This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

MS-measurability via coordinatization

Mostafa Mirabi Department of Mathematics and Computer Science, Wesleyan University, 655 Exley Science Tower, 265 Church Street, Middletown, CT 06459 mmirabi@wesleyan.edu https://sites.google.com/site/mostafamirabi/
Abstract.

We define a notion of coordinatization for 0\aleph_{0}-categorical structures which is, like Lie coordinatized structures in [2], a certain kind of expansion of a tree. We show that a structure which is coordinatized, in a certain strong sense, by 0\aleph_{0}-categorical MS-measurable structures itself is MS-measurable.

Key words and phrases:
MS-measurable structures, asymptotic classes, coordinatization, 0\aleph_{0}-categorical theories
2010 Mathematics Subject Classification:
03C13 , 03C45, 03C15

1. Introduction

The notion of MS-measurable structures was introduced by Macpherson and Steinhorn in [9]. An MS-measurable structure is an infinite structure whose definable sets are equipped with an \mathbb{N}-valued dimension and an \mathbb{R}-valued measure satisfying natural properties (e.g., a variant of Fubini’s Theorem). All MS-measurable structures are supersimple of finite SU-rank. The motivating examples of MS-measurable structures are infinite pseudofinite fields. More generally, a non-principal ultraproduct of a so-called asymptotic class of finite structures is always MS-measurable. An asymptotic class means that we have, in some sense, tight estimates of the sizes of the definable sets in all structures in the class; this condition is essentially a generalization of the classical Lang–Weil estimates for varieties in the class of finite fields [1]. There are also MS-measurable structures which are not even pseudofinite, so cannot be obtained from asymptotic classes [4].

Coordinatization is a method of decomposing a model as a tree of geometries. Roughly speaking, it means that the structure can be constructed in a nice way from a tree, the skeleton of the structure, by gluing additional structures on some nodes of tree. By allowing the components to interact with each other, we may define different notions of coordinatization. In [2], for example, Cherlin and Hrushovski define a “Lie coordinatized” structure to be a structure with a treelike form of finite height which witnesses how a structure is built by a sequence of finite and affine covers; they then prove that a countable structure is smoothly approximated if and only if it is Lie coordinatizable. Elwes, in [5], has proven that any smoothly approximable structure is MS-measurable by showing that it arises from an approximating sequence of envelopes which forms an asymptotic class.

In [7], Hill has studied the construction of pseudo-finite structures using a certain notion of coordinatization. In particular, he has shown that a structure that is coordinatized by structures with the finite sub-model property itself has the finite sub-model property. In [7], Hill uses a notion of coordinatization with a lot of independence similar to what is found in [8], but does not come with size estimates. Also, in [6], Hill uses a different but related kind of independence to get size estimates. Insofar as there is some overlap between [6] and [7] which suggests that there is a nice intraction between MS-measurability and pseudo-finiteness, it is worthwhile to study MS-measurability of structures obtained as expansions of trees.

In this paper, we define a strong notion of coordinatization for 0\aleph_{0}-categorical structures obtained as certain kinds of expansions of trees. We show that a structure which is coordinatized by one-dimensional 0\aleph_{0}-categorical MS-measurable structures is itself MS-measurable. This gives new examples of MS-measurable structures. This paper can be counted as the first step towards a more general problem for the study of an approach to understanding the intersection of two model-theoretically natural classes of structures, countably categorical 1-based structures on one hand (see [3]), and MS-measurable structures (see [9]) on the other hand. In the long run, the goal is to develop a notion of coordinatization that captures the structures in that intersection. Here, we have worked out how we would expect that notion to look by working out the details of a certain strong notion of coordinatization. We expect that the ”right” notion will turn out to be a relaxation of the notion of coordinatization here.

The paper is organized as follows. In Subsection 1.1, we fix some notation and conventions which we use throughout the paper. In Section 2, we express some preliminaries and building blocks which will be used for the rest of the paper including the notions of tree plans, tree-closure, and expansions of trees. We provide all material which we need to define our notion of coordinatization. In Section 3, we define a certain notion of coordinatization and show how to construct structures coordinatized in this way. In Section 4, we recall the definition of MS-measurability and prove a criterion for MS-measurability of 0\aleph_{0}-categorical structures. Then we prove the main theorem saying that one can lift MS-measurability to coordinatized structures.

1.1. Notation and conventions

Throughout this paper, we use calligraphic upper-case letters like \mathcal{M}, 𝒩\mathcal{N} to denote infinite structures with universes MM and NN, respectively. We use simple upper-case letters like A,B,CA,B,C to denote finite structures and identify them with their universes. In general, our notation for such structures is standard (see [10]). By 𝒩\mathcal{M}\preceq\mathcal{N} we mean that \mathcal{M} is an elementary substructure of 𝒩\mathcal{N}. By AfinMA\subset_{\textrm{fin}}M we mean that AA is a finite subset of MM. We write acl(A)\operatorname{acl}^{\mathcal{M}}(A) and dcl(A)\operatorname{dcl}^{\mathcal{M}}(A) to denote the algebraic closure and definable closure of AA in \mathcal{M}, respectively. For A,BMA,B\subseteq M and cMc\in M, by ABAB and AcAc we mean ABA\cup B and A{c}A\cup\{c\}, respectively. We use \uplus to denote disjoint union. By A<ωA^{<\omega} we mean the set of all finite tuples of members of AA. We write Aut(/A)\mathrm{Aut}(\mathcal{M}/A) to denote the set of all automorphisms of \mathcal{M} that fix AA pointwise. A theory TT is algebraically trivial if for all T\mathcal{M}\vDash T, for all AMA\subseteq M, acl(A)=A\operatorname{acl}^{\mathcal{M}}(A)=A. If φ(x¯,y¯)\varphi(\overline{x},\overline{y}) is an \mathcal{L}-formula and b¯Mm\overline{b}\in M^{m}, we write φ(,b¯)\varphi(\mathcal{M},\overline{b}) to denote the set defined in \mathcal{M} by the (b¯)\mathcal{L}(\overline{b})-formula φ(x¯,b¯)\varphi(\overline{x},\overline{b}), i.e. φ(,b¯)={a¯Mn:φ(a¯,b¯)}\varphi(\mathcal{M},\overline{b})=\left\{\overline{a}\in M^{n}:\mathcal{M}\vDash\varphi(\overline{a},\overline{b})\right\}. By a¯Cb¯\overline{a}\equiv_{C}\overline{b} we mean tp(a¯/C)=tp(b¯/C)\operatorname{tp}(\overline{a}/C)=\operatorname{tp}(\overline{b}/C). For a countably infinite 0\aleph_{0}-categorical structure \mathcal{M}, a¯Mn\overline{a}\in M^{n} and CfinMC\subset_{\textrm{fin}}M, we remind the reader that tp(a¯/C)\operatorname{tp}(\overline{a}/C) is always isolated, by the Ryll-Nardzewski theorem. Also in such a structure,

  1. i.

    By X=tp(a¯/C)X=\operatorname{tp}(\overline{a}/C), we mean XX is the set defined by some formula that isolates tp(a¯/C)\operatorname{tp}(\overline{a}/C).

  2. ii.

    We will introduce notions of dimension and measure for definable sets. By dim(a/C)\dim(a/C) and meas(a/C)\mathrm{meas}(a/C), we mean dim(X)\dim(X) and meas(X)\mathrm{meas}(X) where XX is the set defined by a formula which isolates tp(a/C)\operatorname{tp}(a/C).

  3. iii.

    When we write X=tp(a¯1/C)tp(a¯k/C)X=\operatorname{tp}(\overline{a}_{1}/C)\uplus\dots\uplus\operatorname{tp}(\overline{a}_{k}/C), we mean that

    X=φ1(,c¯)φk(,c¯)X=\varphi_{1}(\mathcal{M},\overline{c})\uplus\dots\uplus\varphi_{k}(\mathcal{M},\overline{c})

    where φi(x¯,c¯)\varphi_{i}(\overline{x},\overline{c}) isolates tp(a¯i/C)\operatorname{tp}(\overline{a}_{i}/C) for each i{1,,k}i\in\{1,\dots,k\}, and c¯\overline{c} enumerates CC.

2. Tree structures

In this section, we introduce some basic notions and techniques which are needed for the rest of the paper.

2.1. Tree plans

In order to define the notion of coordinatized structure in the next section, that is a kind of expansion of a tree, we first need the notion of tree plan.

Definition 2.1.1.
  1. I.

    The language of trees, t\mathcal{L}_{t}, has signature sig(t)={,ε,,𝚙𝚛𝚎𝚍}\mathrm{sig}(\mathcal{L}_{t})=\left\{\leq,\varepsilon,\sqcap,\mathtt{pred}\right\}, where \leq is a binary relation symbol, ε\varepsilon is a constant symbol, and \sqcap is a binary function symbol, and 𝚙𝚛𝚎𝚍\mathtt{pred} is a unary function symbol.

  2. II.

    A tree is an t\mathcal{L}_{t}-structure 𝒜\mathcal{A} such that:

    • 𝒜\leq^{\mathcal{A}} is a partial ordering of the universe in which every downset {a:a𝒜b}\left\{a:a\leq^{\mathcal{A}}b\right\} (bAb\in A) is well-ordered.

    • ε𝒜\varepsilon^{\mathcal{A}} is the unique minimum element of 𝒜\leq^{\mathcal{A}} — the root of 𝒜\mathcal{A}.

    • For a,aAa,a^{\prime}\in A, a𝒜aa\sqcap^{\mathcal{A}}a^{\prime} is the unique maximum element of AA that is below both aa and aa^{\prime} — the meet of aa and aa^{\prime}.

    • For each aAa\in A, 𝚙𝚛𝚎𝚍𝒜(a)\mathtt{pred}^{\mathcal{A}}(a) is the maximum element among the elements that are strictly less than aa. It is called the predecessor of aa. Also, as a convention we let 𝚙𝚛𝚎𝚍𝒜(ε)=ε\mathtt{pred}^{\mathcal{A}}(\varepsilon)=\varepsilon.

    Note that the class of trees in this sense is not first-order axiomatizable.

It follows from Definition 2.1.1 that {a:ab}\{a:a\leq b\} is actually finite for all bb, and so predecessors exist.

Note that ω<ω\omega^{<\omega} with function extension ordering has a natural tree structure, and when we write a tree Γω<ω\Gamma\subseteq\omega^{<\omega}, we mean that Γ\Gamma is a substructure. In paticular, it contains \left\langle\right\rangle and is closed under 𝚙𝚛𝚎𝚍\mathtt{pred}.

Definition 2.1.2.
  1. I.

    A tree plan is just a pair (Γ,λ)(\Gamma,\lambda), where Γfinω<ω\Gamma\subset_{\textrm{fin}}\omega^{<\omega} is a finite tree (containing \left\langle\right\rangle) and λ:Γ{1,}\lambda:\Gamma\to\{1,\infty\} is a function such that λ()=1\lambda(\left\langle\right\rangle)=1.

    Under almost all circumstances it’s preferable to omit λ\lambda from the notation and start from the declaration “Γ=(Γ,λ)\Gamma=(\Gamma,\lambda) is tree plan…”

  2. II.

    Given a tree plan Γ=(Γ,λ)\Gamma=(\Gamma,\lambda), we define

    I(Γ):=λ1[]={σΓ:λ(σ)=}.I(\Gamma):=\lambda^{-1}[\infty]=\left\{\sigma\in\Gamma:\lambda(\sigma)=\infty\right\}.

    We call each member of I(Γ)I(\Gamma) an infinity-node of Γ\Gamma.

For a given tree plan Γ\Gamma and a set XX (possibly infinite), we can define a tree, called Γ(X)\Gamma(X), by identifying every infinity-node of Γ\Gamma with the set XX. Roughly speaking, Γ(X)\Gamma(X) is an extension of Γ\Gamma obtained by replacing each infinity-node with |X||X|-many new nodes, and leaving other nodes to themselves.

Definition 2.1.3.

Let Γ=(Γ,λ)\Gamma=(\Gamma,\lambda) be a tree plan. For any non-empty set XX, we define a tree Γ(X)(ω×(X{}))<ω\Gamma(X)\subseteq\left(\omega\times\big{(}X\cup\{\star\}\big{)}\right)^{<\omega}, and a function πX:Γ(X)Γ\pi_{X}:\Gamma(X)\to\Gamma as follows:

(i0,t0),,(in,tn)Γ(X)\left\langle(i_{0},t_{0}),...,(i_{n},t_{n})\right\rangle\in\Gamma(X) if i0,,inΓ\left\langle i_{0},...,i_{n}\right\rangle\in\Gamma and for each knk\leq n:

  1. if λ(i0,,ik)=1\lambda(\left\langle i_{0},...,i_{k}\right\rangle)=1, then tk=t_{k}=\star;

  2. if λ(i0,,ik)=\lambda(\left\langle i_{0},...,i_{k}\right\rangle)=\infty, then tkXt_{k}\in X.

We then define πX\pi_{X} just by setting πX((i0,t0),,(in,tn))=i0,,in\pi_{X}{\left(\left\langle(i_{0},t_{0}),...,(i_{n},t_{n})\right\rangle\right)}=\left\langle i_{0},...,i_{n}\right\rangle, and we define

I(X)={aΓ(X):πX(a)I(Γ)}={aΓ(X):λ(πX(a))=}I(X)=\left\{a\in\Gamma(X):\pi_{X}(a)\in I(\Gamma)\right\}=\left\{a\in\Gamma(X):\lambda(\pi_{X}(a))=\infty\right\}

which is the set of infinity-nodes of Γ(X)\Gamma(X). Note that for each σiI(Γ)\sigma{{}^{\smallfrown}}i\in I(\Gamma) and bΓ(X)b\in\Gamma(X) such that πX(b)=σ\pi_{X}(b)=\sigma, there is a bijection between XX and the set

{aΓ(X):𝚙𝚛𝚎𝚍(a)=bπX(a)=σi}.\left\{a\in\Gamma(X):\mathtt{pred}(a)=b\,\,\,\wedge\,\,\,\pi_{X}(a)=\sigma{{}^{\smallfrown}}i\right\}.
Observation 2.1.4.

Let Γ=(Γ,λ)\Gamma=(\Gamma,\lambda) be a tree plan. Then for any two sets XX and YY, if XYX\subseteq Y, then Γ(X)Γ(Y)\Gamma(X)\leq\Gamma(Y) and πX=πYΓ(X)\pi_{X}=\pi_{Y}{\upharpoonright}\Gamma(X). In fact, it can be shown that if XX and YY are both infinite and XYX\subseteq Y, then Γ(X)Γ(Y)\Gamma(X)\preceq\Gamma(Y).

In the following, for a subset BB of a tree we define the set of points below (and above) BB, and also define the height of the tree.

Definition 2.1.5.

Let Γ\Gamma be a tree plan and σΓ\sigma\in\Gamma. Let XX be an arbitrary set and BΓ(X)B\subseteq\Gamma(X).

  1. (1)

    We define B={aΓ(X):(bB)ab}{\downarrow}B=\left\{a\in\Gamma(X):(\exists b\in B)\,\,a\leq b\right\}. We say BB is downward closed if B=BB={\downarrow}B.

  2. (2)

    We define B={aΓ(X):(bB)ba}{\uparrow}B=\left\{a\in\Gamma(X):(\exists b\in B)\,\,b\leq a\right\}.

  3. (3)

    We define the height of σ\sigma, 𝗁(σ)\mathsf{h}(\sigma), to be the smallest number k<ωk<\omega such that 𝚙𝚛𝚎𝚍k(σ)=ε\mathtt{pred}^{k}(\sigma)=\varepsilon. I.e.

    • 𝗁()=0\mathsf{h}(\left\langle\right\rangle)=0,

    • if σ\sigma\neq\left\langle\right\rangle, then 𝗁(σ)=k\mathsf{h}(\sigma)=k if and only if 𝚙𝚛𝚎𝚍k(σ)=ε\mathtt{pred}^{k}(\sigma)=\varepsilon and 𝚙𝚛𝚎𝚍k1(σ)ε\mathtt{pred}^{k-1}(\sigma)\neq\varepsilon.

    Also we define the height of the tree plan Γ\Gamma as follows:

    𝗁(Γ)=max{𝗁(σ):σΓ}.\mathsf{h}(\Gamma)=\max\left\{\mathsf{h}(\sigma):\sigma\in\Gamma\right\}.

In the next definition we define a closure operator on a tree Γ(X)\Gamma(X). Roughly speaking, for a given BΓ(X)B\subseteq\Gamma(X) we define the tree-closure of BB in Γ(X)\Gamma(X) to be the smallest subset of Γ(X)\Gamma(X) containing BB that is definably closed. Note that a definably closed set will be downward closed as well, by applying 𝚙𝚛𝚎𝚍\mathtt{pred} function.

Definition 2.1.6.

Let Γ=(Γ,λ)\Gamma=(\Gamma,\lambda) be a tree plan. For a set XX, we define tree-closure

tcl=tclΓ(X):𝒫(Γ(X))𝒫(Γ(X))\mathrm{tcl}=\mathrm{tcl}^{\Gamma(X)}:\mathcal{P}(\Gamma(X))\longrightarrow\mathcal{P}(\Gamma(X))

as follows:

tcl0(B)\displaystyle\mathrm{tcl}_{0}(B) ={}{aΓ(X):(bB)ab}\displaystyle=\Big{\{}\left\langle\right\rangle\Big{\}}\cup\Big{\{}a\in\Gamma(X)\,:\,(\exists b\in B)\,\,a\leq b\Big{\}}
\displaystyle\vdots
tcln+1(B)\displaystyle\mathrm{tcl}_{n+1}(B) =tcln(B){aΓ(X):λ(π(a))=1 and 𝚙𝚛𝚎𝚍(a)tcln(B)}\displaystyle=\mathrm{tcl}_{n}(B)\cup\Big{\{}a\in\Gamma(X)\,:\,\lambda(\pi(a))=1\text{ and }\mathtt{pred}(a)\in\mathrm{tcl}_{n}(B)\Big{\}}

We set tcl(B)=ntcln(B)\mathrm{tcl}(B)=\bigcup_{n}\mathrm{tcl}_{n}(B).

Using tcl\mathrm{tcl}, we formulate another definition which is useful in relating an element aa to tcl(B)\mathrm{tcl}(B) that may not itself be a member of tcl(B)\mathrm{tcl}(B). For aΓ(X)a\in\Gamma(X) and BΓ(X)B\subseteq\Gamma(X), we set

[aB;X]=max{etcl(B):ea}.[a{\wedge}B;X]=\max\left\{e\in\mathrm{tcl}(B):e\leq a\right\}.

Note that atcl(X)(B)a\in\mathrm{tcl}(X)(B) if and only [aB;X]=a[a{\wedge}B;X]=a.

From now on, we fix a tree plan Γ=(Γ,λ)\Gamma=(\Gamma,\lambda) and a countably infinite set SS. Let

sig(Γ)=sig(t){Pσ(1):σΓ},\mathrm{sig}(\mathcal{L}_{\Gamma})=\mathrm{sig}(\mathcal{L}_{t})\cup\left\{P_{\sigma}^{(1)}:\sigma\in\Gamma\right\},

where for each σΓ\sigma\in\Gamma, by Pσ(1)P_{\sigma}^{(1)} we mean that PσP_{\sigma} is a unary relation symbol. We consider Γ(S)\Gamma(S) as an Γ\mathcal{L}_{\Gamma}-structure with PσΓ(S)={a:π(a)=σ}P_{\sigma}^{\Gamma(S)}=\left\{a:\pi(a)=\sigma\right\} for each σΓ\sigma\in\Gamma.

When SS is clear from context, for brevity, we write:

  • [aB][a\wedge B] in place of [aB;S][a\wedge B;S];

  • tcl(B)\mathrm{tcl}(B) in place of tclΓ(S)(B)\mathrm{tcl}^{\Gamma(S)}(B);

  • acl(B)\operatorname{acl}(B) in place of aclΓ(S)(B)\operatorname{acl}^{\Gamma(S)}(B);

  • tpΓ()\operatorname{tp}_{\Gamma}(...) when we mean tpΓ(S)()\operatorname{tp}^{\Gamma(S)}(...);

  • π\pi in place of πS\pi_{S};

Finally, we set

I(S)={aΓ(S):λ(π(a))=}I(S)=\left\{a\in\Gamma(S):\lambda(\pi(a))=\infty\right\}

and for an expansion \mathcal{M} of Γ(S)\Gamma(S), and each aΓ(S)a\in\Gamma(S),

M(a)={aΓ(S):𝚙𝚛𝚎𝚍(a)=𝚙𝚛𝚎𝚍(a) and π(a)=π(a)}.M(a)=\left\{a^{\prime}\in\Gamma(S):\mathtt{pred}(a^{\prime})=\mathtt{pred}(a)\text{ and }\pi(a^{\prime})=\pi(a)\right\}.

These sets are called components of \mathcal{M}. Note that if π(a)=π(b)\pi(a)=\pi(b) and 𝚙𝚛𝚎𝚍(a)=𝚙𝚛𝚎𝚍(b)\mathtt{pred}(a)=\mathtt{pred}(b), then M(a)=M(b)M(a)=M(b).

Here is a lemma which will be used in Section 3, in particular in the proof of Corollary 3.2.4, showing that certain expansions of Γ(S)\Gamma(S) are 0\aleph_{0}-categorical and eliminate quantifiers.

Lemma 2.1.7.

Γ(S)\Gamma(S) is ultra-homogeneous, and its theory, Th(Γ(S))Th(\Gamma(S)), is 0\aleph_{0}-categorical.

Proof.

Let 𝐊(Γ)\mathbf{K}(\Gamma) be the class obtained by closing {A:AΓ(X) and X is a finite set}\left\{A\,:\,A\leq\Gamma(X)\text{ and }X\text{ is a finite set}\right\} under isomorphisms. It’s easily seen that Γ(S)\Gamma(S) is the Fraïssé limit of 𝐊(Γ)\mathbf{K}(\Gamma). So Γ(S)\Gamma(S) is an ultra-homogeneous Γ\mathcal{L}_{\Gamma}-structure, and its theory, Th(Γ(S))Th(\Gamma(S)), is 0\aleph_{0}-categorical. ∎

3. Coordinatization

In this section, we introduce a strong notion of coordinatization. Then, by constructing an example, in Subsection 3.2 we show such coordinatized structures exist. Finally, we verify that the example works.

3.1. Nil-interaction coordinatized structures

For a tree plan Γ\Gamma and a countably infinite set SS, we define a nil-interaction coordinatized structure to be an 0\aleph_{0}-categorical expansion of Γ(S)\Gamma(S) in which, roughly speaking, there is no interaction between different components other than what Γ(S)\Gamma(S) already supplies. This is analogous to what Cherlin and Hrushovski, in [2], call a Lie coordinatized structure in contrast to a Lie coordinatizable structure.

For the rest of this section, we take Γ\Gamma and SS as fixed. First, we make some notation for discussing 0\aleph_{0}-categorical expansions of Γ(S)\Gamma(S) in general.

Definition 3.1.1.

Let \mathcal{M} be an expansion of Γ(S)\Gamma(S), and let σI(Γ)\sigma\in I(\Gamma). For each n<ωn<\omega, let

𝒮nσ={tp(b,a¯):a¯=(a0,,an1),a0π1[σ],b=𝚙𝚛𝚎𝚍(a0) and a1,,an1M(a0)},\mathcal{S}_{n}^{\sigma}=\left\{\operatorname{tp}^{\mathcal{M}}(b,\overline{a})\,\,\,:\,\,\begin{array}[]{l}\overline{a}=(a_{0},\dots,a_{n-1}),\\ a_{0}\in\pi^{-1}[\sigma],\\ b=\mathtt{pred}(a_{0})\text{ and }a_{1},\dots,a_{n-1}\in M(a_{0})\end{array}\right\},

and

sig(σ)={Rp(n):0<n<ω,p(x,y¯)𝒮nσ}.\mathrm{sig}(\mathcal{L}_{\sigma})=\bigg{\{}R^{(n)}_{p}:0<n<\omega,\,\,p(x,\overline{y})\in\mathcal{S}_{n}^{\sigma}\bigg{\}}.

where, for each p𝒮nσp\in\mathcal{S}_{n}^{\sigma}, Rp(n)R_{p}^{(n)} means RpR_{p} is an nn-ary relation symbol.
Now, let \mathcal{M} be an 0\aleph_{0}-categorical expansion of Γ(S)\Gamma(S), and let eΓ(S)e\in\Gamma(S) such that π(e)=σ\pi(e)=\sigma and 𝚙𝚛𝚎𝚍(e)=b\mathtt{pred}(e)=b. Then we define (e)\mathcal{M}(e) to be the σ\mathcal{L}_{\sigma}-structure with universe M(e)M(e) and interpretations

Rp(e)={a¯M(e)n:p(b,a¯)}R^{\mathcal{M}(e)}_{p}=\bigg{\{}\overline{a}\in M(e)^{n}:\mathcal{M}\vDash p(b,\overline{a})\bigg{\}}

for all 0<n<ω0<n<\omega and p(x,y¯)𝒮nσp(x,\overline{y})\in\mathcal{S}_{n}^{\sigma}.

Also, we define

G(e)={gM(e):gAut(/𝚙𝚛𝚎𝚍(e))}G(e)=\left\{g{\upharpoonright}M(e):g\in Aut(\mathcal{M}/\mathtt{pred}(e))\right\}

which is a closed subgroup of 𝑆𝑦𝑚(M(e))\mathit{Sym}(M(e)).

Definition 3.1.2.

Let \mathcal{M} be an expansion of Γ(S)\Gamma(S). We say that \mathcal{M} is a nil-interaction coordinatized structure (or NIC structure) if all of the following conditions hold:

  1. N1.

    \mathcal{M} is 0\aleph_{0}-categorical, eliminates quantifiers, and has acl=tcl\operatorname{acl}=\mathrm{tcl}.

  2. N2.

    For each single element eΓ(S)e\in\Gamma(S), tpΓ(e)tp(e)\operatorname{tp}_{\Gamma}(e)\vDash\operatorname{tp}^{\mathcal{M}}(e).

  3. N3.

    For CfinΓ(S)C\subset_{\textrm{fin}}\Gamma(S) and eΓ(S)e\in\Gamma(S), if π(e)I(Γ)\pi(e)\in I(\Gamma), then

    tpΓ(e/C)tp(e)(e/tcl(C)M(e))tp(e/C).\operatorname{tp}_{\Gamma}\big{(}e/C\big{)}\cup\operatorname{tp}^{\mathcal{M}(e)}\big{(}e/\mathrm{tcl}(C)\cap M(e)\big{)}\vDash\operatorname{tp}^{\mathcal{M}}\big{(}e/C\big{)}.

The next proposition shows that for each infinity-node σ\sigma of Γ\Gamma, there is an 0\aleph_{0}-categorical theory TσT_{\sigma} such that (a)Tσ\mathcal{M}(a)\vDash T_{\sigma} whenever π(a)=σ\pi(a)=\sigma. It shows that, up to isomorphism, the set of components of an NIC structure is finite, which we count as desirable.

Proposition 3.1.3.

Let Γ\Gamma be a tree plan and let \mathcal{M} be a NIC structure expanding Γ(S)\Gamma(S). Let σI(Γ)\sigma\in I(\Gamma). Then there is an 0\aleph_{0}-categorical theory TσT_{\sigma} such that (e)Tσ\mathcal{M}(e)\vDash T_{\sigma} whenever π(e)=σ\pi(e)=\sigma. Moreover, for any gAut()g\in\mathrm{Aut}(\mathcal{M}), gM(e)g{\restriction}M(e) is an isomorphism of (e)\mathcal{M}(e) onto (g(e))\mathcal{M}(g(e)).

Proof.

Suppose π(e)=σI(Γ)\pi(e)=\sigma\in I(\Gamma) and gAut()g\in\mathrm{Aut}(\mathcal{M}). Then gM(e)g{\restriction}M(e) is a bijection of M(e)M(e) onto M(g(e))M(g(e)). Also, for all n+n\in\mathbb{N}^{+}, for all p(x,y¯)𝒮nσp(x,\overline{y})\in\mathcal{S}_{n}^{\sigma} (see Definition 3.1.1), and for all a¯M(e)n\overline{a}\in M(e)^{n} we have

a¯Rp(e)\displaystyle\overline{a}\in R_{p}^{\mathcal{M}(e)} p(𝚙𝚛𝚎𝚍(e),a¯)\displaystyle\Leftrightarrow\mathcal{M}\vDash p(\mathtt{pred}(e),\overline{a})
p(𝚙𝚛𝚎𝚍(g(e)),ga¯)\displaystyle\Leftrightarrow\mathcal{M}\vDash p(\mathtt{pred}(g(e)),g\overline{a})
ga¯Rp(g(e)).\displaystyle\Leftrightarrow g\overline{a}\in R_{p}^{\mathcal{M}(g(e))}.

Therefore (e)(g(e))\mathcal{M}(e)\cong\mathcal{M}(g(e)) via gM(e)g{\restriction}M(e). Suppose π(e)=π(e)=σI(Γ)\pi(e)=\pi(e^{\prime})=\sigma\in I(\Gamma) and φTh((e))\varphi\in Th\left(\mathcal{M}(e)\right). Let θ(x,e)\theta(x,e) define M(e)M(e) in \mathcal{M}, and let φθ(x,e)tp(e)\varphi^{\theta(x,e)}\in\operatorname{tp}^{\mathcal{M}}(e) be a formula that φ((e))=φθ(x,e)()\varphi(\mathcal{M}(e))=\varphi^{\theta(x,e)}(\mathcal{M}) (i.e. for any e′′e^{\prime\prime}, φθ(x,e′′)(e′′)\mathcal{M}\vDash\varphi^{\theta(x,e^{\prime\prime})}(e^{\prime\prime}) if and only if (e′′)φ\mathcal{M}(e^{\prime\prime})\vDash\varphi). Since tpΓ(e)=tpΓ(e)\operatorname{tp}_{\Gamma}(e)=\operatorname{tp}_{\Gamma}(e^{\prime}), tp(e)=tp(e)\operatorname{tp}^{\mathcal{M}}(e)=\operatorname{tp}^{\mathcal{M}}(e^{\prime}) by N2. So φθ(x,e)tp(e)\varphi^{\theta(x,e)}\in\operatorname{tp}^{\mathcal{M}}(e^{\prime}). This follows that φTh((e))\varphi\in Th\left(\mathcal{M}(e^{\prime})\right). We set Tσ=Th((e))T_{\sigma}=Th(\mathcal{M}(e)) for any ee such that π(e)=σ\pi(e)=\sigma. Since \mathcal{M} is 0\aleph_{0}-categorical by N1, TσT_{\sigma} is 0\aleph_{0}-categorical as well. ∎

3.2. Existence of NIC structures

In this subsection, we provide an example which shows that nil-interaction coordinatized structures exist. We start with a tree plan Γ\Gamma. For each σI(Γ)\sigma\in I(\Gamma), we fix an 0\aleph_{0}-categorical theory TσT_{\sigma} in a relational language σ\mathcal{L}_{\sigma}. We extend our language Γ\mathcal{L}_{\Gamma} to \mathcal{L}^{*} by adding an (n+1)(n+1)-ary predicate symbol R^\hat{R} for each nn-ary relation symbol Rsig(σ)R\in\mathrm{sig}(\mathcal{L}_{\sigma}). Roughly speaking, we define a nil-interaction coordinatized structure as a \mathcal{L}^{*}-structure as follows: Γ(S)\Gamma(S) is the underlying set, and for each infinity-node aΓ(S)a\in\Gamma(S) with π(a)=σI(Γ)\pi(a)=\sigma\in I(\Gamma) we identify M(a)M(a) with a model 𝒩σ\mathcal{N}_{\sigma} of TσT_{\sigma}.

3.2.1. Construction

The ingredients for constructing a NIC structure \mathcal{M} are the following:

  • A tree plan Γ\Gamma, and a countably infinite set SS.

  • For each σI(Γ)\sigma\in I(\Gamma), let TσT_{\sigma} be a theory in a relational language σ\mathcal{L}_{\sigma}. We assume that TσT_{\sigma} is 0\aleph_{0}-categorical, algebraically trivial, eliminates quantifiers, and has |S1(Tσ)|=1|S_{1}(T_{\sigma})|=1.

    We also assume that if σ1,σ2\sigma_{1},\sigma_{2} are distinct, then sig(σ1)sig(σ2)=\mathrm{sig}(\mathcal{L}_{\sigma_{1}})\cap\mathrm{sig}(\mathcal{L}_{\sigma_{2}})=\varnothing.

  • For each σI(Γ)\sigma\in I(\Gamma), fix a bijection fσ:SNσf_{\sigma}:S\to N_{\sigma}, where 𝒩σ\mathcal{N}_{\sigma} is a fixed countable model of TσT_{\sigma}.

We then define

sig():=sig(Γ)σI(Γ){R^(n+1):R(n)sig(σ)}.\mathrm{sig}(\mathcal{L}^{*}):=\mathrm{sig}(\mathcal{L}_{\Gamma})\cup\bigcup_{\sigma\in I(\Gamma)}\left\{\hat{R}^{(n+1)}:R^{(n)}\in\mathrm{sig}(\mathcal{L}_{\sigma})\right\}.

Finally, \mathcal{M} is the \mathcal{L}^{*}-structure such that:

  • Γ=Γ(S)\mathcal{M}{\upharpoonright}\mathcal{L}_{\Gamma}=\Gamma(S)

  • For each σI(Γ)\sigma\in I(\Gamma), aΓ(S)a\in\Gamma(S) such that π(a)=σ=σ0k\pi(a)=\sigma=\sigma_{0}{{}^{\smallfrown}}k, for each R(n)sig(σ)R^{(n)}\in\mathrm{sig}(\mathcal{L}_{\sigma}),

    R^={(b,b(k,s0),,b(k,sn1)):π(b)=σ0,(fσ(s0),,fσ(sn1))R𝒩σ}.\hat{R}^{\mathcal{M}}=\left\{\left(b,b{{}^{\smallfrown}}(k,s_{0}),...,b{{}^{\smallfrown}}(k,s_{n-1})\right):\pi(b)=\sigma_{0},\,(f_{\sigma}(s_{0}),...,f_{\sigma}(s_{n-1}))\in R^{\mathcal{N}_{\sigma}}\right\}.

Note that if π(b)=σ0,π(e)=σ=σ0kI(Γ)\pi(b)=\sigma_{0},\,\pi(e)=\sigma=\sigma_{0}{{}^{\smallfrown}}k\in I(\Gamma) and 𝚙𝚛𝚎𝚍(e)=b\mathtt{pred}(e)=b, then M(e)={b(k,s):sS}M(e)=\left\{b{{}^{\smallfrown}}(k,s):s\in S\right\}.

3.2.2. Verification

In this subsection, we verify that the structure obtained from the construction just presented satisfies N1, N2 and N3. Throughout this subsection, σ,Tσ,𝒩σ\mathcal{L}_{\sigma},T_{\sigma},\mathcal{N}_{\sigma} (for σI(Γ)\sigma\in I(\Gamma)) and \mathcal{M} are as in that construction.

Remark 3.2.1.

For σI(Γ)\sigma\in I(\Gamma), aMa\in M such that π(a)=σ\pi(a)=\sigma, b=𝚙𝚛𝚎𝚍(a)b=\mathtt{pred}(a) so that a=b(k,s)a=b{{}^{\smallfrown}}(k,s^{*}) for some sSs^{*}\in S, and gAut(𝒩σ)g\in Aut(\mathcal{N}_{\sigma}), we define

Xa/b=eM(a){c:ec},Ya/b=Γ(S)Xa/b,X_{a/b}=\bigcup_{e\in M(a)}\left\{c:e\leq c\right\},\,\,\,\,Y_{a/b}=\Gamma(S)\setminus X_{a/b},

and ga/b:Γ(S)Γ(S)g_{a/b}:\Gamma(S)\to\Gamma(S) by setting ga/b(y)=yg_{a/b}(y)=y if yYa/by\in Y_{a/b}, and with a slight abuse of notation

ga/b(b(k,s)c)=b(k,g(s))cg_{a/b}(b{{}^{\smallfrown}}(k,s){{}^{\smallfrown}}c)=b{{}^{\smallfrown}}(k,g(s)){{}^{\smallfrown}}c

whenever b(k,s)cXa/bb{{}^{\smallfrown}}(k,s){{}^{\smallfrown}}c\in X_{a/b}. We also notice that Aut()Aut(\mathcal{M}) is the topological closure of the subgroup of 𝑆𝑦𝑚(Γ(S))\mathit{Sym}(\Gamma(S)) generated by

{ga/b:σI(Γ),π(a)=σ,b=𝚙𝚛𝚎𝚍(a),gAut(𝒩σ)}.\left\{g_{a/b}\,\,:\begin{array}[]{l}\sigma\in I(\Gamma),\,\,\pi(a)=\sigma,\\ b=\mathtt{pred}(a),\,\,g\in Aut(\mathcal{N}_{\sigma})\end{array}\right\}.
Notation 3.2.2.

Let aΓ(S)a\in\Gamma(S) such that π(a)=σI(Γ)\pi(a)=\sigma\in I(\Gamma), and let σ=σ0k,b=𝚙𝚛𝚎𝚍(a)\sigma=\sigma_{0}{{}^{\smallfrown}}k,\,b=\mathtt{pred}(a). We write ξa:(a)𝒩σ\xi_{a}:\mathcal{M}(a)\longrightarrow\mathcal{N}_{\sigma} to denote the map fσhf_{\sigma}\circ h where h:M(a)Sh:M(a)\longrightarrow S is given by b(k,s)sb{{}^{\smallfrown}}(k,s)\mapsto s.

M(a){M(a)}S{S}Nσ{N_{\sigma}}h\scriptstyle{h}ξa=fσh\scriptstyle{\xi_{a}=f_{\sigma}\circ h}fσ\scriptstyle{f_{\sigma}}

The following lemma has a key role to verify that \mathcal{M} satisfies N1 and N2.

Lemma 3.2.3.

Let AfinΓ(S)A\subset_{\textrm{fin}}\Gamma(S) such that A=tcl(A)A=\mathrm{tcl}(A), and let e,eΓ(S)e,e^{\prime}\in\Gamma(S) such that eee\neq e^{\prime}. Let tpΓ(e/A)=tpΓ(e/A)\operatorname{tp}_{\Gamma}(e/A)=\operatorname{tp}_{\Gamma}(e^{\prime}/A) and tp(b)(b/A0)=tp(b)(b/A0)\operatorname{tp}^{\mathcal{M}(b)}(b/A_{0})=\operatorname{tp}^{\mathcal{M}(b)}(b^{\prime}/A_{0}) where be,be,b\leq e,\,b^{\prime}\leq e^{\prime}, 𝚙𝚛𝚎𝚍(b)=ee=𝚙𝚛𝚎𝚍(b)\mathtt{pred}(b)=e\sqcap e^{\prime}=\mathtt{pred}(b^{\prime}) and A0=AM(b)A_{0}=A\cap M(b). Then there is an automorphism gAut(/A)g\in\mathrm{Aut}(\mathcal{M}/A) such that g(e)=eg(e)=e^{\prime}. In particular, tp(e/A)=tp(e/A)\operatorname{tp}^{\mathcal{M}}(e/A)=\operatorname{tp}^{\mathcal{M}}(e^{\prime}/A).

Proof.

Let ee=e0e\sqcap e^{\prime}=e_{0}. There is n+n\in\mathbb{N}^{+} such that

ee=e0<b=e1<e2<<en=ee\sqcap e^{\prime}=e_{0}<b=e_{1}<e_{2}<\dots<e_{n}=e

and

ee=e0<b=e1<e2<<en=e.e\sqcap e^{\prime}=e_{0}<b^{\prime}=e^{\prime}_{1}<e^{\prime}_{2}<\dots<e^{\prime}_{n}=e^{\prime}.

We prove the statement by induction on nn, the length of the path from e0e_{0} to ee. If n=1n=1, then e=be=b and e=be^{\prime}=b^{\prime}. Let π(e0)=σ0\pi(e_{0})=\sigma_{0}, π(e)=π(e)=σ=σ0k\pi(e)=\pi(e^{\prime})=\sigma=\sigma_{0}{{}^{\smallfrown}}k for some k<ωk<\omega. Let e=e0(k,s)e=e_{0}{{}^{\smallfrown}}(k,s) and e=e0(k,s)e^{\prime}=e_{0}{{}^{\smallfrown}}(k,s^{\prime}) for some s,sSs,s^{\prime}\in S. Since tp(b)(b/A0)=tp(b)(b/A0)\operatorname{tp}^{\mathcal{M}(b)}(b/A_{0})=\operatorname{tp}^{\mathcal{M}(b)}(b^{\prime}/A_{0}) and (b)\mathcal{M}(b) is ultra-homogeneous, there is an automorphism hAut(𝒩σ)h\in\mathrm{Aut}(\mathcal{N}_{\sigma}) such that ξe1hξe(e)=e\xi_{e}^{-1}\circ h\circ\xi_{e}(e)=e^{\prime} and (ξe1hξe(e))A0=idA0\left(\xi_{e}^{-1}\circ h\circ\xi_{e}(e)\right){\restriction}A_{0}=id_{A_{0}} (see Notation 3.2.2). We get h^=fσ1hfσ𝑆𝑦𝑚(S)\hat{h}=f_{\sigma}^{-1}\circ h\circ f_{\sigma}\in\mathit{Sym}(S) such that h^(s)=s\hat{h}(s)=s^{\prime} and for each e0(k,t)A0e_{0}{{}^{\smallfrown}}(k,t)\in A_{0}, h^(t)=t\hat{h}(t)=t. We define a bijection v:M(b)M(b)v:{\uparrow}M(b)\longrightarrow{\uparrow}M(b) by

v(e0(k,s)c)=e0(k,h^(s))c.v\left(e_{0}{{}^{\smallfrown}}(k,s){{}^{\smallfrown}}c\right)=e_{0}{{}^{\smallfrown}}(k,\hat{h}(s)){{}^{\smallfrown}}c.

We set g=idZvg=id_{Z}\cup v where Z=Γ(S)M(b)Z=\Gamma(S)\setminus{\uparrow}M(b). If aAM(b)a\in A\cap{\uparrow}M(b), then some ancestor of aa is in A0A_{0}, so a=e0(k,s)ca=e_{0}{{}^{\smallfrown}}(k,s){{}^{\smallfrown}}c where h^(s)=s\hat{h}(s)=s and thus g(a)=e0(k,s)c=ag(a)=e_{0}{{}^{\smallfrown}}(k,s){{}^{\smallfrown}}c=a. Suppose the statement holds for the case that the length of the path from e0e_{0} to ee is n\leq n, and suppose the length of the path from e0e_{0} to ee equals n+1n+1. Since tpΓ(e/A)=tpΓ(e/A)\operatorname{tp}_{\Gamma}(e/A)=\operatorname{tp}_{\Gamma}(e^{\prime}/A), tpΓ(𝚙𝚛𝚎𝚍(e)/A)=tpΓ(𝚙𝚛𝚎𝚍(e)/A)\operatorname{tp}_{\Gamma}(\mathtt{pred}(e)/A)=\operatorname{tp}_{\Gamma}(\mathtt{pred}(e^{\prime})/A). So 𝚙𝚛𝚎𝚍(e)\mathtt{pred}(e) and 𝚙𝚛𝚎𝚍(e)\mathtt{pred}(e^{\prime}) satisfy the assumptions of the statement. By the induction hypothesis, there is g0Aut(/A)g_{0}\in\mathrm{Aut}(\mathcal{M}/A) such that g0(𝚙𝚛𝚎𝚍(e))=𝚙𝚛𝚎𝚍(e)g_{0}(\mathtt{pred}(e))=\mathtt{pred}(e^{\prime}). A similar argument like the case n=1n=1 will work here. More precisely, since 𝚙𝚛𝚎𝚍(g0(e))=g0(𝚙𝚛𝚎𝚍(e))=𝚙𝚛𝚎𝚍(e)\mathtt{pred}(g_{0}(e))=g_{0}(\mathtt{pred}(e))=\mathtt{pred}(e^{\prime}), g0(e)e=𝚙𝚛𝚎𝚍(e)g_{0}(e)\sqcap e^{\prime}=\mathtt{pred}(e^{\prime}). So g0(e)g_{0}(e) and ee^{\prime} satisfy the hypotheses for the case n=1n=1. Let π(e)=π(g0(e))=τ\pi(e^{\prime})=\pi(g_{0}(e))=\tau. Since |S1(Tτ)|=1|S_{1}(T_{\tau})|=1, there is an automorphism fAut(𝒩τ)f\in\mathrm{Aut}(\mathcal{N}_{\tau}) such that ξe1fξe(g0(e))=e\xi_{e^{\prime}}^{-1}\circ f\circ\xi_{e^{\prime}}\left(g_{0}(e)\right)=e^{\prime}. So by an argument like the case n=1n=1, we get g1Aut(/A)g_{1}\in\mathrm{Aut}(\mathcal{M}/A) with g1(g0(e))=eg_{1}\left(g_{0}(e)\right)=e^{\prime}, and we set g=g1g0g=g_{1}\circ g_{0}. ∎

Corollary 3.2.4.

\mathcal{M} satisfies N1.

Proof.

Let T=Th()T=Th(\mathcal{M}). To prove 0\aleph_{0}-categoricity, we show that for all n+n\in\mathbb{N}^{+},  |Sn(T)||S_{n}(T)| is finite. For n=1n=1, it follows from Lemma 3.2.3 for A=A=\varnothing, and the fact that Th(Γ(S))Th(\Gamma(S)) is 0\aleph_{0}-categorical (see Lemma 2.1.7) and |S1(Tτ)|=1|S_{1}(T_{\tau})|=1 for all τ\tau. Assume |Sk(T)|<0|S_{k}(T)|<\aleph_{0} for all knk\leq n. We want to show that |Sn+1(T)|<0|S_{n+1}(T)|<\aleph_{0}. For this, it is enough to show that for every a¯Γ(S)n\overline{a}\in\Gamma(S)^{n}, the set {tp(a¯,b):bΓ(S)}\left\{\operatorname{tp}^{\mathcal{M}}(\overline{a},b):b\in\Gamma(S)\right\} is finite. Suppose, towards a contradiction, that there are a¯Mn\overline{a}\in M^{n} and {bi:i<ω}Γ(S)\{b_{i}:i<\omega\}\subset\Gamma(S), such that tp(a¯,bi)tp(a¯,bj)\operatorname{tp}^{\mathcal{M}}(\overline{a},b_{i})\neq\operatorname{tp}^{\mathcal{M}}(\overline{a},b_{j}) whenever i<j<ωi<j<\omega. Since Th(Γ)Th(\Gamma) is 0\aleph_{0}-categorical, the pigeonhole principle allows us to assume that tpΓ(a¯,bi)=tpΓ(a¯,bj)\operatorname{tp}_{\Gamma}(\overline{a},b_{i})=\operatorname{tp}_{\Gamma}(\overline{a},b_{j}) for all i,j<ωi,j<\omega. So we may assume that tpΓ(bi/tcl(a¯))=tpΓ(bj/tcl(a¯))\operatorname{tp}_{\Gamma}(b_{i}/\mathrm{tcl}(\overline{a}))=\operatorname{tp}_{\Gamma}(b_{j}/\mathrm{tcl}(\overline{a})) for all i,j<ωi,j<\omega. Since TσT_{\sigma} is algebraically trivial (for each σI(Γ)\sigma\in I(\Gamma)) and a¯\overline{a} is finite, tcl(a¯)\mathrm{tcl}(\overline{a}) is finite as well. By the pigeonhole principle, there are finitely many types over tcl(a¯)M(b)\mathrm{tcl}(\overline{a})\cap M(b) in (b)\mathcal{M}(b), for each bΓ(S)b\in\Gamma(S). So for all but finitely many i<j<ωi<j<\omega, the pairs (bi,bj)Γ(S)2(b_{i},b_{j})\in\Gamma(S)^{2} satisfy the assumptions of the Lemma 3.2.3, so we may apply Lemma 3.2.3 to get an automorphism gi,jAut(/tcl(a¯))g_{i,j}\in\mathrm{Aut}(\mathcal{M}/\mathrm{tcl}(\overline{a})) such that gi,j(bi)=bjg_{i,j}(b_{i})=b_{j}. This implies that for all but finitely many i<j<ωi<j<\omega, tp(a¯,bi)=tp(a¯,bj)\operatorname{tp}^{\mathcal{M}}(\overline{a},b_{i})=\operatorname{tp}^{\mathcal{M}}(\overline{a},b_{j}) which is a contradiction. Thus |Sn+1(T)|<0|S_{n+1}(T)|<\aleph_{0}.

Since \mathcal{M} is 0\aleph_{0}-categorical, it eliminates quantifiers whenever \mathcal{M} is ultra-homogeneous. So it is enough to show that \mathcal{M} is ultra-homogeneous. Since 𝚙𝚛𝚎𝚍\mathtt{pred} is in the signature, every substructure of \mathcal{M} will be closed downwards (see Definition 2.1.5).

Claim.

Suppose f:Af:A\longrightarrow\mathcal{M} is an \mathcal{L}^{*}-embedding where AA is a finite substructure of \mathcal{M}. Let bMAb\in M\setminus A such that 𝚙𝚛𝚎𝚍(b)A\mathtt{pred}(b)\in A. Then there is an \mathcal{L}^{*}-embedding fb:Abf^{b}:Ab\longrightarrow\mathcal{M} such that ffbf\subset f^{b}.

Proof.

Suppose π(b)I(Γ)\pi(b)\notin I(\Gamma). Let E={eΓ(S):𝚙𝚛𝚎𝚍(e)=f(𝚙𝚛𝚎𝚍(b))}E=\{e\in\Gamma(S):\mathtt{pred}(e)=f(\mathtt{pred}(b))\}. Since 𝚙𝚛𝚎𝚍(b)A\mathtt{pred}(b)\in A and ff is an \mathcal{L}^{*}-embedding, EE\neq\varnothing. We choose cEc\in E such that π(c)=π(b)\pi(c)=\pi(b). We set fb(b)=cf^{b}(b)=c. Now suppose π(b)=σI(Γ)\pi(b)=\sigma\in I(\Gamma). Let A0=AM(b)A_{0}=A\cap M(b) and p(x)=tp(b)(b/A0)p(x)=\operatorname{tp}^{\mathcal{M}(b)}(b/A_{0}). Since TσT_{\sigma} is 0\aleph_{0}-categorical, there is formula, say φ(x,a¯0)\varphi(x,\overline{a}_{0}), that isolates p(x)p(x) where a¯0\overline{a}_{0} is an enumeration of A0A_{0}. Let dΓ(S)d\in\Gamma(S) such that tpΓ(d)=tpΓ(b)\operatorname{tp}_{\Gamma}(d)=\operatorname{tp}_{\Gamma}(b) and 𝚙𝚛𝚎𝚍(d)=f(𝚙𝚛𝚎𝚍(b))\mathtt{pred}(d)=f(\mathtt{pred}(b)). We need to show that φ(x,fa¯0)\varphi(x,f\overline{a}_{0}) is realized in (d)\mathcal{M}(d). Since fA0:A0f[A0]f{\restriction}A_{0}:A_{0}\longrightarrow f[A_{0}] is an σ\mathcal{L}_{\sigma}-embedding (partial elementary map) and (b)xφ(x,a¯0)\mathcal{M}(b)\vDash\exists x\varphi(x,\overline{a}_{0}), (d)xφ(x,fa¯0)\mathcal{M}(d)\vDash\exists x\varphi(x,f\overline{a}_{0}). We choose cΓ(S)c\in\Gamma(S) such that (d)φ(c,fa¯0)\mathcal{M}(d)\vDash\varphi(c,f\overline{a}_{0}). Finally we set fb(b)=cf^{b}(b)=c. ∎

Now let an \mathcal{L}^{*}-embedding f:Af:A\longrightarrow\mathcal{M} be given, where AA is a finite substructure of \mathcal{M}. Let x0,x1,x2,x3,x_{0},x_{1},x_{2},x_{3},\dots be an enumeration of Γ(S)A\Gamma(S)\setminus A. We construct an increasing sequence as follows.

  • Stage 0: set f0=ff_{0}=f and B0=AB_{0}=A.

  • Stage 2n+12n+1: If x2nB2nx_{2n}\in B_{2n}, then we set f2n+1=f2nf_{2n+1}=f_{2n} and B2n+1=B2nB_{2n+1}=B_{2n}. Otherwise, we may assume that

    [x2nB2n]=y0<y1<<yk=x2n[x_{2n}\wedge B_{2n}]=y_{0}<y_{1}<\dots<y_{k}=x_{2n}

    with 𝚙𝚛𝚎𝚍(yi)=yi1\mathtt{pred}(y_{i})=y_{i-1} for each i=1,,ki=1,\dots,k. Then we set

    f2n+1=((f2ny1)y2)yk and B2n+1=(B2nx2n).f_{2n+1}=\big{(}(f_{2n}^{y_{1}})^{y_{2}}\dots\big{)}^{y_{k}}\,\,\,\,\,\text{ and }\,\,\,\,\,B_{2n+1}={\downarrow}(B_{2n}x_{2n}).
  • Stage 2n+22n+2: If x2nimg(f2n+1)x_{2n}\in\mathrm{img}(f_{2n+1}), then we set f2n+2=f2n+1f_{2n+2}=f_{2n+1} and B2n+2=B2n+1B_{2n+2}=B_{2n+1}. If x2nimg(f2n+1)x_{2n}\notin\mathrm{img}(f_{2n+1}), then we consider f2n+11f_{2n+1}^{-1} which is a partial isomorphism whose domain does not contain x2n+1x_{2n+1}. Assume

    [x2ndom(f2n+11)]=z0<z1<<z=x2n[x_{2n}\wedge\mathrm{dom}(f_{2n+1}^{-1})]=z_{0}<z_{1}<\dots<z_{\ell}=x_{2n}

    with 𝚙𝚛𝚎𝚍(zi)=zi1\mathtt{pred}(z_{i})=z_{i-1} for each i=1,,i=1,\dots,\ell. Let g=(((f2n+11)z1)z2)zg=\big{(}((f_{2n+1}^{-1})^{z_{1}})^{z_{2}}\dots\big{)}^{z_{\ell}}. Then we set

    f2n+2=g1 and B2n+2=dom(g1).f_{2n+2}=g^{-1}\,\,\,\,\,\text{ and }\,\,\,\,\,B_{2n+2}={\downarrow}\mathrm{dom}(g^{-1}).

Finally, we set f^:=n<ωfn\hat{f}:=\bigcup_{n<\omega}f_{n} which is an isomorphism from n<ωBn=Γ(S)\bigcup_{n<\omega}B_{n}=\Gamma(S) onto itself, and ff^f\subset\hat{f}.

Now we show that acl=tcl.\operatorname{acl}=\mathrm{tcl}. We know that tcldclacl\mathrm{tcl}\subseteq\operatorname{dcl}\subseteq\operatorname{acl}. We will show that for any CfinΓ(S)C\subset_{\textrm{fin}}\Gamma(S), acl(C)tcl(C)\operatorname{acl}(C)\subseteq\mathrm{tcl}(C). Let C=tcl(C)finΓ(S)C=\mathrm{tcl}(C)\subset_{\textrm{fin}}\Gamma(S) be given, and let bCb\notin C. We will show that bacl(C)b\notin\operatorname{acl}(C). Let

[bC]=b0<b1<<bn1<bn=b[b\wedge C]=b_{0}<b_{1}<\dots<b_{n-1}<b_{n}=b

such that 𝚙𝚛𝚎𝚍(bi)=bi1\mathtt{pred}(b_{i})=b_{i-1}, for each i=1,,ni=1,\dots,n. Since C=tcl(C)C=\mathrm{tcl}(C), π(b1)=σI(Γ)\pi(b_{1})=\sigma\in I(\Gamma). Let C1=CM(b1)C_{1}=C\cap M(b_{1}). Since by hypothesis TσT_{\sigma} is algebraically trivial, there is a set E={ej:j<ω}M(b1)E=\{e_{j}:j<\omega\}\subseteq M(b_{1}) such that for all j<k<ωj<k<\omega, ejeke_{j}\neq e_{k} and tp(ej/C1)=tp(b1/C1).\operatorname{tp}(e_{j}/C_{1})=\operatorname{tp}(b_{1}/C_{1}). For each i<ωi<\omega, eie_{i} and bb satisfy the assumptions of Lemma 3.2.3. So for each i<ωi<\omega, there is an automorphism giAut(/C)g_{i}\in\mathrm{Aut}(\mathcal{M}/C) such that gi(b1)=eig_{i}(b_{1})=e_{i}. Since bb has distinct images under each of these automorphisms, {gi(b):i<ω}\left\{g_{i}(b):i<\omega\right\} is an infinite set of realizations of tp(b/C)\operatorname{tp}(b/C). Thus bacl(C)b\notin\operatorname{acl}(C). ∎

Corollary 3.2.5.

\mathcal{M} satisfies N2N2.

Proof.

Let etpΓ(e)e^{\prime}\vDash\operatorname{tp}_{\Gamma}(e), beb\leq e and beb^{\prime}\leq e^{\prime} such that 𝚙𝚛𝚎𝚍(b)=ee=𝚙𝚛𝚎𝚍(b)\mathtt{pred}(b)=e\sqcap e^{\prime}=\mathtt{pred}(b^{\prime}). We claim that tp(b)(b)=tp(b)(b)\operatorname{tp}^{\mathcal{M}(b)}(b)=\operatorname{tp}^{\mathcal{M}(b)}(b^{\prime}). First we note that π(b)=π(b)I(Γ)\pi(b)=\pi(b^{\prime})\in I(\Gamma). Let π(b)=π(b)=σ\pi(b)=\pi(b^{\prime})=\sigma. Since |S1(Tσ)|=1|S_{1}(T_{\sigma})|=1, tp(b)(b)=tp(b)(b)\operatorname{tp}^{\mathcal{M}(b)}(b)=\operatorname{tp}^{\mathcal{M}(b)}(b^{\prime}). Hence by Lemma 3.2.3, etp(e)e^{\prime}\vDash\operatorname{tp}^{\mathcal{M}}(e). ∎

Corollary 3.2.6.

\mathcal{M} satisfies N3.

Proof.

Let CfinΓ(S)C\subset_{\textrm{fin}}\Gamma(S) and eΓ(S)e\in\Gamma(S) such that π(e)I(Γ)\pi(e)\in I(\Gamma). Let eΓ(S)e^{\prime}\in\Gamma(S) such that

etpΓ(e/tcl(C))tp(e)(e/M(e)tcl(C)).e^{\prime}\vDash\operatorname{tp}_{\Gamma}\left(e/\mathrm{tcl}(C)\right)\cup\operatorname{tp}^{\mathcal{M}(e)}\left(e/M(e)\cap\mathrm{tcl}(C)\right).

Suppose M(e)tcl(C)={e0,ek1}M(e)\cap\mathrm{tcl}(C)=\{e_{0},\dots e_{k-1}\} and set π(e)=σI(Γ)\pi(e)=\sigma\in I(\Gamma). Also, suppose eM(e){e0,ek1}e^{\prime}\in M(e)\setminus\{e_{0},\dots e_{k-1}\}, note that if not, then e=ee=e^{\prime} so there is nothing to do. Since

etp(e)(e/M(e)tcl(C)),e^{\prime}\vDash\operatorname{tp}^{\mathcal{M}(e)}\left(e/M(e)\cap\mathrm{tcl}(C)\right),

there is hAut(𝒩σ)h\in\mathrm{Aut}(\mathcal{N}_{\sigma}) such that hh fixes ξe[M(e)tcl(C)]\xi_{e}[M(e)\cap\mathrm{tcl}(C)] (see Notation 3.2.2) pointwise, and h(ξe(e))=ξe(e)h(\xi_{e}(e))=\xi_{e}(e^{\prime}). Then by Lemma 3.2.3, there is an automorphism gAut(/tcl(C))g\in\mathrm{Aut}(\mathcal{M}/\mathrm{tcl}(C)) such that g(e)=eg(e)=e^{\prime}. Therefore etp(e/tcl(C))e^{\prime}\vDash\operatorname{tp}^{\mathcal{M}}(e/\mathrm{tcl}(C)).

Theorem 3.2.7.

\mathcal{M} is a NIC structure.

Proof.

Combine Corollary 3.2.4, Corollary 3.2.5 and Corollary 3.2.6. ∎

Here we prove a proposition that is interesting by itself, but it does not have any role in the rest of the paper.

Proposition 3.2.8.

Suppose a¯Γ(S)n\overline{a}\in\Gamma(S)^{n} for some nn, and a¯=tcl(a¯)\overline{a}=\mathrm{tcl}(\overline{a}). Let X={i:λ(π(ai))=}X=\left\{i:\lambda(\pi(a_{i}))=\infty\right\}. Let {I0,,Ik1}\left\{I_{0},...,I_{k-1}\right\} be the coarsest partition of XX such that for each j<kj<k, for any i1,i2Iji_{1},i_{2}\in I_{j}, we have π(ai1)=π(ai2)\pi(a_{i_{1}})=\pi(a_{i_{2}}) and 𝚙𝚛𝚎𝚍(ai1)=𝚙𝚛𝚎𝚍(ai2)\mathtt{pred}(a_{i_{1}})=\mathtt{pred}(a_{i_{2}}). (For each j<kj<k, let i(j)Iji^{*}(j)\in I_{j} and σj=π(𝚙𝚛𝚎𝚍(ai(j)))\sigma_{j}=\pi(\mathtt{pred}(a_{i^{*}(j)})).) Then, abusing notation a little bit,

tp(a¯)tpΓ(a¯)j<ktp(ai(j))(a¯Ij)\operatorname{tp}^{\mathcal{M}}(\overline{a})\,\,\equiv\,\,\operatorname{tp}_{\Gamma}(\overline{a})\wedge\bigwedge_{j<k}{\operatorname{tp}^{\mathcal{M}(a_{i^{*}(j)})}}{\left(\overline{a}_{{\upharpoonright}I_{j}}\right)}

where a¯Ij=(ai)iIj\overline{a}_{{\upharpoonright}I_{j}}=(a_{i})_{i\in I_{j}} for each j<kj<k. More precisely, let

tp~(a¯):=tpΓ(a¯)j<k{φ(xij,0,,xij,mj1):φ(v0,,vmj1)tp(ai(j))(aij,0,,aij,mj1)}.\widetilde{\operatorname{tp}}(\overline{a}):=\operatorname{tp}_{\Gamma}(\overline{a})\cup\bigcup_{j<k}\left\{\varphi(x_{i_{j,0}},...,x_{i_{j,m_{j}-1}}):\varphi(v_{0},...,v_{m_{j}-1})\in{\operatorname{tp}^{\mathcal{M}(a_{i^{*}(j)})}}{\left(a_{i_{j,0}},...,a_{i_{j,m_{j}-1}}\right)}\right\}.

For every a¯,a¯Γ(S)n\overline{a},\overline{a}^{\prime}\in\Gamma(S)^{n}, if tp~(a¯)=tp~(a¯)\widetilde{\operatorname{tp}}(\overline{a})=\widetilde{\operatorname{tp}}(\overline{a}^{\prime}), then there is an automorphism gAut()g\in\mathrm{Aut}(\mathcal{M}) such that ga¯=a¯g\overline{a}=\overline{a}^{\prime}.

Proof.

By induction on nn we show that for any a¯,a¯Γ(S)n\overline{a},\overline{a}^{\prime}\in\Gamma(S)^{n}, if tp~(a¯)=tp~(a¯)\widetilde{\operatorname{tp}}(\overline{a})=\widetilde{\operatorname{tp}}(\overline{a}^{\prime}), then there is an automorphism gAut()g\in\mathrm{Aut}(\mathcal{M}) such that ga¯=a¯g\overline{a}=\overline{a}^{\prime}. The base case, n=1n=1, follows from Lemma 3.2.3. Assume that the statement holds for any tuple of length n\leq n. Let a¯,a¯Γ(S)n,e,eΓ(S)\overline{a},\overline{a}^{\prime}\in\Gamma(S)^{n},\,\,e,e^{\prime}\in\Gamma(S). Suppose tp~(a¯,e)=tp~(a¯,e)\widetilde{\operatorname{tp}}(\overline{a},e)=\widetilde{\operatorname{tp}}(\overline{a}^{\prime},e^{\prime}). We will show that there is an automorphism gAut()g\in\mathrm{Aut}(\mathcal{M}) such that ga¯=a¯g\overline{a}=\overline{a}^{\prime} and g(e)=eg(e)=e^{\prime}. We have tp~(a¯)=tp~(a¯)\widetilde{\operatorname{tp}}(\overline{a})=\widetilde{\operatorname{tp}}(\overline{a}^{\prime}). By the induction hypothesis, we get g0Aut()g_{0}\in\mathrm{Aut}(\mathcal{M}) such that g0a¯=a¯g_{0}\overline{a}^{\prime}=\overline{a}. So tp(a¯,e)=tp(a¯,g0(e))\operatorname{tp}^{\mathcal{M}}(\overline{a}^{\prime},e^{\prime})=\operatorname{tp}^{\mathcal{M}}(\overline{a},g_{0}(e^{\prime})) and tp~(a¯,e)=tp~(a¯,g0(e))\widetilde{\operatorname{tp}}(\overline{a},e)=\widetilde{\operatorname{tp}}(\overline{a},g_{0}(e^{\prime})). It is enough to show that there is an automorphism gAut()g\in\mathrm{Aut}(\mathcal{M}) such that ga¯=a¯g\overline{a}^{\prime}=\overline{a} and g(e)=g0(e)g(e)=g_{0}(e^{\prime}). Since tp(e/a¯)tp(e/tcl(a¯))\operatorname{tp}^{\mathcal{M}}(e/\overline{a})\vDash\operatorname{tp}^{\mathcal{M}}(e/\mathrm{tcl}(\overline{a})) and tp~(e/a¯)tp~(e/tcl(a¯))\widetilde{\operatorname{tp}}(e/\overline{a})\vDash\widetilde{\operatorname{tp}}(e/\mathrm{tcl}(\overline{a})), we can replace a¯\overline{a} with tcl(a¯)\mathrm{tcl}(\overline{a}). Now there are two possibilities. One possibility is that ee and g0(e)g_{0}(e^{\prime}) are both in one of the components that already meets a¯\overline{a} or not. In each case, we just need to apply Lemma 3.2.3 (similar to proof of Corollary 3.2.6).

4. Lifting MS-measurability for coordinatization

In this section, we state and prove our main theorem which says how MS-measurability can be lifted from components to the nil-interaction coordinatized structure. Also, in this section we provide a criterion for MS-measurability of 0\aleph_{0}-categorical structures. This criterion helps us to verify that the function hh, constructed in Subsection 4.3, is MS-measurable.

4.1. Definitions and the statement of the main theorem

First we recall the following definition.

Definition 4.1.1.

Let \mathcal{M} be any structure. For each positive n<ωn<\omega, 𝖣𝖾𝖿n()\mathsf{Def}^{n}(\mathcal{M}) denotes the set of all definable sets XMnX\subseteq M^{n}, where definable means “definable with parameters”. We note that in 𝖣𝖾𝖿n()\mathsf{Def}^{n}(\mathcal{M}), the formulas involved do not matter – only the sets themselves are considered. We also define 𝖣𝖾𝖿()=n𝖣𝖾𝖿n()\mathsf{Def}(\mathcal{M})=\bigcup_{n}\mathsf{Def}^{n}(\mathcal{M}).

Here we recall the definition of MS-measurable structures from [9].

Definition 4.1.2.

An infinite \mathcal{L}-structure \mathcal{M} is called MS-measurable if there is a function

h=(dim,meas):𝖣𝖾𝖿()(×>0){(0,0)}h=(\dim,\mathrm{meas}):\mathsf{Def}(\mathcal{M})\longrightarrow(\mathbb{N}{\times}\mathbb{R}^{>0})\cup\{(0,0)\}

such that the following conditions hold.

  1. MS1.

    For each \mathcal{L}-formula φ(x¯,y¯)\varphi(\overline{x},\overline{y}), there is a finite set D×>0{(0,0)}D\subset\mathbb{N}\times\mathbb{R}^{>0}\cup\{(0,0)\}, such that for all a¯Mm\overline{a}\in M^{m}, we have h(φ(,a¯))Dh(\varphi(\mathcal{M},\overline{a}))\in D.

  2. MS2.

    If φ(,a¯)\varphi(\mathcal{M},\overline{a}) is finite, then h(φ(,a¯))=(0,|φ(,a¯)|)h(\varphi(\mathcal{M},\overline{a}))=(0,|\varphi(\mathcal{M},\overline{a})|).

  3. MS3.

    For every \mathcal{L}-formula φ(x¯,y¯)\varphi(\overline{x},\overline{y}) and all (d,μ)D(d,\mu)\in D, the set {a¯Mm:h(φ(,a¯))=(d,μ)}\{\overline{a}\in M^{m}:h(\varphi(\mathcal{M},\overline{a}))=(d,\mu)\} is \varnothing-definable.

  4. MS4.

    (Fubini) Suppose f:XYf:X\longrightarrow Y is a definable surjective function, where X,YDef()X,Y\in\textrm{Def}(\mathcal{M}). Let D={h(f1[b¯]):b¯Y}D=\left\{h\left(f^{-1}[\overline{b}]\right):\overline{b}\in Y\right\} which is finite by MS1. For each (d,μ)D(d,\mu)\in D, let Y(d,μ)={b¯Y:h(f1[b¯])=(d,μ)}Y(d,\mu)=\left\{\overline{b}\in Y:h\left(f^{-1}[\overline{b}]\right)=(d,\mu)\right\}, which is definable by MS3. Then, {Y(d,μ):(d,μ)D}\left\{Y(d,\mu):(d,\mu)\in D\right\} is a partition of YY, and

    dim(X)\displaystyle\dim(X) =max{d+dim(Y(d,μ)):(d,μ)D},\displaystyle=\max\big{\{}d+\dim\left(Y(d,\mu)\right):(d,\mu)\in D\big{\}},
    meas(X)\displaystyle\mathrm{meas}(X) ={μmeas(Y(d,μ)):(d,μ)D,d+dim(Y(d,μ))=dim(X)}.\displaystyle=\sum\left\{\mu\cdot\mathrm{meas}\left(Y(d,\mu)\right):\begin{array}[]{l}(d,\mu)\in D,\\ d+\dim\left(Y(d,\mu)\right)=\dim(X)\end{array}\right\}.

Here we express the statement of the Main Theorem.

Main Theorem (4.1).

Let Γ\Gamma be a tree plan and let \mathcal{M} be a NIC structure. Suppose that for each σI(Γ)\sigma\in I(\Gamma), TσT_{\sigma} is MS-measurable via (dimσ,measσ)(\dim_{\sigma},\mathrm{meas}_{\sigma}) such that dimσ(x=x)=1\dim_{\sigma}(x=x)=1. Then \mathcal{M} is MS-measurable via (dim,meas)(\dim,\mathrm{meas}) such that for all eΓ(S)e\in\Gamma(S) with σ=π(e)I(Γ)\sigma=\pi(e)\in I(\Gamma) and all tree-closed sets BfinΓ(S)B\subset_{\textrm{fin}}\Gamma(S),

dim(e/B)=|{x:π(x)I(Γ) and [eB]<xe}|\dim(e/B)=\big{|}\big{\{}x:\pi(x)\in I(\Gamma)\textnormal{ and }[e\wedge B]<x\leq e\big{\}}\big{|}

and

meas(e/B{𝚙𝚛𝚎𝚍(e)})=measσ(e/BM(e)).\mathrm{meas}\left(e/B\cup\{\mathtt{pred}(e)\}\right)=\mathrm{meas}_{\sigma}\left(e/B\cap M(e)\right).

The proof of the Main Theorem will appear in Subsection 4.3.

We note that the assumption that dimσ(x=x)=1\dim_{\sigma}(x=x)=1, for each σI(Γ)\sigma\in I(\Gamma), is just a convenience for the exposition. One can eliminate it at the expense of more arduous bookkeeping.

4.2. MS-measurability for 0\aleph_{0}-categorical theories

In this subsection, we provide a criterion for MS-measurability among 0\aleph_{0}-categorical theories. As mentioned before, this criterion is used in Subsection 4.3.

Theorem 4.2.1.

Let \mathcal{M} be a countably infinite 0\aleph_{0}-categorical structure. The following are equivalent.

  1. (1)

    \mathcal{M} is MS-measurable.

  2. (2)

    There is a function

    h=(dim,meas):𝖣𝖾𝖿()(×>0){(0,0)}h=(\dim,\mathrm{meas}):\mathsf{Def}(\mathcal{M})\longrightarrow(\mathbb{N}{\times}\mathbb{R}^{>0})\cup\{(0,0)\}

    satisfying the following conditions:

    1. cMS1.

      For all CfinMC\subset_{\textrm{fin}}M and a¯Mn\overline{a}\in M^{n}, for all gAut()g\in Aut(\mathcal{M}), h(ga¯/gC)=h(a¯/C)h(g\overline{a}/gC)=h(\overline{a}/C).

    2. cMS2.

      For any CfinMC\subset_{\textrm{fin}}M and any CC-definable set XMnX\subseteq M^{n}, if

      X=tp(a¯0/C)tp(a¯k1/C),X=\operatorname{tp}(\overline{a}_{0}/C)\uplus\cdots\uplus\operatorname{tp}(\overline{a}_{k-1}/C),

      then

      dim(X)\displaystyle\dim(X) =maxi<kdim(a¯i/C),\displaystyle=\max_{i<k}\dim(\overline{a}_{i}/C),
      meas(X)\displaystyle\mathrm{meas}(X) ={meas(a¯i/C):dim(a¯i/C)=dim(X)}.\displaystyle=\sum\big{\{}\mathrm{meas}(\overline{a}_{i}/C):\dim(\overline{a}_{i}/C)=\dim(X)\big{\}}.
    3. cMS3.

      For all CfinMC\subset_{\textrm{fin}}M and a¯acl(C)n\overline{a}\in\operatorname{acl}(C)^{n}, dim(a¯/C)=0\dim(\overline{a}/C)=0 and

      meas(a¯/C)=|{ga¯:gAut(/C)}|.\mathrm{meas}(\overline{a}/C)=\big{|}\big{\{}g\overline{a}:g\in Aut(\mathcal{M}/C)\big{\}}\big{|}.
    4. cMS4.

      For any CfinMC\subset_{\textrm{fin}}M, a¯Mn\overline{a}\in M^{n}, and b¯Mm\overline{b}\in M^{m}, if b¯dcl(Ca¯)\overline{b}\subseteq\operatorname{dcl}(C\overline{a}) and X=tp(a¯/C)X=\operatorname{tp}(\overline{a}/C), then

      dim(X)\displaystyle\dim(X) =dim(b¯/C)+dim(a¯/Cb¯)\displaystyle=\dim(\overline{b}/C)+\dim(\overline{a}/C\overline{b})
      meas(X)\displaystyle\mathrm{meas}(X) =meas(b¯/C)meas(a¯/Cb¯).\displaystyle=\mathrm{meas}(\overline{b}/C)\cdot\mathrm{meas}(\overline{a}/C\overline{b}).
Proof.

The proof of 212\Rightarrow 1 consists of Lemma 4.2.3 through Lemma 4.2.7. The proof of 121\Rightarrow 2 consists of Lemma 4.2.8 through Lemma 4.2.11. ∎

Let \mathcal{M} be a countably infinite 0\aleph_{0}-categorical structure. Set T=Th()T=Th(\mathcal{M}). Let hh be as in item 2 of Theorem 4.2.1. Lemmas 4.2.3 through 4.2.7 all together show that \mathcal{M} is MS-measurable via hh.

The following easy Lemma shows that hh is also automorphism-invariant for definable sets and it is used in Lemma 4.2.3 and Lemma 4.2.5.

Lemma 4.2.2.

Suppose CfinΓ(S)C\subset_{\textrm{fin}}\Gamma(S) and a¯Ca¯\overline{a}\equiv_{C}\overline{a}^{\prime}. Suppose cMS1 and cMS2 hold. Then h(φ(x¯,a¯))=h(φ(x,a¯))h(\varphi(\overline{x},\overline{a}))=h(\varphi(x,\overline{a}^{\prime})).

Proof.

First we decompose φ(,a¯)\varphi(\mathcal{M},\overline{a}) into a disjoint union of complete types, then we apply cMS2 and cMS1. ∎

Lemma 4.2.3.

MS1 holds.

Proof.

Let φ(x¯,y¯)\varphi(\overline{x},\overline{y})\in\mathcal{L}, where y¯=(y0,,ym1)\overline{y}=(y_{0},...,y_{m-1}). For each p(y¯)Sm(T)p(\overline{y})\in S_{m}(T), let a¯p\overline{a}_{p} be a realization of pp. Then, by cMS1, Lemma 4.2.2 and the Ryll-Nardzewski Theorem,

{h(φ(,a¯)):a¯Mm}={h(φ(,a¯p)):pSm(T)}\left\{h(\varphi(\mathcal{M},\overline{a})):\overline{a}\in M^{m}\right\}=\left\{h(\varphi(\mathcal{M},\overline{a}_{p})):p\in S_{m}(T)\right\}

which is finite. ∎

Lemma 4.2.4.

MS2 holds.

Proof.

Let φ(x¯,c¯)(M)\varphi(\overline{x},\overline{c})\in\mathcal{L}(M) where x¯=(x0,,xn1)\overline{x}=(x_{0},...,x_{n-1}), and suppose φ(,c¯)\varphi(\mathcal{M},\overline{c}) is finite. Let p0,,pk1p_{0},...,p_{k-1} be an enumeration of {pSn(c¯):p()X}\left\{p\in S_{n}(\overline{c}):p(\mathcal{M})\cap X\neq\varnothing\right\}, so that XX is the disjoint union of the solution sets of p0,,pk1p_{0},...,p_{k-1}. By cMS3, dim(pi)=0\dim(p_{i})=0 for each ii, and then by cMS2, dim(X)=maxidim(pi)=0\dim(X)=\max_{i}\dim(p_{i})=0. Also, by cMS3, we have

meas(X)=i<kmeas(pi)=i<k|Xpi()|=|X|\mathrm{meas}(X)=\sum_{i<k}\mathrm{meas}(p_{i})=\sum_{i<k}|X\cap p_{i}(\mathcal{M})|=|X|

as required. ∎

Lemma 4.2.5.

MS3 holds.

Proof.

Let φ(x¯,y¯)\varphi(\overline{x},\overline{y})\in\mathcal{L}, where x¯=(x0,,xn1)\overline{x}=(x_{0},...,x_{n-1}) and y¯=(y0,,ym1)\overline{y}=(y_{0},...,y_{m-1}), and let (d,μ)×>0(d,\mu)\in\mathbb{N}\times\mathbb{R}_{>0}. For each p(y¯)Sm(T)p(\overline{y})\in S_{m}(T), let a¯p\overline{a}_{p} be a realization of pp, and let θp(y¯)p\theta_{p}(\overline{y})\in p be an isolating formula. Let

V={pSm(T):h(φ(,a¯p))=(d,μ)}V=\left\{p\in S_{m}(T):h(\varphi(\mathcal{M},\overline{a}_{p}))=(d,\mu)\right\}

and θ(y¯)=pVθp(y¯)\theta(\overline{y})=\bigvee_{p\in V}\theta_{p}(\overline{y}). Then,

θ()={a¯Mm:h(φ(,a¯))=(d,μ)}.\theta(\mathcal{M})=\left\{\overline{a}\in M^{m}:h(\varphi(\mathcal{M},\overline{a}))=(d,\mu)\right\}.

by Lemma 4.2.2. ∎

Lemma 4.2.6 (MS4 Special Case).

Let CfinMC\subset_{\textrm{fin}}M, and let f:XYf:X\to Y be a surjective CC-definable function, where YY is the solution set of tp(b¯/C)\operatorname{tp}(\overline{b}/C) for some b¯Mm\overline{b}\in M^{m}. Then, MS4 holds for this ff – i.e.

dim(X)\displaystyle\dim(X) =dim(Y)+dim(f1[b¯])\displaystyle=\dim(Y)+\dim(f^{-1}[\overline{b}])
meas(X)\displaystyle\mathrm{meas}(X) =meas(Y)meas(f1[b¯]).\displaystyle=\mathrm{meas}(Y)\cdot\mathrm{meas}(f^{-1}[\overline{b}]).
Proof.

We may assume that f1[b¯]=tp(a¯0/Cb¯)tp(a¯k1/Cb¯)f^{-1}[\overline{b}]=\operatorname{tp}(\overline{a}_{0}/C\overline{b})\uplus\cdots\uplus\operatorname{tp}(\overline{a}_{k-1}/C\overline{b}). For each i<ki<k, we define

Xi={a¯X:tp(a¯,f(a¯)/C)=tp(a¯i,b¯/C)}X_{i}=\left\{\overline{a}\in X:\operatorname{tp}(\overline{a},f(\overline{a})/C)=\operatorname{tp}(\overline{a}_{i},\overline{b}/C)\right\}

which is just the solution set of tp(a¯i/C)\operatorname{tp}(\overline{a}_{i}/C), and we observe that X=X0Xk1X=X_{0}\uplus\cdots\uplus X_{k-1}. By cMS2, we have dim(X)=maxi<kdim(a¯i/C)\dim(X)=\max_{i<k}\dim(\overline{a}_{i}/C); let

I={i<k:dim(Xi)=dim(X)}={i<k:dim(a¯i/Cb¯)+dim(b¯/C)=dim(X)}.I=\left\{i<k:\dim(X_{i})=\dim(X)\right\}=\left\{i<k:\dim(\overline{a}_{i}/C\overline{b})+\dim(\overline{b}/C)=\dim(X)\right\}.

We observe that

dim(f1[b¯])\displaystyle\dim(f^{-1}[\overline{b}]) =maxi<kdim(a¯i/Cb¯)=dim(a¯i/Cb¯)     (some/any iI)\displaystyle=\max_{i<k}\dim(\overline{a}_{i}/C\overline{b})=\dim(\overline{a}_{i}/C\overline{b})\emph{\,\,\,\,\,(some/any $i\in I$)}
meas(f1[b¯])\displaystyle\mathrm{meas}(f^{-1}[\overline{b}]) =iImeas(a¯i/Cb¯).\displaystyle=\sum_{i\in I}\mathrm{meas}(\overline{a}_{i}/C\overline{b}).

Now, by cMS2 again, we have meas(X)=iImeas(Xi)\mathrm{meas}(X)=\sum_{i\in I}\mathrm{meas}(X_{i}).

dim(X)\displaystyle\dim(X) =maxi<kdim(a¯i/C)\displaystyle=\max_{i<k}\dim(\overline{a}_{i}/C)
=maxi<k(dim(b¯/C)+dim(a¯i/Cb¯))\displaystyle{=}\max_{i<k}\left(\dim(\overline{b}/C)+\dim(\overline{a}_{i}/C\overline{b})\right)
=dim(b¯/C)+maxi<kdim(a¯i/Cb¯)\displaystyle=\dim(\overline{b}/C)+\max_{i<k}\dim(\overline{a}_{i}/C\overline{b})
=dim(Y)+dim(f1[b¯]).\displaystyle=\dim(Y)+\dim(f^{-1}[\overline{b}]).

and

meas(X)\displaystyle\mathrm{meas}(X) =iImeas(a¯i/C)\displaystyle=\sum_{i\in I}\mathrm{meas}(\overline{a}_{i}/C)
=iI(meas(b¯/C)meas(a¯i/Cb¯))\displaystyle{=}\sum_{i\in I}\left(\mathrm{meas}(\overline{b}/C)\cdot\mathrm{meas}(\overline{a}_{i}/C\overline{b})\right)
=meas(b¯/C)iImeas(a¯i/Cb¯)\displaystyle=\mathrm{meas}(\overline{b}/C)\cdot\sum_{i\in I}\mathrm{meas}(\overline{a}_{i}/C\overline{b})
=meas(Y)meas(f1[b¯]).\displaystyle=\mathrm{meas}(Y)\cdot\mathrm{meas}(f^{-1}[\overline{b}]).

which completes the proof of the lemma. ∎

Lemma 4.2.7.

MS4 holds.

Proof.

Let CfinMC\subset_{\textrm{fin}}M, and let f:XYf:X\to Y be a surjective CC-definable function. We may assume that Y=tp(b¯0/C)tp(b¯k1/C)Y=\operatorname{tp}(\overline{b}_{0}/C)\uplus\cdots\uplus\operatorname{tp}(\overline{b}_{k-1}/C). For each i<ki<k, let Xi={a¯X:f(a¯)Cb¯i}X_{i}=\left\{\overline{a}\in X:f(\overline{a})\equiv_{C}\overline{b}_{i}\right\}. By cMS2, we have dim(X)=maxi<kdim(Xi)\dim(X)=\max_{i<k}\dim(X_{i}) and meas(X)=iImeas(Xi)\mathrm{meas}(X)=\sum_{i\in I}\mathrm{meas}(X_{i}), where I={i:dim(Xi)=dim(X)}I=\left\{i:\dim(X_{i})=\dim(X)\right\}. By Lemma 4.2.6, we find that

dim(X)\displaystyle\dim(X) =maxi<k(a¯i/C)=dim(b¯i/C)+dim(f1[b¯i])     (some/any iI)\displaystyle=\max_{i<k}(\overline{a}_{i}/C)=\dim(\overline{b}_{i}/C)+\dim(f^{-1}[\overline{b}_{i}])\emph{\,\,\,\,\,(some/any $i\in I$)}
meas(X)\displaystyle\mathrm{meas}(X) =iImeas(b¯i/C)meas(f1[b¯i]).\displaystyle=\sum_{i\in I}\mathrm{meas}(\overline{b}_{i}/C)\cdot\mathrm{meas}(f^{-1}[\overline{b}_{i}]).

as desired. ∎

Let \mathcal{M} be a countably infinite 0\aleph_{0}-categorical MS-measurable structure via h=(dim,meas)h=(\dim,\mathrm{meas}). Lemmas 4.2.8 through 4.2.11 all together show that hh satisfies cMS1, …, cMS4.

Lemma 4.2.8.

cMS1 holds.

Proof.

Let CfinMC\subset_{\textrm{fin}}M and a¯Mn\overline{a}\in M^{n}, and let gAut()g\in\mathrm{Aut}(\mathcal{M}). Let φ(x¯,c¯)\varphi(\overline{x},\overline{c}) be a formula that isolates tp(a¯/C)\operatorname{tp}(\overline{a}/C), and let c¯\overline{c} enumerate CC. Let h(a¯/C)=h(φ(,c¯))=(d,μ)h(\overline{a}/C)=h(\varphi(\mathcal{M},\overline{c}))=(d,\mu). By MS3, there is an \mathcal{L}-formula (i.e. without parameters) θ(x¯)\theta(\overline{x}) which defines {b¯Mm:h(φ(,b¯)=(d,μ))}.\left\{\overline{b}\in M^{m}:h(\varphi(\mathcal{M},\overline{b})=(d,\mu))\right\}. Since c¯θ()\overline{c}\in\theta(\mathcal{M}) and gAut()g\in\mathrm{Aut}(\mathcal{M}), gc¯θ()g\overline{c}\in\theta(\mathcal{M}). So h(φ(,gc¯))=h(ga¯/gC)=(d,μ)h(\varphi(\mathcal{M},g\overline{c}))=h(g\overline{a}/gC)=(d,\mu).

Lemma 4.2.9.

cMS2 holds.

Proof.

Let CfinMC\subset_{\textrm{fin}}M and XMnX\subseteq M^{n} a CC-definable set. Let X=tp(a¯0/C)tp(a¯k1/C)X=\operatorname{tp}(\overline{a}_{0}/C)\uplus\cdots\uplus\operatorname{tp}(\overline{a}_{k-1}/C). We proceed by induction on kk. For k=2k=2, we define f:tp(a0/C)tp(a1/C){a¯0,a¯1}f:\operatorname{tp}(a_{0}/C)\uplus\operatorname{tp}(a_{1}/C)\longrightarrow\{\overline{a}_{0},\overline{a}_{1}\} by f(x¯):=a¯0f(\overline{x}):=\overline{a}_{0} if x¯tp(a¯0/C)\overline{x}\in\operatorname{tp}(\overline{a}_{0}/C); f(x¯):=a¯1f(\overline{x}):=\overline{a}_{1} if x¯tp(a¯1/C)\overline{x}\in\operatorname{tp}(\overline{a}_{1}/C). Note that ff is definable with parameters from Ca¯0a¯1C\overline{a}_{0}\overline{a}_{1}. We observe that f1[a¯i]=tp(a¯i/C)f^{-1}[\overline{a}_{i}]=\operatorname{tp}(\overline{a}_{i}/C). Case 1: if h(f1(a¯0))=h(f1(a1))h\big{(}f^{-1}(\overline{a}_{0})\big{)}=h\big{(}f^{-1}(a_{1})\big{)}, then the result follows from MS. Case 2: if h(f1(a¯0))h(f1(a1))h\big{(}f^{-1}(\overline{a}_{0})\big{)}\neq h\big{(}f^{-1}(a_{1})\big{)}, then Yi:={a¯{a¯0,a¯1}:h(f1[a¯])=(dim(a¯i/C),meas(a¯i/C))}={a¯i}Y_{i}:=\big{\{}\overline{a}\in\{\overline{a}_{0},\overline{a}_{1}\}:h(f^{-1}[\overline{a}])=\big{(}\dim(\overline{a}_{i}/C),\mathrm{meas}(\overline{a}_{i}/C)\big{)}\big{\}}=\{\overline{a}_{i}\} for i<2i<2. By MS4,

dim(X)\displaystyle\dim(X) =max{dim(a¯i/C)+dim(Yi):i<2}\displaystyle=\max\left\{\dim(\overline{a}_{i}/C)+\dim\big{(}Y_{i}\big{)}:i<2\right\}
=max{dim(a¯i/C)+dim({a¯i}):i<2}\displaystyle=\max\left\{\dim(\overline{a}_{i}/C)+\dim\left(\{\overline{a}_{i}\}\right):i<2\right\}
=maxi<2dim(a¯i/C)\displaystyle=\max_{i<2}\dim(\overline{a}_{i}/C)

and

meas(X)\displaystyle\mathrm{meas}(X) ={meas(a¯i/C)meas(Yi):i<2,anddim(a¯i/C)+dim(Yi)=dim(X)}\displaystyle=\sum\left\{\mathrm{meas}(\overline{a}_{i}/C)\cdot\mathrm{meas}\big{(}Y_{i}\big{)}:\begin{array}[]{l}i<2,\,\,\text{and}\\ \dim(\overline{a}_{i}/C)+\dim\big{(}Y_{i}\big{)}=\dim(X)\end{array}\right\}
={meas(a¯i/C):i<2,anddim(a¯i/C)=dim(X)}.\displaystyle=\sum\left\{\mathrm{meas}(\overline{a}_{i}/C):\begin{array}[]{l}i<2,\,\,\text{and}\\ \dim(\overline{a}_{i}/C)=\dim(X)\end{array}\right\}.

Now, suppose both statements hold for k=k=\ell. Let X=tp(a¯0/C)tp(a¯/C)X=\operatorname{tp}(\overline{a}_{0}/C)\uplus\dots\uplus\operatorname{tp}(\overline{a}_{\ell}/C). We first apply the induction hypothesis to tp(a¯0/C),,tp(a¯1/C)\operatorname{tp}(\overline{a}_{0}/C),\dots,\operatorname{tp}(\overline{a}_{\ell-1}/C), and conclude the statements by applying the case n=2n=2 to tp(a¯0/C)tp(a¯1/C)\operatorname{tp}(\overline{a}_{0}/C)\uplus\dots\uplus\operatorname{tp}(\overline{a}_{\ell-1}/C) and tp(a¯/C)\operatorname{tp}(\overline{a}_{\ell}/C). ∎

Lemma 4.2.10.

cMS3 holds.

Proof.

Let CfinMC\subset_{\textrm{fin}}M and a¯acl(C)n\overline{a}\in\operatorname{acl}(C)^{n}. Let p(x¯)=tp(a¯/C)p(\overline{x})=\operatorname{tp}(\overline{a}/C). Since a¯\overline{a} is algebraic over CC, there are finitely many, say a¯0,,a¯k1\overline{a}_{0},\dots,\overline{a}_{k-1}, realizations for p(x¯)p(\overline{x}). By MS2, h(a¯/C)=(0,|p()|)h(\overline{a}/C)=(0,|p(\mathcal{M})|). Clearly {ga¯:gAut(/C)}p()\{g\overline{a}:g\in\mathrm{Aut}(\mathcal{M}/C)\}\subseteq p(\mathcal{M}). On the other hand by 0\aleph_{0}-categoricity, for each i<ki<k, there is giAut(/C)g_{i}\in\mathrm{Aut}(\mathcal{M}/C) such that gia¯=a¯ig_{i}\overline{a}=\overline{a}_{i}. Hence h(a¯/C)=(0,|{ga¯:gAut(/C)}|)h(\overline{a}/C)=(0,|\{g\overline{a}:g\in\mathrm{Aut}(\mathcal{M}/C)\}|). ∎

Lemma 4.2.11.

cMS4 holds.

Proof.

Let CfinM,a¯MnC\subset_{\textrm{fin}}M,\overline{a}\in M^{n} and b¯dcl(Ca¯)\overline{b}\subseteq\operatorname{dcl}(C\overline{a}). Let X=tp(a¯/C)X=\operatorname{tp}(\overline{a}/C) and Y=tp(b¯/C)Y=\operatorname{tp}(\overline{b}/C). Let φ(x¯,c¯)\varphi(\overline{x},\overline{c}) and θ(y¯,c¯)\theta(\overline{y},\overline{c}) be the formulas that isolate tp(a¯/C)\operatorname{tp}(\overline{a}/C) and tp(b¯/C)\operatorname{tp}(\overline{b}/C) respectively where c¯\overline{c} enumerates CC. Let ψ(y¯,c¯,a¯)\psi(\overline{y},\overline{c},\overline{a}) witness that b¯dcl(Ca¯)\overline{b}\subseteq\operatorname{dcl}(C\overline{a}). We define f:XYf:X\longrightarrow Y with e¯f(e¯)\overline{e}\mapsto f(\overline{e}) such that

fe¯φ(e¯,c¯)ψ(y¯,c¯,e¯).f\overline{e}\vDash\varphi(\overline{e},\overline{c})\,\wedge\,\psi(\overline{y},\overline{c},\overline{e}).

We observe that ff is a CC-definable surjective function onto YY, for each b¯Y\overline{b}^{\prime}\in Y we have f1[b¯]={a¯:a¯b¯=Ca¯b¯}f^{-1}[\overline{b}^{\prime}]=\{\overline{a}^{\prime}:\overline{a}^{\prime}\overline{b}^{\prime}=_{C}\overline{a}\overline{b}\} and so by MS1, h(f1[b¯])=h(a¯/Cb¯)h(f^{-1}[\overline{b}])=h(\overline{a}/C\overline{b}). By MS4,

dim(X)=dim(Y)+dim(f1[b¯])=dim(b¯/C)+dim(a¯/Cb¯),\dim(X)=\dim(Y)+\dim(f^{-1}[\overline{b}])=\dim(\overline{b}/C)+\dim(\overline{a}/C\overline{b}),

and

meas(X)=meas(Y)meas(f1[b¯])=meas(b¯/C)meas(a¯/Cb¯).\mathrm{meas}(X)=\mathrm{meas}(Y)\cdot\mathrm{meas}(f^{-1}[\overline{b}])=\mathrm{meas}(\overline{b}/C)\cdot\mathrm{meas}(\overline{a}/C\overline{b}).

as desired. ∎

4.3. Proof of the Main Theorem Main Theorem

The proof of the Main Theorem consists of three parts, including construction of hh (Subsection 4.3.1), well-defindness (Subsection 4.3.2) and verification (Subsection 4.3.3).

4.3.1. Construction of h=(dim,meas)h=(\dim,\mathrm{meas})

We define the function h:Def()(×>0){(0,0)},h:\textrm{Def}(\mathcal{M})\longrightarrow(\mathbb{N}\times\mathbb{R}^{>0})\cup\{(0,0)\}, with h(X)=(dim(X),meas(X))h(X)=\left(\dim(X),\mathrm{meas}(X)\right) as follows.

  1. I.

    First, we consider complete 1-types over closed sets. Consider tp(a/B)\operatorname{tp}^{\mathcal{M}}(a/B) where tcl(B)=B\mathrm{tcl}(B)=B.

    • If aBa\in B, then dim(a/B)=0\dim(a/B)=0 and meas(a/B)=1\mathrm{meas}(a/B)=1.

    • If aBa\notin B, then there is a k>0k>0 such that a=ek>ek1>>e1>e0=[aB]a=e_{k}>e_{k-1}>\dots>e_{1}>e_{0}=[a\wedge B] where 𝚙𝚛𝚎𝚍(ei)=ei1\mathtt{pred}(e_{i})=e_{i-1} for each i=1,,ki=1,\dots,k. Let σi=π(ei)\sigma_{i}=\pi(e_{i}) for each ii. Note that if σiI(Γ)\sigma_{i}\notin I(\Gamma), then we define (dimσi,measσi)(ei/tcl(Be0,,ei1)M(ei))=(0,1)(\dim_{\sigma_{i}},\mathrm{meas}_{\sigma_{i}})\big{(}e_{i}/\mathrm{tcl}(Be_{0},\dots,e_{i-1})\cap M(e_{i})\big{)}=(0,1) simply because M(ei)={ei}M(e_{i})=\{e_{i}\}.

      Then we define

      dim(a/B)\displaystyle\dim(a/B) =i=1kdimσi(ei/tcl(Be0,,ei1)M(ei))\displaystyle=\sum_{i=1}^{k}\dim_{\sigma_{i}}\big{(}e_{i}/\mathrm{tcl}(Be_{0},\dots,e_{i-1})\cap M(e_{i})\big{)}
      =|{i{1,,k}:π(ei)I(Γ)}|\displaystyle=\big{|}\big{\{}i\in\{1,\dots,k\}\,\,:\,\,\pi(e_{i})\in I(\Gamma)\big{\}}\big{|}
      meas(a/B)=i=1kmeasσi(ei/tcl(Be0,,ei1)M(ei)).\mathrm{meas}(a/B)=\prod_{i=1}^{k}\mathrm{meas}_{\sigma_{i}}\big{(}e_{i}/\mathrm{tcl}(Be_{0},\dots,e_{i-1})\cap M(e_{i})\big{)}.
  2. II.

    Suppose we have defined (dim,meas)(\dim,\mathrm{meas}) for complete n{\leq}n-types over closed sets. Let BfinΓ(S)B\subset_{\textrm{fin}}\Gamma(S) be a closed subset, a¯Γ(S)n\overline{a}\in\Gamma(S)^{n}, and eΓ(S)e\in\Gamma(S). We want to define dim(ea¯/B)\dim(e\overline{a}/B) and meas(ea¯/B)\mathrm{meas}(e\overline{a}/B). We take the Lascar (in)equality as a pattern to follow, setting

    dim(ea¯/B)=dim(a¯/B)+dim(e/tcl(Ba¯))\dim(e\overline{a}/B)=\dim\big{(}\overline{a}/B\big{)}+\dim\big{(}e/\mathrm{tcl}(B\overline{a})\big{)}

    and

    meas(ea¯/B)=meas(a¯/B)meas(e/tcl(Ba¯)).\mathrm{meas}(e\overline{a}/B)=\mathrm{meas}\big{(}\overline{a}/B\big{)}\cdot\mathrm{meas}\big{(}e/\mathrm{tcl}(B\overline{a})\big{)}.
  3. III.

    So far we have defined (dim,meas)(\dim,\mathrm{meas}) for complete types over closed sets. Now, let XX be an arbitrary definable set over CC. Let p0(x¯),,pk1(x¯)Sn(tcl(C))p_{0}(\overline{x}),\dots,p_{k-1}(\overline{x})\in S_{n}\left(\mathrm{tcl}(C)\right) such that

    X=p0()pk1().X=p_{0}(\mathcal{M})\uplus\dots\uplus p_{k-1}(\mathcal{M}).

    Then we define

    dim(X):=max{dim(pi):i<k}.\dim(X):=\max\big{\{}\dim(p_{i})\,:\,i<k\big{\}}.

    We set I:={i:dim(pi)=dim(X)}I:=\big{\{}i\,:\,\dim(p_{i})=\dim(X)\big{\}}, and then we define

    meas(X):=iImeas(pi).\mathrm{meas}(X):=\sum_{i\in I}\mathrm{meas}(p_{i}).

4.3.2. Well-definedness of h=(dim,meas)h=(\dim,\mathrm{meas})

For a given definable set XMnX\subseteq M^{n}, there are many different finite sets CfinMC\subset_{\textrm{fin}}M over which XX is definable. Depending on which set of parameters we choose, it is possible that different values for h(X)h(X) may arise. So, in this subsection we show that the function h=(dim,meas)h=(\dim,\mathrm{meas}), as defined above, is independent of the choice of which set CC provides the parameters for defining XX.

First we prove a general fact about 0\aleph_{0}-categorical MS-measurable structures which is needed in Lemma 4.3.2.

Fact 4.3.1.

Suppose 𝒩\mathcal{N} is MS-measurable via (dim,meas)(\dim,\mathrm{meas}) and 0\aleph_{0}-categorical. Let BCfinNB\subseteq C\subset_{\textrm{fin}}N and aNBa\in N\setminus B. Then there is some aNa^{\prime}\in N such that tp(a/B)=tp(a/B)\operatorname{tp}(a^{\prime}/B)=\operatorname{tp}(a/B) and dim(a/C)=dim(a/B)\dim(a^{\prime}/C)=\dim(a/B). Moreover,

meas(a/B)={meas(a/C):aBa and dim(a/C)=dim(a/B)}.\mathrm{meas}(a/B)=\sum\bigg{\{}\mathrm{meas}(a^{\prime}/C):a^{\prime}\equiv_{B}a\text{ and }\dim(a^{\prime}/C)=\dim(a/B)\bigg{\}}.
Proof.

Let BCfinNB\subseteq C\subset_{\textrm{fin}}N, aNBa\in N\setminus B, and let q(x)=tp(a/B)q(x)=\operatorname{tp}(a/B). By 0\aleph_{0}-categoricity, there are finitely many complete types over CC, say p0(x)=tp(a0/C),,pn1(x)=tp(an1/C)p_{0}(x)=\operatorname{tp}(a_{0}/C),\dots,p_{n-1}(x)=\operatorname{tp}(a_{n-1}/C), that extend qq. So q(x)=p0(x)pn1(x)q(x)=p_{0}(x)\uplus\dots\uplus p_{n-1}(x). By cMS2, dim(a/B)=maxi<ndim(ai/C)\dim(a/B)=\max_{i<n}\dim(a_{i}/C). Suppose that this maximum is attained by i<ni<n. Set a=aia^{\prime}=a_{i}. So A={tp(a):aN,aBa and dim(a/C)=dim(a/B)}A=\left\{\operatorname{tp}(a^{\prime}):a^{\prime}\in N,\,a^{\prime}\equiv_{B}a\,\text{ and }\dim(a^{\prime}/C)=\dim(a/B)\right\} is non-empty. By cMS2, meas(a/B)=aAmeas(a/C)\mathrm{meas}(a/B)=\sum_{a^{\prime}\in A}\mathrm{meas}(a^{\prime}/C). ∎

Lemma 4.3.2.

Let BCfinΓ(S)=MB\subseteq C\subset_{\textrm{fin}}\Gamma(S)=M be closed sets, and let aΓ(S)Ba\in\Gamma(S)\setminus B. Let q=tp(a/B)q=\operatorname{tp}^{\mathcal{M}}(a/B), and let p0,,pm1p_{0},\dots,p_{m-1} be the complete extensions of qq over CC. Let I={i<m:dim(pi)=dim(q)}I=\left\{i<m:\dim(p_{i})=\dim(q)\right\}. Then

  1. (1)

    There is an element aqa^{*}\vDash q such that dim(a/C)=dim(a/B)\dim(a^{*}/C)=\dim(a/B) — i.e. II is non-empty.

  2. (2)

    meas(q)=iImeas(pi)\mathrm{meas}(q)=\sum_{i\in I}\mathrm{meas}(p_{i}).

Proof.

For item 1, we may assume that [aB]=e0<e1<<ek=a[a\wedge B]=e_{0}<e_{1}<\dots<e_{k}=a where k>0k>0 and 𝚙𝚛𝚎𝚍(e)=e1\mathtt{pred}(e_{\ell})=e_{\ell-1} for each =1,,k\ell=1,\dots,k. Since BB is closed and aBa\notin B, we know that e1e_{1} is an infinity-node, say π(e1)=σI(Γ)\pi(e_{1})=\sigma\in I(\Gamma). Let B1=M(e1)BB_{1}=M(e_{1})\cap B and C1=M(e1)CC_{1}=M(e_{1})\cap C. Since dimσ(x=x)=1\dim_{\sigma}(x=x)=1 and acl\operatorname{acl} is trivial in (e1)\mathcal{M}(e_{1}) and e1B1e_{1}\notin B_{1}, we know that dimσ(e1/B1)=1\dim_{\sigma}(e_{1}/B_{1})=1. By Fact 4.3.1, there is an element e1M(e1)e_{1}^{*}\in M(e_{1}) such that tp(e1)(e1/B1)=tp(e1)(e1/B1)\operatorname{tp}^{\mathcal{M}(e_{1})}(e_{1}/B_{1})=\operatorname{tp}^{\mathcal{M}(e_{1})}(e_{1}^{*}/B_{1}) and dimσ(e1/C1)=dimσ(e1/B1)=1\dim_{\sigma}(e_{1}^{*}/C_{1})=\dim_{\sigma}(e_{1}/B_{1})=1. Subsequently, by 0\aleph_{0}-categoricity of TσT_{\sigma} there is an automorphism gAut((e1)/B1)g\in\mathrm{Aut}\big{(}\mathcal{M}(e_{1})/B_{1}\big{)} such that g(e1)=e1g(e_{1})=e_{1}^{*}. By N3, there is hAut(/B)h\in\mathrm{Aut}(\mathcal{M}/B) such that hM(e1)=gh{\restriction}_{M(e_{1})}=g. We choose a=h(a)a^{*}=h(a). Now we verify that dim(a/C)=dim(a/B)\dim(a^{*}/C)=\dim(a/B). Suppose ei=h(ei)e_{i}^{*}=h(e_{i}) for each i=1,ki=1,\dots k. Then

[aB]=[aC]=e0<e1<<ek=a.[a\wedge B]=[a^{*}\wedge C]=e_{0}<e^{*}_{1}<\dots<e^{*}_{k}=a^{*}.

By definitoin of dim\dim we can write

dim(a/B)\displaystyle\dim(a/B) =i=1kdimσi(ei/tcl(Be0,,ei1)M(ei))\displaystyle=\sum_{i=1}^{k}\dim_{\sigma_{i}}\big{(}e_{i}/\mathrm{tcl}(Be_{0},\dots,e_{i-1})\cap M(e_{i})\big{)}
=|{i{1,k}:π(ei)I(Γ)}|\displaystyle=\big{|}\left\{i\in\{1,\dots k\}:\pi(e_{i})\in I(\Gamma)\right\}\big{|}
=|{i{1,k}:π(ei)I(Γ)}| (since h is an automorphism)\displaystyle=\big{|}\left\{i\in\{1,\dots k\}:\pi(e^{*}_{i})\in I(\Gamma)\right\}\big{|}\,\,\,\,\text{ (since $h$ is an automorphism)}
=i=1kdimσi(ei/tcl(Ce0,e1,,ei1)M(ei))\displaystyle=\sum_{i=1}^{k}\dim_{\sigma_{i}}\big{(}e^{*}_{i}/\mathrm{tcl}(Ce_{0},e_{1}^{*},\dots,e^{*}_{i-1})\cap M(e^{*}_{i})\big{)}
=dim(a/C).\displaystyle=\dim(a^{*}/C).

For item 2, let aia_{i} be a realization of pip_{i} for each i<mi<m, and let hiAut(/B)h_{i}\in\mathrm{Aut}(\mathcal{M}/B) be an automorphism such that hi(a)=aih_{i}(a)=a_{i}. For each i<mi<m, let e1i=hi(e1)e^{*}_{1i}=h_{i}(e_{1}).

Claim.

For each i<mi<m, dim(ai/C)=dim(a/B)\dim(a_{i}/C)=\dim(a/B) if and only if dimσ(e1i/C1)=dimσ(e1/B1)\dim_{\sigma}(e_{1i}^{*}/C_{1})=\dim_{\sigma}(e_{1}/B_{1}).

Proof.

Suppose dimσ(e1i/C1)=dimσ(e1/B1)\dim_{\sigma}(e_{1i}^{*}/C_{1})=\dim_{\sigma}(e_{1}/B_{1}). Then

dim(ai/C)\displaystyle\dim(a_{i}/C) =j=1kdimσj(hi(ej)/tcl(Ce0e1,j,,hi(ej1)M(hi(ej)))\displaystyle=\sum_{j=1}^{k}\dim_{\sigma_{j}}(h_{i}(e_{j})/\mathrm{tcl}(Ce_{0}e^{*}_{1,j},\dots,h_{i}(e_{j-1})\cap M(h_{i}(e_{j})))
=j=1kdimσ(ej/tcl(Be0,,ej1)M(ej))\displaystyle=\sum_{j=1}^{k}\dim_{\sigma}(e_{j}/\mathrm{tcl}(Be_{0},\dots,e_{j-1})\cap M(e_{j}))
=dim(a/B).\displaystyle=\dim(a/B).

Coversely, suppose dim(ai/C)=dim(a/B)\dim(a_{i}/C)=\dim(a/B) for some i<mi<m. Since the correspomdimg summands of the above equation should be the same, dimσ(e1i/C1)=dimσ(e1/B1)\dim_{\sigma}(e_{1i}^{*}/C_{1})=\dim_{\sigma}(e_{1}/B_{1}). ∎

From this, it follows that measσ(e1/B1)=iImeasσ(e1i/C1)\mathrm{meas}_{\sigma}(e_{1}/B_{1})=\sum_{i\in I}\mathrm{meas}_{\sigma}(e^{*}_{1i}/C_{1}). For each i<mi<m and for each j<kj<k, let hi(ej)=ej,ih_{i}(e_{j})=e_{j,i}^{*}. By definition of meas\mathrm{meas} we have

meas(a/B)\displaystyle\mathrm{meas}(a/B) =iImeasσi(ei/tcl(Be0,,ei1)M(ei))\displaystyle=\prod_{i\in I}\mathrm{meas}_{\sigma_{i}}(e_{i}/\mathrm{tcl}(Be_{0},\dots,e_{i-1})\cap M(e_{i}))
=(iImeasσ1(e1,i/C1))j=2kmeasσj(ej/tcl(Be0,,ej1)M(ej)).\displaystyle=\bigg{(}\sum_{i\in I}\mathrm{meas}_{\sigma_{1}}\big{(}e^{*}_{1,i}/C_{1}\big{)}\bigg{)}\prod_{j=2}^{k}\mathrm{meas}_{\sigma_{j}}\big{(}e_{j}/\mathrm{tcl}(Be_{0},\dots,e_{j-1})\cap M(e_{j})\big{)}.

Now, we distribute over the summation, and we note that for iIi\in I and j2j\geq 2

measσj(ej/tcl(Be0,\displaystyle\mathrm{meas}_{\sigma_{j}}\big{(}e_{j}/\mathrm{tcl}(Be_{0},\dots ,ej1)M(ej))\displaystyle,e_{j-1})\cap M(e_{j})\big{)}
=measσj(ej,i/tcl(Ce0,i,,e(j1),i)M(ej,i)).\displaystyle=\mathrm{meas}_{\sigma_{j}}\big{(}e^{*}_{j,i}/\mathrm{tcl}(Ce^{*}_{0,i},\dots,e^{*}_{(j-1),i})\cap M(e^{*}_{j,i})\big{)}.

Since neither BB nor CC meet M(ej)M(e_{j}) and M(ej,i)M(e^{*}_{j,i}),

iIj=1kmeasσj(ej,i/tcl(Ce0,i,,ej1,i)M(ej,i))=iImeas(ai/C).\displaystyle\sum_{i\in I}\prod_{j=1}^{k}\mathrm{meas}_{\sigma_{j}}\bigg{(}e^{*}_{j,i}/\mathrm{tcl}(Ce^{*}_{0,i},\dots,e^{*}_{j-1,i})\cap M(e^{*}_{j,i})\bigg{)}=\sum_{i\in I}\mathrm{meas}(a_{i}/C).

In order to extend Lemma 4.3.2 to nn-types, for arbitrary nn, we need to know that permuting the indices does not matter. In the following proposition we show that hh is permutation/coordinate invariant. This is used in the proof of Lemma 4.3.9 as well.

Proposition 4.3.3 (Permutation/coordinate invariance).

For all closed subsets CfinΓ(S)C\subset_{\textrm{fin}}\Gamma(S), for all a¯=(a0,,an1)Γ(S)n\overline{a}=(a_{0},\dots,a_{n-1})\in\Gamma(S)^{n}, and for all σ𝑆𝑦𝑚(n)\sigma\in\mathit{Sym}(n), we have

  1. (1)

    dim(aσ(0),,aσ(n1)/C)=dim(a¯/C)\dim\big{(}a_{\sigma(0)},\dots,a_{\sigma(n-1)}/C\big{)}=\dim(\overline{a}/C).

  2. (2)

    meas(aσ(0),,aσ(n1)/C)=meas(a¯/C)\mathrm{meas}\big{(}a_{\sigma(0)},\dots,a_{\sigma(n-1)}/C\big{)}=\mathrm{meas}(\overline{a}/C).

Proof.

Since 𝑆𝑦𝑚(n)\mathit{Sym}(n) is generated by adjacent transposition, it is enough to show that for any closed set CfinΓ(S)C\subset_{\textrm{fin}}\Gamma(S), for any a¯,b¯Γ(S)<ω\overline{a},\overline{b}\in\Gamma(S)^{<\omega} and e,eΓ(S)e,e^{\prime}\in\Gamma(S)

dim(a¯eeb¯/C)\displaystyle\dim(\overline{a}ee^{\prime}\overline{b}/C) =dim(a¯eeb¯/C)\displaystyle=\dim(\overline{a}e^{\prime}e\overline{b}/C)
meas(a¯eeb¯/C)\displaystyle\mathrm{meas}(\overline{a}ee^{\prime}\overline{b}/C) =meas(a¯eeb¯/C).\displaystyle=\mathrm{meas}(\overline{a}e^{\prime}e\overline{b}/C).

Since

dim(a¯eeb¯/C)\displaystyle\dim(\overline{a}ee^{\prime}\overline{b}/C) =dim(b¯/C)+dim(a¯ee/tcl(Cb¯))\displaystyle=\dim(\overline{b}/C)+\dim(\overline{a}ee^{\prime}/\mathrm{tcl}(C\overline{b}))
=dim(b¯/C)+dim(ee/tcl(Cb¯))+dim(a¯/tcl(Cb¯ee)),\displaystyle=\dim(\overline{b}/C)+\dim(ee^{\prime}/\mathrm{tcl}(C\overline{b}))+\dim(\overline{a}/\mathrm{tcl}(C\overline{b}ee^{\prime})),
dim(a¯eeb¯/C)\displaystyle\dim(\overline{a}e^{\prime}e\overline{b}/C) =dim(b¯/C)+dim(a¯ee/tcl(Cb¯))\displaystyle=\dim(\overline{b}/C)+\dim(\overline{a}e^{\prime}e/\mathrm{tcl}(C\overline{b}))
=dim(b¯/C)+dim(ee/tcl(Cb¯))+dim(a¯/tcl(Cb¯ee)),\displaystyle=\dim(\overline{b}/C)+\dim(e^{\prime}e/\mathrm{tcl}(C\overline{b}))+\dim(\overline{a}/\mathrm{tcl}(C\overline{b}e^{\prime}e)),

and

meas(a¯eeb¯/C)\displaystyle\mathrm{meas}(\overline{a}ee^{\prime}\overline{b}/C) =meas(b¯/C)meas(a¯ee/tcl(Cb¯))\displaystyle=\mathrm{meas}(\overline{b}/C)\cdot\mathrm{meas}(\overline{a}ee^{\prime}/\mathrm{tcl}(C\overline{b}))
=meas(b¯/C)meas(ee/tcl(Cb¯))meas(a¯/tcl(Cb¯ee)),\displaystyle=\mathrm{meas}(\overline{b}/C)\cdot\mathrm{meas}(ee^{\prime}/\mathrm{tcl}(C\overline{b}))\cdot\mathrm{meas}(\overline{a}/\mathrm{tcl}(C\overline{b}ee^{\prime})),
meas(a¯eeb¯/C)\displaystyle\mathrm{meas}(\overline{a}e^{\prime}e\overline{b}/C) =meas(b¯/C)meas(a¯ee/tcl(Cb¯))\displaystyle=\mathrm{meas}(\overline{b}/C)\cdot\mathrm{meas}(\overline{a}e^{\prime}e/\mathrm{tcl}(C\overline{b}))
=meas(b¯/C)meas(ee/tcl(Cb¯))meas(a¯/tcl(Cb¯ee)),\displaystyle=\mathrm{meas}(\overline{b}/C)\cdot\mathrm{meas}(e^{\prime}e/\mathrm{tcl}(C\overline{b}))\cdot\mathrm{meas}(\overline{a}/\mathrm{tcl}(C\overline{b}e^{\prime}e)),

it is enough to show that for any closed set CfinΓ(S)C\subset_{\textrm{fin}}\Gamma(S) and any e,eΓ(S)e,e^{\prime}\in\Gamma(S),

dim(ee/C)=dim(ee/C),\displaystyle\dim(ee^{\prime}/C)=\dim(e^{\prime}e/C),
meas(ee/C)=meas(ee/C).\displaystyle\mathrm{meas}(ee^{\prime}/C)=\mathrm{meas}(e^{\prime}e/C).

We consider the following cases: ee and ee^{\prime} are comparable, ee and ee^{\prime} are incomparable and meet CC at the same point, ee and ee^{\prime} are incomparable and meet CC at different points.

  1. case 1.

    Suppose [eC]e<e[e\wedge C]\leq e^{\prime}<e. Then we have

    dim(ee/C)\displaystyle\dim(ee^{\prime}/C) =dim(e/C)+dim(e/tcl(Ce)),\displaystyle=\dim(e^{\prime}/C)+\dim(e/\mathrm{tcl}(Ce^{\prime})),
    dim(ee/C)\displaystyle\dim(e^{\prime}e/C) =dim(e/C)+dim(e/tcl(Ce))\displaystyle=\dim(e/C)+\dim(e^{\prime}/\mathrm{tcl}(Ce))
    =dim(e/C)(since etcl(Ce))\displaystyle=\dim(e/C)\hskip 113.81102pt(\text{since $e^{\prime}\in\mathrm{tcl}(Ce)$})

    So it suffices to show that dim(e/C)=dim(e/C)+dim(e/tcl(Ce)).\dim(e/C)=\dim(e^{\prime}/C)+\dim\left(e/\mathrm{tcl}(Ce^{\prime})\right). Let

    [eC]=e0<e1<<ek1<ek=e[e\wedge C]=e_{0}<e_{1}<\dots<e_{k-1}<e_{k}=e

    where 𝚙𝚛𝚎𝚍(ei)=ei1\mathtt{pred}(e_{i})=e_{i-1} for i=1,,ki=1,\dots,k, and let for some <k\ell<k, e=ee^{\prime}=e_{\ell}. Then

    dim(e/C)\displaystyle\dim(e^{\prime}/C) =i=1dimσi(ei/tcl(Ce0,,ei1)M(ei)),\displaystyle=\sum\limits_{i=1}^{\ell}\dim_{\sigma_{i}}\left(e_{i}/\mathrm{tcl}(Ce_{0},\dots,e_{i-1})\cap M(e_{i})\right),
    dim(e/C)\displaystyle\dim(e/C) =j=1kdimσj(ej/tcl(Ce0,,ej1)M(ej))\displaystyle=\sum\limits_{j=1}^{k}\dim_{\sigma_{j}}\left(e_{j}/\mathrm{tcl}(Ce_{0},\dots,e_{j-1})\cap M(e_{j})\right)

    So we have to show that

    dim(e/tcl(Ce))=i=+1kdimσi(ei/tcl(Ce0,,ei1)M(ei)).\dim\left(e/\mathrm{tcl}(Ce^{\prime})\right)=\sum\limits_{i=\ell+1}^{k}\dim_{\sigma_{i}}\left(e_{i}/\mathrm{tcl}(Ce_{0},\dots,e_{i-1})\cap M(e_{i})\right).

    For each +1ik\ell+1\leq i\leq k, if eitcl(Ce0,,ei1)e_{i}\in\mathrm{tcl}(Ce_{0},\dots,e_{i-1}), then

    dimσ(ei/tcl(Ce0,,ei1)M(ei))=0.\dim_{\sigma}\left(e_{i}/\mathrm{tcl}(Ce_{0},\dots,e_{i-1})\cap M(e_{i})\right)=0.

    On the other hand, for each ii, eitcl(Ce0,,ei1)e_{i}\notin\mathrm{tcl}\left(Ce_{0},\dots,e_{i-1}\right) if and only if π(ei)I(Γ)\pi(e_{i})\in I(\Gamma). So

    i=+1kdimσi(ei/tcl(Ce0,,ei1)M(ei))\displaystyle\sum\limits_{i=\ell+1}^{k}\dim_{\sigma_{i}}\left(e_{i}/\mathrm{tcl}(Ce_{0},\dots,e_{i-1})\cap M(e_{i})\right) =|{x:π(x)I(Γ),e<xe}|\displaystyle=\big{|}\left\{x:\pi(x)\in I(\Gamma),e^{\prime}<x\leq e\right\}\big{|}
    =dim(e/tcl(Ce)).\displaystyle=\dim(e/\mathrm{tcl}(Ce^{\prime})).

    as we desire.

  2. case 2.

    Suppose [eC]=[eC][ee][e\wedge C]=[e^{\prime}\wedge C]\leq[e\wedge e^{\prime}]. Let b=[ee]b=[e\wedge e^{\prime}]. Then

    dim(ee/C)\displaystyle\dim(ee^{\prime}/C) =dim(e/C)+dim(e/tcl(Ce))\displaystyle=\dim(e^{\prime}/C)+\dim(e/\mathrm{tcl}(Ce^{\prime}))
    =dim(e/C)+dim(e/tcl(Cb)).\displaystyle=\dim(e^{\prime}/C)+\dim(e/\mathrm{tcl}(Cb)).

    and

    dim(ee/C)\displaystyle\dim(e^{\prime}e/C) =dim(e/C)+dim(e/tcl(Ce))\displaystyle=\dim(e/C)+\dim(e^{\prime}/\mathrm{tcl}(Ce))
    =dim(e/C)+dim(e/tcl(Cb)).\displaystyle=\dim(e/C)+\dim(e^{\prime}/\mathrm{tcl}(Cb)).

    So it is enough to show that

    (1) dim(e/C)+dim(e/tcl(Cb))=dim(e/C)+dim(e/tcl(Cb)).\dim(e^{\prime}/C)+\dim(e/\mathrm{tcl}(Cb))=\dim(e/C)+\dim(e^{\prime}/\mathrm{tcl}(Cb)).

    We have

    dim(e/C)\displaystyle\dim(e/C) =dim(e/tcl(Cb))+dim(b/C),\displaystyle=\dim(e/\mathrm{tcl}(Cb))+\dim(b/C),
    dim(e/C)\displaystyle\dim(e^{\prime}/C) =dim(e/tcl(Cb))+dim(b/C).\displaystyle=\dim(e^{\prime}/\mathrm{tcl}(Cb))+\dim(b/C).

    and by replacing them in equation (1) we have

    dim(e/tcl(Cb))+dim(b/C)+dim(e/tcl(Cb))\displaystyle\dim(e^{\prime}/\mathrm{tcl}(Cb))+\dim(b/C)+\dim(e/\mathrm{tcl}(Cb))
    =\displaystyle=
    dim(e/tcl(Cb))+dim(b/C)+dim(e/tcl(Cb)).\displaystyle\dim(e/\mathrm{tcl}(Cb))+\dim(b/C)+\dim(e^{\prime}/\mathrm{tcl}(Cb)).

    This completes case 2.

  3. case 3.

    Suppose [ee]<[eC][e\wedge e^{\prime}]<[e\wedge C], [ee]<[eC][e\wedge e^{\prime}]<[e^{\prime}\wedge C] and [eC][eC][e\wedge C]\neq[e^{\prime}\wedge C]. In this situation we observe that

    dim(e/tcl(Ce))\displaystyle\dim(e/\mathrm{tcl}(Ce^{\prime})) =dim(e/C),\displaystyle=\dim(e/C),
    dim(e/tcl(Ce))\displaystyle\dim(e^{\prime}/\mathrm{tcl}(Ce)) =dim(e/C).\displaystyle=\dim(e^{\prime}/C).

    So we calculate

    dim(ee/C)\displaystyle\dim(ee^{\prime}/C) =dim(e/C)+dim(e/tcl(Ce))\displaystyle=\dim(e^{\prime}/C)+\dim(e/\mathrm{tcl}(Ce^{\prime}))
    =dim(e/C)+dim(e/C)\displaystyle=\dim(e^{\prime}/C)+\dim(e/C)
    =dim(e/C))+dim(e/tcl(Ce))\displaystyle=\dim(e/C))+\dim(e^{\prime}/\mathrm{tcl}(Ce))
    =dim(ee/C).\displaystyle=\dim(e^{\prime}e/C).

    as we desire.

We can do a similar calculation for meas\mathrm{meas} as well. ∎

Lemma 4.3.4.

Let BCfinΓ(S)B\subseteq C\subset_{\textrm{fin}}\Gamma(S) be closed sets. Then for every n+n\in\mathbb{N}^{+}, for every a¯(Γ(S)B)n\overline{a}\in(\Gamma(S)\setminus B)^{n}, there is a finite list a¯0,,a¯m1Γ(S)n\overline{a}_{0},\dots,\overline{a}_{m-1}\in\Gamma(S)^{n} such that:

  1. (1)

    tp(a¯j/B)=tp(a¯/B)\operatorname{tp}(\overline{a}_{j}/B)=\operatorname{tp}(\overline{a}/B) and dim(a¯j/C)=dim(a¯/B)\dim(\overline{a}_{j}/C)=\dim(\overline{a}/B) for each j<mj<m.

  2. (2)

    For any a¯Γ(S)n\overline{a}^{\prime}\in\Gamma(S)^{n}, if tp(a¯/B)=tp(a¯/B)\operatorname{tp}(\overline{a}^{\prime}/B)=\operatorname{tp}(\overline{a}/B) and dim(a¯/C)=dim(a¯/B)\dim(\overline{a}^{\prime}/C)=\dim(\overline{a}/B), then tp(a¯/C)=tp(a¯j/C)\operatorname{tp}(\overline{a}^{\prime}/C)=\operatorname{tp}(\overline{a}_{j}/C) for exactly one j<mj<m.

Moreover, given these conditions, we also find that

meas(a¯/B)=j<mmeas(a¯j/C).\mathrm{meas}(\overline{a}/B)=\sum_{j<m}\mathrm{meas}(\overline{a}_{j}/C).
Proof.

We proceed by induction on n=1,2,3,n=1,2,3,\dots. The base case, n=1n=1, follows from Lemma 4.3.2. Inductively, we assume that the lemma has been proven for nn-tuples and any closed sets BCfinΓ(S)B\subseteq C\subset_{\textrm{fin}}\Gamma(S). Now, let BCfinΓ(S)B\subseteq C\subset_{\textrm{fin}}\Gamma(S) be closed sets, and let a¯(Γ(S)B)n\overline{a}\in(\Gamma(S)\setminus B)^{n} and yΓ(S)y\in\Gamma(S); we prove the statement of the lemma for the (n+1)(n+1)-tuple a¯y\overline{a}y. By the induction hypothesis, let a¯0,,a¯m1Γ(S)n\overline{a}_{0},\dots,\overline{a}_{m-1}\in\Gamma(S)^{n} be as in the statement of the lemma for a¯,B,C\overline{a},B,C, and for each i<mi<m, let giAut(/B)g_{i}\in\mathrm{Aut}(\mathcal{M}/B) be such that gia¯=a¯ig_{i}\overline{a}=\overline{a}_{i}.

Now, for each i<mi<m, we apply Lemma 4.3.2 with q(x)=tp(gi(y)/tcl(Ba¯i))q(x)=\operatorname{tp}(g_{i}(y)/\mathrm{tcl}(B\overline{a}_{i})) and with tcl(Ca¯i)\mathrm{tcl}(C\overline{a}_{i}) in place of CC to obtain elements yi,0,,yi,ki1y_{i,0},\dots,y_{i,k_{i}-1} such that

  • yi,qy_{i,\ell}\vDash q and dim(yi,/tcl(Ca¯i))=dim(gi(y)/tcl(Ba¯i))\dim\big{(}y_{i,\ell}/\mathrm{tcl}(C\overline{a}_{i})\big{)}=\dim\big{(}g_{i}(y)/\mathrm{tcl}(B\overline{a}_{i})\big{)} for all <ki\ell<k_{i}.

  • For any zΓ(S)z\in\Gamma(S), if zqz\vDash q and dim(z/tcl(Ca¯i))=dim(gi(y)/tcl(Ba¯i))\dim(z/\mathrm{tcl}(C\overline{a}_{i}))=\dim(g_{i}(y)/\mathrm{tcl}(B\overline{a}_{i})), then tp(z/tcl(Ca¯i))=tp(yi,/tcl(Ca¯i))\operatorname{tp}(z/\mathrm{tcl}(C\overline{a}_{i}))=\operatorname{tp}(y_{i,\ell}/\mathrm{tcl}(C\overline{a}_{i})) for exactly one <ki\ell<k_{i}.

The next claim verifies that {a¯iyi,:i<m,<ki}\{\overline{a}_{i}y_{i,\ell}:i<m,\,\,\ell<k_{i}\} works for a¯y\overline{a}y.

Claim.
  1. (1)

    tp(a¯iyi,/B)=tp(a¯y/B)\operatorname{tp}(\overline{a}_{i}y_{i,\ell}/B)=\operatorname{tp}(\overline{a}y/B) and dim(a¯iyi,/C)=dim(a¯y/B)\dim(\overline{a}_{i}y_{i,\ell}/C)=\dim(\overline{a}y/B) for all i<mi<m and <ki\ell<k_{i}.

  2. (2)

    For any e¯Γ(S)n+1\overline{e}\in\Gamma(S)^{n+1}, if tp(e¯/B)=tp(a¯y/B)\operatorname{tp}(\overline{e}/B)=\operatorname{tp}(\overline{a}y/B) and dim(e¯/C)=dim(a¯y/B)\dim(\overline{e}/C)=\dim(\overline{a}y/B), then tp(e¯/C)=tp(a¯iyi,/C)\operatorname{tp}(\overline{e}/C)=\operatorname{tp}(\overline{a}_{i}y_{i,\ell}/C) for exactly one pair of numbers i<mi<m and <ki\ell<k_{i}.

Proof.

For item (1), suppose i<mi<m and <ki\ell<k_{i}, then we can write:

dim(a¯y/B)\displaystyle\dim(\overline{a}y/B) =dim(ya¯/B)(by Proposition 4.3.3)\displaystyle=\dim(y\overline{a}/B)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(\text{by Proposition \ref{permutation_inv}})
=dim(a¯/B)+dim(y/tcl(Ba¯))(by definition of dim)\displaystyle=\dim(\overline{a}/B)+\dim(y/\mathrm{tcl}(B\overline{a}))\,\,\,\,\,\,\,\,\,\,\,\,\,(\text{by definition of $\dim$})
=dim(a¯i/C)+dim(yi,/tcl(Ca¯i))(by I.H.)\displaystyle=\dim(\overline{a}_{i}/C)+\dim(y_{i,\ell}/\mathrm{tcl}(C\overline{a}_{i}))\,\,\,\,\,\,(\text{by I.H.})
=dim(yi,a¯i/C)(by definition of dim)\displaystyle=\dim(y_{i,\ell}\overline{a}_{i}/C)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(\text{by definition of $\dim$})
=dim(a¯iyi,/C).(by Proposition 4.3.3)\displaystyle=\dim(\overline{a}_{i}y_{i,\ell}/C).\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(\text{by Proposition \ref{permutation_inv}})

Also, since by the induction hypothesis a¯Ba¯i\overline{a}\equiv_{B}\overline{a}_{i} and tp(yi,/tcl(Ba¯i))=tp(gi(y)/tcl(Ba¯i))\operatorname{tp}(y_{i,\ell}/\mathrm{tcl}(B\overline{a}_{i}))=\operatorname{tp}(g_{i}(y)/\mathrm{tcl}(B\overline{a}_{i})), tp(a¯iyi,/B)=tp(a¯y/B)\operatorname{tp}(\overline{a}_{i}y_{i,\ell}/B)=\operatorname{tp}(\overline{a}y/B).

For item (2), we note that there is gAut(/B)g\in\mathrm{Aut}(\mathcal{M}/B) such that g(e¯)=a¯yg(\overline{e})=\overline{a}y. So by abuse of notation we may assume that e¯=e¯e0\overline{e}=\overline{e}^{\prime}e_{0} such that e¯Γ(S)n\overline{e}^{\prime}\in\Gamma(S)^{n}, e0Γ(S)e_{0}\in\Gamma(S), e¯Ba¯\overline{e}^{\prime}\equiv_{B}\overline{a}, and e0tcl(Ba¯)ye_{0}\equiv_{\mathrm{tcl}(B\overline{a})}y. Since dim(e¯e0/C)=dim(a¯y/B)\dim(\overline{e}^{\prime}e_{0}/C)=\dim(\overline{a}y/B), by definition of dim\dim we have dim(e¯/C)=dim(a¯/B)\dim(\overline{e}^{\prime}/C)=\dim(\overline{a}/B) and dim(e0/tcl(Ce¯))=dim(y/tcl(Ba¯))\dim(e_{0}/\mathrm{tcl}(C\overline{e}^{\prime}))=\dim(y/\mathrm{tcl}(B\overline{a})). Since e¯Ba¯\overline{e}^{\prime}\equiv_{B}\overline{a} and dim(e¯/C)=dim(a¯/B)\dim(\overline{e}^{\prime}/C)=\dim(\overline{a}/B), by the induction hypothesis there is i<mi<m such that e¯Ca¯i\overline{e}^{\prime}\equiv_{C}\overline{a}_{i}. Also by the induction hypothesis, there is <ki\ell<k_{i} such that e0tcl(Ca¯i)yi,e_{0}\equiv_{\mathrm{tcl}(C\overline{a}_{i})}y_{i,\ell}. Thus e¯e0Ca¯iyi,\overline{e}^{\prime}e_{0}\equiv_{C}\overline{a}_{i}y_{i,\ell}. ∎

Proposition 4.3.5.

The function h=(dim,meas)h=(\dim,\mathrm{meas}), defined in the proof of Theorem Main Theorem, is well-defined. More precisely, let X𝖣𝖾𝖿()X\in\mathsf{Def}(\mathcal{M}). Let B1finΓ(S)B_{1}\subset_{\textrm{fin}}\Gamma(S) such that XX is B1B_{1}-definable. Let B2finΓ(S)B_{2}\subset_{\textrm{fin}}\Gamma(S) such that XX is B2B_{2}-definable as well. Let p0,,pk1Sn(B1)p_{0},\dots,p_{k-1}\in S_{n}(B_{1}) and q0,,q1Sn(B2)q_{0},\dots,q_{\ell-1}\in S_{n}(B_{2}) such that X=p0()pk1()X=p_{0}(\mathcal{M})\uplus\dots\uplus p_{k-1}(\mathcal{M}) and X=q0()q1().X=q_{0}(\mathcal{M})\uplus\dots\uplus q_{\ell-1}(\mathcal{M}). Let I={i<k:dim(pi)=max{dim(pt):t<k}}I=\big{\{}i<k:\dim(p_{i})=\max\{\dim(p_{t}):t<k\}\big{\}} and J={j<:dim(qj)=max{dim(pt):t<}}.J=\big{\{}j<\ell:\dim(q_{j})=\max\{\dim(p_{t}):t<\ell\}\big{\}}. Then for all iI,jJi\in I,\,j\in J

dim(pi)=dim(qj), and iImeas(pi)=jJmeas(qj).\dim(p_{i})=\dim(q_{j}),\text{ and }\,\sum\limits_{i\in I}\mathrm{meas}(p_{i})=\sum\limits_{j\in J}\mathrm{meas}(q_{j}).
Proof.

Let C=tcl(B1B2)C=\mathrm{tcl}(B_{1}B_{2}). It suffices to apply Lemma 4.3.4 to each pip_{i} and qjq_{j}. More precisely, let pi=tp(a¯i/B1)p_{i}=\operatorname{tp}(\overline{a}_{i}/B_{1}) for each i<ki<k, and let qj=tp(b¯j/B2)q_{j}=\operatorname{tp}(\overline{b}_{j}/B_{2}) for each j<j<\ell. By Lemma 4.3.4, for each i<ki<k and each j<j<\ell there are {a¯i,s:s<ti}\{\overline{a}_{i,s}:s<t_{i}\} and {b¯j,s:s<mj}\{\overline{b}_{j,s}:s<m_{j}\} such that tp(a¯i,s/B1)=tp(a¯i/B1)\operatorname{tp}(\overline{a}_{i,s}/B_{1})=\operatorname{tp}(\overline{a}_{i}/B_{1}), dim(a¯i,s/C)=dim(a¯i/B1)\dim(\overline{a}_{i,s}/C)=\dim(\overline{a}_{i}/B_{1}) for each s<tis<t_{i}, and tp(b¯j,s/B2)=tp(b¯j/B2)\operatorname{tp}(\overline{b}_{j,s}/B_{2})=\operatorname{tp}(\overline{b}_{j}/B_{2}), dim(b¯j,s/C)=dim(b¯j/B2)\dim(\overline{b}_{j,s}/C)=\dim(\overline{b}_{j}/B_{2}) for each s<mjs<m_{j}. Suppose iIi\in I and jJj\in J, then

dim(pi)\displaystyle\dim(p_{i}) =dim(a¯i/B1)=dim(a¯i,s/C) for each s<ti,\displaystyle=\dim(\overline{a}_{i}/B_{1})=\dim(\overline{a}_{i,s}/C)\,\,\,\,\,\text{ for each }s<t_{i},
dim(qj)\displaystyle\dim(q_{j}) =dim(b¯j/B2)=dim(b¯j,r/C) for each r<mj.\displaystyle=\dim(\overline{b}_{j}/B_{2})=\dim(\overline{b}_{j,r}/C)\,\,\,\,\,\text{ for each }r<m_{j}.

We have to show that dim(a¯i,s/C)=dim(b¯j,r/C)\dim(\overline{a}_{i,s}/C)=\dim(\overline{b}_{j,r}/C) for all s<ti,r<mjs<t_{i},\,\,r<m_{j}. They are equal because they are the maximum values among dimensions of types over B1B2B_{1}B_{2} as well. We can do a similar calculation for meas\mathrm{meas} as well. ∎

4.3.3. Verification of h=(dim,meas)h=(\dim,\mathrm{meas})

Here we show that the function defined in Subsection 4.3.1 works, that is, \mathcal{M} is MS-measurable via hh. By Theorem 4.2.1, we just need to verify that hh satisfies conditions cMS1,,cMS4\textrm{cMS}1,\dots,\textrm{cMS}4.

Lemma 4.3.6.

cMS1 holds.

Proof.

It is enough to prove this for complete 1-types over a closed set. Let CfinΓ(S)C\subset_{\textrm{fin}}\Gamma(S) be closed and aΓ(S)a\in\Gamma(S). Let gAut()g\in\mathrm{Aut}(\mathcal{M}). Suppose

[aC]=e0<e1<<en1<en=a[a\wedge C]=e_{0}<e_{1}<\dots<e_{n-1}<e_{n}=a

such that 𝚙𝚛𝚎𝚍(ei)=ei1\mathtt{pred}(e_{i})=e_{i-1} for each i=1,,ni=1,\dots,n. Suppose

J={1jn:π(ej)I(Γ)}.J=\left\{1\leq j\leq n:\pi(e_{j})\in I(\Gamma)\right\}.

Then by construction of hh we have

dim(a/C)=|J|,\dim(a/C)=|J|,

and

meas(a/C)=i=1nmeasσi(ei/tcl(Ce0,,ei1)M(e0))\mathrm{meas}(a/C)=\prod_{i=1}^{n}\mathrm{meas}_{\sigma_{i}}(e_{i}/\mathrm{tcl}(Ce_{0},\dots,e_{i-1})\cap M(e_{0}))

On the other hand we have g([aC])=[g(a)g[C]]g\left([a\wedge C]\right)=[g(a)\wedge g[C]],

[g(a)g[C]]=g(e0)<g(e1)<<g(en1)<g(en)=g(a)[g(a)\wedge g[C]]=g(e_{0})<g(e_{1})<\dots<g(e_{n-1})<g(e_{n})=g(a)

and 𝚙𝚛𝚎𝚍(g(ei))=g(ei1)\mathtt{pred}(g(e_{i}))=g(e_{i-1}) for each i=1,ni=1,\dots n. Let

J={1jn:π(g(ej))I(Γ)}.J^{\prime}=\left\{1\leq j\leq n:\pi(g(e_{j}))\in I(\Gamma)\right\}.

Since the image of any infinity-node under an automorphism gAut()g\in\mathrm{Aut}(\mathcal{M}) is an infinity-node, |J|=|J||J|=|J^{\prime}|. Thus

dim(a/C)=|J|=|J|=dim(g(a)/g[C]),\dim(a/C)=|J|=|J^{\prime}|=\dim(g(a)/g[C]),

and

meas(a/C)\displaystyle\mathrm{meas}(a/C) =i=1nmeasσi(ei/tcl(Ce0,,ei1)M(e0))\displaystyle=\prod_{i=1}^{n}\mathrm{meas}_{\sigma_{i}}(e_{i}/\mathrm{tcl}(Ce_{0},\dots,e_{i-1})\cap M(e_{0}))
=i=1nmeasσi(g(ei)/tcl(Cg(e0),,g(ei1))M(e0))\displaystyle=\prod_{i=1}^{n}\mathrm{meas}_{\sigma_{i}}(g(e_{i})/\mathrm{tcl}(Cg(e_{0}),\dots,g(e_{i-1}))\cap M(e_{0}))\,\,\,\,
=meas(g(a)/g[C]).\displaystyle=\mathrm{meas}(g(a)/g[C]).

Lemma 4.3.7.

cMS2 and cMS3 hold.

Proof.

This follows from part III of the construction of hh. ∎

Lemma 4.3.8.

cMS3 holds.

Proof.

This follows from parts I and II of the construction of hh, and acl=tcl\operatorname{acl}=\mathrm{tcl}. ∎

Lemma 4.3.9.

cMS4 holds.

Proof.

Let CfinM,a¯Mn,b¯Mm,C\subset_{\textrm{fin}}M,\,\overline{a}\in M^{n},\,\overline{b}\in M^{m},\, and b¯dcl(Ca¯)=tcl(Ca¯)\overline{b}\subseteq\operatorname{dcl}(C\overline{a})=\mathrm{tcl}(C\overline{a}). Let X=tp(a¯/C)X=\operatorname{tp}(\overline{a}/C). By a simple induction on nn and using part II of the construction of hh, we have

dim(a¯b¯/C)=dim(b¯/C)+dim(a¯/Cb¯)\dim(\overline{a}\overline{b}/C)=\dim(\overline{b}/C)+\dim(\overline{a}/C\overline{b})

and

meas(a¯b¯/C)=meas(b¯/C)meas(a¯/Cb¯).\mathrm{meas}(\overline{a}\overline{b}/C)=\mathrm{meas}(\overline{b}/C)\cdot\mathrm{meas}(\overline{a}/C\overline{b}).

So, it suffices to show that

dim(X)=dim(a¯b¯/C),\dim(X)=\dim(\overline{a}\overline{b}/C),
meas(X)=meas(a¯b¯/C).\mathrm{meas}(X)=\mathrm{meas}(\overline{a}\overline{b}/C).

We calculate:

dim(a¯b¯/C)\displaystyle\dim(\overline{a}\overline{b}/C) =dim(b¯a¯/C)\displaystyle=\dim(\overline{b}\overline{a}/C) (by Proposition 4.3.3)\displaystyle(\text{by Proposition \ref{permutation_inv}})
=dim(a¯/C)+dim(b¯/Ca¯)\displaystyle=\dim(\overline{a}/C)+\dim(\overline{b}/C\overline{a})
=dim(a¯/C)\displaystyle=\dim(\overline{a}/C) (since b¯tcl(Ca¯))\displaystyle(\text{since }\overline{b}\subseteq\mathrm{tcl}(C\overline{a}))
=dim(X).\displaystyle=\dim(X).

and

meas(a¯b¯/C)\displaystyle\mathrm{meas}(\overline{a}\overline{b}/C) =meas(b¯a¯/C)\displaystyle=\mathrm{meas}(\overline{b}\overline{a}/C) (by Proposition 4.3.3)\displaystyle(\text{by Proposition \ref{permutation_inv}})
=meas(a¯/C)meas(b¯/Ca¯)\displaystyle=\mathrm{meas}(\overline{a}/C)\cdot\mathrm{meas}(\overline{b}/C\overline{a})
=meas(a¯/C)\displaystyle=\mathrm{meas}(\overline{a}/C) (since b¯tcl(Ca¯))\displaystyle(\text{since }\overline{b}\subseteq\mathrm{tcl}(C\overline{a}))
=meas(X).\displaystyle=\mathrm{meas}(X).

as desired. ∎

Acknowledgment

The author would like to thank Cameron Hill for all of his support and very helpful guidance. The author also would like to thank Alex Kruckman for his reading of the first draft and for the helpful comments.

References

  • [1] Z. Chatzidakis, L. van den Dries, and A. Macintyre. Definable sets over finite fields. Journal für die reine und angewandte Mathematik, 427:107–135, 1992.
  • [2] G. Cherlin and E. Hrushovski. Finite Structures with Few Types. Princeton University Press, 2003.
  • [3] M. Djordjevic. Finite satisfiability and 0\aleph_{0}-categorical structures with trivial dependence. Journal of Symbolic Logic, 71(3):810–830, 2006.
  • [4] R. Elwes. Dimension and measure in finite first order structures. PhD thesis, University of Leeds, 2005.
  • [5] R. Elwes. Asymptotic classes of finite structures. Journal of Symbolic Logic, 72(2):418–438, 2007.
  • [6] C. D. Hill. On 0,1-laws and asymptotics of definable sets in geometric Fraïssé classes. Fundamenta Mathematicae, 239(3):201 – 219, 2017.
  • [7] C. D. Hill. Pseudo-finite 0\aleph_{0}-categorical structures via coordinatization. preprint, 202X.
  • [8] A. Kruckman. Disjoint n-amalgamation and pseudofinite countably categorical theories. Notre Dame J. Formal Log., 60:139–160, 2019.
  • [9] D. Macpherson and C. Steinhorn. One-dimensional asymptotic classes of finite structures. Transactions of the American Mathematical Society, 360(1):411–448, January 2008.
  • [10] D. Marker. Model Theory: An Introduction, volume 217 of Graduate Texts in Mathematics. Springer, 2002.