This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Multi-User Delay Alignment Modulation for Millimeter Wave Massive MIMO

Xingwei Wang1, Haiquan Lu12, Yong Zeng12 1National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China 2Purple Mountain Laboratories, Nanjing 211111, China
Email: {xingwei-wang, haiquanlu, yong_zeng}@seu.edu.cn
Abstract

Delay alignment modulation (DAM) is a novel wideband communication technique, which exploits the high spatial resolution and multi-path sparsity of millimeter wave (mmWave) massive multiple-input multiple-output (MIMO) systems to mitigate inter-symbol interference (ISI), without relying on conventional techniques like channel equalization or multi-carrier transmission. In this paper, we extend the DAM technique to multi-user mmWave massive MIMO communication systems. We first provide asymptotic analysis by showing that when the number of base station (BS) antennas is much larger than the total number of channel paths, DAM is able to eliminate both ISI and inter-user interference (IUI) with the simple delay pre-compensation and per-path-based maximal ratio transmission (MRT) beamforming. We then study the general multi-user DAM design by considering the three classical transmit beamforming strategies in a per-path basis, namely MRT, zero-forcing (ZF) and regularized zero-forcing (RZF). Simulation results demonstrate that multi-user DAM can significantly outperform the benchmarking single-carrier ISI mitigation technique that only uses the strongest channel path of each user.

I Introduction

Recently, delay alignment modulation (DAM) was proposed as a novel technique to tackle the inter-symbol interference (ISI) issue, without relying on conventional techniques like channel equalization or multi-carrier transmission [1]. Specifically, by leveraging the super spatial resolution of large antenna arrays [2] and the inherent multi-path sparsity of high frequency channels like millimeter wave (mmWave)[3] and Terahertz channels, DAM enables manipulable channel delay spread by means of delay compensation and path-based beamforming [1]. As a result, all the multi-path signal components may reach the receiver concurrently and constructively, rather than causing the detrimental ISI. This renders DAM resilient to the time-dispersive channel for more efficient single- or multi-carrier transmissions. Some preliminary works on DAM are presented in [4, 5, 6, 7, 8]. For example, in [4], an efficient channel estimation method was developed for DAM communication. By combining DAM with orthogonal frequency division multiplexing (OFDM), a novel DAM-OFDM scheme was proposed in [5], which may outperform OFDM in terms of spectral efficiency, bit error rate (BER), and peak-to-average-power ratio (PAPR). The investigations of DAM for integrated sensing and communication (ISAC) and multiple-intelligent reflecting surfaces (IRSs) aided communication were investigated in [6], [7] and [8], respectively.

DAM is significantly different from the existing ISI-mitigation techniques developed over the fast few decades, such as channel equalization and multi-carrier OFDM transmission. For example, typical time-domain equalization techniques include time reversal (TR)[9, 10, 11] and channel shortening[12, 13]. Specifically, TR mainly treats the multi-path channel as an intrinsic matched filter[9, 10, 11] and addresses the ISI issue via the rate back-off technique[9, 10]. In [12] and [13], channel shortening technique was proposed by applying a short time-domain finite impulse response (FIR) filter to shorten the effective channel impulse response in order to avoid the use of long cyclic prefix (CP). Besides, OFDM is the dominating wideband communication technology, though it suffers from well-known practical issues like carrier frequency offset (CFO), high PAPR, and the severe out-of-band (OOB) emission[14]. By contrast, DAM is a spatial-delay processing technique, which utilizes the high spatial resolution and multi-path sparsity of mmWave massive multiple-input multiple-output (MIMO) systems, while circumventing the aforementioned issues suffered by conventional channel equalization or multi-carrier communication. It is worth noting that relevant techniques for delay spread reduction were studied in [15] and [16]. However, neither of them exploits the high spatial resolution or multi-path sparsity of mmWave massive MIMO systems to completely eliminate ISI. In addition, both our prior work [17] and [18] apply delay compensation in the mmWave MIMO systems, but they were designed only for the special lens MIMO or hybrid beamforming architectures.

Note that the existing works[1, 4, 5, 6, 7, 8] on DAM only focus on the single user scenario. In this paper, we extend the DAM technique to the multi-user mmWave massive MIMO systems. To gain the essential insights, we first provide an asymptotic analysis by assuming that the number of BS antennas MtM_{t} is much larger than the total number of channel multi-paths LtotL_{\mathrm{tot}}. In this case, we show that the time-dispersive multi-user channel can be transformed into ISI-free and inter-user interference (IUI)-free additive white Gaussian noise (AWGN) channels with the simple delay pre-compensation and per-path-based MRT beamforming. Then for the general scenario with given finite number of BS antennas, the multi-user DAM design is investigated by considering three classical transmit beamforming strategies in a per-path basis, i.e., MRT, zero-forcing (ZF) and regularized zero-forcing (RZF). To be specific, it is shown than when MtLtotM_{t}\geq L_{\mathrm{tot}}, both the ISI and IUI can be completely eliminated with the path-based ZF beamforming. Furthermore, the low complexity path-based MRT beamforming and the more general path-based RZF beamforming are respectively developed for multi-user DAM with tolerable residual ISI and IUI. Finally, simulation results are provided to demonstrate the superiority of DAM to the benchmarking single-carrier ISI mitigation technique that only uses the strongest path of each user.

Refer to caption
Figure 1: A multi-user downlink mmWave massive MIMO communication system in time-dispersive channels.

II System Model and Asymptotic Analysis

As shown in Fig. 1, we consider a multi-user mmWave massive MIMO downlink communication system, where the BS equipped with Mt1M_{t}\gg 1 antennas serves KK single-antenna user equipments (UEs). In multi-path environment, the baseband discrete-time channel impulse response of UE kk for each channel coherence block can be expressed as

𝐡k[n]=l=1Lk𝐡klδ[nnkl],\boldsymbol{\bf{h}}_{k}[n]=\sum_{l=1}^{L_{k}}\boldsymbol{\bf{h}}_{kl}\delta[n-n_{kl}], (1)

where 𝐡klMt×1\boldsymbol{\bf{h}}_{kl}\in\mathbb{C}^{M_{t}\times 1} denotes the channel coefficient vector for the llth multi-path of UE kk, LkL_{k} is the number of temporal-resolvable multi-paths of UE kk, and nkln_{kl} denotes its discretized delay. Let nk,max=max1lLknkln_{k,\text{max}}=\max\limits_{1\leq l\leq L_{k}}n_{kl} and nk,min=min1lLknkln_{k,\text{min}}=\min\limits_{1\leq l\leq L_{k}}n_{kl} denote the maximum and minimum delays of UE kk, respectively.

Let sk[n]s_{k}[n] be the independent and identically distributed (i.i.d.) information-bearing symbols of UE kk with normalized power 𝔼[|sk[n]|2]=1\mathbb{E}[|s_{k}[n]|^{2}]=1. By extending the DAM technique proposed in [1] to the multi-user scenario, the transmitted signal by the BS for multi-user DAM is

𝐱[n]=k=1Kl=1Lk𝐟klsk[nκkl],\boldsymbol{\bf{x}}[n]=\sum_{k=1}^{K}\sum_{l^{\prime}=1}^{L_{k}}\boldsymbol{\bf{f}}_{kl^{\prime}}s_{k}[n-\kappa_{kl^{\prime}}], (2)

where 𝐟klMt×1\boldsymbol{\bf{f}}_{kl^{\prime}}\in\mathbb{C}^{M_{t}\times 1} denotes the per-path based transmit beamforming vector associated with multi-path ll^{\prime} of UE kk, and κkl\kappa_{kl^{\prime}} is the deliberately introduced delay pre-compensation, which is set as κkl=nk,maxnkl0,l=1,,Lk\kappa_{kl^{\prime}}=n_{k,\text{max}}-n_{kl^{\prime}}\geq 0,\forall l^{\prime}=1,...,L_{k}. The block diagram for multi-user DAM is given in Fig. 2. By using the fact that sk[n]s_{k}[n] is independent across different nn and kk as well as κklκkl,ll\kappa_{kl^{\prime}}\neq\kappa_{kl},\forall l\neq l^{\prime}, it can be shown that the transmit power of the BS is

𝔼[𝐱[n]2]=k=1Kl=1Lk𝐟kl2P,\mathbb{E}[\|\boldsymbol{\bf{x}}[n]\|^{2}]=\sum_{k=1}^{K}\sum_{l^{\prime}=1}^{L_{k}}\|\boldsymbol{\bf{f}}_{kl^{\prime}}\|^{2}\leq P, (3)

where PP is the maximum allowable transmit power.

Refer to caption
Figure 2: Block diagram for multi-user communication with delay alignment modulation.

Based on (1) and (2), the received signal of UE kk is

yk[n]=𝐡kH[n]𝐱[n]+zk[n]\displaystyle y_{k}[n]=\boldsymbol{\bf{h}}_{k}^{H}[n]*\boldsymbol{\bf{x}}[n]+z_{k}[n] (4)
=(l=1Lk𝐡klH𝐟kl)sk[nnk,max]Desired signal\displaystyle=\underbrace{\left(\sum_{l=1}^{L_{k}}\boldsymbol{\bf{h}}_{kl}^{H}\boldsymbol{\bf{f}}_{kl}\right)s_{k}[n-n_{k,\text{max}}]}_{\text{Desired signal}}
+l=1LkllLk𝐡klH𝐟klsk[nnk,maxnkl+nkl]ISI\displaystyle+\underbrace{\sum_{l=1}^{L_{k}}\sum_{l^{\prime}\neq l}^{L_{k}}\boldsymbol{\bf{h}}_{kl}^{H}\boldsymbol{\bf{f}}_{kl^{\prime}}s_{k}[n-n_{k,\text{max}}-n_{kl}+n_{kl^{\prime}}]}_{\text{ISI}}
+l=1LkkkKl=1Lk𝐡klH𝐟klsk[nnk,maxnkl+nkl]IUI+zk[n],\displaystyle+\underbrace{\sum_{l=1}^{L_{k}}\sum_{k^{\prime}\neq k}^{K}\sum_{l^{\prime}=1}^{L_{k^{\prime}}}\boldsymbol{\bf{h}}_{kl}^{H}\boldsymbol{\bf{f}}_{k^{\prime}l^{\prime}}s_{k^{\prime}}[n-n_{k^{\prime},\text{max}}-n_{kl}+n_{k^{\prime}l^{\prime}}]}_{\text{IUI}}+z_{k}[n],

where * denotes linear convolution, and zk[n]𝒞𝒩(0,σ2)z_{k}[n]\sim\mathcal{CN}(0,\sigma^{2}) is the AWGN. It is observed that if UE kk is locked to the delay nk,maxn_{k,\text{max}}, then the first term is the desired signal, and the second and third terms are the ISI and IUI, respectively.

Fortunately, we show that in mmWave massive MIMO systems when the number of BS antennas MtM_{t} is much larger than the total number of multi-paths Ltot=k=1KLkL_{\mathrm{tot}}=\sum_{k=1}^{K}L_{k}, both the ISI and IUI in (4) asymptotically vanish with the simple path-based MRT beamforming. To this end, we first study the correlation property of the channel vectors 𝐡kl,k=1,,K,l=1,,Lk\boldsymbol{\bf{h}}_{kl},k=1,...,K,l=1,...,L_{k}. For ease of exposition, the basic uniform linear array (ULA) with adjacent elements separated by half wavelength is considered, for which 𝐡kl\boldsymbol{\bf{h}}_{kl} in (1) can be written as

𝐡kl=αkl𝐚(θkl)=αkl[1,ejπcosθkl,,ejπ(Mt1)cosθkl]T,\boldsymbol{\bf{h}}_{kl}=\alpha_{kl}\boldsymbol{\bf{a}}(\theta_{kl})=\alpha_{kl}[1,e^{-j\pi\cos\theta_{kl}},...,e^{-j\pi(M_{t}-1)\cos\theta_{kl}}]^{T},\\ (5)

where αkl\alpha_{kl} denotes the complex-valued path gain for the llth multi-path of UE kk, and θkl\theta_{kl} and 𝐚(θkl)Mt×1\boldsymbol{\bf{a}}(\theta_{kl})\in\mathbb{C}^{M_{t}\times 1} denote the angle of departure (AoD) and the transmit array response vector of multi-path ll of UE kk, respectively. Note that for ease of the asymptotical analysis, we assume that each temporal-resolvable multi-path corresponds to one AoD. It follows from [5] that as long as the multi-paths correspond to distinct AoDs, i.e., θklθkl,kk\theta_{kl}\neq\theta_{k^{\prime}l^{\prime}},\forall k\neq k^{\prime} or lll\neq l^{\prime}, the transmit array response vectors are asymptotically orthogonal when MtLtotM_{t}\gg L_{\mathrm{tot}}, i.e.,

limMt|𝐡klH𝐡kl|𝐡kl𝐡kl0,kk,orll.\lim_{M_{t}\to\infty}\frac{|\boldsymbol{\bf{h}}_{kl}^{H}\boldsymbol{\bf{h}}_{k^{\prime}l^{\prime}}|}{\|\boldsymbol{\bf{h}}_{kl}\|~{}\|\boldsymbol{\bf{h}}_{k^{\prime}l^{\prime}}\|}\to 0,\forall k^{\prime}\neq k,\text{or}~{}l^{\prime}\neq l. (6)

Consider the low-complexity path-based MRT beamforming 𝐟kl=ξkpk𝐡kl\boldsymbol{\bf{f}}_{kl^{\prime}}=\xi_{k}\sqrt{p_{k}}\boldsymbol{\bf{h}}_{kl^{\prime}}, where ξk=1/j=1Lk𝐡kj2\xi_{k}=1/\sqrt{\sum_{j=1}^{L_{k}}\|\boldsymbol{\bf{h}}_{kj}\|^{2}} is the normalization factor and pkp_{k} denotes the power allocated to UE kk. In this case, by scaling the signal in (4) with ξk\xi_{k}, we have

ξkyk[n]\displaystyle\xi_{k}y_{k}[n] =pksk[nnk,max]+pkl=1LkllLk𝐡klH𝐡klj=1Lk𝐡kj2\displaystyle=\sqrt{p_{k}}s_{k}[n-n_{k,\text{max}}]+\sqrt{p_{k}}\sum_{l=1}^{L_{k}}\sum_{l^{\prime}\neq l}^{L_{k}}\frac{\boldsymbol{\bf{h}}_{kl}^{H}\boldsymbol{\bf{h}}_{kl^{\prime}}}{\sum_{j=1}^{L_{k}}\|\boldsymbol{\bf{h}}_{kj}\|^{2}}
×sk[nnk,maxnkl+nkl]\displaystyle\times s_{k}[n-n_{k,\text{max}}-n_{kl}+n_{kl^{\prime}}]
+l=1LkkkKl=1Lkpk𝐡klH𝐡klj=1Lk𝐡kj2j=1Lk𝐡kj2\displaystyle+\sum_{l=1}^{L_{k}}\sum_{k^{\prime}\neq k}^{K}\sum_{l^{\prime}=1}^{L_{k^{\prime}}}\frac{\sqrt{p_{k^{\prime}}}\boldsymbol{\bf{h}}_{kl}^{H}\boldsymbol{\bf{h}}_{k^{\prime}l^{\prime}}}{\sqrt{\sum_{j=1}^{L_{k}}\|\boldsymbol{\bf{h}}_{kj}\|^{2}}~{}\sqrt{\sum_{j=1}^{L_{k^{\prime}}}\|\boldsymbol{\bf{h}}_{k^{\prime}j}\|^{2}}}
×sk[nnk,maxnkl+nkl]+ξkzk[n].\displaystyle\times s_{k^{\prime}}[n-n_{k^{\prime},\text{max}}-n_{kl}+n_{k^{\prime}l^{\prime}}]+\xi_{k}z_{k}[n]. (7)

Thanks to the asymptotically orthogonal property in (6), when MtLtotM_{t}\gg L_{\mathrm{tot}}, we have

|𝐡klH𝐡kl|j=1Lk𝐡kj2|𝐡klH𝐡kl|𝐡kl2+𝐡kl2|𝐡klH𝐡kl|𝐡kl𝐡kl0,\frac{|\boldsymbol{\bf{h}}_{kl}^{H}\boldsymbol{\bf{h}}_{kl^{\prime}}|}{\sum_{j=1}^{L_{k}}\|\boldsymbol{\bf{h}}_{kj}\|^{2}}\leq\frac{|\boldsymbol{\bf{h}}_{kl}^{H}\boldsymbol{\bf{h}}_{kl^{\prime}}|}{\|\boldsymbol{\bf{h}}_{kl}\|^{2}+\|\boldsymbol{\bf{h}}_{kl^{\prime}}\|^{2}}\leq\frac{|\boldsymbol{\bf{h}}_{kl}^{H}\boldsymbol{\bf{h}}_{kl^{\prime}}|}{\|\boldsymbol{\bf{h}}_{kl}\|~{}\|\boldsymbol{\bf{h}}_{kl^{\prime}}\|}\to 0, (8)

and

|𝐡klH𝐡kl|(j=1Lk𝐡kj2)(j=1Lk𝐡kj2)|𝐡klH𝐡kl|𝐡kl2𝐡kl2=|𝐡klH𝐡kl|𝐡kl𝐡kl0.\begin{split}&\frac{|\boldsymbol{\bf{h}}_{kl}^{H}\boldsymbol{\bf{h}}_{k^{\prime}l^{\prime}}|}{\sqrt{(\sum_{j=1}^{L_{k}}\|\boldsymbol{\bf{h}}_{kj}\|^{2})(\sum_{j=1}^{L_{k^{\prime}}}\|\boldsymbol{\bf{h}}_{k^{\prime}j}\|^{2})}}\\ &\leq\frac{|\boldsymbol{\bf{h}}_{kl}^{H}\boldsymbol{\bf{h}}_{k^{\prime}l^{\prime}}|}{\sqrt{\|\boldsymbol{\bf{h}}_{kl}\|^{2}~{}\|\boldsymbol{\bf{h}}_{k^{\prime}l^{\prime}}\|^{2}}}=\frac{|\boldsymbol{\bf{h}}_{kl}^{H}\boldsymbol{\bf{h}}_{k^{\prime}l^{\prime}}|}{\|\boldsymbol{\bf{h}}_{kl}\|~{}\|\boldsymbol{\bf{h}}_{k^{\prime}l^{\prime}}\|}\to 0.\end{split} (9)

With (8) and (9), and by dividing both sides of (II) with ξk\xi_{k}, the resulting signal for UE kk reduces to

yk[n]pkj=1Lk𝐡kj2sk[nnk,max]+zk[n].y_{k}[n]\to\sqrt{p_{k}\begin{matrix}\sum_{j=1}^{L_{k}}\end{matrix}\|\boldsymbol{\bf{h}}_{kj}\|^{2}}s_{k}[n-n_{k,\text{max}}]+z_{k}[n]. (10)

It is observed from (10) that the resulting signal of UE kk only includes the symbol sequence sk[n]s_{k}[n] with one single delay nk,maxn_{k,\text{max}}, while achieving the multiplicative gain contributed by all the LkL_{k} multi-paths. As a result, the original time-dispersive multi-user interfering channel has been transformed to KK parallel ISI- and IUI-free AWGN channels, without relying on the conventional techniques like channel equalization or multi-carrier transmission. Moreover, the signal-to-noise ratio (SNR) in (10) is given by γkMRT=pk𝐡¯k2/σ2\gamma_{k}^{\text{MRT}}={p_{k}\|\bar{\boldsymbol{\bf{h}}}_{k}\|^{2}}/{\sigma^{2}}, where 𝐡¯k=[𝐡k1H,,𝐡kLkH]HMtLk×1\bar{\boldsymbol{\bf{h}}}_{k}=[\boldsymbol{\bf{h}}_{k1}^{H},...,\boldsymbol{\bf{h}}_{kL_{k}}^{H}]^{H}\in\mathbb{C}^{M_{t}L_{k}\times 1}. The optimal power allocation to maximize the asymptotic sum rate can be obtained by the classical water-filling (WF) power allocation.

III Path-Based Beamforming for Multi-User DAM

In this section, we consider the practical scenario with given finite number of antennas MtM_{t}, where three classical precoding schemes, namely MRT, ZF and RZF are studied on the per-path basis to cater for multi-user DAM transmission.

To derive the signal-to-interference-plus-noise ratio (SINR) for the general signal in (4), the symbols need to be properly grouped by considering the delay differences of the signal components[1]. To this end, let Δkl,kl=nklnkl\Delta_{kl,k^{\prime}l^{\prime}}=n_{kl}-n_{k^{\prime}l^{\prime}} denote the delay difference between multi-path ll of UE kk and multi-path ll^{\prime} of UE kk^{\prime}. Then for a given UE pair (k,k)(k,k^{\prime}), we have Δkl,kl{Δkk,min,Δkk,min+1,,Δkk,max}\Delta_{kl,k^{\prime}l^{\prime}}\in\{\Delta_{kk^{\prime},\min},\Delta_{kk^{\prime},\min}+1,...,\Delta_{kk^{\prime},\max}\}, where Δkk,max=nk,maxnk,min\Delta_{kk^{\prime},\max}=n_{k,\text{max}}-n_{k^{\prime},\text{min}} and Δkk,min=nk,minnk,max\Delta_{kk^{\prime},\min}=n_{k,\text{min}}-n_{k^{\prime},\text{max}}. Then for each UE pair (k,k)(k,k^{\prime}) and delay difference ii with i{Δkk,min,Δkk,min+1,,Δkk,max}i\in\{\Delta_{kk^{\prime},\min},\Delta_{kk^{\prime},\min}+1,...,\Delta_{kk^{\prime},\max}\}, we have the following effective channel

𝐠kkl[i]={𝐡kl,ifl{1,,Lk},s.t.Δkl,kl=i,𝟎,otherwise.\boldsymbol{\bf{g}}_{kk^{\prime}l^{\prime}}[i]=\begin{cases}\boldsymbol{\bf{h}}_{kl},&\text{if}~{}\exists l\in\{1,...,L_{k}\},~{}\mbox{s.t.}~{}\Delta_{kl,k^{{}^{\prime}}l^{{}^{\prime}}}=i,\\ \boldsymbol{\bf{0}},&\mbox{otherwise}.\end{cases} (11)

Therefore, (4) can be equivalently written as

yk[n]=(l=1Lk𝐡klH𝐟kl)sk[nnk,max]\displaystyle y_{k}[n]={\left(\sum_{l=1}^{L_{k}}\boldsymbol{\bf{h}}_{kl}^{H}\boldsymbol{\bf{f}}_{kl}\right)s_{k}[n-n_{k,\text{max}}]} (12)
+i=Δkk,min,i0Δkk,max(l=1Lk𝐠kklH[i]𝐟kl)sk[nnk,maxi]\displaystyle+{\sum_{i=\Delta_{kk,\min},i\neq 0}^{\Delta_{kk,\max}}\left(\sum_{l^{\prime}=1}^{L_{k}}\boldsymbol{\bf{g}}_{kkl^{\prime}}^{H}[i]\boldsymbol{\bf{f}}_{kl^{\prime}}\right)s_{k}[n-n_{k,\text{max}}-i]}
+kkKi=Δkk,minΔkk,max(l=1Lk𝐠kklH[i]𝐟kl)sk[nnk,maxi]\displaystyle+{\sum_{k^{\prime}\neq k}^{K}\sum_{i=\Delta_{kk^{\prime},\min}}^{\Delta_{kk^{\prime},\max}}\left(\sum_{l^{\prime}=1}^{L_{k^{\prime}}}\boldsymbol{\bf{g}}_{kk^{\prime}l^{\prime}}^{H}[i]\boldsymbol{\bf{f}}_{k^{\prime}l^{\prime}}\right)s_{k^{\prime}}[n-n_{k^{\prime},\text{max}}-i]}
+zk[n].\displaystyle+z_{k}[n].

The resulting SINR is given in (13), shown at the top of the next page, where we have defined 𝐟¯k=[𝐟k1H,,𝐟kLkH]HMtLk×1,𝐠¯kk[i]=[𝐠kk1H[i],,𝐠kkLkH[i]]HMtLk×1\bar{\boldsymbol{\bf{f}}}_{k}=[\boldsymbol{\bf{f}}_{k1}^{H},...,\boldsymbol{\bf{f}}_{kL_{k}}^{H}]^{H}\in\mathbb{C}^{M_{t}L_{k}\times 1},\bar{\boldsymbol{\bf{g}}}_{kk^{\prime}}[i]=[\boldsymbol{\bf{g}}_{kk^{\prime}1}^{H}[i],...,\boldsymbol{\bf{g}}_{kk^{\prime}L_{k^{\prime}}}^{H}[i]]^{H}\in\mathbb{C}^{M_{t}L_{k^{\prime}}\times 1}, 𝐆kk=[𝐠¯kk[Δkk,min],,𝐠¯kk[Δkk,max]]MtLk×Δkk,span\boldsymbol{\bf{G}}_{kk^{\prime}}=[\bar{\boldsymbol{\bf{g}}}_{kk^{\prime}}[\Delta_{kk^{\prime},\min}],...,\bar{\boldsymbol{\bf{g}}}_{kk^{\prime}}[\Delta_{kk^{\prime},\max}]]\in\mathbb{C}^{M_{t}L_{k^{\prime}}\times{\Delta_{kk^{\prime},\text{span}}}}, with Δkk,span=Δkk,maxΔkk,min\Delta_{kk^{\prime},\text{span}}=\Delta_{kk^{\prime},\max}-\Delta_{kk^{\prime},\min}.

γk=|l=1Lk𝐡klH𝐟kl|2i=Δkk,min,i0Δkk,max|l=1Lk𝐠kklH[i]𝐟kl|2+kkKi=Δkk,minΔkk,max|l=1Lk𝐠kklH[i]𝐟kl|2+σ2=|𝐡¯kH𝐟¯k|2i=Δkk,min,i0Δkk,max|𝐠¯kkH[i]𝐟¯k|2+kkKi=Δkk,minΔkk,max|𝐠¯kkH[i]𝐟¯k|2+σ2=|𝐡¯kH𝐟¯k|2𝐆kkH𝐟¯k2+kkK𝐆kkH𝐟¯k2+σ2.\begin{split}\gamma_{k}&=\frac{|\begin{matrix}\sum_{l=1}^{L_{k}}\end{matrix}\boldsymbol{\bf{h}}_{kl}^{H}\boldsymbol{\bf{f}}_{kl}|^{2}}{\sum_{i=\Delta_{kk,\min},i\neq 0}^{\Delta_{kk,\max}}|\sum_{l^{\prime}=1}^{L_{k}}\boldsymbol{\bf{g}}_{kkl^{\prime}}^{H}[i]\boldsymbol{\bf{f}}_{kl^{\prime}}|^{2}+\sum_{k^{\prime}\neq k}^{K}\sum_{i=\Delta_{kk^{\prime},\min}}^{\Delta_{kk^{\prime},\max}}|\sum_{l^{\prime}=1}^{L_{k^{\prime}}}\boldsymbol{\bf{g}}_{kk^{\prime}l^{\prime}}^{H}[i]\boldsymbol{\bf{f}}_{k^{\prime}l^{\prime}}|^{2}+\sigma^{2}}\\ &=\frac{|\bar{\boldsymbol{\bf{h}}}_{k}^{H}\bar{\boldsymbol{\bf{f}}}_{k}|^{2}}{\sum_{i=\Delta_{kk,\min},i\neq 0}^{\Delta_{kk,\max}}|\bar{\boldsymbol{\bf{g}}}_{kk}^{H}[i]\bar{\boldsymbol{\bf{f}}}_{k}|^{2}+\sum_{k^{\prime}\neq k}^{K}\sum_{i=\Delta_{kk^{\prime},\min}}^{\Delta_{kk^{\prime},\max}}|\bar{\boldsymbol{\bf{g}}}_{kk^{\prime}}^{H}[i]\bar{\boldsymbol{\bf{f}}}_{k^{\prime}}|^{2}+\sigma^{2}}\\ &=\frac{|\bar{\boldsymbol{\bf{h}}}_{k}^{H}\bar{\boldsymbol{\bf{f}}}_{k}|^{2}}{||\boldsymbol{\bf{G}}_{kk}^{H}\bar{\boldsymbol{\bf{f}}}_{k}||^{2}+\sum_{k^{\prime}\neq k}^{K}||\boldsymbol{\bf{G}}_{kk^{\prime}}^{H}\bar{\boldsymbol{\bf{f}}}_{k^{\prime}}||^{2}+\sigma^{2}}.\end{split} (13)

III-A Path-Based MRT Beamforming

The path-based MRT beamforming for asymptotic analysis with MtLtotM_{t}\gg L_{\mathrm{tot}} has been given in Section II. For the practical setup with finite MtM_{t}, the low complexity path-based MRT beamforming for multi-path ll of UE kk is given by

𝐟klMRT=P𝐡kl/𝐇F,\boldsymbol{\bf{f}}_{kl}^{\text{MRT}}=\sqrt{P}{\boldsymbol{\bf{h}}_{kl}}\big{/}{\|\boldsymbol{\bf{H}}\|_{F}}, (14)

where 𝐇=[𝐡11,,𝐡1L1,,𝐡K1,,𝐡KLK]Mt×Ltot\boldsymbol{\bf{H}}=[\boldsymbol{\bf{h}}_{11,}...,\boldsymbol{\bf{h}}_{1L_{1}},...,\boldsymbol{\bf{h}}_{K1,}...,\boldsymbol{\bf{h}}_{KL_{K}}]\in\mathbb{C}^{M_{t}\times L_{\mathrm{tot}}}. Denote by 𝐟¯kMRT=P𝐡¯k/𝐇F\bar{\boldsymbol{\bf{f}}}_{k}^{\text{MRT}}=\sqrt{P}{\bar{\boldsymbol{\bf{h}}}_{k}}/{\|\boldsymbol{\bf{H}}\|_{F}}, with 𝐟¯kMRT\bar{\boldsymbol{\bf{f}}}_{k}^{\text{MRT}} =[(𝐟k1MRT)H,,(𝐟kLkMRT)H]H=[(\boldsymbol{\bf{f}}_{k1}^{\text{MRT}})^{H},...,(\boldsymbol{\bf{f}}_{kL_{k}}^{\text{MRT}})^{H}]^{H}, and by substituting it into (13), the resulting SINR can be expressed as

γkMRT=𝐡¯k4𝐆kkH𝐡¯k2+kkK𝐆kkH𝐡¯k2+𝐇F2σ2/P.\gamma_{k}^{\text{MRT}}=\frac{\|\bar{\boldsymbol{\bf{h}}}_{k}\|^{4}}{||\boldsymbol{\bf{G}}_{kk}^{H}\bar{\boldsymbol{\bf{h}}}_{k}||^{2}+\sum_{k^{\prime}\neq k}^{K}||\boldsymbol{\bf{G}}_{kk^{\prime}}^{H}\bar{\boldsymbol{\bf{h}}}_{k^{\prime}}||^{2}+\|\boldsymbol{\bf{H}}\|_{F}^{2}\sigma^{2}/P}. (15)

III-B Path-Based ZF Beamforming

With path-based ZF beamforming, 𝐟kl,k=1,,K,l=1,,Lk,\boldsymbol{\bf{f}}_{kl^{\prime}},k=1,...,K,l^{\prime}=1,...,L_{k}, are designed so that the ISI and IUI in (4) are all eliminated, i.e.,

𝐡klH𝐟klZF=0,ll,\boldsymbol{\bf{h}}_{kl}^{H}\boldsymbol{\bf{f}}_{kl^{\prime}}^{\text{ZF}}=0,~{}\forall l^{\prime}\neq l,\\ (16)
𝐡klH𝐟klZF=0,kk,andl,l.\boldsymbol{\bf{h}}_{kl}^{H}\boldsymbol{\bf{f}}_{k^{\prime}l^{\prime}}^{\text{ZF}}=0,~{}\forall k^{\prime}\neq k,\text{and}~{}\forall l,l^{\prime}. (17)

Denote by 𝐇klMt×(Ltot1)\boldsymbol{\bf{H}}_{kl^{\prime}}\in\mathbb{C}^{M_{t}\times(L_{\mathrm{tot}}-1)} the submatrix of 𝐇\boldsymbol{\bf{H}} by excluding the column 𝐡kl\boldsymbol{\bf{h}}_{kl^{\prime}}. Thus, the path-based ZF constraints in (16) and (17) can be compactly written as

𝐇klH𝐟klZF=𝟎(Ltot1)×1,k,l.\boldsymbol{\bf{H}}_{kl^{\prime}}^{H}\boldsymbol{\bf{f}}_{kl^{\prime}}^{\text{ZF}}=\boldsymbol{\bf{0}}_{(L_{\mathrm{tot}}-1)\times 1},~{}\forall k,l^{\prime}.\\ (18)

The above ZF constraint is feasible when MtLtotM_{t}\geq L_{\mathrm{tot}}.

Let 𝐅ZF=[𝐟11ZF,,𝐟1L1ZF,,𝐟K1ZF,,𝐟KLKZF]Mt×Ltot\boldsymbol{\bf{F}}^{\text{ZF}}=[\boldsymbol{\bf{f}}_{11}^{\text{ZF}},...,\boldsymbol{\bf{f}}_{1L_{1}}^{\text{ZF}},...,\boldsymbol{\bf{f}}_{K1}^{\text{ZF}},...,\boldsymbol{\bf{f}}_{KL_{K}}^{\text{ZF}}]\in\mathbb{C}^{M_{t}\times L_{\mathrm{tot}}} denote the matrix composed by all the path-based ZF beamforming vectors. Without loss of generality, we may decompose 𝐅ZF\boldsymbol{\bf{F}}^{\text{ZF}} as 𝐅ZF=𝐖𝐕12\boldsymbol{\bf{F}}^{\text{ZF}}=\boldsymbol{\bf{W}}\boldsymbol{\bf{V}}^{\frac{1}{2}}, where 𝐖=[𝐰11,,𝐰1L1,,𝐰K1,,𝐰KLK]Mt×Ltot\boldsymbol{\bf{W}}=[{\boldsymbol{\bf{w}}}_{11},...,{\boldsymbol{\bf{w}}}_{1L_{1}},...,{\boldsymbol{\bf{w}}}_{K1},...,{\boldsymbol{\bf{w}}}_{KL_{K}}]\in\mathbb{C}^{M_{t}\times L_{\mathrm{tot}}} is designed to guarantee the ZF constraints in (18), and 𝐕=diag{v11,,v1L1,,vK1,,vKLK}\boldsymbol{\bf{V}}=\text{diag}\{v_{11},...,v_{1L_{1}},...,v_{K1},...,v_{KL_{K}}\} containing non-negative real-valued diagonal elements is the power allocation matrix ensuring the power constraint k=1Kl=1Lk𝐟klZF2=P\sum_{k=1}^{K}\sum_{l^{\prime}=1}^{L_{k}}\|\boldsymbol{\bf{f}}_{kl^{\prime}}^{\text{ZF}}\|^{2}=P. One effective solution for 𝐖\boldsymbol{\bf{W}} to guarantee the ZF constraints (18) is by letting 𝐇H𝐖=𝐈Ltot\boldsymbol{\bf{H}}^{H}\boldsymbol{\bf{W}}=\boldsymbol{\bf{I}}_{L_{\mathrm{tot}}}. When MtLtotM_{t}\geq L_{\mathrm{tot}}, 𝐖\boldsymbol{\bf{W}} can be directly obtained by taking the right pseudo inverse of 𝐇H\boldsymbol{\bf{H}}^{H}, i.e., 𝐖=(𝐇H)=𝐇(𝐇H𝐇)1\boldsymbol{\bf{W}}=(\boldsymbol{\bf{H}}^{H})^{\dagger}=\boldsymbol{\bf{H}}(\boldsymbol{\bf{H}}^{H}\boldsymbol{\bf{H}})^{-1}. As a result, the path-based ZF beamforming 𝐟klZF\boldsymbol{\bf{f}}_{kl}^{\text{ZF}} can be expressed as 𝐟klZF=vkl𝐰kl\boldsymbol{\bf{f}}_{kl}^{\text{ZF}}=\sqrt{v_{kl}}\boldsymbol{\bf{w}}_{kl}, where 𝐰kl\boldsymbol{\bf{w}}_{kl} is the ((j=1k1Lj)+l)\left((\sum_{j=1}^{k-1}L_{j})+l\right)th column of 𝐖\boldsymbol{\bf{W}}. By substituting 𝐟klZF\boldsymbol{\bf{f}}_{kl}^{\text{ZF}} into (4), the received signal reduces to

yk[n]\displaystyle y_{k}[n] =l=1Lkvkl𝐡klH𝐰klsk[nnk,max]+zk[n]\displaystyle=\begin{matrix}\sum_{l=1}^{L_{k}}\end{matrix}\sqrt{v_{kl}}\boldsymbol{\bf{h}}_{kl}^{H}\boldsymbol{\bf{w}}_{kl}s_{k}[n-n_{k,\text{max}}]+z_{k}[n] (19)
=(l=1Lkvkl)sk[nnk,max]+zk[n],\displaystyle=\left(\begin{matrix}\sum_{l=1}^{L_{k}}\end{matrix}\sqrt{v_{kl}}\right)s_{k}[n-n_{k,\text{max}}]+z_{k}[n],

where we have used the identity 𝐡klH𝐰kl=1\boldsymbol{\bf{h}}_{kl}^{H}\boldsymbol{\bf{w}}_{kl}=1 based on the property of pseudo inverse. It is observed from (19) that similar to (10), the original time-dispersive multi-user interfering channel is also transformed into KK parallel ISI- and IUI-free AWGN channels. The SNR of UE kk is γkZF=(l=1Lkvkl)2/σ2\gamma_{k}^{\text{ZF}}={(\sum_{l=1}^{L_{k}}\sqrt{v_{kl}})^{2}}\big{/}{\sigma^{2}}, and the achievable rate of UE kk in bits/second/Hz (bps/Hz) is given by log2(1+γkZF)\text{log}_{2}(1+\gamma_{k}^{\text{ZF}}). The optimal power allocation coefficients vkl,k,lv_{kl},\forall k,l, to maximize the sum rate can be found by solving the following problem

maxvkl,k,lk=1Klog2(1+(l=1Lkvkl)2/σ2)s.t.k=1Kl=1Lkvkl𝐰kl2P,vkl0,k,l.\begin{split}\max\limits_{{v}_{kl},\forall k,l}~{}&\begin{matrix}\sum_{k=1}^{K}\end{matrix}\text{log}_{2}\left(1+{(\begin{matrix}\sum_{l=1}^{L_{k}}\end{matrix}\sqrt{v_{kl}})^{2}}\big{/}{\sigma^{2}}\right)\\ \text{s.t.}~{}&\begin{matrix}\sum_{k=1}^{K}\end{matrix}\begin{matrix}\sum_{l=1}^{L_{k}}\end{matrix}v_{kl}\|\boldsymbol{\bf{w}}_{kl}\|^{2}\leq P,\\ &{v}_{kl}\geq 0,\forall k,l.\end{split} (20)

By defining v¯kl=vkl𝐰kl2\bar{v}_{kl}={v_{kl}}\|\boldsymbol{\bf{w}}_{kl}\|^{2}, 𝐭k=[v¯k1,,v¯kLk]T\boldsymbol{\bf{t}}_{k}=[\sqrt{\bar{v}_{k1}},...,\sqrt{\bar{v}_{kL_{k}}}]^{T}, and 𝐪k=[1/𝐰k1,,1/𝐰kLk]T\boldsymbol{\bf{q}}_{k}=[{1}/{\|\boldsymbol{\bf{w}}_{k1}\|},...,{1}/{\|\boldsymbol{\bf{w}}_{kL_{k}}\|}]^{T}, (20) can be equivalently written as

max{𝐭k}k=1Kk=1Klog2(1+(𝐭kT𝐪k)2/σ2)s.t.k=1K𝐭k2P,𝐭k𝟎,k.\begin{split}\max\limits_{\{\boldsymbol{\bf{t}}_{k}\}_{k=1}^{K}}~{}&\begin{matrix}\sum_{k=1}^{K}\end{matrix}\text{log}_{2}\left(1+{(\boldsymbol{\bf{t}}_{k}^{T}\boldsymbol{\bf{q}}_{k})^{2}}\big{/}{\sigma^{2}}\right)\\ \text{s.t.}~{}&\begin{matrix}\sum_{k=1}^{K}\end{matrix}\|{\boldsymbol{\bf{t}}_{k}}\|^{2}\leq P,\\ &{\boldsymbol{\bf{t}}_{k}}\succeq\boldsymbol{0},\forall k.\end{split} (21)

To derive the optimal solution to (21), the auxiliary variables {Pk}k=1K\{P_{k}\}_{k=1}^{K} are introduced, so that (21) can be equivalently written as

max{𝐭k,Pk}k=1Kk=1Klog2(1+(𝐭kT𝐪k)2/σ2)s.t.𝐭k2Pk,k,k=1KPkP,𝐭k𝟎,k.\begin{split}\max\limits_{\{\boldsymbol{\bf{t}}_{k},P_{k}\}_{k=1}^{K}}~{}&\begin{matrix}\sum_{k=1}^{K}\end{matrix}\text{log}_{2}\left(1+{(\boldsymbol{\bf{t}}_{k}^{T}\boldsymbol{\bf{q}}_{k})^{2}}\big{/}{\sigma^{2}}\right)\\ \text{s.t.}~{}&\|{\boldsymbol{\bf{t}}_{k}}\|^{2}\leq P_{k},\forall k,\\ &\begin{matrix}\sum_{k=1}^{K}\end{matrix}P_{k}\leq P,\\ &{\boldsymbol{\bf{t}}_{k}}\succeq\boldsymbol{0},\forall k.\end{split} (22)

A closer look at (22) shows that for any given feasible {Pk}k=1K\{P_{k}\}_{k=1}^{K}, the optimal 𝐭k\boldsymbol{\bf{t}}_{k} can be obtained by applying the Cauchy-Schwarz inequality, given by, 𝐭k=Pk𝐪k𝐪k,k\boldsymbol{\bf{t}}_{k}=\sqrt{P_{k}}\frac{\boldsymbol{\bf{q}}_{k}}{\|\boldsymbol{\bf{q}}_{k}\|},\forall k. As a result, (22) reduces to finding the optimal power allocation Pk{P_{k}}, given by

max{Pk}k=1Kk=1Klog2(1+Pk𝐪k2/σ2)s.t.k=1KPkP,Pk0,k.\begin{split}\max\limits_{\{P_{k}\}_{k=1}^{K}}~{}&\begin{matrix}\sum_{k=1}^{K}\end{matrix}\text{log}_{2}\left(1+{P_{k}\|\boldsymbol{\bf{q}}_{k}\|^{2}}\big{/}{\sigma^{2}}\right)\\ \text{s.t.}~{}&\begin{matrix}\sum_{k=1}^{K}\end{matrix}P_{k}\leq P,\\ &P_{k}\geq 0,\forall k.\end{split} (23)

It is well known that the optimal solution to (23) is given by the classical WF solution.

III-C Path-Based RZF Beamforming

In this subsection, to achieve a balance between mitigating the interference suffered by MRT beamforming and the noise enhancement suffered by ZF beamforming, we consider the path-based RZF beamforming, where the condition MtLtotM_{t}\geq L_{\mathrm{tot}} required by ZF beamforming is no longer needed. Let 𝐅~=𝐇(𝐇H𝐇+ϵ𝑰Ltot)1=[𝐟~11,,𝐟~1L1,,𝐟~K1,,𝐟~KLK]\tilde{\boldsymbol{\bf{F}}}=\boldsymbol{\bf{H}}(\boldsymbol{\bf{H}}^{H}\boldsymbol{\bf{H}}+\epsilon\boldsymbol{I}_{L_{\mathrm{tot}}})^{-1}=[\tilde{\boldsymbol{\bf{f}}}_{11},...,\tilde{\boldsymbol{\bf{f}}}_{1L_{1}},...,\tilde{\boldsymbol{\bf{f}}}_{K1},...,\tilde{\boldsymbol{\bf{f}}}_{KL_{K}}], where ϵ\epsilon is the regularization parameter given by ϵ=Ltotσ2/P\epsilon={L_{\mathrm{tot}}\sigma^{2}}/{P} [19]. Then the path-based RZF beamforming is

𝐟klRZF=pkl𝐟~kl/𝐟~kl,\boldsymbol{\bf{f}}_{kl}^{\text{RZF}}=\sqrt{p_{kl}}{\tilde{\boldsymbol{\bf{f}}}_{kl}}\big{/}{\|\tilde{\boldsymbol{\bf{f}}}_{kl}\|}, (24)

where pklp_{kl} is the power allocated to path ll of UE kk.

With (24), the desired signal power in the numerator of (13) can be expressed as

PDS(𝐚k)=|l=1Lk𝐡klH𝐟klRZF|2=|𝐚kT𝐮k|2=|𝐚kT𝐮k,R+j𝐚kT𝐮k,I|2=𝐚kT𝐔k2,\begin{split}P_{\text{DS}}(\boldsymbol{\bf{a}}_{k})&=\left|\begin{matrix}\sum_{l=1}^{L_{k}}\end{matrix}\boldsymbol{\bf{h}}_{kl}^{H}\boldsymbol{\bf{f}}_{kl}^{\text{RZF}}\right|^{2}=|\boldsymbol{\bf{a}}_{k}^{T}\boldsymbol{\bf{u}}_{k}|^{2}\\ &=|\boldsymbol{\bf{a}}_{k}^{T}\boldsymbol{\bf{u}}_{k,\text{R}}+j\boldsymbol{\bf{a}}_{k}^{T}\boldsymbol{\bf{u}}_{k,\text{I}}|^{2}=\|\boldsymbol{\bf{a}}_{k}^{T}\boldsymbol{\bf{U}}_{k}\|^{2},\end{split} (25)

where we have defined a non-negative real-valued power allocation vector 𝐚k[pk1,,pkLk]T\boldsymbol{\bf{a}}_{k}\triangleq[\sqrt{p_{k1}},...,\sqrt{p_{kL_{k}}}]^{T}, and a complex-valued vector 𝐮k=[𝐡k1H𝐟~k1𝐟~k1,,\boldsymbol{\bf{u}}_{k}=[\boldsymbol{\bf{h}}_{k1}^{H}\frac{\tilde{\boldsymbol{\bf{f}}}_{k1}}{\|\tilde{\boldsymbol{\bf{f}}}_{k1}\|},..., 𝐡kLkH𝐟~kLk𝐟~kLk]HLk×1\boldsymbol{\bf{h}}_{kL_{k}}^{H}\frac{\tilde{\boldsymbol{\bf{f}}}_{kL_{k}}}{\|\tilde{\boldsymbol{\bf{f}}}_{kL_{k}}\|}]^{H}\in\mathbb{C}^{L_{k}\times 1}. Furthermore, 𝐮k,R\boldsymbol{\bf{u}}_{k,\text{R}} and 𝐮k,I\boldsymbol{\bf{u}}_{k,\text{I}} denote the real and imaginary parts of 𝐮k\boldsymbol{\bf{u}}_{k}, respectively, i.e., 𝐮k=𝐮k,R+j𝐮k,I\boldsymbol{\bf{u}}_{k}=\boldsymbol{\bf{u}}_{k,\text{R}}+j\boldsymbol{\bf{u}}_{k,\text{I}}, and 𝐔k=[𝐮k,R,𝐮k,I]\boldsymbol{\bf{U}}_{k}=[\boldsymbol{\bf{u}}_{k,\text{R}},\boldsymbol{\bf{u}}_{k,\text{I}}]. Note that the transformation of (LABEL:pl1) to the real-valued vector space facilitates the optimization of the power allocation vector 𝐚k\boldsymbol{\bf{a}}_{k}, which is restricted to the real-valued vector space. Similarly, the ISI power in the denominator of (13) can be expressed as

PISI(𝐚k)\displaystyle P_{\text{ISI}}(\boldsymbol{\bf{a}}_{k}) =i=Δkk,min,i0Δkk,max|l=1Lk𝐠kklH[i]𝐟klRZF|2\displaystyle=\begin{matrix}\sum_{i=\Delta_{kk,\min},i\neq 0}^{\Delta_{kk,\max}}\end{matrix}\left|\begin{matrix}\sum_{l^{\prime}=1}^{L_{k}}\end{matrix}\boldsymbol{\bf{g}}_{kkl^{\prime}}^{H}[i]\boldsymbol{\bf{f}}_{kl^{\prime}}^{\text{RZF}}\right|^{2} (26)
=i=Δkk,min,i0Δkk,max|𝐚kT𝐮kk[i]|2\displaystyle=\begin{matrix}\sum_{i=\Delta_{kk,\min},i\neq 0}^{\Delta_{kk,\max}}\end{matrix}|\boldsymbol{\bf{a}}_{k}^{T}\boldsymbol{\bf{u}}_{kk}[i]|^{2}
=i=Δkk,min,i0Δkk,max|𝐚kT𝐮kk,R[i]+j𝐚kT𝐮kk,I[i]|2\displaystyle=\begin{matrix}\sum_{i=\Delta_{kk,\min},i\neq 0}^{\Delta_{kk,\max}}\end{matrix}|\boldsymbol{\bf{a}}_{k}^{T}\boldsymbol{\bf{u}}_{kk,\text{R}}[i]+j\boldsymbol{\bf{a}}_{k}^{T}\boldsymbol{\bf{u}}_{kk,\text{I}}[i]|^{2}
=i=Δkk,min,i0Δkk,max𝐚kT𝐔kk[i]2=𝐚kT𝐔¯k2,\displaystyle=\begin{matrix}\sum_{i=\Delta_{kk,\min},i\neq 0}^{\Delta_{kk,\max}}\end{matrix}\|\boldsymbol{\bf{a}}_{k}^{T}\boldsymbol{\bf{U}}_{kk}[i]\|^{2}=\|\boldsymbol{\bf{a}}_{k}^{T}\bar{\boldsymbol{\bf{U}}}_{k}\|^{2},

where 𝐮kk[i]=[𝐠kk1H[i]𝐟~k1𝐟~k1,,𝐠kkLkH[i]𝐟~kLk𝐟~kLk]H\boldsymbol{\bf{u}}_{kk}[i]=[\boldsymbol{\bf{g}}_{kk1}^{H}[i]\frac{\tilde{\boldsymbol{\bf{f}}}_{k1}}{\|\tilde{\boldsymbol{\bf{f}}}_{k1}\|},...,\boldsymbol{\bf{g}}_{kkL_{k}}^{H}[i]\frac{\tilde{\boldsymbol{\bf{f}}}_{kL_{k}}}{\|\tilde{\boldsymbol{\bf{f}}}_{kL_{k}}\|}]^{H}, 𝐔kk[i]\boldsymbol{\bf{U}}_{kk}[i] =[𝐮kk,R[i],𝐮kk,I[i]]=[\boldsymbol{\bf{u}}_{kk,\text{R}}[i],\boldsymbol{\bf{u}}_{kk,\text{I}}[i]] and 𝐔¯k=[𝐔kk[Δkk,min],,\bar{\boldsymbol{\bf{U}}}_{k}=[\boldsymbol{\bf{U}}_{kk}[\Delta_{kk,\min}],..., 𝐔kk[Δkk,max]]\boldsymbol{\bf{U}}_{kk}[\Delta_{kk,\max}]]. By following the similar definitions, the IUI power in the denominator of (13) can be written as PIUI({𝐚k}kkK)=kkK𝐚kT𝐔¯k2P_{\text{IUI}}(\{\boldsymbol{\bf{a}}_{k^{\prime}}\}_{k^{\prime}\neq k}^{K})=\sum_{k^{\prime}\neq k}^{K}\|\boldsymbol{\bf{a}}_{k^{\prime}}^{T}\bar{\boldsymbol{\bf{U}}}_{k^{\prime}}\|^{2}. Thus, the SINR (13) with the path-based RZF beamforming can be expressed as

γkRZF=PDS(𝐚k)PISI(𝐚k)+PIUI({𝐚k}kkK)+σ2.\gamma_{k}^{\text{RZF}}=\frac{P_{\text{DS}}(\boldsymbol{\bf{a}}_{k})}{P_{\text{ISI}}(\boldsymbol{\bf{a}}_{k})+P_{\text{IUI}}(\{\boldsymbol{\bf{a}}_{k^{\prime}}\}_{k^{\prime}\neq k}^{K})+\sigma^{2}}. (27)

The sum rate can be maximized by optimizing the power allocation vector {𝐚k}k=1K\{\boldsymbol{\bf{a}}_{k}\}_{k=1}^{K} via solving the following problem

max{𝐚k}k=1K\displaystyle\max\limits_{\{\boldsymbol{\bf{a}}_{k}\}_{k=1}^{K}}~{} k=1Klog2(1+PDS(𝐚k)PISI(𝐚k)+PIUI({𝐚k}kkK)+σ2)\displaystyle\sum_{k=1}^{K}\text{log}_{2}\left(1+\frac{P_{\text{DS}}(\boldsymbol{\bf{a}}_{k})}{P_{\text{ISI}}(\boldsymbol{\bf{a}}_{k})+P_{\text{IUI}}(\{\boldsymbol{\bf{a}}_{k^{\prime}}\}_{k^{\prime}\neq k}^{K})+\sigma^{2}}\right)
s.t. k=1K𝐚k2P,\displaystyle\begin{matrix}\sum_{k=1}^{K}\end{matrix}\|\boldsymbol{\bf{a}}_{k}\|^{2}\leq P,
𝐚k𝟎,k.\displaystyle\boldsymbol{\bf{a}}_{k}\succeq\boldsymbol{0},\forall k. (28)

The above problem is non-convex, which cannot be directly solved efficiently. By introducing the slack variables γ¯k\bar{\gamma}_{k}, problem (III-C) can be transformed into

max{𝐚k,γ¯k}k=1K\displaystyle\max\limits_{\{\boldsymbol{\bf{a}}_{k},\bar{\gamma}_{k}\}_{k=1}^{K}}~{} k=1Klog2(1+γ¯k)\displaystyle\sum_{k=1}^{K}\text{log}_{2}(1+\bar{\gamma}_{k}) (29)
s.t. PISI(𝐚k)+PIUI({𝐚k}kkK)+σ2PDS(𝐚k)γ¯k,k,\displaystyle P_{\text{ISI}}(\boldsymbol{\bf{a}}_{k})+P_{\text{IUI}}(\{\boldsymbol{\bf{a}}_{k^{\prime}}\}_{k^{\prime}\neq k}^{K})+\sigma^{2}\leq\frac{P_{\text{DS}}(\boldsymbol{\bf{a}}_{k})}{\bar{\gamma}_{k}},\forall k,
k=1K𝐚k2P,\displaystyle\begin{matrix}\sum_{k=1}^{K}\end{matrix}\|\boldsymbol{\bf{a}}_{k}\|^{2}\leq P,
𝐚k𝟎,k.\displaystyle\boldsymbol{\bf{a}}_{k}\succeq\boldsymbol{0},\forall k.

Though (29) is still non-convex, an efficient Karush-Kuhn-Tucker (KKT) solution can be obtained by using successive convex approximation (SCA) technique. Specifically, the right-hand-side of the first constraint in (29) is quadratic-over-linear, which is convex and thus is globally lower bounded by its first-order Taylor expansion, i.e.,

PDS(𝐚k)γ¯k(PDS(𝐚k)γ¯k)lb1γ¯krPDS(𝐚kr)+f(𝐚kr,γ¯kr)T𝐞k,\frac{P_{\text{DS}}(\boldsymbol{\bf{a}}_{k})}{\bar{\gamma}_{k}}\geq\left(\frac{P_{\text{DS}}(\boldsymbol{\bf{a}}_{k})}{\bar{\gamma}_{k}}\right)_{\text{lb}}\triangleq\frac{1}{\bar{\gamma}_{k}^{r}}P_{\text{DS}}(\boldsymbol{\bf{a}}_{k}^{r})+\nabla f(\boldsymbol{\bf{a}}_{k}^{r},\bar{\gamma}_{k}^{r})^{T}\boldsymbol{\bf{e}}_{k}, (30)

where 𝐚kr\boldsymbol{\bf{a}}_{k}^{r} and γ¯kr\bar{\gamma}_{k}^{r} denote the obtained solution at the rrth iteration, f(𝐚kr,γ¯kr)=[(2γ¯kr𝐔k𝐔kT𝐚kr)T,\nabla f(\boldsymbol{\bf{a}}_{k}^{r},\bar{\gamma}_{k}^{r})=[(\frac{2}{\bar{\gamma}_{k}^{r}}\boldsymbol{\bf{U}}_{k}\boldsymbol{\bf{U}}_{k}^{T}{\boldsymbol{\bf{a}}_{k}^{r}})^{T},1(γ¯kr)2(𝐚kr)T𝐔k2]T~{}\frac{-1}{(\bar{\gamma}_{k}^{r})^{2}}\|(\boldsymbol{\bf{a}}_{k}^{r})^{T}\boldsymbol{\bf{U}}_{k}\|^{2}]^{T} is the gradient, and 𝐞k=[(𝐚k𝐚kr)T,γ¯kγ¯kr]T\boldsymbol{\bf{e}}_{k}=[(\boldsymbol{\bf{a}}_{k}-\boldsymbol{\bf{a}}_{k}^{r})^{T},~{}\bar{\gamma}_{k}-\bar{\gamma}_{k}^{r}]^{T}. Therefore, for given 𝐚kr\boldsymbol{\bf{a}}_{k}^{r} and γ¯kr\bar{\gamma}_{k}^{r} at the rrth iteration, the optimal value of (29) is lower-bounded by that of the following problem

max{𝐚k,γ¯k}k=1K\displaystyle\max\limits_{\{\boldsymbol{\bf{a}}_{k},\bar{\gamma}_{k}\}_{k=1}^{K}}~{} k=1Klog2(1+γ¯k)\displaystyle\sum_{k=1}^{K}\text{log}_{2}(1+\bar{\gamma}_{k}) (31)
s.t. PISI(𝐚k)+PIUI({𝐚k}kkK)+σ2(PDS(𝐚k)γ¯k)lb,\displaystyle P_{\text{ISI}}(\boldsymbol{\bf{a}}_{k})+P_{\text{IUI}}(\{\boldsymbol{\bf{a}}_{k^{\prime}}\}_{k^{\prime}\neq k}^{K})+\sigma^{2}\leq\left(\frac{P_{\text{DS}}(\boldsymbol{\bf{a}}_{k})}{\bar{\gamma}_{k}}\right)_{\text{lb}},
k=1K𝐚k2P,\displaystyle\begin{matrix}\sum_{k=1}^{K}\end{matrix}\|\boldsymbol{\bf{a}}_{k}\|^{2}\leq P,
𝐚k0,k.\displaystyle\boldsymbol{\bf{a}}_{k}\succeq 0,\forall k.

Problem (31) is convex, which can be efficiently solved by the standard convex optimization toolbox, such as CVX. By successively update the local point {𝐚kr,γ¯kr}k=1K\{\boldsymbol{\bf{a}}_{k}^{r},\bar{\gamma}_{k}^{r}\}_{k=1}^{K}, we have the SCA algorithm for (29), which is summarized in Algorithm 1. Note that since the resulting objective value of (29) is non-decreasing over each iteration, Algorithm 1 is guaranteed to converge.

Algorithm 1 SCA-Based Power Allocation Optimization for Path-Based RZF Beamforming
1:Initialize a feasible solution {𝐚k0,γ¯k0}k=1K\{\boldsymbol{\bf{a}}_{k}^{0},\bar{\gamma}_{k}^{0}\}_{k=1}^{K} to (29). Let r=0r=0;
2:repeat
3:     Solve the convex optimization problem (31) for given
4:     {𝐚kr,γ¯kr}\{\boldsymbol{\bf{a}}_{k}^{r},\bar{\gamma}_{k}^{r}\}, and denote the optimal solution as {𝐚k,γ¯k}\{\boldsymbol{\bf{a}}_{k}^{\star},\bar{\gamma}_{k}^{\star}\}.
5:     Update the local point 𝐚kr+1=𝐚k\boldsymbol{\bf{a}}_{k}^{r+1}=\boldsymbol{\bf{a}}_{k}^{\star} and γ¯kr+1=\bar{\gamma}_{k}^{r+1}=γ¯k,k\bar{\gamma}_{k}^{\star},\forall k.
6:     Update r=r+1r=r+1.
7:until  The fractional increase of objective value of (31) is below a certain threshold.

IV Simulation Results

In this section, we provide simulation results to demonstrate the effectiveness of the proposed multi-user DAM communication. We consider a mmWave system at fc=f_{c}= 28 GHz, with total bandwidth B=B= 128 MHz, and the noise power spectrum density N0=174N_{0}=-174 dBm/Hz. Thus, the total noise power is σ2=93\sigma^{2}=-93 dBm. The number of BS antennas and UEs are Mt=128M_{t}=128 and K=2K=2, respectively. Unless otherwise stated, the BS transmit power is P=30P=30 dBm, and the number of temporal-resovlable multi-paths for each UE is L1=L2=5L_{1}=L_{2}=5, with their discretized multi-path delays being randomly generated from [0,40][0,40]. Besides, the AoDs of all the multi-paths are randomly generated from the interval [90,90][-90^{\circ},90^{\circ}], and the complex-valued gains αkl\alpha_{kl} are generated based on the model developed in [3]. As a benchmarking scheme, the alternative single-carrier scheme for ISI mitigation is considered, which only uses the strongest path of each user, termed as the strongest-path scheme. In this case, the transmitted signal by the BS is 𝐱[n]=k=1K𝐟ksk[n]\boldsymbol{\bf{x}}[n]=\sum_{k=1}^{K}\boldsymbol{\bf{f}}_{k}s_{k}[n], for which the counterpart MRT, ZF and RZF beamforming can be similarly obtained, by only treating the strongest channel path as the desired path component.

Fig. 3 gives the convergence plot of the SCA-based power allocation optimization for path-based DAM RZF beamforming in Algorithm 1, together with the counterpart algorithm for the strongest-path scheme. It is observed from Fig. 3 that for both cases, Algorithm 1 converges quickly with a few iterations.

Refer to caption
Figure 3: Convergence plot of Algorithm 1.

Fig. 4 shows the sum rate versus transmit power for the proposed multi-user DAM transmission and the benchmarking strongest-path scheme, with the corresponding MRT, ZF and RZF beamforming, respectively. It is observed from Fig. 4 that the proposed multi-user DAM transmission significantly outperforms the benchmarking strongest-path scheme for all the three beamforming schemes. This is expected since DAM makes use of all the multi-path signal components, as can be seen from the first term in (4), whereas the strongest-path scheme only uses the strongest multi-path channel component as the desired signal. It is also observed that except for the very high-power regime (P30P\geq 30 dBm), the low-complexity per-path based MRT beamforming achieves comparable performance as ZF and RZF schemes, thanks to the superior spatial resolution and multi-path sparsity of mmWave massive MIMO systems.

Fig. 5 studies the impact of the number of multi-paths on the sum rate for multi-user DAM transmission and the strongest-path scheme. It is observed that the proposed multi-user DAM transmission shows robustness to the increase of the multi-paths, while the performance of the benchmarking strongest-path scheme degrades significantly with the number of multi-paths. Again, this is because DAM benefits from the delay alignment and constructive superposition by all the multi-paths, while the strongest-path scheme experiences more severe ISI and IUI as the number of multi-path increases.

Refer to caption
Figure 4: Sum rate versus transmit power for the proposed multi-user DAM and the benchmarking strongest-path scheme.
Refer to caption
Figure 5: Sum rate versus the number of multi-paths for the proposed multi-user DAM and the benchmarking strongest-path scheme.

V Conclusion

This paper studied the multi-user DAM technique for mmWave MIMO communication. For the asymptotic case when the number of BS antennas is much larger than the total number of channel multi-paths, we showed that the ISI and IUI can be completely eliminated with the simple path-based MRT beamforming and delay pre-compensation. Then for the more general multi-user DAM design, three classical beamforming schemes in a per-path basis tailored for DAM communication were investigated, namely the path-based MRT, ZF and RZF beamforming. Simulation results demonstrated that the proposed multi-user DAM outperforms the benchmarking single-carrier ISI mitigation technique that only uses the strongest channel path of each user.

Acknowledgment

This work was supported by the National Key R&D Program of China with Grant number 2019YFB1803400.

References

  • [1] H. Lu and Y. Zeng, “Delay alignment modulation: Enabling equalization-free single-carrier communication,” IEEE Wireless Commun. Lett., vol. 11, no. 9, pp. 1785-1789, Sep. 2022.
  • [2] E. Bjornson, L. Sanguinetti, H. Wymeersch, J. Hoydis, and T. L. Marzetta, “Massive MIMO is a reality - what is next?: Five promising research directions for antenna arrays,” Digit. Signal Process., vol. 94, pp. 3-20, Nov. 2019.
  • [3] M. R. Akdeniz et al., “Millimeter wave channel modeling and cellular capacity evaluation,” IEEE J. Sel. Areas Commun., vol. 32, no. 6, pp. 1164-1179, Jun. 2014.
  • [4] D. Ding and Y. Zeng, “Channel estimation for delay alignment modulation,” arXiv preprint arXiv:2206.09339, 2022.
  • [5] H. Lu and Y. Zeng, “Delay alignment modulation: Manipulating channel delay spread for efficient single- and multi-carrier communication,” arXiv preprint arXiv:2206.02109, 2022.
  • [6] Z. Xiao and Y. Zeng, “Integrated sensing and communication with delay alignment modulation: Performance analysis and beamforming optimization,” arXiv preprint arXiv:2207.03647, 2022.
  • [7] Z. Wang, X. Mu, and Y. Liu, “Bidirectional integrated sensing and communication: Full-duplex or half-duplex?” arXiv preprint arXiv:2210.14112, 2022.
  • [8] H. Lu, Y. Zeng, S. Jin, and R. Zhang, “Delay alignment modulation for multi-IRS aided wideband communication,” arXiv preprint arXiv:2210.10241, 2022.
  • [9] F. Han, Y.-H. Yang, B. Wang, Y. Wu, and K. J. R. Liu, “Time-reversal division multiple access over multi-path channels,” IEEE Trans. Commun., vol. 60, no. 7, pp. 1953-1965, Jul. 2012.
  • [10] Y. Han, Y. Chen, B. Wang, and K. J. R. Liu, “Time-reversal massive multipath effect: A single-antenna ‘massive MIMO’ solution,” IEEE Trans. Commun., vol. 64, no. 8, pp. 3382-3394, Aug. 2016.
  • [11] A. Pitarokoilis, S. K. Mohammed, and E. G. Larsson, “On the optimality of single-carrier transmission in large-scale antenna systems,” IEEE Wireless Commun. Lett., vol. 1, no. 4, pp. 276-279, Aug. 2012.
  • [12] P. J. Melsa, R. C. Younce, and C. E. Rohrs, “Impulse response shortening for discrete multitone transceivers,” IEEE Trans. Commun., vol. 44, no. 12, pp. 1662-1672, Dec. 1996.
  • [13] R. K. Martin, K. Vanbleu, M. Ding, G. Ysebaert, M. Milosevic, B. L. Evans, M. Moonen, and C. R. Johnson, “Unification and evaluation of equalization structures and design algorithms for discrete multitone modulation systems,” IEEE Trans. Signal Process., vol. 53, no. 10, pp. 3880-3894, Oct. 2005.
  • [14] A. Goldsmith, Wireless communications. Cambridge, U.K.: Cambridge Univ. Press, 2005.
  • [15] T. Taniguchi, H. Hoang, X. N. Tran, and Y. Karasawa, “Maximum SINR design method of MIMO communication systems using tapped delay line structure in receiver side,” in Proc. IEEE Veh. Technol. Conf., May. 2004, pp. 799-803.
  • [16] Y.-C Liang and J. M. Cioffi, “Combining transmit beamforming, space-time block coding and delay spread reduction,” in Proc. Personal, Indoor and Mobile Radio Commun. (PIMRC), Sep. 2003, pp. 105-109.
  • [17] Y. Zeng and R. Zhang, “Millimeter wave MIMO with lens antenna array: A new path division multiplexing paradigm,” IEEE Trans. Commun., vol. 64, no. 4. pp. 1557-1571, Apr. 2016.
  • [18] G. Wang, J. Sun and, G. Ascheid, “Hybrid beamforming with time delay compensation for millimeter wave MIMO frequency selective channels,” in Proc. IEEE Veh. Technol. Conf., May. 2016, pp. 1-6.
  • [19] C. B. Peel, B. M. Hochwald, and A. L. Swindlehurst, “A vector-perturbation technique for near-capacity multiantenna multiuser communication-part I: Channel inversion and regularization,” IEEE Trans. Commun., vol. 53, no. 1, pp. 195-202, Jan. 2005.