This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

More than one Author with different Affiliations

Qigang Liang School of Mathematical Science, Tongji University, Shanghai 200092, China, qigang_\_liang@tongji.edu.cn Wei Wang School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA, wang9585@umn.edu Xuejun Xu School of Mathematical Science, Tongji University, Shanghai 200092, China, qigang_\_liang@tongji.edu.cn Institute of Computational Mathematics, AMSS, Chinese Academy of Sciences, Beijing 100190, China, xxj@lsec.cc.ac.cn

A Two-Level Block Preconditioned Jacobi-Davidson Method for Multiple and Clustered Eigenvalues of Elliptic Operators

Qigang Liang School of Mathematical Science, Tongji University, Shanghai 200092, China, qigang_\_liang@tongji.edu.cn Wei Wang School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA, wang9585@umn.edu Xuejun Xu School of Mathematical Science, Tongji University, Shanghai 200092, China, qigang_\_liang@tongji.edu.cn Institute of Computational Mathematics, AMSS, Chinese Academy of Sciences, Beijing 100190, China, xxj@lsec.cc.ac.cn

Abstract:  In this paper, we propose a two-level block preconditioned Jacobi-Davidson (BPJD) method for efficiently solving discrete eigenvalue problems resulting from finite element approximations of 2m2mth (m=1,2m=1,2) order symmetric elliptic eigenvalue problems. Our method works effectively to compute the first several eigenpairs, including both multiple and clustered eigenvalues with corresponding eigenfunctions, particularly. The method is highly parallelizable by constructing a new and efficient preconditioner using an overlapping domain decomposition (DD). It only requires computing a couple of small scale parallel subproblems and a quite small scale eigenvalue problem per iteration. Our theoretical analysis reveals that the convergence rate of the method is bounded by c(H)(1Cδ2m1H2m1)2c(H)(1-C\frac{\delta^{2m-1}}{H^{2m-1}})^{2}, where HH is the diameter of subdomains and δ\delta is the overlapping size among subdomains. The constant CC is independent of the mesh size hh and the internal gaps among the target eigenvalues, demonstrating that our method is optimal and cluster robust. Meanwhile, the HH-dependent constant c(H)c(H) decreases monotonically to 11, as H0H\to 0, which means that more subdomains lead to the better convergence rate. Numerical results supporting our theory are given.

Keywords:  PDE eigenvalue problems, finite element discretization, multiple and clustered eigenvalues, preconditioned Jacobi-Davidson method, overlapping domain decomposition.

1 Introduction

Solving large scale eigenvalue problems arising from the discretization of partial differential operators by finite element methods is one of the fundamental problems in modern science and engineering. The problem is essential and has been extensively studied in the literature (see, e.g., [2, 16, 24, 39, 36, 13, 40, 33, 34]). However, unlike boundary value problems, there are fewer parallel solvers available for solving PDE eigenvalue problems, especially when it comes to computing multiple and clustered eigenvalues, which poses a greater challenge. To address this issue, we propose a two-level block preconditioned Jacobi-Davidson (BPJD) method that can compute multiple and clustered eigenvalues. Our method utilizes a parallel preconditioner constructed through an overlapping domain decomposition (DD), with a rigorous theoretical analysis, which demonstrates to be optimal and scalable. Specifically, the convergence rate does not deteriorate as the fine mesh size h0h\to 0, or the number of subdomains increases. In particular, our method is cluster robust, meaning that the convergence rate is not negatively impacted by gaps among the clustered eigenvalues.

For elliptic eigenvalue problems, Babuška and Osborn in [1] employed the finite element method to compute eigenpairs. Two-grid methods have also been widely adopted, and achieve asymptotic optimal accuracy under the conditions that h=O(Hi)h=O(H^{i}) respectively (here HH represents the coarse mesh size, i=2i=2 or 44), as evidenced in [37, 14, 38]. For discrete PDE eigenvalue problems, various classical iterative algorithms have been applied (see [27, 28, 31]), among which the Jacobi-Davidson method proposed in [30] is one of the most popular methods in practice. The Jacobi-Davidson method has been successfully applied to a variety of practical computations, including Maxwell eigenvalue problems [16], magnetohydrodynamics (MHD) eigenvalue problems [24], polynomial PDE eigenvalue problems [13, 40], and computations of large singular value decomposition [15] and so forth.

When dealing with large scale discrete PDE eigenvalue problems, preconditioning techniques are usually required (see [18]). Cai et al. [6] and McCormick [23] have proposed several multigrid methods for computing the eigenpairs. Recently, a range of multilevel correction methods have been studied for solving elliptic eigenvalue problems (see [8, 36]). Yang et al. [39] has proposed an alternative multilevel correction method based on the shift and inverse technique for solving elliptic eigenvalue problems.

It is widely known that domain decomposition methods perform better than multigrid (MG) methods in terms of parallelism. Lui [21] proposed some two-subdomain DD methods to compute the principal eigenpair through solving an interface problem. For many subdomain cases, Maliassov [22] constructed a Schwarz alternating method to solve the eigenvalue problem, which can be proven to be convergent under a suitable assumption. According to dealing with an interface condition, Genseberger [12] presented some eigensolvers by combining the Jacobi-Davidson method with non-overlapping domain decomposition methods. Zhao et al. [40, 41] proposed a two-level preconditioned Jacobi-Davidson (PJD) method for a quintic polynomial eigenvalue problem. Wang and Xu [34] developed a domain decomposition method to precondition the Jacobi-Davidson correction equation in one step during every outer iteration, with theoretical analysis for 2m2mth (m=1,2m=1,2) order elliptic operators presented. Wang and Zhang [35] designed DD methods for eigenvalue problems based on the spectral element discretization. More recently, Liang and Xu [20] presented a two-level preconditioned Helmholtz-Jacobi-Davidson (PHJD) method for the Maxwell eigenvalue problem, which works well in practical computations and has been proven to be optimal and scalable.

For computing multiple and clustered eigenvalues of PDE eigenvalue problems, Knyazev and Osborn in [19] gave the a priori error estimates for multiple and clustered eigenvalues of symmetric elliptic eigenvalue problems. Dai et al. [9] developed an a posteriori error estimator for multiple eigenvalue, and proved the convergence and quasi-optimal complexity of the adaptive finite element methods (AFEM). Subsequently, Gallistl [11] studied clustered eigenvalues, and proved the convergence and quasi-optimal complexity of AFEM. This idea has been further extended to the higher-order AFEM [4], the non-conforming AFEM [10], and the mixed AFEM [3]. Lately, Cancès et al. [7] presented an a posteriori error estimator for conforming finite element approximations of multiple and clustered eigenvalues of symmetric elliptic operators. They introduce some novel techniques to estimate the error in the sum of the eigenvalues. Additionally, for large scale discrete PDE eigenvalue problems, designing efficient solvers for multiple and clustered eigenvalues is a significant task, and will exceedingly benefit the high-performance computation. However, the theoretical analysis of the two-level PJD method in [33, 34] or the two-level PHJD method in [20] is limited to the simple principal eigenvalue. To this end, we aim to construct efficient solvers with rigorous analysis for the first several eigenvalues comprehensively in this paper, including multiple and clustered eigenvalues, as well as their corresponding eigenspaces.

It is important to highlight that analyzing the two-level BPJD method from simple to multiple and clustered eigenvalues is a challenging task. Firstly, it is essential to ensure that all constants involved in the convergence rate constants are independent of the internal gaps of the target eigenvalues. Secondly, as the eigenspace dimension corresponding to multiple eigenvalues is greater than one, most techniques developed for simple eigenvalues in [33, 34, 20] are not applicable. Thirdly, measuring the distance requires the use of Hausdorff distance or gap in the theoretical analysis, rather than vector norm, which poses additional challenges. In this paper, using a combination of techniques, including constructing a well-designed auxiliary eigenvalue problem, developing a stable decomposition for the error space of target eigenvalues, and providing technical estimates for the gap between closed subspaces in Hilbert space, we successfully overcome the aforementioned difficulties. Consequently, we demonstrate that our method achieves optimal, scalable, and cluster robust convergence result, i.e.,

i=1s(λik+1λih)γi=1s(λikλih),\sum_{i=1}^{s}(\lambda_{i}^{k+1}-\lambda_{i}^{h})\leq\gamma\sum_{i=1}^{s}(\lambda_{i}^{k}-\lambda_{i}^{h}),

where λik\lambda_{i}^{k} is the current iterative approximation of the iith discrete eigenvalue λih\lambda_{i}^{h}, γ=c(H)(1Cδ2m1H2m1)2\gamma=c(H)(1-C\frac{\delta^{2m-1}}{H^{2m-1}})^{2}, the constant CC is independent of hh, HH, δ\delta and internal gaps among the first ss eigenvalues, and the HH-dependent constant c(H)c(H) decreases monotonically to 11, as H0H\to 0. Moreover, we have not any assumption on the relationship between HH and hh, as well as the internal gaps among the first ss eigenvalues. Numerical results presented in this paper verify our theoretical findings.

The rest of this paper is organized as follows: Some preliminaries are introduced in Section 2. In Section 3, the two-level BPJD method for 2m2mth order symmetric elliptic eigenvalue problems is proposed. Some properties of subspace method are presented in Section 4 and the main convergence analysis is given in Section 5. Finally we present our numerical results in Section 6 and the conclusion in Section 7.

2 Model problems and preliminaries

In this section, we first introduce some notations and model problems in subsection 2.1, the corresponding discrete counterpart in subsection 2.2, and then present some results on domain decomposition methods in subsection 2.3.

2.1 Model problems

Throughout this paper, we use the standard notations for the Sobolev spaces Wm,q(Ω)W^{m,q}(\Omega) and W0m,q(Ω)W_{0}^{m,q}(\Omega) with their associated norms and seminorms. We denote by Hm(Ω):=Wm,q(Ω)H^{m}(\Omega):=W^{m,q}(\Omega), H0m(Ω):=W0m,q(Ω)H_{0}^{m}(\Omega):=W_{0}^{m,q}(\Omega) for q=2q=2, and denote by L2(Ω):=Hm(Ω)L^{2}(\Omega):=H^{m}(\Omega) for m=0m=0. Consider the Laplacian and biharmonic eigenvalue problems as follows:

{u=λuin Ω,u=0on Ω,\begin{cases}-\triangle u=\lambda u\ \ &\text{in $\Omega,$}\\ \ \ \ \ \ u=0\ \ &\text{on $\partial\Omega,$}\end{cases} (2.1)

and

{2u=λuin Ω,u𝒏=u=0on Ω.\begin{cases}\triangle^{2}u=\lambda u\ \ &\text{in $\Omega,$}\\ \frac{\partial u}{\partial\bm{n}}=u=0\ \ &\text{on $\partial\Omega.$}\end{cases} (2.2)

For simplicity, we assume that Ω\Omega is a convex polygonal domain in 2\mathcal{R}^{2} and Ω\partial\Omega is the boundary of Ω\Omega. We denote by 𝒏\bm{n} the unit outward normal vector of Ω\partial\Omega.

The variational form of 2m2mth order symmetric elliptic eigenvalue problems may be written as:

{Find (λ,u)×V such that b(u,u)=1,a(u,v)=λb(u,v)vV,\begin{cases}\text{Find $(\lambda,u)\in\mathcal{R}\times V$ such that $b(u,u)=1,$}\\ a(u,v)=\lambda b(u,v)\ \ \ \ \forall\ v\in V,\end{cases} (2.3)

where V:=H0m(Ω)V:=H_{0}^{m}(\Omega), the bilinear forms a(,):V×Va(\cdot,\cdot):V\times V\to\mathcal{R}, b(,):L2(Ω)×L2(Ω)b(\cdot,\cdot):L^{2}(\Omega)\times L^{2}(\Omega)\to\mathcal{R} are symmetric and positive. Define b(u,v):=Ωuv𝑑xb(u,v):=\int_{\Omega}uvdx for all u,vL2(Ω)u,v\in L^{2}(\Omega) and vb2:=b(v,v)||v||^{2}_{b}:=b(v,v) for all vL2(Ω)v\in L^{2}(\Omega). Specifically, for (2.1),

a(u,v)=Ωuvdxa(u,v)=\int_{\Omega}\nabla{u}\cdot\nabla{v}dx

for all u,vV=H01(Ω),u,v\in V=H_{0}^{1}(\Omega), and for (2.2),

a(u,v)=Ωuv𝑑xa(u,v)=\int_{\Omega}\triangle{u}\triangle{v}dx

for all u,vV=H02(Ω).u,v\in V=H_{0}^{2}(\Omega). It is easy to see that a(,)a(\cdot,\cdot) constructs an inner product on VV and we define va2:=a(v,v)||v||^{2}_{a}:=a(v,v) for all vVv\in V. For convenience, we denote by Rq(v):=a(v,v)b(v,v)>0Rq(v):=\frac{a(v,v)}{b(v,v)}>0 for all v(0)Vv\ (\neq 0)\in V the Rayleigh quotient functional. We also define Rt(v):=1Rq(v)Rt(v):=\frac{1}{Rq(v)} for all v(0)V.v\ (\neq 0)\in V.

Define a linear operator T:L2(Ω)VT:L^{2}(\Omega)\to V such that for any fL2(Ω),f\in L^{2}(\Omega),

a(Tf,v)=b(f,v)vV.a(Tf,v)=b(f,v)\ \ \ \ \forall\ v\in V. (2.4)

Since a(,)a(\cdot,\cdot) and b(,)b(\cdot,\cdot) are symmetric and VV is embedded compactly in L2(Ω)L^{2}(\Omega), we know that T:L2(Ω)L2(Ω)T:L^{2}(\Omega)\to L^{2}(\Omega) is compact and symmetric. Moreover, T:VVT:V\to V is also compact and symmetric. By the Hilbert-Schmidt Theorem, we get that Tui=μiui(μi=(λi)1)Tu_{i}=\mu_{i}u_{i}\ (\mu_{i}=(\lambda_{i})^{-1}), and the eigenvalues of (2.3) are

λ1λ2,,λn+,\lambda_{1}\leq\lambda_{2}\leq,...,\leq\lambda_{n}\to+\infty,

and the corresponding eigenvectors are u1,u2,,un,,u_{1},u_{2},...,u_{n},..., which satisfy a(ui,uj)=λib(ui,uj)=λiδija(u_{i},u_{j})=\lambda_{i}b(u_{i},u_{j})=\lambda_{i}\delta_{ij} (δij\delta_{ij} represents the Kronecker delta). In the sequence {λi}i=1+\{\lambda_{i}\}_{i=1}^{+\infty}, λi\lambda_{i} is repeated according to its geometric multiplicity. For convenience, we call di(:=λiλi1)d^{-}_{i}\ (:=\lambda_{i}-\lambda_{i-1}) and di+(:=λi+1λi)d^{+}_{i}\ (:=\lambda_{i+1}-\lambda_{i}) as the left gap and the right gap of the eigenvalue λi\lambda_{i}, respectively. In particular, d1:=λ1d^{-}_{1}:=\lambda_{1}.

We are interested in the first ss eigenvalues {λi}i=1s\{\lambda_{i}\}_{i=1}^{s} and the corresponding eigenvectors {ui}i=1s\{u_{i}\}_{i=1}^{s}. For our theoretical analysis, we first introduce a reasonable assumption.

Assumption 1

Assume that there is an ‘obvious’ gap between the sths^{th} eigenvalue λs\lambda_{s} and the (s+1)th(s+1)^{th} eigenvalue λs+1\lambda_{s+1}.

Remark 2.1

Assumption 1 excludes two cases: (i) λs=λs+1\lambda_{s}=\lambda_{s+1}, (ii) λsλs+1\lambda_{s}\approx\lambda_{s+1}, but there are not any assumptions about the left gaps of the eigenvalues {λi}i=2s\{\lambda_{i}\}_{i=2}^{s}. In practical computation, either for case (i)(i) or for case (ii)(ii), we may consider the first s+s1s+s_{1} eigenvalues so that λs+s1\lambda_{s+s_{1}} and λs+s1+1\lambda_{s+s_{1}+1} satisfy the Assumption 1, where s1(1)s_{1}(\geq 1) is a positive integer. So actually this assumption is not a limitation for our practical computation.

It is known that the following spacial decomposition property holds

V=UsUs+1,V=U_{s}\oplus U_{s+1}, (2.5)

where Us=U_{s}=span{u1,u2,,us}\{u_{1},u_{2},...,u_{s}\}, \oplus denotes the orthogonal direct sum with respect to b(,)b(\cdot,\cdot) (also a(,)a(\cdot,\cdot)) and Us+1U_{s+1} is the orthogonal complement of UsU_{s}.

In order to measure the ‘distance’ between two closed subspaces included in a Hilbert space, we introduce the following definition. For more details, please see [17], Section 2 in [19] and references therein.

Definition 2.1

For any Hilbert space (X,(,))(X,(\cdot,\cdot)), define ΣX:={W| W is a closed subspace of X}.\Sigma_{X}:=\{\ W\ |\ \text{ $W$ is a closed subspace of $X$}\}. A binary mapping θ\theta (called as the gap) :ΣX×ΣX[0,1]:\Sigma_{X}\times\Sigma_{X}\to[0,1] is defined by

θ(W1,W2)=max{sin{W1;W2},sin{W2;W1}}for allW1,W2ΣX,\theta(W_{1},W_{2})=\max\{\sin\{W_{1};W_{2}\},\sin\{W_{2};W_{1}\}\}\ \ \ \text{for all}\ \ W_{1},W_{2}\in\Sigma_{X},

where

sin{W1;W2}=supuW1,u=1infvW2uvfor allW1,W2ΣX,\sin\{W_{1};W_{2}\}=\sup_{u\in W_{1},||u||=1}\inf_{v\in W_{2}}||u-v||\ \ \ \text{for all}\ \ W_{1},W_{2}\in\Sigma_{X},

with ||||||\cdot|| being a norm induced by (,)(\cdot,\cdot) defined on XX. If W1=0W_{1}=0, set sin(W1,W2)=0for allW2ΣX.\sin(W_{1},W_{2})=0\ \text{for all}\ \ W_{2}\in\Sigma_{X}. If W2=0W_{2}=0, set sin(W1,W2)=1for allW1(0)ΣX.\sin(W_{1},W_{2})=1\ \text{for all}\ \ W_{1}(\neq 0)\in\Sigma_{X}.

Remark 2.2

For any Hilbert space (X,(,))(X,(\cdot,\cdot)), if W1,W2ΣXW_{1},W_{2}\in\Sigma_{X} and dim(W1)=dim(W2)<+\dim(W_{1})=\dim(W_{2})<+\infty, it is easy to know that

θ(W1,W2)=sin{W1;W2}=sin{W2;W1}.\theta(W_{1},W_{2})=\sin\{W_{1};W_{2}\}=\sin\{W_{2};W_{1}\}.

For any W1,W2,W3ΣXW_{1},W_{2},W_{3}\in\Sigma_{X} and dim(W1)=dim(W2)=dim(W3)<+\dim(W_{1})=\dim(W_{2})=\dim(W_{3})<+\infty, it is easy to check that

sin{W1;W2}sin{W1;W3}+sin{W3;W2}.\sin\{W_{1};W_{2}\}\leq\sin\{W_{1};W_{3}\}+\sin\{W_{3};W_{2}\}.

If W1=span{u}W_{1}={\rm span}\{u\}, then sin{W1;W2}\sin\{W_{1};W_{2}\} is denoted through sin{u;W2}\sin\{u;W_{2}\}. Similarly, if W2=span{v}W_{2}={\rm span}\{v\}, then sin{W1;W2}\sin\{W_{1};W_{2}\} is denoted through sin{W1;v}\sin\{W_{1};v\}.

In the rest of this paper, we shall use the notations sinb{;}\sin_{b}\{\cdot;\cdot\} and sina{,}\sin_{a}\{\cdot,\cdot\} with respect to b(,)b(\cdot,\cdot) and a(,)a(\cdot,\cdot), respectively. We also denote by θb(,)\theta_{b}(\cdot,\cdot) and θa(,)\theta_{a}(\cdot,\cdot) the gaps with respect to b(,)b(\cdot,\cdot) and a(,)a(\cdot,\cdot), respectively, denote by b\interleave\cdot\interleave_{b} and a\interleave\cdot\interleave_{a} the operator’s norms with respect to b(,)b(\cdot,\cdot) and a(,)a(\cdot,\cdot), respectively.

2.2 Finite element discretization

Let VhV^{h} be a conforming finite element space based on a shape regular and quasi-uniform triangular or rectangular partition 𝒥h\mathcal{J}_{h} with the mesh size hh. We consider the discrete variational form of (2.3) as:

{Find (λh,uh)×Vh such that uhb=1,a(uh,v)=λhb(uh,v)vVh.\begin{cases}\text{Find $(\lambda^{h},u^{h})\in\mathcal{R}\times V^{h}$ such that $||u^{h}||_{b}=1,$}\\ a(u^{h},v)=\lambda^{h}b(u^{h},v)\ \ \ \forall\ v\in V^{h}.\end{cases} (2.6)

Define a discrete linear operator Th:L2(Ω)VhT^{h}:L^{2}(\Omega)\to V^{h} such that for any fL2(Ω)f\in L^{2}(\Omega),

a(Thf,v)=b(f,v)vVh.a(T^{h}f,v)=b(f,v)\ \ \ \forall\ v\in V^{h}. (2.7)

It is easy to see that the operator ThT^{h} is compact and symmetric (For convenience of notations, Th|VhT^{h}|_{V^{h}} is also denoted through ThT^{h} in the following). Hence, we get that Thuih=μihuihT^{h}u_{i}^{h}=\mu_{i}^{h}u_{i}^{h} (μih=(λih)1\mu_{i}^{h}=(\lambda_{i}^{h})^{-1}). Meanwhile, the eigenvalues of (2.6) are λ1hλ2h,,λndh\lambda_{1}^{h}\leq\lambda_{2}^{h}\leq,...,\leq\lambda_{nd}^{h} and the corresponding eigenvectors are u1h,u2h,,undh,u_{1}^{h},u_{2}^{h},...,u_{nd}^{h}, which satisfy a(uih,ujh)=λihb(uih,ujh)=λihδija(u_{i}^{h},u_{j}^{h})=\lambda_{i}^{h}b(u_{i}^{h},u_{j}^{h})=\lambda_{i}^{h}\delta_{ij} and nd=dim(Vh)nd=\dim(V^{h}). We also define Ah:VhVhA^{h}:V^{h}\to V^{h} such that b(Ahu,v)=a(u,v)b(A^{h}u,v)=a(u,v) for all u,vVh,u,v\in V^{h}, and it is obvious to see that Ahuih=λihuihA^{h}u_{i}^{h}=\lambda_{i}^{h}u_{i}^{h}.

The finite element space VhV^{h} may be decomposed as:

Vh=UshUs+1h=V1hV2hVshUs+1h,V^{h}=U_{s}^{h}\oplus U^{h}_{s+1}=V_{1}^{h}\oplus V_{2}^{h}\oplus...\oplus V_{s}^{h}\oplus U_{s+1}^{h}, (2.8)

where Ush=V1hV2hVshU_{s}^{h}=V_{1}^{h}\oplus V_{2}^{h}\oplus...\oplus V_{s}^{h}, Vih=V_{i}^{h}= span{uih}\{u_{i}^{h}\}, i=1,2,,si=1,2,...,s and Us+1hU_{s+1}^{h} denotes the b(,)b(\cdot,\cdot)-orthogonal (also a(,)a(\cdot,\cdot)-orthogonal) complement of UshU_{s}^{h}. Let Qsh,Qs+1hQ_{s}^{h},Q_{s+1}^{h} and Qi,shQ_{i,s}^{h} (i=1,2,,si=1,2,...,s) be the b(,)b(\cdot,\cdot)-orthogonal (also a(,)a(\cdot,\cdot)-orthogonal) projectors from VhV^{h} onto Ush,Us+1hU_{s}^{h},\ U_{s+1}^{h} and VihV_{i}^{h} (i=1,2,,si=1,2,...,s), respectively. For any subspace UVhU\subset V^{h}, UU^{\perp} represents the orthogonal complement of UU with respect to b(,)b(\cdot,\cdot), and let QUQ_{U} and PUP_{U} be the b(,)b(\cdot,\cdot)-orthogonal and the a(,)a(\cdot,\cdot)-orthogonal projectors from VhV^{h} onto UU, respectively. If U=U=span{u}\{u\}, then we denote Qu=QUQ_{u}=Q_{U} and Pu=PUP_{u}=P_{U}. Unless otherwise stated, the letters CC (with or without subscripts) in this paper denote generic positive constants independent of hh, H,δH,\ \delta and the left gaps of the eigenvalues {λi}i=2s\{\lambda_{i}\}_{i=2}^{s}, which may be different at different occurrences.

2.2.1 The Laplacian eigenvalue problem

In order to make the ideas clearer, we use VhV^{h}, the continuous piecewise and linear finite element space with vanishing trace, to approximate the Sobolev space H01(Ω)H_{0}^{1}(\Omega) for the Laplacian eigenvalue problem. The following a priori error estimates are useful in this paper. For the first conclusion in Theorem 2.2, please see [1] and [19] for more details. For the proof of (2.9), please see Theorem 3.1 and Theorem 3.3 in [19]. In order to focus on more our algorithm in Section 3 and the corresponding theoretical analysis in Section 4 and 5, we give proofs of (2.10) and (2.11) in Appendix.

Theorem 2.2

Let Ω\Omega be a bounded convex polygonal domain. If Assumption 1 holds, then the eigenvalues of discrete problem (2.6) λ1h,λ2h,,λsh\lambda_{1}^{h},\lambda_{2}^{h},...,\lambda_{s}^{h} converge to the eigenvalues of problem (2.3) λ1,λ2,,λs\lambda_{1},\lambda_{2},...,\lambda_{s}, respectively, as h0h\to 0. Moreover, there exists h0>0h_{0}>0 such that for 0<h<h00<h<h_{0}, the following inequalities hold:

0λihλiCh2,i=1,2,,s,0\leq\lambda_{i}^{h}-\lambda_{i}\leq Ch^{2},\ \ \ \ i=1,2,...,s, (2.9)

and

θa(Us,Ush)Ch,\theta_{a}(U_{s},U_{s}^{h})\leq Ch, (2.10)
θb(Us,Ush)Ch2,\theta_{b}(U_{s},U_{s}^{h})\leq Ch^{2}, (2.11)

where the constant CC is independent of the left gaps of the eigenvalues {λi}i=2s\{\lambda_{i}\}_{i=2}^{s}, but depends on ds+d_{s}^{+}, θa(Us,Ush)\theta_{a}(U_{s},U_{s}^{h}) and θb(Us,Ush)\theta_{b}(U_{s},U_{s}^{h}) denote the gaps between UsU_{s} and UshU_{s}^{h} with respect to ||||a||\cdot||_{a} and ||||b||\cdot||_{b}, respectively.

2.2.2 The biharmonic eigenvalue problem

For problem (2.2), we shall use VhV^{h}, the Bogner-Fox-Schmit (BFS) finite element space with vanishing trace and vanishing trace of outer normal derivative, to approximate the Sobolev space H02(Ω)H_{0}^{2}(\Omega). For more details about BFS finite element, please see [34] and references therein. Under the regularity assumption that the eigenfunction uiH3(Ω)H02(Ω)(i=1,2,,s)u_{i}\in H^{3}(\Omega)\cap H_{0}^{2}(\Omega)\ (i=1,2,...,s) for the biharmonic eigenvalue problem, we also have the same theoretical results as Theorem 2.2.

2.3 Domain decomposition

In this subsection, we introduce some results on overlapping domain decomposition.

Let {Ωl}l=1N\{\Omega_{l}\}_{l=1}^{N} be a coarse shape regular and quasi-uniform partition of Ω\Omega, and we denote it by 𝒥H\mathcal{J}_{H}. We define H:=max{Hl|l=1,2,,N}H:=\max\{H_{l}\ |\ l=1,2,...,N\}, where Hl=diam(Ωl)H_{l}=\text{diam}(\Omega_{l}). The fine shape regular and quasi-uniform partition 𝒥h\mathcal{J}_{h} is obtained by subdividing 𝒥H\mathcal{J}_{H}. We may construct the finite element spaces VHVhV^{H}\subset V^{h} on 𝒥H\mathcal{J}_{H} and 𝒥h\mathcal{J}_{h}, respectively. To get the overlapping subdomains (Ωl, 1lN)(\Omega_{l}^{{}^{\prime}},\ 1\leq l\leq N), we enlarge the subdomains Ωl\Omega_{l} by adding fine elements inside Ω\Omega layer by layer such that Ωl\partial\Omega_{l}^{{}^{\prime}} does not cut through any fine element. To measure the overlapping width between neighboring subdomains, we define δ:=min{δl|l=1,2,,N}\delta:=\min\{\delta_{l}\ |\ l=1,2,...,N\}, where δl=dist(ΩlΩ,ΩlΩ)\delta_{l}=\text{dist}(\partial\Omega_{l}\setminus\partial\Omega,\partial\Omega_{l}^{{}^{\prime}}\setminus\partial\Omega). We also assume that HlH_{l} is the diameter of Ωl\Omega_{l}^{{}^{\prime}}. Let Ωl,δl(Ωl)\Omega_{l,\delta_{l}}\ (\subset\Omega_{l}^{{}^{\prime}}) be the set of the points that are within a distance δl\delta_{l} of ΩlΩ,l=1,2,,N.\partial\Omega_{l}^{{}^{\prime}}\setminus\partial\Omega,\ l=1,2,...,N. The local subspaces may be defined by V(l):=VhH01(Ωl)V^{(l)}:=V^{h}\cap H_{0}^{1}(\Omega_{l}^{{}^{\prime}}) (for the Laplacian operator) or V(l):=VhH02(Ωl)V^{(l)}:=V^{h}\cap H_{0}^{2}(\Omega_{l}^{{}^{\prime}}) (for the biharmonic operator). It is obvious to see V(l)VhV^{(l)}\subset V^{h} by a trivial extension.

Assumption 2

The partition {Ωl}l=1N\{\Omega_{l}^{{}^{\prime}}\}_{l=1}^{N} may be colored using at most N0N_{0} colors, in such a way that subdomains with the same color are disjoint. The integer N0N_{0} is independent of NN.

There exists a family of continuous piecewise and linear functions {θl}l=1N\{\theta_{l}\}_{l=1}^{N} which satisfy the following properties (see [29] or the Chapter 3 in [32]):

supp(θl)Ωl¯, 0θl1,l=1Nθl(x)=1,xΩ,θl0,,Ωl,δlCδl.\text{supp}(\theta_{l})\subset\overline{\Omega_{l}^{{}^{\prime}}},\ \ \ \ 0\leq\theta_{l}\leq 1,\ \ \ \ \sum_{l=1}^{N}\theta_{l}(x)=1,\ \ x\in\Omega,\ \ \ \ ||\nabla{\theta_{l}}||_{0,\infty,\Omega_{l,\delta_{l}}}\leq\frac{C}{\delta_{l}}. (2.12)

We also note that θl\nabla{\theta_{l}} differs from zero only in a strip Ωl,δl\Omega_{l,\delta_{l}}. The strengthened Cauchy-Schwarz inequality holds over the local subspaces V(l)V^{(l)}, i.e., there exists ηpl(0ηpl1, 1p,lN)\eta_{pl}\ (0\leq\eta_{pl}\leq 1,\ 1\leq p,l\leq N) such that

|b(v(p),v(l))|ηplv(p)bv(l)bv(p)V(p),v(l)V(l), 1p,lN.|b(v^{(p)},v^{(l)})|\leq\eta_{pl}||v^{(p)}||_{b}||v^{(l)}||_{b}\ \ \ \ \ \ \forall\ v^{(p)}\in V^{(p)},\ v^{(l)}\in V^{(l)},\ 1\leq p,l\leq N.

Let ρ(Λ)\rho(\Lambda) be the spectral radius of the matrix (ηpl)1p,lN(\eta_{pl})_{1\leq p,l\leq N}, then the following result holds (see [32]).

Lemma 2.3

If Assumption 2 holds, then ρ(Λ)N0.\rho(\Lambda)\leq N_{0}. Moreover, for any v(p)V(p),v(l)V(l)(p,l=1,2,,N)v^{(p)}\in V^{(p)},v^{(l)}\in V^{(l)}\ (p,l=1,2,...,N),

p,l=1Nb(v(p),v(l))N0l=1Nb(v(l),v(l)),p,l=1Na(v(p),v(l))N0l=1Na(v(l),v(l)).\sum_{p,l=1}^{N}b(v^{(p)},v^{(l)})\leq N_{0}\sum_{l=1}^{N}b(v^{(l)},v^{(l)}),\ \ \ \sum_{p,l=1}^{N}a(v^{(p)},v^{(l)})\leq N_{0}\sum_{l=1}^{N}a(v^{(l)},v^{(l)}).

The following result holds in H1(Ωl)H^{1}(\Omega_{l}^{{}^{\prime}}) (see [32]).

Lemma 2.4

It holds that

uL2(Ωl,δl)2Cδl2{(1+Hlδl)|u|H1(Ωl)2+1HlδluL2(Ωl)2}uH1(Ωl),l=1,2,,N.||u||_{L^{2}(\Omega_{l,\delta_{l}})}^{2}\leq C\delta_{l}^{2}\{(1+\frac{H_{l}}{\delta_{l}})|u|_{H^{1}(\Omega_{l}^{{}^{\prime}})}^{2}+\frac{1}{H_{l}\delta_{l}}||u||^{2}_{L^{2}(\Omega_{l}^{{}^{\prime}})}\}\ \ \ \forall\ u\in H^{1}(\Omega_{l}^{{}^{\prime}}),\ \ l=1,2,...,N.

3 The two-level BPJD method

In this section, we present our two-level BPJD method and some remarks about our algorithm.

In order to present our new preconditioner, we denote by QH:VhVHQ^{H}:V^{h}\to V^{H}, Q(l):VhV(l)(l=1,2,,N)Q^{(l)}:V^{h}\to V^{(l)}\ (l=1,2,...,N) b(,)b(\cdot,\cdot)-orthogonal projectors. We also define A(l):V(l)V(l)A^{(l)}:V^{(l)}\to V^{(l)} such that b(A(l)v,w)=a(v,w)b(A^{(l)}v,w)=a(v,w) for all v,wV(l),v,w\in V^{(l)}, and AH:VHVHA^{H}:V^{H}\to V^{H} such that b(AHv,w)=a(v,w)b(A^{H}v,w)=a(v,w) for all v,wVHv,w\in V^{H}. For convenience, denote by B0,ik:=AHλikB_{0,i}^{k}:=A^{H}-\lambda_{i}^{k} and Bl,ik:=A(l)λik(i=1,2,,s,l=1,2,,N)B_{l,i}^{k}:=A^{(l)}-\lambda_{i}^{k}\ (i=1,2,...,s,\ l=1,2,...,N), where λik\lambda_{i}^{k} represents the kkth iterative approximation of the iith discrete eigenvalue λih\lambda_{i}^{h} in Algorithm 3.1. By using a scaling argument, it is easy to check that

λmin(Bl,ik)=O(H2m),λmax(Bl,ik)=O(h2m),m=1,2,i=1,2,,s,l=1,2,,N.\lambda_{min}(B_{l,i}^{k})=O(H^{-2m}),\ \ \ \lambda_{max}(B_{l,i}^{k})=O(h^{-2m}),\ \ m=1,2,\ i=1,2,...,s,\ l=1,2,...,N. (3.1)

Corresponding to (2.8), there is a spectral decomposition on the coarse space VHV^{H} (s<dim(VH)s<\dim(V^{H})):

VH=UsHUs+1H=V1HV2HVsHUs+1H,V^{H}=U_{s}^{H}\oplus U_{s+1}^{H}=V_{1}^{H}\oplus V_{2}^{H}\oplus...\oplus V_{s}^{H}\oplus U_{s+1}^{H},

where ViH=span{uiH}V_{i}^{H}={\rm span}\{u_{i}^{H}\}, uiHu_{i}^{H} is the iith discrete eigenvector of AHA^{H}, UsH=V1HV2HVsH\ U_{s}^{H}=V_{1}^{H}\oplus V_{2}^{H}\oplus...\oplus V_{s}^{H}, \oplus denotes the orthogonal direct sum with respect to b(,)b(\cdot,\cdot) (also a(,)a(\cdot,\cdot)), and Us+1HU_{s+1}^{H} denotes the orthogonal complement of UsHU_{s}^{H}. Furthermore,

λmin(B0,ik|Us+1H)=λs+1Hλik,λmax(B0,ik)=O(H2m),m=1,2,i=1,2,,s.\lambda_{min}(B_{0,i}^{k}|_{U_{s+1}^{H}})=\lambda_{s+1}^{H}-\lambda_{i}^{k},\ \ \ \lambda_{max}(B_{0,i}^{k})=O(H^{-2m}),\ \ m=1,2,\ i=1,2,...,s. (3.2)

We also denote by QsH:VHUsH,Qs+1H:VHUs+1HQ_{s}^{H}:V^{H}\to U_{s}^{H},\ Q_{s+1}^{H}:V^{H}\to U_{s+1}^{H} and Qi,sH:VHViHQ_{i,s}^{H}:V^{H}\to V_{i}^{H} b(,)b(\cdot,\cdot)-orthogonal (also a(,)a(\cdot,\cdot)-orthogonal ) projectors. The core of our two-level BPJD method is to design parallel preconditioners defined as

(Bik)1=(B0,ik)1Qs+1HQH+l=1N(Bl,ik)1Q(l),(B_{i}^{k})^{-1}=(B_{0,i}^{k})^{-1}Q_{s+1}^{H}Q^{H}+\sum_{l=1}^{N}(B_{l,i}^{k})^{-1}Q^{(l)}, (3.3)

to solve the block-version Jacobi-Davidson correction equations:

{Find tik+1(Uk),i=1,2,,s, such thatb((Ahλik)tik+1,v)=b(rik,v),v(Uk),\begin{cases}\text{Find $t_{i}^{k+1}\in(U^{k})^{\perp},\ i=1,2,...,s,$ such that}\\ b((A^{h}-\lambda_{i}^{k})t_{i}^{k+1},v)=b(r_{i}^{k},v),\ \ \ \ v\in(U^{k})^{\perp},\end{cases} (3.4)

where Uk=span{uik}i=1sU^{k}={\rm span}\{u_{i}^{k}\}_{i=1}^{s}, uiku_{i}^{k} is the iterative approximation of uihu_{i}^{h}, and rik=λikuikAhuik,i=1,2,,sr_{i}^{k}=\lambda_{i}^{k}u_{i}^{k}-A^{h}u_{i}^{k},\ i=1,2,...,s.

Algorithm 3.1 Two-Level BPJD Algorithm
𝐒𝐭𝐞𝐩 1\bm{{\rm Step}\ 1} Solve the following coarse eigenvalue problem: AH~uiH~=λiH~uiH~,b(uiH~,ujH~)=δij,i,j=1,2,,s,s<dim(VH),A^{\widetilde{H}}u_{i}^{\widetilde{H}}=\lambda_{i}^{\widetilde{H}}u_{i}^{\widetilde{H}},\ \ \ b(u_{i}^{\widetilde{H}},u_{j}^{\widetilde{H}})=\delta_{ij},\ \ \ \ i,j=1,2,...,s,\ s<\dim(V^{H}),             such that λiH~<λiH\lambda_{i}^{\widetilde{H}}<\lambda_{i}^{H}. Set ui0=uiH~u_{i}^{0}=u_{i}^{\widetilde{H}}, λi0=Rq(ui0)\lambda_{i}^{0}=Rq(u^{0}_{i}), W0=U0=span{ui0}i=1s,Λ0={λi0}i=1sW^{0}=U^{0}=\text{span}\{u_{i}^{0}\}_{i=1}^{s},\ \Lambda^{0}=\{\lambda_{i}^{0}\}_{i=1}^{s}.
𝐒𝐭𝐞𝐩 2\bm{{\rm Step\ 2}} For k=0,1,2,,k=0,1,2,..., solve (3.4) inexactly through solving some parallel preconditioned
           systems: tik+1=(IQUk)(Bik)1rik=(Bik)1riki=1sb((Bik)1rik,uik)uik,i=1,2,,s,t_{i}^{k+1}=(I-Q_{U^{k}})(B_{i}^{k})^{-1}r_{i}^{k}=(B_{i}^{k})^{-1}r_{i}^{k}-\sum_{i=1}^{s}b((B_{i}^{k})^{-1}r_{i}^{k},u_{i}^{k})u_{i}^{k},\ i=1,2,...,s, (3.5)            where (Bik)1(B_{i}^{k})^{-1} is defined in (3.3). 𝐒𝐭𝐞𝐩 3\bm{{\rm Step\ 3}} Solve the first ss eigenpairs in Wk+1W^{k+1}:
a(uik+1,v)=λik+1b(uik+1,v)vWk+1,b(uik+1,ujk+1)=δij,a(u_{i}^{k+1},v)=\lambda_{i}^{k+1}b(u_{i}^{k+1},v)\ \ \forall\ v\in W^{k+1},\ b(u_{i}^{k+1},u_{j}^{k+1})=\delta_{ij}, (3.6)            where i,j=1,2,,s\ i,j=1,2,...,s, Wk+1=Wk+span{tik+1}i=1sW^{k+1}=W^{k}+\text{span}\{t_{i}^{k+1}\}_{i=1}^{s}.
           Set Uk+1=span{uik+1}i=1s,Λk+1={λik+1}i=1s.U^{k+1}=\text{span}\{u_{i}^{k+1}\}_{i=1}^{s},\ \Lambda^{k+1}=\{\lambda_{i}^{k+1}\}_{i=1}^{s}.
𝐒𝐭𝐞𝐩 4\bm{{\rm Step\ 4}} If i=1s|λik+1λik|<tol\sum_{i=1}^{s}|\lambda_{i}^{k+1}-\lambda_{i}^{k}|<tol, return (Λk+1,Uk+1)(\Lambda^{k+1},U^{k+1}). Otherwise, goto 𝒔𝒕𝒆𝒑 2\bm{step\ 2}.
Remark 3.1

Actually, the choice of Wk+1W^{k+1} may be different. We may choose

Wk+1=Vk+span{tik+1}i=1s,W^{k+1}=V^{k}+{\rm span}\{t_{i}^{k+1}\}_{i=1}^{s},

where VkV^{k} is a smaller subspace satisfying UkVkU^{k}\subset V^{k}. For example, we may take Vk:=UkV^{k}:=U^{k} or Vk:=Uk1+UkV^{k}:=U^{k-1}+U^{k}. The advantage of these two is that dimWk+1\dim{W^{k+1}} is independent of kk, which may reduce the cost for solving the approximate eigenpairs in Wk+1W^{k+1}.

Remark 3.2

The meaning of the ‘block’ in two-level BPJD method is understood as follows: Let σd(vh)\sigma^{d}(v^{h}) (1dnd1\leq d\leq nd) be the ddth coordinate of vh(vhVh)v^{h}\ (v^{h}\in V^{h}) corresponding to the finite element basis. The operator IQUkI-Q_{U^{k}} is represented through matrix form Ind×ndXk(Xk)tMI_{nd\times nd}-X^{k}(X^{k})^{t}M, where MM is the mass matrix corresponding to the finite element basis, the matrix XkX^{k} is

(σ1(u1k)σ1(u2k)σ1(usk)σ2(u1k)σ2(u2k)σ2(usk)σnd(u1k)σnd(u2k)σnd(usk))nd×s,\displaystyle\begin{pmatrix}\sigma^{1}(u_{1}^{k})&\sigma^{1}(u_{2}^{k})&...&\sigma^{1}(u_{s}^{k})\\ \sigma^{2}(u_{1}^{k})&\sigma^{2}(u_{2}^{k})&...&\sigma^{2}(u_{s}^{k})\\ ...&...&...&...\\ \sigma^{nd}(u_{1}^{k})&\sigma^{nd}(u_{2}^{k})&...&\sigma^{nd}(u_{s}^{k})\\ \end{pmatrix}_{nd\times s},

and (Xk)t(X^{k})^{t} is the transpose of XkX^{k}. In particular, for s=1s=1, the matrix version of the operator IQu1kI-Q_{u_{1}^{k}} is Ind×ndσ(u1k)(σ(u1k))tMI_{nd\times nd}-\sigma(u_{1}^{k})(\sigma(u_{1}^{k}))^{t}M, where σ(u1k)\sigma(u_{1}^{k}) is the transpose of (σ1(u1k),σ2(u1k),,σnd(u1k))(\sigma^{1}(u_{1}^{k}),\sigma^{2}(u_{1}^{k}),...,\sigma^{nd}(u_{1}^{k})). So the block-version Jacobi-Davidson correction equations (3.4) are solved at the same time by (3.5) for i=1,2,,si=1,2,...,s.

Remark 3.3

The purpose of Step 1 is to give an initial approximation for the proposed iteration algorithm. The condition λiH~<λiH\lambda_{i}^{\widetilde{H}}<\lambda_{i}^{H}, which can be achieved through H~=H2τ\widetilde{H}=\frac{H}{2^{\tau}} for any positive integer τ\tau, is to ensure that (B0,i0)1(B_{0,i}^{0})^{-1} is well-defined in theoretical analysis. But we find that it is not necessary in practical computation.

Remark 3.4

For s=1s=1, our algorithm may be regarded as a parallel preconditioned solver which solves

u1h=argminv0,vVha(v,v)b(v,v)=argminv0,span{v}VhTr(QvAhQv).u_{1}^{h}=\arg\min_{v\neq 0,v\in V^{h}}\frac{a(v,v)}{b(v,v)}=\arg\min_{v\neq 0,{\rm span}\{v\}\subset V^{h}}{\rm Tr}(Q_{v}A^{h}Q_{v}).

For s2s\geq 2, our algorithm may be seen as a parallel preconditioned solver which solves

Ush=argminUVh,dim(U)=sTr(QUAhQU).U_{s}^{h}=\arg\min_{U\subset V^{h},\dim(U)=s}{\rm Tr}(Q_{U}A^{h}Q_{U}).

We may consider a functional 𝒢:ΣVh\mathcal{G}:\Sigma_{V_{h}}\to\mathcal{R} such that 𝒢(U)=Tr(QUAhQU)\mathcal{G}(U)={\rm Tr}(Q_{U}A^{h}Q_{U}) for all UΣVhU\in\Sigma_{V_{h}}, where ΣVh\Sigma_{V_{h}} includes all closed subspaces of VhV^{h}. Hence, we need to minimize the functional 𝒢()\mathcal{G}(\cdot) in ΞVh:={UΣVh|dim(U)=s}\Xi_{V_{h}}:=\{U\in\Sigma_{V^{h}}\ |\ \dim{(U)}=s\} to obtain ({λih}i=1s,Ush)(\{\lambda_{i}^{h}\}_{i=1}^{s},U_{s}^{h}).

4 Some properties of subspace method

In this section, we present some useful properties in convergence analysis.

Since

Uk+span{tik+1}i=1sWk+span{tik+1}i=1s=Wk+1Vh,U^{k}+{\rm span}\{t_{i}^{k+1}\}_{i=1}^{s}\subset W^{k}+\text{span}\{t_{i}^{k+1}\}_{i=1}^{s}=W^{k+1}\subset V^{h},

by the Courant-Fischer principle, we obtain

λihλik+1λik,k=0,1,2,,i=1,2,,s.\lambda_{i}^{h}\leq\lambda_{i}^{k+1}\leq\lambda_{i}^{k},\ \ \ \ k=0,1,2,...,\ i=1,2,...,s. (4.1)

By Step 1 in Algorithm 3.1, we know that λi0=λiH~<λiH,i=1,2,,s.\lambda_{i}^{0}=\lambda_{i}^{\widetilde{H}}<\lambda_{i}^{H},\ i=1,2,...,s. Using (4.1) and Assumption 1, we have

λiλihλikλi0=λiH~<λiH<λs+1hλs+1H,k=0,1,2,,i=1,2,,s.\lambda_{i}\leq\lambda_{i}^{h}\leq\lambda_{i}^{k}\leq\lambda_{i}^{0}=\lambda_{i}^{\widetilde{H}}<\lambda_{i}^{H}<\lambda_{s+1}^{h}\leq\lambda_{s+1}^{H},\ \ \ k=0,1,2,...,\ i=1,2,...,s. (4.2)

For our theoretical analysis, we define (v,w)Eik:=a(v,w)λikb(v,w)(v,w)_{E_{i}^{k}}:=a(v,w)-\lambda^{k}_{i}b(v,w), (v,w)Eih:=a(v,w)λihb(v,w)(v,w)_{E_{i}^{h}}:=a(v,w)-\lambda^{h}_{i}b(v,w) and (v,w)Ei:=a(v,w)λib(v,w)(v,w)_{E_{i}}:=a(v,w)-\lambda_{i}b(v,w) for all v,wVhv,w\in V^{h}. It is easy to check that the bilinear forms (,)Eik(\cdot,\cdot)_{E_{i}^{k}}, (,)Eih(\cdot,\cdot)_{E_{i}^{h}} and (,)Ei(\cdot,\cdot)_{E_{i}} construct inner products in Us+1hU_{s+1}^{h}. The norms ||||Eik||\cdot||_{E_{i}^{k}}, ||||Eih||\cdot||_{E_{i}^{h}} and ||||Ei||\cdot||_{E_{i}} induced by (,)Eik(\cdot,\cdot)_{E_{i}^{k}}, (,)Eih(\cdot,\cdot)_{E_{i}^{h}} and (,)Ei(\cdot,\cdot)_{E_{i}}, respectively, are equivalent to the norm ||||a||\cdot||_{a} over Us+1hU_{s+1}^{h}. In fact, on one hand, (w,w)Eik(w,w)Eih(w,w)Eia(w,w)(w,w)_{E_{i}^{k}}\leq(w,w)_{E_{i}^{h}}\leq(w,w)_{E_{i}}\leq a(w,w) for all wVh.w\in V^{h}. On the other hand, by (4.2), it is easy to get that (v,v)Eik(λs+1hλik)b(v,v)(v,v)_{E_{i}^{k}}\geq(\lambda_{s+1}^{h}-\lambda_{i}^{k})b(v,v) for all vUs+1hv\in U_{s+1}^{h}. Moreover,

a(v,v)=(v,v)Eik+λikb(v,v)β(λs+1h)(v,v)EikvUs+1h,\displaystyle a(v,v)=(v,v)_{E_{i}^{k}}+\lambda_{i}^{k}b(v,v)\leq\beta(\lambda_{s+1}^{h})(v,v)_{E_{i}^{k}}\ \ \ \ \forall\ v\in U_{s+1}^{h},

where the real valued function β(λ):=1+λikλλik\beta(\lambda):=1+\frac{\lambda_{i}^{k}}{\lambda-\lambda_{i}^{k}}. Throughout the paper, we denote by μik:=(λik)1\mu_{i}^{k}:=(\lambda_{i}^{k})^{-1}, gik:=μikuikThuikg_{i}^{k}:=\mu_{i}^{k}u_{i}^{k}-T^{h}u_{i}^{k}, Qk:=IQUkQ_{\perp}^{k}:=I-Q_{U^{k}}, Pk:=IPUkP_{\perp}^{k}:=I-P_{U^{k}} and ei,s+1k:=Qs+1huike_{i,s+1}^{k}:=-Q_{s+1}^{h}u_{i}^{k}, where QUk:VhUkQ_{U^{k}}:V^{h}\to U^{k} denotes a b(,)b(\cdot,\cdot)-orthogonal projector and PUk:VhUkP_{U^{k}}:V^{h}\to U^{k} denotes an a(,)a(\cdot,\cdot)-orthogonal projector.

Lemma 4.1

It holds that

QUkva21λ1i=1sλikva2,Qkva2(2+2λ1i=1sλik)va2vVh.||Q_{U^{k}}v||^{2}_{a}\leq\frac{1}{\lambda_{1}}\sum_{i=1}^{s}\lambda_{i}^{k}||v||_{a}^{2},\ \ \ ||Q_{\perp}^{k}v||^{2}_{a}\leq(2+\frac{2}{\lambda_{1}}\sum_{i=1}^{s}\lambda_{i}^{k})||v||_{a}^{2}\ \ \ \ \ \forall\ v\in V^{h}.

Proof.  By the fact that a(uik,ujk)=λikb(uik,ujk)=λikδija(u_{i}^{k},u_{j}^{k})=\lambda_{i}^{k}b(u_{i}^{k},u_{j}^{k})=\lambda_{i}^{k}\delta_{ij}, we know that {μikuik}i=1s\{\sqrt{\mu_{i}^{k}}u_{i}^{k}\}_{i=1}^{s} forms a group of normal and orthogonal basis with respect to a(,)a(\cdot,\cdot). For any vVhv\in V^{h}, by the Cauchy-Schwarz inequality, we obtain

QUkva2\displaystyle||Q_{U^{k}}v||_{a}^{2} =i=1sb(v,uik)uika2=i=1sb(v,λikuik)μikuika2=i=1s(b(v,λikuik))2\displaystyle=||\sum_{i=1}^{s}b(v,u_{i}^{k})u_{i}^{k}||_{a}^{2}=||\sum_{i=1}^{s}b(v,\sqrt{\lambda_{i}^{k}}u_{i}^{k})\sqrt{\mu_{i}^{k}}u_{i}^{k}||_{a}^{2}=\sum_{i=1}^{s}(b(v,\sqrt{\lambda_{i}^{k}}u_{i}^{k}))^{2}
vb2i=1sλikuikb21λ1i=1sλikva2.\displaystyle\leq||v||_{b}^{2}\sum_{i=1}^{s}||\sqrt{\lambda_{i}^{k}}u_{i}^{k}||^{2}_{b}\leq\frac{1}{\lambda_{1}}\sum_{i=1}^{s}\lambda_{i}^{k}||v||_{a}^{2}.

Moreover,

Qkva2=(IQUk)va22{va2+QUkva2}2(1+1λ1i=1sλik)va2,||Q_{\perp}^{k}v||_{a}^{2}=||(I-Q_{U^{k}})v||_{a}^{2}\leq 2\{||v||_{a}^{2}+||Q_{U^{k}}v||_{a}^{2}\}\leq 2(1+\frac{1}{\lambda_{1}}\sum_{i=1}^{s}\lambda_{i}^{k})||v||_{a}^{2},

which completes the proof of this lemma. \Box

Lemma 4.2

If Assumption 1 holds, then for any vHVHv^{H}\in V^{H}, it holds that

QshQs+1HvHbCH2Qs+1HvHb,QshQs+1HvHaCHQs+1HvHa.||Q_{s}^{h}Q_{s+1}^{H}v^{H}||_{b}\leq CH^{2}||Q_{s+1}^{H}v^{H}||_{b},\ \ \ ||Q_{s}^{h}Q_{s+1}^{H}v^{H}||_{a}\leq CH||Q_{s+1}^{H}v^{H}||_{a}. (4.3)

Proof.  By Remark 2.2, Theorem 2.2 and the fact dim(Ush)=dim(UsH)=dim(Us)\dim(U_{s}^{h})=\dim(U_{s}^{H})=\dim(U_{s}), we have

sinb{Ush,UsH}sinb{Ush,Us}+sinb{Us,UsH}CH2.\sin_{b}\{U_{s}^{h},U_{s}^{H}\}\leq\sin_{b}\{U_{s}^{h},U_{s}\}+\sin_{b}\{U_{s},U_{s}^{H}\}\leq CH^{2}. (4.4)

If QshQs+1HvH=0Q_{s}^{h}Q_{s+1}^{H}v^{H}=0, (4.3) holds. For QshQs+1HvH(0)UshQ_{s}^{h}Q_{s+1}^{H}v^{H}(\neq 0)\in U_{s}^{h}, take w~sh=QshQs+1HvHQshQs+1HvHb\widetilde{w}_{s}^{h}=\frac{Q_{s}^{h}Q_{s+1}^{H}v^{H}}{||Q_{s}^{h}Q_{s+1}^{H}v^{H}||_{b}}. By (4.4), there exists a vsH(0)UsHv_{s}^{H}(\neq 0)\in U_{s}^{H} such that

w~shvsHbCH2.||\widetilde{w}_{s}^{h}-v_{s}^{H}||_{b}\leq CH^{2}.

Then we have,

w~shvsHvsHbb=w~shw~shbvsHvsHbb2w~shbw~shvsHbCH2.||\widetilde{w}_{s}^{h}-\frac{v_{s}^{H}}{||v_{s}^{H}||_{b}}||_{b}=||\frac{\widetilde{w}_{s}^{h}}{||\widetilde{w}_{s}^{h}||_{b}}-\frac{v_{s}^{H}}{||v_{s}^{H}||_{b}}||_{b}\leq\frac{2}{||\widetilde{w}_{s}^{h}||_{b}}||\widetilde{w}_{s}^{h}-v_{s}^{H}||_{b}\leq CH^{2}.

Taking wsH=QshQs+1HvHbvsHbvsHUsHw_{s}^{H}=\frac{||Q_{s}^{h}Q_{s+1}^{H}v^{H}||_{b}}{||v_{s}^{H}||_{b}}v_{s}^{H}\in U_{s}^{H}, we get

QshQs+1HvHwsHbCH2QshQs+1HvHb.||Q_{s}^{h}Q_{s+1}^{H}v^{H}-w_{s}^{H}||_{b}\leq CH^{2}||Q_{s}^{h}Q_{s+1}^{H}v^{H}||_{b}.

Moreover,

QshQs+1HvHb2=b(QshQs+1HvHwsH,Qs+1HvH)CH2QshQs+1HvHbQs+1HvHb,\displaystyle||Q_{s}^{h}Q_{s+1}^{H}v^{H}||^{2}_{b}=b(Q_{s}^{h}Q_{s+1}^{H}v^{H}-w_{s}^{H},Q_{s+1}^{H}v^{H})\leq CH^{2}||Q_{s}^{h}Q_{s+1}^{H}v^{H}||_{b}||Q_{s+1}^{H}v^{H}||_{b},

which yields the first inequality in (4.3). Similarly, we may prove that QshQs+1HvHaCHQs+1HvHa||Q_{s}^{h}Q_{s+1}^{H}v^{H}||_{a}\leq CH||Q_{s+1}^{H}v^{H}||_{a}, and then obtain the proof of this lemma. \Box

By the analysis above, for any vHVHv^{H}\in V^{H}, we could easily estimate Qs+1hQsHvHb||Q_{s+1}^{h}Q_{s}^{H}v^{H}||_{b} and Qs+1hQsHvHa||Q_{s+1}^{h}Q_{s}^{H}v^{H}||_{a}, similarly. For any vhVhv^{h}\in V^{h}, we have estimate results as follows

QsHQHQs+1hvhbCH2Qs+1hvhb,||Q_{s}^{H}Q^{H}Q_{s+1}^{h}v^{h}||_{b}\leq CH^{2}||Q_{s+1}^{h}v^{h}||_{b}, (4.5)

and

Qs+1HQHQshvhbCH2Qshvhb.||Q_{s+1}^{H}Q^{H}Q_{s}^{h}v^{h}||_{b}\leq CH^{2}||Q_{s}^{h}v^{h}||_{b}. (4.6)
Lemma 4.3

Let a(uik,ujk)=λikb(uik,ujk)=λikδija(u_{i}^{k},u_{j}^{k})=\lambda_{i}^{k}b(u_{i}^{k},u_{j}^{k})=\lambda_{i}^{k}\delta_{ij} and Assumption 1 hold. It holds that

i=1sa(gik,gik)i=1s(μihμik).\sum_{i=1}^{s}a(g_{i}^{k},g_{i}^{k})\leq\sum_{i=1}^{s}(\mu_{i}^{h}-\mu_{i}^{k}). (4.7)

In particular, i=1sgika2CH2.\sum_{i=1}^{s}||g_{i}^{k}||_{a}^{2}\leq CH^{2}.

Proof.  As a(uik,uik)=λikb(uik,uik)=λika(Thuik,uik)=λika(u_{i}^{k},u_{i}^{k})=\lambda_{i}^{k}b(u_{i}^{k},u_{i}^{k})=\lambda_{i}^{k}a(T^{h}u_{i}^{k},u_{i}^{k})=\lambda_{i}^{k}, we have

a(gik,gik)=a(Thuik,Thuik)μik=a(Th(Th)12uik,(Th)12uik)μik.\displaystyle a(g_{i}^{k},g_{i}^{k})=a(T^{h}u_{i}^{k},T^{h}u_{i}^{k})-\mu_{i}^{k}=a(T^{h}(T^{h})^{\frac{1}{2}}u_{i}^{k},(T^{h})^{\frac{1}{2}}u_{i}^{k})-\mu_{i}^{k}. (4.8)

Since a((Th)12uik,(Th)12ujk)=δija((T^{h})^{\frac{1}{2}}u_{i}^{k},(T^{h})^{\frac{1}{2}}u_{j}^{k})=\delta_{ij}, we may consider the eigenvalue problem a(Thwi,v)=νika(wi,v)a(T^{h}w_{i},v)=\nu_{i}^{k}a(w_{i},v) for all vv\in span{(Th)12uik}i=1s\{(T^{h})^{\frac{1}{2}}u_{i}^{k}\}_{i=1}^{s}. Moreover,

i=1sνik=i=1sa(Th(Th)12uik,(Th)12uik)a((Th)12uik,(Th)12uik)=i=1sRt((Th)12uik).\sum_{i=1}^{s}\nu_{i}^{k}=\sum_{i=1}^{s}\frac{a(T^{h}(T^{h})^{\frac{1}{2}}u_{i}^{k},(T^{h})^{\frac{1}{2}}u_{i}^{k})}{a((T^{h})^{\frac{1}{2}}u_{i}^{k},(T^{h})^{\frac{1}{2}}u_{i}^{k})}=\sum_{i=1}^{s}Rt((T^{h})^{\frac{1}{2}}u_{i}^{k}). (4.9)

As span{(Th)12uik}i=1sVh\{(T^{h})^{\frac{1}{2}}u_{i}^{k}\}_{i=1}^{s}\subset V^{h}, we know νikμih\nu_{i}^{k}\leq\mu_{i}^{h}, which, together with (4.8), (4.9), yields

i=1sa(gik,gik)\displaystyle\sum_{i=1}^{s}a(g_{i}^{k},g_{i}^{k}) =i=1s{Rt((Th)12uik)a((Th)12uik,(Th)12uik)μik}\displaystyle=\sum_{i=1}^{s}\{Rt((T^{h})^{\frac{1}{2}}u_{i}^{k})a((T^{h})^{\frac{1}{2}}u_{i}^{k},(T^{h})^{\frac{1}{2}}u_{i}^{k})-\mu_{i}^{k}\}
=i=1s{Rt((Th)12uik)μik}i=1s(μihμik).\displaystyle=\sum_{i=1}^{s}\{Rt((T^{h})^{\frac{1}{2}}u_{i}^{k})-\mu_{i}^{k}\}\leq\sum_{i=1}^{s}(\mu_{i}^{h}-\mu_{i}^{k}).

By (4.2) and Theorem 2.2, we get

i=1sa(gik,gik)i=1s(μihμik)Ci=1s(λikλih)Ci=1s(λiHλi)CH2,\displaystyle\ \ \ \ \sum_{i=1}^{s}a(g_{i}^{k},g_{i}^{k})\leq\sum_{i=1}^{s}(\mu_{i}^{h}-\mu_{i}^{k})\leq C\sum_{i=1}^{s}(\lambda_{i}^{k}-\lambda_{i}^{h})\leq C\sum_{i=1}^{s}(\lambda_{i}^{H}-\lambda_{i})\leq CH^{2},

which completes the proof of this lemma. \Box

The following lemma illustrates that the gap between UshU_{s}^{h} and UkU^{k} with respect to ||||b||\cdot||_{b} is bounded by the total error of eigenvalues. In particular, it is bounded by CH2CH^{2}.

Lemma 4.4

Let a(uik,ujk)=λikb(uik,ujk)=λikδija(u_{i}^{k},u_{j}^{k})=\lambda_{i}^{k}b(u_{i}^{k},u_{j}^{k})=\lambda_{i}^{k}\delta_{ij} and Assumption 1 hold, then

(θbk)21λs+1hλshi=1s(λikλih),(\theta_{b}^{k})^{2}\leq\frac{1}{\lambda_{s+1}^{h}-\lambda_{s}^{h}}\sum_{i=1}^{s}(\lambda_{i}^{k}-\lambda_{i}^{h}), (4.10)

where θbk\theta_{b}^{k} is the gap between UshU_{s}^{h} and UkU^{k} with respect to ||||b||\cdot||_{b}. In particular, (θbk)2CH2.(\theta_{b}^{k})^{2}\leq CH^{2}.

Proof.  Since a(uik,ujk)=λikb(uik,ujk)=λikδija(u_{i}^{k},u_{j}^{k})=\lambda_{i}^{k}b(u_{i}^{k},u_{j}^{k})=\lambda_{i}^{k}\delta_{ij}, it is easy to know that {uik}i=1s\{u_{i}^{k}\}_{i=1}^{s} forms a group of normal and orthogonal basis for UkU^{k} with respect to b(,)b(\cdot,\cdot). By (2.8), we get

λs+1hλik\displaystyle\lambda_{s+1}^{h}-\lambda_{i}^{k} =b((λs+1hAh)uik,uik)=b((λs+1hAh)Qshuik,Qshuik)\displaystyle=b((\lambda_{s+1}^{h}-A^{h})u_{i}^{k},u_{i}^{k})=b((\lambda_{s+1}^{h}-A^{h})Q_{s}^{h}u_{i}^{k},Q_{s}^{h}u_{i}^{k})
+b((λs+1hAh)Qs+1huik,Qs+1huik)b((λs+1hAh)Qshuik,Qshuik).\displaystyle\ \ \ \ +b((\lambda_{s+1}^{h}-A^{h})Q_{s+1}^{h}u_{i}^{k},Q_{s+1}^{h}u_{i}^{k})\leq b((\lambda_{s+1}^{h}-A^{h})Q_{s}^{h}u_{i}^{k},Q_{s}^{h}u_{i}^{k}). (4.11)

Combining (4.11)\eqref{ThetaEstimate1} and the fact that Qshv=j=1sQj,shvQ_{s}^{h}v=\sum_{j=1}^{s}Q_{j,s}^{h}v for all vVhv\in V^{h}, we have

i=1s(λs+1hλik)\displaystyle\sum_{i=1}^{s}(\lambda_{s+1}^{h}-\lambda_{i}^{k}) i=1sj=1s(λs+1hλjh)b(Qj,shuik,Qj,shuik)=i=1sj=1s(λs+1hλjh)(b(uik,ujh))2\displaystyle\leq\sum_{i=1}^{s}\sum_{j=1}^{s}(\lambda_{s+1}^{h}-\lambda_{j}^{h})b(Q_{j,s}^{h}u_{i}^{k},Q_{j,s}^{h}u_{i}^{k})=\sum_{i=1}^{s}\sum_{j=1}^{s}(\lambda_{s+1}^{h}-\lambda_{j}^{h})(b(u_{i}^{k},u_{j}^{h}))^{2}
=j=1s(λs+1hλjh)i=1s(b(uik,ujh))2=j=1s(λs+1hλjh)QUkujhb2\displaystyle=\sum_{j=1}^{s}(\lambda_{s+1}^{h}-\lambda_{j}^{h})\sum_{i=1}^{s}(b(u_{i}^{k},u_{j}^{h}))^{2}=\sum_{j=1}^{s}(\lambda_{s+1}^{h}-\lambda_{j}^{h})||Q_{U^{k}}u_{j}^{h}||^{2}_{b}
=j=1s(λs+1hλjh)(1(IQUk)ujhb2)=j=1s(λs+1hλjh)(1sinb2{ujh;Uk}).\displaystyle=\sum_{j=1}^{s}(\lambda_{s+1}^{h}-\lambda_{j}^{h})(1-||(I-Q_{U^{k}})u_{j}^{h}||^{2}_{b})=\sum_{j=1}^{s}(\lambda_{s+1}^{h}-\lambda_{j}^{h})(1-\sin^{2}_{b}\{u_{j}^{h};U^{k}\}).

Hence, i=1s(λs+1hλih)sinb2{uih;Uk}i=1s(λikλih).\sum_{i=1}^{s}(\lambda_{s+1}^{h}-\lambda_{i}^{h})\sin_{b}^{2}\{u_{i}^{h};U^{k}\}\leq\sum_{i=1}^{s}(\lambda_{i}^{k}-\lambda_{i}^{h}). If Assumption 1 holds (also λsh<λs+1h\lambda_{s}^{h}<\lambda_{s+1}^{h} as h0h\to 0), we obtain

i=1ssinb2{uih;Uk}1λs+1hλshi=1s(λikλih),\sum_{i=1}^{s}\sin_{b}^{2}\{u_{i}^{h};U^{k}\}\leq\frac{1}{\lambda_{s+1}^{h}-\lambda_{s}^{h}}\sum_{i=1}^{s}(\lambda_{i}^{k}-\lambda_{i}^{h}),

which, together with the fact that (θbk)2=sinb2{Ush;Uk}i=1ssinb2{uih;Uk}(\theta^{k}_{b})^{2}=\sin_{b}^{2}\{U_{s}^{h};U^{k}\}\leq\sum_{i=1}^{s}\sin_{b}^{2}\{u_{i}^{h};U^{k}\} (see Lemma 3.4 in [5] or Corollary 2.2 in [19]), yields (4.10). By (4.2) and Theorem 2.2, we get

(θbk)21λs+1hλshi=1s(λikλih)Ci=1s(λiHλi)CH2,\displaystyle(\theta_{b}^{k})^{2}\leq\frac{1}{\lambda_{s+1}^{h}-\lambda_{s}^{h}}\sum_{i=1}^{s}(\lambda_{i}^{k}-\lambda_{i}^{h})\leq C\sum_{i=1}^{s}(\lambda_{i}^{H}-\lambda_{i})\leq CH^{2},

which completes the proof of this lemma. \Box

We may use a similar argument as in the proof of Lemma 4.4 to obtain the following result.

Corollary 4.5

Let a(uik,ujk)=λikb(uik,ujk)=λikδija(u_{i}^{k},u_{j}^{k})=\lambda_{i}^{k}b(u_{i}^{k},u_{j}^{k})=\lambda_{i}^{k}\delta_{ij} and Assumption 1 hold, then

(θak)21μshμs+1hi=1s(μihμik),(\theta_{a}^{k})^{2}\leq\frac{1}{\mu_{s}^{h}-\mu_{s+1}^{h}}\sum_{i=1}^{s}(\mu_{i}^{h}-\mu_{i}^{k}), (4.12)

where θak\theta_{a}^{k} is the gap between UshU_{s}^{h} and UkU^{k} with respect to ||||a||\cdot||_{a}. In particular, (θak)2CH2.(\theta_{a}^{k})^{2}\leq CH^{2}.

The gap θak\theta_{a}^{k} and θbk\theta_{b}^{k} can be characterized by the aa-norm and the bb-norm of the operators, respectively.

Lemma 4.6

It holds that

θak=PkQsha=QshPka=Qs+1hPUka=PUkQs+1ha,\theta^{k}_{a}=\interleave P_{\perp}^{k}Q_{s}^{h}\interleave_{a}=\interleave Q_{s}^{h}P_{\perp}^{k}\interleave_{a}=\interleave Q_{s+1}^{h}P_{U^{k}}\interleave_{a}=\interleave P_{U^{k}}Q_{s+1}^{h}\interleave_{a},

and

θbk=QkQshb=QshQkb=Qs+1hQUkb=QUkQs+1hb.\theta^{k}_{b}=\interleave Q_{\perp}^{k}Q_{s}^{h}\interleave_{b}=\interleave Q_{s}^{h}Q_{\perp}^{k}\interleave_{b}=\interleave Q_{s+1}^{h}Q_{U^{k}}\interleave_{b}=\interleave Q_{U^{k}}Q_{s+1}^{h}\interleave_{b}.

Proof.  Combining Definition 2.1 and Remark 2.2, it is easy to prove this lemma. In order to focus on our main theoretical analysis, we ignore this proof here. \Box

Lemma 4.7

If Assumption 1 holds, then

ei,s+1kEik2=(λikRq(Qshuik))Qshuikb2,\displaystyle||e_{i,s+1}^{k}||_{E_{i}^{k}}^{2}=(\lambda_{i}^{k}-Rq(Q_{s}^{h}u_{i}^{k}))||Q_{s}^{h}u_{i}^{k}||_{b}^{2}, (4.13)
0λikRq(Qshuik)CH2,0\leq\lambda_{i}^{k}-Rq(Q_{s}^{h}u_{i}^{k})\leq CH^{2}, (4.14)

and

λikRq(Qshuik)CHgika.\lambda_{i}^{k}-Rq(Q_{s}^{h}u_{i}^{k})\leq CH||g_{i}^{k}||_{a}. (4.15)

Moreover,

(λikAh)QshuikbCgika.||(\lambda_{i}^{k}-A^{h})Q_{s}^{h}u_{i}^{k}||_{b}\leq C||g_{i}^{k}||_{a}. (4.16)

Proof.  We first prove (4.13) and (4.14). Using (3.6), we have a(uik,uik)=λikb(uik,uik)a(u_{i}^{k},u_{i}^{k})=\lambda_{i}^{k}b(u_{i}^{k},u_{i}^{k}). Therefore,

ei,s+1kEik2=b((λikAh)Qshuik,Qshuik)=(λikRq(Qshuik))Qshuikb2,\displaystyle\ \ \ \ ||e_{i,s+1}^{k}||_{E_{i}^{k}}^{2}=b((\lambda_{i}^{k}-A^{h})Q_{s}^{h}u_{i}^{k},Q_{s}^{h}u_{i}^{k})=(\lambda_{i}^{k}-Rq(Q_{s}^{h}u_{i}^{k}))||Q_{s}^{h}u_{i}^{k}||_{b}^{2}, (4.17)

which means that (4.13) holds and λikRq(Qshuik)0\lambda_{i}^{k}-Rq(Q_{s}^{h}u_{i}^{k})\geq 0. By Lemma 4.4 and Lemma 4.6, we have

(λikRq(Qshuik))Qshuikb2=(λikRq(Qshuik))(1Qs+1hQUkuikb2)\displaystyle\ \ \ \ (\lambda_{i}^{k}-Rq(Q_{s}^{h}u_{i}^{k}))||Q_{s}^{h}u_{i}^{k}||_{b}^{2}=(\lambda_{i}^{k}-Rq(Q_{s}^{h}u_{i}^{k}))(1-||Q_{s+1}^{h}Q_{U^{k}}u_{i}^{k}||_{b}^{2})
(λikRq(Qshuik))(1(θbk)2uikb2)(λikRq(Qshuik))(1CH2).\displaystyle\geq(\lambda_{i}^{k}-Rq(Q_{s}^{h}u_{i}^{k}))(1-(\theta^{k}_{b})^{2}||u_{i}^{k}||_{b}^{2})\geq(\lambda_{i}^{k}-Rq(Q_{s}^{h}u_{i}^{k}))(1-CH^{2}). (4.18)

By (4.17), Corollary 4.5 and Lemma 4.6, we obtain

(λikRq(Qshuik))Qshuikb2=ei,s+1kEik2Qs+1huika2=Qs+1hPUkuika2CH2.\displaystyle\ \ \ \ (\lambda_{i}^{k}-Rq(Q_{s}^{h}u_{i}^{k}))||Q_{s}^{h}u_{i}^{k}||_{b}^{2}=||e_{i,s+1}^{k}||_{E_{i}^{k}}^{2}\leq||Q_{s+1}^{h}u_{i}^{k}||_{a}^{2}=||Q_{s+1}^{h}P_{U^{k}}u_{i}^{k}||_{a}^{2}\leq CH^{2}. (4.19)

Using (4.18) and (4.19), we get (4.14).

By Corollary 4.5, Lemma 4.6, and the facts Pkgik=gikP_{\perp}^{k}g_{i}^{k}=g_{i}^{k} and rik=λikAhgikr_{i}^{k}=-\lambda_{i}^{k}A^{h}g_{i}^{k}, we deduce

(λikRq(Qshuik))Qshuikb2\displaystyle(\lambda_{i}^{k}-Rq(Q_{s}^{h}u_{i}^{k}))||Q_{s}^{h}u_{i}^{k}||_{b}^{2} =b((λikAh)Qshuik,Qshuik)=λika(gik,Qshuik)\displaystyle=b((\lambda_{i}^{k}-A^{h})Q_{s}^{h}u_{i}^{k},Q_{s}^{h}u_{i}^{k})=-\lambda_{i}^{k}a(g_{i}^{k},Q_{s}^{h}u_{i}^{k})
=λika(QshPkgik,Qshuik)CθakgikaQshuikaCHgika,\displaystyle=-\lambda_{i}^{k}a(Q_{s}^{h}P_{\perp}^{k}g_{i}^{k},Q_{s}^{h}u_{i}^{k})\leq C\theta_{a}^{k}||g_{i}^{k}||_{a}||Q_{s}^{h}u_{i}^{k}||_{a}\leq CH||g_{i}^{k}||_{a},

which, together with (4.18), yields (4.15).

Since Ah|Ush:UshUshA^{h}|_{U_{s}^{h}}:U_{s}^{h}\to U_{s}^{h} is a linear isomorphism, we know that there exists an unique vi,skUshv_{i,s}^{k}\in U_{s}^{h} such that Ahvi,sk=(λikAh)Qshuik.A^{h}v_{i,s}^{k}=(\lambda_{i}^{k}-A^{h})Q_{s}^{h}u_{i}^{k}. Accordingly,

(λikAh)Qshuikb2=b(Ah(Ah)12vi,sk,(Ah)12vi,sk)λsha(vi,sk,vi,sk)\displaystyle\ \ \ \ ||(\lambda_{i}^{k}-A^{h})Q_{s}^{h}u_{i}^{k}||_{b}^{2}=b(A^{h}(A^{h})^{\frac{1}{2}}v_{i,s}^{k},(A^{h})^{\frac{1}{2}}v_{i,s}^{k})\leq\lambda_{s}^{h}a(v_{i,s}^{k},v_{i,s}^{k})
=λsh(λik)2(μikTh)Qshuika2=λsh(λik)2Qshgika2λsh(λik)2gika2.\displaystyle=\lambda_{s}^{h}(\lambda_{i}^{k})^{2}||(\mu_{i}^{k}-T^{h})Q_{s}^{h}u_{i}^{k}||_{a}^{2}=\lambda_{s}^{h}(\lambda_{i}^{k})^{2}||Q_{s}^{h}g_{i}^{k}||^{2}_{a}\leq\lambda_{s}^{h}(\lambda_{i}^{k})^{2}||g_{i}^{k}||_{a}^{2}.

This leads to (4.16). \Box

5 Convergence analysis

In this section, we focus on giving a rigorous convergence analysis for the two-level BPJD method. We first present the main theoretical result in this paper. The rest of this section is organized as follows: In subsection 5.1, by choosing a suitable coarse component and using some overlapping DD techniques, we deduce the error reduction from ei,s+1ke_{i,s+1}^{k} to e~i,s+1k+1\widetilde{e}_{i,s+1}^{k+1} (e~i,s+1k+1:=Qs+1hu~ik+1\widetilde{e}_{i,s+1}^{k+1}:=-Q_{s+1}^{h}\widetilde{u}_{i}^{k+1}, where u~ik+1\widetilde{u}_{i}^{k+1} shall be defined in (5.4), i=1,2,,si=1,2,...,s). In subsection 5.2, by constructing an auxiliary eigenvalue problem in span{u~ik+1}i=1s\{\widetilde{u}_{i}^{k+1}\}_{i=1}^{s} which shall be presented in (5.6), we may establish the total error reduction of the first ss eigenvalues.

Theorem 5.1

Assume that Assumption 1 and Assumption 2 hold, then

i=1s(λik+1λih)γi=1s(λikλih),\sum_{i=1}^{s}(\lambda_{i}^{k+1}-\lambda_{i}^{h})\leq\gamma\sum_{i=1}^{s}(\lambda_{i}^{k}-\lambda_{i}^{h}), (5.1)

and

(θak)2Cγk,(\theta^{k}_{a})^{2}\leq C\gamma^{k}, (5.2)
(θbk)2Cγk.(\theta^{k}_{b})^{2}\leq C\gamma^{k}. (5.3)

Here γ=c(H)(1Cδ2m1H2m1)2,m=1,2\gamma=c(H)(1-C\frac{\delta^{2m-1}}{H^{2m-1}})^{2},\ m=1,2. The constant CC is independent of h,H,δh,\ H,\ \delta and the left gaps of eigenvalues {λi}i=2s\{\lambda_{i}\}_{i=2}^{s}, and the HH-dependent constant c(H)(=1+CH(1Cδ2m1H2m1)2)c(H)\ (=1+\frac{CH}{(1-C\frac{\delta^{2m-1}}{H^{2m-1}})^{2}}) decreases monotonically to 11, as H0H\to 0.

Remark 5.1

In order to make the main idea of the proof of Theorem 5.1 clear, we only consider the model problem (2.1). The proof for problem (2.2) is similar.

For the convenience of the following convergence analysis, we first choose some special functions defined as

u~ik+1:=uik+αiktik+1Uk+span{tik+1}i=1sWk+1,i=1,2,,s,\widetilde{u}_{i}^{k+1}:=u_{i}^{k}+\alpha_{i}^{k}t_{i}^{k+1}\in U^{k}+\text{span}\{t_{i}^{k+1}\}_{i=1}^{s}\subset W^{k+1},\ \ i=1,2,...,s, (5.4)

to analyze the error reduction, where αik(i=1,2,,s)\alpha_{i}^{k}\ (i=1,2,...,s) are some undetermined parameters dependent on N0N_{0}. From (3.5) and (5.4), we know

u~ik+1=uik+αikQk(Bik)1rik,i=1,2,,s,\widetilde{u}_{i}^{k+1}=u_{i}^{k}+\alpha_{i}^{k}Q_{\perp}^{k}(B_{i}^{k})^{-1}r_{i}^{k},\ \ i=1,2,...,s, (5.5)

which are linearly independent. So we may construct an auxiliary eigenvalue problem in span{u~ik+1}i=1s\{\widetilde{u}_{i}^{k+1}\}_{i=1}^{s}:

a(u^ik+1,v)=λ^ik+1b(u^ik+1,v)vU~k+1:=span{u~ik+1}i=1s.a(\hat{u}_{i}^{k+1},v)=\hat{\lambda}_{i}^{k+1}b(\hat{u}_{i}^{k+1},v)\ \ \ \ \forall\ v\in\widetilde{U}^{k+1}:=\text{span}\{\widetilde{u}_{i}^{k+1}\}_{i=1}^{s}. (5.6)

Since U~k+1Wk+1\widetilde{U}^{k+1}\subset W^{k+1}, it is easy to see that λik+1λ^ik+1\lambda_{i}^{k+1}\leq\hat{\lambda}_{i}^{k+1}.

The idea of the proof of Theorem 5.1 is to design an auxiliary eigenvalue problem (5.6). By the ‘bridge’ term 𝒢(U~k+1)𝒢(Ush)\mathcal{G}(\widetilde{U}^{k+1})-\mathcal{G}(U_{s}^{h}), we may obtain the error reduction from 𝒢(Uk)𝒢(Ush)\mathcal{G}(U^{k})-\mathcal{G}(U_{s}^{h}) to 𝒢(Uk+1)𝒢(Ush)\mathcal{G}(U^{k+1})-\mathcal{G}(U_{s}^{h}), i.e., by the ‘bridge’ term i=1s(λ^ik+1λih)\sum_{i=1}^{s}(\hat{\lambda}_{i}^{k+1}-\lambda_{i}^{h}), we may obtain the total error reduction from i=1s(λikλih)\sum_{i=1}^{s}(\lambda_{i}^{k}-\lambda_{i}^{h}) to i=1s(λik+1λih)\sum_{i=1}^{s}(\lambda_{i}^{k+1}-\lambda_{i}^{h}).

5.1 The error from the new DD preconditioner

The block-version Jacobi-Davidson correction equations (3.4) are solved inexactly, i.e.,

tik+1=Qk(Bik)1rik.t_{i}^{k+1}=Q_{\perp}^{k}(B_{i}^{k})^{-1}r_{i}^{k}.

From (5.5), we first analyze the error reduction from ei,s+1k(:=Qs+1huik)e_{i,s+1}^{k}(:=-Q_{s+1}^{h}u_{i}^{k}) to e~i,s+1k+1(:=Qs+1hu~ik+1)\widetilde{e}_{i,s+1}^{k+1}(:=-Q_{s+1}^{h}\widetilde{u}_{i}^{k+1}). The orthogonal projection Qs+1h-Q_{s+1}^{h} is applied to both sides of (5.5), we obtain

e~i,s+1k+1=ei,s+1kαikQs+1hQk(Bik)1rik.\widetilde{e}_{i,s+1}^{k+1}=e_{i,s+1}^{k}-\alpha_{i}^{k}Q_{s+1}^{h}Q_{\perp}^{k}(B_{i}^{k})^{-1}r_{i}^{k}. (5.7)

Moreover, by the splitting of the identity operator on VhV^{h} corresponding to (2.8), we deduce

e~i,s+1k+1\displaystyle\widetilde{e}_{i,s+1}^{k+1} =ei,s+1kαikQs+1h(Bik)1rik+αikQs+1hQUk(Bik)1rik\displaystyle=e_{i,s+1}^{k}-\alpha_{i}^{k}Q_{s+1}^{h}(B_{i}^{k})^{-1}r_{i}^{k}+\alpha_{i}^{k}Q_{s+1}^{h}Q_{U^{k}}(B_{i}^{k})^{-1}r_{i}^{k}
=ei,s+1kαikQs+1h(Bik)1(λikAh)(Qshuikei,s+1k)+αikQs+1hQUk(Bik)1rik\displaystyle=e_{i,s+1}^{k}-\alpha_{i}^{k}Q_{s+1}^{h}(B_{i}^{k})^{-1}(\lambda_{i}^{k}-A^{h})(Q_{s}^{h}u_{i}^{k}-e_{i,s+1}^{k})+\alpha_{i}^{k}Q_{s+1}^{h}Q_{U^{k}}(B_{i}^{k})^{-1}r_{i}^{k}
={ei,s+1k+αikQs+1h(Bik)1(λikAh)ei,s+1k}+αik{Qs+1h(Bik)1(Ahλik)Qshuik\displaystyle=\{e_{i,s+1}^{k}+\alpha_{i}^{k}Q_{s+1}^{h}(B_{i}^{k})^{-1}(\lambda_{i}^{k}-A^{h})e_{i,s+1}^{k}\}+\alpha_{i}^{k}\{Q_{s+1}^{h}(B_{i}^{k})^{-1}(A^{h}-\lambda_{i}^{k})Q_{s}^{h}u_{i}^{k}
+Qs+1hQUk(Bik)1rik}=:Ik1,i+Ik2,i.\displaystyle\ \ \ \ +Q_{s+1}^{h}Q_{U^{k}}(B_{i}^{k})^{-1}r_{i}^{k}\}=:I^{k}_{1,i}+I^{k}_{2,i}. (5.8)

For simplicity, we define Gik:=I+αikQs+1h(Bik)1(λikAh)G_{i}^{k}:=I+\alpha_{i}^{k}Q_{s+1}^{h}(B_{i}^{k})^{-1}(\lambda_{i}^{k}-A^{h}). It is easy to see that I1,ik=Gikei,s+1kI^{k}_{1,i}=G_{i}^{k}e_{i,s+1}^{k}. In this paper, we call I1,ikI^{k}_{1,i} the principal error term and Gik:Us+1hUs+1hG_{i}^{k}:U_{s+1}^{h}\to U_{s+1}^{h} the principal error operator. Meanwhile, we call I2,ikI^{k}_{2,i} the additional error term.

5.1.1 Estimate of the principal error term I1,ikI^{k}_{1,i}

In this subsection, we shall use the theory of the two-level domain decomposition method to analyze the principal error term I1,ikI^{k}_{1,i}. Actually, we only need to estimate the spectral radius of the principal error operator GikG_{i}^{k}.

Theorem 5.2

Let Assumption 1 and Assumption 2 hold. Then for sufficiently small αik\alpha_{i}^{k},

GikvEik(1CδH)vEikvUs+1h,i=1,2,,s.||G_{i}^{k}v||_{E_{i}^{k}}\leq(1-C\frac{\delta}{H})||v||_{E_{i}^{k}}\ \ \ \ \ \forall\ v\in U_{s+1}^{h},\ \ i=1,2,...,s. (5.9)

First of all, we give two useful lemmas. The first lemma (Lemma 5.3) illustrates that the principal error operator Gik:Us+1hUs+1hG_{i}^{k}:U_{s+1}^{h}\to U_{s+1}^{h} is symmetric and positive definite with respect to (,)Eik(\cdot,\cdot)_{E_{i}^{k}}. The second lemma (Lemma 5.4) gives a stable spacial decomposition for the error subspace Us+1hU_{s+1}^{h} instead of the whole space VhV^{h}. Hence, the constructions of both coarse component and local fine components in this paper are different from those in [32].

Lemma 5.3

Under the same assumptions as in Theorem 5.2, for any i(i=1,2,,s)i\ (i=1,2,...,s), the operator Gik:Us+1hUs+1hG_{i}^{k}:U_{s+1}^{h}\to U_{s+1}^{h} is symmetric with respect to (,)Eik(\cdot,\cdot)_{E_{i}^{k}}. Furthermore, if αik\alpha_{i}^{k} is sufficiently small, the operator Gik:Us+1hUs+1hG_{i}^{k}:U_{s+1}^{h}\to U_{s+1}^{h} is positive definite.

Proof.  We first prove that the operator Gik:Us+1hUs+1hG_{i}^{k}:U_{s+1}^{h}\to U_{s+1}^{h} is symmetric with respect to (,)Eik(\cdot,\cdot)_{E_{i}^{k}}. Since the operators (B0,ik)1(B_{0,i}^{k})^{-1} and (Bl,ik)1(l=1,2,,N)(B_{l,i}^{k})^{-1}(l=1,2,...,N) are symmetric with respect to b(,)b(\cdot,\cdot), we have

(Qs+1h(Bik)1(λikAh)v,w)Eik=((Bik)1(λikAh)v,w)Eik\displaystyle\ \ \ \ (Q_{s+1}^{h}(B_{i}^{k})^{-1}(\lambda_{i}^{k}-A^{h})v,w)_{E_{i}^{k}}=((B_{i}^{k})^{-1}(\lambda_{i}^{k}-A^{h})v,w)_{E_{i}^{k}}
=b((Ahλik)v,(Bik)1(λikAh)w)=(v,Qs+1h(Bik)1(λikAh)w)Eik,v,wUs+1h,\displaystyle=b((A^{h}-\lambda_{i}^{k})v,(B_{i}^{k})^{-1}(\lambda_{i}^{k}-A^{h})w)=(v,Q_{s+1}^{h}(B_{i}^{k})^{-1}(\lambda_{i}^{k}-A^{h})w)_{E_{i}^{k}},\ \ \ \ \forall\ v,w\in U_{s+1}^{h}, (5.10)

which means that the operator Gik:Us+1hUs+1hG_{i}^{k}:U_{s+1}^{h}\to U_{s+1}^{h} is symmetric with respect to (,)Eik(\cdot,\cdot)_{E_{i}^{k}}.

Next, for any i(i=1,2,,s)i\ (i=1,2,...,s), define an operator T0,ik:Us+1hUs+1HT_{0,i}^{k}:U_{s+1}^{h}\to U_{s+1}^{H} such that for any vUs+1hv\in U_{s+1}^{h},

(T0,ikv,w)Eik=(v,w)EikwUs+1H.(T_{0,i}^{k}v,w)_{E_{i}^{k}}=(v,w)_{E_{i}^{k}}\ \ \ \ \ \ \forall\ w\in U_{s+1}^{H}. (5.11)

By (4.2) and the Lax-Milgram Theorem, we know that the operator T0,ikT_{0,i}^{k} is well-defined. Similarly, we may define some operators Tl,ik:Us+1hV(l)(l=1,2,,N)T_{l,i}^{k}:U_{s+1}^{h}\to V^{(l)}\ (l=1,2,...,N) such that for any vUs+1hv\in U_{s+1}^{h},

(Tl,ikv,w)Eik=(v,w)EikwV(l).(T_{l,i}^{k}v,w)_{E_{i}^{k}}=(v,w)_{E_{i}^{k}}\ \ \ \ \ \ \forall\ w\in V^{(l)}. (5.12)

By (3.1) and the Lax-Milgram Theorem, the operators Tl,ik(l=1,2,,N)T_{l,i}^{k}\ (l=1,2,...,N) are also well-defined. It is easy to check that T0,ik=(B0,ik)1Qs+1HQH(Ahλik)T_{0,i}^{k}=(B_{0,i}^{k})^{-1}Q_{s+1}^{H}Q^{H}(A^{h}-\lambda_{i}^{k}) and Tl,ik=(Bl,ik)1Q(l)(Ahλik)T_{l,i}^{k}=(B_{l,i}^{k})^{-1}Q^{(l)}(A^{h}-\lambda_{i}^{k}). Moreover,

Gik=I+αikQs+1h(Bik)1(λikAh)=IαikQs+1hT0,ikαikl=1NQs+1hTl,ik.G_{i}^{k}=I+\alpha_{i}^{k}Q_{s+1}^{h}(B_{i}^{k})^{-1}(\lambda_{i}^{k}-A^{h})=I-\alpha_{i}^{k}Q_{s+1}^{h}T_{0,i}^{k}-\alpha_{i}^{k}\sum_{l=1}^{N}Q_{s+1}^{h}T_{l,i}^{k}.

For any vUs+1h,v\in U_{s+1}^{h}, by (5.11) and (5.12), we have

(Gikv,v)Eik\displaystyle(G_{i}^{k}v,v)_{E_{i}^{k}} =vEik2αikT0,ikvEik2αikl=1NTl,ikvEik2.\displaystyle=||v||_{E_{i}^{k}}^{2}-\alpha_{i}^{k}||T_{0,i}^{k}v||_{E_{i}^{k}}^{2}-\alpha_{i}^{k}\sum_{l=1}^{N}||T_{l,i}^{k}v||_{E_{i}^{k}}^{2}. (5.13)

For the second term of (5.13), by the Cauchy-Schwarz inequality, we get

T0,ikvEik2=(T0,ikv,v)Eik=(Qs+1hT0,ikv,v)EikQs+1hT0,ikvEikvEik\displaystyle\ \ \ \ ||T_{0,i}^{k}v||_{E_{i}^{k}}^{2}=(T_{0,i}^{k}v,v)_{E_{i}^{k}}=(Q_{s+1}^{h}T_{0,i}^{k}v,v)_{E_{i}^{k}}\leq||Q_{s+1}^{h}T_{0,i}^{k}v||_{E_{i}^{k}}||v||_{E_{i}^{k}}
Qs+1hT0,ikvavEikT0,ikvavEikβ(λs+1H)T0,ikvEikvEik,\displaystyle\leq||Q_{s+1}^{h}T_{0,i}^{k}v||_{a}||v||_{E_{i}^{k}}\leq||T_{0,i}^{k}v||_{a}||v||_{E_{i}^{k}}\leq\sqrt{\beta(\lambda_{s+1}^{H})}\ ||T_{0,i}^{k}v||_{E_{i}^{k}}||v||_{E_{i}^{k}}, (5.14)

which yields

T0,ikvEik2β(λs+1H)vEik2.||T_{0,i}^{k}v||_{E_{i}^{k}}^{2}\leq\beta(\lambda_{s+1}^{H})||v||_{E_{i}^{k}}^{2}. (5.15)

For the third term of (5.13), by the Cauchy-Schwarz inequality, we dedcue

l=1NTl,ikvEik2=l=1N(Tl,ikv,v)Eik=(Qs+1hl=1NTl,ikv,v)EikQs+1hl=1NTl,ikvEikvEik.\displaystyle\sum_{l=1}^{N}||T_{l,i}^{k}v||_{E_{i}^{k}}^{2}=\sum_{l=1}^{N}(T_{l,i}^{k}v,v)_{E_{i}^{k}}=(Q_{s+1}^{h}\sum_{l=1}^{N}T_{l,i}^{k}v,v)_{E_{i}^{k}}\leq||Q_{s+1}^{h}\sum_{l=1}^{N}T_{l,i}^{k}v||_{E_{i}^{k}}||v||_{E_{i}^{k}}. (5.16)

By Lemma 2.3, we get

Qs+1hl=1NTl,ikvEik2l=1NTl,ikva2N0l=1NTl,ikva2N0max1lNβ(λ1,lh)l=1NTl,ikvEik2,\displaystyle||Q_{s+1}^{h}\sum_{l=1}^{N}T_{l,i}^{k}v||_{E_{i}^{k}}^{2}\leq||\sum_{l=1}^{N}T_{l,i}^{k}v||_{a}^{2}\leq N_{0}\sum_{l=1}^{N}||T_{l,i}^{k}v||_{a}^{2}\leq N_{0}\max_{1\leq l\leq N}\beta(\lambda_{1,l}^{h})\sum_{l=1}^{N}||T_{l,i}^{k}v||_{E_{i}^{k}}^{2}, (5.17)

where λ1,lh=λmin(A(l))=O(Hl2)\lambda_{1,l}^{h}=\lambda_{min}(A^{(l)})=O(H_{l}^{-2}). Using (5.16) and (5.17), we obtain

l=1NTl,ikvEik2N0max1lNβ(λ1,lh)vEik2.\sum_{l=1}^{N}||T_{l,i}^{k}v||_{E_{i}^{k}}^{2}\leq N_{0}\max_{1\leq l\leq N}\beta(\lambda_{1,l}^{h})||v||_{E_{i}^{k}}^{2}. (5.18)

Combining (5.13), (5.15) and (5.18), we know that for any vUs+1hv\in U_{s+1}^{h},

(Gikv,v)Eik\displaystyle(G_{i}^{k}v,v)_{E_{i}^{k}} =vEik2αikT0,ikvEik2αikl=1NTl,ikvEik2\displaystyle=||v||_{E_{i}^{k}}^{2}-\alpha_{i}^{k}||T_{0,i}^{k}v||_{E_{i}^{k}}^{2}-\alpha_{i}^{k}\sum_{l=1}^{N}||T_{l,i}^{k}v||_{E_{i}^{k}}^{2}
{1αik(β(λs+1H)+N0max1lNβ(λ1,lh))}vEik2.\displaystyle\geq\{1-\alpha_{i}^{k}(\beta(\lambda_{s+1}^{H})+N_{0}\max_{1\leq l\leq N}\beta(\lambda_{1,l}^{h}))\}||v||_{E_{i}^{k}}^{2}.

Taking 0<αik<αi,0k=1β(λs+1H)+N0max1lNβ(λ1,lh),0<\alpha_{i}^{k}<\alpha_{i,0}^{k}=\frac{1}{\beta(\lambda_{s+1}^{H})+N_{0}\max_{1\leq l\leq N}\beta(\lambda_{1,l}^{h})}, we complete the proof of this lemma. \Box

Remark 5.2

By Lemma 2.3, (5.17) and (5.18), we have

l=1NTl,ikva2N0l=1NTl,ikva2Cl=1NTl,ikvEik2CvEik2vUs+1h.\displaystyle||\sum_{l=1}^{N}T_{l,i}^{k}v||_{a}^{2}\leq N_{0}\sum_{l=1}^{N}||T_{l,i}^{k}v||_{a}^{2}\leq C\sum_{l=1}^{N}||T_{l,i}^{k}v||_{E_{i}^{k}}^{2}\leq C||v||_{E_{i}^{k}}^{2}\ \ \ \ \forall\ v\in U_{s+1}^{h}.

Moreover,

l=1NTl,ikvb2N0l=1NTl,ikvb2CH2l=1NTl,ikva2CH2vEik2vUs+1h.\displaystyle||\sum_{l=1}^{N}T_{l,i}^{k}v||_{b}^{2}\leq N_{0}\sum_{l=1}^{N}||T_{l,i}^{k}v||_{b}^{2}\leq CH^{2}\sum_{l=1}^{N}||T_{l,i}^{k}v||_{a}^{2}\leq CH^{2}||v||_{E_{i}^{k}}^{2}\ \ \ \ \forall\ v\in U_{s+1}^{h}.
Lemma 5.4

Under the same assumptions as in Theorem 5.2, for any vUs+1hv\in U_{s+1}^{h}, there exist w0Us+1Hw_{0}\in U_{s+1}^{H} and w(l)V(l)(l=1,2,,N),w^{(l)}\in V^{(l)}\ (l=1,2,...,N), such that

v=Qs+1hw0+l=1NQs+1hw(l),v=Q_{s+1}^{h}w_{0}+\sum_{l=1}^{N}Q_{s+1}^{h}w^{(l)},

and

(w0,w0)Eik+l=1N(w(l),w(l))EikC(1+Hδ)(v,v)Eik,i=1,2,,s.(w_{0},w_{0})_{E_{i}^{k}}+\sum_{l=1}^{N}(w^{(l)},w^{(l)})_{E_{i}^{k}}\leq C(1+\frac{H}{\delta})(v,v)_{E_{i}^{k}},\ \ i=1,2,...,s. (5.19)

Proof.  For any vUs+1hv\in U_{s+1}^{h}, set w0=Qs+1HQHvw_{0}=Q_{s+1}^{H}Q^{H}v and w(l)=Ih(θl(vw0))w^{(l)}=I^{h}(\theta_{l}(v-w_{0})), where Ih:C0(Ω¯)VhI^{h}:C^{0}(\bar{\Omega})\to V^{h} is the usual nodal interpolation operator. It is easy to check that

Qs+1hw0+l=1NQs+1hw(l)=Qs+1hw0+Qs+1hIh{(l=1Nθl)(vw0)}=v.Q_{s+1}^{h}w_{0}+\sum_{l=1}^{N}Q_{s+1}^{h}w^{(l)}=Q_{s+1}^{h}w_{0}+Q_{s+1}^{h}I^{h}\{(\sum_{l=1}^{N}\theta_{l})(v-w_{0})\}=v.

Next, we prove (5.19). For the coarse component, we deduce

w0Eik2Qs+1HQHva2QHva2Cva2CvEik2.\displaystyle||w_{0}||_{E_{i}^{k}}^{2}\leq||Q_{s+1}^{H}Q^{H}v||_{a}^{2}\leq||Q^{H}v||_{a}^{2}\leq C||v||^{2}_{a}\leq C||v||^{2}_{E_{i}^{k}}. (5.20)

For the local fine components, by the property of the operator IhI^{h} (see Lemma 3.9 in [32]), we have

l=1N(w(l),w(l))Eikl=1Na(w(l),w(l))=l=1N|Ih(θl(vw0))|1,Ωl2\displaystyle\ \ \ \ \sum_{l=1}^{N}(w^{(l)},w^{(l)})_{E_{i}^{k}}\leq\sum_{l=1}^{N}a(w^{(l)},w^{(l)})=\sum_{l=1}^{N}|I^{h}(\theta_{l}(v-w_{0}))|_{1,\Omega_{l}^{{}^{\prime}}}^{2}
Cl=1N|θl(vw0)|1,Ωl2Cl=1N((vw0)b,Ωl2+1δl2vw0b,Ωl,δl2),\displaystyle\leq C\sum_{l=1}^{N}|\theta_{l}(v-w_{0})|_{1,\Omega_{l}^{{}^{\prime}}}^{2}\leq C\sum_{l=1}^{N}(||\nabla{(v-w_{0})}||_{b,\Omega_{l}^{{}^{\prime}}}^{2}+\frac{1}{\delta_{l}^{2}}||v-w_{0}||_{b,\Omega_{l,\delta_{l}}}^{2}), (5.21)

where vb,Ω~2=Ω~v2𝑑x,|v|1,Ω~2=Ω~vvdx||v||^{2}_{b,\widetilde{\Omega}}=\int_{\widetilde{\Omega}}v^{2}dx,\ |v|^{2}_{1,\widetilde{\Omega}}=\int_{\widetilde{\Omega}}\nabla{v}\cdot\nabla{v}dx for all Ω~Ω\widetilde{\Omega}\subset\Omega. On one hand, by (5.20), we get

l=1N(vw0)b,Ωl2C(vw0)b2C{va2+w0a2}CvEik2.\displaystyle\sum_{l=1}^{N}||\nabla{(v-w_{0})}||_{b,\Omega_{l}^{{}^{\prime}}}^{2}\leq C||\nabla{(v-w_{0})}||_{b}^{2}\leq C\{||v||_{a}^{2}+||w_{0}||_{a}^{2}\}\leq C||v||_{E_{i}^{k}}^{2}. (5.22)

On the other hand, by Lemma 2.4 and (5.22), we obtain

l=1N1δl2vw0b,Ωl,δl2\displaystyle\sum_{l=1}^{N}\frac{1}{\delta_{l}^{2}}||v-w_{0}||_{b,\Omega_{l,\delta_{l}}}^{2} Cl=1N{(1+Hlδl)|vw0|1,Ωl2+1Hlδlvw0b,Ωl2}\displaystyle\leq C\sum_{l=1}^{N}\{(1+\frac{H_{l}}{\delta_{l}})|v-w_{0}|^{2}_{1,\Omega_{l}^{{}^{\prime}}}+\frac{1}{H_{l}\delta_{l}}||v-w_{0}||^{2}_{b,\Omega_{l}^{{}^{\prime}}}\}
C(1+Hδ)vEik2+Cl=1N1Hlδlvw0b,Ωl2.\displaystyle\leq C(1+\frac{H}{\delta})||v||_{E_{i}^{k}}^{2}+C\sum_{l=1}^{N}\frac{1}{H_{l}\delta_{l}}||v-w_{0}||^{2}_{b,\Omega_{l}^{{}^{\prime}}}. (5.23)

Furthermore,

l=1N1Hlδlvw0b,Ωl21min1lN(Hlδl)l=1Nvw0b,Ωl2Cmin1lN(Hlδl)vw0b2.\displaystyle\sum_{l=1}^{N}\frac{1}{H_{l}\delta_{l}}||v-w_{0}||^{2}_{b,\Omega_{l}^{{}^{\prime}}}\leq\frac{1}{\min_{1\leq l\leq N}{(H_{l}\delta_{l}})}\sum_{l=1}^{N}||v-w_{0}||^{2}_{b,\Omega_{l}^{{}^{\prime}}}\leq\frac{C}{\min_{1\leq l\leq N}{(H_{l}\delta_{l}})}||v-w_{0}||^{2}_{b}. (5.24)

By (4.5) and the Poincaré inequality, we get

vw0b\displaystyle||v-w_{0}||_{b} vQHvb+QsHQHvbCHva+CH2vbCHvEik,\displaystyle\leq||v-Q^{H}v||_{b}+||Q_{s}^{H}Q^{H}v||_{b}\leq CH||v||_{a}+CH^{2}||v||_{b}\leq CH||v||_{E_{i}^{k}},

which, together with (5.23), (5.24) and the fact that 𝒥H\mathcal{J}_{H} is quasi-uniform, yields

l=1N1δl2vw0b,Ωl,δl2C(1+Hδ)vEik2.\displaystyle\sum_{l=1}^{N}\frac{1}{\delta_{l}^{2}}||v-w_{0}||_{b,\Omega_{l,\delta_{l}}}^{2}\leq C(1+\frac{H}{\delta})||v||_{E_{i}^{k}}^{2}. (5.25)

Combining (5.20),(5.21),(5.22) and (5.25) together, we complete the proof of (5.19). \Box

Remark 5.3

After carefully checking our proof of Lemma 5.4, we know that the argument of the proof may be extended to the case of the fourth order symmetric elliptic operator. For the case of small overlap, we have the similar result as Lemma 5.4, and we only need to modify (5.19) to

(w0,w0)Eik+l=1N(w(l),w(l))EikC(1+H3δ3)(v,v)Eik,i=1,2,,s.(w_{0},w_{0})_{E_{i}^{k}}+\sum_{l=1}^{N}(w^{(l)},w^{(l)})_{E_{i}^{k}}\leq C(1+\frac{H^{3}}{\delta^{3}})(v,v)_{E_{i}^{k}},\ \ i=1,2,...,s.

Proof of Theorem 5.2: For any vUs+1hv\in U_{s+1}^{h}, by Lemma 5.4, there exist w0Us+1Hw_{0}\in U_{s+1}^{H} and wlV(l)w_{l}\in V^{(l)} such that

v=Qs+1hw0+l=1NQs+1hwlandl=0NwlEik2C(1+Hδ)vEik2.v=Q_{s+1}^{h}w_{0}+\sum_{l=1}^{N}Q_{s+1}^{h}w_{l}\ \ \ \text{and}\ \ \sum_{l=0}^{N}||w_{l}||^{2}_{E_{i}^{k}}\leq C(1+\frac{H}{\delta})||v||_{E_{i}^{k}}^{2}. (5.26)

By (5.11), (5.12), (5.16), (5.26) and the Cauchy-Schwarz inequality, we may obtain

(v,v)EikC(1+Hδ)(Qs+1hl=0NTl,ikv,v)Eik.(v,v)_{E_{i}^{k}}\leq C(1+\frac{H}{\delta})(Q_{s+1}^{h}\sum_{l=0}^{N}T_{l,i}^{k}v,v)_{E_{i}^{k}}. (5.27)

Moreover,

(Gikv,v)Eik\displaystyle(G_{i}^{k}v,v)_{E_{i}^{k}} =(v,v)Eikαik(Qs+1hl=0NTl,ikv,v)Eik\displaystyle=(v,v)_{E_{i}^{k}}-\alpha_{i}^{k}(Q_{s+1}^{h}\sum_{l=0}^{N}T_{l,i}^{k}v,v)_{E_{i}^{k}}
{1αikC(1+Hδ)}(v,v)Eik(1CδH)(v,v)Eik.\displaystyle\leq\{1-\frac{\alpha_{i}^{k}}{C(1+\frac{H}{\delta})}\}(v,v)_{E_{i}^{k}}\leq(1-C\frac{\delta}{H})(v,v)_{E_{i}^{k}}.

By Lemma 5.3, we obtain

GikvEikGikEikvEik=supv0,vUs+1h(Gikv,v)Eik(v,v)EikvEik(1CδH)vEik,\displaystyle||G_{i}^{k}v||_{E_{i}^{k}}\leq||G_{i}^{k}||_{E_{i}^{k}}||v||_{E_{i}^{k}}=\sup_{v\neq 0,v\in U_{s+1}^{h}}\frac{(G_{i}^{k}v,v)_{E_{i}^{k}}}{(v,v)_{E_{i}^{k}}}||v||_{E_{i}^{k}}\leq(1-C\frac{\delta}{H})||v||_{E_{i}^{k}},

which completes the proof of this theorem. \Box

5.1.2 Estimate of the additional error term I2,ikI_{2,i}^{k}

In this subsection, we give an estimate for the additional error term I2,ikI_{2,i}^{k}.

For convenience, denote by Ri,s+1k:=Qs+1h(B0,ik)1Qs+1HQHR_{i,s+1}^{k}:=Q_{s+1}^{h}(B_{0,i}^{k})^{-1}Q_{s+1}^{H}Q^{H} and R~i,s+1k:=(B0,ik)1Qs+1HQH\widetilde{R}_{i,s+1}^{k}:=(B_{0,i}^{k})^{-1}Q_{s+1}^{H}Q^{H}. Similarly, denote by

Si,s+1k:=Qs+1hl=1N(Bl,ik)1Q(l)andS~i,s+1k:=l=1N(Bl,ik)1Q(l).S_{i,s+1}^{k}:=Q_{s+1}^{h}\sum_{l=1}^{N}(B_{l,i}^{k})^{-1}Q^{(l)}\ \text{and}\ \widetilde{S}_{i,s+1}^{k}:=\sum_{l=1}^{N}(B_{l,i}^{k})^{-1}Q^{(l)}.

Hence, the additional error term I2,ikI_{2,i}^{k} defined in (5.8) may be written as

I2,ik=αik(Ri,s+1k+Si,s+1k)(λikAh)Qshuik+αikQs+1hQUk(Bik)1rik.\displaystyle I_{2,i}^{k}=-\alpha_{i}^{k}(R_{i,s+1}^{k}+S_{i,s+1}^{k})(\lambda_{i}^{k}-A^{h})Q_{s}^{h}u_{i}^{k}+\alpha_{i}^{k}Q_{s+1}^{h}Q_{U^{k}}(B_{i}^{k})^{-1}r_{i}^{k}. (5.28)
Theorem 5.5

If Assumption 1 and Assumption 2 hold, then

I2,ikEikCHei,s+1kEik+CH2gika.||I_{2,i}^{k}||_{E_{i}^{k}}\leq CH||e_{i,s+1}^{k}||_{E_{i}^{k}}+CH^{2}||g_{i}^{k}||_{a}.

Proof.  Firstly, we estimate the first term of I2,ikI_{2,i}^{k} in (5.28). For any wUshw\in U_{s}^{h}, by (4.6), (5.15) and the Cauchy-Schwarz inequality , we get

Ri,s+1kwEik2=b(Qs+1h(B0,ik)1Qs+1HQHw,(Ahλik)Ri,s+1kw)\displaystyle\ \ \ \ ||R_{i,s+1}^{k}w||_{E_{i}^{k}}^{2}=b(Q_{s+1}^{h}(B_{0,i}^{k})^{-1}Q_{s+1}^{H}Q^{H}w,(A^{h}-\lambda_{i}^{k})R_{i,s+1}^{k}w)
=b((B0,ik)1Qs+1HQHw,(Ahλik)Ri,s+1kw)=b(Qs+1HQHw,T0,ikRi,s+1kw)\displaystyle=b((B_{0,i}^{k})^{-1}Q_{s+1}^{H}Q^{H}w,(A^{h}-\lambda_{i}^{k})R_{i,s+1}^{k}w)=b(Q_{s+1}^{H}Q^{H}w,T_{0,i}^{k}R_{i,s+1}^{k}w)
Qs+1HQHwbT0,ikRi,s+1kwbCH2wbT0,ikRi,s+1kwEikCH2wbRi,s+1kwEik,\displaystyle\leq||Q_{s+1}^{H}Q^{H}w||_{b}||T_{0,i}^{k}R_{i,s+1}^{k}w||_{b}\leq CH^{2}||w||_{b}||T_{0,i}^{k}R_{i,s+1}^{k}w||_{E_{i}^{k}}\leq CH^{2}||w||_{b}||R_{i,s+1}^{k}w||_{E_{i}^{k}},

which means that Ri,s+1kwEikCH2wb.||R_{i,s+1}^{k}w||_{E_{i}^{k}}\leq CH^{2}||w||_{b}. In particular, we take w=(λikAh)Qshuikw=(\lambda_{i}^{k}-A^{h})Q_{s}^{h}u_{i}^{k}. By Lemma 4.7, we know

Ri,s+1k(λikAh)QshuikEikCH2(λikAh)QshuikbCH2gika.\displaystyle||R_{i,s+1}^{k}(\lambda_{i}^{k}-A^{h})Q_{s}^{h}u_{i}^{k}||_{E_{i}^{k}}\leq CH^{2}||(\lambda_{i}^{k}-A^{h})Q_{s}^{h}u_{i}^{k}||_{b}\leq CH^{2}||g_{i}^{k}||_{a}. (5.29)

For any wUshw\in U_{s}^{h}, by the Poincaré inequality in V(l)V^{(l)} and (5.18), we obtain

Si,s+1kwEik2\displaystyle||S_{i,s+1}^{k}w||_{E_{i}^{k}}^{2} =l=1Nb((Bl,ik)1Q(l)w,(Ahλk)Si,s+1kw)=l=1Nb(Q(l)w,Tl,ikSi,s+1kw)\displaystyle=\sum_{l=1}^{N}b((B_{l,i}^{k})^{-1}Q^{(l)}w,(A^{h}-\lambda^{k})S_{i,s+1}^{k}w)=\sum_{l=1}^{N}b(Q^{(l)}w,T_{l,i}^{k}S_{i,s+1}^{k}w)
{l=1N||Q(l)w||b,Ωl2}12{l=1N||Tl,ikSi,s+1kw||b,Ωl2}12CH2waSi,s+1kwEik,\displaystyle\leq\{\sum_{l=1}^{N}||Q^{(l)}w||_{b,\Omega_{l}^{{}^{\prime}}}^{2}\}^{\frac{1}{2}}\{\sum_{l=1}^{N}||T_{l,i}^{k}S_{i,s+1}^{k}w||_{b,\Omega_{l}^{{}^{\prime}}}^{2}\}^{\frac{1}{2}}\leq CH^{2}||w||_{a}||S_{i,s+1}^{k}w||_{E_{i}^{k}},

which means that Si,s+1kwEikCH2waCλshH2wb.||S_{i,s+1}^{k}w||_{E_{i}^{k}}\leq CH^{2}||w||_{a}\leq C\sqrt{\lambda_{s}^{h}}H^{2}||w||_{b}. Specially, we take w=(λikAh)Qshuikw=(\lambda_{i}^{k}-A^{h})Q_{s}^{h}u_{i}^{k}. By Lemma 4.7, we know

Si,s+1k(λikAh)QshuikEikCH2(λikAh)QshuikbCH2gika,||S_{i,s+1}^{k}(\lambda_{i}^{k}-A^{h})Q_{s}^{h}u_{i}^{k}||_{E_{i}^{k}}\leq CH^{2}||(\lambda_{i}^{k}-A^{h})Q_{s}^{h}u_{i}^{k}||_{b}\leq CH^{2}||g_{i}^{k}||_{a}, (5.30)

which, together with (5.29), yields

αik(Ri,s+1k+Si,s+1k)(λikAh)QshuikEikCH2gika.||-\alpha_{i}^{k}(R_{i,s+1}^{k}+S_{i,s+1}^{k})(\lambda_{i}^{k}-A^{h})Q_{s}^{h}u_{i}^{k}||_{E_{i}^{k}}\leq CH^{2}||g_{i}^{k}||_{a}. (5.31)

Secondly, we estimate the second term of I2,ikI_{2,i}^{k} in (5.28). We divide it into three terms:

Qs+1hQUk(Bik)1rik\displaystyle Q_{s+1}^{h}Q_{U^{k}}(B_{i}^{k})^{-1}r_{i}^{k} =Qs+1hQUkR~i,s+1k(λikAh)Qshuik+Qs+1hQUkS~i,s+1k(λikAh)Qshuik\displaystyle=Q_{s+1}^{h}Q_{U^{k}}\widetilde{R}_{i,s+1}^{k}(\lambda_{i}^{k}-A^{h})Q_{s}^{h}u_{i}^{k}+Q_{s+1}^{h}Q_{U^{k}}\widetilde{S}_{i,s+1}^{k}(\lambda_{i}^{k}-A^{h})Q_{s}^{h}u_{i}^{k}
+Qs+1hQUk(Bik)1(Ahλik)ei,s+1k=:L1+L2+L3.\displaystyle\ \ \ \ +Q_{s+1}^{h}Q_{U^{k}}(B_{i}^{k})^{-1}(A^{h}-\lambda_{i}^{k})e_{i,s+1}^{k}=:L_{1}+L_{2}+L_{3}. (5.32)

We estimate (5.32) one by one. Denote by ri,sk:=(λikAh)Qshuikr_{i,s}^{k}:=(\lambda_{i}^{k}-A^{h})Q_{s}^{h}u_{i}^{k} and ri,s+1k:=(Ahλik)ei,s+1kr_{i,s+1}^{k}:=(A^{h}-\lambda_{i}^{k})e_{i,s+1}^{k}, and we know rik=ri,sk+ri,s+1kr_{i}^{k}=r_{i,s}^{k}+r_{i,s+1}^{k}. For L1L_{1} in (5.32), by Lemma 4.1, Corollary 4.5 and Lemma 4.6, we have

L1Eik\displaystyle||L_{1}||_{E_{i}^{k}} Qs+1hQUkQs+1hR~i,s+1kri,ska+Qs+1hQUkQshR~i,s+1kri,ska\displaystyle\leq||Q_{s+1}^{h}Q_{U^{k}}Q_{s+1}^{h}\widetilde{R}_{i,s+1}^{k}r_{i,s}^{k}||_{a}+||Q_{s+1}^{h}Q_{U^{k}}Q_{s}^{h}\widetilde{R}_{i,s+1}^{k}r_{i,s}^{k}||_{a}
=Qs+1hPUkQUkQs+1hR~i,s+1kri,ska+Qs+1hPUkQUkQshR~i,s+1kri,ska\displaystyle=||Q_{s+1}^{h}P_{U^{k}}Q_{U^{k}}Q_{s+1}^{h}\widetilde{R}_{i,s+1}^{k}r_{i,s}^{k}||_{a}+||Q_{s+1}^{h}P_{U^{k}}Q_{U^{k}}Q_{s}^{h}\widetilde{R}_{i,s+1}^{k}r_{i,s}^{k}||_{a}
CHRi,s+1kri,ska+CHQshR~i,s+1kri,ska.\displaystyle\leq CH||R_{i,s+1}^{k}r_{i,s}^{k}||_{a}+CH||Q_{s}^{h}\widetilde{R}_{i,s+1}^{k}r_{i,s}^{k}||_{a}. (5.33)

Note that

QshR~i,s+1kri,ska\displaystyle||Q_{s}^{h}\widetilde{R}_{i,s+1}^{k}r_{i,s}^{k}||_{a} λshQsh(B0,ik)1Qs+1HQHri,skbCH2(B0,ik)1Qs+1HQHri,skb\displaystyle\leq\sqrt{\lambda_{s}^{h}}||Q_{s}^{h}(B_{0,i}^{k})^{-1}Q_{s+1}^{H}Q^{H}r_{i,s}^{k}||_{b}\leq CH^{2}||(B_{0,i}^{k})^{-1}Q_{s+1}^{H}Q^{H}r_{i,s}^{k}||_{b}
CH2λs+1HλikQs+1HQHri,skbCH4(λikAh)QshuikbCH4gika.\displaystyle\leq\frac{CH^{2}}{\lambda_{s+1}^{H}-\lambda_{i}^{k}}||Q_{s+1}^{H}Q^{H}r_{i,s}^{k}||_{b}\leq CH^{4}||(\lambda_{i}^{k}-A^{h})Q_{s}^{h}u_{i}^{k}||_{b}\leq CH^{4}||g_{i}^{k}||_{a}. (5.34)

By (5.29), (5.33) and (5.34), we obtain

L1EikCH3gika+CH5gikaCH3gika.||L_{1}||_{E_{i}^{k}}\leq CH^{3}||g_{i}^{k}||_{a}+CH^{5}||g_{i}^{k}||_{a}\leq CH^{3}||g_{i}^{k}||_{a}. (5.35)

For L2L_{2} in (5.32), we deduce

L2Eik\displaystyle||L_{2}||_{E_{i}^{k}} Qs+1hQUkQs+1hS~i,s+1kri,ska+Qs+1hQUkQshS~i,s+1kri,ska\displaystyle\leq||Q_{s+1}^{h}Q_{U^{k}}Q_{s+1}^{h}\widetilde{S}_{i,s+1}^{k}r_{i,s}^{k}||_{a}+||Q_{s+1}^{h}Q_{U^{k}}Q_{s}^{h}\widetilde{S}_{i,s+1}^{k}r_{i,s}^{k}||_{a}
=Qs+1hPUkQUkQs+1hS~i,s+1kri,ska+Qs+1hPUkQUkQshS~i,s+1kri,ska\displaystyle=||Q_{s+1}^{h}P_{U^{k}}Q_{U^{k}}Q_{s+1}^{h}\widetilde{S}_{i,s+1}^{k}r_{i,s}^{k}||_{a}+||Q_{s+1}^{h}P_{U^{k}}Q_{U^{k}}Q_{s}^{h}\widetilde{S}_{i,s+1}^{k}r_{i,s}^{k}||_{a}
CHSi,s+1kri,ska+CHQshS~i,s+1kri,ska.\displaystyle\leq CH||S_{i,s+1}^{k}r_{i,s}^{k}||_{a}+CH||Q_{s}^{h}\widetilde{S}_{i,s+1}^{k}r_{i,s}^{k}||_{a}. (5.36)

In addition, by Lemma 2.3, Lemma 4.7 and the Poincaré inequality in V(l)V^{(l)}, we get

QshS~i,s+1kri,ska2\displaystyle||Q_{s}^{h}\widetilde{S}_{i,s+1}^{k}r_{i,s}^{k}||_{a}^{2} λshS~i,s+1kri,skb2CN0l=1N(Bl,ik)1Q(l)ri,skb2CH4l=1NQ(l)ri,skb2\displaystyle\leq\lambda_{s}^{h}||\widetilde{S}_{i,s+1}^{k}r_{i,s}^{k}||_{b}^{2}\leq CN_{0}\sum_{l=1}^{N}||(B_{l,i}^{k})^{-1}Q^{(l)}r_{i,s}^{k}||^{2}_{b}\leq CH^{4}\sum_{l=1}^{N}||Q^{(l)}r_{i,s}^{k}||^{2}_{b}
CH6l=1NQ(l)ri,ska2CH6ri,ska2CλshH6ri,skb2CH6gika2.\displaystyle\leq CH^{6}\sum_{l=1}^{N}||Q^{(l)}r_{i,s}^{k}||^{2}_{a}\leq CH^{6}||r_{i,s}^{k}||_{a}^{2}\leq C\lambda_{s}^{h}H^{6}||r_{i,s}^{k}||_{b}^{2}\leq CH^{6}||g_{i}^{k}||_{a}^{2}. (5.37)

Combining (5.30), (5.36) and (5.37), we obtain

L2EikCH3gika+CH4gikaCH3gika.||L_{2}||_{E_{i}^{k}}\leq CH^{3}||g_{i}^{k}||_{a}+CH^{4}||g_{i}^{k}||_{a}\leq CH^{3}||g_{i}^{k}||_{a}. (5.38)

For L3L_{3} in (5.32), by Lemma 4.2, Remark 5.2 and (5.15), we have

L3Eik\displaystyle||L_{3}||_{E_{i}^{k}} Qs+1hQUkQs+1h(Bik)1ri,s+1ka+Qs+1hQUkQsh(Bik)1ri,s+1ka\displaystyle\leq||Q_{s+1}^{h}Q_{U^{k}}Q_{s+1}^{h}(B_{i}^{k})^{-1}r_{i,s+1}^{k}||_{a}+||Q_{s+1}^{h}Q_{U^{k}}Q_{s}^{h}(B_{i}^{k})^{-1}r_{i,s+1}^{k}||_{a}
=Qs+1hPUkQUkQs+1h(Bik)1ri,s+1ka+Qs+1hPUkQUkQsh(Bik)1ri,s+1ka\displaystyle=||Q_{s+1}^{h}P_{U^{k}}Q_{U^{k}}Q_{s+1}^{h}(B_{i}^{k})^{-1}r_{i,s+1}^{k}||_{a}+||Q_{s+1}^{h}P_{U^{k}}Q_{U^{k}}Q_{s}^{h}(B_{i}^{k})^{-1}r_{i,s+1}^{k}||_{a}
CH(Bik)1ri,s+1ka+CHQsh(Bik)1ri,s+1ka\displaystyle\leq CH||(B_{i}^{k})^{-1}r_{i,s+1}^{k}||_{a}+CH||Q_{s}^{h}(B_{i}^{k})^{-1}r_{i,s+1}^{k}||_{a}
CHT0,ikei,s+1ka+CHl=1NTl,ikei,s+1ka+CHQshT0,ikei,s+1kb\displaystyle\leq CH||T_{0,i}^{k}e_{i,s+1}^{k}||_{a}+CH||\sum_{l=1}^{N}T_{l,i}^{k}e_{i,s+1}^{k}||_{a}+CH||Q_{s}^{h}T_{0,i}^{k}e_{i,s+1}^{k}||_{b}
+CHQshl=1NTl,ikei,s+1kbCHei,s+1kEik,\displaystyle\ \ \ \ +CH||Q_{s}^{h}\sum_{l=1}^{N}T_{l,i}^{k}e_{i,s+1}^{k}||_{b}\leq CH||e_{i,s+1}^{k}||_{E_{i}^{k}}, (5.39)

which, together with (5.32), (5.35), (5.38), yields

αikQs+1hQUk(Bik)1rikEikCHei,s+1kEik+CH3gika.||\alpha_{i}^{k}Q_{s+1}^{h}Q_{U^{k}}(B_{i}^{k})^{-1}r_{i}^{k}||_{E_{i}^{k}}\leq CH||e_{i,s+1}^{k}||_{E_{i}^{k}}+CH^{3}||g_{i}^{k}||_{a}. (5.40)

Finally, combining (5.28), (5.31) and (5.40), we may complete the proof of this theorem. \Box

Theorem 5.6

If Assumption 1 and Assumption 2 hold, we have

e~i,s+1k+1Eikc0(H)(1CδH)ei,s+1kEik+CH2gika,i=1,2,,s,||\widetilde{e}_{i,s+1}^{k+1}||_{E_{i}^{k}}\leq c_{0}(H)(1-C\frac{\delta}{H})||e_{i,s+1}^{k}||_{E_{i}^{k}}+CH^{2}||g_{i}^{k}||_{a},\ \ \ i=1,2,...,s,

where HH-dependent constant c0(H)(=1+CH1CδH)c_{0}(H)\ (=1+\frac{CH}{1-C\frac{\delta}{H}}) decreases monotonically to 11, as H0H\to 0.

Proof.  By (5.8), Theorem 5.2 and Theorem 5.5, we have

e~i,s+1k+1EikI1,ikEik+I2,ikEik=Gikei,s+1kEik+I2,ikEik\displaystyle\ \ \ \ ||\widetilde{e}_{i,s+1}^{k+1}||_{E_{i}^{k}}\leq||I_{1,i}^{k}||_{E_{i}^{k}}+||I_{2,i}^{k}||_{E_{i}^{k}}=||G_{i}^{k}e_{i,s+1}^{k}||_{E_{i}^{k}}+||I_{2,i}^{k}||_{E_{i}^{k}}
(1CδH)ei,s+1kEik+CHei,s+1kEik+CH2gika\displaystyle\leq(1-C\frac{\delta}{H})||e_{i,s+1}^{k}||_{E_{i}^{k}}+CH||e_{i,s+1}^{k}||_{E_{i}^{k}}+CH^{2}||g_{i}^{k}||_{a}
{(1CδH)+CH}ei,s+1kEik+CH2gika\displaystyle\leq\{(1-C\frac{\delta}{H})+CH\}||e_{i,s+1}^{k}||_{E_{i}^{k}}+CH^{2}||g_{i}^{k}||_{a}
=c0(H)(1CδH)ei,s+1kEik+CH2gika,\displaystyle=c_{0}(H)(1-C\frac{\delta}{H})||e_{i,s+1}^{k}||_{E_{i}^{k}}+CH^{2}||g_{i}^{k}||_{a},

where c0(H)(=1+CH1CδH)c_{0}(H)\ (=1+\frac{CH}{1-C\frac{\delta}{H}}) decreases monotonically to 11, as H0H\to 0. \Box

Remark 5.4

By Remark 5.2, (5.34), (5.37), (5.39) and the facts that (Bik)1=R~i,s+1k+S~i,s+1k(B_{i}^{k})^{-1}=\widetilde{R}_{i,s+1}^{k}+\widetilde{S}_{i,s+1}^{k} and rik=ri,sk+ri,s+1kr_{i}^{k}=r_{i,s}^{k}+r_{i,s+1}^{k}, we have

Qsh(Bik)1rikbCQsh(Bik)1rikaCHei,s+1kEik+CH3gika.||Q_{s}^{h}(B_{i}^{k})^{-1}r_{i}^{k}||_{b}\leq C||Q_{s}^{h}(B_{i}^{k})^{-1}r_{i}^{k}||_{a}\leq CH||e_{i,s+1}^{k}||_{E_{i}^{k}}+CH^{3}||g_{i}^{k}||_{a}.

Similarly, by Remark 5.2, (5.15) and (5.31), we get

Qs+1h(Bik)1rikbCQs+1h(Bik)1rikaCei,s+1kEik+CH2gika.||Q_{s+1}^{h}(B_{i}^{k})^{-1}r_{i}^{k}||_{b}\leq C||Q_{s+1}^{h}(B_{i}^{k})^{-1}r_{i}^{k}||_{a}\leq C||e_{i,s+1}^{k}||_{E_{i}^{k}}+CH^{2}||g_{i}^{k}||_{a}.

5.2 The proof of the main result

In this subsection, based on Theorem 5.6 in previous subsection, we first give an estimate for

i=1s(Rq(u~ik+1)Rq(Qshuik)),\sum_{i=1}^{s}(Rq(\widetilde{u}_{i}^{k+1})-Rq(Q_{s}^{h}u_{i}^{k})),

and then present a rigorous proof of Theorem 5.1.

Lemma 5.7

Let Assumption 1 and Assumption 2 hold. It holds that

i=1s(Rq(u~ik+1)Rq(Qshuik))γ0i=1s(λikRq(Qshuik))+CHi=1s(λikλih),\sum_{i=1}^{s}(Rq(\widetilde{u}_{i}^{k+1})-Rq(Q_{s}^{h}u_{i}^{k}))\leq\gamma_{0}\sum_{i=1}^{s}(\lambda_{i}^{k}-Rq(Q_{s}^{h}u_{i}^{k}))+CH\sum_{i=1}^{s}(\lambda_{i}^{k}-\lambda_{i}^{h}), (5.41)

where γ0=:(1CδH)2+CH.\gamma_{0}=:(1-C\frac{\delta}{H})^{2}+CH.

Proof.  Firstly, by the fact that u~ik+1b2=e~i,s+1k+1b2+Qshu~ik+1b2||\widetilde{u}_{i}^{k+1}||_{b}^{2}=||\widetilde{e}_{i,s+1}^{k+1}||_{b}^{2}+||Q_{s}^{h}\widetilde{u}_{i}^{k+1}||_{b}^{2}, we deduce

e~i,s+1k+1Eik2\displaystyle||\widetilde{e}_{i,s+1}^{k+1}||_{E_{i}^{k}}^{2} =b((Ahλik)u~ik+1,u~ik+1)b((Ahλik)Qshu~ik+1,Qshu~ik+1)\displaystyle=b((A^{h}-\lambda_{i}^{k})\widetilde{u}_{i}^{k+1},\widetilde{u}_{i}^{k+1})-b((A^{h}-\lambda_{i}^{k})Q_{s}^{h}\widetilde{u}_{i}^{k+1},Q_{s}^{h}\widetilde{u}_{i}^{k+1})
=(Rq(u~ik+1)Rq(Qshuik))u~ik+1b2+(Rq(Qshuik)λik)u~ik+1b2\displaystyle=(Rq(\widetilde{u}_{i}^{k+1})-Rq(Q_{s}^{h}u_{i}^{k}))||\widetilde{u}_{i}^{k+1}||_{b}^{2}+(Rq(Q_{s}^{h}u_{i}^{k})-\lambda_{i}^{k})||\widetilde{u}_{i}^{k+1}||_{b}^{2}
+(λikRq(Qshu~ik+1))Qshu~ik+1b2\displaystyle\ \ \ \ +(\lambda_{i}^{k}-Rq(Q_{s}^{h}\widetilde{u}_{i}^{k+1}))||Q_{s}^{h}\widetilde{u}_{i}^{k+1}||_{b}^{2}
=(Rq(u~ik+1)Rq(Qshuik))u~ik+1b2+(Rq(Qshuik)λik)e~i,s+1k+1b2\displaystyle=(Rq(\widetilde{u}_{i}^{k+1})-Rq(Q_{s}^{h}u_{i}^{k}))||\widetilde{u}_{i}^{k+1}||_{b}^{2}+(Rq(Q_{s}^{h}u_{i}^{k})-\lambda_{i}^{k})||\widetilde{e}_{i,s+1}^{k+1}||_{b}^{2}
+(Rq(Qshuik)Rq(Qshu~ik+1))Qshu~ik+1b2,\displaystyle\ \ \ \ +(Rq(Q_{s}^{h}u_{i}^{k})-Rq(Q_{s}^{h}\widetilde{u}_{i}^{k+1}))||Q_{s}^{h}\widetilde{u}_{i}^{k+1}||_{b}^{2}, (5.42)

which yields

(Rq(u~ik+1)Rq(Qshuik))u~ik+1b2\displaystyle(Rq(\widetilde{u}_{i}^{k+1})-Rq(Q_{s}^{h}u_{i}^{k}))||\widetilde{u}_{i}^{k+1}||_{b}^{2} ={e~i,s+1k+1Eik2+(λikRq(Qshuik))e~i,s+1k+1b2}\displaystyle=\{||\widetilde{e}_{i,s+1}^{k+1}||_{E_{i}^{k}}^{2}+(\lambda_{i}^{k}-Rq(Q_{s}^{h}u_{i}^{k}))||\widetilde{e}_{i,s+1}^{k+1}||_{b}^{2}\}
+(Rq(Qshu~ik+1)Rq(Qshuik))||Qshu~ik+1||b2=:J1+J2.\displaystyle\ \ \ +(Rq(Q_{s}^{h}\widetilde{u}_{i}^{k+1})-Rq(Q_{s}^{h}u_{i}^{k}))||Q_{s}^{h}\widetilde{u}_{i}^{k+1}||_{b}^{2}=:J_{1}+J_{2}. (5.43)

Secondly, we estimate J1J_{1} and J2J_{2} in (5.43) one by one. For J1J_{1}, by Lemma 4.7 and Theorem 5.6, we get

J1\displaystyle J_{1} e~i,s+1k+1Eik2+(λikRq(Qshuik))e~i,s+1k+1Eik2\displaystyle\leq||\widetilde{e}_{i,s+1}^{k+1}||_{E_{i}^{k}}^{2}+(\lambda_{i}^{k}-Rq(Q_{s}^{h}u_{i}^{k}))||\widetilde{e}_{i,s+1}^{k+1}||_{E_{i}^{k}}^{2}
{((1CδH)+CH)||ei,s+1k||Eik+CH2gika}2\displaystyle\leq\{((1-C\frac{\delta}{H})+CH)||e_{i,s+1}^{k}||_{E_{i}^{k}}+CH^{2}||g_{i}^{k}||_{a}\}^{2}
+CH2{C||ei,s+1k||Eik2+CH4gika2}\displaystyle\ \ \ \ +CH^{2}\{C||e_{i,s+1}^{k}||^{2}_{E_{i}^{k}}+CH^{4}||g_{i}^{k}||^{2}_{a}\}
γ0ei,s+1kEik2+CH2gika2γ0(λikRq(QUshuik))+CH2gika2.\displaystyle\leq\gamma_{0}||e_{i,s+1}^{k}||^{2}_{E_{i}^{k}}+CH^{2}||g_{i}^{k}||^{2}_{a}\leq\gamma_{0}(\lambda_{i}^{k}-Rq(Q_{U_{s}^{h}}u_{i}^{k}))+CH^{2}||g_{i}^{k}||^{2}_{a}. (5.44)

For convenience, denote by wik:=QshQk(Bik)1rikw_{i}^{k}:=Q_{s}^{h}Q_{\perp}^{k}(B_{i}^{k})^{-1}r_{i}^{k}. For J2J_{2} in (5.43), by (5.4), we deduce

b(Qshu~ik+1,Qshu~ik+1)=b(Qshuik,Qshuik)+2αikb(Qshuik,wik)+(αik)2b(wik,wik),b(Q_{s}^{h}\widetilde{u}_{i}^{k+1},Q_{s}^{h}\widetilde{u}_{i}^{k+1})=b(Q_{s}^{h}u_{i}^{k},Q_{s}^{h}u_{i}^{k})+2\alpha_{i}^{k}b(Q_{s}^{h}u_{i}^{k},w_{i}^{k})+(\alpha_{i}^{k})^{2}b(w_{i}^{k},w_{i}^{k}),

and

a(Qshu~ik+1,Qshu~ik+1)=a(Qshuik,Qshuik)+2αika(Qshuik,wik)+(αik)2a(wik,wik),a(Q_{s}^{h}\widetilde{u}_{i}^{k+1},Q_{s}^{h}\widetilde{u}_{i}^{k+1})=a(Q_{s}^{h}u_{i}^{k},Q_{s}^{h}u_{i}^{k})+2\alpha_{i}^{k}a(Q_{s}^{h}u_{i}^{k},w_{i}^{k})+(\alpha_{i}^{k})^{2}a(w_{i}^{k},w_{i}^{k}),

which yields

J2\displaystyle J_{2} =a(Qshu~ik+1,Qshu~ik+1)Rq(Qshuik)Qshu~ik+1b2\displaystyle=a(Q_{s}^{h}\widetilde{u}_{i}^{k+1},Q_{s}^{h}\widetilde{u}_{i}^{k+1})-Rq(Q_{s}^{h}u_{i}^{k})||Q_{s}^{h}\widetilde{u}_{i}^{k+1}||_{b}^{2}
=2αikb((Ahλik)Qshuik,wik)+2αikb((λikRq(Qshuik))Qshuik,wik)\displaystyle=2\alpha_{i}^{k}b((A^{h}-\lambda_{i}^{k})Q_{s}^{h}u_{i}^{k},w_{i}^{k})+2\alpha_{i}^{k}b((\lambda_{i}^{k}-Rq(Q_{s}^{h}u_{i}^{k}))Q_{s}^{h}u_{i}^{k},w_{i}^{k})
+(αik)2b((AhRq(Qshuik))wik,wik)=:J2,1+J2,2+J2,3.\displaystyle\ \ \ \ +(\alpha_{i}^{k})^{2}b((A^{h}-Rq(Q_{s}^{h}u_{i}^{k}))w_{i}^{k},w_{i}^{k})=:J_{2,1}+J_{2,2}+J_{2,3}. (5.45)

For J2,1J_{2,1} in (5.45), by the Cauchy-Schwarz inequality, Lemma 4.4, Lemma 4.6, Lemma 4.7 and Remark 5.4, we get

J2,1\displaystyle J_{2,1} C(Ahλik)QshuikbwikbCθbkgika(Bik)1rikb\displaystyle\leq C||(A^{h}-\lambda_{i}^{k})Q_{s}^{h}u_{i}^{k}||_{b}||w_{i}^{k}||_{b}\leq C\theta_{b}^{k}||g_{i}^{k}||_{a}||(B_{i}^{k})^{-1}r_{i}^{k}||_{b}
CHgika{C||ei,s+1k||Eik+CH2gika}CH(λikRq(Qshuik))+CHgika2.\displaystyle\leq CH||g_{i}^{k}||_{a}\{C||e_{i,s+1}^{k}||_{E_{i}^{k}}+CH^{2}||g_{i}^{k}||_{a}\}\leq CH(\lambda_{i}^{k}-Rq(Q_{s}^{h}u_{i}^{k}))+CH||g_{i}^{k}||_{a}^{2}. (5.46)

Similarly, for J2,2J_{2,2} in (5.45), we have

J2,2\displaystyle J_{2,2} C(λikRq(Qshuik))wikbCθbk(λikRq(Qshuik))(Bik)1rikb\displaystyle\leq C(\lambda_{i}^{k}-Rq(Q_{s}^{h}u_{i}^{k}))||w_{i}^{k}||_{b}\leq C\theta_{b}^{k}(\lambda_{i}^{k}-Rq(Q_{s}^{h}u_{i}^{k}))||(B_{i}^{k})^{-1}r_{i}^{k}||_{b}
CH2(λikRq(Qshuik))+CH4gika2.\displaystyle\leq CH^{2}(\lambda_{i}^{k}-Rq(Q_{s}^{h}u_{i}^{k}))+CH^{4}||g_{i}^{k}||_{a}^{2}. (5.47)

For J2,3J_{2,3} in (5.45), we deduce

J2,3\displaystyle J_{2,3} =(αik)2{wika2+(λikRq(Qshuik))wikb2λikwikb2}\displaystyle=(\alpha_{i}^{k})^{2}\{||w_{i}^{k}||_{a}^{2}+(\lambda_{i}^{k}-Rq(Q_{s}^{h}u_{i}^{k}))||w_{i}^{k}||_{b}^{2}-\lambda_{i}^{k}||w_{i}^{k}||_{b}^{2}\}
C{λsh+λikRq(Qshuik)}wikb2C(θbk)2(Bik)1rikb2\displaystyle\leq C\{\lambda_{s}^{h}+\lambda_{i}^{k}-Rq(Q_{s}^{h}u_{i}^{k})\}||w_{i}^{k}||_{b}^{2}\leq C(\theta_{b}^{k})^{2}||(B_{i}^{k})^{-1}r_{i}^{k}||_{b}^{2}
CH2(λikRq(Qshuik))+CH6gika2,\displaystyle\leq CH^{2}(\lambda_{i}^{k}-Rq(Q_{s}^{h}u_{i}^{k}))+CH^{6}||g_{i}^{k}||_{a}^{2},

which, together with (5.45) (5.46) (5.47), yields

J2\displaystyle J_{2} =(Rq(Qshu~ik+1)Rq(Qshuik))Qshu~ik+1b2CH(λikRq(Qshuik))+CHgika2.\displaystyle=(Rq(Q_{s}^{h}\widetilde{u}_{i}^{k+1})-Rq(Q_{s}^{h}u_{i}^{k}))||Q_{s}^{h}\widetilde{u}_{i}^{k+1}||_{b}^{2}\leq CH(\lambda_{i}^{k}-Rq(Q_{s}^{h}u_{i}^{k}))+CH||g_{i}^{k}||_{a}^{2}. (5.48)

Finally, combining (5.43), (5.44) and (5.48), we have

(Rq(u~ik+1)Rq(Qshuik))u~ik+1b2\displaystyle(Rq(\widetilde{u}_{i}^{k+1})-Rq(Q_{s}^{h}u_{i}^{k}))||\widetilde{u}_{i}^{k+1}||_{b}^{2} {γ0(λikRq(Qshuik))+CH2||gik||a2}\displaystyle\leq\{\gamma_{0}(\lambda_{i}^{k}-Rq(Q_{s}^{h}u_{i}^{k}))+CH^{2}||g_{i}^{k}||^{2}_{a}\}
+{CH(λikRq(Qshuik))+CH||gik||a2}\displaystyle\ \ \ \ +\{CH(\lambda_{i}^{k}-Rq(Q_{s}^{h}u_{i}^{k}))+CH||g_{i}^{k}||_{a}^{2}\}
γ0(λikRq(Qshuik))+CHgika2.\displaystyle\leq\gamma_{0}(\lambda_{i}^{k}-Rq(Q_{s}^{h}u_{i}^{k}))+CH||g_{i}^{k}||^{2}_{a}.

Since 1u~ik+1b1uikb=1\frac{1}{||\widetilde{u}_{i}^{k+1}||_{b}}\leq\frac{1}{||u_{i}^{k}||_{b}}=1, we obtain

Rq(u~ik+1)Rq(Qshuik)γ0(λikRq(Qshuik))+CHgika2.Rq(\widetilde{u}_{i}^{k+1})-Rq(Q_{s}^{h}u_{i}^{k})\leq\gamma_{0}(\lambda_{i}^{k}-Rq(Q_{s}^{h}u_{i}^{k}))+CH||g_{i}^{k}||^{2}_{a}. (5.49)

Taking summation over ii in (5.49) and using Lemma 4.3, we complete the proof of this lemma. \Box

We also establish an estimate for i=1s(λ^ik+1Rq(u~ik+1))\sum_{i=1}^{s}(\hat{\lambda}_{i}^{k+1}-Rq(\widetilde{u}_{i}^{k+1})), where λ^ik+1\hat{\lambda}_{i}^{k+1} is defined in (5.6). In order to make the proof of our main result neat, we put the proof of following lemma (Lemma 5.8) in Appendix.

Lemma 5.8

Under the same assumptions as in Lemma 5.7, it holds that

i=1s(λ^ik+1Rq(u~ik+1))CHi=1s(λikRq(Qshuik))+CH5i=1s(λikλih).\sum_{i=1}^{s}(\hat{\lambda}_{i}^{k+1}-Rq(\widetilde{u}_{i}^{k+1}))\leq CH\sum_{i=1}^{s}(\lambda_{i}^{k}-Rq(Q_{s}^{h}u_{i}^{k}))+CH^{5}\sum_{i=1}^{s}(\lambda_{i}^{k}-\lambda_{i}^{h}).

Now we are in a position to prove the main result of this paper.

Proof of Theorem 5.1:  By Lemma 5.7 and Lemma 5.8, we get

i=1s(λ^ik+1λih)\displaystyle\sum_{i=1}^{s}(\hat{\lambda}_{i}^{k+1}-\lambda_{i}^{h}) =i=1s(λ^ik+1Rq(u~ik+1))+i=1s(Rq(u~ik+1)Rq(Qshuik))+i=1s(Rq(Qshuik)λih)\displaystyle=\sum_{i=1}^{s}(\hat{\lambda}_{i}^{k+1}-Rq(\widetilde{u}_{i}^{k+1}))+\sum_{i=1}^{s}(Rq(\widetilde{u}_{i}^{k+1})-Rq(Q_{s}^{h}u_{i}^{k}))+\sum_{i=1}^{s}(Rq(Q_{s}^{h}u_{i}^{k})-\lambda_{i}^{h})
{CHi=1s(λikRq(Qshuik))+CH5i=1s(λikλih)}+{γ0i=1s(λikRq(Qshuik))+\displaystyle\leq\{CH\sum_{i=1}^{s}(\lambda_{i}^{k}-Rq(Q_{s}^{h}u_{i}^{k}))+CH^{5}\sum_{i=1}^{s}(\lambda_{i}^{k}-\lambda_{i}^{h})\}+\{\gamma_{0}\sum_{i=1}^{s}(\lambda_{i}^{k}-Rq(Q_{s}^{h}u_{i}^{k}))+
+CHi=1s(λikλih)}+i=1s(Rq(Qshuik)λih)\displaystyle\ \ \ \ +CH\sum_{i=1}^{s}(\lambda_{i}^{k}-\lambda_{i}^{h})\}+\sum_{i=1}^{s}(Rq(Q_{s}^{h}u_{i}^{k})-\lambda_{i}^{h})
γ0i=1s(λikRq(Qshuik))+i=1s(Rq(Qshuik)λih)+CHi=1s(λikλih).\displaystyle\leq\gamma_{0}\sum_{i=1}^{s}(\lambda_{i}^{k}-Rq(Q_{s}^{h}u_{i}^{k}))+\sum_{i=1}^{s}(Rq(Q_{s}^{h}u_{i}^{k})-\lambda_{i}^{h})+CH\sum_{i=1}^{s}(\lambda_{i}^{k}-\lambda_{i}^{h}).

Considering Rq(Qshuik)λikRq(Q_{s}^{h}u_{i}^{k})\leq\lambda_{i}^{k} and λik+1λ^ik+1\lambda_{i}^{k+1}\leq\hat{\lambda}_{i}^{k+1}, we deduce

i=1s(λik+1λih)\displaystyle\sum_{i=1}^{s}(\lambda_{i}^{k+1}-\lambda_{i}^{h}) γ0i=1s(λikλih)+(1γ0)i=1s(Rq(Qshuik)λih)+\displaystyle\leq\gamma_{0}\sum_{i=1}^{s}(\lambda_{i}^{k}-\lambda_{i}^{h})+(1-\gamma_{0})\sum_{i=1}^{s}(Rq(Q_{s}^{h}u_{i}^{k})-\lambda_{i}^{h})+
+CHi=1s(λikλih)γi=1s(λikλih),\displaystyle\ \ \ \ +CH\sum_{i=1}^{s}(\lambda_{i}^{k}-\lambda_{i}^{h})\leq\gamma\sum_{i=1}^{s}(\lambda_{i}^{k}-\lambda_{i}^{h}),

where γ=max{γ0,1γ0}=γ0=(1CδH)2+CH=c(H)(1CδH)2.\gamma=\max\{\gamma_{0},1-\gamma_{0}\}=\gamma_{0}=(1-C\frac{\delta}{H})^{2}+CH=c(H)(1-C\frac{\delta}{H})^{2}. Here, without loss of generality, let γ012\gamma_{0}\geq\frac{1}{2}. The HH-dependent constant c(H)(:=1+CH(1CδH)2)c(H)\ (:=1+\frac{CH}{(1-C\frac{\delta}{H})^{2}}) decreases monotonically to 1, as HH\to 0. Combining Lemma 4.4, Corollary 4.5 and (5.1), we may prove (5.2) and (5.3), which completes the proof of this theorem. \Box

6 Numerical experiments

In this section, we present several numerical experiments in two and three dimensional eigenvalue problems to support our theoretical findings. For the stopping criterion of the proposed method, we choose the accuracy of i=1s|λik+1λik|<tol=1e10\sum_{i=1}^{s}|\lambda_{i}^{k+1}-\lambda_{i}^{k}|<tol=1e^{-10}.

6.1 2D Laplacian eigenvalue problem

In this subsection, we shall present some numerical results of 2D Laplacian eigenvalue problems in convex and L-shaped domains.

Example 6.1

We consider the Laplacian eigenvalue problem (2.1) in (0,π)2(0,\pi)^{2} and use the triangle P1P_{1}-conforming finite element to compute the first ss eigenpairs. First, we choose an initial uniform partition 𝒥H\mathcal{J}_{H} in Ω\Omega with the number of subdomains N=512N=512, and coarse grid size H=2π24H=\frac{\sqrt{2}\pi}{2^{4}}. We refine uniformly the grid layer by layer and fix the ratio δH=14\frac{\delta}{H}=\frac{1}{4}. Next, we test the optimality and scalability of our algorithm.

Table 1: N=512N=512, δH=14\frac{\delta}{H}=\frac{1}{4}, s=19s=19
d.o.f.d.o.f. 1612916129 6502565025 261121261121 10465291046529 41902094190209 1676902516769025
λi\lambda_{i} 21(it.)21(it.) 22(it.)22(it.) 22(it.)22(it.) 22(it.)22(it.) 22(it.)22(it.) 22(it.)22(it.)
λ1=2\lambda_{1}=2 2.00030120 2.00007530 2.00001882 2.00000471 2.00000118 2.00000029
λ2=5\lambda_{2}=5 5.00129490 5.00032372 5.00008093 5.00002023 5.00000506 5.00000126
λ3=5\lambda_{3}=5 5.00201852 5.00050458 5.00012614 5.00003154 5.00000788 5.00000197
λ4=8\lambda_{4}=8 8.00481845 8.00120474 8.00030119 8.00007530 8.00001882 8.00000471
λ5=10\lambda_{5}=10 10.00592410 10.00148092 10.00037022 10.00009256 10.00002314 10.00000578
λ6=10\lambda_{6}=10 10.00592615 10.00148105 10.00037023 10.00009256 10.00002314 10.00000578
λ7=13\lambda_{7}=13 13.00904908 13.00226266 13.00056569 13.00014142 13.00003536 13.00000884
λ8=13\lambda_{8}=13 13.01514849 13.00378646 13.00094657 13.00023664 13.00005916 13.00001479
λ9=17\lambda_{9}=17 17.01592318 17.00397968 17.00099485 17.00024871 17.00006218 17.00001554
λ10=17\lambda_{10}=17 17.01631708 17.00407809 17.00101945 17.00025486 17.00006371 17.00001593
λ11=18\lambda_{11}=18 18.02436417 18.00609718 18.00152468 18.00038119 18.00009530 18.00002383
λ12=20\lambda_{12}=20 20.02650464 20.00662628 20.00165658 20.00041414 20.00010354 20.00002588
λ13=20\lambda_{13}=20 20.02655291 20.00662929 20.00165677 20.00041416 20.00010354 20.00002588
λ14=25\lambda_{14}=25 25.03383780 25.00846626 25.00211699 25.00052927 25.00013232 25.00003308
λ15=25\lambda_{15}=25 25.05779711 25.01444795 25.00361190 25.00090297 25.00022574 25.00005644
λ16=26\lambda_{16}=26 26.03646327 26.00911235 26.00227787 26.00056945 26.00014236 26.00003559
λ17=26\lambda_{17}=26 26.03646513 26.00911246 26.00227788 26.00056945 26.00014236 26.00003559
λ18=29\lambda_{18}=29 29.05122987 29.01279949 29.00319937 29.00079981 29.00019995 29.00004999
λ19=29\lambda_{19}=29 29.05337468 29.01333488 29.00333317 29.00083326 29.00020831 29.00005208
stop.stop. 8.7853e-11 3.1262e-11 3.5083e-11 3.5370e-11 3.8950e-11 4.2572e-11

Before analyzing numerical results, we first introduce some notations used in Table 1, which have the same meanings as following tables. We denote by d.o.f.d.o.f. degrees of freedom, by it.it. the number of iterations and by stop.stop. the total error between two adjacent iterative eigenvalues i=1s|λik+1λik|\sum_{i=1}^{s}|\lambda_{i}^{k+1}-\lambda_{i}^{k}| when exiting the outer loop in our two-level BPJD method. Here we present the total error between two adjacent iterative eigenvalues i=1s|λik+1λik|\sum_{i=1}^{s}|\lambda_{i}^{k+1}-\lambda_{i}^{k}| in order to verify our main convergence result. It is shown in Table 1 that the number of iterations of the proposed method keeps stable when d.o.f.+d.o.f.\to+\infty, which illustrates that our method is optimal. It is seen from Figure 1 that all of the curves of the total error i=1s|λik+1λik|\sum_{i=1}^{s}|\lambda_{i}^{k+1}-\lambda_{i}^{k}| with different degrees of freedom coincide, which verifies that the convergence rate of the proposed method is independent of hh. In order to test the scalability of our algorithm, we set d.o.f.=16769025d.o.f.=16769025 and the ratio δH=14\frac{\delta}{H}=\frac{1}{4} to observe the relationship between the number of iterations and the number of subdomains.

It is obvious to see in Table 2 that the number of iterations decreases, as the number of subdomains increases, which shows that our algorithm is scalable. More intuitively, it is observed in Figure 2 that curves of i=1s|λik+1λik|\sum_{i=1}^{s}|\lambda_{i}^{k+1}-\lambda_{i}^{k}| with different subdomains are almost parallel, which illustrates that our algorithm has a good scalability. Although our theoretical analysis only holds for convex cases, our algorithm still works very well for nonconvex cases. We present some numerical results for the 2D Laplacian eigenvalue problem in L-shape domain.

Table 2: N=512,2048,8192N=512,2048,8192, δH=14\frac{\delta}{H}=\frac{1}{4}, s=19s=19
NN d.o.f.d.o.f. it.it.
512 16769025 22
2048 16769025 18
8192 16769025 16
Refer to caption
Figure 1: N=512N=512δH=14\frac{\delta}{H}=\frac{1}{4}s=19s=19
Refer to caption
Figure 2: d.o.f.=16769025d.o.f.=16769025δH=14\frac{\delta}{H}=\frac{1}{4}s=19s=19
Example 6.2

We consider the Laplacian eigenvalue problem (2.1) in L-shape domain (π,π)2\[0,π)×(π,0](-\pi,\pi)^{2}\backslash[0,\pi)\times(-\pi,0] and use the triangle P1P_{1}-conforming finite element to compute the first ss eigenpairs. First, we choose an initial uniform partition 𝒥H\mathcal{J}_{H} in Ω\Omega with N=384N=384, H=2π23H=\frac{\sqrt{2}\pi}{2^{3}}. We refine uniformly the grid layer by layer and fix the ratio δH=14\frac{\delta}{H}=\frac{1}{4}. Next, we also test the optimality and scalability of our algorithm.

Table 3: N=384N=384, δH=14\frac{\delta}{H}=\frac{1}{4}, s=20s=20
d.o.f.d.o.f. 1203312033 4864148641 195585195585 784385784385 31416333141633 1257472112574721
λi\lambda_{i} 20(it.)20(it.) 21(it.)21(it.) 21(it.)21(it.) 21(it.)21(it.) 21(it.)21(it.) 21(it.)21(it.)
λ1\lambda_{1} 0.97779160 0.97710672 0.97685853 0.97676592 0.97673064 0.97671700
λ2\lambda_{2} 1.54049997 1.53997797 1.53984721 1.53981447 1.53980628 1.53980424
λ3\lambda_{3} 2.00120483 2.00030120 2.00007530 2.00001882 2.00000471 2.00000118
λ4\lambda_{4} 2.99379382 2.99181213 2.99131661 2.99119271 2.99116174 2.99115399
λ5\lambda_{5} 3.23787761 3.23485049 3.23390594 3.23359515 3.23348782 3.23344923
λ6\lambda_{6} 4.20803816 4.20392863 4.20276004 4.20241178 4.20230243 4.20226625
λ7\lambda_{7} 4.55973910 4.55561148 4.55457859 4.55432018 4.55425554 4.55423937
λ8\lambda_{8} 5.00614392 5.00153601 5.00038400 5.00009600 5.00002400 5.00000600
λ9\lambda_{9} 5.00710838 5.00177713 5.00044429 5.00011107 5.00002777 5.00000694
λ10\lambda_{10} 5.75583497 5.74863270 5.74667559 5.74612373 5.74596090 5.74591032
λ11\lambda_{11} 6.63909768 6.62779594 6.62497021 6.62426358 6.62408689 6.62404271
λ12\lambda_{12} 7.21353191 7.20343396 7.20072285 7.19997123 7.19975402 7.19968809
λ13\lambda_{13} 7.26354608 7.25475836 7.25256109 7.25201174 7.25187440 7.25184007
λ14\lambda_{14} 8.01928106 8.00481942 8.00120480 8.00030120 8.00007530 8.00001882
λ15\lambda_{15} 9.07298831 9.05528703 9.05030402 9.04883566 9.04838015 9.04823118
λ16\lambda_{16} 9.37765090 9.35890171 9.35420967 9.35303625 9.35274286 9.35266950
λ17\lambda_{17} 9.89039396 9.87265655 9.86821261 9.86710081 9.86682278 9.86675326
λ18\lambda_{18} 10.02364892 10.00592070 10.00148071 10.00037021 10.00009255 10.00002314
λ19\lambda_{19} 10.02376707 10.00592805 10.00148116 10.00037024 10.00009256 10.00002314
λ20\lambda_{20} 10.32191660 10.30197607 10.29674258 10.29533080 10.29493647 10.29482144
stop.stop. 7.2318e-11 3.8151e-11 4.1099e-11 4.2672e-11 4.4586e-11 4.6637e-11
Table 4: N=384,1536,6144N=384,1536,6144, δH=14\frac{\delta}{H}=\frac{1}{4}, s=20s=20
NN d.o.f.d.o.f. it.it.
384 12574721 21
1536 12574721 18
6144 12574721 16

It is known that some eigenfunctions of the Laplacian eigenvalue problem have singularities at the re-entrant corner but our algorithm still works very well. The number of iterations of our algorithm keeps stable in Table 3 as d.o.f.+d.o.f.\to+\infty, i.e., the convergence rate of our algorithm is independent of hh. The number of iterations decreases, as the number of subdomains increases in Table 4, which verifies that our algorithm is scalable.

6.2 3D Laplacian eigenvalue problem

In order to illustrate that our theoretical analysis still holds for 3D cases, we design two experiments to verify it.

Example 6.3

We consider the Laplacian eigenvalue problem (2.1) in (0,π)3(0,\pi)^{3} and use the trilinear conforming finite element to compute the first ss eigenpairs. First, we choose an initial uniform partition 𝒥H\mathcal{J}_{H} in Ω\Omega with N=512N=512, H=π23H=\frac{\pi}{2^{3}}. We refine uniformly the grid layer by layer and fix the ratio δH=12\frac{\delta}{H}=\frac{1}{2}. Next, we test the optimality and scalability of our algorithm.

Table 5: N=512N=512, δH=12\frac{\delta}{H}=\frac{1}{2}, s=20s=20
d.o.f.d.o.f. 33753375 2979129791 250047250047 20483832048383 1658137516581375
λi\lambda_{i} 14(it.)14(it.) 16(it.)16(it.) 16(it.)16(it.) 17(it.)17(it.) 17(it.)17(it.)
λ1=3\lambda_{1}=3 3.00965062 3.00241034 3.00060244 3.00015060 3.00003765
λ2=6\lambda_{2}=6 6.05809793 6.01447439 6.00361542 6.00090366 6.00022590
λ3=6\lambda_{3}=6 6.05809793 6.01447439 6.00361542 6.00090366 6.00022590
λ4=6\lambda_{4}=6 6.05809793 6.01447439 6.00361542 6.00090366 6.00022590
λ5=9\lambda_{5}=9 9.10654523 9.02653844 9.00662840 9.00165671 9.00041415
λ6=9\lambda_{6}=9 9.10654523 9.02653844 9.00662840 9.00165671 9.00041415
λ7=9\lambda_{7}=9 9.10654523 9.02653844 9.00662840 9.00165671 9.00041415
λ8=11\lambda_{8}=11 11.26956430 11.06685176 11.01667797 11.00416729 11.00104168
λ9=11\lambda_{9}=11 11.26956430 11.06685176 11.01667797 11.00416729 11.00104168
λ10=11\lambda_{10}=11 11.26956430 11.06685176 11.01667797 11.00416729 11.00104168
λ11=12\lambda_{11}=12 12.15499254 12.03860249 12.00964138 12.00240976 12.00060240
λ12=14\lambda_{12}=14 14.31801161 14.07891581 14.01969094 14.00492034 14.00122994
λ13=14\lambda_{13}=14 14.31801161 14.07891581 14.01969094 14.00492034 14.00122994
λ14=14\lambda_{14}=14 14.31801161 14.07891581 14.01969094 14.00492034 14.00122994
λ15=14\lambda_{15}=14 14.31801161 14.07891581 14.01969094 14.00492034 14.00122994
λ16=14\lambda_{16}=14 14.31801161 14.07891581 14.01969094 14.00492034 14.00122994
λ17=14\lambda_{17}=14 14.31801161 14.07891581 14.01969094 14.00492034 14.00122994
λ18=17\lambda_{18}=17 17.36645892 17.09097986 17.02270392 17.00567340 17.00141819
λ19=17\lambda_{19}=17 17.36645892 17.09097986 17.02270392 17.00567340 17.00141819
λ20=17\lambda_{20}=17 17.36645892 17.09097986 17.02270392 17.00567340 17.00141819
stop.stop. 8.9527e-11 3.6276e-11 5.3570e-11 2.8785e-11 4.5785e-11
Table 6: N=512,4096N=512,4096, δH=12\frac{\delta}{H}=\frac{1}{2}, s=20s=20
NN d.o.f.d.o.f. it.it.
512 16581375 17
4096 16581375 15

It is seen from Table 5 that the number of iterations of our algorithm keeps stable nearly, as d.o.f.+d.o.f.\to+\infty, which shows that our algorithm is optimal. To verify the scalability of the method, we set d.o.f.=16581375d.o.f.=16581375 and observe the number of iterations for N=512, 4096N=512,\ 4096. Numerical results in Table 6 show the number of iterations decreases as NN increases, which means that the proposed method has a good scalability. Next, we also present some numerical results for three dimensional L-shape domain.

Example 6.4

We consider the Laplacian eigenvalue problem (2.1) in (0,2π)×(0,2π)×(0,π)\[π,2π)×[π,2π)×(0,π)(0,2\pi)\times(0,2\pi)\times(0,\pi)\backslash[\pi,2\pi)\times[\pi,2\pi)\times(0,\pi) and use the trilinear conforming finite element to compute the first ss eigenpairs. First, we choose an initial uniform partition 𝒥H\mathcal{J}_{H} in Ω\Omega with N=1536N=1536, H=π23H=\frac{\pi}{2^{3}}. We refine uniformly the grid layer by layer and fix the ratio δH=12\frac{\delta}{H}=\frac{1}{2}. Next, we also test the optimality and scalability of our algorithm.

It is observed from Table 7 that the number of iterations keeps stable nearly when d.o.f.+d.o.f.\to+\infty, which verifies that the method is optimal for nonconvex domain. In addition, if we observe Table 7 carefully, we may find that some of eigenvalues are close to each other (λ17λ18λ19\lambda_{17}\approx\lambda_{18}\approx\lambda_{19}) and our algorithm works still very well, which illustrates that the convergence rate in our two-level BPJD method is not adversely affected by the gap among the clustered eigenvalues. It is obvious to see that the number of iterations decreases as the number of subdomains increases in Table 8, which shows that our algorithm is scalable.

Table 7: N=1536N=1536, δH=12\frac{\delta}{H}=\frac{1}{2}, s=20s=20
d.o.f.d.o.f. 1057510575 9129591295 758079758079 61774076177407
λi\lambda_{i} 15(it.)15(it.) 17(it.)17(it.) 18(it.)18(it.) 18(it.)18(it.)
λ1\lambda_{1} 1.98468171 1.97908729 1.97745736 1.97695688
λ2\lambda_{2} 2.54796654 2.54184555 2.54031441 2.53993134
λ3\lambda_{3} 3.00965062 3.00241034 3.00060244 3.00015060
λ4\lambda_{4} 4.01258997 3.99650322 3.99248898 3.99148580
λ5\lambda_{5} 4.26520929 4.24231072 4.23602425 4.23422553
λ6\lambda_{6} 5.03312902 4.99115134 4.98047034 4.97770994
λ7\lambda_{7} 5.25609401 5.21633525 5.20604572 5.20330844
λ8\lambda_{8} 5.59641384 5.55390960 5.54332739 5.54068439
λ9\lambda_{9} 5.61240213 5.56874371 5.55786078 5.55514087
λ10\lambda_{10} 6.05809793 6.01447439 6.00361542 6.00090366
λ11\lambda_{11} 6.05809793 6.01447439 6.00361542 6.00090366
λ12\lambda_{12} 6.05809793 6.01447439 6.00361542 6.00090366
λ13\lambda_{13} 6.81375190 6.76357620 6.75061942 6.74719395
λ14\lambda_{14} 7.06103728 7.00856727 6.99550196 6.99223885
λ15\lambda_{15} 7.31365660 7.25437477 7.23903723 7.23497859
λ16\lambda_{16} 7.71618710 7.64709074 7.62979692 7.62547071
λ17\lambda_{17} 8.30454131 8.22839930 8.20905870 8.20215738
λ18\lambda_{18} 8.34143977 8.23586694 8.20907121 8.20406149
λ19\lambda_{19} 8.37680647 8.28281881 8.25955996 8.25376045
λ20\lambda_{20} 8.66084944 8.58080775 8.56087375 8.55589393
stop.stop. 7.5267e-11 5.4056e-11 1.8214e-11 3.6381e-11
Table 8: N=1536,12288N=1536,12288, δH=12\frac{\delta}{H}=\frac{1}{2}, s=20s=20
NN d.o.f.d.o.f. it.it.
1536 6177407 18
12288 6177407 15

7 Conclusions

In this paper, based on a domain decomposition method, we propose a parallel two-level BPJD method for computing multiple and clustered eigenvalues. The method is proved to be optimal, scalable and cluster robust. Numerical results verify our theoretical findings.

Appendix A  

Proof of Theorem 2.2:   Let i~\widetilde{i} be an imaginary unit, and Γ\Gamma be a circle which includes μ1,μ2,,μs\mu_{1},\mu_{2},...,\mu_{s} and μ1h,μ2h,,μsh,\mu_{1}^{h},\mu_{2}^{h},...,\mu_{s}^{h}, with (μ1+μs2,0)(\frac{\mu_{1}+\mu_{s}}{2},0) as a center and μ1μs+12\frac{\mu_{1}-\mu_{s+1}}{2} as a radius in complex plane 𝒞\mathcal{C}. Define

Z:=12πi~Γ(zT)1𝑑z,Zh:=12πi~Γ(zTh)1𝑑z.Z:=\frac{1}{2\pi\widetilde{i}}\int_{\Gamma}(z-T)^{-1}dz,\ \ Z^{h}:=\frac{1}{2\pi\widetilde{i}}\int_{\Gamma}(z-T^{h})^{-1}dz.

Therefore, we know that ZZ and ZhZ^{h} are spectral projectors associated with TT and μ1,,μs\mu_{1},...,\mu_{s}, and ThT^{h} and μ1h,,μsh\mu_{1}^{h},...,\mu_{s}^{h}, respectively.

Refer to caption
Figure 3: Γ\Gamma is a circle which includes μ1,μ2,,μs\mu_{1},\mu_{2},...,\mu_{s} and μ1h,μ2h,,μsh.\mu_{1}^{h},\mu_{2}^{h},...,\mu_{s}^{h}.

Combining (2.4), (2.7) and standard a priori error estimates of conforming finite element methods, we have

TThaCh.\interleave T-T^{h}\interleave_{a}\leq Ch.

Moreover, we have

supzΓ(zTh)1aC.\sup_{z\in\Gamma}\interleave(z-T^{h})^{-1}\interleave_{a}\leq C. (A.1)

Since TT=TTTT^{*}=T^{*}T, we get

(zT)(z¯T)=|z|2zTz¯T+TT=|z|2zTz¯T+TT=(z¯T)(zT).(z-T)(\bar{z}-T^{*})=|z|^{2}-zT^{*}-\bar{z}T+TT^{*}=|z|^{2}-zT^{*}-\bar{z}T+T^{*}T=(\bar{z}-T^{*})(z-T). (A.2)

From a priori error estimates in [1], we know that dim(Us)=s=dim(Ush)\dim(U_{s})=s=\dim(U_{s}^{h}), which, together with (A.1), (A.2) and Remark 2.2, yields

θa(Us,Ush)\displaystyle\theta_{a}(U_{s},U_{s}^{h}) =sina{Us,Ush}=supuUs,ua=1infvUshuvasupuUs,ua=1uZhua\displaystyle=\sin_{a}\{U_{s},U_{s}^{h}\}=\sup_{u\in U_{s},||u||_{a}=1}\inf_{v\in U_{s}^{h}}||u-v||_{a}\leq\sup_{u\in U_{s},||u||_{a}=1}||u-Z^{h}u||_{a}
(ZZh)|Usa=12πΓ(zTh)1(TTh)(zT)1|Usdza\displaystyle\leq\interleave(Z-Z^{h})|_{U_{s}}\interleave_{a}=\frac{1}{2\pi}\interleave\int_{\Gamma}(z-T^{h})^{-1}(T-T^{h})(z-T)^{-1}|_{U_{s}}dz\interleave_{a}
12π|Γ|supzΓ(zTh)1asupzΓ(zT)1|Usa(TTh)|Usa\displaystyle\leq\frac{1}{2\pi}|\Gamma|\sup_{z\in\Gamma}\interleave(z-T^{h})^{-1}\interleave_{a}\sup_{z\in\Gamma}\interleave(z-T)^{-1}|_{U_{s}}\interleave_{a}\interleave(T-T^{h})|_{U_{s}}\interleave_{a}
CsupzΓ1inf1is|zμi|×(TTh)|UsaChμsμs+1.\displaystyle\leq C\sup_{z\in\Gamma}\frac{1}{\inf_{1\leq i\leq s}|z-\mu_{i}|}\times\interleave(T-T^{h})|_{U_{s}}\interleave_{a}\leq\frac{Ch}{\mu_{s}-\mu_{s+1}}.

Hence, we obtain(2.10). Combining the Aubin-Nitsche argument, we have

TThbCh2.\interleave T-T^{h}\interleave_{b}\leq Ch^{2}.

By the same argument as in the proof of (2.10), we may also obtain (2.11). \Box

To give a rigorous proof of Lemma 5.8 in this paper, we first introduce the following lemma (For the detailed proof, see Lemma 5 in [25] or Lemma 2 of Appendix A in [26]). For any matrix XX, we denote by DXD_{X} the diagonal part of XX, D¯X=DXX\bar{D}_{X}=D_{X}-X. And we denote by Tr(X){\rm Tr}(X) the trace of the matrix XX.

Lemma A.1

Let A(=ΛA~)A\ (=\Lambda-\widetilde{A}) be a symmetric and B(=IB~)B\ (=I-\widetilde{B}) a symmetric positive definite matrix, where Λ\Lambda is a diagonal matrix and II is the identity matrix. Then

Tr(B1A)=Tr(DB1DA)Tr(A1)+Tr(A2)+Tr(A3),{\rm Tr}(B^{-1}A)={\rm Tr}(D_{B}^{-1}D_{A})-{\rm Tr}(A_{1})+{\rm Tr}(A_{2})+{\rm Tr}(A_{3}),

where

A1=DB1B~DB1(A~+D),A2=DB1DB~DB1(DA~+D),A3=DB1D¯BB1D¯BDB1A,\displaystyle A_{1}=D_{B}^{-1}\widetilde{B}D_{B}^{-1}(\widetilde{A}+D),\ \ \ A_{2}=D_{B}^{-1}D_{\widetilde{B}}D_{B}^{-1}(D_{\widetilde{A}}+D),\ \ \ A_{3}=D_{B}^{-1}\bar{D}_{B}B^{-1}\bar{D}_{B}D_{B}^{-1}A,

and DD is any diagonal matrix.

Proof of Lemma 5.8:  We consider the auxiliary eigenvalue problem (5.6) resulting in

Aξik+1=λ^ik+1Bξik+1,A\xi_{i}^{k+1}=\hat{\lambda}^{k+1}_{i}B\xi_{i}^{k+1}, (A.3)

where A=(a(u~jk+1,u~ik+1))1i,jsA=(a(\widetilde{u}_{j}^{k+1},\widetilde{u}_{i}^{k+1}))_{1\leq i,j\leq s}, B=(b(u~jk+1,u~ik+1))1i,jsB=(b(\widetilde{u}_{j}^{k+1},\widetilde{u}_{i}^{k+1}))_{1\leq i,j\leq s} and ξik+1\xi_{i}^{k+1} is the coordinate of u^ik+1\hat{u}_{i}^{k+1} in the basis {u~jk+1}j=1s\{\widetilde{u}_{j}^{k+1}\}_{j=1}^{s}. Define zik:=Qk(Bik)1rik,i=1,2,,sz_{i}^{k}:=Q_{\perp}^{k}(B_{i}^{k})^{-1}r_{i}^{k},\ i=1,2,...,s. Substituting (5.5) into b(,)b(\cdot,\cdot) and a(,)a(\cdot,\cdot), we have

b(u~jk+1,u~ik+1)=δij+αjkαikb(zjk,zik)=:δij+(B^)ij,\displaystyle b(\widetilde{u}_{j}^{k+1},\widetilde{u}_{i}^{k+1})=\delta_{ij}+\alpha_{j}^{k}\alpha_{i}^{k}b(z_{j}^{k},z_{i}^{k})=:\delta_{ij}+(\hat{B})_{ij}, (A.4)

and

a(u~jk+1,u~ik+1)\displaystyle a(\widetilde{u}_{j}^{k+1},\widetilde{u}_{i}^{k+1}) =λjkδij+αika(ujk,zik)+αjka(zjk,uik)+αjkαika(zjk,zik)=:λjkδij+(A^)ij.\displaystyle=\lambda_{j}^{k}\delta_{ij}+\alpha_{i}^{k}a(u_{j}^{k},z_{i}^{k})+\alpha_{j}^{k}a(z_{j}^{k},u_{i}^{k})+\alpha_{j}^{k}\alpha_{i}^{k}a(z_{j}^{k},z_{i}^{k})=:\lambda^{k}_{j}\delta_{ij}+(\hat{A})_{ij}. (A.5)

By (A.4), it is easy to check that B^𝟎s×s\hat{B}\geq\bm{0}_{s\times s} and B(=I+B^I)B\ (=I+\hat{B}\ \geq I) is symmetric and positive definite. Moreover, by Lemma 4.3, Lemma 4.7 and Remark 5.4, we obtain

DB^FB^FsB^2sTr(B^)=si=1s(αik)2zikb2Ci=1s(Bik)1rikb2\displaystyle\ \ \ \ ||D_{\hat{B}}||_{F}\leq||\hat{B}||_{F}\leq\sqrt{s}||\hat{B}||_{2}\leq\sqrt{s}{\rm Tr}(\hat{B})=\sqrt{s}\sum_{i=1}^{s}(\alpha_{i}^{k})^{2}||z_{i}^{k}||_{b}^{2}\leq C\sum_{i=1}^{s}||(B_{i}^{k})^{-1}r_{i}^{k}||_{b}^{2}
Ci=1s{C||ei,s+1k||Eik2+CH4gika2}Ci=1s(λikRq(Qshuik))+CH4i=1s(λikλih),\displaystyle\leq C\sum_{i=1}^{s}\{C||e_{i,s+1}^{k}||_{E_{i}^{k}}^{2}+CH^{4}||g_{i}^{k}||_{a}^{2}\}\leq C\sum_{i=1}^{s}(\lambda_{i}^{k}-Rq(Q_{s}^{h}u_{i}^{k}))+CH^{4}\sum_{i=1}^{s}(\lambda_{i}^{k}-\lambda_{i}^{h}), (A.6)

where ||||F||\cdot||_{F} and ||||2||\cdot||_{2} denote the Frobenius norm and 22-norm of matrix, respectively. Using the same argument as in (A.6), we deduce

D¯BF2=D¯B^F2i,j=1s(αjkαik)2|b(zjk,zik)|2Ci,j=1szikb2zjkb2\displaystyle\ \ \ \ ||\bar{D}_{B}||_{F}^{2}=||\bar{D}_{\hat{B}}||_{F}^{2}\leq\sum_{i,j=1}^{s}(\alpha_{j}^{k}\alpha_{i}^{k})^{2}|b(z_{j}^{k},z_{i}^{k})|^{2}\leq C\sum_{i,j=1}^{s}||z_{i}^{k}||_{b}^{2}||z_{j}^{k}||_{b}^{2}
=Ci=1szikb2j=1szjkb2CH2i=1s(λikRq(Qshuik))+CH6i=1s(λikλih).\displaystyle=C\sum_{i=1}^{s}||z_{i}^{k}||_{b}^{2}\sum_{j=1}^{s}||z_{j}^{k}||_{b}^{2}\leq CH^{2}\sum_{i=1}^{s}(\lambda_{i}^{k}-Rq(Q_{s}^{h}u_{i}^{k}))+CH^{6}\sum_{i=1}^{s}(\lambda_{i}^{k}-\lambda_{i}^{h}). (A.7)

By (A.5), it is easy to check that A(=Λ+A^)A\ (=\Lambda+\hat{A}) is a symmetric matrix, where Λ=Diag(λ1k,λ2k,,λsk)\Lambda=Diag(\lambda_{1}^{k},\lambda_{2}^{k},...,\lambda_{s}^{k}). Moreover, by Lemma 4.1, Lemma 4.7 and Remark 5.4, we get

DA^F2A^F2=i,j=1s{αika(ujk,zik)+αjka(zjk,uik)+αjkαika(zjk,zik)}2\displaystyle\ \ \ \ ||D_{\hat{A}}||^{2}_{F}\leq||\hat{A}||^{2}_{F}=\sum_{i,j=1}^{s}\{\alpha_{i}^{k}a(u_{j}^{k},z_{i}^{k})+\alpha_{j}^{k}a(z_{j}^{k},u_{i}^{k})+\alpha_{j}^{k}\alpha_{i}^{k}a(z_{j}^{k},z_{i}^{k})\}^{2}
C(i=1szika2+i,j=1szjka2zika2)C(1+j=1szjka2)i=1szika2CH2,\displaystyle\leq C(\sum_{i=1}^{s}||z_{i}^{k}||^{2}_{a}+\sum_{i,j=1}^{s}||z_{j}^{k}||^{2}_{a}||z_{i}^{k}||_{a}^{2})\leq C(1+\sum_{j=1}^{s}||z_{j}^{k}||^{2}_{a})\sum_{i=1}^{s}||z_{i}^{k}||^{2}_{a}\leq CH^{2},

and

A2\displaystyle||A||_{2} Tr(A)=i=1s{λik+2αika(uik,zik)+(αik)2a(zik,zik)}\displaystyle\leq{\rm Tr}(A)=\sum_{i=1}^{s}\{\lambda_{i}^{k}+2\alpha_{i}^{k}a(u_{i}^{k},z_{i}^{k})+(\alpha_{i}^{k})^{2}a(z_{i}^{k},z_{i}^{k})\}
i=1s{λik+C||zik||a+Czika2}i=1sλik+CH+CH2C.\displaystyle\leq\sum_{i=1}^{s}\{\lambda_{i}^{k}+C||z_{i}^{k}||_{a}+C||z_{i}^{k}||_{a}^{2}\}\leq\sum_{i=1}^{s}\lambda_{i}^{k}+CH+CH^{2}\leq C. (A.8)

By (5.6) and (A.3), we deduce

i=1s(λ^ik+1Rq(u~ik+1))=Tr(B1A)Tr(DB1DA).\sum_{i=1}^{s}(\hat{\lambda}_{i}^{k+1}-Rq(\widetilde{u}_{i}^{k+1}))={\rm Tr}(B^{-1}A)-{\rm Tr}(D_{B}^{-1}D_{A}). (A.9)

Using Lemma A.1, we have

Tr(B1A)Tr(DB1DA)=Tr(A1)+Tr(A2)+Tr(A3)|Tr(A1)|+|Tr(A2)|+|Tr(A3)|,{\rm Tr}(B^{-1}A)-{\rm Tr}(D_{B}^{-1}D_{A})=-{\rm Tr}(A_{1})+{\rm Tr}(A_{2})+{\rm Tr}(A_{3})\leq|{\rm Tr}(A_{1})|+|{\rm Tr}(A_{2})|+|{\rm Tr}(A_{3})|, (A.10)

where

A1\displaystyle A_{1} =DB1(B^)DB1(A^)=DB1B^DB1A^,\displaystyle=D_{B}^{-1}(-\hat{B})D_{B}^{-1}(-\hat{A})=D_{B}^{-1}\hat{B}D_{B}^{-1}\hat{A},
A2\displaystyle A_{2} =DB1DB^DB1DA^=DB1DB^DB1DA^,\displaystyle=D_{B}^{-1}D_{-\hat{B}}D_{B}^{-1}D_{-\hat{A}}=D_{B}^{-1}D_{\hat{B}}D_{B}^{-1}D_{\hat{A}},
A3\displaystyle A_{3} =DB1D¯BB1D¯BDB1A.\displaystyle=D_{B}^{-1}\bar{D}_{B}B^{-1}\bar{D}_{B}D_{B}^{-1}A.

We first estimate the term |Tr(A1)||{\rm Tr}(A_{1})| in (A.10). Since DB(I),DB1B^DB1D_{B}\ (\geq I),\ D_{B}^{-1}\hat{B}D_{B}^{-1}, A^\hat{A} and B^\hat{B} are symmetric, we get

|Tr(A1)|\displaystyle|{\rm Tr}(A_{1})| =|Tr(DB1B^DB1A^)|DB1B^DB1FA^FB^FA^F\displaystyle=|{\rm Tr}(D_{B}^{-1}\hat{B}D_{B}^{-1}\hat{A})|\leq||D_{B}^{-1}\hat{B}D_{B}^{-1}||_{F}||\hat{A}||_{F}\leq||\hat{B}||_{F}||\hat{A}||_{F}
CHi=1s(λikRq(Qshuik))+CH5i=1s(λikλih).\displaystyle\leq CH\sum_{i=1}^{s}(\lambda_{i}^{k}-Rq(Q_{s}^{h}u_{i}^{k}))+CH^{5}\sum_{i=1}^{s}(\lambda_{i}^{k}-\lambda_{i}^{h}). (A.11)

Next, we estimate the term |Tr(A2)||{\rm Tr}(A_{2})| in (A.10). As DB(I),DB1DB^DB1,DA^D_{B}\ (\geq I),\ D_{B}^{-1}D_{\hat{B}}D_{B}^{-1},\ D_{\hat{A}} and DB^D_{\hat{B}} are symmetric, we obtain

|Tr(A2)|\displaystyle|{\rm Tr}(A_{2})| =|Tr(DB1DB^DB1DA^)|DB1DB^DB1FDA^FDB^FDA^F\displaystyle=|{\rm Tr}(D_{B}^{-1}D_{\hat{B}}D_{B}^{-1}D_{\hat{A}})|\leq||D_{B}^{-1}D_{\hat{B}}D_{B}^{-1}||_{F}||D_{\hat{A}}||_{F}\leq||D_{\hat{B}}||_{F}||D_{\hat{A}}||_{F}
CHi=1s(λikRq(Qshuik))+CH5i=1s(λikλih).\displaystyle\leq CH\sum_{i=1}^{s}(\lambda_{i}^{k}-Rq(Q_{s}^{h}u_{i}^{k}))+CH^{5}\sum_{i=1}^{s}(\lambda_{i}^{k}-\lambda_{i}^{h}). (A.12)

Finally, we estimate the term |Tr(A3)||{\rm Tr}(A_{3})| in (A.10). By the same argument as in (A.12), we have

|Tr(A3)|\displaystyle|{\rm Tr}(A_{3})| =|Tr(DB1D¯BB1D¯BDB1A)|DB1D¯BB1D¯BDB1FAF\displaystyle=|{\rm Tr}(D_{B}^{-1}\bar{D}_{B}B^{-1}\bar{D}_{B}D_{B}^{-1}A)|\leq||D_{B}^{-1}\bar{D}_{B}B^{-1}\bar{D}_{B}D_{B}^{-1}||_{F}||A||_{F}
D¯BB1D¯BFAFD¯BF2B12AFD¯BF2AF\displaystyle\leq||\bar{D}_{B}B^{-1}\bar{D}_{B}||_{F}||A||_{F}\leq||\bar{D}_{B}||^{2}_{F}||B^{-1}||_{2}||A||_{F}\leq||\bar{D}_{B}||^{2}_{F}||A||_{F}
sD¯BF2A2CH2i=1s(λikRq(Qshuik))+CH6i=1s(λikλih),\displaystyle\leq\sqrt{s}||\bar{D}_{B}||^{2}_{F}||A||_{2}\leq CH^{2}\sum_{i=1}^{s}(\lambda_{i}^{k}-Rq(Q_{s}^{h}u_{i}^{k}))+CH^{6}\sum_{i=1}^{s}(\lambda_{i}^{k}-\lambda_{i}^{h}),

which, together with (A.9), (A.10),(A.11) and (A.12), completes the proof of this lemma. \Box

References

  • [1] Ivo Babuška and John Osborn. Finite element-Galerkin approximation of the eigenvalues and eigenvectors of selfadjoint problems. Mathematics of Computation, 52(186):275–297, 1989.
  • [2] Daniele Boffi. Finite element approximation of eigenvalue problems. Acta Numerica, 19:1–120, 2010.
  • [3] Daniele Boffi, Dietmar Gallistl, Francesca Gardini, and Lucia Gastaldi. Optimal convergence of adaptive FEM for eigenvalue clusters in mixed form. Mathematics of Computation, 86(307):2213–2237, 2017.
  • [4] Andrea Bonito and Alan Demlow. Convergence and optimality of higher-order adaptive finite element methods for eigenvalue clusters. SIAM Journal on Numerical Analysis, 54(4):2379–2388, 2016.
  • [5] James Bramble, Joseph Pasciak, and Andrew Knyazev. A subspace preconditioning algorithm for eigenvector/eigenvalue computation. Advances in Computational Mathematics, 6(1):159–189, 1996.
  • [6] Zhiqiang Cai, Jan Mandel, and Steve McCormick. Multigrid methods for nearly singular linear equations and eigenvalue problems. SIAM Journal on Numerical Analysis, 34(1):178–200, 1997.
  • [7] Eric Cancès, Geneviève Dusson, Yvon Maday, Benjamin Stamm, and Martin Vohralík. Guaranteed a posteriori bounds for eigenvalues and eigenvectors: multiplicities and clusters. Mathematics of Computation, 89(326):2563–2611, 2020.
  • [8] Hongtao Chen, Hehu Xie, and Fei Xu. A full multigrid method for eigenvalue problems. Journal of Computational Physics, 322:747–759, 2016.
  • [9] Xiaoying Dai, Lianhua He, and Aihui Zhou. Convergence and quasi-optimal complexity of adaptive finite element computations for multiple eigenvalues. IMA Journal of Numerical Analysis, 35(4):1934–1977, 2015.
  • [10] Dietmar Gallistl. Adaptive nonconforming finite element approximation of eigenvalue clusters. Computational Methods in Applied Mathematics, 14(4):509–535, 2014.
  • [11] Dietmar Gallistl. An optimal adaptive FEM for eigenvalue clusters. Numerische Mathematik, 130(3):467–496, 2015.
  • [12] Menno Genseberger. Domain decomposition in the Jacobi-Davidson method for eigenproblems. Ph.D. thesis, Utrecht University, The Netherlands, 2001.
  • [13] Marlis Hochbruck and Dominik Lo¨{\rm\ddot{o}}chel. A multilevel Jacobi-Davidson method for polynomial PDE eigenvalue problems arising in plasma physics. SIAM Journal on Scientific Computing, 32(6):3151–3169, 2010.
  • [14] Xiaozhe Hu and Xiaoliang Cheng. Acceleration of a two-grid method for eigenvalue problems. Mathematics of Computation, 80(275):1287–1301, 2011.
  • [15] Jinzhi Huang and Zhongxiao Jia. On inner iterations of Jacobi-Davidson type methods for large SVD computations. SIAM Journal on Scientific Computing, 41(3):A1574–A1603, 2019.
  • [16] Yin-Liang Huang, Tsung-Ming Huang, Wen-Wei Lin, and Wei-Cheng Wang. A null space free Jacobi-Davidson iteration for Maxwell’s operator. SIAM Journal on Scientific Computing, 37(1):A1–A29, 2015.
  • [17] Tosio Kato. Perturbation Theory for Linear Operators. Springer Science & Business Media, 2013.
  • [18] Andrew Knyazev. Preconditioned eigensolvers – an oxymoron ? Large scale eigenvalue problems (Argonne, IL, 1997). Electronic Transactions on Numerical Analysis, (7):104–123, 1998.
  • [19] Andrew Knyazev and John Osborn. New a priori FEM error estimates for eigenvalues. SIAM Journal on Numerical Analysis, 43(6):2647–2667, 2006.
  • [20] Qigang Liang and Xuejun Xu. A two-level preconditioned Helmholtz-Jacobi-Davidson method for the Maxwell eigenvalue problem. Mathematics of Computation, 91(334):623–657, 2022.
  • [21] Shiuhong Lui. Domain decomposition methods for eigenvalue problems. Journal of Computational and Applied Mathematics, 117(1):17–34, 2000.
  • [22] Serguei Maliassov. On the Schwarz alternating method for eigenvalue problems. Russian Journal of Numerical Analysis and Mathematical Modelling, 13(1):45–56, 1998.
  • [23] Stephen McCormick. Multilevel Projection Methods for Partial Differential Equations. CBMS-NSF Regional Conference Series in Applied Mathematics, 62. Society for Industrial and Applied Mathematics, 1992.
  • [24] Margreet Nool and Auke van der Ploeg. A parallel Jacobi-Davidson-type method for solving large generalized eigenvalue problems in magnetohydrodynamics. SIAM Journal on Scientific Computing, 22(1):95–112, 2000.
  • [25] Evgueni Ovtchinnikov. Convergence Estimates for Preconditioned Gradient Subspace Iteration Eigensolvers. Universiteit Utrecht. Department of Mathematics, 2002.
  • [26] Evgueni Ovtchinnikov. Cluster robustness of preconditioned gradient subspace iteration eigensolvers. Linear Algebra and its Applications, 415(1):140–166, 2006.
  • [27] Beresford Parlett. The Symmetric Eigenvalue Problem. Prentice-Hall Series in Computational Mathematics Prentice-Hall, Inc., Englewood Cliffs, N.J., 1980.
  • [28] Yousef Saad. Numerical Methods for Large Eigenvalue Problems. Revised edition of the 1992 original [MR1177405]. Classics in Applied Mathematics, 66. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2011.
  • [29] Marcus Sarkis. Partition of unity coarse spaces and Schwarz methods with harmonic overlap. In Recent Developments in Domain Decomposition Methods, pages 77–94. Springer, 2002.
  • [30] Gerard Sleijpen and Henk Van der Vorst. A Jacobi–Davidson iteration method for linear eigenvalue problems. SIAM Review, 42(2):267–293, 2000.
  • [31] Richard Tapia, John Dennis, and Jan Scha¨{\rm\ddot{a}}fermeyer. Inverse, shifted inverse, and Rayleigh quotient iteration as Newton’s method. SIAM Review, 60(1):3–55, 2018.
  • [32] Andrea Toselli and Olof Widlund. Domain Decomposition Methods-Algorithms and Theory. Springer Science & Business Media, 2006.
  • [33] Wei Wang and Xuejun Xu. A two-level overlapping hybrid domain decomposition method for eigenvalue problems. SIAM Journal on Numerical Analysis, 56(1):344–368, 2018.
  • [34] Wei Wang and Xuejun Xu. On the convergence of a two-level preconditioned Jacobi–Davidson method for eigenvalue problems. Mathematics of Computation, 88(319):2295–2324, 2019.
  • [35] Wei Wang and Zhimin Zhang. Spectral element methods for eigenvalue problems based on domain decomposition. SIAM Journal on Scientific Computing, 44(2):A689–A719, 2022.
  • [36] Fei Xu, Hehu Xie, and Ning Zhang. A parallel augmented subspace method for eigenvalue problems. SIAM Journal on Scientific Computing, 42(5):A2655–A2677, 2020.
  • [37] Jinchao Xu and Aihui Zhou. A two-grid discretization scheme for eigenvalue problems. Mathematics of Computation, 70(233):17–25, 2001.
  • [38] Yidu Yang and Hai Bi. Two-grid finite element discretization schemes based on shifted-inverse power method for elliptic eigenvalue problems. SIAM Journal on Numerical Analysis, 49(4):1602–1624, 2011.
  • [39] Yidu Yang, Hai Bi, Jiayu Han, and Yuanyuan Yu. The shifted-inverse iteration based on the multigrid discretizations for eigenvalue problems. SIAM Journal on Scientific Computing, 37(6):A2583–A2606, 2015.
  • [40] Tao Zhao, Feng-Nan Hwang, and Xiao-Chuan Cai. A domain decomposition based Jacobi-Davidson algorithm for quantum dot simulation. In Domain Decomposition Methods in Science and Engineering XXII, pages 415–423. Springer, 2016.
  • [41] Tao Zhao, Feng-Nan Hwang, and Xiao-Chuan Cai. Parallel two-level domain decomposition based Jacobi-Davidson algorithms for pyramidal quantum dot simulation. Computer Physics Communications, 204:74–81, 2016.