|b_{3}|^{2}}, Ca(ρAB)=2|b1||b2|C_{a}(\rho_{AB})=2|b_{1}||b_{2}| and Ca(ρAC)=2|b1||b3|C_{a}(\rho_{AC})=2|b_{1}||b_{3}|. From Theorem 1 and Corollary 1 we have

x|ψABC={0,b1b2b3=0;1,b1b2b30,x_{|\psi\rangle_{ABC}}=\left\{\begin{aligned} &~{}~{}~{}0,~{}~{}~{}~{}~{}~{}~{}~{}~{}b_{1}b_{2}b_{3}=0;\\ &~{}~{}~{}1,~{}~{}~{}~{}~{}~{}~{}~{}~{}b_{1}b_{2}b_{3}\not=0,\end{aligned}\right.

then X2,Ω0={0,1}X_{2,\Omega_{0}}=\{0,1\}. Hence CaC_{a} is 22-monogamous for ρABCΩ\rho_{ABC}\in\Omega.

Theorem 1 and Corollary 1 provide the monogamy of QQ based on value of xρABCXyx_{\rho_{ABC}}\in X_{y} for given yy. In the following, we provide the yy independent monogamy with respect to a given quantum state ρABC\rho_{ABC}. For convenience, we denote Λ={ρABC|Q(ρA|BC)>Q(ρAB)Q(ρAC)>0orQ(ρA|BC)>Q(ρAC)Q(ρAB)>0}\Lambda=\{\rho_{ABC}|Q(\rho_{A|BC})>Q(\rho_{AB})\geq Q(\rho_{AC})>0~{}or~{}Q(\rho_{A|BC})>Q(\rho_{AC})\geq Q(\rho_{AB})>0\}.

Theorem 3

For a given measure of quantum correlation QQ and a quantum state ρABCΛ\rho_{ABC}\in\Lambda, QQ is α\alpha-monogamous according to (2) with α=logb2\alpha=\log_{b}2, where b=min{Q(ρA|BC)Q(ρAC),Q(ρA|BC)Q(ρAB)}b=\min\left\{\frac{Q(\rho_{A|BC})}{Q(\rho_{AC})},\frac{Q(\rho_{A|BC})}{Q(\rho_{AB})}\right\}.

[Proof] Without loss of generality, we assume Q(ρA|BC)>Q(ρAB)Q(ρAC)>0Q(\rho_{A|BC})>Q(\rho_{AB})\geq Q(\rho_{AC})>0. Set t1=Q(ρAB)Q(ρA|BC)t_{1}=\frac{Q(\rho_{AB})}{Q(\rho_{A|BC})}, t2=Q(ρAC)Q(ρA|BC)t_{2}=\frac{Q(\rho_{AC})}{Q(\rho_{A|BC})} and k=Q(ρAB)Q(ρAC)k=\frac{Q(\rho_{AB})}{Q(\rho_{AC})}. It is obvious that t1t2t_{1}\geq t_{2}, k1k\geq 1 and 1=t1y+1xt2y1=t^{y}_{1}+\frac{1}{x}t^{y}_{2}, where xx is the solution of Eq. (5) with a given y>0y>0 for ρABC\rho_{ABC}. Let α\alpha satisfy (1+1kyx)αy=2(1+\frac{1}{k^{y}x})^{\frac{\alpha}{y}}=2, i.e., α=logQ(ρA|BC)Q(ρAB)2\alpha=\log_{\frac{Q(\rho_{A|BC})}{Q(\rho_{AB})}}2. Next, we prove that g(α)=Qα(ρA|BC)(1t1αt2α)0g(\alpha)=Q^{\alpha}(\rho_{A|BC})(1-t_{1}^{\alpha}-t_{2}^{\alpha})\geq 0 by proving (1t1αt2α)0(1-t_{1}^{\alpha}-t_{2}^{\alpha})\geq 0,

1t1αt2α\displaystyle 1-t_{1}^{\alpha}-t_{2}^{\alpha} =(t1y+1xt2y)αyt1αt2α\displaystyle=(t^{y}_{1}+\frac{1}{x}t^{y}_{2})^{\frac{\alpha}{y}}-t_{1}^{\alpha}-t_{2}^{\alpha}
=(ky+1x)αyt2αkαt2αt2α\displaystyle=(k^{y}+\frac{1}{x})^{\frac{\alpha}{y}}t_{2}^{\alpha}-k^{\alpha}t_{2}^{\alpha}-t_{2}^{\alpha}
=kα((1+1kyx)αy1kα)t2α\displaystyle=k^{\alpha}\left((1+\frac{1}{k^{y}x})^{\frac{\alpha}{y}}-1-k^{-\alpha}\right)t_{2}^{\alpha}
=(kα1)t2α0,\displaystyle=(k^{\alpha}-1)t_{2}^{\alpha}\geq 0,

where the first equation is due to 1=t1y+1xt2y1=t^{y}_{1}+\frac{1}{x}t^{y}_{2} and the inequality is due to k1k\geq 1 and α>0\alpha>0. The case for Q(ρA|BC)>Q(ρAC)Q(ρAB)>0Q(\rho_{A|BC})>Q(\rho_{AC})\geq Q(\rho_{AB})>0 is similarly proved. Therefore, QQ is logb2\log_{b}2-monogamous for the states ρABC\rho_{ABC}.       

The entanglement cost ECE_{C} of a bipartite state ρAB\rho_{AB} is equal to the regularized entanglement of formation EfE_{f} EOF , namely m1 ,

EC(ρAB)=limn1nEf(ρABn),E_{C}(\rho_{AB})=\lim_{n\to\infty}\frac{1}{n}E_{f}(\rho^{\otimes n}_{AB}), (11)

where the entanglement of formation EfE_{f} is defined by Ef(ρAB)=min{pi,|ψi}ipiS(TrB[|ψiψi|]),E_{f}(\rho_{AB})=\min_{\{p_{i},|\psi_{i}\rangle\}}\sum_{i}p_{i}S(Tr_{B}[|\psi_{i}\rangle\langle\psi_{i}|]), with S(ρ)S(\rho) is the von Neumann entropy of density operator ρ\rho and the minimum is taken over all ensembles {pi,|ψi}\{p_{i},|\psi_{i}\rangle\} satisfying ipi|ψiψi|=ρAB\sum_{i}p_{i}|\psi_{i}\rangle\langle\psi_{i}|=\rho_{AB}. It is worthwhile noting that the inequality (1) does not hold for the entanglement cost ECE_{C} m1 .

To illustrate the Theorem 3 we consider the purification of the totally antisymmetric two-qutrit state,

|ψABC=16(|123|132+|231|213+|321|321).|\psi\rangle_{ABC}=\frac{1}{\sqrt{6}}(|123\rangle-|132\rangle+|231\rangle-|213\rangle+|321\rangle-|321\rangle). (12)

One has EC(|ψA|BC)=log23E_{C}(|\psi\rangle_{A|BC})=\log_{2}3 and EC(ρAB)=EC(ρAB)=1E_{C}(\rho_{AB})=E_{C}(\rho_{AB})=1 m1 . According to Theorem 3, we have b=min{EC(|ψA|BC)EC(ρAC),EC(|ψA|BC)EC(ρAB)}=log23b=\min\left\{\frac{E_{C}(|\psi\rangle_{A|BC})}{E_{C}(\rho_{AC})},\frac{E_{C}(|\psi\rangle_{A|BC})}{E_{C}(\rho_{AB})}\right\}=\log_{2}3. Then α=log(log23)21.51.\alpha=\log_{(\log_{2}3)}2\approx 1.51. Therefore, ECE_{C} is α\alpha-monogamous for |ψABC|\psi\rangle_{ABC} for α1.51\alpha\geq 1.51. Denote f(α)=ECα(|ψA|BC)ECα(ρAB)ECα(ρAC)f(\alpha)=E^{\alpha}_{C}(|\psi\rangle_{A|BC})-E^{\alpha}_{C}(\rho_{AB})-E^{\alpha}_{C}(\rho_{AC}). We have f(α)0f(\alpha)\geq 0 for α1.51\alpha\geq 1.51, see the Fig. 1.

Refer to caption
Fig. 1: f(α)f(\alpha) as a function of α\alpha (α1.51\alpha\geq 1.51) for |ψABC|\psi\rangle_{ABC}.

On the other hand, for the state |ψABC|\psi\rangle_{ABC} in (12), using the Theorem 1 and Corollary 1, we have Xy,|ψABC={1(log23)y1}X_{y,|\psi\rangle_{ABC}}=\{\frac{1}{(\log_{2}3)^{y}-1}\} for given y>0y>0. Then ECE_{C} is β\beta-monogamous for |ψABC|\psi\rangle_{ABC} with β=max{1(log23)y1y,y}\beta=\max\{\frac{1}{(\log_{2}3)^{y}-1}y,y\}. Obviously, the optimal value of β\beta is obtained at the intersection of z1(y)=1(log23)y1yz_{1}(y)=\frac{1}{(\log_{2}3)^{y}-1}y and z2(y)=yz_{2}(y)=y with y>0y>0, i.e., miny>0{β}=log(log23)2\min_{y>0}\{\beta\}=\log_{(\log_{2}3)}2, see Fig. 2.

Refer to caption
Fig. 2: The dished line is for z1(y)z_{1}(y) and the solid line is for z2(y)z_{2}(y).

In the proof of the Theorem 3, if we take 1<cmin{Q(ρA|BC)Q(ρAC),Q(ρA|BC)Q(ρAB)}1<c\leq\min\left\{\frac{Q(\rho_{A|BC})}{Q(\rho_{AC})},\frac{Q(\rho_{A|BC})}{Q(\rho_{AB})}\right\}, then we have that QQ is logc2\log_{c}2-monogamous for the given quantum state. For example, let c=32(1,log(log23)2]c=\frac{3}{2}\in(1,\log_{(\log_{2}3)}2] for the state (12). Then ECE_{C} is α\alpha-monogamous for |ψABC|\psi\rangle_{ABC} with α=log3221.71\alpha=\log_{\frac{3}{2}}2\approx 1.71. More generally, for some states ρABCΛ\rho_{ABC}\in\Lambda, from the proof of Theorem 3 if T={Q(ρA|BC)Q(ρAC),Q(ρA|BC)Q(ρAB)|ρABC}T=\left\{\frac{Q(\rho_{A|BC})}{Q(\rho_{AC})},\frac{Q(\rho_{A|BC})}{Q(\rho_{AB})}\big{|}\rho_{ABC}\right\} has lower bound cc which is strictly greater than 11, QQ is logc2\log_{c}2-monogamous for those states ρABC\rho_{ABC}.

III Conclusions and Remarks

We have addressed in general the question of whether entanglement measures EE are monogamous in the sense of (2) introduced in Ref. G1 for tripartite quantum systems. We have presented the equations (5) and shown that the monogamy of a entanglement measure EE only depends on the boundedness of the solutions for the equations. Both sufficient and necessary conditions for EE being monogamous have been explicitly derived. Meanwhile, the monogamy conditions for a measure of quantum correlation QQ have been also obtained with respect to certain subsets of quantum states. According to the duality, our approach may be also applied to study the polygamy of entanglement measures EE.


Acknowledgments    This work is supported by the National Natural Science Foundation of China under grant Nos. 12075159 and 12171044, Beijing Natural Science Foundation (Z190005), and the Academician Innovation Platform of Hainan Province.

References

  • (1) H. Ollivier, and W.H. Zurek, Quantum discord: a measure of the quantumness of correlations, Phys. Rev.Lett. 88, 017901(2001).
  • (2) M. Koashi, and A. Winter, Monogamy of quantum entanglement and other correlations, Phys. Rev. A 69, 022309(2004).
  • (3) Y.K. Bai, Y.F. Xu, and Z.D. Wang, General Monogamy Relation for the Entanglement of Formation in Multiqubit Systems, Phys.Rev.Lett. 113, 100503(2014).
  • (4) A. Kumar, Conditions for monogamy of quantum correlations in multipartite systems, Phys. Lett. A 380, 3044(2016).
  • (5) T. R. deOliveira, M. F. Cornelio, and F. F. Fanchini, Monogamy of entanglement of formation, Phys. Rev. A 89, 034303(2014).
  • (6) Y. Luo, T. Tian, L. H. Shao, and Y. Li, General monogamy of Tsallis q-entropy entanglement in multiqubit systems, Phys. Rev. A 93, 062340(2016).
  • (7) C. Lancien, S. D. Martino, M. Huber, M. Piani, G. Adesso, and A. Winter, Should Entanglement Measures be Monogamous or Faithful? Phys. Rev. Lett. 117, 060501(2016).
  • (8) Y. Guo and G. Gour, Monogamy of the entanglement of formation, Phys. Rev. A 99, 042305(2019).
  • (9) Y. Guo, Strict entanglement monotonicity under local operations and classical communication, Phys. Rev. A 99, 022338(2019).
  • (10) G. Gour and Y. Guo, Monogamy of entanglement without inequalities, Quantum 2, 81(2018).
  • (11) Z.X. Jin, S.M. Fei, L.Jost, and C.F. Qiao, A new parameterized monogamy relation of entanglement with equality, Advanced Quantum Technologies 2100148(2022).
  • (12) T. J. Osborne, and F. Verstraete, General Monogamy Inequality for Bipartite Qubit Entanglement, Phys. Rev. Lett. 96, 220503 (2006).
  • (13) Y. K. Bai, M. Y. Ye, and Z. D. Wang, Phys. Rev. A 80, 044301 (2009).
  • (14) G. Goura, S. Bandyopadhyayb, and B. C. Sandersc, J. Math. Phys. 48, 012108(2007).
  • (15) J. S. Kim, A. Das, and B. C. Sanders, Entanglement monogamy of multipartite higher-dimensional quantum systems using convex-roof extend negativity, Phys. Rev. A 79, 012329(2009).
  • (16) H. He and G. Vidal, Disentangling theorem and monogamy for entanglement negativity, Phys. Rev. A 91, 012339(2015).
  • (17) Z. X. Jin and S. M. Fei, Tighter entanglement monogamy relations of qubit systems, Quantum Inf Process 16,77 (2017).
  • (18) X. N. Zhu, S. M. Fei, General monogamy relations of quantum entanglement for multiqubit W-class states, Quantum Information Processing (2017) 16:53.
  • (19) X. N. Zhu, S. M Fei, Entanglement monogamy relations of qubit systems, Phys. Rev. A 90, 024304(2014).
  • (20) A. Acin, A. Andrianov, L. Costa, E. Jane, J. I. Latorre, and R. Tarrach, Generalized Schmidt Decomposition and Classification of Three-Quantum-Bit States, Phys. Rev. Lett. 85, 1560(2000).
  • (21) C. S. Yu, and H. S. Song, Entanglement monogamy of tripartite quantum states, Phys. Rev. A 77, 032329(2008).
  • (22) G. Gour, D. A. Meyer, and B. C. Sanders, Deterministic entanglement of assistance and monogamy constraints, Phys. Rev. A 72, 042329(2005).
  • (23) X.N. Zhu, X. Q. Li-Jost, and S.M. Fei, Monogamy relations of concurrence for any dimensional quantum systems, Quantum Inf. Process. 16, 279(2017).
  • (24) C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, Purification of Noisy Entanglement and Faithful Teleportation via Noisy Channels, Phys. Rev. Lett. 76, 722(1996).
  • (25) Y. Guo, Any entanglement of assistance is polygamous. Quantum Inf Process 17, 222 (2018).
  • (26) R. Prabhu, A. K. Pati, A. Sen(De), and U. Sen, Conditions for monogamy of quantum correlations: Greenberger-Horne-Zeilinger versus WW states, Phys. Rev. A 85, 040102(R)(2012).
  • (27) Sudha, A. R. Usha Devi, A. K. Rajagopal, Monogamy of quantum correlations in three-qubit pure states. Phys. Rev. A 85, 012103(2012).