This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Multiple pendulum and nonuniform distribution of average kinetic energy

Tetsuro Konishi tkonishi@isc.chubu.ac.jp College of Engineering, Chubu University, Kasugai 487-8501, Japan.    Tatsuo Yanagita Department of Engineering Science, Osaka Electro-Communication University, Neyagawa 572-8530, Japan
Abstract

Multiple pendulums are investigated numerically and analytically to clarify the nonuniformity of average kinetic energies of particles. The nonuniformity is attributed to the system having constraints and it is consistent with the generalized principle of the equipartition of energy. With the use of explicit expression for Hamiltonian of a multiple pendulum, approximate expressions for temporal and statistical average of kinetic energies are obtained, where the average energies are expressed in terms of masses of particles. In a typical case, the average kinetic energy is large for particles near the end of the pendulum and small for those near the root. Moreover, the exact analytic expressions for the average kinetic energy of the particles are obtained for a double pendulum.

I Introduction

Pendulums are useful to explore the fundamental behavior of various physical systems. A simple pendulum is a good example of a system that can demonstrate periodic motion Galilei (1638). When the amplitude of the oscillation is small, i.e., the total energy is small, the periodic motion of a simple pendulum is well approximated by that of a harmonic oscillator, wherein the period of the oscillation does not depend on the amplitude Goldstein (1980).

The fundamental modes and principle of superposition can be understood by studying a double pendulum Bernoulli (1738, 1740); Cannon and Dostrovsky (1981); Goldstein (1980). When the amplitude of oscillation is small, there are two special motions called the fundamental modes, wherein both the upper and lower pendulums oscillate in the same period. For a small-amplitude oscillation, one can understand that every motion of the double pendulum is expressed by the superposition of the two fundamental modes. The principle of superposition is a key concept for understanding various linear phenomena. Since both fundamental modes of the double pendulum indicates periodic motion, the double pendulum exhibits periodic or quasiperiodic motion when the amplitudes are small.

Meanwhile, a double pendulum is also a good example of a system that indicates chaotic motion Lichtenberg and Lieberman (1992); Ott (2002); Tabor (1989); Shinbrot et al. (1992); Stachowiak and Okada (2006); Shinbrot et al. (1992); Rafat et al. (2009); Dullin (1994); Stachowiak and Szumiński (2015); Ivanov (1999, 2001a, 2000, 2001b). If a large energy is assigned and the amplitudes of displacements are not small, the motion of a double pendulum is no longer regular, and chaotic behavior is observed. Multiple pendulums with three or more degrees of freedom Bernoulli (1738, 1740); Cannon and Dostrovsky (1981) also exhibit chaotic behavior Oyama and Yanagita (1998); Saitoh et al. (1999); Saitoh and Yanagita (2000).

When chaos is strong in a multiple pendulum, one can expect that it admits a statistical description; the long time average of the physical quantity is considered to be approximately equal to the average over the energy surface. Then, each particle in the pendulum can be considered as a subsystem connected to a heat bath that comprises the rest of the pendulum; then, the particles are in a thermal equilibrium.

One may expect that the sytem in thermal equilibrium is almost uniform. However, a careful observation of the motions of a multiple pendulum indicate that the particle at the end of the pendulum moves faster than the particle nearest to the root of the pendulum, even if the masses of all particles are the same. In fact, one author conducted numerical computations and revealed that the time average of the kinetic energies of a multiple pendulum are different Oyama and Yanagita (1998); Saitoh et al. (1999); Saitoh and Yanagita (2000). In this paper, we revisit the observation and explain the origin of differences in the average kinetic energies using the generalized principle of the equipartition of energy Tolman (1918, 1938); Kubo et al. (1990); Konishi and Yanagita (2009). The nonuniformity of the average kinetic energy is consistent with the generalized principle of equipartition of energy. Thus, the average kinetic energy can be nonuniform under a thermal equilibrium.

The remainder of this paper is organized as follows. In Section II, we describe our model, a multiple pendulum. Then, we provide an explicit form of the Lagrangian and Hamiltonian of a multiple pendulum. In Section III, we present the results of numerical computation where the values of time-average kinetic energies of particles in the multiple pendulum are not equal, at the same time the generalized principle of equipartition holds. In Section IV, we explain the nonuniform distribution of average kinetic energy based on statistical mechanics; further, an exact expression is obtained for the double pendulum. Finally, Section V presents the summary and the discussions.

II Model

The multiple pendulum examined in this study is composed of NN particles serially connected by NN massless links of fixed length in a uniform gravitational field, as illustrated in Fig.1. One end is fixed to a point we define as the origin (0,0)(0,0). The particles and links pass through each other if they arrive at the same position. The particles move in a fixed vertical plane, which is defined as the xyxy-plane. The xx-axis is considered to be in the horizontal direction, and the yy-axis, in the vertical direction with the upward direction representing the positive yy direction. We let mim_{i}, ri(xi,yi)\overrightarrow{r_{i}}\equiv(x_{i},y_{i}), and i\ell_{i} represent the mass of the ii’th particle, position of the ii’th particle, and length of ii’th link, respectively. gg represents the constant of gravitational acceleration. The distance between ii’th and i+1i+1’th particles is fixed for all ii. In this sense, the system has constraints.

In terms of the Cartesian coordinates (xi,yi)(x_{i},y_{i}), the kinetic energy of the ii’th particle KiK_{i}, total kinetic energy KK, and potential energy UU are

Ki\displaystyle K_{i} =mi2(x˙i2+y˙i2),\displaystyle=\frac{m_{i}}{2}(\dot{x}_{i}^{2}+\dot{y}_{i}^{2})\ , (1)
K\displaystyle K =i=1NKi,\displaystyle=\sum_{i=1}^{N}K_{i}\ , (2)
U\displaystyle U =i=1Nmigyi.\displaystyle=\sum_{i=1}^{N}m_{i}gy_{i}\ . (3)

Using these equations, the system is defined by a Lagrangian LL and constraints GiG_{i}, which are given as

L\displaystyle L =KU=i=1Nmi2(x˙i2+y˙i2)i=1Nmigyi,\displaystyle=K-U=\sum_{i=1}^{N}\frac{m_{i}}{2}\left(\dot{x}_{i}^{2}+\dot{y}_{i}^{2}\right)-\sum_{i=1}^{N}m_{i}gy_{i}\ , (4)
Gi\displaystyle G_{i} |riri1|2i2=0,i=1,2,,N,\displaystyle\equiv\left|\overrightarrow{r_{i}}-\overrightarrow{r_{i-1}}\right|^{2}-\ell_{i}^{2}=0\ ,i=1,2,\cdots,N, (5)

where r0(x0,y0)(0,0)\overrightarrow{r_{0}}\equiv(x_{0},y_{0})\equiv(0,0) and a dot over each symbol represents derivative with respect to time e.g., x˙i=dxdt\dot{x}_{i}=\frac{dx}{dt}.

Refer to caption
Figure 1: Multiple pendulum: Definition of variables and parameters

If we denote φi\varphi_{i} as the angle between the ii’th link and the y-y direction (direction of gravity), we have

xi\displaystyle x_{i} =xi1+isinφi=j=1ijsinφj,\displaystyle=x_{i-1}+\ell_{i}\sin\varphi_{i}\ \ =\sum_{j=1}^{i}\ell_{j}\sin\varphi_{j}, (6)
yi\displaystyle y_{i} =yi1icosφi=j=1ijcosφj.\displaystyle=y_{i-1}-\ell_{i}\cos\varphi_{i}\ \ =-\sum_{j=1}^{i}\ell_{j}\cos\varphi_{j}\,. (7)

The Lagrangian (4) is then expressed in terms of φi\varphi_{i}, i=1,2,,Ni=1,2,\cdots,N as

L\displaystyle L =KU,\displaystyle=K-U\ , (8)
K\displaystyle K =i,j=1N12A(φ)ijφ˙iφ˙j,\displaystyle=\sum_{i,j=1}^{N}\frac{1}{2}A(\varphi)_{ij}\dot{\varphi}_{i}\dot{\varphi}_{j}\ , (9)
U\displaystyle U =i=1Nmigj=1ijcosφj,\displaystyle=-\sum_{i=1}^{N}m_{i}g\sum_{j=1}^{i}\ell_{j}\cos\varphi_{j}\ , (10)

where the N×NN\times N matrix AA is defined as

A(φ)nk(i=max(n,k)Nmi)nkcos(φnφk).A(\varphi)_{nk}\equiv\left(\sum_{i=\max(n,k)}^{N}m_{i}\right)\ell_{n}\ell_{k}\cos(\varphi_{n}-\varphi_{k})\ \ . (11)

The derivations of Eqs. (9) and (11) are presented in Appendix  A.

Using Eqs.(6) and (7), KiK_{i} can be expressed in the quadratic form of φ˙\dot{\varphi} as

Ki\displaystyle K_{i} =mi2j=1ik=1iφ˙jφ˙kjkcos(φjφk)\displaystyle=\frac{m_{i}}{2}\sum_{j=1}^{i}\sum_{k=1}^{i}\dot{\varphi}_{j}\dot{\varphi}_{k}\ell_{j}\ell_{k}\cos(\varphi_{j}-\varphi_{k}) (12)
=12j,kAjk(i)φ˙jφ˙k\displaystyle=\frac{1}{2}\sum_{j,k}A_{jk}^{(i)}\dot{\varphi}_{j}\dot{\varphi}_{k} (13)

where A(i)A^{(i)} represents a N×NN\times N matrix defined as

Ajk(i)={mijkcos(φjφk)jiandki,0otherwise.A_{jk}^{(i)}=\begin{cases}m_{i}\ell_{j}\ell_{k}\cos(\varphi_{j}-\varphi_{k})&\cdots j\leq i\ \text{and}\ k\leq i\ ,\\ 0&\cdots\text{otherwise}\ .\end{cases} (14)

Because iKi=K\sum_{i}K_{i}=K, the sum of A(i)A^{(i)} with respect to ii is equal to the matrix AA:

i=1NAjk(i)=Ajk.\sum_{i=1}^{N}A_{jk}^{(i)}=A_{jk}\ . (15)

Matrices AA and A(i)A^{(i)} depend on coordinates φ\varphi.

The momentum pip_{i} canonically conjugate to the coordinate φi\varphi_{i} is defined as

piLφ˙i.p_{i}\equiv\displaystyle\frac{\partial L}{\partial\dot{\varphi}_{i}}\ . (16)

Then, we have

pn\displaystyle p_{n} =k=1NAnkφ˙k,\displaystyle=\sum_{k=1}^{N}A_{nk}\dot{\varphi}_{k}\,, (17)
K\displaystyle K =12j,kpjAjk1pk.\displaystyle=\frac{1}{2}\sum_{j,k}p_{j}A^{-1}_{jk}p_{k}\ . (18)

KiK_{i} using momentum pp is expressed as

Ki=12j,k,ξ,ηAjk(i)Ajξ1Akη1pξpη,K_{i}=\frac{1}{2}\sum_{j,k,\xi,\eta}A_{jk}^{(i)}A^{-1}_{j\xi}A^{-1}_{k\eta}p_{\xi}p_{\eta}\ , (19)

Using Eq.(18), the Hamiltonian of a multiple pendulum is given as

H=12j,k=1NpjAjk1pki=1Nmigj=1ijcosφj.H=\frac{1}{2}\sum_{j,k=1}^{N}p_{j}A^{-1}_{jk}p_{k}-\sum_{i=1}^{N}m_{i}g\sum_{j=1}^{i}\ell_{j}\cos\varphi_{j}\ . (20)

III Numerical Example

III.1 Simulation Method

First, let us explain the methods of numerical simulation using which we integrate the equation of motion of the multiple pendulum. The equation of motion derived from the Lagrangian written in terms of φ\varphi is complicated because of the dependence of the kinetic energy on φ\varphi. Hence, we use the equation of motion written in terms of the Cartesian coordinates xyxy derived from Eqs.(4) and (5). The equation of motion includes the terms from the constraint characterized by the coefficients called “Lagrange multipliers” Goldstein (1980). We numerically evaluate the Lagrange multipliers at each step of the integration to ensure that the constraints in Eq.(5) are satisfied. The idea used in this method is the same as that in the “RATTLE” algorithm Leimkuhler and Reich (2004); http://www.charmm.org/ ; Vesely (2013). We use the fourth-order symplectic integrator composed of three second-order symplectic integrators  Leimkuhler and Reich (2004); Yoshida (1990) incorporating forces from the constraints.

We calculate the kinetic energies of the particles of the multiple pendulum. Let us denote Ki(t)K_{i}(t) as the kinetic energy of the ii’th particle (Eq.(1)) at time tt. The time average of Ki(t)K_{i}(t) is defined as

Ki¯(t)1t0tKi(t)𝑑t.\overline{K_{i}}(t)\equiv\frac{1}{t}\int_{0}^{t}K_{i}(t^{\prime})\,dt^{\prime}\ . (21)

III.2 Simulation Results

Let us observe some typical time evolutions of the multiple pendulum obtained from the numerical simulation. Here, we adopt the initial condition x˙i(0)=y˙i(0)=0\dot{x}_{i}(0)=\dot{y}_{i}(0)=0 for all ii; φi(0)=θ\varphi_{i}(0)=\theta for all ii. This is a stretched configuration with angle θ\theta.

Let us consider the initial angle as θ=π/2\theta=\pi/2. The top panel of Fig.2 shows the chaotic motion after a short transient; the bottom panel shows the temporal evolution of the average kinetic energies Ki¯(t)\overline{K_{i}}(t). Further, Ki¯(t)\overline{K_{i}}(t) does not converge to a single value; on the contrary, they converge to different values, i.e., the average kinetic energy is not uniform.

Refer to caption
Refer to caption
Figure 2: (top): Time evolution of a multiple pendulum. The horizontal axis represents time, and the vertical axis represents the xx coordinate of each particle xi(t)x_{i}(t). N=7N=7, mi=1m_{i}=1, and i=1\ell_{i}=1 for all ii; further, g=1g=1. The time step for the numerical integration is Δt=0.001\Delta t=0.001. The initial conditions are φi=π/2\varphi_{i}=\pi/2 and φ˙i=0\dot{\varphi}_{i}=0 for all ii. (bottom): Average kinetic energies Ki¯(t)\overline{K_{i}}(t) vs. tt calculated from the time evolution shown in the top panel. The lines represent K1¯(t)\overline{K_{1}}(t), K2¯(t)\overline{K_{2}}(t), \cdots, and K7¯(t)\overline{K_{7}}(t), from the bottom to the top.

The nonuniformity in the Ki¯\overline{K_{i}} remains even if we take a longer time for averaging. Fig. 3 shows a plot of the average kinetic energy of each particle Ki¯\overline{K_{i}} (Eq.(21)) against ii for N=16N=16. The values of Ki¯\overline{K_{i}} are not the same. The Ki¯\overline{K_{i}} of particles near the end are large, whereas those of particles near the root are small. This is consistent with Yanagita et al.’s first observation Oyama and Yanagita (1998); Saitoh et al. (1999); Saitoh and Yanagita (2000).

Refer to caption
Figure 3: Long time average of kinetic energy Ki¯(T)\overline{K_{i}}(T) vs. ii. N=16N=16, mi=1m_{i}=1, and i=1\ell_{i}=1 for all ii; further, g=1g=1. The initial condition is φi=π/2\varphi_{i}=\pi/2, φ˙i=0\dot{\varphi}_{i}=0 for all ii. T=1.0×104T=1.0\times 10^{4}.

III.3 Non-uniformity of Average Kinetic Energy and the Generalized Principle of the Equipartition of Energy

Let us consider the relation between the non-uniformity of Ki¯\overline{K_{i}} we observed in the previous subsection and the generalized principle of the equipartition of energy Tolman (1918, 1938); Kubo et al. (1990); Konishi and Yanagita (2009).

It is natural to assume that the set of points (φi(t),pi(t)),i=1,2,,N\left(\varphi_{i}(t),p_{i}(t)\right),i=1,2,\cdots,N generated from the time series is close to the microcanonical ensemble because the motion of the multiple pendulum considered in this study is highly chaotic. Further, each single particle in the multiple pendulum can be regarded as a subsystem attached to a “heat bath” composed of the rest of the pendulum (N1N-1 particles), and we can roughly approximate the statistical distribution of the state of the single particle as a canonical distribution at some temperature. This assumption allows us to interpret the original phenomena of the nonuniformity of the temporal average Ki¯\overline{K_{i}} as the nonuniformity of the thermal average Ki\left\langle K_{i}\right\rangle . Below, we explain the nonuniformity of the thermal average using the generalized principle of the equipartition of energy.

Eq.(9) shows that the kinetic energy of the system has off-diagonal elements that depend on the coordinate φ\varphi. Thus, we cannot apply the ordinary form of the principle of the equipartition of energy. Instead, we use the generalized principle of the equipartition of energy, which states

Ki(c)=12kBT.\left<K_{i}^{(c)}\right>=\frac{1}{2}k_{B}T\ . (22)

Here, TT represents the temperature, kBk_{B} denotes Boltzmann’s constant, the bracket \left\langle\cdots\right\rangle represents the thermal average, and Ki(c)K_{i}^{(c)} is defined as

Ki(c)12piKpi,K_{i}^{(c)}\equiv\frac{1}{2}p_{i}\displaystyle\frac{\partial K}{\partial p_{i}}, (23)

where pip_{i} represents the momentum canonically conjugate to the coordinate φi\varphi_{i}. In Eq.(23), the summation with respect to ii is not considered. We call KiK_{i} and Ki(c)K_{i}^{(c)} the “linear kinetic energy” and “canonical kinetic energy”, respectively.

For the multiple pendulum, Ki(c)K_{i}^{(c)} (Eq.(23)) is

Ki(c)=k=1N12piAik1pk.K_{i}^{(c)}=\sum_{k=1}^{N}\frac{1}{2}p_{i}A^{-1}_{ik}p_{k}\,. (24)

This is different from the kinetic energy of the ii’th particle KiK_{i} defined in (Eq.(19)), hence

KiKi(c).K_{i}\neq K_{i}^{(c)}\ . (25)

Using Eqs. (22) and (25), Ki\left\langle K_{i}\right\rangle, the average of KiK_{i}, does not take the same value at the thermal equilibrium in general.

Fig. 4 shows the time average of canonical kinetic energy  Eq.(23) of the multiple pendulum using the same time series as in Fig. 3. Here, we can see that Ki(c)¯\overline{K_{i}^{(c)}} takes almost the same value and the generalized principle of the equipartition of energy is realized. That is, even when the thermal equilibrium is established and the generalized principle of equipartition of energy holds, the average of KiK_{i} takes different values and the nonuniformity of the average kinetic energy is realized in the thermal equilibrium.

Refer to caption
Figure 4: Long time average of canonical kinetic energy Ki(c)¯\overline{K_{i}^{(c)}} (Eq.(23)) vs. ii. This plot was obtained using the same time series as that in Fig. 3.

IV Analytical explanation

IV.1 Temporal average

If we denote

Δxixixi1,Δyiyiyi1,\Delta x_{i}\equiv x_{i}-x_{i-1}\ ,\ \Delta y_{i}\equiv y_{i}-y_{i-1}\ , (26)

Eq.(24), the “canonical kinetic energy” of the ii’th degree of freedom, is expressed as

Kic=j=1N12(n=max(i,j)Nmn)[Δx˙iΔx˙j+Δy˙iΔy˙j].K_{i}^{c}=\sum_{j=1}^{N}\frac{1}{2}\left(\sum_{n=\max(i,j)}^{N}m_{n}\right)\left[\Delta\dot{x}_{i}\Delta\dot{x}_{j}+\Delta\dot{y}_{i}\Delta\dot{y}_{j}\right]\ \ . (27)

where  Δx˙1=x˙1\Delta\dot{x}_{1}=\dot{x}_{1}   and  Δy˙1=y˙1\Delta\dot{y}_{1}=\dot{y}_{1}  because x0y00x_{0}\equiv y_{0}\equiv 0. Detail of calculation is shown in Appendix B.

Let us assume

Δx˙iΔx˙j¯=0,Δy˙iΔy˙j¯=0(ij).\overline{\Delta\dot{x}_{i}\Delta\dot{x}_{j}}=0\ ,\ \overline{\Delta\dot{y}_{i}\Delta\dot{y}_{j}}=0\ \ (i\neq j)\ . (28)

This assumption implies that each link in the multiple pendulum rotates statistically independently.

Then, we have by straightforward calculation that

Kic¯\displaystyle\overline{K_{i}^{c}} =12(n=iNmn)[(x˙i2¯+y˙i2¯)(x˙i12¯+y˙i12¯)]\displaystyle=\frac{1}{2}\left(\sum_{n=i}^{N}m_{n}\right)\left[\left(\overline{\dot{x}_{i}^{2}}+\overline{\dot{y}_{i}^{2}}\right)-\left(\overline{\dot{x}_{i-1}^{2}}+\overline{\dot{y}_{i-1}^{2}}\right)\right] (29)
=(n=iNmn)(1miKi¯1mi1Ki1¯).\displaystyle=\left(\sum_{n=i}^{N}m_{n}\right)\left(\frac{1}{m_{i}}\overline{K_{i}}-\frac{1}{m_{i-1}}\overline{K_{i-1}}\right)\ . (30)

Assuming that the temporal average Kic¯\overline{K^{c}_{i}} is equal to the thermal average Kic\left<K^{c}_{i}\right> and using the generalized principle of equipartition of energy  Tolman (1918, 1938); Kubo et al. (1990) for the “canonical kinetic energy” we have Kic¯=12kBT\overline{K^{c}_{i}}=\frac{1}{2}k_{B}T, and the long time average of “linear kinetic energy” of the ii’th particle KiK_{i} is recursively expressed as

Ki¯=mimi1Ki1¯+min=iNmn12kBT.\overline{K_{i}}=\frac{m_{i}}{m_{i-1}}\,\overline{K_{i-1}}+\frac{m_{i}}{\sum_{n=i}^{N}m_{n}}\,\cdot\frac{1}{2}k_{B}T\ . (31)

Since (x0,y0)=(0,0)(x_{0},y_{0})=(0,0) and K00K_{0}\equiv 0, we have

Ki¯=mi(j=1i1n=iNmn)12kBT.\overline{K_{i}}=m_{i}\left(\sum_{j=1}^{i}\frac{1}{\sum_{n=i}^{N}m_{n}}\right)\cdot\frac{1}{2}k_{B}T\,. (32)

Hence, the temporal average of the kinetic energy is nonuniform.

If all masses have the same value m1=m2==mNm_{1}=m_{2}=\cdots=m_{N}, then Kn¯\overline{K_{n}}’s are explicitly expressed as

Ki¯=(j=1i1Nj+1)kBT2\overline{K_{i}}=\left(\sum_{j=1}^{i}\frac{1}{N-j+1}\right)\frac{k_{B}T}{2} (33)

so that the average linear kinetic energies Ki¯\overline{K_{i}} can monotonically increase from the root to the end of the pendulum as

K1¯<K2¯<<KN¯.\overline{K_{1}}<\overline{K_{2}}<\cdots<\overline{K_{N}}\ . (34)

This is consistent with the numerical results shown in Fig. 3.

IV.2 Statistical Average

The nonuniformity of the average energy can be explained using a statistical method. Suppose the system is under thermal equilibrium at temperature TT. The statistical average of the linear kinetic energy KiK_{i} is then defined as

Ki1ZKieβH𝑑Γ,\left<K_{i}\right>\equiv\frac{1}{Z}\int K_{i}e^{-\beta H}d\Gamma\,, (35)

where ZeβH𝑑ΓZ\equiv\int e^{-\beta H}d\Gamma, β1/kBT\beta\equiv 1/k_{B}T, and dΓdNpdNφd\Gamma\equiv d^{N}\!p\,d^{N}\!\varphi  .

Using the expression for KiK_{i},

Ki=mi2j=1ik=1ijkφ˙jφ˙kcosφjk,\left<K_{i}\right>=\frac{m_{i}}{2}\sum_{j=1}^{i}\sum_{k=1}^{i}\ell_{j}\ell_{k}\left<\dot{\varphi}_{j}\dot{\varphi}_{k}\cos\varphi_{jk}\right>\ , (36)

where φjkφjφk\varphi_{jk}\equiv\varphi_{j}-\varphi_{k} .

Using Eq.(19), we can express Eq.(36) in terms of the canonical momenta pip_{i} as

Ki=12j,k,ξ,ηAjk(i)Ajξ1Akη1pξpη.\left\langle K_{i}\right\rangle=\frac{1}{2}\sum_{j,k,\xi,\eta}\left\langle A_{jk}^{(i)}A^{-1}_{j\xi}A^{-1}_{k\eta}p_{\xi}p_{\eta}\right\rangle\ . (37)

Integrating by parts with respect to pp yields

Ki\displaystyle\left\langle K_{i}\right\rangle =12βtr(A(i)A1)\displaystyle=\frac{1}{2\beta}\left\langle\mbox{tr}\left(A^{(i)}A^{-1}\right)\right\rangle (38)
=12β1Ztr(A(i)A1)eβ(12pA1p+U(φ))𝑑Γ.\displaystyle=\frac{1}{2\beta}\frac{1}{Z}\int\mbox{tr}\left(A^{(i)}A^{-1}\right)e^{-\beta\left(\frac{1}{2}pA^{-1}p+U(\varphi)\right)}d\Gamma\ . (39)

Here, matrices A1A^{-1} and A(i)A^{(i)} depend on φ\varphi.

In Eq.(39), we first perform integration with respect to pp, which is a multidimensional Gaussian integral. The result is

eβ(12pA1p)dNp=(2πβ)N/2detA.\int e^{-\beta\left(\frac{1}{2}pA^{-1}p\right)}d^{N}p=\left(\frac{2\pi}{\beta}\right)^{N/2}\sqrt{\det A}\ . (40)

Hence, we have

Z\displaystyle Z =(2πβ)N/2detAeβU(φ)dNφ,\displaystyle=\left(\frac{2\pi}{\beta}\right)^{N/2}\int\sqrt{\det A}\,e^{-\beta U(\varphi)}d^{N}\varphi\ , (41)
Ki\displaystyle\left\langle K_{i}\right\rangle =12βtr(A(i)A1)detAeβU(φ)dNφdetAeβU(φ)dNφ.\displaystyle=\frac{1}{2\beta}\frac{\int\mbox{tr}\left(A^{(i)}A^{-1}\right)\sqrt{\det A}\,e^{-\beta U(\varphi)}d^{N}\varphi}{\int\sqrt{\det A}\,e^{-\beta U(\varphi)}d^{N}\varphi}\ . (42)

In the following, we use these equations to express Ki\left\langle K_{i}\right\rangle for multiple and double pendulums.

IV.2.1 Multiple Pendulum with an arbitrary number of particles

Let us adopt “diagonal approximation”

φ˙jφ˙kcosφjk=0forjk,\left<\dot{\varphi}_{j}\dot{\varphi}_{k}\cos\varphi_{jk}\right>=0\ \text{for}\ j\neq k\,, (43)

and

Ajj11Ajj=1(i=jNmi)j2.\left<A^{-1}_{jj}\right>\approx\left<\frac{1}{A_{jj}}\right>=\frac{1}{\left(\sum_{i=j}^{N}m_{i}\right)\ell_{j}^{2}}\ . (44)

These approximations assumes that each link rotates statistically independently, and we omit all non-diagonal elements of matrix AA, where phase factors such as cos(φiφj)\cos(\varphi_{i}-\varphi_{j}) are included.

Then, we obtain

Ki=mi(j=1i1n=jNmn)12kBT.\left<K_{i}\right>=m_{i}\left(\sum_{j=1}^{i}\frac{1}{\sum_{n=j}^{N}m_{n}}\right)\cdot\frac{1}{2}k_{B}T\,. (45)

This expression is equivalent to that in Eq.(32) if the thermal average on the left-hand side \left<\cdots\right> is replaced by the time average ¯\overline{\cdots}. The details of the calculation are summarized in Appendix C.

This result indicates that when all masses are the same, the average linear kinetic energies are monotonically increasing from the root to the end of the pendulum, as shown in Fig. 3.

K1<K2<<KN.\left<K_{1}\right><\left<{K_{2}}\right><\cdots<\left<{K_{N}}\right>\ . (46)

IV.2.2 Double pendulum

Refer to caption
Figure 5: β\beta-dependence of Ki\left\langle K_{i}\right\rangle for double pendulum. βKi\beta\cdot\left\langle K_{i}\right\rangle are plotted. The upper and lower curves represent K2\left\langle K_{2}\right\rangle and K1\left\langle K_{1}\right\rangle, respectively, obtained from Eqs.(57) and (56), respectively. The symbols represent the numerically obtained values of Eq.(35) using the Markov chain Monte Carlo method. mi=1/2m_{i}=1/2, i=1\ell_{i}=1 for i=1,2i=1,2. g=1g=1.

For the case of the double pendulum, i.e., for the N=2N=2 case, we can obtain the exact expressions for Ki\left\langle K_{i}\right\rangle.

For N=2N=2, matrices AA, A(i)A^{(i)}, defined by Eqs. (11) and (15), respectively, and detA\det A reads

A\displaystyle A =M(12μ212C12μ212C12μ222),\displaystyle=M\begin{pmatrix}\ell_{1}^{2}&\mu_{2}\ell_{1}\ell_{2}C_{12}\\ \mu_{2}\ell_{1}\ell_{2}C_{12}&\mu_{2}\ell_{2}^{2}\end{pmatrix}\ , (47)
A(1)\displaystyle A^{(1)} =Mμ112(1000),\displaystyle=M\mu_{1}\ell_{1}^{2}\begin{pmatrix}1&0\\ 0&0\end{pmatrix}\ , (48)
A(2)\displaystyle A^{(2)} =Mμ2(1212C1212C1222),\displaystyle=M\mu_{2}\begin{pmatrix}\ell_{1}^{2}&\ell_{1}\ell_{2}C_{12}\\ \ell_{1}\ell_{2}C_{12}&\ell_{2}^{2}\end{pmatrix}\ , (49)
detA\displaystyle\det A =M2μ21222(1μ2C122),\displaystyle=M^{2}\mu_{2}\ell_{1}^{2}\ell_{2}^{2}\left(1-\mu_{2}C_{12}^{2}\right)\ , (50)

where

C12\displaystyle C_{12} =cos(φ2φ1),\displaystyle=\cos(\varphi_{2}-\varphi_{1})\ , (51)
M\displaystyle M =m1+m2,\displaystyle=m_{1}+m_{2}\ , (52)
μi\displaystyle\mu_{i} =mi/M.\displaystyle=m_{i}/M\ . (53)

From these, we obtain

tr(A(1)A1)\displaystyle\mbox{tr}\left(A^{(1)}A^{-1}\right) =μ11μ2C122,\displaystyle=\frac{\mu_{1}}{1-\mu_{2}C_{12}^{2}}\ , (54)
tr(A(2)A1)\displaystyle\mbox{tr}\left(A^{(2)}A^{-1}\right) =(1+μ2)2μ2C1221μ2C122=2tr(A(1)A1).\displaystyle=\frac{(1+\mu_{2})-2\mu_{2}C_{12}^{2}}{1-\mu_{2}C_{12}^{2}}=2-\mbox{tr}\left(A^{(1)}A^{-1}\right)\ . (55)

Here, we used μ1+μ2=1\mu_{1}+\mu_{2}=1.

We obtain the exact expressions of Ki\left\langle K_{i}\right\rangle for a double pendulum by substituting these into Eq.(42) and expanding detA\det A as a series of μ2C122\mu_{2}C_{12}^{2}.

K1\displaystyle\left\langle K_{1}\right\rangle =12βμ1n=0(2n1)!!n!2nμ2nRn(α1,α2)I0(α1)I0(α2)n=1(2n3)!!n!2nμ2nRn(α1,α2),\displaystyle=\frac{1}{2\beta}\frac{\displaystyle\mu_{1}\sum_{n=0}^{\infty}\frac{(2n-1)!!}{n!2^{n}}\mu_{2}^{n}R_{n}(\alpha_{1},\alpha_{2})}{\displaystyle I_{0}(\alpha_{1})I_{0}(\alpha_{2})-\sum_{n=1}^{\infty}\frac{(2n-3)!!}{n!2^{n}}\mu_{2}^{n}R_{n}(\alpha_{1},\alpha_{2})}\ , (56)
K2\displaystyle\left\langle K_{2}\right\rangle =1βK1,\displaystyle=\frac{1}{\beta}-\left\langle K_{1}\right\rangle\ , (57)

where

Rn(α1,α2)\displaystyle R_{n}(\alpha_{1},\alpha_{2}) =j=0nC2j2n{(2(nj)1)!!}2\displaystyle=\sum_{j=0}^{n}{}_{2n}C_{2j}\left\{(2(n-j)-1)!!\right\}^{2}
{2jα12j(Inj(α1)α1nj)}{2jα22j(Inj(α2)α2nj)}\displaystyle\cdot\left\{\frac{\partial^{2j}}{\partial\alpha_{1}^{2j}}\left(\frac{I_{n-j}(\alpha_{1})}{\alpha_{1}^{n-j}}\right)\right\}\left\{\frac{\partial^{2j}}{\partial\alpha_{2}^{2j}}\left(\frac{I_{n-j}(\alpha_{2})}{\alpha_{2}^{n-j}}\right)\right\} (58)
α1\displaystyle\alpha_{1} =β(m1+m2)g1,\displaystyle=\beta(m_{1}+m_{2})g\ell_{1}, (59)
α2\displaystyle\alpha_{2} =βm2g2,\displaystyle=\beta m_{2}g\ell_{2}, (60)

and In(z)I_{n}(z) is the modified Bessel function of the nn’th order DLM .

Fig. 5 shows the values of Ki\left\langle K_{i}\right\rangle , i=1,2i=1,2, calculated from Eqs.(56) and (57). We show the result of Eq.(35) obtained from Markov Chain Monte Carlo method by symbols to check the validity of Eqs.(56) and (57). We see that both calculations agree quite well.

Refer to caption
Refer to caption
Refer to caption
Figure 6: 2\ell_{2} dependence of the ratio K1/K2\left\langle K_{1}\right\rangle/\left\langle K_{2}\right\rangle. Values of μ1\mu_{1} are (left) μ1=0.05\mu_{1}=0.05, (middle) μ1=0.5\mu_{1}=0.5, and (right) μ1=0.95\mu_{1}=0.95. Colors represent β=1,2,5\beta=1,2,5, and 1010 from blue to red. 1=1\ell_{1}=1.
Refer to caption
Figure 7: β\beta-dependence of the ratio K1/K2\left\langle K_{1}\right\rangle/\left\langle K_{2}\right\rangle. The solid line represents the values obtained from Eqs.(56) and (57), and the symbols represent values obtained by the Markov Chain Monte Carlo method.

Fig. 5 shows that βKi\beta\cdot\left\langle K_{i}\right\rangle appear to converge to certain finite values as β0\beta\rightarrow 0. In fact, they are calculated as

limβ0βK1\displaystyle\lim_{\beta\rightarrow 0}\beta\cdot\left\langle K_{1}\right\rangle =μ12K(μ2)E(μ2),\displaystyle=\frac{\mu_{1}}{2}\frac{K(\sqrt{\mu_{2}})}{E(\sqrt{\mu_{2}})}\ , (61)

and limβ0βK2\lim_{\beta\rightarrow 0}\beta\cdot\left\langle K_{2}\right\rangle is calculated from Eq.(57). Here, K(k)K(k) and E(k)E(k) represent the complete elliptic integrals of the 1st and 2nd kind DLM , respectively. The calculation of Eq.(61) is presented in Appendix D. From this, we see that, the average kinetic energies do not depend on i\ell_{i} or gg at the high-temperature limit. This is similar to the approximate expression in Eq.(45).

When m1=m2m_{1}=m_{2}, i.e., μ1=μ2=1/2\mu_{1}=\mu_{2}=1/2, we see that

limβ0βK1\displaystyle\lim_{\beta\rightarrow 0}\beta\cdot\left\langle K_{1}\right\rangle =0.3431,\displaystyle=0.3431\cdots\ , (62)
limβ0βK2\displaystyle\lim_{\beta\rightarrow 0}\beta\cdot\left\langle K_{2}\right\rangle =0.6568.\displaystyle=0.6568\cdots\ . (63)

These values agree well with the values obtained from the Markov Chain Monte Carlo method, as shown in Fig. 5.

Now that we have obtained the exact expression for Ki\left\langle K_{i}\right\rangle, we can analyze their dependence on the parameters.

In Fig. 6, we show the 2\ell_{2} dependence of the ratio K1/K2\left\langle K_{1}\right\rangle/\left\langle K_{2}\right\rangle for μ1=0.05\mu_{1}=0.05, 0.50.5, and 0.950.95. In every case, as 2\ell_{2} increases, that is, the length of the lower pendulum increases, the ratio K1/K2\left\langle K_{1}\right\rangle/\left\langle K_{2}\right\rangle increases.

In Figure 7, we plot the β\beta dependence of the ratio K1/K2\left\langle K_{1}\right\rangle/\left\langle K_{2}\right\rangle. We see that for β0\beta\rightarrow 0, the ratio converges to a positive value, and around β1\beta\sim 1, the ratio increases gradually.

In these figures, we note two remarkable features:

  • (i) At every temperature we have K1<K2\left\langle K_{1}\right\rangle<\left\langle K_{2}\right\rangle. That is, the particle at the end of the pendulum has a larger average kinetic energy than the other particle near the root.

  • (ii) The difference between the average kinetic energies is large for high temperatures and small for low temperatures, and a crossover temperature is observed near β=1\beta=1.

The first feature is proved as follows. From Eq.(54) and μ1+μ2=1\mu_{1}+\mu_{2}=1, we have

0tr(A(1)A1)1tr(A(2)A1)2.0\leq\mbox{tr}\left(A^{(1)}A^{-1}\right)\leq 1\leq\mbox{tr}\left(A^{(2)}A^{-1}\right)\leq 2\ . (64)

Eqs.(64) and (38) indicate that

0K112βK21β0\leq\left\langle K_{1}\right\rangle\leq\frac{1}{2\beta}\leq\left\langle K_{2}\right\rangle\leq\frac{1}{\beta}\ (65)

for any values of parameters mim_{i}, i\ell_{i}, and for any temperature. Hence, the particle at the end always has a larger average kinetic energy than the other particle for a double pendulum.

Refer to caption
Figure 8: β\beta-dependence of cos(φi)\left\langle\cos(\varphi_{i})\right\rangle obtained by the Markov Chain Monte Carlo method. Open circles represent i=1i=1, and open triangles represent i=2i=2. The parameters were the same as those in Fig. 5.

Let us consider the latter feature. In Fig.8, we show cosφi\left\langle\cos\varphi_{i}\right\rangle calculated by the Markov Chain Monte Carlo method. We observe that for high temperatures β0\beta\sim 0, cosφi0\left\langle\cos\varphi_{i}\right\rangle\sim 0 for both i=1i=1 and i=2i=2. Hence, angles take various values, and the pendulum shows the rotational motion. For low temperature β1\beta\gg 1, cosφi1\left\langle\cos\varphi_{i}\right\rangle\sim 1 that is, φi0\varphi_{i}\sim 0 for both i=1i=1 and i=2i=2; the pendulum exhibits a small-angle liberation. Hence, the crossover temperature observed in Fig.5 is related to crossover between the librational and rotational motions of the pendulum.

The change in the motion was observed by examining the Poincaré surface of the section of the double pendulum. Fig. 9 shows the Poincaré surface of section (φ2,p2)(\varphi_{2},p_{2}) taken at φ1=0\varphi_{1}=0 and p1p2cosφ2>0p_{1}-p_{2}\cos\varphi_{2}>0 for several values of the total energy. Definition of the section is explained in Appendix E. As the total energy EE approaches E1E\sim 1, the chaotic region in the phase space rapidly expands and fills most of the energy surface. Hence, we interpret the crossover near β1\beta~{}\sim 1 found in previous figures as the change in motion from the limited librational to the strongly chaotic motion.

Refer to caption
Figure 9: Poincaré surface of section (φ2,p2)(\varphi_{2},p_{2}) at φ1=0\varphi_{1}=0, p1p2cosφ2>0p_{1}-p_{2}\cos\varphi_{2}>0. The definition of this section is explained in the Appendix E. m1=m2=1m_{1}=m_{2}=1, and 1=2=1\ell_{1}=\ell_{2}=1. The values of the total energy are (left) E=0.1E=0.1,  (middle) E=0.2E=0.2, and  (right) E=1.0E=1.0.

V Summary and discussions

We showed that the averages of the linear kinetic energies of particles in multiple pendulum take different values via numerical computation and analytical calculations. Since the multiple pendulum has constraints, uniformity of average kinetic energy of each particle at thermal equilibrium is no longer guaranteed. On the contrary, another quantity what we call canonical kinetic energy is uniform, and the uniformity is guaranteed by the generalized principle of equipartition of energy. Moreover, the uniformity of the average canonical kinetic energy yields non-uniformity of the average kinetic energy of each particle.

Systems with constraints do not obey the (conventional) principle of the equipartition of energy, but a generalized one. Our discovery added a new example in which we can see how the system systematically deviates from (not generalized) equipartition Konishi and Yanagita (2009).

The average linear kinetic energy of each particle was not the same because of the difference between the linear and canonical kinetic energies. The difference comes from the fact that the kinetic energy depends on coordinates; this dependence is attributed to the existence of constraints. In short, the constraints give rise to the nonuniform distribution of the average linear kinetic energies. This scenario is similar to a chain system without a fixed root, i.e., a freely jointed chain. Freely jointed chain is a simplified model of polymers and is composed of particles connected by massless rigid links Kuhn (1934); Kuhn and Kuhn (1948); Kramers (1946); Fixman (1974); Fixman and Kovac (1974); Mazars (1996); Doi and Edwards (1988); Doi (1996); Strobl (1997); Siegert et al. (1993). For a freely jointed chain, the average kinetic energy of each particle is large near both ends of the chain and small near the middle of the chain Konishi and Yanagita (2009).

For a double pendulum, we successfully obtained the exact expressions for Ki\left\langle K_{i}\right\rangle. They include temperature, mass of two particles, lengths of two links, and gravitational constant. Hence, the exact expression is useful to design a system that has predefined values of average kinetic energy. Exact expressions for average kinetic energies are also obtained for a three-particle two-dimensional freely jointed chain Konishi and Yanagita , where non-uniformity of the average kinetic energies is also shown.

Further, we showed that the dependence of βKi\beta\cdot\left\langle K_{i}\right\rangle on the mass and length of links vanishes in the high-temperature limit. The reason why βKi\beta\cdot\left\langle K_{i}\right\rangle does not depend on i\ell_{i} or gg is interpreted as follows: Ki\left\langle K_{i}\right\rangle depends on i\ell_{i} or gg only through coupling with β\beta, as in Eq.(59) and (60). Hence, in the limit β0\beta\rightarrow 0, the dependence on i\ell_{i} or gg vanishes. This independence is also observed in the approximate expression in Eq.(45). Thus, the approximation adopted to obtain Eq.(45) is similar to the high-temperature approximation.

In this paper we considered a multiple pendulum which have constraints, and the constraints are essential for non-uniformity of average kinetic energies. In real systems there are no exact constraints; constraints appearing in models are often approximations of stiff springs and hard potentials. Suppose we have a multiple spring-pendulum where the rigid links in the multiple pendulm are replaced by springs. If the potentials are sufficiently hard, there will be a large gap between timescales of swinging motion of pendulum and vibrational motion of springs. Then, according to Boltzmann-Jeans theory Boltzmann (1895); Jeans (1903, 1905); Nakagawa and Kaneko (2001); Benettin et al. (1987, 1989); Benettin (1994); Konishi and Yanagita (2010, 2016), the energy exchange between swinging motion of pendulum and vibrational motion of springs take quite long time, typically exponentiall long with respect to the spring constant. Then we have a good chance to observe the system well approximated by rigid multiple pendulum, and average kinetic energies are non-uniform for quite long time.

Particles near the end of the pendulum have large average kinetic energy, which means the energy is localized to the particles near the end of the pendulum. There are other situations where the energy is localized to the end of the rope or chain; for example, the extremely high velocity of falling rope and cracking whip Goriely and McMillen (2002); Tomaszewski and Pieranski (2005). Whether these similar phenomena have the same dynamical origin is an interesting question.

Acknowledgements.
We would like to thank Mikito Toda and Yoshiyuki Y. Yamaguchi for their fruitful discussions. T. K. was supported by a Chubu University Grant (A). T.Y. acknowledges the support of the Japan Society for the Promotion of Science (JSPS) KAKENHI Grants No. 18K03471 and 21K03411.

Appendix A Derivation of the Lagrangian and Hamiltonian of a multiple pendulum

Here, we show a detailed derivation of the Lagrangian of a multiple pendulum (Eq.(4)). To obtain a canonical momentum conjugate to the angle φi\varphi_{i}

piLφ˙i,p_{i}\equiv\displaystyle\frac{\partial L}{\partial\dot{\varphi}_{i}}\ \ , (66)

we need to express LL (i.e., the kinetic energy TT) in terms of φi\varphi_{i} and φ˙i\dot{\varphi}_{i}.

First, we consider that the angles φ\varphi and Cartesian coordinates x,yx,y are related as

xi\displaystyle x_{i} =xi1+isinφi=j=1ijsinφj\displaystyle=x_{i-1}+\ell_{i}\sin\varphi_{i}\ \ =\sum_{j=1}^{i}\ell_{j}\sin\varphi_{j} (67)
yi\displaystyle y_{i} =yi1icosφi=j=1ijcosφj\displaystyle=y_{i-1}-\ell_{i}\cos\varphi_{i}\ \ =-\sum_{j=1}^{i}\ell_{j}\cos\varphi_{j} (68)

Then, we have

x˙i2+y˙i2\displaystyle\dot{x}_{i}^{2}+\dot{y}_{i}^{2} =(j=1ijφ˙jcosφj)2+(j=1ijφ˙jsinφj)2\displaystyle=\left(\sum_{j=1}^{i}\ell_{j}\dot{\varphi}_{j}\cos\varphi_{j}\right)^{2}+\left(\sum_{j=1}^{i}\ell_{j}\dot{\varphi}_{j}\sin\varphi_{j}\right)^{2}
=j=1ik=1ijkφ˙jφ˙k(cosφjcosφk+sinφjsinφk)\displaystyle=\sum_{j=1}^{i}\sum_{k=1}^{i}\ell_{j}\ell_{k}\dot{\varphi}_{j}\dot{\varphi}_{k}\left(\cos\varphi_{j}\cos\varphi_{k}+\sin\varphi_{j}\sin\varphi_{k}\right)
=j=1ik=1ijkφ˙jφ˙kcos(φjφk)\displaystyle=\sum_{j=1}^{i}\sum_{k=1}^{i}\ell_{j}\ell_{k}\dot{\varphi}_{j}\dot{\varphi}_{k}\cos(\varphi_{j}-\varphi_{k}) (69)

and the kinetic energy KK reads

K=i=1Nmi2j=1ik=1ijkφ˙jφ˙kcos(φjφk).K=\sum_{i=1}^{N}\frac{m_{i}}{2}\sum_{j=1}^{i}\sum_{k=1}^{i}\ell_{j}\ell_{k}\dot{\varphi}_{j}\dot{\varphi}_{k}\cos(\varphi_{j}-\varphi_{k})\ . (70)

Using an identity

i=1Nj=1ik=1i=j=1Nk=1N(i=max(j,k)N),\sum_{i=1}^{N}\sum_{j=1}^{i}\sum_{k=1}^{i}=\sum_{j=1}^{N}\sum_{k=1}^{N}\left(\sum_{i=\max(j,k)}^{N}\right)\ , (71)

we obtain

K\displaystyle K =12j=1Nk=1N(i=max(j,k)Nmi)jkφ˙jφ˙kcos(φjφk)\displaystyle=\frac{1}{2}\sum_{j=1}^{N}\sum_{k=1}^{N}\left(\sum_{i=\max(j,k)}^{N}m_{i}\right)\ell_{j}\ell_{k}\dot{\varphi}_{j}\dot{\varphi}_{k}\cos(\varphi_{j}-\varphi_{k}) (72)
12j=1Nk=1NAjk(φ)φ˙jφ˙k,\displaystyle\equiv\frac{1}{2}\sum_{j=1}^{N}\sum_{k=1}^{N}A_{jk}(\varphi)\dot{\varphi}_{j}\dot{\varphi}_{k}\ , (73)

where the N×NN\times N matrix A(φ)A(\varphi) is defined as

Ajk(φ)=(i=max(j,k)Nmi)jkcos(φjφk).A_{jk}(\varphi)=\left(\sum_{i=\max(j,k)}^{N}m_{i}\right)\ell_{j}\ell_{k}\cos(\varphi_{j}-\varphi_{k})\ . (74)

Using Eq.(73), the Lagrangian of the multiple pendulum is expressed in terms of the angles φ\varphi and φ˙\dot{\varphi} as

L\displaystyle L =12j=1Nk=1NAjk(φ)φ˙jφ˙k+i=1Nmigj=1ijcosφj,\displaystyle=\frac{1}{2}\sum_{j=1}^{N}\sum_{k=1}^{N}A_{jk}(\varphi)\dot{\varphi}_{j}\dot{\varphi}_{k}+\sum_{i=1}^{N}m_{i}g\sum_{j=1}^{i}\ell_{j}\cos\varphi_{j}\ , (75)

where matrix AA is defined in Eq.(74).

The canonical momentum pnp_{n} conjugate to the angle φn\varphi_{n} (n=1,2,,Nn=1,2,\cdots,N) can be obtained using the expression of the Lagrangian (Eq.(75)) as

pn\displaystyle p_{n} Lφ˙n=k=1NA(φ)nkφ˙k\displaystyle\equiv\displaystyle\frac{\partial L}{\partial\dot{\varphi}_{n}}=\sum_{k=1}^{N}A(\varphi)_{nk}\dot{\varphi}_{k} (76)
K\displaystyle K =i,j=1N12A(φ)ijφ˙iφ˙j12φ˙tA(φ)φ˙\displaystyle=\sum_{i,j=1}^{N}\frac{1}{2}A(\varphi)_{ij}\dot{\varphi}_{i}\dot{\varphi}_{j}\equiv\frac{1}{2}\dot{\varphi}^{t}A(\varphi)\,\dot{\varphi} (77)
=i,j=1N12(A1(φ))ijpipj.\displaystyle=\sum_{i,j=1}^{N}\frac{1}{2}\left(A^{-1}(\varphi)\right)_{ij}p_{i}p_{j}\ . (78)

Then, the Hamiltonian of the multiple pendulum is obtained by the standard procedure as

H\displaystyle H =i=1npiφ˙iL\displaystyle=\sum_{i=1}^{n}p_{i}\dot{\varphi}_{i}-L
=i,j=1N12(A1(φ))ijpipj+U(φ)\displaystyle=\sum_{i,j=1}^{N}\frac{1}{2}\left(A^{-1}(\varphi)\right)_{ij}p_{i}p_{j}+U(\varphi) (79)

Appendix B “canonical kinetic energy”

Our Hamiltonian has the form

H=ij12aij(q)pipj+V(q)H=\sum_{ij}\frac{1}{2}a_{ij}(q)p_{i}p_{j}+V(q) (80)

where qq and pp are generalized coordinates and their conjugate momenta, respectively.

The generalized principle of the equipartition of energy is expressed as

12piHpi=12kBT(no sum for i).\left\langle\frac{1}{2}p_{i}\displaystyle\frac{\partial H}{\partial p_{i}}\right\rangle=\frac{1}{2}k_{B}T\ \ (\text{no sum for $i$})\ . (81)

Here, kBk_{B} denotes the Boltzmann constant and TT represents the temperature.

Ki(c)K_{i}^{(c)} is defined as

Ki(c)12piHpi(no sum for i)K_{i}^{(c)}\equiv\frac{1}{2}p_{i}\displaystyle\frac{\partial H}{\partial p_{i}}\ \ (\text{no sum for $i$}) (82)

Ki(c)K_{i}^{(c)} is not always the same as the traditional kinetic energy of the ii’th degrees of freedom

Ki12miq˙i2(no sum for i)K_{i}\equiv\frac{1}{2}m_{i}\dot{q}_{i}^{2}\ \ (\text{no sum for $i$}) (83)

because of the off-diagonal terms in the quadratic form. To clarify these distinction, we call Ki(c)K_{i}^{(c)} the “canonical kinetic energy” and KiK_{i} the “linear kinetic energy” in this paper. 111The term “linear” is used because the “momentum” mq˙m\dot{q} is often called as the “linear momentum”.

Below, we compute the “canonical kinetic energy” of the general multiple pendulum.

Our Hamiltonian is of the form

H(q,p)=K(q,p)+V(q)H(q,p)=K(q,p)+V(q) (84)

and we have for “canonical kinetic energy,”

Ki(c)\displaystyle K_{i}^{(c)} 12piHpi=12piKpi(no sum for i)\displaystyle\equiv\frac{1}{2}p_{i}\displaystyle\frac{\partial H}{\partial p_{i}}=\frac{1}{2}p_{i}\displaystyle\frac{\partial K}{\partial p_{i}}\ \ (\text{no sum for $i$}) (85)
=12pipij,k=1N12(A1)jkpjpk(from (78))\displaystyle=\frac{1}{2}p_{i}\displaystyle\frac{\partial}{\partial p_{i}}\sum_{j,k=1}^{N}\frac{1}{2}\left(A^{-1}\right)_{jk}p_{j}p_{k}\ \ (\text{from (\ref{eq:ke-mat-p})}) (86)
=k=1N12pi(A1)ikpk(no sum for i).\displaystyle=\sum_{k=1}^{N}\frac{1}{2}p_{i}\left(A^{-1}\right)_{ik}p_{k}\ \ (\text{no sum for $i$})\ \ . (87)

The sum of the “canonical kinetic energy” of the ii’th angle Ki(c)K_{i}^{(c)} is equal to the (total) kinetic energy KK, which is given as

Ki=1N(12pik=1N(A1)ikpk)=i=1NKi(c).K\equiv\sum_{i=1}^{N}\left(\frac{1}{2}p_{i}\sum_{k=1}^{N}\left(A^{-1}\right)_{ik}p_{k}\right)=\sum_{i=1}^{N}K_{i}^{(c)}\ \ . (88)

Now, we express Ki(c)K_{i}^{(c)} in terms of φ\varphi and φ˙\dot{\varphi}, and then in terms of the Cartesian coordinate x,yx,y. Using Eq.(76), Ki(c)K_{i}^{(c)} is expressed as

Ki(c)\displaystyle K_{i}^{(c)} =j,k=1N12pi(A1)ik(Akjφ˙j)(no sum for i)\displaystyle=\sum_{j,k=1}^{N}\frac{1}{2}p_{i}\left(A^{-1}\right)_{ik}\left(A_{kj}\dot{\varphi}_{j}\right)\ \ (\text{no sum for $i$}) (89)
=12piφ˙i\displaystyle=\frac{1}{2}p_{i}\dot{\varphi}_{i} (90)
=j=1N12Aijφ˙jφ˙i\displaystyle=\sum_{j=1}^{N}\frac{1}{2}A_{ij}\dot{\varphi}_{j}\dot{\varphi}_{i} (91)
=j=1N12(n=max(i,j)Nmn)ijcos(φiφj)φ˙jφ˙i\displaystyle=\sum_{j=1}^{N}\frac{1}{2}\left(\sum_{n=\max(i,j)}^{N}m_{n}\right)\ell_{i}\ell_{j}\cos(\varphi_{i}-\varphi_{j})\dot{\varphi}_{j}\dot{\varphi}_{i} (92)

This is the formula which represents “canonical kinetic energy” of the ii’th degree of freedom in terms of φ\varphi and φ˙\dot{\varphi}.

The Cartesian coordinates xix_{i} and yiy_{i} express Ki(c)K_{i}^{(c)}. The result is

Ki(c)\displaystyle K_{i}^{(c)} =12(x˙ix˙i1)(j=iNmjx˙j)\displaystyle=\frac{1}{2}(\dot{x}_{i}-\dot{x}_{i-1})\left(\sum_{j=i}^{N}m_{j}\dot{x}_{j}\right)
+12(y˙iy˙i1)(j=iNmjy˙j).\displaystyle+\frac{1}{2}(\dot{y}_{i}-\dot{y}_{i-1})\left(\sum_{j=i}^{N}m_{j}\dot{y}_{j}\right)\ . (93)

As expected, this expression for “canonical kinetic energy” Ki(c)K_{i}^{(c)} is different from the “linear” kinetic energy Ki12mi(x˙i2+y˙i2).K_{i}\equiv\frac{1}{2}m_{i}\left(\dot{x}_{i}^{2}+\dot{y}_{i}^{2}\right)\ . Although Ki(c)K_{i}^{(c)} is defined from the momentum pi,p_{i}, which is canonically conjugate to the (local) angle φi\varphi_{i}, Ki(c)K_{i}^{(c)} is extended over all particles j=1,2,,Nj=1,2,\cdots,N, whereas KiK_{i} is localized to a particular particle ii.

B.1 Example: Double pendulum

Setting N=2N=2 in Eq.(93), we have the following expressions for the “canonical kinetic energy” of a double pendulum.

K1(c)\displaystyle K_{1}^{(c)} =12{m1(x˙12+y˙12)+m2(x˙1x˙2+y˙1y˙2)}\displaystyle=\frac{1}{2}\left\{m_{1}\left(\dot{x}_{1}^{2}+\dot{y}_{1}^{2}\right)+m_{2}\left(\dot{x}_{1}\dot{x}_{2}+\dot{y}_{1}\dot{y}_{2}\right)\right\} (94)
K2(c)\displaystyle K_{2}^{(c)} =12m2{(x˙22+y˙22)(x˙1x˙2+y˙1y˙2)}\displaystyle=\frac{1}{2}m_{2}\left\{(\dot{x}_{2}^{2}+\dot{y}_{2}^{2})-\left(\dot{x}_{1}\dot{x}_{2}+\dot{y}_{1}\dot{y}_{2}\right)\right\} (95)

We see that

K1(c)\displaystyle K_{1}^{(c)} K112m1(x˙12+y˙12),\displaystyle\neq K_{1}\equiv\frac{1}{2}m_{1}\left(\dot{x}_{1}^{2}+\dot{y}_{1}^{2}\right)\ , (96)
K2(c)\displaystyle K_{2}^{(c)} K212m2(x˙22+y˙22),\displaystyle\neq K_{2}\equiv\frac{1}{2}m_{2}\left(\dot{x}_{2}^{2}+\dot{y}_{2}^{2}\right)\ , (97)
K1(c)+K2(c)\displaystyle K_{1}^{(c)}+K_{2}^{(c)} =K1+K2.\displaystyle=K_{1}+K_{2}\ . (98)

Therefore, at the thermal equilibrium, we have the average kinetic energy values of each particle of a double pendulum, which is not equal to 12kBT\frac{1}{2}k_{B}T.

Ki\displaystyle\left\langle K_{i}\right\rangle 12kBT,i=1,2,\displaystyle\neq\frac{1}{2}k_{B}T\ ,i=1,2, (99)
K1\displaystyle\left\langle K_{1}\right\rangle K2.\displaystyle\neq\left\langle K_{2}\right\rangle. (100)

Appendix C Calculation of Ki\left\langle K_{i}\right\rangle for multiple pendulum

Let us start with Eq.(36). By applying Eq.(43), we have

Ki=mi2j=1ij2φ˙j2.\left\langle K_{i}\right\rangle=\frac{m_{i}}{2}\sum_{j=1}^{i}\ell_{j}^{2}\left<\dot{\varphi}_{j}^{2}\right>\ . (101)

Now, let us evaluate φ˙j2\left<\dot{\varphi}_{j}^{2}\right> . Note that

φ˙j\displaystyle\dot{\varphi}_{j} =n=1NAjn1pn=pj12inpiAin1pn=pjH\displaystyle=\sum_{n=1}^{N}A^{-1}_{jn}p_{n}=\frac{\partial}{\partial p_{j}}\frac{1}{2}\sum_{in}p_{i}A^{-1}_{in}p_{n}=\frac{\partial}{\partial p_{j}}H (102)

On the other hand,

pjeβH=βHpjeβH.\displaystyle\frac{\partial}{\partial p_{j}}e^{-\beta H}=-\beta\displaystyle\frac{\partial H}{\partial p_{j}}e^{-\beta H}\ . (103)

Therefore,

φ˙j=(1β)pjeβH\dot{\varphi}_{j}=\left(\frac{-1}{\beta}\right)\frac{\partial}{\partial p_{j}}e^{-\beta H} (104)

and

φ˙j2eβH𝑑Γ\displaystyle\int\dot{\varphi}_{j}^{2}e^{-\beta H}d\Gamma =(1β)(nAjn1pn)pjeβH𝑑Γ.\displaystyle=\left(\frac{-1}{\beta}\right)\int\left(\sum_{n}A^{-1}_{jn}p_{n}\right)\displaystyle\frac{\partial}{\partial p_{j}}e^{-\beta H}d\Gamma\ . (105)

Performing integration by parts with respect to pjp_{j}, we obtain

(nAjn1pn)pjeβH𝑑pj\displaystyle\int\left(\sum_{n}A^{-1}_{jn}p_{n}\right)\displaystyle\frac{\partial}{\partial p_{j}}e^{-\beta H}dp_{j} (106)
=Ajj1(φ)eβH𝑑pj,\displaystyle=-\int A^{-1}_{jj}(\varphi)\cdot e^{-\beta H}dp_{j}\ , (107)

where the summation over jj is not considered.

Thus, we have

φ˙j2eβH𝑑Γ\displaystyle\int\dot{\varphi}_{j}^{2}e^{-\beta H}d\Gamma =(1β)Ajj1(φ)eβH𝑑Γ,\displaystyle=\left(\frac{1}{\beta}\right)\int A^{-1}_{jj}(\varphi)e^{-\beta H}d\Gamma\ , (108)
φ˙j2\displaystyle\left<\dot{\varphi}_{j}^{2}\right> =1βAjj1(φ).\displaystyle=\frac{1}{\beta}\left<A^{-1}_{jj}(\varphi)\right>\ . (109)

Let us evaluate Ajj1(φ)\left<A^{-1}_{jj}(\varphi)\right>. From Eq.(74), we have

Ajj(φ)(i=jNmi)j2.A_{jj}(\varphi)\equiv\left(\sum_{i=j}^{N}m_{i}\right)\ell_{j}^{2}\ . (110)

Let us adopt the approximation

Ajj1\displaystyle A^{-1}_{jj} 1Ajj\displaystyle\approx\frac{1}{A_{jj}} (111)
=1(i=jNmi)j2.\displaystyle=\frac{1}{\left(\sum_{i=j}^{N}m_{i}\right)\ell_{j}^{2}}\ . (112)

This approximation implies that we omit all nondiagonal elements of matrix AA, which include phase factors such as cos(φjk)\cos(\varphi_{jk}).

Then, we have

φ˙j2\displaystyle\left<\dot{\varphi}_{j}^{2}\right> =1βAjj1(φ)=1β1(i=jNmi)j2\displaystyle=\frac{1}{\beta}\left<A^{-1}_{jj}(\varphi)\right>=\frac{1}{\beta}\left<\frac{1}{\left(\sum_{i=j}^{N}m_{i}\right)\ell_{j}^{2}}\right> (113)
=1β(i=jNmi)j2.\displaystyle=\frac{1}{\beta\left(\sum_{i=j}^{N}m_{i}\right)\ell_{j}^{2}}\ . (114)

Therefore, we obtain

Ki\displaystyle\left<K_{i}\right> =mi2x˙i2+y˙i2=mi2j=1iφ˙j2j2\displaystyle=\frac{m_{i}}{2}\left<\dot{x}_{i}^{2}+\dot{y}_{i}^{2}\right>=\frac{m_{i}}{2}\sum_{j=1}^{i}\left<\dot{\varphi}_{j}^{2}\right>\ell_{j}^{2} (115)
=kBTmi2j=1i1k=jNmk.\displaystyle=k_{B}T\cdot\frac{m_{i}}{2}\sum_{j=1}^{i}\frac{1}{\sum_{k=j}^{N}m_{k}}\ . (116)

Appendix D Calculation of limβ0βK1\lim_{\beta\rightarrow 0}\beta\cdot\left\langle K_{1}\right\rangle

Here, we present the calculation of Eq.(61), which represent the high-temperature limit limβ0βK1\lim_{\beta\rightarrow 0}\beta\cdot\left\langle K_{1}\right\rangle. From Eqs. (42), (50), and (54), we have

βK1=μ12(0,2π)211μ2C122eβU(φ)d2φ(0,2π)21μ2C122eβU(φ)d2φ\beta\left\langle K_{1}\right\rangle=\frac{\mu_{1}}{2}\frac{\int_{(0,2\pi)^{2}}\frac{1}{\sqrt{1-\mu_{2}C_{12}^{2}}}\,e^{-\beta U(\varphi)}d^{2}\varphi}{\int_{(0,2\pi)^{2}}\sqrt{1-\mu_{2}C_{12}^{2}}\,e^{-\beta U(\varphi)}d^{2}\varphi} (117)

for the double pendulum. Here, C12=cos(φ2φ1)C_{12}=\cos(\varphi_{2}-\varphi_{1}). Considering the limit β0\beta\rightarrow 0 on both sides, we have

limβ0βK1\displaystyle\lim_{\beta\rightarrow 0}\beta\cdot\left\langle K_{1}\right\rangle =μ12(0,2π)211μ2C122d2φ(0,2π)21μ2C122d2φ\displaystyle=\frac{\mu_{1}}{2}\frac{\int_{(0,2\pi)^{2}}\frac{1}{\sqrt{1-\mu_{2}C_{12}^{2}}}d^{2}\varphi}{\int_{(0,2\pi)^{2}}\sqrt{1-\mu_{2}C_{12}^{2}}\,d^{2}\varphi}
=μ12K(μ2)E(μ2),\displaystyle=\frac{\mu_{1}}{2}\frac{K(\sqrt{\mu_{2}})}{E(\sqrt{\mu_{2}})}\ , (118)

where K(k)K(k) and E(k)E(k) are the complete elliptic integrals of the 1st and 2nd kind, respectively.

Appendix E Poincaré surface of section

Here, we explain the definition of the Poincaré surface of the section used in Fig.  9. A unique correspondence from a point (φ2,p2)(\varphi_{2},p_{2}) on the surface to a single point (φ1,φ2,p1,p2)(\varphi_{1},\varphi_{2},p_{1},p_{2}), in the phase space is necessary. We set two conditions H(φ,p)=EH(\varphi,p)=E and φ1=0\varphi_{1}=0, which reduces the four-dimensional phase space to a two-dimensional space (φ2,p2)(\varphi_{2},p_{2}). Let us specify a point (φ2,p2)(\varphi_{2},p_{2}) on the Poincaré surface.

For systems including a double pendulum, the energy is of the form

12pA1p+U(φ1,φ2)=E.\frac{1}{2}pA^{-1}p+U(\varphi_{1},\varphi_{2})=E\ . (119)

Let us express matrix AA as

A=(A1A2A2A3).A=\begin{pmatrix}A_{1}&A_{2}\\ A_{2}&A_{3}\end{pmatrix}\ . (120)

By substituting this into Eq.(119) and the straightforward calculation, we get

(A3p1A2p2)2=detA{2A3(EU(φ1,φ2))p22}\left(A_{3}p_{1}-A_{2}p_{2}\right)^{2}=\det A\left\{2A_{3}\left(E-U(\varphi_{1},\varphi_{2})\right)-p_{2}^{2}\right\} (121)

Hence, point (φ2,p2)(\varphi_{2},p_{2}) corresponds to a unique point (φ1,φ2,p1,p2)(\varphi_{1},\varphi_{2},p_{1},p_{2}) under E=constE=const, and we must specify the sign of A3p1A2p2A_{3}p_{1}-A_{2}p_{2}. Let us take a positive sign; then, the Poincaré surface of the section is defined as

{φ1=0,A3p1A2p2>0.\begin{cases}\varphi_{1}&=0\ ,\\ A_{3}p_{1}-A_{2}p_{2}&>0\ .\end{cases} (122)

In the case of a double pendulum, the last condition is equivalent to

μ222p1μ212p2cosφ2>0.\mu_{2}\ell_{2}^{2}p_{1}-\mu_{2}\ell_{1}\ell_{2}p_{2}\cos\varphi_{2}>0\ . (123)

by substituting φ1=0\varphi_{1}=0. For 1=2\ell_{1}=\ell_{2}, this condition yields

p1p2cosφ2>0,p_{1}-p_{2}\cos\varphi_{2}>0\ , (124)

as shown in Fig. 9.

Using

φ˙=A1p,\dot{\varphi}=A^{-1}p, (125)

we can convert the condition in Eq.(122) in terms of φ˙\dot{\varphi}. Since

A3p1A2p2=φ˙1detA,A_{3}p_{1}-A_{2}p_{2}=\dot{\varphi}_{1}\cdot\det A, (126)

and the kinetic energy and matrix AA are positive definite, we can consider

φ1=0,φ˙1>0\varphi_{1}=0\ ,\ \dot{\varphi}_{1}>0 (127)

as the surface of the section.

References

  • Galilei (1638) G. Galilei, Dialogues Concerning Two New Sciences (Lodewijk Elzevir, 1638).
  • Goldstein (1980) H. Goldstein, Classical Mechanics, 2nd ed. (Addison-Wesley, 1980).
  • Bernoulli (1738) D. Bernoulli, Commentarii Academiae Scientiarum Imperialis Petropolitanae 6, 108 (1738).
  • Bernoulli (1740) D. Bernoulli, Commentarii Academiae Scientiarum Imperialis Petropolitanae 7, 162 (1740).
  • Cannon and Dostrovsky (1981) J. T. Cannon and S. Dostrovsky, The Evolution of Dynamics: Vibration Theory from 1687 to 1742 (Springer-Verlag, 1981).
  • Lichtenberg and Lieberman (1992) A. J. Lichtenberg and M. A. Lieberman, Regular and Chaotic Dynamics (Springer, 1992).
  • Ott (2002) E. Ott, Chaos in Dynamical Systems, 2nd.ed. (Cambridge University Press, Cambridge, 2002).
  • Tabor (1989) M. Tabor, Chaos and Integrability in Nonlinear Dynamics: An Introduction (Wiley Interscience, 1989).
  • Shinbrot et al. (1992) T. Shinbrot, C. Grebogi, J. Wisdom,  and J. A. Yorke, American Journal of Physics 60, 491 (1992).
  • Stachowiak and Okada (2006) T. Stachowiak and T. Okada, Chaos, Solitons & Fractals 29, 417 (2006).
  • Rafat et al. (2009) M. Z. Rafat, M. S. Wheatland,  and T. R. Bedding, American Journal of Physics 77, 216 (2009).
  • Dullin (1994) H. R. Dullin, Zeitschrift für Physik B Condensed Matter 93, 521 (1994).
  • Stachowiak and Szumiński (2015) T. Stachowiak and W. Szumiński, Physics Letters A 379, 3017 (2015).
  • Ivanov (1999) A. V. Ivanov, Regular and Chaotic Dynamics 4, 104 (1999).
  • Ivanov (2001a) A. V. Ivanov, Journal of Physics A: Mathematical and General 34, 11011 (2001a).
  • Ivanov (2000) A. V. Ivanov, Regular and Chaotic Dynamics 5, 329 (2000).
  • Ivanov (2001b) A. V. Ivanov, Regular and Chaotic Dynamics 6, 53 (2001b).
  • Oyama and Yanagita (1998) Y. Oyama and T. Yanagita,  (1998), talk at The Autumn Meeting of The Physical Society of Japan, 25a-G-6.
  • Saitoh et al. (1999) N. Saitoh, Y. Oyama,  and T. Yanagita,  (1999), talk at The Annual Meeting of The Physical Society of Japan, 30p-XD-5.
  • Saitoh and Yanagita (2000) N. Saitoh and T. Yanagita,  (2000), talk at The Spring Meeting of the Physical Society of Japan, 23aZB-6.
  • Tolman (1918) R. C. Tolman, Physical Review 11, 261 (1918).
  • Tolman (1938) R. C. Tolman, The Principles of Statistical Mechanics (Oxford University Press, Oxford, 1938).
  • Kubo et al. (1990) R. Kubo, H. Ichimura, T. Usui,  and N. Hashitsume, Statistical Mechanics (North Holland, 1990).
  • Konishi and Yanagita (2009) T. Konishi and T. Yanagita, J. Stat. Mech. , L09001 (2009).
  • Leimkuhler and Reich (2004) B. Leimkuhler and S. Reich, Simulating Hamiltonian Dynamics (Cambridge Univ. Press, 2004).
  • (26) http://www.charmm.org/, “CHARMM (Chemistry at HARvard Macromolecular Mechanics),” .
  • Vesely (2013) F. J. Vesely, American Journal of Physics 81, 537 (2013)https://doi.org/10.1119/1.4803533 .
  • Yoshida (1990) H. Yoshida, Phys. Lett. 150A, 262 (1990).
  • (29) “NIST Digital Library of Mathematical Functions,” https://dlmf.nist.gov/.
  • Kuhn (1934) W. Kuhn, Kolloid-Zeitschrift 68, 2 (1934).
  • Kuhn and Kuhn (1948) W. Kuhn and H. Kuhn, Journal of Colloid Science 3, 11 (1948).
  • Kramers (1946) H. A. Kramers, J. Chem. Phys. 14, 415 (1946).
  • Fixman (1974) M. Fixman, Proceedings of the National Academy of Sciences 71, 3050 (1974).
  • Fixman and Kovac (1974) M. Fixman and J. Kovac, The Journal of Chemical Physics 61, 4950 (1974).
  • Mazars (1996) M. Mazars, Phys. Rev. E 53, 6297 (1996).
  • Doi and Edwards (1988) M. Doi and S. Edwards, The theory of polymer dynamics (Clarendon Press, Oxford, 1988).
  • Doi (1996) M. Doi, Introduction to Polymer Physics (Oxford University Press, Oxford, 1996).
  • Strobl (1997) G. R. Strobl, The Physics of Polymers: Concepts for Understanding Their Structures and Behavior (Springer, 1997).
  • Siegert et al. (1993) G. R. Siegert, R. G. Winkler,  and P. Reineker, Zeitschrift für Naturforschung A 48, 584 (1993).
  • (40) T. Konishi and T. Yanagita, in preparation.
  • Boltzmann (1895) L. Boltzmann, Nature 51, 413 (1895).
  • Jeans (1903) J. H. Jeans, Phil. Mag. 6, 279 (1903).
  • Jeans (1905) J. H. Jeans, Phil. Mag. 10, 91 (1905).
  • Nakagawa and Kaneko (2001) N. Nakagawa and K. Kaneko, Phys. Rev. E 64, 055205 (2001).
  • Benettin et al. (1987) G. Benettin, L. Galgani,  and A. Giorgilli, Physics Letters A 120, 23 (1987).
  • Benettin et al. (1989) G. Benettin, L. Galgani,  and A. Giorgilli, Comm. Math. Phys. 121, 557 (1989).
  • Benettin (1994) G. Benettin, Prog. Theor. Phys. Suppl. 116, 207 (1994).
  • Konishi and Yanagita (2010) T. Konishi and T. Yanagita, J. Stat. Mech. , P09001 (2010).
  • Konishi and Yanagita (2016) T. Konishi and T. Yanagita, J. Stat. Mech. , 033201 (2016).
  • Goriely and McMillen (2002) A. Goriely and T. McMillen, Phys. Rev. Lett. 88, 244301 (2002).
  • Tomaszewski and Pieranski (2005) W. Tomaszewski and P. Pieranski, New Journal of Physics 7, 45 (2005).
  • Note (1) The term “linear” is used because the “momentum” m\mathaccentVdot05Fqm\mathaccentV{dot}05Fq is often called as the “linear momentum”.