This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Multipartite entanglement vs nonlocality for two families of NN-qubit states

Sanchit Srivastava sanchit.srivastava@uwaterloo.ca Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1 Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1    Shohini Ghose Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1 Department of Physics and Computer Science, Wilfrid Laurier University, Waterloo, Ontario, Canada N2L 3C5 Perimeter Institute for Theoretical Physics, 31 Caroline St N, Waterloo, Ontario, Canada N2L 2Y5
Abstract

Quantum states of multiple qubits can violate Bell-type inequalities when there is entanglement present between the qubits, indicating nonlocal behaviour of correlations. We analyze the relation between multipartite entanglement and genuine multipartite nonlocality, characterized by Svetlichny inequality violations, for two families of NN-qubit states. We show that for the generalized GHZ family of states, Svetlichny inequality is not violated when the nn-tangle is less than 1/21/2 for any number of qubits. On the other hand, the maximal slice states always violate the Svetlichny inequality when nn-tangle is nonzero, and the violation increases monotonically with tangle when the number of qubits is even. Our work generalizes the relations between tangle and Svetlichny inequality violation previously derived for three qubits.

Introduction: Bell’s inequalities provide a practical method for testing whether correlations observed between spatially separated parts of a system are compatible with any local hidden variable (LHV) description [1]. Quantum entangled states can violate Bell-type inequalities, thereby confirming the fundamentally different nature of quantum correlations compared to those allowed by LHV models [2]. For the case of 2-qubit pure states, entanglement and nonlocality, as measured by Bell inequality violations, are directly related [3] [4]—the more entanglement there is, larger the observed violation. For multiqubit pure states, the much more complex relationship between NN-qubit entanglement and nonlocality has not yet been explored in much detail. Such studies are important for characterizing and understanding the behaviour of many-body systems, shedding light on the subtle nature of quantum mechanics, and for designing large-scale, efficient information processing and communication protocols [5, 6, 7, 8].

In this letter, we generalize the well-known relationship between 2-qubit entanglement and violation of the Bell-CHSH inequality [2, 3, 4] to the case of NN-qubit entanglement and violation of an N-qubit Bell inequality for two families of states. For two qubits, all pure states can be written in the form |ψ=α|00+β|11\ket{\psi}=\alpha\ket{00}+\beta\ket{11} in some basis via the Schmidt decomposition. The maximum expected value of the Bell-CHSH operator with respect to these states is max[S2]=22\max[S_{2}]=2\sqrt{2} [9], which violates the LHV bound of S22S_{2}\leq 2 if |ψ\ket{\psi} is an entangled state (α,β0\alpha,\beta\neq 0). Here, we analyse correlations in the NN-qubit generalizations of two subsets of the GHZ class [10] of states: the NN-qubit generalized GHZ (GGHZ) states |ψg\ket{\psi_{g}} and the NN-qubit maximal slice (MS) states |ψs\ket{\psi_{s}} [11]:

|ψg=cosα|0N+sinα|1N,\ket{\psi_{g}}=\cos\alpha\ket{0}^{\otimes N}+\sin\alpha\ket{1}^{\otimes N}, (1)
|ψs=12[|0N+|1N1(cosα|0+sinα|1)].\displaystyle\ket{\psi_{s}}=\frac{1}{\sqrt{2}}\left[\ket{0}^{\otimes N}+\ket{1}^{\otimes N-1}\left(\cos\alpha\ket{0}+\sin\alpha\ket{1}\right)\right]. (2)

As the name suggests, the GGHZ states are generalizations of the well-known 3-qubit GHZ state (N=3,α=π/4)(N=3,\alpha=\pi/4), which is a useful entanglement resource for a variety of information processing protocols including dense coding, teleportation, etc [12, 13, 14, 15]. Tracing out any qubit in the GGHZ state leaves the remaining qubits in a mixed state, indicating genuine N-qubit entanglement. The maximal sliced state is bi-separable when sinα=0\sin\alpha=0 and maximally entangled when sinα=1\sin\alpha=1. The relation between entanglement and nonlocal properties of these states in terms of Bell inequality violations have been explored for N=3N=3 [16, 17]. In order to examine the multiqubit nonlocal properties of these states, we consider the expectation value of the Svetlichny operator SNS_{N} that is a generalization of the 2-qubit Bell-CHSH operator to the case of N qubits [18, 19, 20]. Violation of the inequality |SN|2N1|\left<S_{N}\right>|\leq 2^{N-1} implies genuine N-qubit non-separability as opposed to partial nonlocal correlations between less than N qubits. Finding the maximum of |SN||\left<S_{N}\right>| for arbitrary quantum states analytically or computationally is challenging as the number of terms in SNS_{N} increases exponentially with NN [21]. Nevertheless, the symmetry of the GGHZ and MS states allows us to find explicit expressions for the maximum of |SN||\left<S_{N}\right>| for these states. We show that for the GGHZ states with N>2N>2 the maximum of SNS_{N}, for odd NN is

SNmax±(ψg)={2N+121τ(ψg),τ(ψg)12N2+12N12τ,τ(ψg)12N2+1S_{N\max}^{\pm}(\psi_{g})=\left\{\begin{array}[]{ll}2^{\frac{N+1}{2}}\sqrt{1-\tau(\psi_{g})},&\tau(\psi_{g})\leq\frac{1}{2^{N-2}+1}\\ \\ 2^{N-1}\sqrt{2\tau},&\tau(\psi_{g})\geq\frac{1}{2^{N-2}+1}\end{array}\right. (3)

and for even NN is

SNmax±(ψg)={2N2,τ21N2N12τ,τ21N,S_{N\max}^{\pm}(\psi_{g})=\left\{\begin{array}[]{ll}2^{\frac{N}{2}},&\tau\leq 2^{1-N}\\ 2^{N-1}\sqrt{2\tau},&\tau\geq 2^{1-N},\end{array}\right. (4)

where τ(ψg)\tau(\psi_{g}) is the nn-tangle [22, 23, 24] which quantifies the multipartite entanglement present in the GGHZ states. The above equations show that for the GGHZ states, the inequality SN2N1S_{N}\leq 2^{N-1} is not violated when τ(ψg)1/2\tau(\psi_{g})\leq 1/2, even though the states are genuinely NN-qubit entangled. Thus, we show that the Svetlichny inequality is not sensitive to the NN-qubit entanglement in these states. Interestingly, the critical value of τ(ψg)1/2\tau(\psi_{g})\leq 1/2 beyond which violation occurs, is the same for all values of NN.

For the MS state, we find the maximum of SNS_{N} is

SNmax±(ψs)=2N11+sin2α.\displaystyle S_{N\max}^{\pm}(\psi_{s})=2^{N-1}\sqrt{1+\sin^{2}\alpha}. (5)

We see that the bound is violated for MS states as long as the state is not bi-separable, i.e sinα0\sin\alpha\neq 0. When N=3N=3 and for even N(>3)N(>3), τ(ψs)=sin2α\tau(\psi_{s})=\sin^{2}\alpha and hence for these cases the expression becomes

SNmax±(ψs)=2N21+τ(ψs),\displaystyle S_{N\max}^{\pm}(\psi_{s})=2^{N-2}\sqrt{1+\tau(\psi_{s})}, (6)

which matches previous results [16, 17].

Svetlichny Inequality: In order to derive the expressions above, we start with the NN-qubit Svetlichny inequality constructed to test for genuine NN-partite nonlocal correlations [19, 20]. Consider NN spatially separated particles and two dichotomic observables Ai0,Ai1A^{0}_{i},A^{1}_{i}, i=1,2Ni=1,2\dots N for each particle. Then the following operators can be constructed:

SN±=xν±(x)A(x)\displaystyle S_{N}^{\pm}=\sum_{\vec{x}}\nu^{\pm}(\vec{x})A(\vec{x}) (7)

where {x}\{\vec{x}\} are bit strings of size NN, A(x)A(\vec{x}) is an NN-qubit operator of the form A(𝒙)=i=1NAix(i)A(\boldsymbol{x})=\bigotimes_{i=1}^{N}A_{i}^{x(i)} and ν±(𝒙)\nu^{\pm}(\boldsymbol{x}) is a constant dependent on the Hamming weight w(𝒙)w(\boldsymbol{x}) of the bit string

ν±(𝒙)=1w(𝒙)(w(𝒙)±1)/2.\displaystyle\nu^{\pm}(\boldsymbol{x})=-1^{w(\boldsymbol{x})(w(\boldsymbol{x})\pm 1)/2}. (8)

For N=2N=2, the above expression reduces to the standard CHSH form [2] and for N=3N=3, they yield the operator in [18]. Svetlichny showed that if one allows nonlocal correlation between at most N1N-1 of the parties, then |SN±|2N1.|\braket{S_{N}^{\pm}}|\leq 2^{N-1}. Violation of this inequality confirms genuine NN-partite nonlocality.

Maximum violation for GGHZ states: The two dichotomic observables Ai0,Ai1A^{0}_{i},A^{1}_{i}, i=1,2Ni=1,2\dots N for each qubit can be written in terms of the Pauli operators σx,σy\sigma_{x},\sigma_{y} and σz\sigma_{z} as Aix(i)=𝒗ix(i)σA^{x(i)}_{i}=\boldsymbol{v}^{x(i)}_{i}\cdot\vec{\sigma}, where 𝒗ix(i)\boldsymbol{v}^{x(i)}_{i} are unit vectors in 3\mathbbm{R}^{3} and 𝝈=(σx,σy,σz)\boldsymbol{\sigma}=(\sigma_{x},\sigma_{y},\sigma_{z}). Defining vix(i)=(sinθix(i)cosϕix(i),sinθix(i)sinϕix(i),cosθix(i)),\vec{v}^{x(i)}_{i}=(\sin\theta^{x(i)}_{i}\cos\phi^{x(i)}_{i},\sin\theta^{x(i)}_{i}\sin\phi^{x(i)}_{i},\cos\theta^{x(i)}_{i}), we can calculate the absolute value of the expectation value of the Svetlichny operator for GGHZ states as

|SN±|=|c1𝒙ν±(𝒙)iNcosθix(i)\displaystyle|\braket{S_{N}^{\pm}}|=\Big{|}c_{1}\sum_{\boldsymbol{x}}\nu^{\pm}(\boldsymbol{x})\prod_{i}^{N}\cos\theta_{i}^{x(i)}
+c2𝒙ν±(𝒙)cos(iNϕix(i))iNsinθix(i)|,\displaystyle+c_{2}\sum_{\boldsymbol{x}}\nu^{\pm}(\boldsymbol{x})\cos\left(\sum_{i}^{N}\phi_{i}^{x(i)}\right)\prod_{i}^{N}\sin\theta_{i}^{x(i)}\Big{|}, (9)

which can be written in the form |SN±|=|c1FN±+c2GN±|,|\braket{S_{N}^{\pm}}|=|c_{1}F_{N}^{\pm}+c_{2}G_{N}^{\pm}|, where FNF_{N} and GNG_{N} contain all the cosθ\cos\theta and sinθ\sin\theta terms of SNS_{N} respectively and c1=cos2α+(1)Nsin2αc_{1}=\cos^{2}\alpha+(-1)^{N}\sin^{2}\alpha and c2=sin2αc_{2}=\sin 2\alpha. We calculate the maximum value of |SN±||\braket{S_{N}^{\pm}}| by considering the following cases:

When α=0\alpha=0 or π/2\pi/2, c2=0c_{2}=0. The state becomes a product state |0N\ket{0}^{\otimes N} or |1N\ket{1}^{\otimes N} and the maximum expectation value corresponds to the classical bound for local hidden variable models:

|SN±|max=|FN±|max\displaystyle|\braket{S_{N}^{\pm}}|_{\max}=\left|F_{N}^{\pm}\right|_{\max} =|k=0N(1)k(k±1)(Nk)|.\displaystyle=\left|\sum_{k=0}^{N}(-1)^{k(k\pm 1)}{N\choose k}\right|. (10)

Evaluating the above sum, we get

|SN±|max=|FN±|max\displaystyle|\braket{S_{N}^{\pm}}|_{\max}=\left|F_{N}^{\pm}\right|_{\max} ={2N+12,N is odd 2N2,N is even .\displaystyle=\left\{\begin{array}[]{ll}2^{\frac{N+1}{2}},&N\text{ is odd }\\ 2^{\frac{N}{2}},&N\text{ is even }\end{array}\right.. (13)

This maxima is achieved by measuring all the qubits along the ZZ-axis (i.e, setting all θix(i)\theta_{i}^{x(i)} to 0 or π\pi).

When α=π/4\alpha=\pi/4, we get the maximally entangled N-qubit GHZ state. Let us first consider the case of odd NN. In this case the maximum expectation value is

|SN±|max=|GN±|max=\displaystyle|\braket{S_{N}^{\pm}}|_{\max}=|G^{\pm}_{N}|_{\max}=
max(|𝒙ν±(𝒙)cos(iNϕix(i))iNsinθix(i)|).\displaystyle\max\left(\left|\sum_{\boldsymbol{x}}\nu^{\pm}(\boldsymbol{x})\cos\left(\sum_{i}^{N}\phi_{i}^{x(i)}\right)\prod_{i}^{N}\sin\theta_{i}^{x(i)}\right|\right). (14)

Note that the function ν±(𝒙)\nu^{\pm}(\boldsymbol{x}) can be written as ν±(𝒙)=2cos(±π4±w(𝒙)π2)\nu^{\pm}(\boldsymbol{x})=\sqrt{2}\cos\left(\pm\frac{\pi}{4}\pm w(\boldsymbol{x})\frac{\pi}{2}\right) [19]. Hence, if we fix ϕ10=ϕ11=±π/4\phi_{1}^{0}=\phi_{1}^{1}=\pm\pi/4, ϕi0=0\phi_{i}^{0}=0 and ϕi1=π/2\phi_{i}^{1}=\pi/2 for all i1i\neq 1, then we see that the cosine term in Eq.(Multipartite entanglement vs nonlocality for two families of NN-qubit states) becomes equal to ν±(𝒙)\nu^{\pm}(\boldsymbol{x}) and hence every term inside the summation becomes positive. Now setting all θix(i)=0\theta_{i}^{x(i)}=0, we get the maxima

|SN±|max=|GN±|max=22N1\displaystyle|\braket{S_{N}^{\pm}}|_{\max}=|G^{\pm}_{N}|_{\max}=\sqrt{2}2^{N-1} (15)

which is in accordance with the quantum bound [20]. For the case of even NN, the maximum expectation value is |SN±|max=|FN±+GN±|max|\braket{S_{N}^{\pm}}|_{\max}=|F_{N}^{\pm}+G_{N}^{\pm}|_{\max}. Notice that for the choice of angles for which |GN±||G^{\pm}_{N}| is maximum, |FN±|=0|F^{\pm}_{N}|=0. Since this choice of angles achieves the quantum bound, the maximum for the case of even NN is the same as the odd NN case.

We can now derive the maxima for the general case of arbitrary value of α\alpha using the above two cases. When FN±F_{N}^{\pm} is maximum GN±=0G_{N}^{\pm}=0 for the same choice of angles and vice-versa. Consider the derivative of SN±\left<S_{N}^{\pm}\right> with respect to θkl\theta_{k}^{l} (l=0l=0 or 1):

SN±θkl=c1𝒙(k)=lν±(𝒙)sinθklikNcosθix(i)\displaystyle\frac{\partial\left<S_{N}^{\pm}\right>}{\partial\theta_{k}^{l}}=-c_{1}\sum_{\boldsymbol{x}(k)=l}\nu^{\pm}(\boldsymbol{x})\sin\theta_{k}^{l}\prod_{i\neq k}^{N}\cos\theta_{i}^{x(i)}
+\displaystyle+ c2𝒙(k)=lν±(𝒙)cos(iNϕix(i))cosθklikNsinθix(i).\displaystyle c_{2}\sum_{\boldsymbol{x}(k)=l}\nu^{\pm}(\boldsymbol{x})\cos\left(\sum_{i}^{N}\phi_{i}^{x(i)}\right)\cos\theta_{k}^{l}\prod_{i\neq k}^{N}\sin\theta_{i}^{x(i)}. (16)

We see that SN±/θkl=0\partial\left<S_{N}^{\pm}\right>/\partial\theta_{k}^{l}=0 for the choices of {(θi,ϕi)}\{(\theta_{i},\phi_{i})\} where FN±F^{\pm}_{N} is maximum and for the choices where GN±G^{\pm}_{N} is maximum. It can be easily verified that the second derivative with respect to θkl\theta_{k}^{l} is negative at these points. Since Eq.(Multipartite entanglement vs nonlocality for two families of NN-qubit states) is the form of the derivative with respect to all θ\theta, we can conclude that the points where are FN±F^{\pm}_{N} and GN±G^{\pm}_{N} are maximum are local maxima for SN±\left<S_{N}^{\pm}\right>. As the first term (c1FN±)(c_{1}F^{\pm}_{N}) is independent of ϕ\phi, checking the derivative with respect to ϕ\phi here is not required. Considering the larger one of these two maxima, we get

|SN±|maxlocal=max[\displaystyle|\braket{S_{N}^{\pm}}|^{\text{local}}_{\max}=\max\Big{[} cos2α+(1)Nsin2α|FN±|max,\displaystyle\cos^{2}\alpha+(-1)^{N}\sin^{2}\alpha|F_{N}^{\pm}|_{\max}, (17)
sin2α|GN±|max].\displaystyle\sin 2\alpha|G_{N}^{\pm}|_{\max}\Big{]}.

We find that the maxima achieved with this approach is in fact the global maxima. The proof for this is provided in Appendix A. Hence the maximum violation in case of odd NN is

SNmax±(ψg)={2N+12cos(2α),2N2|tan(2α)|222N1sin(2α),2N2|tan(2α)|2S_{N\max}^{\pm}(\psi_{g})=\left\{\begin{array}[]{ll}2^{\frac{N+1}{2}}\cos(2\alpha),&2^{\frac{N}{2}}|\tan(2\alpha)|\leq 2\\ \sqrt{2}2^{N-1}\sin(2\alpha),&2^{\frac{N}{2}}|\tan(2\alpha)|\geq 2\end{array}\right. (18)

and for even NN is

SNmax±(ψg)={2N2,2N2sin(2α)222N1sin(2α),2N2sin(2α)2.S_{N\max}^{\pm}(\psi_{g})=\left\{\begin{array}[]{ll}2^{\frac{N}{2}},&2^{\frac{N}{2}}\sin(2\alpha)\leq\sqrt{2}\\ \sqrt{2}2^{N-1}\sin(2\alpha),&2^{\frac{N}{2}}\sin(2\alpha)\geq\sqrt{2}.\end{array}\right. (19)

For the GGHZ state ψg(α)\psi_{g}(\alpha), the nn-tangle τ(ψ)\tau(\psi) is sin22α\sin^{2}2\alpha. Restating the above result in terms of τ(ψ)\tau(\psi) gives us the result in Eq.(3). We see that for N=3, our results match exactly with the bounds derived in [16, 17].

Maximum violation for MS states: To find the maximum of SN±S^{\pm}_{N} for the maximally sliced states, we define unit vectors 𝒃0\boldsymbol{b}^{0} and 𝒃1\boldsymbol{b}^{1} such that 𝒗N10+𝒗N11=2cosθ𝒃0\boldsymbol{v}_{N-1}^{0}+\boldsymbol{v}_{N-1}^{1}=2\cos\theta\boldsymbol{b}^{0} and 𝒗N10𝒗N11=2sinθ𝒃1\boldsymbol{v}_{N-1}^{0}-\boldsymbol{v}_{N-1}^{1}=2\sin\theta\boldsymbol{b}^{1}. Thus

𝒃0𝒃1=\displaystyle\boldsymbol{b}^{0}\cdot\boldsymbol{b}^{1}= cosθb0cosθb1\displaystyle\cos\theta_{b}^{0}\cos\theta_{b}^{1} (20)
+sinθb0sinθb1cos(ϕb0ϕb1)=0.\displaystyle+\sin\theta_{b}^{0}\sin\theta_{b}^{1}\cos\left(\phi_{b}^{0}-\phi_{b}^{1}\right)=0.

By isolating the last two qubits, the Svetlichny operator can be written as

SN±=𝒙~ν±(𝒙~)A(𝒙~)(AN10+(1)w(𝒙~)AN11)AN0\displaystyle S^{\pm}_{N}=\sum_{\boldsymbol{\tilde{x}}}\nu^{\pm}(\boldsymbol{\tilde{x}})A(\boldsymbol{\tilde{x}})\left(A_{N-1}^{0}+(-1)^{w(\boldsymbol{\tilde{x}})}A_{N-1}^{1}\right)A_{N}^{0}
+𝒙~ν±(𝒙~)A(𝒙~)((1)w(𝒙~)AN10AN11)AN1\displaystyle+\sum_{\boldsymbol{\tilde{x}}}\nu^{\pm}(\boldsymbol{\tilde{x}})A(\boldsymbol{\tilde{x}})\left((-1)^{w(\boldsymbol{\tilde{x}})}A_{N-1}^{0}-A_{N-1}^{1}\right)A_{N}^{1} (21)

where 𝒙~\boldsymbol{\tilde{x}} are now bit strings of size N2N-2. Defining BN1k=𝒃𝒌𝝈B_{N-1}^{k}=\boldsymbol{b^{k}}\cdot\boldsymbol{\sigma} and using the fact

xcosθ+ysinθ(x2+y2)12,x\cos\theta+y\sin\theta\leq(x^{2}+y^{2})^{\frac{1}{2}}, (22)

we get the inequality

SN±2𝒙~𝒆[A(𝒙~𝒆)BN10AN02+A(𝒙~𝒆)BN11AN12]12\displaystyle\left<S^{\pm}_{N}\right>\leq 2\sum_{\boldsymbol{\tilde{x}_{e}}}\left[\left<A(\boldsymbol{\tilde{x}_{e}})B_{N-1}^{0}A_{N}^{0}\right>^{2}+\left<A(\boldsymbol{\tilde{x}_{e}})B_{N-1}^{1}A_{N}^{1}\right>^{2}\right]^{\frac{1}{2}}
+2𝒙~𝒐[A(𝒙~𝒐)BN11AN02+A(𝒙~𝒐)BN10AN12]12.\displaystyle+2\sum_{\boldsymbol{\tilde{x}_{o}}}\left[\left<A(\boldsymbol{\tilde{x}_{o}})B_{N-1}^{1}A_{N}^{0}\right>^{2}+\left<A(\boldsymbol{\tilde{x}_{o}})B_{N-1}^{0}A_{N}^{1}\right>^{2}\right]^{\frac{1}{2}}. (23)

Where {𝒙~𝒆}\{\boldsymbol{\tilde{x}_{e}}\} are bit strings of size N2N-2 and even weight, and {𝒙~𝒐}\{\boldsymbol{\tilde{x}_{o}}\} are bit strings of size N2N-2 and odd weight. Consider the expectation value of the operator A(𝒙~)BN1kANlA(\boldsymbol{\tilde{x}})B_{N-1}^{k}A_{N}^{l} with respect to ψs\psi_{s} for odd NN:

ψs|A(𝒙~)BN1kANl|ψs\displaystyle\left<\psi_{s}|A(\boldsymbol{\tilde{x}})B_{N-1}^{k}A_{N}^{l}|\psi_{s}\right> 𝒙~(cos2αi=1N2cos2θix~(i)(cos2α+sin2αcos2(ϕNl))\displaystyle\leq\sum_{\boldsymbol{\tilde{x}}}\Big{(}\cos^{2}\alpha\prod_{i=1}^{N-2}\cos^{2}\theta_{i}^{\tilde{x}(i)}\left(\cos^{2}\alpha+\sin^{2}\alpha\cos^{2}(\phi_{N}^{l})\right) (24)
+i=1N2sin2θix~(i)(cos2αcos2(ϕ(x~)+ϕbk)+sin2αcos2(ϕ(x~)+ϕbk+ϕNl)))12\displaystyle+\prod_{i=1}^{N-2}\sin^{2}\theta_{i}^{\tilde{x}(i)}\left(\cos^{2}\alpha\cos^{2}(\phi(\tilde{x})+\phi_{b}^{k})+\sin^{2}\alpha\cos^{2}(\phi(\tilde{x})+\phi_{b}^{k}+\phi_{N}^{l})\right)\Big{)}^{\frac{1}{2}}

where ϕ(x~)=iN2ϕix~(i)\phi(\tilde{x})=\sum_{i}^{N-2}\phi_{i}^{\tilde{x}(i)} and we have used Eq.(22) for the angles θNl\theta_{N}^{l} and θbk\theta_{b}^{k} to obtain the inequality. The right hand side of Eq.(24) can be maximized by setting all θix~(i)=π/2\theta_{i}^{\tilde{x}(i)}=\pi/2 . Hence we get

ψs|A(𝒙~)BN1kANl|ψs(cos2αcos2(ϕ(x~)+ϕbk)+sin2αcos2(ϕ(x~)+ϕbk+θNl))12.\displaystyle\left<\psi_{s}|A(\boldsymbol{\tilde{x}})B_{N-1}^{k}A_{N}^{l}|\psi_{s}\right>\leq\big{(}\cos^{2}\alpha\cos^{2}(\phi(\tilde{x})+\phi_{b}^{k})+\sin^{2}\alpha\cos^{2}(\phi(\tilde{x})+\phi_{b}^{k}+\theta_{N}^{l})\big{)}^{\frac{1}{2}}. (25)
ψs|SN±|ψs2𝒚~[cos2αcos2(ϕ(x~)+ϕb0)+\displaystyle\left<\psi_{s}|S_{N}^{\pm}|\psi_{s}\right>\leq 2\sum_{\boldsymbol{\tilde{y}}}\Big{[}\cos^{2}\alpha\cos^{2}(\phi(\tilde{x})+\phi_{b}^{0})+ sin2αcos2(ϕ(x~)+ϕb0+θN0)\displaystyle\sin^{2}\alpha\cos^{2}(\phi(\tilde{x})+\phi_{b}^{0}+\theta_{N}^{0})
+cos2αcos2(ϕ(x~)+ϕb1)+sin2αcos2(ϕ(x~)+ϕb1+θN1)]12\displaystyle+\cos^{2}\alpha\cos^{2}(\phi(\tilde{x})+\phi_{b}^{1})+\sin^{2}\alpha\cos^{2}(\phi(\tilde{x})+\phi_{b}^{1}+\theta_{N}^{1})\Big{]}^{\frac{1}{2}}
+2𝒛~[cos2αcos2(ϕ(x~)+ϕb1)+\displaystyle+2\sum_{\boldsymbol{\tilde{z}}}\Big{[}\cos^{2}\alpha\cos^{2}(\phi(\tilde{x})+\phi_{b}^{1})+ sin2αcos2(ϕ(x~)+ϕb1+θN0)\displaystyle\sin^{2}\alpha\cos^{2}(\phi(\tilde{x})+\phi_{b}^{1}+\theta_{N}^{0}) (26)
+cos2αcos2(ϕ(x~)+ϕb0)+sin2αcos2(ϕ(x~)+ϕb0+θN1)]12\displaystyle+\cos^{2}\alpha\cos^{2}(\phi(\tilde{x})+\phi_{b}^{0})+\sin^{2}\alpha\cos^{2}(\phi(\tilde{x})+\phi_{b}^{0}+\theta_{N}^{1})\Big{]}^{\frac{1}{2}}

In Eq.(Multipartite entanglement vs nonlocality for two families of NN-qubit states) the right had side can now be maximized by setting cos2(ϕ(x~)+ϕbk+ϕNl)=1\cos^{2}(\phi(\tilde{x})+\phi_{b}^{k}+\phi_{N}^{l})=1 𝒙~,k,l\forall\boldsymbol{\tilde{x}},k,l. This has to be done by choosing angles such that ϕb0ϕb1=π/2\phi_{b}^{0}-\phi_{b}^{1}=\pi/2 to satisfy the constraint Eq.(20). Setting cos2(ϕ(x~)+ϕb0)=sin2(ϕ(x~)+ϕb1)\cos^{2}(\phi(\tilde{x})+\phi_{b}^{0})=\sin^{2}(\phi(\tilde{x})+\phi_{b}^{1}) in Eq.(Multipartite entanglement vs nonlocality for two families of NN-qubit states) we obtain

ψs|SN±|ψs\displaystyle\left<\psi_{s}|S_{N}^{\pm}|\psi_{s}\right> \displaystyle\leq 2𝒙~[cos2α+2sin2α]12\displaystyle 2\sum_{\boldsymbol{\tilde{x}}}\left[\cos^{2}\alpha+2\sin^{2}\alpha\right]^{\frac{1}{2}} (27)
=\displaystyle= 2N11+sin2α\displaystyle 2^{N-1}\sqrt{1+\sin^{2}\alpha}

since there are 2N22^{N-2} such bit strings. A similar analysis follows for even NN, giving the same bound.

Conclusion: In summary, we have analytically derived the maximum violation of the Svetlichny inequality for the GGHZ and MS states for any number of qubits. This gives us an analytical relationship between multipartite entanglement and nonlocality for these families of states. Our results show that for the GGHZ state, the relationship between the residual entanglement and nonlocality of the state as measured by the Svetlichny inequality is the same for any number of qubits. The range of nn-tangle values for which the Svetlichny inequality is not violated (τ(ψg)<1/2)(\tau(\psi_{g})<1/2) is independent of the number of qubits. For the MS states, we have verified that for even number of qubits (N>3)(N>3), the analytical relationship between nonlocality and entanglement is the same as the case for three qubits. These findings shed light on the connection between nonlocality and the distribution of entanglement in multipartite systems. The non-violation of the Svetlichny inequality by some entangled NN-qubit GGHZ states suggests that the hybrid local-nonlocal condition imposed by the Svetlichny inequality maybe too strong. The MS states violate the inequality for all values of parameter α\alpha for which |ψs\ket{\psi_{s}} is entangled. This contrast between GGHZ and MS states raises practical questions like what the violation of this inequality actually certifies, and whether the states which violate this inequality are useful for particular information processing or communication protocols.

References

  • Bell [1964] J. S. Bell, On the einstein podolsky rosen paradox, Physics Physique Fizika 1, 195 (1964).
  • Clauser et al. [1969] J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, Proposed experiment to test local hidden-variable theories, Phys. Rev. Lett. 23, 880 (1969).
  • Gisin [1991] N. Gisin, Bell’s inequality holds for all non-product states, Physics Letters A 154, 201 (1991).
  • Popescu and Rohrlich [1992] S. Popescu and D. Rohrlich, Generic quantum nonlocality, Physics Letters A 166, 293 (1992).
  • Hein et al. [2004] M. Hein, J. Eisert, and H. J. Briegel, Multiparty entanglement in graph states, Phys. Rev. A 69, 062311 (2004).
  • Chen and Lo [2008] K. Chen and H.-K. Lo, Multi-partite quantum cryptographic protocols with noisy ghz states (2008), arXiv:quant-ph/0404133 [quant-ph] .
  • Scarani and Gisin [2001] V. Scarani and N. Gisin, Quantum communication between N\mathit{N} partners and bell’s inequalities, Phys. Rev. Lett. 87, 117901 (2001).
  • Lu et al. [2007] C.-Y. Lu, X.-Q. Zhou, O. Gühne, W.-B. Gao, J. Zhang, Z.-S. Yuan, A. Goebel, T. Yang, and J.-W. Pan, Experimental entanglement of six photons in graph states, Nature Physics 3, 91 (2007).
  • Cirel’son [1980] B. S. Cirel’son, Quantum generalizations of bell’s inequality, Letters in Mathematical Physics 4, 93 (1980).
  • Dür et al. [2000] W. Dür, G. Vidal, and J. I. Cirac, Three qubits can be entangled in two inequivalent ways, Phys. Rev. A 62, 062314 (2000).
  • Carteret and Sudbery [2000] H. A. Carteret and A. Sudbery, Local symmetry properties of pure three-qubit states, Journal of Physics A: Mathematical and General 3310.1088/0305-4470/33/28/303 (2000).
  • Greenberger et al. [2007] D. M. Greenberger, M. A. Horne, and A. Zeilinger, Going Beyond Bell’s Theorem, arXiv e-prints , arXiv:0712.0921 (2007)arXiv:0712.0921 [quant-ph] .
  • Bouwmeester et al. [1999] D. Bouwmeester, J.-W. Pan, M. Daniell, H. Weinfurter, and A. Zeilinger, Observation of three-photon greenberger-horne-zeilinger entanglement, Phys. Rev. Lett. 82, 1345 (1999).
  • Roos et al. [2004] C. F. Roos, M. Riebe, H. Häffner, W. Hänsel, J. Benhelm, G. P. T. Lancaster, C. Becher, F. Schmidt-Kaler, and R. Blatt, Control and measurement of three-qubit entangled states, Science 304, 1478 (2004)https://www.science.org/doi/pdf/10.1126/science.1097522 .
  • Ekert et al. [8 15] A. Ekert, R. Jozsa, R. Penrose, R. Laflamme, E. Knill, W. H. Zurek, P. Catasti, and S. V. S. Mariappan, Nmr greenberger–horne–zeilinger states, Philosophical transactions. 356 (1998-08-15).
  • Ghose et al. [2009] S. Ghose, N. Sinclair, S. Debnath, P. Rungta, and R. Stock, Tripartite entanglement versus tripartite nonlocality in three-qubit greenberger-horne-zeilinger-class states, Phys. Rev. Lett. 102, 250404 (2009).
  • Ajoy and Rungta [2010] A. Ajoy and P. Rungta, Svetlichny’s inequality and genuine tripartite nonlocality in three-qubit pure states, Phys. Rev. A 81, 052334 (2010).
  • Svetlichny [1987] G. Svetlichny, Distinguishing three-body from two-body nonseparability by a bell-type inequality, Phys. Rev. D 35, 3066 (1987).
  • Seevinck and Svetlichny [2002] M. Seevinck and G. Svetlichny, Bell-type inequalities for partial separability in nn-particle systems and quantum mechanical violations, Phys. Rev. Lett. 89, 060401 (2002).
  • Collins et al. [2002] D. Collins, N. Gisin, S. Popescu, D. Roberts, and V. Scarani, Bell-type inequalities to detect true n\mathit{n}-body nonseparability, Phys. Rev. Lett. 88, 170405 (2002).
  • Xiao et al. [2024] Y. Xiao, Z. Wang, W. Zhao, and M. Li, Tight upper bound for the maximal expectation value of the nnn‐partite generalized svetlichny operator, Advanced Quantum Technologies 710.1002/qute.202400101 (2024).
  • Coffman et al. [2000] V. Coffman, J. Kundu, and W. K. Wootters, Distributed entanglement, Phys. Rev. A 61, 052306 (2000).
  • Osborne and Verstraete [2006] T. J. Osborne and F. Verstraete, General monogamy inequality for bipartite qubit entanglement, Phys. Rev. Lett. 96, 220503 (2006).
  • Wong and Christensen [2001] A. Wong and N. Christensen, Potential multiparticle entanglement measure, Phys. Rev. A 63, 044301 (2001).

Appendix A Proof of global maximum

For arbitrary values of α\alpha, we proceed in the following way. We can single out, without loss of generality, the last two parties and label their measurement settings as 𝒗N1i,𝒗Nj\boldsymbol{v}^{i}_{N-1},\boldsymbol{v}^{j}_{N}, i,j=0,1i,j=0,1. SNS_{N} can now be written as

|SN±|\displaystyle\left|\left\langle S_{N}^{\pm}\right\rangle\right| =f1±cosθN10cosθN0+g1±sinθN10sinθN0\displaystyle=\mid f_{1}^{\pm}\cos\theta_{N-1}^{0}\cos\theta_{N}^{0}+g_{1}^{\pm}\sin\theta_{N-1}^{0}\sin\theta_{N}^{0} (28)
+f2±cosθN10cosθN1+g2±sinθN10sinθN1\displaystyle+f_{2}^{\pm}\cos\theta_{N-1}^{0}\cos\theta_{N}^{1}+g_{2}^{\pm}\sin\theta_{N-1}^{0}\sin\theta_{N}^{1}
+f3±cosθN11cosθN0+g3±sinθN11sinθN0\displaystyle+f_{3}^{\pm}\cos\theta_{N-1}^{1}\cos\theta_{N}^{0}+g_{3}^{\pm}\sin\theta_{N-1}^{1}\sin\theta_{N}^{0}
+f4±cosθN11cosθN1+g4±sinθN11sinθN1\displaystyle+f_{4}^{\pm}\cos\theta_{N-1}^{1}\cos\theta_{N}^{1}+g_{4}^{\pm}\sin\theta_{N-1}^{1}\sin\theta_{N}^{1}\mid

where

f1±=c1FN2±\displaystyle f_{1}^{\pm}=c_{1}F_{N-2}^{\pm}\; , g1±=c2G~00,N2±,\displaystyle\;g_{1}^{\pm}=c_{2}\tilde{G}_{00,N-2}^{\pm}, (29)
f2±=±c1FN2\displaystyle f_{2}^{\pm}=\pm c_{1}F_{N-2}^{\mp}\; , g2±=±c2G~01,N2,\displaystyle\;g_{2}^{\pm}=\pm c_{2}\tilde{G}_{01,N-2}^{\mp},
f3±=±c1FN2\displaystyle f_{3}^{\pm}=\pm c_{1}F_{N-2}^{\mp}\; , g3±=±c2G~10,N2,\displaystyle\;g_{3}^{\pm}=\pm c_{2}\tilde{G}_{10,N-2}^{\mp},
f4±=c1FN2±\displaystyle f_{4}^{\pm}=-c_{1}F_{N-2}^{\pm}\; , g4±=c2G~11,N2±.\displaystyle\;g_{4}^{\pm}=-c_{2}\tilde{G}_{11,N-2}^{\pm}.

Here, G~ij,N2\tilde{G}_{ij,N-2}^{\mp} have the same form as GN2±G^{\pm}_{N-2} but with ϕN1i+ϕNj\phi^{i}_{N-1}+\phi^{j}_{N} added to the argument of the cosine terms inside the summation.

From here onward we confine ourselves to N>2N>2. Using the inequality in Eq.(22) for θN0\theta^{0}_{N} and θN1\theta^{1}_{N} in Eq.(28) we get

|SN±|\displaystyle|\braket{S_{N}^{\pm}}|\leq f1±2cos2θN10+g1±2sin2θN10\displaystyle\sqrt{f_{1}^{\pm^{2}}\cos^{2}\theta^{0}_{N-1}+g_{1}^{\pm^{2}}\sin^{2}\theta^{0}_{N-1}}
+\displaystyle+ f2±2cos2θN10+g2±2sin2θN10\displaystyle\sqrt{f_{2}^{\pm^{2}}\cos^{2}\theta^{0}_{N-1}+g_{2}^{\pm^{2}}\sin^{2}\theta^{0}_{N-1}}
+\displaystyle+ f3±2cos2θN11+g3±2sin2θN11\displaystyle\sqrt{f_{3}^{\pm^{2}}\cos^{2}\theta^{1}_{N-1}+g_{3}^{\pm^{2}}\sin^{2}\theta^{1}_{N-1}}
+\displaystyle+ f4±2cos2θN11+g4±2sin2θN11.\displaystyle\sqrt{f_{4}^{\pm^{2}}\cos^{2}\theta^{1}_{N-1}+g_{4}^{\pm^{2}}\sin^{2}\theta^{1}_{N-1}}.

It is possible to check that the inequality in the last step is not a loose bound and that we can actually reach the equality for some choice of the variables. Inequality (22) turns into an equality when tanθ=y/x\tan\theta=y/x. Applying this to each of the four terms in Eq.(A), we obtain the set of equations:

tanθN0=tanθN10g1±f1±,tanθN0=tanθN11g2±f2±tanθN1=tanθN10g3±f3±,tanθN1=tanθN11g4±f4±\begin{array}[]{ll}\tan\theta^{0}_{N}=\tan\theta^{0}_{N-1}\frac{g_{1}^{\pm}}{f_{1}^{\pm}}\quad,\quad\tan\theta^{0}_{N}=\tan\theta^{1}_{N-1}\frac{g_{2}^{\pm}}{f_{2}^{\pm}}\\ \\ \tan\theta^{1}_{N}=\tan\theta^{0}_{N-1}\frac{g_{3}^{\pm}}{f_{3}^{\pm}}\quad,\quad\tan\theta^{1}_{N}=\tan\theta^{1}_{N-1}\frac{g_{4}^{\pm}}{f_{4}^{\pm}}\end{array} (31)

For the rest of our argument, at each stage, we make sure that these equations, which we call the consistency equations, are satisfied.

Now define HN±H_{N}^{\pm} as the sum of the first two terms in Eq.(A):

HN±=\displaystyle H_{N}^{\pm}= f1±2cos2θN10+g1±2sin2θN10\displaystyle\sqrt{f_{1}^{\pm^{2}}\cos^{2}\theta^{0}_{N-1}+g_{1}^{\pm^{2}}\sin^{2}\theta^{0}_{N-1}}
+\displaystyle+ f2±2cos2θN10+g2±2sin2θN10.\displaystyle\sqrt{f_{2}^{\pm^{2}}\cos^{2}\theta^{0}_{N-1}+g_{2}^{\pm^{2}}\sin^{2}\theta^{0}_{N-1}}.

Setting HN±/θN10=0\partial H^{\pm}_{N}/\partial\theta^{0}_{N-1}=0, we find that the maxima of HN±H^{\pm}_{N} occur at θN10=0,π/2\theta^{0}_{N-1}=0,\pi/2. When θN10=0\theta^{0}_{N-1}=0, HN±=|f1±|+|f2±|H_{N}^{\pm}=|f_{1}^{\pm}|+|f_{2}^{\pm}| and when θN10=π/2\theta^{0}_{N-1}=\pi/2, HN±=|g1±|+|g2±|H_{N}^{\pm}=|g_{1}^{\pm}|+|g_{2}^{\pm}|. Therefore, the maximum of HN±H_{N}^{\pm} is

max[HN]=max(fmax,gmax)\displaystyle\max[H_{N}]=\max(f_{\max},g_{\max}) (33)

where

fmax=max[|f1±|+|f2±|]gmax=max[|g1±|+|g2±|].\begin{array}[]{l}f_{\max}=\max\left[\left|f_{1}^{\pm}\right|+\left|f_{2}^{\pm}\right|\right]\\ g_{\max}=\max\left[\left|g_{1}^{\pm}\right|+\left|g_{2}^{\pm}\right|\right].\end{array} (34)

Using Eq.29,

fmax=max[c1|FN2±±FN2|]=max[c1|FN2±|]f_{\max}=\max\left[c_{1}\left|F_{N-2}^{\pm}\pm F_{N-2}^{\mp}\right|\right]=\max\left[c_{1}\left|F_{N-2}^{\pm}\right|\right] (35)

where the second equality comes from the fact that FN2±F^{\pm}_{N-2} and FN2F^{\mp}_{N-2} are symmetrically related in such a way that half the terms cancel out when the two are added together, yielding |FN2±±FN2||FN2±|\left|F_{N-2}^{\pm}\pm F_{N-2}^{\mp}\right|\leq\left|F_{N-2}^{\pm}\right|. Using Eq.10, we get

fmax={c12N12 if N is odd c12N22 if N is even .f_{\max}=\left\{\begin{array}[]{ll}c_{1}2^{\frac{N-1}{2}}&\text{ if }N\text{ is odd }\\ c_{1}2^{\frac{N-2}{2}}&\text{ if }N\text{ is even }.\end{array}\right. (36)

Similarly, using Eq.29,

gmax=max[c2|G~00,N2±±G~01,N2|]=max[2c2|GN2±|].g_{\max}=\max\left[c_{2}\left|\tilde{G}_{00,N-2}^{\pm}\pm\tilde{G}_{01,N-2}^{\mp}\right|\right]=\max\left[2c_{2}\left|G_{N-2}^{\pm}\right|\right]. (37)

In this case, the second equality has an additional factor of two because we can choose azimuthal angles ϕ(i)x(i)\phi_{(i)}^{x(i)} along with ϕN0\phi^{0}_{N} and ϕN1\phi^{1}_{N} such that both G~00,N2\tilde{G}_{00,N-2}^{\mp} and G~01,N2\tilde{G}_{01,N-2}^{\mp} achieve their maximum value concurrently. Using Eq.15, we get

gmax=c222N2.\displaystyle g_{\max}=c_{2}\sqrt{2}2^{N-2}. (38)

Substituting Eq.36 and 38 into Eq.33 we obtain:

For odd NN

max[HN±]odd ={2N12cos(2α) if 2N2|tan(2α)|222N2sin(2α) if 2N2|tan(2α)|2.\max\left[H_{N}^{\pm}\right]_{\text{odd }}=\left\{\begin{array}[]{ll}2^{\frac{N-1}{2}}\cos(2\alpha)&\text{ if }2^{\frac{N}{2}}|\tan(2\alpha)|\leq 2\\ \sqrt{2}2^{N-2}\sin(2\alpha)&\text{ if }2^{\frac{N}{2}}|\tan(2\alpha)|\geq 2.\end{array}\right. (39)

For even NN

max[HN±]even ={2N22 if 2N2sin(2α)222N2sin(2α) if 2N2sin(2α)2.\max\left[H_{N}^{\pm}\right]_{\text{even }}=\left\{\begin{array}[]{ll}2^{\frac{N-2}{2}}&\text{ if }2^{\frac{N}{2}}\sin(2\alpha)\leq\sqrt{2}\\ \sqrt{2}2^{N-2}\sin(2\alpha)&\text{ if }2^{\frac{N}{2}}\sin(2\alpha)\geq\sqrt{2}.\end{array}\right. (40)

We can follow the same procedure as above for the last two terms of Eq.A (denote their sum as KN±K^{\pm}_{N}), this time maximizing over θN11\theta^{1}_{N-1} in the first step. We obtain the same maxima for KN±K^{\pm}_{N}:

For odd NN

max[KN±]odd ={2N12cos(2α) if 2N2|tan(2α)|222N2sin(2α) if 2N2|tan(2α)|2\max\left[K_{N}^{\pm}\right]_{\text{odd }}=\left\{\begin{array}[]{ll}2^{\frac{N-1}{2}}\cos(2\alpha)&\text{ if }2^{\frac{N}{2}}|\tan(2\alpha)|\leq 2\\ \sqrt{2}2^{N-2}\sin(2\alpha)&\text{ if }2^{\frac{N}{2}}|\tan(2\alpha)|\geq 2\end{array}\right. (41)

For even NN

max[KN±]even ={2N22 if 2N2sin(2α)222N2sin(2α) if 2N2sin(2α)2.\max\left[K_{N}^{\pm}\right]_{\text{even }}=\left\{\begin{array}[]{ll}2^{\frac{N-2}{2}}&\text{ if }2^{\frac{N}{2}}\sin(2\alpha)\leq\sqrt{2}\\ \sqrt{2}2^{N-2}\sin(2\alpha)&\text{ if }2^{\frac{N}{2}}\sin(2\alpha)\geq\sqrt{2}.\end{array}\right. (42)

Since max[HN±]=max[KN±]\max[H^{\pm}_{N}]=\max[K^{\pm}_{N}], substituting these into Eq.A we get the bound

|SN±|2max[HN±]=2max[KN±].\displaystyle|\braket{S_{N}^{\pm}}|\leq 2\max[H^{\pm}_{N}]=2\max[K^{\pm}_{N}]. (43)

In the above procedure, apart from the angles θK10\theta^{0}_{K-1} for HN±H^{\pm}_{N} and θK11\theta^{1}_{K-1} for KN±K^{\pm}_{N}, the choice of angles that achieve the maximum for HN±H^{\pm}_{N} and KN±K^{\pm}_{N} are the same, so the maximum for both functions can be reached simultaneously. Hence, this bound is tight. Finally, inserting the maximum values of HN±H^{\pm}_{N} and KN±K^{\pm}_{N} into Eq.43, we arrive at the maximum expectation value of SN±S^{\pm}_{N} given in Eq.18 and 19. This is the same maxima achieved in Eq.(17).