This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

\preprintnumber

KYUSHU-HET-307, RIKEN-iTHEMS-Report-25

1]Department of Physics, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan

Monte Carlo Simulation of the SU(2)/2SU(2)/\mathbb{Z}_{2} Yang–Mills Theory

Motokazu Abe [    Okuto Morikawa Interdisciplinary Theoretical and Mathematical Sciences Program (iTHEMS), RIKEN, Wako 351-0198, Japan    Hiroshi Suzuki
Abstract

We carry out a hybrid Monte Carlo (HMC) simulation of the SU(2)/2SU(2)/\mathbb{Z}_{2} Yang–Mills theory in which the N\mathbb{Z}_{N} 2-form flat gauge field (the ’t Hooft flux) is explicitly treated as one of the dynamical variables. We observe that our HMC algorithm in the SU(2)/2SU(2)/\mathbb{Z}_{2} theory drastically reduces autocorrelation lengths of the topological charge and of a physical quantity which couples to slow modes in the conventional HMC simulation of the SU(2)SU(2) theory. Provided that sufficiently large lattice volumes are available, therefore, the HMC algorithm of the SU(N)/NSU(N)/\mathbb{Z}_{N} theory could be employed as an alternative for the simulation of the SU(N)SU(N) Yang–Mills theory, because local observables are expected to be insensitive to the difference between SU(N)SU(N) and SU(N)/NSU(N)/\mathbb{Z}_{N} in the large volume limit. A possible method to incorporate quarks [fermions in the fundamental representation of SU(N)SU(N) with the baryon number 1/N1/N] in this framework is also considered.

\subjectindex

B01,B03,B31

1 Introduction

Recently, consideration on the Yang–Mills partition function with the ’t Hooft flux tHooft:1979rtg has revived Kitano:2017jng ; Tanizaki:2022ngt ; Nguyen:2023fun , largely motivated by the perspective of the generalized symmetries Gaiotto:2014kfa , in particular in connection with the study in Ref. Gaiotto:2017yup . See also recent related studies Yamazaki:2017ulc ; Hayashi:2023wwi ; Hayashi:2024qkm ; Hayashi:2024yjc ; Hayashi:2024psa , in which the ’t Hooft flux plays the crucial role in analyses of the low-energy dynamics of gauge theory.

In the present paper, partially motivated by the above developments and partially motivated by the possibility of a geometrical definition of the fractional topological charge Abe:2023ncy in the SU(N)SU(N) Yang–Mills theory with the ’t Hooft flux tHooft:1981nnx ; vanBaal:1982ag , we carry out a hybrid Monte Carlo (HMC) lattice simulation of the SU(2)/2SU(2)/\mathbb{Z}_{2} Yang–Mills theory, in which the ’t Hooft flux, the 2-form gauge field coupled to the 2\mathbb{Z}_{2} 1-form symmetry in the modern language, is dynamical. Traditionally, lattice simulations of the SU(N)/NSU(N)/\mathbb{Z}_{N} Yang–Mills theory are carried out by adopting the Wilson plaquette action in the adjoint representation, which is blind on the center N\mathbb{Z}_{N} Halliday:1981te ; Creutz:1982ga ; in this way, nontrivial SU(N)/NSU(N)/\mathbb{Z}_{N} bundle structures are effectively summed over. See also Refs. Edwards:1998dj ; deForcrand:2002vs . In this paper, instead, we treat the N\mathbb{Z}_{N} 2-form flat gauge field explicitly as one of the dynamical variables; therefore, each gauge field configuration in the Monte Carlo simulation explicitly possesses the value of the N\mathbb{Z}_{N} 2-form gauge field. In this sense, our idea is similar in spirit to the study in Ref. Kovacs:2000sy , in which the SU(2)SU(2) Yang–Mills partition function with a given fixed ’t Hooft flux is computed, although we make the ’t Hooft flux dynamical; see also Ref. Halliday:1981tm for an earlier Monte Carlo study with an explicit dynamical N\mathbb{Z}_{N} 2-form gauge field. Here, we adopt (a variant of) the HMC simulation algorithm Duane:1987de having future applications of our method to lattice quantum chromodynamics (QCD) [SU(3)SU(3) Yang–Mills theory with fundamental quarks] in mind.

Meanwhile, for many years, it has been known that the conventional HMC algorithm on the periodic lattice suffers from the topological freezing problem, a phenomenon whereby the Monte Carlo update is stuck within a particular topological sector toward the continuum limit DelDebbio:2002xa ; Schaefer:2010hu ; see Ref. Bonanno:2024zyn and references therein for recent analyses. The HMC simulation with open boundary conditions Luscher:2011kk , by activating in/out flows of topological charges from lattice boundaries, appears to remove topological barriers in between otherwise topological sectors and solve this problem. Here, we see an analogue with the HMC simulation in the SU(N)/NSU(N)/\mathbb{Z}_{N} gauge theory, in which the topological charge is shuffled by random dynamics of the N\mathbb{Z}_{N} 2-form gauge field.

In continuum theory, the topological charge QQ in the SU(N)SU(N) gauge theory on a 4-torus, T4T^{4}, is defined by111Throughout this paper, we take a convention that the field strength Fμν(x)F_{\mu\nu}(x) is a hermitian matrix.

Q:=T4d4x132π2εμνρσtr[Fμν(x)Fρσ(x)].Q:=\int_{T^{4}}d^{4}x\,\frac{1}{32\pi^{2}}\varepsilon_{\mu\nu\rho\sigma}\tr\left[F_{\mu\nu}(x)F_{\rho\sigma}(x)\right]. (1.1)

In the SU(N)SU(N) Yang–Mills theory, QQ\in\mathbb{Z}. However, in the SU(N)/NSU(N)/\mathbb{Z}_{N} theory, QQ can be fractional as tHooft:1981nnx ; vanBaal:1982ag

Q=1NεμνρσBμνBρσ8+,Q=-\frac{1}{N}\frac{\varepsilon_{\mu\nu\rho\sigma}B_{\mu\nu}B_{\rho\sigma}}{8}+\mathbb{Z}, (1.2)

where BμνB_{\mu\nu}\in\mathbb{Z} is the ’t Hooft flux. Since BμνB_{\mu\nu} takes discrete values, we make a random choice of BμνB_{\mu\nu} in the HMC simulation of SU(N)/NSU(N)/\mathbb{Z}_{N} theory (see below). Then, this random choice inevitably shuffles the topological charge QQ and we may expect that the topological sectors are efficiently sampled. We will observe that this expectation is actually true.

This paper is organized as follows. In Section 2, we briefly summarize basic facts about the SU(N)/NSU(N)/\mathbb{Z}_{N} theory, mainly to set up our lattice formulation on the periodic lattice of size LL, Γ:=(/L)4\Gamma:=(\mathbb{Z}/L\mathbb{Z})^{4}. Under a certain gauge fixing of the N\mathbb{Z}_{N} 1-form gauge symmetry, the 2-form N\mathbb{Z}_{N} gauge field takes a particular form (2.10) of the “BB-field” over which we carry out the “functional integral.” Section 3 is the main part of this paper. Since the BB-field in Eq. (2.10) takes values in \mathbb{Z} and has no obvious conjugate momentum, we have to appropriately modify the HMC algorithm which is based on the molecular dynamics (MD) of continuous variables. In Section 3.1, we present our “halfway-updating” HMC algorithm which fulfills the detailed balance. The proof of the detailed balance is deferred to Appendix A. In Section 3.2, we study the autocorrelation function of the topological charge in the HMC history; we compare it in the SU(2)SU(2) theory (i.e., without the BB-field) with the one in the SU(2)/2SU(2)/\mathbb{Z}_{2} theory (with the BB-field). For the lattice topological charge, we employ the tree-level improved definition in Ref. Alexandrou:2015yba , in which the lattice field smeared by the gradient flow Luscher:2010iy is substituted. We observe a drastic reduction of the autocorrelation in the HMC simulation in the latter theory as anticipated above. We also observe a similar reduction of the autocorrelation in the “energy-operator” E(t)E(t) defined by the gradient flow Luscher:2010iy . As shown in Section 2, the difference between SU(N)/NSU(N)/\mathbb{Z}_{N} and SU(N)SU(N) can be understood as the difference in boundary conditions (and the sum over them) and thus local observables are expected to be insensitive to the difference between SU(N)SU(N) and SU(N)/NSU(N)/\mathbb{Z}_{N} in the large volume limit in these gapped theories. To have some idea on this point, we carry out an exploratory study on the finite size effect in the continuum extrapolation of the topological susceptibility. In Section 4, we present a possible method to incorporate fermions in the fundamental representation of SU(N)SU(N) (quarks) in this framework. This is achieved by gauging the baryon number U(1)U(1), U(1)BU(1)_{B}, and embedding N\mathbb{Z}_{N} into SU(N)×U(1)BSU(N)\times U(1)_{B}. The U(1)BU(1)_{B} gauge boson unwanted for QCD is made super-heavy by the Stückelberg mechanism on lattice. Section 5 is devoted to a conclusion. In Appendix B, we present HMC histories and histograms of the topological charge for various lattice parameters.

2 SU(N)/NSU(N)/\mathbb{Z}_{N} Yang–Mills theory on T4T^{4}

The SU(N)/NSU(N)/\mathbb{Z}_{N} Yang–Mills theory on T4T^{4} of size LL in continuum can be defined as follows. See Refs. Kapustin:2014gua ; Tanizaki:2022ngt . We define boundary conditions of the SU(N)SU(N) gauge potential 1-form aa on T4T^{4} by

a(x+Lμ^)=gμ(x)a(x)gμ(x)igμ(x)dgμ(x),a(x+L\hat{\mu})=g_{\mu}(x)^{\dagger}a(x)g_{\mu}(x)-ig_{\mu}(x)^{\dagger}\mathrm{d}g_{\mu}(x), (2.1)

where xμ=0x_{\mu}=0 and μ^\hat{\mu} is the unit vector in the μ\mu direction; the transition functions gμ(x)g_{\mu}(x) are SU(N)SU(N)-valued. Here, since the gauge potential behaves as the adjoint representation under the gauge transformation, one may relax the cocycle condition for the transition functions at xμ=xν=0x_{\mu}=x_{\nu}=0 by N\mathbb{Z}_{N} factors as

gμ(x)gν(x+Lμ^)gμ(x+Lν^)gν(x)=e2πiBμν(x)/N𝟏,g_{\mu}(x)g_{\nu}(x+L\hat{\mu})g_{\mu}(x+L\hat{\nu})^{\dagger}g_{\nu}(x)^{\dagger}=e^{2\pi iB_{\mu\nu}(x)/N}\bm{1}, (2.2)

where Bμν(x)B_{\mu\nu}(x)\in\mathbb{Z} and Bμν(x)=Bνμ(x)B_{\mu\nu}(x)=-B_{\nu\mu}(x). For the consistency of transition functions among “quadruple” overlaps, it is required that Bμν(x)B_{\mu\nu}(x) is flat modulo NN, dB=0modN\mathrm{d}B=0\bmod N. This defines the SU(N)/NSU(N)/\mathbb{Z}_{N} principal bundle and the SU(N)/NSU(N)/\mathbb{Z}_{N} Yang–Mills theory over T4T^{4}. It can be shown that we may take constant Bμν(x)B_{\mu\nu}(x), BμνB_{\mu\nu}. These integers are called the ’t Hooft fluxes.

It is well-understood how to implement this gauge theory on T4T^{4} as a lattice gauge theory Mack:1978kr ; Ukawa:1979yv ; Seiler:1982pw ; see also Appendix A.4 of Ref. Tanizaki:2022ngt for a nice exposition. One first introduces link variables as U~(x,μ)exp(ixx+μ^a)\tilde{U}(x,\mu)\sim\exp(i\int_{x}^{x+\hat{\mu}}a). Boundary conditions on T4T^{4} are then defined by, as a lattice counterpart of Eq. (2.1),222Here is a side remark on the Wilson line wrapping around a cycle of T4T^{4}: Under the ordinary 0-form gauge transformation, U~(x,ν)Ω(x)U~(x,ν)Ω(x+ν^),\tilde{U}(x,\nu)\to\Omega(x)^{\dagger}\tilde{U}(x,\nu)\Omega(x+\hat{\nu}), (2.3) where Ω(x)\Omega(x) is not necessarily periodic, the transition functions are transformed as gμ(x)Ω(x)gμ(x)Ω(x+Lμ^)g_{\mu}(x)\to\Omega(x)g_{\mu}(x)\Omega(x+L\hat{\mu})^{\dagger} (2.4) and one sees that the cocycle condition (2.2) is invariant under this. The Wilson line of U~(x,μ)\tilde{U}(x,\mu) thus should not contain the transition functions at the boundary, because under Eq. (2.3), U~(x+(L1)μ^,μ)U~(x+Lμ^,μ)\displaystyle\dotsb\tilde{U}(x+(L-1)\hat{\mu},\mu)\tilde{U}(x+L\hat{\mu},\mu)\dotsb Ω(x+(L1)μ^)U~(x+(L1)μ^,μ)U~(x+Lμ^,μ)Ω(x+(L+1)μ^).\displaystyle\to\dotsb\Omega(x+(L-1)\hat{\mu})^{\dagger}\tilde{U}(x+(L-1)\hat{\mu},\mu)\tilde{U}(x+L\hat{\mu},\mu)\Omega(x+(L+1)\hat{\mu})\dotsb. (2.5)

U~(x+Lμ^,ν)=gμ(x)U~(x,ν)gμ(x+ν^),\tilde{U}(x+L\hat{\mu},\nu)=g_{\mu}(x)^{\dagger}\tilde{U}(x,\nu)g_{\mu}(x+\hat{\nu}), (2.6)

where xμ=0x_{\mu}=0. We first regard link variables with xρ=Lx_{\rho}=L for a certain ρ\rho are all expressed by link variables with xρ=0x_{\rho}=0 by the boundary conditions (2.6). Then, we make the change of link variables from U~U\tilde{U}\to U by

U~(x,μ)={U(x,μ)gμ(x)for xμ=L1,U(x,μ)otherwise.\tilde{U}(x,\mu)=\begin{cases}U(x,\mu)g_{\mu}(x)&\text{for $x_{\mu}=L-1$},\\ U(x,\mu)&\text{otherwise}.\\ \end{cases} (2.7)

The new variables UU are regarded as obeying periodic boundary conditions, U(x+Lμ^,ν)=U(x,ν)U(x+L\hat{\mu},\nu)=U(x,\nu), where xμ=0x_{\mu}=0. Under this change of variables, one finds that the Boltzmann weight defined by the Wilson plaquette action acquires N\mathbb{Z}_{N} factors as (letting β\beta the lattice bare gauge coupling),

exp{βxΓμ<ν1NRetr[P~(x,μ,ν)𝟏]}\displaystyle\exp\left\{\beta\sum_{x\in\Gamma}\sum_{\mu<\nu}\frac{1}{N}\real\tr\left[\tilde{P}(x,\mu,\nu)-\bm{1}\right]\right\}
=exp{βxΓμ<ν1NRetr[e2πiBμν(x)/NP(x,μ,ν)𝟏]},\displaystyle=\exp\left\{\beta\sum_{x\in\Gamma}\sum_{\mu<\nu}\frac{1}{N}\real\tr\left[e^{-2\pi iB_{\mu\nu}(x)/N}P(x,\mu,\nu)-\bm{1}\right]\right\}, (2.8)

where plaquette variables are

P~(x,μ,ν)\displaystyle\tilde{P}(x,\mu,\nu) :=U~(x,μ)U~(x+μ^,ν)U~(x+ν^,μ)U~(x,ν),\displaystyle:=\tilde{U}(x,\mu)\tilde{U}(x+\hat{\mu},\nu)\tilde{U}(x+\hat{\nu},\mu)^{\dagger}\tilde{U}(x,\nu)^{\dagger},
P(x,μ,ν)\displaystyle P(x,\mu,\nu) :=U(x,μ)U(x+μ^,ν)U(x+ν^,μ)U(x,ν),\displaystyle:=U(x,\mu)U(x+\hat{\mu},\nu)U(x+\hat{\nu},\mu)^{\dagger}U(x,\nu)^{\dagger}, (2.9)

and the integer field Bμν(x)B_{\mu\nu}(x) is given by the ’t Hooft fluxes as

Bμν(x)={Bμνfor xμ=L1 and xν=L1,0otherwise.B_{\mu\nu}(x)=\begin{cases}B_{\mu\nu}&\text{for $x_{\mu}=L-1$ and~{}$x_{\nu}=L-1$},\\ 0&\text{otherwise}.\\ \end{cases} (2.10)

Note that this field is flat modulo NN, [ρBμν](x)=0modN\partial_{[\rho}B_{\mu\nu]}(x)=0\bmod N, where ρ\partial_{\rho} denotes the lattice derivative. The particular form of Bμν(x)B_{\mu\nu}(x) in Eq. (2.10) is not unique and can be changed by the N\mathbb{Z}_{N} 1-form gauge transformation, U(x,μ)e2πizμ(x)/NU(x,μ)U(x,\mu)\to e^{2\pi iz_{\mu}(x)/N}U(x,\mu), where zμ(x)z_{\mu}(x)\in\mathbb{Z}. The invariant characterization of Bμν(x)B_{\mu\nu}(x) is the total flux, Bμν=s,t=0L1Bμν(x+sμ^+tν^)modNB_{\mu\nu}=\sum_{s,t=0}^{L-1}B_{\mu\nu}(x+s\hat{\mu}+t\hat{\nu})\bmod N. In what follows, we call the N\mathbb{Z}_{N} 2-form gauge field and/or the ’t Hooft flux simply, “BB-field” in a moderate abuse of language.

In the next section, we carry out an HMC simulation of the system defined by the second line of Eq. (2.8), employing configurations of the BB-field of the particular form shown in Eq. (2.10). This implies that we work in a particular gauge of the N\mathbb{Z}_{N} 1-form gauge symmetry; the observables thus should be invariant under the N\mathbb{Z}_{N} 1-form gauge transformation, U(x,μ)e2πizμ(x)/NU(x,μ)U(x,\mu)\to e^{2\pi iz_{\mu}(x)/N}U(x,\mu) and Bμν(x)Bμν(x)+μzν(x)νzμ(x)modNB_{\mu\nu}(x)\to B_{\mu\nu}(x)+\partial_{\mu}z_{\nu}(x)-\partial_{\nu}z_{\mu}(x)\bmod N.

3 Numerical experiments

3.1 “Halfway-updating” HMC algorithm

In our study, we basically follow the HMC algorithm Duane:1987de ,333Our numerical codes can be found in https://github.com/o-morikawa/Gaugefields.jl, which is based on Gaugefields.jl in the JuliaQCD package Nagai:2024yaf . having possible future applications to lattice QCD in mind (see Section 4). However, since the BB-field takes values in \mathbb{Z} and has no obvious conjugate momentum, we have to appropriately modify the HMC algorithm. We see that the following “halfway-updating” HMC algorithm fulfills the detailed balance, a sufficient condition for the Markov chain Monte Carlo to reproduce the equilibrium distribution with a given Boltzmann weight.

Let UU and BB be the initial configuration of the gauge field and the BB-field, respectively. Then,

  1. 1.

    Generate the initial momentum π\pi being conjugate to UU by the Gaussian distribution PG(π)eπ2/2P_{G}(\pi)\sim e^{-\pi^{2}/2}.

  2. 2.

    Via the leapfrog method, evolve π\pi and UU with respect to the Hamiltonian H(U,π,B):=(1/2)π2+S(U,B)H(U,\pi,B):=(1/2)\pi^{2}+S(U,B), where the action S(U,B)S(U,B) is given by the exponent of the second line of Eq. (2.8), by the MD time τ/2\tau/2. This gives the mapping {U,π}τ/2{Uˇ,πˇ}\{U,\pi\}\stackrel{{\scriptstyle\tau/2}}{{\to}}\{\check{U},\check{\pi}\}.

  3. 3.

    Update the BB-field as BBB\to B^{\prime} in a probability PF(BB)P_{F}(B\to B^{\prime}). We assume that PF(BB)=PF(BB)P_{F}(B\to B^{\prime})=P_{F}(B^{\prime}\to B) for any pair (B,B)(B,B^{\prime}). In our actual simulations, we set BμνB_{\mu\nu}^{\prime} for each pair (μ,ν)(\mu,\nu) by a uniform random number in {0,1,,N1}\{0,1,\cdots,N-1\}.444A technical note on this prescription: Given a N\mathbb{Z}_{N} 2-cochain field Zμν(x)Z_{\mu\nu}(x) on T4T^{4} being flat in the sense that cZμν(x)=1\prod_{c}Z_{\mu\nu}(x)=1, where the oriented product c\prod_{c} is taken on 6 faces of a 3D cube cc, one can associate the flux in Eq. (2.10) with 0Bμν<N0\leq B_{\mu\nu}<N in the following way. First, define Bˇμν(x)\check{B}_{\mu\nu}(x) by Zμν(x)=e2πiBˇμν(x)/NZ_{\mu\nu}(x)=e^{-2\pi i\check{B}_{\mu\nu}(x)/N} and 0Bˇμν(x)<N0\leq\check{B}_{\mu\nu}(x)<N. This Bˇμν(x)\check{B}_{\mu\nu}(x) is flat but generally only modulo NN, i.e., [ρBˇμν](x)=0modN\partial_{[\rho}\check{B}_{\mu\nu]}(x)=0\bmod N. On T4T^{4}, one can construct a \mathbb{Z} 2-cocycle Mμν(x)M_{\mu\nu}(x) such that B¯μν(x):=Bˇμν(x)NMμν(x)\bar{B}_{\mu\nu}(x):=\check{B}_{\mu\nu}(x)-NM_{\mu\nu}(x) satisfies [ρB¯μν](x)=0\partial_{[\rho}\bar{B}_{\mu\nu]}(x)=0 (B¯μν(x)\bar{B}_{\mu\nu}(x) provides the integral lift of H2(T4,N)H^{2}(T^{4},\mathbb{Z}_{N}) to H2(T4,)H^{2}(T^{4},\mathbb{Z})). An explicit method to construct Mμν(x)M_{\mu\nu}(x) on a periodic hypercubic lattice is given in Section 4.2 of Ref. Abe:2022nfq . This B¯μν(x)\bar{B}_{\mu\nu}(x) is 1-form gauge equivalent to Bμν(x)B_{\mu\nu}(x) of the form in Eq. (2.10). Finally, after the local shift by multiples of NN, Bμν(x)Bμν(x)+NNμν(x)B_{\mu\nu}(x)\to B_{\mu\nu}(x)+NN_{\mu\nu}(x), where Nμν(x)N_{\mu\nu}(x)\in\mathbb{Z}, one can restrict the range of BμνB_{\mu\nu} in Eq. (2.10) into 0Bμν<N0\leq B_{\mu\nu}<N. This argument shows that if the action and observables are invariant under the 1-form gauge transformation and the local shift of Bμν(x)B_{\mu\nu}(x) by multiples of NN, then our algorithm amounts to generating the N\mathbb{Z}_{N} 2-cochain field Zμν(x)Z_{\mu\nu}(x) on T4T^{4}.

  4. 4.

    Again evolve fields as {Uˇ,πˇ}τ/2{U,π}\{\check{U},\check{\pi}\}\stackrel{{\scriptstyle\tau/2}}{{\to}}\{U^{\prime},\pi^{\prime}\} by the MD but now with respect to the Hamiltonian H(Uˇ,πˇ,B):=(1/2)πˇ2+S(Uˇ,B)H(\check{U},\check{\pi},B^{\prime}):=(1/2)\check{\pi}^{2}+S(\check{U},B^{\prime}) by the MD time τ/2\tau/2.

  5. 5.

    Accept the new configuration {U,π,B}\{U^{\prime},\pi^{\prime},B^{\prime}\} under the probability (the Metropolis test)

    PA({U,π,B}{U,π,B})=min[1,eΔH],P_{A}(\{U,\pi,B\}\to\{U^{\prime},\pi^{\prime},B^{\prime}\})=\min\left[1,e^{-\Delta H}\right], (3.1)

    where ΔH:=H(U,π,B)H(U,π,B)\Delta H:=H(U^{\prime},\pi^{\prime},B^{\prime})-H(U,\pi,B).

  6. 6.

    Go back to the first step.

As shown in Appendix A, this algorithm fulfills the detailed balance.

The lattice parameters we used are summarized in Tables 1 and 2. In our HMC simulation for the SU(2)/2SU(2)/\mathbb{Z}_{2} theory, for all lattice parameters, the length of one HMC step τ\tau (“one trajectory”) is 1.01.0 in lattice units (Δτ=0.02\Delta\tau=0.02 times 2525 MD steps for the “half-way” and in total there are 5050 MD steps for one HMC step). For our largest and finest lattice (β=2.6\beta=2.6 and L=20L=20), the Metropolis acceptance was 86%\sim 86\%. We also carry out the HMC simulation for the SU(2)SU(2) theory using the conventional HMC algorithm. For this also, for all lattice parameters, τ=1.0\tau=1.0 in lattice units (Δτ=0.02\Delta\tau=0.02 and there are 5050 MD steps).

Table 1: The lattice parameters in our HMC simulation in the SU(2)/2SU(2)/\mathbb{Z}_{2} theory.
β\beta LL aσa\sqrt{\sigma} LaσLa\sqrt{\sigma} NN configs.
2.42.4 88 0.26730.2673 2.1382.138 50005000
2.52.5 1212 0.1860.186 2.232.23 50005000
2.62.6 1616 0.13260.1326 2.1222.122 17441744
2.42.4 1010 0.26730.2673 2.6732.673 50005000
2.52.5 1414 0.1860.186 2.602.60 53875387
2.62.6 2020 0.13260.1326 2.6522.652 10461046
Table 2: The lattice parameters in our HMC simulation in the SU(2)SU(2) theory.
β\beta LL aσa\sqrt{\sigma} LaσLa\sqrt{\sigma} NN configs.
2.42.4 88 0.26730.2673 2.1382.138 50005000
2.52.5 1212 0.1860.186 2.232.23 50005000
2.62.6 1616 0.13260.1326 2.1222.122 16351635

For the SU(2)SU(2) theory (i.e., without the BB-field), we referred to the mapping between β\beta and aσa\sqrt{\sigma}, where σ\sigma is the string tension, given in Ref. Teper:1998kw . We used this mapping also for the SU(2)/2SU(2)/\mathbb{Z}_{2} theory (i.e., with the BB-field). This point might be subtle, however, because the conventional Wilson line operator is not gauge invariant in the SU(2)/2SU(2)/\mathbb{Z}_{2} theory. A more satisfactory way would be to use the gradient flow Luscher:2010iy such that the value of a/ta/\sqrt{t}, where t/a2t/a^{2} is the flow time in lattice units, at which the expectation value of the local operator (3.2) t2E(t)t^{2}\langle E(t)\rangle becomes (say) 0.30.3. In any case, in the SU(2)/2SU(2)/\mathbb{Z}_{2} theory, the dependence of the integrated autocorrelation time on the lattice spacing is quite weak and this subtlety should not crucially change our conclusion.

For each of lattice parameters, we stored configurations per each 10 units of MD time (i.e., per every 10 trajectories).

3.2 Autocorrelation functions

We are primarily interested in the HMC history of the topological charge QQ. It is possible to construct a geometrical definition of the lattice topological charge QQ in the SU(N)SU(N) theory with the BB-field, which exactly ensures fractional values (1.2), by combining the seminal idea in Ref. Luscher:1981zq and the N\mathbb{Z}_{N} 1-form gauge invariance Abe:2023ncy . Its actual implementation, however, appears quite complicated. Here, therefore, we instead employ the following definition of QQ on the basis of the gradient flow Luscher:2010iy .

We adopt the tree-level improved linear combination of the clover and rectangular definitions given in Ref. Alexandrou:2015yba , by including the BB-field in each of the plaquettes for the 1-form gauge invariance. We substitute a field configuration smeared by the gradient flow in this definition. Here, the gradient flow refers to the lattice action in the second line of Eq. (2.8) and thus the flow equation itself depends also on the BB-field.555We do not consider the “flow” of the BB-field itself. We admit that the renormalizability Luscher:2011bx ; Hieda:2016xpq of this gradient flow with a fixed BB-field is an open problem, although we expect it because the local dynamics should be insensitive to whether we simulate SU(N)SU(N) or SU(N)/NSU(N)/\mathbb{Z}_{N}. Therefore, the gradient flow acts so that the modified plaquette variables e2πiBμνP(x,μ,ν)e^{2\pi iB_{\mu\nu}}P(x,\mu,\nu), not P(x,μ,ν)P(x,\mu,\nu), become smooth.666In other words, the smoothness on the lattice, the admissibility Luscher:1981zq ; Hernandez:1998et , is replaced by 𝟏e2πiBμνP(x,μ,ν)<ε\|\bm{1}-e^{2\pi iB_{\mu\nu}}P(x,\mu,\nu)\|<\varepsilon for a certain small constant ε\varepsilon Abe:2023ncy . Since the BB-field is not differentiable (it takes values in \mathbb{Z}), this difference in the meaning of the smoothness has a drastic effect which can make the topological charge fractional.777We would like to thank Yuya Tanizaki for originally sharing this idea with us. In the present exploratory study, we measure the topological charge of flowed configurations only at a flow time t=(0.7L)2/8t=(0.7L)^{2}/8 in lattice units, where LL is the lattice size, corresponding to the smeared or diffused length 8t=0.7L\sim\sqrt{8t}=0.7L; in this paper, we do not study how the results depend on this choice of the flow time.

In Fig. 1, we depict the HMC history of the topological charge QQ in the SU(2)/2SU(2)/\mathbb{Z}_{2} theory (β=2.6\beta=2.6 and L=16L=16). We clearly observe that QQ takes (approximately) fractional values as expected in the present SU(2)/2SU(2)/\mathbb{Z}_{2} case, Q=1/2+Q=1/2+\mathbb{Z}. Also, the distribution of QQ spreads in a wide range without any obvious autocorrelation in the HMC history; it appears that the topological sectors are shuffled by the dynamical effect of the BB-field.

Refer to caption
Figure 1: The HMC history of the topological charge QQ in the SU(2)/2SU(2)/\mathbb{Z}_{2} theory. β=2.6\beta=2.6 and L=16L=16.

For a comparison, in Fig. 2, we depict the HMC history of the topological charge QQ in the HMC simulation of the SU(2)SU(2) theory. In contrast, we clearly observe the tendency that QQ is stuck and the topological freezing of O(500)O(500) MD time.

Refer to caption
Figure 2: The HMC history of the topological charge QQ in the SU(2)SU(2) theory (i.e., without the BB-field). β=2.6\beta=2.6 and L=16L=16. The topological freezing is clearly seen.

The HMC history of QQ for other lattice parameters in conjunction with the histogram of QQ are presented in Appendix B.

We expect that the autocorrelation length increases as the system approaches the critical point (i.e., the continuum limit). In Fig. 3, we plot the normalized autocorrelation functions of the topological charge QQ in the SU(2)SU(2) theory as a function of the MD time; we follow the definition of the autocorrelation function in Appendix E of Ref. Luscher:2004pav .

Refer to caption
Figure 3: The normalized autocorrelation functions of the topological charge QQ in the conventional HMC simulation of the SU(2)SU(2) theory. The horizontal axis is the MD time. The cases in Table 2 with approximately identical physical lattice sizes are plotted.

Figure 3 is for the SU(2)SU(2) theory without the BB-field. In Fig. 4, we plot the normalized autocorrelation function of QQ in the SU(2)/2SU(2)/\mathbb{Z}_{2} theory with the dynamical BB-field. We observe that the autocorrelation is drastically reduced.

Refer to caption
Figure 4: The normalized autocorrelation functions of the topological charge QQ in the HMC simulation of the SU(2)/2SU(2)/\mathbb{Z}_{2} theory (i.e., with the BB-field). The horizontal axis is the MD time. The cases of first three rows in Table 1 with approximately identical physical lattice sizes are plotted. The lattice parameters are identical to those in Fig. 3.

Figure 5 shows the normalized autocorrelation function of the topological charge for the latter three rows of Table 1.

Refer to caption
Figure 5: The normalized autocorrelation functions of the topological charge QQ in the HMC simulation of the SU(2)/2SU(2)/\mathbb{Z}_{2} theory. The horizontal axis is the MD time. The cases of latter three rows of Table 1 of approximately identical physical lattice sizes are plotted.

In Fig. 6, we plot the integrated autocorrelation lengths (we follow the definition in Appendix E of Ref. Luscher:2004pav ) of the topological charge QQ and it square Q2Q^{2} as a function of the lattice spacing aa in units of the string tension σ\sigma.

Refer to caption
Figure 6: The integrated autocorrelation lengths in lattice units of the topological charge QQ and of the square Q2Q^{2} as the function of the lattice spacing. For the cases in the first three rows of Table 1 and Table 2.

The general consideration Luscher:2011kk indicates that the integrated autocorrelation length in the HMC algorithm increases as a2a^{-2}. We fairly well observe this scaling behavior in Fig. 6. However, the slope is quite small for the SU(2)/2SU(2)/\mathbb{Z}_{2} theory with our HMC algorithm.

The drastic reduction of the autocorrelation in QQ and in Q2Q^{2} is, although quite impressive, somehow expected because the random choice of the BB-field inevitably shuffles the topological charge. This does not, however, necessarily imply that the autocorrelation of any observables is reduced in the SU(2)/2SU(2)/\mathbb{Z}_{2} theory. To examine this point, we measure the HMC history of another observable which is expected to have a large overlap with slow modes of the HMC algorithm. It is given by the so-called “energy-operator” Luscher:2011kk (we implicitly assume the average over xΓx\in\Gamma),

E(t):=12tr[Fμν(t,x)Fμν(t,x)],E(t):=\frac{1}{2}\tr\left[F_{\mu\nu}(t,x)F_{\mu\nu}(t,x)\right], (3.2)

where the field strength on the right-hand side is given by the gradient flow at the flow time tt Luscher:2010iy (in the SU(2)/2SU(2)/\mathbb{Z}_{2} theory, we multiply each of plaquettes by the BB-field). The flow time is fixed to t=(0.7L)2/8t=(0.7L)^{2}/8. In Figs. 7 and 8, we plot the HMC histories of E(t)E(t) for the SU(2)SU(2) theory and for the SU(2)/2SU(2)/\mathbb{Z}_{2} theory, respectively (β=2.6\beta=2.6 and L=16L=16).

Refer to caption
Figure 7: The HMC history of E(t)E(t) (3.2) in the SU(2)SU(2) theory (i.e., without the BB-field). β=2.6\beta=2.6 and L=16L=16.
Refer to caption
Figure 8: The HMC history of E(t)E(t) (3.2) in the SU(2)/2SU(2)/\mathbb{Z}_{2} theory (i.e., with the BB-field). β=2.6\beta=2.6 and L=16L=16.

In Fig. 7, we clearly observe the large autocorrelation of O(100)O(100) MD time, whereas in the SU(2)/2SU(2)/\mathbb{Z}_{2} theory of Fig. 8, we do not see any notable autocorrelation; in fact, the integrated autocorrelation time is of O(20)O(20) MD time in the latter. These observations strongly indicate that our HMC algorithm for the SU(2)/2SU(2)/\mathbb{Z}_{2} or more generally the SU(N)/NSU(N)/\mathbb{Z}_{N} theory reduces the autocorrelation in general physical quantities drastically.

Finally, to have some idea how large is the finite size effect which provides the difference between SU(2)/2SU(2)/\mathbb{Z}_{2} and SU(2)SU(2) on local observables, in Figs. 9 and 10, we plot the topological susceptibility

χt:=1(La)4Q2\chi_{t}:=\frac{1}{(La)^{4}}\left\langle Q^{2}\right\rangle (3.3)

in units of the string tension σ\sigma. For all lattice parameters, the first 5050 configurations (500500 MD time) are omitted for thermalization and statistical errors are estimated by the jackknife method with a bin size 4040, corresponding to 4040 configurations and 400400 units of MD time. Although the error bars for the SU(2)/2SU(2)/\mathbb{Z}_{2} and SU(2)SU(2) theories in Figs. 9 and 10 are of almost the same order, we observed that the jackknife errors in the SU(2)/2SU(2)/\mathbb{Z}_{2} cases are much more quickly saturated compared to the SU(2)SU(2) cases, as expected from the shortness of the autocorrelation.

Refer to caption
Figure 9: The continuum extrapolations of the topological susceptibility χt\chi_{t} (3.3) in the SU(2)/2SU(2)/\mathbb{Z}_{2} theory. The two lines correspond to two sequences corresponding to two different physical volumes; the first/blue line corresponds to the first three lattice parameters in Table 1 whereas the second/red line corresponds to the latter three lattice parameters in Table 1.
Refer to caption
Figure 10: The continuum extrapolation of the topological susceptibility χt\chi_{t} (3.3) in the SU(2)SU(2) theory. The result is consistent with the one in Ref. Teper:1998kw , χt1/4/σ=0.486(10)\chi_{t}^{1/4}/\sqrt{\sigma}=0.486(10).

In Fig. 11, we combined the two continuum extrapolations in Fig. 9 as a function of the physical lattice size. A naive linear extrapolation of central values to the infinite volume appears consistent with the result in the SU(2)SU(2) theory Teper:1998kw , considering large statistical error bars in our results. To conclude the validity of the present approach to the SU(2)SU(2) theory from the SU(2)/2SU(2)/\mathbb{Z}_{2} theory, however, we need further statistics for larger and finer lattices.

Refer to caption
Figure 11: Continuum extrapolations in Fig. 9 as a function of the physical volume. A naive linear extrapolation of central values to the infinite volume appears consistent with the result in the SU(2)SU(2) theory, indicated by SU(2)SU(2) in the figure, χt1/4/σ=0.486(10)\chi_{t}^{1/4}/\sqrt{\sigma}=0.486(10) Teper:1998kw , considering large statistical error bars in our results.

4 Incorporation of fundamental quarks

One clearly wants to incorporate matter fields in the present framework. The incorporation of the adjoint matter fields such as the gaugino in the 𝒩=1\mathcal{N}=1 supersymmetric Yang–Mills theory would be straightforward at least in principle because it is blind to the center part of the gauge group SU(N)SU(N), N\mathbb{Z}_{N}; thus SU(N)/NSU(N)/\mathbb{Z}_{N} can be gauged. A better control on errors in the topological susceptibility could be quite useful for finding a supersymmetric point of the bare lattice gluino mass parameter Curci:1986sm , since a massless fermion implies the vanishing of the topological susceptibility.

It is, however, not obvious whether it is possible to incorporate “quarks,” fermions in the fundamental representation of SU(N)SU(N) and this point can be an obstacle to extending the present framework to lattice QCD. In what follows, we consider a possible method to avoid this obstruction.

First, when the BB-field is fixed, i.e., when it is not dynamical, one may incorporate quarks as follows Tanizaki:2022ngt : We first define boundary conditions of the fundamental fermions by

ψ~(x+Lμ^)\displaystyle\tilde{\psi}(x+L\hat{\mu}) =eiαμ(x)/Ngμ(x)ψ~(x),\displaystyle=e^{-i\alpha_{\mu}(x)/N}g_{\mu}(x)^{\dagger}\tilde{\psi}(x),
ψ¯~(x+Lμ^)\displaystyle\tilde{\bar{\psi}}(x+L\hat{\mu}) =ψ¯~(x)gμ(x)eiαμ(x)/N,\displaystyle=\tilde{\bar{\psi}}(x)g_{\mu}(x)e^{i\alpha_{\mu}(x)/N}, (4.1)

where xμ=0x_{\mu}=0. Here, transition functions gμ(x)g_{\mu}(x) are identified with those in Eq. (2.1) and eiαμ(x)/Ne^{-i\alpha_{\mu}(x)/N} is the transition functions of the baryon number U(1)U(1) (U(1)BU(1)_{B}) principal bundle; the factor 1/N1/N arises since we set the quark U(1)BU(1)_{B} charge 1/N1/N. Then, postulating the cocycle condition at xμ=xν=0x_{\mu}=x_{\nu}=0,

eiαμ(x)/Neiαν(x+Lμ^)/Neiαμ(x+Lν^)/Neiαν(x)/N=e2πiBμν/N,e^{i\alpha_{\mu}(x)/N}e^{i\alpha_{\nu}(x+L\hat{\mu})/N}e^{-i\alpha_{\mu}(x+L\hat{\nu})/N}e^{-i\alpha_{\nu}(x)/N}=e^{-2\pi iB_{\mu\nu}/N}, (4.2)

the N\mathbb{Z}_{N} factors in this relation cancel the N\mathbb{Z}_{N} factors in Eq. (2.2); the fermion fields can thus be consistently defined on T4T^{4} although it belongs to the fundamental representation of SU(N)SU(N) Tanizaki:2022ngt . Corresponding to Eq. (4.1), the U(1)BU(1)_{B} gauge potential 1-form ABA_{B} in the charge 1/N1/N representation possess the boundary conditions

AB(x+Lμ^)=AB(x)+1Ndαμ(x),A_{B}(x+L\hat{\mu})=A_{B}(x)+\frac{1}{N}\mathrm{d}\alpha_{\mu}(x), (4.3)

where xμ=0x_{\mu}=0. This U(1)BU(1)_{B} bundle is characterized by the first Chern numbers,

μν planedAB=2π(BμνN+),\int_{\text{$\mu\nu$ plane}}\mathrm{d}A_{B}=2\pi\left(\frac{B_{\mu\nu}}{N}+\mathbb{Z}\right), (4.4)

where we have used Eqs. (4.3) and (4.2). Note that we can introduce mass terms for quarks in this setup as far as they preserve the U(1)BU(1)_{B} symmetry, not necessarily the flavor SU(Nf)SU(N_{f}) Tanizaki:2022ngt . Thus, this system is quite different from the N\mathbb{Z}_{N} QCD Kouno:2012zz ; Iritani:2015ara with the SU(N)SU(N) flavor symmetry.

In lattice gauge theory, we introduce the U(1)BU(1)_{B} link variables as U~B(x,μ)exp(ixx+μ^AB)\tilde{U}_{B}(x,\mu)\sim\exp(i\int_{x}^{x+\hat{\mu}}A_{B}). Corresponding to Eq. (4.3), U~B(x,μ)\tilde{U}_{B}(x,\mu) obey boundary conditions

U~B(x+Lμ^,ν)=eiαμ(x)/NU~B(x,ν)eiαμ(x+ν^)/N.\tilde{U}_{B}(x+L\hat{\mu},\nu)=e^{-i\alpha_{\mu}(x)/N}\tilde{U}_{B}(x,\nu)e^{i\alpha_{\mu}(x+\hat{\nu})/N}. (4.5)

Under the change of link variables analogous to Eq. (2.7),

U~B(x,μ)={UB(x,μ)eiαμ(x)/Nfor xμ=L1,UB(x,μ)otherwise,\tilde{U}_{B}(x,\mu)=\begin{cases}U_{B}(x,\mu)e^{i\alpha_{\mu}(x)/N}&\text{for $x_{\mu}=L-1$},\\ U_{B}(x,\mu)&\text{otherwise},\\ \end{cases} (4.6)

we find that

P~B(x,μ,μ)=e2πiBμν(x)/NPB(x,μ,ν),\tilde{P}_{B}(x,\mu,\mu)=e^{2\pi iB_{\mu\nu}(x)/N}P_{B}(x,\mu,\nu), (4.7)

where

P~B(x,μ,ν)\displaystyle\tilde{P}_{B}(x,\mu,\nu) :=U~B(x,μ)U~B(x+μ^,ν)U~B(x+ν^,μ)U~B(x,ν),\displaystyle:=\tilde{U}_{B}(x,\mu)\tilde{U}_{B}(x+\hat{\mu},\nu)\tilde{U}_{B}(x+\hat{\nu},\mu)^{*}\tilde{U}_{B}(x,\nu)^{*},
PB(x,μ,ν)\displaystyle P_{B}(x,\mu,\nu) :=UB(x,μ)UB(x+μ^,ν)UB(x+ν^,μ)UB(x,ν),\displaystyle:=U_{B}(x,\mu)U_{B}(x+\hat{\mu},\nu)U_{B}(x+\hat{\nu},\mu)^{*}U_{B}(x,\nu)^{*}, (4.8)

and Bμν(x)B_{\mu\nu}(x) is given by Eq. (2.10). The variables UBU_{B} are regarded as obeying periodic boundary conditions, UB(x+Lμ^,ν)=UB(x,ν)U_{B}(x+L\hat{\mu},\nu)=U_{B}(x,\nu), where xμ=0x_{\mu}=0. Using the boundary conditions, Eqs. (4.1), (4.5) and (2.3), and then the change of variables, Eqs. (2.7) and (4.6), we find that lattice hopping terms of the fundamental fermion take the following forms,

ψ¯~(x)U~B(x,μ)U~(x,μ)ψ~(x+μ^)\displaystyle\tilde{\bar{\psi}}(x)\tilde{U}_{B}(x,\mu)\tilde{U}(x,\mu)\tilde{\psi}(x+\hat{\mu}) =ψ¯(x)UB(x,μ)U(x,μ)ψ(x+μ^),\displaystyle=\bar{\psi}(x)U_{B}(x,\mu)U(x,\mu)\psi(x+\hat{\mu}),
ψ¯~(x)U~(xμ^,μ)U~B(xμ^,μ)ψ~(xμ^)\displaystyle\tilde{\bar{\psi}}(x)\tilde{U}(x-\hat{\mu},\mu)^{\dagger}\tilde{U}_{B}(x-\hat{\mu},\mu)^{*}\tilde{\psi}(x-\hat{\mu}) =ψ¯(x)U(xμ^,μ)UB(xμ^,μ)ψ(xμ^),\displaystyle=\bar{\psi}(x)U(x-\hat{\mu},\mu)^{\dagger}U_{B}(x-\hat{\mu},\mu)^{*}\psi(x-\hat{\mu}), (4.9)

everywhere on the lattice Γ\Gamma including boundaries. In this expression, fermion variables ψ(x)\psi(x) and ψ¯(x)\bar{\psi}(x) are understood to obey the periodic boundary conditions, ψ(x+Lμ^)=ψ(x)\psi(x+L\hat{\mu})=\psi(x) and ψ¯(x+Lμ^)=ψ¯(x)\bar{\psi}(x+L\hat{\mu})=\bar{\psi}(x) for xμ=0x_{\mu}=0.

So far, the U(1)BU(1)_{B} gauge field U~B(x,μ)\tilde{U}_{B}(x,\mu) is regarded as a non-dynamical background. However, since the BB-field is dynamical in the SU(N)/NSU(N)/\mathbb{Z}_{N} theory and U~B(x,μ)\tilde{U}_{B}(x,\mu) depends on the BB-field through the boundary conditions (4.5), U~B(x,μ)\tilde{U}_{B}(x,\mu) inevitably becomes dynamical in the SU(N)/NSU(N)/\mathbb{Z}_{N} theory.

The Wilson plaquette action for the U(1)BU(1)_{B} gauge field would be

exp{βBxΓμ<νRe[P~B(x,μ,ν)1]}\displaystyle\exp\left\{\beta_{B}\sum_{x\in\Gamma}\sum_{\mu<\nu}\real\left[\tilde{P}_{B}(x,\mu,\nu)-1\right]\right\}
=exp{βBxΓμ<νRe[e2πiBμν(x)/NPB(x,μ,ν)1]},\displaystyle=\exp\left\{\beta_{B}\sum_{x\in\Gamma}\sum_{\mu<\nu}\real\left[e^{2\pi iB_{\mu\nu}(x)/N}P_{B}(x,\mu,\nu)-1\right]\right\}, (4.10)

where βB\beta_{B} is the bare coupling. However, of course, the dynamical U(1)BU(1)_{B} gauge field is unwanted for the sake to simulate QCD. For a possible solution on this point, we make the U(1)BU(1)_{B} gauge boson super-heavy by the Stückelberg mechanism on the lattice. That is, we introduce a U(1)U(1)-valued dynamical scalar field Ω(x)U(1)\Omega(x)\in U(1) and add the lattice action

SStückelberg\displaystyle S_{\text{St\"{u}ckelberg}}
:=12xΓμ[1Ω~(x+μ^)U~B(x,μ)NΩ~(x)][Ω~(x)U~B(x,μ)NΩ~(x+μ^)1]\displaystyle:=\frac{1}{2}\sum_{x\in\Gamma}\sum_{\mu}\left[1-\tilde{\Omega}(x+\hat{\mu})^{*}\tilde{U}_{B}(x,\mu)^{N*}\tilde{\Omega}(x)\right]\left[\tilde{\Omega}(x)^{*}\tilde{U}_{B}(x,\mu)^{N}\tilde{\Omega}(x+\hat{\mu})-1\right]
=12xΓμ[1Ω(x+μ^)UB(x,μ)NΩ(x)][Ω(x)UB(x,μ)NΩ(x+μ^)1].\displaystyle=\frac{1}{2}\sum_{x\in\Gamma}\sum_{\mu}\left[1-\Omega(x+\hat{\mu})^{*}U_{B}(x,\mu)^{N*}\Omega(x)\right]\left[\Omega(x)^{*}U_{B}(x,\mu)^{N}\Omega(x+\hat{\mu})-1\right]. (4.11)

In this expression, Ω~(x)\tilde{\Omega}(x) obeys the twisted boundary conditions, Ω~(x+Lμ^)=eiαμ(x)Ω~(x)\tilde{\Omega}(x+L\hat{\mu})=e^{-i\alpha_{\mu}(x)}\tilde{\Omega}(x) (xμ=0x_{\mu}=0), while Ω(x)\Omega(x) obeys the periodic boundary conditions, Ω(x+Lμ^)=Ω(x)\Omega(x+L\hat{\mu})=\Omega(x). SStückelbergS_{\text{St\"{u}ckelberg}} is invariant under the U(1)BU(1)_{B} 0-form and N\mathbb{Z}_{N} 1-form gauge transformations. The gauge fixing of U(1)BU(1)_{B} of the form Ω(x)=1\Omega(x)=1 then shows that the U(1)BU(1)_{B} gauge boson acquires the mass of O(a2)O(a^{-2}) and we expect that this freedom decouples in the continuum limit.

5 Conclusion

In this paper, we carried out an HMC simulation of the SU(2)/2SU(2)/\mathbb{Z}_{2} Yang–Mills theory, in which the N\mathbb{Z}_{N} 2-form flat gauge field (the ’t Hooft flux) is treated as a dynamical variable. We observed that our HMC algorithm in the SU(2)/2SU(2)/\mathbb{Z}_{2} theory drastically reduces the autocorrelation lengths of the topological charge and of the “energy-operator” defined by the gradient flow. We thus infer that, provided that sufficiently large lattice volumes are available, the HMC simulation of the SU(N)/NSU(N)/\mathbb{Z}_{N} theory could be employed as an alternative for the simulation of the SU(N)SU(N) Yang–Mills theory with a very efficient sampling of topological sectors. Toward applications in lattice QCD, we also presented a possible method to incorporate quarks. Further tests on these ideas are to be awaited.

Acknowledgments

We would like to thank Yui Hayashi, Yuki Nagai, Yuya Tanizaki, Akio Tomiya, and Hiromasa Watanabe for helpful discussions. We appreciate the opportunity of the discussion during the YITP–RIKEN iTHEMS conference “Generalized symmetries in QFT 2024” (YITP-W-24-15) in execution of this work. Numerical computations in this paper were carried out on Genkai, a supercomputer system of the Research Institute for Information Technology (RIIT), Kyushu University. The work of M.A. was supported by Kyushu University Innovator Fellowship Program in Quantum Science Area. O.M. acknowledges the RIKEN Special Postdoctoral Researcher Program. The work of H.S. was partially supported by Japan Society for the Promotion of Science (JSPS) Grant-in-Aid for Scientific Research, JP23K03418.

Appendix A Halfway HMC fulfills the detailed balance

In this appendix, we give a proof that the halfway HMC algorithm in Section 3.1 fulfills the detailed balance, a sufficient condition for the Markov chain Monte Carlo to reproduce the equilibrium distribution.

Since BB and BB^{\prime} are fixed within the MD time from 0 to τ/2\tau/2 and from τ/2\tau/2 to τ\tau, respectively, the leapfrog integrator possesses the invertibility, i.e., if there exists an MD trajectory such that {U,π}Bτ/2{Uˇ,πˇ}B\{U,\pi\}_{B}\stackrel{{\scriptstyle\tau/2}}{{\to}}\{\check{U},\check{\pi}\}_{B}, then {Uˇ,πˇ}Bτ/2{U,π}B\{\check{U},-\check{\pi}\}_{B}\stackrel{{\scriptstyle\tau/2}}{{\to}}\{U,-\pi\}_{B} holds (if there exists an MD trajectory such that {Uˇ,πˇ}Bτ/2{U,π}B\{\check{U},\check{\pi}\}_{B^{\prime}}\stackrel{{\scriptstyle\tau/2}}{{\to}}\{U^{\prime},\pi^{\prime}\}_{B^{\prime}}, then {U,π}Bτ/2{Uˇ,πˇ}B\{U^{\prime},-\pi^{\prime}\}_{B^{\prime}}\stackrel{{\scriptstyle\tau/2}}{{\to}}\{\check{U},-\check{\pi}\}_{B^{\prime}} holds). That is, probabilities associated with the MD satisfy

PM({U,π}τ/2{Uˇ,πˇ})|B\displaystyle P_{M}(\{U,\pi\}\stackrel{{\scriptstyle\tau/2}}{{\to}}\{\check{U},\check{\pi}\})|_{B} =PM({Uˇ,πˇ}τ/2{U,π})|B,\displaystyle=P_{M}(\{\check{U},-\check{\pi}\}\stackrel{{\scriptstyle\tau/2}}{{\to}}\{U,-\pi\})|_{B},
PM({Uˇ,πˇ}τ/2{U,π})|B\displaystyle P_{M}(\{\check{U},\check{\pi}\}\stackrel{{\scriptstyle\tau/2}}{{\to}}\{U^{\prime},\pi^{\prime}\})|_{B^{\prime}} =PM({U,π}τ/2{Uˇ,πˇ})|B,\displaystyle=P_{M}(\{U^{\prime},-\pi^{\prime}\}\stackrel{{\scriptstyle\tau/2}}{{\to}}\{\check{U},-\check{\pi}\})|_{B^{\prime}}, (A.1)

We also know that the Metropolis test probability in Eq. (3.1) satisfies

eH(U,π,B)PA({U,π,B}{U,π,B})=eH(U,π,B)PA({U,π,B}{U,π,B}).e^{-H(U,\pi,B)}P_{A}(\{U,\pi,B\}\to\{U^{\prime},\pi^{\prime},B^{\prime}\})=e^{-H(U^{\prime},\pi^{\prime},B^{\prime})}P_{A}(\{U^{\prime},\pi^{\prime},B^{\prime}\}\to\{U,\pi,B\}). (A.2)

We note that the total probability of the present halfway HMC is given by

P({U,B}{U,B})\displaystyle P(\{U,B\}\to\{U^{\prime},B^{\prime}\})
=𝑑π𝑑πPG(π)PM({U,π}τ/2{Uˇ,πˇ})|BPF(BB)PM({Uˇ,πˇ}τ/2{U,π})|B\displaystyle=\int d\pi\,d\pi^{\prime}\,P_{G}(\pi)P_{M}(\{U,\pi\}\stackrel{{\scriptstyle\tau/2}}{{\to}}\{\check{U},\check{\pi}\})|_{B}P_{F}(B\to B^{\prime})P_{M}(\{\check{U},\check{\pi}\}\stackrel{{\scriptstyle\tau/2}}{{\to}}\{U^{\prime},\pi^{\prime}\})|_{B^{\prime}}
×PA({U,π,B}{U,π,B}).\displaystyle\qquad{}\times P_{A}(\{U,\pi,B\}\to\{U^{\prime},\pi^{\prime},B^{\prime}\}). (A.3)

From this, noting H(U,π,B)=(1/2)π2+S(U,B)H(U,\pi,B)=(1/2)\pi^{2}+S(U,B) and Eq. (A.2), we find

eS(U,B)P({U,B}{U,B})\displaystyle e^{-S(U,B)}P(\{U,B\}\to\{U^{\prime},B^{\prime}\})
=𝑑π𝑑πeH(U,π,B)\displaystyle=\int d\pi\,d\pi^{\prime}\,e^{-H(U^{\prime},\pi^{\prime},B^{\prime})}
×PM({U,π}τ/2{Uˇ,πˇ})|BPF(BB)PM({Uˇ,πˇ}τ/2{U,π})|B\displaystyle\qquad{}\times P_{M}(\{U,\pi\}\stackrel{{\scriptstyle\tau/2}}{{\to}}\{\check{U},\check{\pi}\})|_{B}P_{F}(B\to B^{\prime})P_{M}(\{\check{U},\check{\pi}\}\stackrel{{\scriptstyle\tau/2}}{{\to}}\{U^{\prime},\pi^{\prime}\})|_{B^{\prime}}
×PA({U,π,B}{U,π,B}).\displaystyle\qquad\qquad{}\times P_{A}(\{U^{\prime},\pi^{\prime},B^{\prime}\}\to\{U,\pi,B\}). (A.4)

Then, noting H(U,π,B)=(1/2)π2+S(U,B)H(U^{\prime},\pi^{\prime},B^{\prime})=(1/2)\pi^{\prime 2}+S(U^{\prime},B^{\prime}) and Eq. (A.1),

eS(U,B)P({U,B}{U,B})\displaystyle e^{-S(U,B)}P(\{U,B\}\to\{U^{\prime},B^{\prime}\})
=eS(U,B)𝑑π𝑑πPG(π)\displaystyle=e^{-S(U^{\prime},B^{\prime})}\int d\pi\,d\pi^{\prime}\,P_{G}(\pi^{\prime})
×PM({U,π}τ/2{Uˇ,πˇ})|BPF(BB)PM({Uˇ,πˇ}τ/2{U,π})|B\displaystyle\qquad{}\times P_{M}(\{U^{\prime},-\pi^{\prime}\}\stackrel{{\scriptstyle\tau/2}}{{\to}}\{\check{U},-\check{\pi}\})|_{B^{\prime}}P_{F}(B^{\prime}\to B)P_{M}(\{\check{U},-\check{\pi}\}\stackrel{{\scriptstyle\tau/2}}{{\to}}\{U,-\pi\})|_{B}
×PA({U,π,B}{U,π,B})\displaystyle\qquad\qquad{}\times P_{A}(\{U^{\prime},\pi^{\prime},B^{\prime}\}\to\{U,\pi,B\})
=eS(U,B)P({U,B}{U,B}),\displaystyle=e^{-S(U^{\prime},B^{\prime})}P(\{U^{\prime},B^{\prime}\}\to\{U,B\}), (A.5)

where we have used PF(BB)=PF(BB)P_{F}(B\to B^{\prime})=P_{F}(B^{\prime}\to B). This is the detailed balance.

Appendix B The HMC history and the histogram of QQ.

In this appendix, we present HMC histories and histograms of the topological charge QQ in the SU(2)/2SU(2)/\mathbb{Z}_{2} and SU(2)SU(2) theories in Figs. 12 and 13, respectively.

Refer to caption
(a) β=2.4\beta=2.4 and L=8L=8.
Refer to caption
(b) β=2.5\beta=2.5 and L=12L=12.
Refer to caption
(c) β=2.6\beta=2.6 and L=16L=16.
Refer to caption
(d) The histogram of QQ.
Figure 12: The HMC histories and the histogram of QQ, for the SU(2)/2SU(2)/\mathbb{Z}_{2} theory (i.e., with the BB-field).
Refer to caption
(a) β=2.4\beta=2.4 and L=8L=8.
Refer to caption
(b) β=2.5\beta=2.5 and L=12L=12.
Refer to caption
(c) β=2.6\beta=2.6 and L=16L=16.
Refer to caption
(d) The histogram of QQ.
Figure 13: The HMC histories and the histogram of QQ, for the SU(2)SU(2) theory (i.e., without the BB-field).

References

  • (1) G. ’t Hooft, Nucl. Phys. B 153, 141-160 (1979) doi:10.1016/0550-3213(79)90595-9
  • (2) R. Kitano, T. Suyama and N. Yamada, JHEP 09, 137 (2017) doi:10.1007/JHEP09(2017)137 [arXiv:1709.04225 [hep-th]].
  • (3) Y. Tanizaki and M. Ünsal, PTEP 2022, no.4, 04A108 (2022) doi:10.1093/ptep/ptac042 [arXiv:2201.06166 [hep-th]].
  • (4) M. Nguyen, Y. Tanizaki and M. Ünsal, JHEP 08, 013 (2023) doi:10.1007/JHEP08(2023)013 [arXiv:2306.02485 [hep-th]].
  • (5) D. Gaiotto, A. Kapustin, N. Seiberg and B. Willett, JHEP 02, 172 (2015) doi:10.1007/JHEP02(2015)172 [arXiv:1412.5148 [hep-th]].
  • (6) D. Gaiotto, A. Kapustin, Z. Komargodski and N. Seiberg, JHEP 05, 091 (2017) doi:10.1007/JHEP05(2017)091 [arXiv:1703.00501 [hep-th]].
  • (7) M. Yamazaki and K. Yonekura, JHEP 07, 088 (2017) doi:10.1007/JHEP07(2017)088 [arXiv:1704.05852 [hep-th]].
  • (8) Y. Hayashi, Y. Tanizaki and H. Watanabe, JHEP 10, 146 (2023) doi:10.1007/JHEP10(2023)146 [arXiv:2307.13954 [hep-th]].
  • (9) Y. Hayashi and Y. Tanizaki, JHEP 08, 001 (2024) doi:10.1007/JHEP08(2024)001 [arXiv:2402.04320 [hep-th]].
  • (10) Y. Hayashi and Y. Tanizaki, Phys. Rev. Lett. 133, no.17, 171902 (2024) doi:10.1103/PhysRevLett.133.171902 [arXiv:2405.12402 [hep-th]].
  • (11) Y. Hayashi, T. Misumi and Y. Tanizaki, JHEP 05, 194 (2025) doi:10.1007/JHEP05(2025)194 [arXiv:2410.21392 [hep-th]].
  • (12) M. Abe, O. Morikawa, S. Onoda, H. Suzuki and Y. Tanizaki, JHEP 08, 118 (2023) doi:10.1007/JHEP08(2023)118 [arXiv:2303.10977 [hep-lat]].
  • (13) G. ’t Hooft, Commun. Math. Phys. 81, 267-275 (1981) doi:10.1007/BF01208900
  • (14) P. van Baal, Commun. Math. Phys. 85, 529 (1982) doi:10.1007/BF01403503
  • (15) I. G. Halliday and A. Schwimmer, Phys. Lett. B 101, 327 (1981) doi:10.1016/0370-2693(81)90055-1
  • (16) M. Creutz and K. J. M. Moriarty, Nucl. Phys. B 210, 50-58 (1982) doi:10.1016/0550-3213(82)90248-6
  • (17) R. G. Edwards, U. M. Heller and R. Narayanan, Phys. Lett. B 438, 96-98 (1998) doi:10.1016/S0370-2693(98)00951-4 [arXiv:hep-lat/9806011 [hep-lat]].
  • (18) P. de Forcrand and O. Jahn, Nucl. Phys. B 651, 125-142 (2003) doi:10.1016/S0550-3213(02)01123-9 [arXiv:hep-lat/0211004 [hep-lat]].
  • (19) T. G. Kovács and E. T. Tomboulis, Phys. Rev. Lett. 85, 704-707 (2000) doi:10.1103/PhysRevLett.85.704 [arXiv:hep-lat/0002004 [hep-lat]].
  • (20) I. G. Halliday and A. Schwimmer, Phys. Lett. B 102, 337-340 (1981) doi:10.1016/0370-2693(81)90630-4
  • (21) S. Duane, A. D. Kennedy, B. J. Pendleton and D. Roweth, Phys. Lett. B 195, 216-222 (1987) doi:10.1016/0370-2693(87)91197-X
  • (22) L. Del Debbio, H. Panagopoulos and E. Vicari, JHEP 08, 044 (2002) doi:10.1088/1126-6708/2002/08/044 [arXiv:hep-th/0204125 [hep-th]].
  • (23) S. Schaefer et al. [ALPHA], Nucl. Phys. B 845, 93-119 (2011) doi:10.1016/j.nuclphysb.2010.11.020 [arXiv:1009.5228 [hep-lat]].
  • (24) C. Bonanno, G. Clemente, M. D’Elia, L. Maio and L. Parente, JHEP 08, 236 (2024) doi:10.1007/JHEP08(2024)236 [arXiv:2404.14151 [hep-lat]].
  • (25) M. Lüscher and S. Schaefer, JHEP 07, 036 (2011) doi:10.1007/JHEP07(2011)036 [arXiv:1105.4749 [hep-lat]].
  • (26) C. Alexandrou, A. Athenodorou and K. Jansen, Phys. Rev. D 92, no.12, 125014 (2015) doi:10.1103/PhysRevD.92.125014 [arXiv:1509.04259 [hep-lat]].
  • (27) M. Lüscher, JHEP 08, 071 (2010) [erratum: JHEP 03, 092 (2014)] doi:10.1007/JHEP08(2010)071 [arXiv:1006.4518 [hep-lat]].
  • (28) A. Kapustin and N. Seiberg, JHEP 04, 001 (2014) doi:10.1007/JHEP04(2014)001 [arXiv:1401.0740 [hep-th]].
  • (29) G. Mack and V. B. Petkova, Annals Phys. 125, 117 (1980) doi:10.1016/0003-4916(80)90121-9
  • (30) A. Ukawa, P. Windey and A. H. Guth, Phys. Rev. D 21, 1013 (1980) doi:10.1103/PhysRevD.21.1013
  • (31) E. Seiler, Lect. Notes Phys. 159, 1-192 (1982)
  • (32) Y. Nagai and A. Tomiya, “JuliaQCD: Portable lattice QCD package in Julia language,” [arXiv:2409.03030 [hep-lat]].
  • (33) M. Abe, O. Morikawa and H. Suzuki, PTEP 2023, no.2, 023B03 (2023) doi:10.1093/ptep/ptad009 [arXiv:2210.12967 [hep-th]].
  • (34) M. J. Teper, [arXiv:hep-th/9812187 [hep-th]].
  • (35) M. Lüscher, Commun. Math. Phys. 85, 39 (1982) doi:10.1007/BF02029132
  • (36) M. Lüscher and P. Weisz, JHEP 02, 051 (2011) doi:10.1007/JHEP02(2011)051 [arXiv:1101.0963 [hep-th]].
  • (37) K. Hieda, H. Makino and H. Suzuki, Nucl. Phys. B 918, 23-51 (2017) doi:10.1016/j.nuclphysb.2017.02.017 [arXiv:1604.06200 [hep-lat]].
  • (38) P. Hernández, K. Jansen and M. Lüscher, Nucl. Phys. B 552, 363-378 (1999) doi:10.1016/S0550-3213(99)00213-8 [arXiv:hep-lat/9808010 [hep-lat]].
  • (39) M. Lüscher, Comput. Phys. Commun. 165, 199-220 (2005) doi:10.1016/j.cpc.2004.10.004 [arXiv:hep-lat/0409106 [hep-lat]].
  • (40) G. Curci and G. Veneziano, Nucl. Phys. B 292, 555-572 (1987) doi:10.1016/0550-3213(87)90660-2
  • (41) H. Kouno, Y. Sakai, T. Makiyama, K. Tokunaga, T. Sasaki and M. Yahiro, J. Phys. G 39, 085010 (2012) doi:10.1088/0954-3899/39/8/085010
  • (42) T. Iritani, E. Itou and T. Misumi, JHEP 11, 159 (2015) doi:10.1007/JHEP11(2015)159 [arXiv:1508.07132 [hep-lat]].