This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Multiple Private Key Generation for Continuous Memoryless Sources with A Helper

Lin Zhou Lin Zhou was with the Department of Electrical Engineering and Computer Science at the University of Michigan, Ann Arbor. He is now with School of Cyber Science and Technology, Beihang University, Beijing, China (Email: lzhou@buaa.edu.cn).
Abstract

We propose a method to study the secrecy constraints in key generation problems where side information might be present at untrusted users. Our method is inspired by a recent work of Hayashi and Tan who used the Rényi divergence as the secrecy measure to study the output statistics of applying hash functions to a random sequence. By generalizing the achievability result of Hayashi and Tan to the multi-terminal case, we obtain the output statistics of applying hash functions to multiple random sequences, which turn out to be an important tool in the achievability proof of strong secrecy capacity regions of key generation problems with side information at untrusted users. To illustrate the power of our method, we derive the capacity region of the multiple private key generation problem with an untrusted helper for continuous memoryless sources under Markov conditions. The converse proof of our result follows by generalizing a result of Nitinawarat and Narayan to the case with side information at untrusted users.

I Introduction

The problem of generating a secret key for two parties observing correlated random variables was first considered by Maurer [1] and by Ahlswede and Csiszár [2]. In [1, 2], there are two legitimate users Alice and Bob as well as an eavesdropper Eve. Alice observes a source sequence A1nA_{1}^{n}, Bob observes A2nA_{2}^{n} and Eve observes A3nA_{3}^{n}. It is assumed that there exists noiseless public channel over which Alice and Bob can talk interactively in rr rounds. The eavesdropper, although not allowed to talk, can overhear the messages transmitted over the public channel. Under the condition that A1A3A2A_{1}-A_{3}-A_{2} forms a Markov chain, it is shown that the secret key capacity (maximal rate of the secret key) is I(A1;A2|A3)I(A_{1};A_{2}|A_{3}) for discrete memoryless sources (DMS).

Subsequently in [3], Csiszár and Narayan extended the model in [1, 2] by adding a third party called a helper which assists the legitimate users to generate a secret key. Furthermore, the authors in [4] generalized the result in [3] to a setting with at least four terminals. It is assumed in [4] that there exist an eavesdropper Eve and other T3T\geq 3 terminals denoted by 𝒯\mathcal{T}. For each t𝒯t\in\mathcal{T}, terminal tt observes a source sequence AtnA_{t}^{n}, which is correlated with all other source sequences {Ain}i𝒯:it\{A_{i}^{n}\}_{i\in\mathcal{T}:i\neq t}. The eavesdropper observes a correlated source sequence EnE^{n}. Let 𝒮\mathcal{S} and 𝒲\mathcal{W} denote two disjoint group of users, i.e., 𝒮𝒲=\mathcal{S}\bigcap\mathcal{W}=\emptyset. All users in 𝒮\mathcal{S} aim to generate a common key KK with the help of all other users in 𝒯\mathcal{T}. Interactive communication with unlimited rate is assumed and the overall communication over the public channel is denoted as 𝐅\mathbf{F}. The authors in [4] considered three problems depending the security constraint on the key. If the key is only concealed from the public messages 𝐅\mathbf{F}, the problem is a secret key generation problem. If the key is concealed from both the public messages 𝐅\mathbf{F} and the source sequences observed by users 𝒲\mathcal{W}, then the problem is a private key generation problem. If the key is concealed from both the public messages 𝐅\mathbf{F} and the source sequence observed by the eavesdropper, the problem is considered as a wiretap key generation problem. Using results in the distributed source coding [5, Theorem 3.1.14], Csiszár and Narayan [4] characterizes the exact capacity for the secret key and private key generation problems as well as bounds on the wiretap key capacity. Furthermore, the authors proved an upper bound on the secret key capacity and conjectured the upper bound is tight in general. The conjecture was solved partially by Ye and Reznik [6] and proved to be true by Chan and Zheng [7]. Other works on the secret key generation include [8, 9, 10, 11, 12, 13, 14, 15].

The problem of generating multiple keys was initialized by Ye and Narayan in [16] where they considered the generation of a private key and a secret key with three terminals. The authors proved an outer bound on the capacity region which was later shown to be tight by Zhang et al. [17]. Furthermore, in [18], the authors considered generating two keys in a cellular model and derived the capacity region for four cases depending on the security constraints on the keys. Other works on the multiple key generation problem include [19, 20, 21]. In terms of key generation problems for correlated Gaussian memoryless sources (GMS), Nitinawarat and Narayan [22] derived the capacity for secret key generation with multi-terminals and thus extended [4, Theorem 2] to GMS. Watanabe and Oohama derived the capacity for secret key generation for GMS and vector GMS under rate-limited public communication in [23] and [24] respectively. Other works on secret key generation for GMS include [25, 26, 27].

In this paper, we are interested in the private key generation problem for correlated continuous memoryless sources (CMS) with a helper and unlimited public discussion. To the best of our knowledge, the private key generation problem for CMS remains unexplored.

The main challenges of private key generation problems for CMS lie in the analysis of the secrecy constraints in the achievability part since we need to upper bound the term I(K;An,𝐅)I(K;A^{n},\mathbf{F}) where KK is the private key, 𝐅\mathbf{F} is the public message and AnA^{n} is an continuous i.i.d. sequence observed by some untrusted helpers. To bound I(K;An,𝐅)I(K;A^{n},\mathbf{F}), existing works, e.g., [26, 27, 15], applied quantization to the continuous side information AnA^{n} and relied heavily on the continuity of information quantities. The analyses are usually tedious.

In contrast, inspired by [11] and [28], we analyze the secrecy part in the private key generation problem for CMS by studying the output statistics of hash functions (random binning) under the Rényi divergence measure and using the fact that the Rényi divergence is non-decreasing in the order [29]. The great advantage of our proposed method is that it is a unified and neat method which holds for the case with either continuous, discrete or no side information at untrusted users. We believe that our result in Lemma 1 can be used to significantly simplify the security analysis for secret key generation problems when the eavesdropper has access to continuous (e.g., Gaussian) side information which are correlated to the observations at legitimate users (e.g., [26, 27, 15]). Furthermore, our proposed method can be used to derive bounds on the convergence speed of secrecy constraints beyond the fact that secrecy constraints vanish under certain rate constraints. See the remark after Theorem 2 for further discussion.

I-A Main Contributions

Our main contributions are summarized as follows.

Firstly, we derive the output statistics of applying hash functions to multiple random sequences under the Rényi divergence measure in Lemma 1. Lemma 1 is an extension of [11, Theorem 1] to a multi-terminal case and a strict generalization of [30, Theorem 1] where the output statistics of random binning under the total variational distance measure was derived. Furthermore, Lemma 1 turns out to be an important tool in analyzing secrecy constraints in key generation problems, especially when the key needs to be protected from continuous observations correlated to observations at legitimate users.

Secondly, to illustrate the power of Lemma 1, we derive the capacity region for the multiple private key generation problem with a helper for CMS. To be specific, we revisit the model in [18] and derive the capacity region for CMS under a symmetric security requirement which did not appear in [18]. The converse proof follows by judiciously adapting the techniques in [22, Theorem 1] to our setting. In the achievability proof, we use Lemma 1 to analyze the secrecy constraints on generated keys which need to be protected from correlated continuous observations of illegitimate users. Furthermore, we use the quantization techniques in [22], the large deviations analysis for distributed source coding in [31], the Fourier Motzkin Elimination and the techniques to bound the difference between the differential entropy of CMS and the discrete entropy of the quantized random variables. We remark that the techniques used in our paper can also apply to strengthen all the four cases in [18] with strong secrecy and for CMS. Furthermore, we also extend our result to a cellular model involving more than four terminals and derive inner and outer bounds for the capacity region.

I-B Organization of the Paper

The rest of the paper is organized as follows. In Section I, we set up the notation. In Section II, we formulate the problem of output statistics of hash functions and present our main result under the Rényi divergence measure in Lemma 1. Subsequently in Section III, invoking Lemma 1, we derive the capacity region for the multiple private key generation problem with a helper. Furthermore, we generalize our result to a cellular model and derive bounds on the capacity region. The proofs of the capacity region for the multiple private key generation with a helper are given Sections IV and V. Finally, we conclude our paper and discuss future research directions in Section VI. For the smooth presentation of our main results, the proofs of all supporting lemmas are deferred to the appendices.

Notation

Throughout the paper, random variables and their realizations are in capital (e.g., XX) and lower case (e.g., xx) respectively. All sets are denoted in calligraphic font (e.g., 𝒳\mathcal{X}). We use 𝒳c\mathcal{X}^{\mathrm{c}} to denote the complement of 𝒳\mathcal{X} and use U𝒳U_{\mathcal{X}} to denote the uniform distribution over 𝒳\mathcal{X}. Given any two integers a,ba,b, we use [a:b][a:b] to denote the set of all integers between aa and bb and we use [a][a] to denote [1:a][1:a] for any integer a1a\geq 1. Let 𝒯:={1,,T}\mathcal{T}:=\{1,\ldots,T\}. Given a sequence of random variables X1,X2,,XTX_{1},X_{2},\ldots,X_{T} and any subset 𝒮𝒯\mathcal{S}\subseteq\mathcal{T}, we use X𝒮X_{\mathcal{S}} and {Xt}t𝒮\{X_{t}\}_{t\in\mathcal{S}} interchangeably. Furthermore, let Xn:=(X1,,Xn)X^{n}:=(X_{1},\ldots,X_{n}) be a random vector of length nn. For any (a,b)[1:n]2(a,b)\in[1:n]^{2}, we use XabX_{a}^{b} and (Xa,,Xb)(X_{a},\ldots,X_{b}) interchangeably. For information theoretical quantities, we follow [32].

II Output Statistics of Hash Functions

In this subsection, we consider hash functions and study its output statistics under the Rényi divergence measure. The result in this section (cf. Lemma 1) serves as an important tool in the subsequent analysis for key generation problems.

II-A Preliminary

Before presenting the main result, we first introduce some definitions. Given two distributions (PA1,QA1)(P_{A_{1}},Q_{A_{1}}) defined an alphabet 𝒜1\mathcal{A}_{1}, the KL divergence is defines as

D(PA1QA1)\displaystyle D(P_{A_{1}}\|Q_{A_{1}}) :=a1𝒜1PA1(a1)logPA1(a1)QA1(a1).\displaystyle:=\sum_{a_{1}\in\mathcal{A}_{1}}P_{A_{1}}(a_{1})\log\frac{P_{A_{1}}(a_{1})}{Q_{A_{1}}(a_{1})}. (1)

Furthermore, given s[1,)s\in[-1,\infty), the Rényi divergence or order 1+s1+s is defined as

D1+s(PA1QA1)\displaystyle D_{1+s}(P_{A_{1}}\|Q_{A_{1}}) :={1sloga1𝒜1PA11+s(a1)QA1s(a1)s0,D(PA1QA1)s=0.\displaystyle:=\left\{\begin{array}[]{ll}\frac{1}{s}\log\sum_{a_{1}\in\mathcal{A}_{1}}P_{A_{1}}^{1+s}(a_{1})Q_{A_{1}}^{-s}(a_{1})&s\neq 0,\\ D(P_{A_{1}}\|Q_{A_{1}})&s=0.\end{array}\right. (4)

It is well known that D1+s(PA1QA1)D_{1+s}(P_{A_{1}}\|Q_{A_{1}}) is non-decreasing in ss (cf. [29]) and thus D(PA1QA1)D1+s(PA1QA1)D(P_{A_{1}}\|Q_{A_{1}})\leq D_{1+s}(P_{A_{1}}\|Q_{A_{1}}) for all s0s\geq 0.

Given a joint distribution PA1EP_{A_{1}E} on the alphabet 𝒜1×\mathcal{A}_{1}\times\mathcal{E}, the conditional entropy is defined as

H(A1|E)\displaystyle H(A_{1}|E) :=ePE(e)a1𝒜1PA1|E(a1|e)logPA1|E(a1|e).\displaystyle:=-\sum_{e\in\mathcal{E}}P_{E}(e)\sum_{a_{1}\in\mathcal{A}_{1}}P_{A_{1}|E}(a_{1}|e)\log P_{A_{1}|E}(a_{1}|e). (5)

Furthermore, given s[1,)s\in[-1,\infty), the conditional Rényi entropy of order 1+s1+s is defined as

H1+s(A1|E)\displaystyle H_{1+s}(A_{1}|E) :={1slogePE(e)a1PA1|E1+s(a1|e)s0,H(A1|E)s=0,\displaystyle:=\left\{\begin{array}[]{ll}-\frac{1}{s}\log\sum_{e}P_{E}(e)\sum_{a_{1}}P_{A_{1}|E}^{1+s}(a_{1}|e)&s\neq 0,\\ H(A_{1}|E)&s=0,\end{array}\right. (8)

and the Gallager’s conditional Rényi entropy of order ss is defined as

H1+s(A1|E)\displaystyle H_{1+s}^{\uparrow}(A_{1}|E) :=1+ssloge(a1PA1E1+s(a1,e))11+s.\displaystyle:=-\frac{1+s}{s}\log\sum_{e}\Big{(}\sum_{a_{1}}P_{A_{1}E}^{1+s}(a_{1},e)\Big{)}^{\frac{1}{1+s}}. (9)

We remark that for continuous random variables, the summations in (4), (8), (9) should be replaced by integrals.

We then recall the formal definition of a hash function [33, Eq. (1)] (see also [34, 35]).

Definition 1.

Given an arbitrary set 𝒜\mathcal{A} and the set :={1,,M}\mathcal{M}:=\{1,\ldots,M\}, a random hash function fXf_{X} is a stochastic mapping from 𝒜\mathcal{A} to \mathcal{M}, where XX denotes the random variable describing the stochastic behavior of the hash function. Given any ε+\varepsilon\in\mathbb{R}_{+}, an ensemble of random hash functions fXf_{X} is called an ε\varepsilon-almost universal2 hash function if it satisfies that for any distinct (a1,a2)𝒜2(a_{1},a_{2})\in\mathcal{A}^{2}, we have

Pr{fX(a1)=fX(a2)}εM.\displaystyle\Pr\{f_{X}(a_{1})=f_{X}(a_{2})\}\leq\frac{\varepsilon}{M}. (10)

When ε=1\varepsilon=1, we say that the ensemble of functions is a universal2 hash function.

We remark that random binning in source coding problems (e.g., [32, Chapter 15.4.1]) is a universal2 hash function.

II-B Output Statistics

In this subsection, we study the output statistic of applying hash functions to multiple random sequences under the Rényi divergence measure. For simplicity, we use 𝒯\mathcal{T} to denote the set {1,,T}\{1,\ldots,T\}. Consider a sequence of random variables (A𝒯,E)=(A1,,AT,E)(A_{\mathcal{T}},E)=(A_{1},\ldots,A_{T},E) with a joint distribution PA𝒯EP_{A_{\mathcal{T}}E} defined on an alphabet t𝒯𝒜t×\prod_{t\in\mathcal{T}}\mathcal{A}_{t}\times\mathcal{E} where all t𝒯t\in\mathcal{T}, the alphabet 𝒜t\mathcal{A}_{t} is finite. Let (A𝒯n,En)(A_{\mathcal{T}}^{n},E^{n}) be an i.i.d sequence generated according to the distribution PA𝒯EP_{A_{\mathcal{T}}E}.

For each t𝒯t\in\mathcal{T}, let fXt(n)f_{X_{t}}^{(n)} be an ε\varepsilon-almost universal2 hash function mapping from 𝒜tn\mathcal{A}_{t}^{n} to t:={1,,Nt}\mathcal{M}_{t}:=\{1,\ldots,N_{t}\} where XtX_{t} describes the stochastic behavior of the hash function. Furthermore, the rate of the hash function fXtf_{X_{t}} is defined as Rt:=1nlogNtR_{t}:=\frac{1}{n}\log N_{t}. We are interested in the output statistics of applying hash functions to the random sequences A𝒯nA_{\mathcal{T}}^{n}, i.e., {fXt(n)(Atn)}t𝒯\{f_{X_{t}}^{(n)}(A_{t}^{n})\}_{t\in\mathcal{T}}.

For ease of notation, let Mt:=fXt(n)(Atn)M_{t}:=f_{X_{t}}^{(n)}(A_{t}^{n}) for each t𝒯t\in\mathcal{T}. Furthermore, for each t𝒯t\in\mathcal{T}, let UtU_{\mathcal{M}_{t}} denote the uniform distribution over t\mathcal{M}_{t} and let PMtP_{M_{t}} denotes the induced output distribution by PAtnP_{A_{t}}^{n} and the hash function fXtf_{X_{t}}, i.e., for all mttm_{t}\in\mathcal{M}_{t},

PMt(mt)=atn𝒜tnPAtn(atn)1{fXt(atn)=mt}.\displaystyle P_{M_{t}}(m_{t})=\sum_{a_{t}^{n}\in\mathcal{A}_{t}^{n}}P_{A_{t}}^{n}(a_{t}^{n})1\{f_{X_{t}}(a_{t}^{n})=m_{t}\}. (11)

To quantify the output statistics of the hash functions, it is common to use the KL divergence D(PM𝒯Ent𝒯Ut×PEn)D(P_{M_{\mathcal{T}}E^{n}}\|\prod_{t\in\mathcal{T}}U_{\mathcal{M}_{t}}\times P_{E}^{n}) as a measure where

D(PM𝒯Ent𝒯Ut×PEn)\displaystyle D(P_{M_{\mathcal{T}}E^{n}}\|\prod_{t\in\mathcal{T}}U_{\mathcal{M}_{t}}\times P_{E}^{n}) =D(PM𝒯t𝒯Ut)+I(M𝒯;En)\displaystyle=D(P_{M_{\mathcal{T}}}\|\prod_{t\in\mathcal{T}}U_{\mathcal{M}_{t}})+I(M_{\mathcal{T}};E^{n}) (12)
=t𝒯:t2I(Mt;M[1:t1])+t𝒯D(PMtUt)+I(M𝒯;En).\displaystyle=\sum_{t\in\mathcal{T}:t\geq 2}I(M_{t};M_{[1:t-1]})+\sum_{t\in\mathcal{T}}D(P_{M_{t}}\|U_{\mathcal{M}_{t}})+I(M_{\mathcal{T}};E^{n}). (13)

Note that if D(PM𝒯Ent𝒯Ut×PEn)<δD(P_{M_{\mathcal{T}}E^{n}}\|\prod_{t\in\mathcal{T}}U_{\mathcal{M}_{t}}\times P_{E}^{n})<\delta for some δ>0\delta>0, then we have the following results

  1. (i)

    t𝒯:t2TI(Mt;M[1:t1])\sum_{t\in\mathcal{T}:t\geq 2}^{T}I(M_{t};M_{[1:t-1]}) is small, indicating that the output of hash functions Mt1M_{t_{1}} and Mt2nM_{t_{2}}^{n} are almost independent for all distinct pairs (t1,t2)𝒯2(t_{1},t_{2})\in\mathcal{T}^{2};

  2. (ii)

    t𝒯D(PMtUt)\sum_{t\in\mathcal{T}}D(P_{M_{t}}\|U_{\mathcal{M}_{t}}) is small, indicating that the output of each hash function MtM_{t} is almost uniform over t\mathcal{M}_{t} for all ttt\in\mathcal{M}_{t};

  3. (iii)

    I(M𝒯;En)I(M_{\mathcal{T}};E^{n}) is small, indicating that the collection of outputs of hash functions M𝒯=(M1,,MT)M_{\mathcal{T}}=(M_{1},\ldots,M_{T}) is almost independent of the side information EnE^{n}.

In this subsection, instead of using (13), we make use of the Rényi divergence of order 1+s1+s (cf. (4)) as the measure of output statistics of hash functions, i.e.,

C1+s(M𝒯|En)\displaystyle C_{1+s}(M_{\mathcal{T}}|E^{n}) :=D1+s(PM𝒯Ent𝒯Ut×PEn)\displaystyle:=D_{1+s}(P_{M_{\mathcal{T}}E^{n}}\|\prod_{t\in\mathcal{T}}U_{\mathcal{M}_{t}}\times P_{E}^{n}) (14)
=t𝒯logMtH1+s(M𝒯|En),\displaystyle=\sum_{t\in\mathcal{T}}\log M_{t}-H_{1+s}(M_{\mathcal{T}}|E^{n}), (15)

where s(0,1]s\in(0,1] (15) follows from (8). Note that the measure in (15) is a strict generalization of that in (13).

Our results in the following lemma concern the output statistics of ε\varepsilon-almost universal2 hash functions for any ε+\varepsilon\in\mathbb{R}_{+} unless otherwise stated.

Lemma 1.

The following claims hold.

  1. (i)

    For any s[0,1]s\in[0,1]

    𝔼X𝒯[exp(sC1+s(M𝒯|En))]εsT+𝒮𝒯εs(T|𝒮|)(i𝒮Nts)exp(snH1+s(A𝒮|E)).\displaystyle\mathbb{E}_{X_{\mathcal{T}}}\Big{[}\exp(sC_{1+s}(M_{\mathcal{T}}|E^{n}))\Big{]}\leq\varepsilon^{sT}+\sum_{\emptyset\neq\mathcal{S}\subseteq\mathcal{T}}\varepsilon^{s(T-|\mathcal{S}|)}\Big{(}\prod_{i\in\mathcal{S}}N_{t}^{s}\Big{)}\exp(-snH_{1+s}(A_{\mathcal{S}}|E)). (16)
  2. (ii)

    For any s[0,1]s\in[0,1], if for all non-empty subset 𝒮\mathcal{S} of 𝒯\mathcal{T},

    t𝒮Rt<H1+s(A𝒮|E)\displaystyle\sum_{t\in\mathcal{S}}R_{t}<H_{1+s}(A_{\mathcal{S}}|E) (17)

    then

    limn1n𝔼X𝒯[C1+s(M𝒯|En)]\displaystyle\lim_{n\to\infty}\frac{1}{n}\mathbb{E}_{X_{\mathcal{T}}}\Big{[}C_{1+s}(M_{\mathcal{T}}|E^{n})\Big{]} =0;\displaystyle=0; (18)
  3. (iii)

    When ε=1\varepsilon=1, for any s[0,1]s\in[0,1]

    lim infn1nlog𝔼X𝒯[C1+s(M𝒯|En)]\displaystyle\liminf_{n\to\infty}-\frac{1}{n}\log\mathbb{E}_{X_{\mathcal{T}}}[C_{1+s}(M_{\mathcal{T}}|E^{n})] maxθ[s,1]min𝒮𝒯θ(H1+θ(A𝒮|E)t𝒮Rt).\displaystyle\geq\max_{\theta\in[s,1]}\min_{\emptyset\neq\mathcal{S}\subseteq\mathcal{T}}\theta(H_{1+\theta}(A_{\mathcal{S}}|E)-\sum_{t\in\mathcal{S}}R_{t}). (19)

Note that the asymptotic performance in Claim (iii) is achieved only by (11-almost) universal2 hash functions since we put the additional constraint of ε=1\varepsilon=1. This condition could potentially be relaxed with techniques in [36].

The proof of Lemma 1 is inspired by [11, Theorem 1], [28, Lemma 1 and Theorem 2] and provided in Appendix -A. A few remarks are in order.

Firstly, Lemma 1 is a generalization of [11, Theorem 1] to multi-terminal. In the proof of Lemma 1, we also borrow an idea from [30, Theorem 1] which studied the output statistics of universal2 hash functions under the total variation distance measure instead of the Rényi divergence considered here. Invoking (21) and Pinsker’s inequality, it is easy to see that that [30, Theorem 1] is indeed a corollary of Lemma 1.

Secondly, since the Rényi divergence D1+s()D_{1+s}(\cdot) is a non-decreasing ss and thus for all s0s\geq 0,

D(PM𝒯Ent𝒯Ut×PEn)\displaystyle D(P_{M_{\mathcal{T}}E^{n}}\|\prod_{t\in\mathcal{T}}U_{\mathcal{M}_{t}}\times P_{E}^{n}) =C1(M𝒯|En)\displaystyle=C_{1}(M_{\mathcal{T}}|E^{n}) (20)
C1+s(M𝒯|En).\displaystyle\leq C_{1+s}(M_{\mathcal{T}}|E^{n}). (21)

Thus, our results in Lemma 1 can be used to analyze the secrecy constraints in key generation problems if the constraints are expressed in terms of KL divergences or mutual information terms as in existing literature.

It is not apparent how one can use Lemma 1 for this purpose. To illustrate this, in the following, we briefly discuss the case in a private key generation problem involving three terminals: two legitimate users Alice and Bob, observing sequences A1nA_{1}^{n} and A2nA_{2}^{n} respectively, and one illegitimate user Eve who has access to side information AnA^{n}. Let 𝐅\mathbf{F} denote the public communication between Alice and Bob and let KK denote the secret key generated by them. To make sure the generated key is secure, we need I(K;An,𝐅)I(K;A^{n},\mathbf{F}) to be small and to make sure the generated key is uniform, we need to make D(PKUK)D(P_{K}\|\mathrm{U}_{K}) to be small where UK\mathrm{U}_{K} is the uniform distribution over the alphabet of the secret key.

Note that in key generation problems, in the achievability part, the public communication 𝐅\mathbf{F} is usually the random binning (M1,M2)(M_{1},M_{2}) of observations (A1n,A2n)(A_{1}^{n},A_{2}^{n}) at legitimate users and the secret key KK is usually obtained by applying a hash function on a commonly agreed binning sequence (which is correlated with (A1n,A2n)(A_{1}^{n},A_{2}^{n})). Thus, we have that

D(PKAn𝐅PU×PAnP𝐅)\displaystyle D(P_{KA^{n}\mathbf{F}}\|P_{\mathrm{U}}\times P_{A^{n}}P_{\mathbf{F}}) =D(PKUK)+I(K;An,M1,M2)\displaystyle=D(P_{K}\|\mathrm{U}_{K})+I(K;A^{n},M_{1},M_{2}) (22)
D(PKM1M2AnUK×UM1UM2×PAn),\displaystyle\leq D(P_{KM_{1}M_{2}A^{n}}\|\mathrm{U}_{K}\times\mathrm{U}_{M_{1}}\mathrm{U}_{M_{2}}\times P_{A}^{n}), (23)

where UMi,i[2]U_{M_{i}},~{}i\in[2] is the uniform distribution over the alphabet of random binning.

Therefore, using Lemma 1 and (21), we have

  • if (17) is satisfied, then the secrecy constraint satisfies 1nD(PKAn𝐅UK×PAn𝐅)\frac{1}{n}D(P_{KA^{n}\mathbf{F}}\|\mathrm{U}_{K}\times P_{A^{n}\mathbf{F}}) vanishes to zero as nn\to\infty and thus ensures weak secrecy;

  • if the right hand side of (19) is always positive, then the secrecy constraint D(PKAn𝐅UK×PAn𝐅)D(P_{KA^{n}\mathbf{F}}\|\mathrm{U}_{K}\times P_{A^{n}\mathbf{F}}) decays exponentially fast and thus ensures strong secrecy.

In the remaining of this paper, to illustrate in detail how the result in Lemma 1 can be used in analyses of secrecy constraints, we consider a multiple private key generation problem and derive the capacity region for the problem under mild conditions.

III Private Key Capacity Region for CMS

III-A Multiple Private Key Generation with a Helper

Let PA0A1A2A3P_{A_{0}A_{1}A_{2}A_{3}} be a joint probability density function (pdf) of random variables (A0,A1,A2,A3)(A_{0},A_{1},A_{2},A_{3}) defined on a continuous alphabet 𝒜0×𝒜1×𝒜2×𝒜3\mathcal{A}_{0}\times\mathcal{A}_{1}\times\mathcal{A}_{2}\times\mathcal{A}_{3}. We assume that the pdf PA0A1A2A3P_{A_{0}A_{1}A_{2}A_{3}} satisfies that for any non-empty set 𝒮{0,1,2,3}\mathcal{S}\subseteq\{0,1,2,3\}, the (joint) differential entropy h(A𝒮)h(A_{\mathcal{S}}) is finite, i.e.,

|h(A𝒮)|=|h({At}t𝒮)|<.\displaystyle|h(A_{\mathcal{S}})|=|h(\{A_{t}\}_{t\in\mathcal{S}})|<\infty. (24)

Let (A0n,A1n,A2n,A3n)(A_{0}^{n},A_{1}^{n},A_{2}^{n},A_{3}^{n}) be a sequence of continuous random variables generated i.i.d. according to a pdf PA0A1A2A3P_{A_{0}A_{1}A_{2}A_{3}}.

In this subsection, we revisit the multiple key generation model [18] by studied Zhang et al. as shown in Figure 1. In this model, there are four terminals: Alice has access to A1nA_{1}^{n}, Bob has access to A0nA_{0}^{n}, Charlie has access to A2nA_{2}^{n} and Helen has access to A3nA_{3}^{n}. It is assumed that there is a noiseless public channel and all terminals talk interactively in rr rounds. Let the overall messages transmitted over the public channel be 𝐅:=(F1,,F4r)\mathbf{F}:=(F_{1},\ldots,F_{4r}). For j={1,,4r}j=\{1,\ldots,4r\}, FjF_{j} is a function of AtnA_{t}^{n} and previous messages Fj1F^{j-1} where t=jmod4t=j\mod 4.

Let the alphabet of secret keys be 𝒦t:={1,,Kt}\mathcal{K}_{t}:=\{1,\ldots,K_{t}\} for t[2]t\in[2]. Using the public messages 𝐅\mathbf{F} and the source sequence A1nA_{1}^{n}, Alice generates a private key KA𝒦1K_{\mathrm{A}}\in\mathcal{K}_{1}. Using (𝐅,A0n)(\mathbf{F},A_{0}^{n}), Bob generates private keys (KBA,KBC)𝒦1×𝒦2(K_{\rm{BA}},K_{\rm{BC}})\in\mathcal{K}_{1}\times\mathcal{K}_{2}. Using (𝐅,A2n)(\mathbf{F},A_{2}^{n}), Charlie generates KC𝒦2K_{\mathrm{C}}\in\mathcal{K}_{2}. We require that Alice and Bob agree on a private private key while Charlie and Bob agree on another private key, i.e. KA=KBAK_{\mathrm{A}}=K_{\rm{BA}} and KC=KBCK_{\mathrm{C}}=K_{\rm{BC}}. A private key generation protocol consists of the public communication 𝐅\mathbf{F}. Note that in the above model, Helen is an untrusted helper who helps other terminals by transmitting messages over the public channel so that other terminals can obtain common sequences for subsequent key generations.

A1nA_{1}^{n}A0nA_{0}^{n}A2nA_{2}^{n}A3nA_{3}^{n}AliceBobCharlieHelenKAK_{\mathrm{A}}(KBA,KBC)(K_{\rm{BA}},K_{\rm{BC}})KCK_{\mathrm{C}}Public DiscussionEve
Figure 1: Multiple Private key Generation with a Helper [18].

In [18], the authors considered four models with different secrecy requirements for discrete memoryless sources, depending on whether (KA,KC)(K_{\mathrm{A}},K_{\mathrm{C}}) is known by Helen and whether KCK_{\mathrm{C}} is known by Alice. Our setting differs from [18] in the following two aspects:

  1. (i)

    We consider different secrecy requirements on generated keys. To be specific, we require the private key KAK_{\mathrm{A}} is only known by Alice and Bob and the private key KCK_{\mathrm{C}} is only known by Bob and Charlie.

  2. (ii)

    We consider continuous memoryless sources, which requires different techniques in the analyses and derivation of fundamental limits concerning the performance of optimal protocols.

We then give a formal definition of the capacity region of multiple private key generation with a helper, which concerns the asymptotic fundamental limits of optimal protocols.

Definition 2.

A pair (R1,R2)(R_{1},R_{2}) is said to be an achievable private key rate pair if there exists a sequence of private key generation protocols such that

limnmax{Pr{KAKBA},Pr{KCKBC}}\displaystyle\lim_{n\to\infty}\max\big{\{}\Pr\{K_{\mathrm{A}}\neq K_{\rm{BA}}\},\Pr\{K_{\mathrm{C}}\neq K_{\rm{BC}}\}\big{\}} =0,\displaystyle=0, (25)
limnD(PKAA2nA3n𝐅U𝒦1×PA2nA3n𝐅)\displaystyle\lim_{n\to\infty}D(P_{K_{\mathrm{A}}A_{2}^{n}A_{3}^{n}\mathbf{F}}\|U_{\mathcal{K}_{1}}\times P_{A_{2}^{n}A_{3}^{n}\mathbf{F}}) =0,\displaystyle=0, (26)
limnD(PKCA1nA3n𝐅U𝒦2×PA1nA3n𝐅)\displaystyle\lim_{n\to\infty}D(P_{K_{\mathrm{C}}A_{1}^{n}A_{3}^{n}\mathbf{F}}\|U_{\mathcal{K}_{2}}\times P_{A_{1}^{n}A_{3}^{n}\mathbf{F}}) =0,\displaystyle=0, (27)
lim infn1nH(KA)R1,lim infn1nH(KC)\displaystyle\liminf_{n\to\infty}\frac{1}{n}H(K_{\mathrm{A}})\geq R_{1},~{}\liminf_{n\to\infty}\frac{1}{n}H(K_{\mathrm{C}}) R2.\displaystyle\geq R_{2}. (28)

The closure of all achievable private key rate pairs is called the private key capacity region and denoted as 𝒞MP\mathcal{C}_{\rm{MP}}.

Note that (26), (27) imply that i) the generated key KAK_{\mathrm{A}} is almost uniform over 𝒦1\mathcal{K}_{1} and independent of (𝐅,A2n,A3n)(\mathbf{F},A_{2}^{n},A_{3}^{n}) and ii) KCK_{\mathrm{C}} is almost uniform over 𝒦2\mathcal{K}_{2} and independent of (𝐅,A1n,A3n)(\mathbf{F},A_{1}^{n},A_{3}^{n}). Furthermore, the secrecy requirements in (26), (27) are strong in contrast to the weak ones in [18].

To present our result, we need the following definition. Let \mathcal{R}^{*} be the set of pairs (R1,R2)(R_{1},R_{2}) such that

R1\displaystyle R_{1} I(A1;A0|A2,A3),\displaystyle\leq I(A_{1};A_{0}|A_{2},A_{3}), (29)
R2\displaystyle R_{2} I(A2;A0|A1,A3),\displaystyle\leq I(A_{2};A_{0}|A_{1},A_{3}), (30)
R1+R2\displaystyle R_{1}+R_{2} I(A1,A2;A0|A3)I(A1;A2|A3),\displaystyle\leq I(A_{1},A_{2};A_{0}|A_{3})-I(A_{1};A_{2}|A_{3}), (31)

where the mutual information is calculated with respect to the pdf PA0A1A2A3P_{A_{0}A_{1}A_{2}A_{3}} or its induced pdfs.

Theorem 2.

The secrecy capacity region with an untrusted helper satisfies that

𝒞MP.\displaystyle\mathcal{R}^{*}\subseteq\mathcal{C}_{\rm{MP}}. (32)

The proof of Theorem 2 is given in Section IV. In the achievability proof, we first quantize the continuous source sequence similarly as in the proof of [22, Theorem 1]. Then, the terminals communicate over the public channel so that the quantized version of (A0n,A1n)(A_{0}^{n},A_{1}^{n}) are decoded almost surely by Bob who observes A0nA_{0}^{n}. The reliability analysis (cf. (25)) for key agreement proceeds similarly as the error exponent analysis for Slepian-Wolf coding introduced in [31]. The secrecy analysis (cf. (26), (26)) follows by invoking (19) in Lemma 1. Subsequently, we need to apply Fourier Motzkin Elimination to obtain the conditions on achievable rate pairs. Finally, as the quantization level goes to infinity, we show that any rate pair inside \mathcal{R}^{*} is achievable by exploring the relationship between the differential entropy of continuous random variables and the discrete entropy of the quantized random variables.

We remark that Theorem 2 holds also for DMS, as can be gleaned from the proof. Furthermore, we can derive the achievable reliability-secrecy exponent which is positive for rate pairs inside \mathcal{R}^{*}. We remark that Lemma 1, especially Eq. (19), is critical to derive secrecy exponents [11, 12] for key generation problems of DMS. This means that, we can not only show that Eq. (26) and Eq. (27) hold, but also derive a lower bound on the speed at which the secrecy constraints in Eq. (26) and Eq. (27) vanish to zero exponentially as the length of observed sequences tends to infinity. This is yet another advantage of our method beyond quantization based techniques in [15] which could only be used to show that secrecy constraints vanish to zero but not the manner or the rate of decay.

Corollary 3.

For any pdf PA0A1A2A3P_{A_{0}A_{1}A_{2}A_{3}} such that the Markov chain A1A3A2A_{1}-A_{3}-A_{2} holds, we have that 𝒞MP=\mathcal{C}_{\rm{MP}}=\mathcal{R}^{*}.

The proof of Corollary 3 is given in Section V. When the Markov chain A1A3A2A_{1}-A_{3}-A_{2} holds, we have I(A1;A2|A3)=0I(A_{1};A_{2}|A_{3})=0. The achievability part follows from Theorem 2 and the converse part follows by judiciously adapting the converse techniques in [22] to our setting. We remark that the proof techniques used to prove Theorem 2 and Corollary 3 can also be applied to all the four models in [18] and thus show that the capacity results in [18] also hold for CMS with strong secrecy.

III-B Generalization to a Cellular Model

Recall that 𝒯={1,,T}\mathcal{T}=\{1,\ldots,T\}. For each t𝒯t\in\mathcal{T}, define an alphabet of keys as 𝒦t:={1,,Kt}\mathcal{K}_{t}:=\{1,\ldots,K_{t}\}. Let (A𝒯,A0)(A_{\mathcal{T}},A_{0}) be distributed according to a joint pdf PA0A𝒯P_{A_{0}A_{\mathcal{T}}} with zero mean vector and covariance matrix Σ\Sigma. In this subsection, we consider a cellular model where there is a base station and TT terminals. This model is a generalization of our setting in Section III-A in the spirit of [4] and has potential applications in internet of things where multiple terminals need to generate private keys with the help of other (potentially untrusted) terminals.

The base station observes the source sequence A0nA_{0}^{n} and for t𝒯t\in\mathcal{T}, terminal tt observes the source sequence AtnA_{t}^{n}. Fix arbitrary subset 𝒮\mathcal{S} of 𝒯\mathcal{T}. For each t𝒮t\in\mathcal{S}, terminal tt aims to generate a private key with the base station, concealed from all other terminals. We assume that the public communication is done in rr rounds over a noiseless public channel which is accessed by all terminals. Let 𝐅\mathbf{F} denote the overall communication over the public channel. For each t𝒮t\in\mathcal{S}, given 𝐅\mathbf{F} and AtnA_{t}^{n}, terminal tt generates a private key KP,t𝒦tK_{\mathrm{P},t}\in\mathcal{K}_{t}. Furthermore, given A0nA_{0}^{n} and 𝐅\mathbf{F}, the base station generates a sequence of private keys {KB,t}t𝒮\{K_{\mathrm{B},t}\}_{t\in\mathcal{S}}. The goal of a good protocol is to enable the base station and each terminal t𝒮t\in\mathcal{S} to generate an agreed private key, which is concealed from all other terminals.

The capacity region for this cellular model is defined as follows.

Definition 3.

A tuple R𝒮={Rt}t𝒮R_{\mathcal{S}}=\{R_{t}\}_{t\in\mathcal{S}} is said to an achievable private key rate tuple if there exists a sequence of private key generation protocols (𝐅\mathbf{F}) such that for each t𝒮t\in\mathcal{S},

limnPr{KP,tKB,t}\displaystyle\lim_{n\to\infty}\Pr\{K_{\mathrm{P},t}\neq K_{\mathrm{B},t}\} =0,\displaystyle=0, (33)
limnD(PKP,t𝐅A𝒯{t}cnU𝒦t×P𝐅A𝒯{t}cn)\displaystyle\lim_{n\to\infty}D(P_{K_{\mathrm{P},t}\mathbf{F}A^{n}_{\mathcal{T}\bigcap\{t\}^{\mathrm{c}}}}\|U_{\mathcal{K}_{t}}\times P_{\mathbf{F}A^{n}_{\mathcal{T}\bigcap\{t\}^{\mathrm{c}}}}) =0,\displaystyle=0, (34)
lim infn1nH(KP,t)\displaystyle\liminf_{n\to\infty}\frac{1}{n}H(K_{\mathrm{P},t}) Rt.\displaystyle\geq R_{t}. (35)

The closure of the set of all achievable private key rate tuples is called the private key capacity region and denoted as 𝒞CP\mathcal{C}_{\rm{CP}}.

Before presenting the main results, we need the following definitions. Note that for 𝒰𝒮\mathcal{U}\subseteq\mathcal{S}, 𝒰𝒰c=𝒯\mathcal{U}\bigcup\mathcal{U}^{\mathrm{c}}=\mathcal{T}.

in\displaystyle\mathcal{R}_{\rm{in}} :={R𝒮:𝒰𝒮:t𝒰Rtt𝒰h(At|A𝒯{t}c)h(A𝒰|A𝒰c,A0)}\displaystyle:=\Big{\{}R_{\mathcal{S}}:~{}\forall~{}\emptyset\neq\mathcal{U}\subseteq\mathcal{S}:~{}\sum_{t\in\mathcal{U}}R_{t}\leq\sum_{t\in\mathcal{U}}h(A_{t}|A_{\mathcal{T}\bigcap\{t\}^{\mathrm{c}}})-h(A_{\mathcal{U}}|A_{\mathcal{U}^{\mathrm{c}}},A_{0})\Big{\}} (36)
out\displaystyle\mathcal{R}_{\rm{out}} :={R𝒮:𝒰𝒮:t𝒰Rth(A𝒰|A𝒰c)h(A𝒰|A𝒰c,A0)}.\displaystyle:=\Big{\{}R_{\mathcal{S}}:~{}\forall~{}\emptyset\neq\mathcal{U}\subseteq\mathcal{S}:~{}\sum_{t\in\mathcal{U}}R_{t}\leq h(A_{\mathcal{U}}|A_{\mathcal{U}^{\mathrm{c}}})-h(A_{\mathcal{U}}|A_{\mathcal{U}^{\mathrm{c}}},A_{0})\Big{\}}. (37)
Theorem 4.

The private key capacity region in the Cellular model satisfies that

in𝒞CPout.\displaystyle\mathcal{R}_{\rm{in}}\subseteq\mathcal{C}_{\rm{CP}}\subseteq\mathcal{R}_{\rm{out}}. (38)

The proof of Theorem 4 is omitted since it is a generalization of the proofs of Theorem 2 and Corollary 3. In fact, we can recover the result in 2 and Corollary 3 by letting 𝒯={1,2,3}\mathcal{T}=\{1,2,3\} and 𝒮={1,2}\mathcal{S}=\{1,2\}.

Here we provide only the proof sketch. In the achievability proof, we need to first quantize the source sequence at each terminal t𝒯t\in\mathcal{T} and thus obtain BtnB_{t}^{n}. Then, for t𝒮t\in\mathcal{S}, terminal tt sends a message MttM_{t}\in\mathcal{M}_{t} over the public channel and generates a private key KP,tK_{\mathrm{P},t} using BtnB_{t}^{n}. For t𝒮ct\in\mathcal{S}^{\mathrm{c}}, terminal tt sends the complete quantized source sequence. Thus, the public message 𝐅=(M𝒮,B𝒮cn)\mathbf{F}=(M_{\mathcal{S}},B_{\mathcal{S}^{\mathrm{c}}}^{n}). Given A0nA_{0}^{n} and 𝐅\mathbf{F}, the base station estimates B𝒮nB_{\mathcal{S}}^{n} and generate private key KB,tK_{\mathrm{B},t} using 𝐅\mathbf{F} and the estimated sequences B^tn\hat{B}_{t}^{n} for all t𝒮t\in\mathcal{S}. The error probability in key agreement is derived by using the distributed source coding idea and the secrecy analysis is done by invoking (19) in Lemma 1. Let R~t\tilde{R}_{t} be the rate of the message at terminal tt and let the quantization interval go to zero. To satisfy (33) and (34), we conclude that the rates should satisfy that for any positive δ\delta,

Rt+R~t\displaystyle R_{t}+\tilde{R}_{t} H(At|A𝒯{t}c)δ,\displaystyle\leq H(A_{t}|A_{\mathcal{T}\bigcap\{t\}^{\mathrm{c}}})-\delta, (39)
j𝒰R~j\displaystyle\sum_{j\in\mathcal{U}}\tilde{R}_{j} H(A𝒰|A𝒰c,A0)+δ.\displaystyle\geq H(A_{\mathcal{U}}|A_{\mathcal{U}^{\mathrm{c}}},A_{0})+\delta. (40)

for each t𝒮t\in\mathcal{S} and for each non-empty subset 𝒰\mathcal{U} of 𝒮\mathcal{S}. Without loss of generality, we can assume that 𝒮={1,,|𝒮|}\mathcal{S}=\{1,\ldots,|\mathcal{S}|\}. By applying the Fourier Motzkin Elimination successively to eliminate R~t\tilde{R}_{t} for all t𝒮t\in\mathcal{S}, we conclude that any R𝒮inR_{\mathcal{S}}\in\mathcal{R}_{\rm{in}} is achievable.

The converse proof proceeds similarly as Corollary 3 by assuming that there exists a super terminal observing A𝒰nA_{\mathcal{U}}^{n} and generating secret keys KP,𝒰:={KP,t}t𝒰K_{\mathrm{P},\mathcal{U}}:=\{K_{\mathrm{P},t}\}_{t\in\mathcal{U}} for each non-empty subset 𝒰\mathcal{U} of 𝒮\mathcal{S}. This is possible since TT is finite and (34) implies that for any non-empty subset 𝒰\mathcal{U} of 𝒮\mathcal{S}, we have that for any positive δ\delta and sufficiently large nn,

D(PKP,𝒰𝐅A𝒰cnt𝒰Ut×P𝐅A𝒰cn)\displaystyle D(P_{K_{\mathrm{P},\mathcal{U}}\mathbf{F}A_{\mathcal{U}^{\mathrm{c}}}^{n}}\|\prod_{t\in\mathcal{U}}U_{\mathcal{M}_{t}}\times P_{\mathbf{F}A_{\mathcal{U}^{\mathrm{c}}}^{n}}) t𝒰t𝒰D(PKP,t𝐅A𝒯{t}cnU𝒦t×P𝐅A𝒯{t}cn)\displaystyle\leq\sum_{t\in\mathcal{U}}\sum_{t\in\mathcal{U}}D(P_{K_{\mathrm{P},t}\mathbf{F}A^{n}_{\mathcal{T}\bigcap\{t\}^{\mathrm{c}}}}\|U_{\mathcal{K}_{t}}\times P_{\mathbf{F}A^{n}_{\mathcal{T}\bigcap\{t\}^{\mathrm{c}}}}) (41)
|𝒰|δTδ.\displaystyle\leq|\mathcal{U}|\delta\leq T\delta. (42)

IV Proof of Theorem 2

Throughout this section, we set 𝒯={1,2,3}\mathcal{T}=\{1,2,3\}.

IV-A Coding Strategy

Fix an integer qq. Let gq:[0,1,,2q2]g_{q}:\mathcal{R}\to[0,1,\ldots,2q^{2}] be a quantization function with quantization level Δ=1q\Delta=\frac{1}{q} such that gq(a)=0g_{q}(a)=0 if aqa\leq-q or a>qa>q and gq(a)=q(q+a)g_{q}(a)=\lceil q(q+a)\rceil if a(q,q]a\in(-q,q]. Note that the quantized random variable has a finite alphabet =[0,1,,2q2]\mathcal{B}=[0,1,\ldots,2q^{2}] with the size 2q2+12q^{2}+1. Applying the quantization function QQ on all {At}t𝒯\{A_{t}\}_{t\in\mathcal{T}} to obtain quantized version {Bt}t𝒯\{B_{t}\}_{t\in\mathcal{T}}. We first quantize the sequences AtnA_{t}^{n} using the function gqg_{q} and obtain corresponding quantized sequences Btn=gq(Atn)B_{t}^{n}=g_{q}(A_{t}^{n}) for t=0,1,2,3t=0,1,2,3.

Let X5=(X1,X2,X3,X4,X5)X^{5}=(X_{1},X_{2},X_{3},X_{4},X_{5}) be a sequence of independent random variables. Let fXtf_{X_{t}} be an universal2 random hash function mapping from tn\mathcal{B}_{t}^{n} to t={1,,Nt}\mathcal{M}_{t}=\{1,\ldots,N_{t}\} for t=1,2,3t=1,2,3 where XtX_{t} describes the stochastic behavior of the hash function. Similarly, let fXt+3f_{X_{t+3}} be random hash function mapping from tn\mathcal{B}_{t}^{n} to 𝒦t={1,,Kt}\mathcal{K}_{t}=\{1,\ldots,K_{t}\} for t=1,2t=1,2. Furthermore, for any positive δ\delta, let logNt=nR~t\log N_{t}=n\tilde{R}_{t} for t=1,2,3t=1,2,3 and logKt=nRt\log K_{t}=nR_{t} for t=1,2t=1,2.

Codebook Generation: The code book generated by Alice is 𝒞A:=a1n𝒜1n(fX1(gq(a1n)),fX4(gq(a1n)))\mathcal{C}_{\mathrm{A}}:=\bigcup_{a_{1}^{n}\mathcal{A}_{1}^{n}}(f_{X_{1}}(g_{q}(a_{1}^{n})),f_{X_{4}}(g_{q}(a_{1}^{n}))). The codebook generated by Charlie is 𝒞C:=a2n𝒜2n(fX2(gq(a2n)),fX5(gq(a2n)))\mathcal{C}_{\mathrm{C}}:=\bigcup_{a_{2}^{n}\mathcal{A}_{2}^{n}}(f_{X_{2}}(g_{q}(a_{2}^{n})),f_{X_{5}}(g_{q}(a_{2}^{n}))). The codebook generated by Helen is 𝒞H:=a3n𝒜3nfX3(gq(a3n))\mathcal{C}_{\mathrm{H}}:=\bigcup_{a_{3}^{n}\mathcal{A}_{3}^{n}}f_{X_{3}}(g_{q}(a_{3}^{n})). The random codebook 𝒞X5:={𝒞A,𝒞C,𝒞H}\mathcal{C}_{X^{5}}:=\{\mathcal{C}_{\mathrm{A}},\mathcal{C}_{\mathrm{C}},\mathcal{C}_{\mathrm{H}}\} controlled by random variables X5X^{5} is assumed to be known by all users Alice, Bob, Charlie and Helen.

Encoding: Recall that Btn=gq(Atn)B_{t}^{n}=g_{q}(A_{t}^{n}) for t=0,1,2,3t=0,1,2,3. Given A1nA_{1}^{n}, Alice sends m1:=fX1(B1n)m_{1}:=f_{X_{1}}(B_{1}^{n}) over the public channel and takes fX4(B1n)f_{X_{4}}(B_{1}^{n}) as the private key KAK_{\mathrm{A}}. Given A2nA_{2}^{n}, Charlie sends m2:=fX2(B2n)m_{2}:=f_{X_{2}}(B_{2}^{n}) and takes fX5(B2n)f_{X_{5}}(B_{2}^{n}) as the private key KCK_{\mathrm{C}}. Given A3nA_{3}^{n}, Helen sends m3:=fX3(B3n)m_{3}:=f_{X_{3}}(B_{3}^{n}) over the public channel.

Decoding: Let PB0B1B1B3P_{B_{0}B_{1}B_{1}B_{3}} be induced by PA0A1A2A3P_{A_{0}A_{1}A_{2}A_{3}} and the quantization function gqg_{q}. Given the messages 𝐅=(m1,m2,m3)\mathbf{F}=(m_{1},m_{2},m_{3}) transmitted over the public discussion channel and the source sequence A0nA_{0}^{n}, Bob uses maximum likelihood decoding to obtain (B^1n,B^2n,B^3n)(\hat{B}_{1}^{n},\hat{B}_{2}^{n},\hat{B}_{3}^{n}), i.e.,

(B^1n,B^2n,B^3n)\displaystyle(\hat{B}_{1}^{n},\hat{B}_{2}^{n},\hat{B}_{3}^{n}) :=argmax(b~1n,b~2n,b~3n):fXt(b~tn)=mt,t=1,2,3PB1B2B3|B0n(b~1n,b~2n,b~3n|B0n).\displaystyle:=\operatorname*{arg\,max}_{\begin{subarray}{c}(\tilde{b}_{1}^{n},\tilde{b}_{2}^{n},\tilde{b}_{3}^{n}):\\ f_{X_{t}}(\tilde{b}_{t}^{n})=m_{t},~{}t=1,2,3\end{subarray}}P_{B_{1}B_{2}B_{3}|B_{0}}^{n}(\tilde{b}_{1}^{n},\tilde{b}_{2}^{n},\tilde{b}_{3}^{n}|B_{0}^{n}). (43)

Then, Bob claims that KBA=fX4(B^1n)K_{\rm{BA}}=f_{X_{4}}(\hat{B}_{1}^{n}) and KBC=fX5(B^3n)K_{\rm{BC}}=f_{X_{5}}(\hat{B}_{3}^{n}).

IV-B Analysis of Error Probability in Key Agreement

Given the above coding strategy, we obtain that

max{Pr{KAKBA},Pr{KCKBC}}\displaystyle\max\big{\{}\Pr\{K_{\mathrm{A}}\neq K_{\rm{BA}}\},\Pr\{K_{\mathrm{C}}\neq K_{\rm{BC}}\}\big{\}} Pr{(B^1n,B^2n,B^3n)(B1n,B2n,B3n)}.\displaystyle\leq\Pr\Big{\{}(\hat{B}_{1}^{n},\hat{B}_{2}^{n},\hat{B}_{3}^{n})\neq(B_{1}^{n},B_{2}^{n},B_{3}^{n})\Big{\}}. (44)

Note that the average is not only over all possible realizations of source sequences but also over all possible random universal2 hash functions. Recall that in this section 𝒯={1,2,3}\mathcal{T}=\{1,2,3\} and all the quantized random variable have the same alphabet \mathcal{B}. Given 𝒮𝒯\emptyset\neq\mathcal{S}\subseteq\mathcal{T} and a0nna_{0}^{n}\in\mathcal{R}^{n}, define the error events:

𝒮\displaystyle\mathcal{E}_{\mathcal{S}} :={b~𝒯n3n:t𝒯,fXt(b~tn)=mt,t𝒮,b~tnBtn,\displaystyle:=\Big{\{}\tilde{b}_{\mathcal{T}}^{n}\in\mathcal{B}^{3n}:~{}\forall~{}t\in\mathcal{T},~{}f_{X_{t}}(\tilde{b}_{t}^{n})=m_{t},~{}\forall~{}t\in\mathcal{S},~{}\tilde{b}_{t}^{n}\neq B_{t}^{n},
t𝒯𝒮c,b~tn=Btn,PB𝒯|B0n(b~𝒯n|B0n)PB𝒯|B0n(B𝒯n|B0n)}.\displaystyle\qquad\quad\forall~{}t\in\mathcal{T}\bigcap\mathcal{S}^{\mathrm{c}},~{}\tilde{b}_{t}^{n}=B_{t}^{n},~{}P_{B_{\mathcal{T}}|B_{0}}^{n}(\tilde{b}_{\mathcal{T}}^{n}|B_{0}^{n})\geq P_{B_{\mathcal{T}}|B_{0}}^{n}(B_{\mathcal{T}}^{n}|B_{0}^{n})\Big{\}}. (45)

Then, similarly as [31], we have that for any 𝒮𝒯\emptyset\neq\mathcal{S}\subseteq\mathcal{T} and arbitrary s[0,1]s\in[0,1],

Pr{b~𝒯n𝒮}\displaystyle\Pr\big{\{}\exists\tilde{b}_{\mathcal{T}}^{n}\in\mathcal{E}_{\mathcal{S}}\big{\}}
=𝔼X𝒮[b𝒯nPB𝒯n(b𝒯n)Pr{b~𝒯n𝒮|b𝒯n}]\displaystyle=\mathbb{E}_{X_{\mathcal{S}}}\Big{[}\sum_{b_{\mathcal{T}}^{n}}P_{B_{\mathcal{T}}}^{n}(b_{\mathcal{T}}^{n})\Pr\big{\{}\exists\tilde{b}_{\mathcal{T}}^{n}\in\mathcal{E}_{\mathcal{S}}|b_{\mathcal{T}}^{n}\big{\}}\Big{]} (46)
b0n,b𝒯nPB0,B𝒯n(b0n,b𝒯n)(b~𝒮n1{PB𝒯|B0n(b~𝒮n,b𝒯𝒮cn|b0n)PB𝒯|B0n(b𝒯n|b0n)}𝔼X𝒮[1{fXt(b~tn)=fXtn(btn),t𝒮}])s\displaystyle\leq\sum_{b_{0}^{n},b_{\mathcal{T}}^{n}}P_{B_{0},B_{\mathcal{T}}}^{n}(b_{0}^{n},b_{\mathcal{T}}^{n})\Bigg{(}\sum_{\begin{subarray}{c}\tilde{b}_{\mathcal{S}}^{n}\end{subarray}}1\{P_{B_{\mathcal{T}}|B_{0}}^{n}(\tilde{b}_{\mathcal{S}}^{n},b_{\mathcal{T}\bigcap\mathcal{S}^{\mathrm{c}}}^{n}|b_{0}^{n})\geq P_{B_{\mathcal{T}}|B_{0}}^{n}(b_{\mathcal{T}}^{n}|b_{0}^{n})\}\mathbb{E}_{X_{\mathcal{S}}}\Big{[}1\{f_{X_{t}}(\tilde{b}_{t}^{n})=f_{X_{t}}^{n}(b_{t}^{n}),~{}t\in\mathcal{S}\}\Big{]}\Bigg{)}^{s} (47)
b0n,b𝒯nPB0,B𝒯n(b0n,b𝒯n)(b~𝒮nPB𝒮|B0B𝒯𝒮cn(b~𝒮n|b0n,b𝒯𝒮cn)PB𝒮|B0B𝒯𝒮cn(b𝒦n|b0nb𝒯𝒮cn)×t𝒮1Mt)s\displaystyle\leq\sum_{b_{0}^{n},b_{\mathcal{T}}^{n}}P_{B_{0},B_{\mathcal{T}}}^{n}(b_{0}^{n},b_{\mathcal{T}}^{n})\Bigg{(}\sum_{\begin{subarray}{c}\tilde{b}_{\mathcal{S}}^{n}\end{subarray}}\frac{P_{B_{\mathcal{S}}|B_{0}B_{\mathcal{T}\bigcap\mathcal{S}^{\mathrm{c}}}}^{n}(\tilde{b}_{\mathcal{S}}^{n}|b_{0}^{n},b_{\mathcal{T}\bigcap\mathcal{S}^{\mathrm{c}}}^{n})}{P_{B_{\mathcal{S}}|B_{0}B_{\mathcal{T}\bigcap\mathcal{S}^{\mathrm{c}}}}^{n}(b_{\mathcal{K}}^{n}|b_{0}^{n}b_{\mathcal{T}\bigcap\mathcal{S}^{\mathrm{c}}}^{n})}\times\prod_{t\in\mathcal{S}}\frac{1}{M_{t}}\Bigg{)}^{s} (48)
exp(ns(t𝒮R~tH1+s(B𝒮|B0,B𝒯𝒦c)),\displaystyle\leq\exp\Big{(}-ns\Big{(}\sum_{t\in\mathcal{S}}\tilde{R}_{t}-H_{1+s}^{\uparrow}(B_{\mathcal{S}}|B_{0},B_{\mathcal{T}\bigcap\mathcal{K}^{\mathrm{c}}})\Big{)}, (49)

where (49) follows from the definition in (9). Thus, invoking (44) and (49), we obtain that

max{Pr{KAKBA},Pr{KCKBC}}\displaystyle\max\big{\{}\Pr\{K_{\mathrm{A}}\neq K_{\rm{BA}}\},\Pr\{K_{\mathrm{C}}\neq K_{\rm{BC}}\}\big{\}}
𝒮𝒯Pr{b~𝒯n𝒮}\displaystyle\leq\sum_{\emptyset\neq\mathcal{S}\subseteq\mathcal{T}}\Pr\big{\{}\exists\tilde{b}_{\mathcal{T}}^{n}\in\mathcal{E}_{\mathcal{S}}\big{\}} (50)
𝒮𝒯exp{nmaxs[0,1]s(t𝒮R~tH1+s(B𝒮|B0,B𝒮c))}\displaystyle\leq\sum_{\emptyset\neq\mathcal{S}\subseteq\mathcal{T}}\exp\Big{\{}-n\max_{s\in[0,1]}s\Big{(}\sum_{t\in\mathcal{S}}\tilde{R}_{t}-H_{1+s}^{\uparrow}(B_{\mathcal{S}}|B_{0},B_{\mathcal{S}^{\mathrm{c}}})\Big{)}\Big{\}} (51)
(2T1)×exp{nmin𝒮𝒯maxs[0,1]s(t𝒮R~tH1+s(B𝒮|B0,B𝒮c))}.\displaystyle\leq(2^{T}-1)\times\exp\Big{\{}-n\min_{\emptyset\neq\mathcal{S}\subseteq\mathcal{T}}\max_{s\in[0,1]}s\Big{(}\sum_{t\in\mathcal{S}}\tilde{R}_{t}-H_{1+s}^{\uparrow}(B_{\mathcal{S}}|B_{0},B_{\mathcal{S}^{\mathrm{c}}})\Big{)}\Big{\}}. (52)

IV-C Analysis of Secrecy Requirement

Recall that UtU_{\mathcal{M}_{t}} is the uniform distribution over t\mathcal{M}_{t} for t=1,2,3t=1,2,3 and let U𝒦tU_{\mathcal{K}_{t}} be the uniform distribution over 𝒦t\mathcal{K}_{t} for t=1,2t=1,2. In the following, for simplicity, we will use MtM_{t} to denote fXt(Btn)f_{X_{t}}(B_{t}^{n}) for t=1,2,3t=1,2,3. Given the coding strategy, we have

D(PKAA2nA3n𝐅U𝒦1×PA2nA3n𝐅)\displaystyle D(P_{K_{\mathrm{A}}A_{2}^{n}A_{3}^{n}\mathbf{F}}\|U_{\mathcal{K}_{1}}\times P_{A_{2}^{n}A_{3}^{n}\mathbf{F}}) =D(PKAU𝒦1)+I(KA;A2n,A3n,M3)\displaystyle=D(P_{K_{\mathrm{A}}}\|U_{\mathcal{K}_{1}})+I(K_{\mathrm{A}};A_{2}^{n},A_{3}^{n},M_{3}) (53)
=D(PKAU𝒦1)+I(KA;M1)+I(KA;A2n,A3n,M2,M3|M1)\displaystyle=D(P_{K_{\mathrm{A}}}\|U_{\mathcal{K}_{1}})+I(K_{\mathrm{A}};M_{1})+I(K_{\mathrm{A}};A_{2}^{n},A_{3}^{n},M_{2},M_{3}|M_{1}) (54)
D(PKAU𝒦1)+I(KA;M1)+I(KA,M1;A2n,A3n)\displaystyle\leq D(P_{K_{\mathrm{A}}}\|U_{\mathcal{K}_{1}})+I(K_{\mathrm{A}};M_{1})+I(K_{\mathrm{A}},M_{1};A_{2}^{n},A_{3}^{n}) (55)
D(PKAM1A2nA3nU𝒦1×PU1×PA2,A3n).\displaystyle\leq D(P_{K_{\mathrm{A}}M_{1}A_{2}^{n}A_{3}^{n}}\|U_{\mathcal{K}_{1}}\times P_{U_{1}}\times P_{A_{2},A_{3}}^{n}). (56)

where (55) holds because M2M_{2} is a function of A2nA_{2}^{n} and M3M_{3} is a function of A3nA_{3}^{n}, thus

I(KA;A2n,A3n,M2,M3|M1)\displaystyle I(K_{\mathrm{A}};A_{2}^{n},A_{3}^{n},M_{2},M_{3}|M_{1}) =I(KA,M1;A2n,A3n,M2,M3)I(M1;A2n,A3n,M2,M3)\displaystyle=I(K_{\mathrm{A}},M_{1};A_{2}^{n},A_{3}^{n},M_{2},M_{3})-I(M_{1};A_{2}^{n},A_{3}^{n},M_{2},M_{3}) (57)
=I(KA,M1;A2n,A3n)I(M1;A2n,A3n)\displaystyle=I(K_{\mathrm{A}},M_{1};A_{2}^{n},A_{3}^{n})-I(M_{1};A_{2}^{n},A_{3}^{n}) (58)
I(KA,M1;A2n,A3n);\displaystyle\leq I(K_{\mathrm{A}},M_{1};A_{2}^{n},A_{3}^{n}); (59)

(56) holds because

D(PKAM1A2nA3nU𝒦1×PU1×PA2,A3n)\displaystyle D(P_{K_{\mathrm{A}}M_{1}A_{2}^{n}A_{3}^{n}}\|U_{\mathcal{K}_{1}}\times P_{U_{1}}\times P_{A_{2},A_{3}}^{n})
=D(PKAM1A2nA3nPKAM1×PA2,A3n)+D(PKAM1×PA2,A3nU𝒦1×PU1×PA2,A3n)\displaystyle=D(P_{K_{\mathrm{A}}M_{1}A_{2}^{n}A_{3}^{n}}\|P_{K_{\mathrm{A}}M_{1}}\times P_{A_{2},A_{3}}^{n})+D(P_{K_{\mathrm{A}}M_{1}}\times P_{A_{2},A_{3}}^{n}\|U_{\mathcal{K}_{1}}\times P_{U_{1}}\times P_{A_{2},A_{3}}^{n}) (60)
=I(KA,M1;A2n,A3n)+I(KA;M1)+D(PKAU𝒦1)+D(PM1PU1)\displaystyle=I(K_{\mathrm{A}},M_{1};A_{2}^{n},A_{3}^{n})+I(K_{\mathrm{A}};M_{1})+D(P_{K_{\mathrm{A}}}\|U_{\mathcal{K}_{1}})+D(P_{M_{1}}\|P_{U_{1}}) (61)
I(KA,M1;A2n,A3n)+I(KA;M1)+D(PKAU𝒦1).\displaystyle\geq I(K_{\mathrm{A}},M_{1};A_{2}^{n},A_{3}^{n})+I(K_{\mathrm{A}};M_{1})+D(P_{K_{\mathrm{A}}}\|U_{\mathcal{K}_{1}}). (62)

Using the result in (56) and invoking (19) in Lemma 1 by replacing EE with (A2,A3)(A_{2},A_{3}), we obtain that

lim infn1nlog𝔼X5[D(PKAA2nA3n𝐅U𝒦1×PA2nA3n𝐅)]maxθ[0,1]θ(H1+θ(B1|A2,A3)R1R~1).\displaystyle\liminf_{n\to\infty}-\frac{1}{n}\log\mathbb{E}_{X^{5}}\Big{[}D(P_{K_{\mathrm{A}}A_{2}^{n}A_{3}^{n}\mathbf{F}}\|U_{\mathcal{K}_{1}}\times P_{A_{2}^{n}A_{3}^{n}\mathbf{F}})\Big{]}\geq\max_{\theta\in[0,1]}\theta\Big{(}H_{1+\theta}(B_{1}|A_{2},A_{3})-R_{1}-\tilde{R}_{1}\Big{)}. (63)

Similarly as (63), we have

lim infn1nlog𝔼X5[D(PKCA1nA3n𝐅U𝒦2×PA1nA3n𝐅)]maxθ[0,1]θ(H1+θ(B2|A1,A3)R2R~2).\displaystyle\liminf_{n\to\infty}-\frac{1}{n}\log\mathbb{E}_{X^{5}}\Big{[}D(P_{K_{\mathrm{C}}A_{1}^{n}A_{3}^{n}\mathbf{F}}\|U_{\mathcal{K}_{2}}\times P_{A_{1}^{n}A_{3}^{n}\mathbf{F}})\Big{]}\geq\max_{\theta\in[0,1]}\theta\Big{(}H_{1+\theta}(B_{2}|A_{1},A_{3})-R_{2}-\tilde{R}_{2}\Big{)}. (64)

IV-D Analysis of Capacity Region

Lemma 5.

Using the results in (52), (63) and (64), we conclude that if (R1,R2,R~1,R~2,R~3)(R_{1},R_{2},\tilde{R}_{1},\tilde{R}_{2},\tilde{R}_{3}) satisfies that for any positive δ\delta,

t𝒮R~t\displaystyle\sum_{t\in\mathcal{S}}\tilde{R}_{t} H(B𝒮|B𝒮c,B0)+δ,𝒮𝒯,\displaystyle\geq H(B_{\mathcal{S}}|B_{\mathcal{S}^{\mathrm{c}}},B_{0})+\delta,~{}\forall~{}\emptyset\neq\mathcal{S}\subseteq\mathcal{T}, (65)
R1+R~1\displaystyle R_{1}+\tilde{R}_{1} H(B1|A2,A3)δ,\displaystyle\leq H(B_{1}|A_{2},A_{3})-\delta, (66)
R2+R~2\displaystyle R_{2}+\tilde{R}_{2} H(B2|A1,A3)δ,\displaystyle\leq H(B_{2}|A_{1},A_{3})-\delta, (67)

then

min𝒮𝒯maxs[0,1]s(t𝒮R~tH1+s(B𝒮|B0,B𝒮c))\displaystyle\min_{\emptyset\neq\mathcal{S}\subseteq\mathcal{T}}\max_{s\in[0,1]}s\Big{(}\sum_{t\in\mathcal{S}}\tilde{R}_{t}-H_{1+s}^{\uparrow}(B_{\mathcal{S}}|B_{0},B_{\mathcal{S}^{\mathrm{c}}})\Big{)} >0,\displaystyle>0, (68)
maxθ[0,1]θ(H1+θ(B1|A2,A3)R1R~1)\displaystyle\max_{\theta\in[0,1]}\theta\Big{(}H_{1+\theta}(B_{1}|A_{2},A_{3})-R_{1}-\tilde{R}_{1}\Big{)} >0,\displaystyle>0, (69)
maxθ[0,1]θ(H1+θ(B1|A2,A3)R1R~1)\displaystyle\max_{\theta\in[0,1]}\theta\Big{(}H_{1+\theta}(B_{1}|A_{2},A_{3})-R_{1}-\tilde{R}_{1}\Big{)} >0,\displaystyle>0, (70)

The proof of Lemma 5 follows from the properties of Rényi conditional entropy and thus omitted. By applying Fourier Motzkin Elimination to (65) to (67), we obtain that (R1,R2)(R_{1},R_{2}) should satisfy that

R1\displaystyle R_{1} H(B1|A2,A3)H(B1|B0,B2,B3)2δ,\displaystyle\leq H(B_{1}|A_{2},A_{3})-H(B_{1}|B_{0},B_{2},B_{3})-2\delta, (71)
R2\displaystyle R_{2} H(B2|A1,A3)H(B2|B0,B1,B3)2δ,\displaystyle\leq H(B_{2}|A_{1},A_{3})-H(B_{2}|B_{0},B_{1},B_{3})-2\delta, (72)
R1+R2\displaystyle R_{1}+R_{2} H(B1|A2,A3)+H(B2|A1,A3)H(B1,B2|B0,B3)4δ.\displaystyle\leq H(B_{1}|A_{2},A_{3})+H(B_{2}|A_{1},A_{3})-H(B_{1},B_{2}|B_{0},B_{3})-4\delta. (73)

Recall that Δ=1q\Delta=\frac{1}{q} is the quantization interval. Similarly as [22, Lemma 3.1] (see also [32, Theorem 8.3.1]), we obtain the following result.

Lemma 6.
limΔ0(H(B1|A2,A3)H(B1|B0,B2,B3))\displaystyle\lim_{\Delta\to 0}\Big{(}H(B_{1}|A_{2},A_{3})-H(B_{1}|B_{0},B_{2},B_{3})\Big{)}
=h(A1|A2,A3)h(A1|A0,A2,A3)=I(A0;A1|A2,A3),\displaystyle=h(A_{1}|A_{2},A_{3})-h(A_{1}|A_{0},A_{2},A_{3})=I(A_{0};A_{1}|A_{2},A_{3}), (74)
limΔ0(H(B2|A1,A3)H(B2|B0,B1,B3))\displaystyle\lim_{\Delta\to 0}\Big{(}H(B_{2}|A_{1},A_{3})-H(B_{2}|B_{0},B_{1},B_{3})\Big{)}
=h(A2|A1,A3)h(A2|A0,A1,A3)=I(A0;A2|A1,A3),\displaystyle=h(A_{2}|A_{1},A_{3})-h(A_{2}|A_{0},A_{1},A_{3})=I(A_{0};A_{2}|A_{1},A_{3}), (75)
limΔ0(H(B1|A2,A3)+H(B2|A1,A3)H(B1,B2|B0,B3))\displaystyle\lim_{\Delta\to 0}\Big{(}H(B_{1}|A_{2},A_{3})+H(B_{2}|A_{1},A_{3})-H(B_{1},B_{2}|B_{0},B_{3})\Big{)}
=h(A1|A2,A3)+h(A2|A1,A3)h(A1,A2|A0,A3)=I(A0;A1,A2|A3)I(A1;A2|A3).\displaystyle=h(A_{1}|A_{2},A_{3})+h(A_{2}|A_{1},A_{3})-h(A_{1},A_{2}|A_{0},A_{3})=I(A_{0};A_{1},A_{2}|A_{3})-I(A_{1};A_{2}|A_{3}). (76)

The proof of Lemma 6 is given in Appendix -C.

Invoking Lemma 6 and letting δ0\delta\downarrow 0, we have shown that average over all the random codebooks controlled by random variables X5X^{5}, if (R1,R2)(R_{1},R_{2})\in\mathcal{R}^{*}, then (25), (26) and (27) are satisfied and thus (R1,R2)(R_{1},R_{2}) is an achievable private key rate pair. The argument that there exists a deterministic codebook satisfying (25), (26) and (27) can be done similarly as [12] and thus omitted.

V Proof of Corollary 3

V-A Preliminaries

For 𝒮𝒯\mathcal{S}\subseteq\mathcal{T} and 𝒲𝒜c\mathcal{W}\subseteq\mathcal{A}^{\mathrm{c}}, let

(𝒮|𝒲)\displaystyle\mathcal{H}(\mathcal{S}|\mathcal{W}) :={𝒰𝒲c:𝒰,𝒮𝒰},\displaystyle:=\{\mathcal{U}\subseteq\mathcal{W}^{\mathrm{c}}:~{}\mathcal{U}\neq\emptyset,~{}\mathcal{S}\not\subseteq\mathcal{U}\},~{} (77)
i(𝒮|𝒲)\displaystyle\mathcal{H}_{i}(\mathcal{S}|\mathcal{W}) :={𝒰𝒲c:𝒰,𝒮𝒰,i𝒰},\displaystyle:=\{\mathcal{U}\subseteq\mathcal{W}^{\mathrm{c}}:~{}\mathcal{U}\neq\emptyset,~{}\mathcal{S}\not\subseteq\mathcal{U},~{}i\in\mathcal{U}\}, (78)
Λ(𝒮|𝒲)\displaystyle\Lambda(\mathcal{S}|\mathcal{W}) :={λ:𝒰i(𝒮|𝒲)λ𝒰=1,i𝒲c:i(𝒮|𝒲)}.\displaystyle:=\{\lambda:\sum_{\mathcal{U}\in\mathcal{H}_{i}(\mathcal{S}|\mathcal{W})}\lambda_{\mathcal{U}}=1,~{}\forall~{}i\in\mathcal{W}^{\mathrm{c}}:~{}\mathcal{H}_{i}(\mathcal{S}|\mathcal{W})\neq\emptyset\}. (79)

Similarly as [22, Lemma 3.2], we can prove the following result.

Lemma 7.

Fix an integer nn. Let ZZ be a random variable jointly distributed with A𝒯nA_{\mathcal{T}}^{n}.

  1. (i)

    For any λΛ(𝒮|𝒲)\lambda\in\Lambda(\mathcal{S}|\mathcal{W}), we have

    h(A𝒯n|A𝒲n,Z)𝒰(𝒮|𝒲)λ𝒰h(A𝒰n|h𝒰cn,Z)\displaystyle\!\!\!\!\!\!\!\!h(A_{\mathcal{T}}^{n}|A_{\mathcal{W}}^{n},Z)-\sum_{\mathcal{U}\in\mathcal{H}(\mathcal{S}|\mathcal{W})}\lambda_{\mathcal{U}}h(A_{\mathcal{U}}^{n}|h_{\mathcal{U}^{\mathrm{c}}}^{n},Z) 0;\displaystyle\geq 0; (80)
  2. (ii)

    For any t𝒲ct\in\mathcal{W}^{\mathrm{c}}, let VtV_{t} be a function of (Xt,Z)(X_{t},Z), then for any λΛ(𝒮|𝒲)\lambda\in\Lambda(\mathcal{S}|\mathcal{W}),

    h(A𝒯n|A𝒲n,Z)𝒰(𝒮|𝒲)λ𝒰h(A𝒰n|A𝒰cn,Z)\displaystyle h(A_{\mathcal{T}}^{n}|A_{\mathcal{W}}^{n},Z)-\sum_{\mathcal{U}\in\mathcal{H}(\mathcal{S}|\mathcal{W})}\lambda_{\mathcal{U}}h(A_{\mathcal{U}}^{n}|A_{\mathcal{U}^{\mathrm{c}}}^{n},Z)
    =h(A𝒯n|A𝒲n,Z,Vt)𝒰(𝒮|𝒲)λ𝒰h(A𝒰n|A𝒰cn,Z,Vt)+𝒰t(𝒮|𝒲)I(Vt;A𝒰c𝒲cn|A𝒲n,Z).\displaystyle=h(A_{\mathcal{T}}^{n}|A_{\mathcal{W}}^{n},Z,V_{t})-\sum_{\mathcal{U}\in\mathcal{H}(\mathcal{S}|\mathcal{W})}\lambda_{\mathcal{U}}h(A_{\mathcal{U}}^{n}|A_{\mathcal{U}^{\mathrm{c}}}^{n},Z,V_{t})+\sum_{\mathcal{U}\in\mathcal{H}_{t}(\mathcal{S}|\mathcal{W})}I(V_{t};A_{\mathcal{U}^{\mathrm{c}}\bigcap\mathcal{W}^{\mathrm{c}}}^{n}|A_{\mathcal{W}}^{n},Z). (81)

V-B Converse Proof

Fix any secret key protocol with public message 𝐅\mathbf{F} such that (25) to (28) are satisfied. We first consider keys KAK_{\mathrm{A}} and KBAK_{\rm{BA}} only to derive an upper bound for R1R_{1}. Invoking (25) to (28), we have that for sufficiently large nn and any positive δ\delta,

Pr{KAKBA}\displaystyle\Pr\{K_{\mathrm{A}}\neq K_{\rm{BA}}\} δ,\displaystyle\leq\delta, (82)
D(PKAA2nA3n𝐅U𝒦1×PA2nA3n𝐅)\displaystyle D(P_{K_{\mathrm{A}}A_{2}^{n}A_{3}^{n}\mathbf{F}}\|U_{\mathcal{K}_{1}}\times P_{A_{2}^{n}A_{3}^{n}\mathbf{F}}) δ,\displaystyle\leq\delta, (83)
1nH(KA)\displaystyle\frac{1}{n}H(K_{\mathrm{A}}) R1δ.\displaystyle\geq R_{1}-\delta. (84)

Recall that 𝐅=(F1,,F4r)\mathbf{F}=(F_{1},\ldots,F_{4r}) are the total communication of rr and FjF_{j} is a function of AtnA_{t}^{n} and Fj1F^{j-1} where t=jmod4t=j\mod 4. Let 𝐅1:={Fj:jmod4=0or1}\mathbf{F}_{1}:=\{F_{j}:~{}j\mod 4=0~{}\mathrm{or}~{}1\} and 𝐅2=𝐅1c\mathbf{F}_{2}=\mathbf{F}_{1}^{\mathrm{c}}. Set T=4T=4, 𝒯={0,1,2,3}\mathcal{T}=\{0,1,2,3\}, 𝒮={0,1}\mathcal{S}=\{0,1\}, W=2W=2 and 𝒲={2,3}\mathcal{W}=\{2,3\}. Thus, (𝒮|𝒲)={{0},{1}}\mathcal{H}(\mathcal{S}|\mathcal{W})=\{\{0\},\{1\}\}. Invoking (77) to (79), we obtain that

h(A0n,A1n|A2n,A3n)h(A0n|A1n,A2n,A3n)h(A1n|A0n,A2n,A3n)\displaystyle h(A_{0}^{n},A_{1}^{n}|A_{2}^{n},A_{3}^{n})-h(A_{0}^{n}|A_{1}^{n},A_{2}^{n},A_{3}^{n})-h(A_{1}^{n}|A_{0}^{n},A_{2}^{n},A_{3}^{n}) =h(A𝒯n|A𝒲n)maxλΛ(𝒮|𝒲)𝒰(𝒮|𝒲)λ𝒰h(A𝒰n|A𝒰cn).\displaystyle=h(A_{\mathcal{T}}^{n}|A_{\mathcal{W}}^{n})-\max_{\lambda\in\Lambda(\mathcal{S}|\mathcal{W})}\sum_{\mathcal{U}\in\mathcal{H}(\mathcal{S}|\mathcal{W})}\lambda_{\mathcal{U}}h(A_{\mathcal{U}}^{n}|A_{\mathcal{U}^{\mathrm{c}}}^{n}). (85)

Invoking (81) with Z=Z=\emptyset and V0=F0V_{0}=F_{0} and noting that the summation of mutual information terms are non-negative, we obtain that

h(A𝒯n|A𝒲n)𝒰(𝒮|𝒲)λ𝒰h(A𝒰n|A𝒰cn)\displaystyle h(A_{\mathcal{T}}^{n}|A^{n}_{\mathcal{W}})-\sum_{\mathcal{U}\in\mathcal{H}(\mathcal{S}|\mathcal{W})}\lambda_{\mathcal{U}}h(A^{n}_{\mathcal{U}}|A^{n}_{\mathcal{U}^{\mathrm{c}}}) h(A𝒯n|A𝒲n,F0)𝒰(𝒮|𝒲)λ𝒰h(A𝒰n|A𝒰cn,F0)\displaystyle\geq h(A^{n}_{\mathcal{T}}|A^{n}_{\mathcal{W}},F_{0})-\sum_{\mathcal{U}\in\mathcal{H}(\mathcal{S}|\mathcal{W})}\lambda_{\mathcal{U}}h(A^{n}_{\mathcal{U}}|A^{n}_{\mathcal{U}^{\mathrm{c}}},F_{0}) (86)
h(A𝒯n|A𝒲n,F0,F1)𝒰(𝒮|𝒲)λ𝒰h(A𝒰n|A𝒰cn,F0,F1)\displaystyle\geq h(A^{n}_{\mathcal{T}}|A^{n}_{\mathcal{W}},F_{0},F_{1})-\sum_{\mathcal{U}\in\mathcal{H}(\mathcal{S}|\mathcal{W})}\lambda_{\mathcal{U}}h(A^{n}_{\mathcal{U}}|A^{n}_{\mathcal{U}^{\mathrm{c}}},F_{0},F_{1}) (87)
h(A𝒯n|A𝒲n,𝐅1)𝒰(𝒮|𝒲)λ𝒰h(A𝒰n|A𝒰cn,𝐅1)\displaystyle\geq h(A^{n}_{\mathcal{T}}|A^{n}_{\mathcal{W}},\mathbf{F}_{1})-\sum_{\mathcal{U}\in\mathcal{H}(\mathcal{S}|\mathcal{W})}\lambda_{\mathcal{U}}h(A^{n}_{\mathcal{U}}|A^{n}_{\mathcal{U}^{\mathrm{c}}},\mathbf{F}_{1}) (88)
=h(A𝒯n|A𝒲n,𝐅)𝒰(𝒮|𝒲)λ𝒰h(A𝒰n|A𝒰cn,𝐅),\displaystyle=h(A^{n}_{\mathcal{T}}|A^{n}_{\mathcal{W}},\mathbf{F})-\sum_{\mathcal{U}\in\mathcal{H}(\mathcal{S}|\mathcal{W})}\lambda_{\mathcal{U}}h(A^{n}_{\mathcal{U}}|A^{n}_{\mathcal{U}^{\mathrm{c}}},\mathbf{F}), (89)

where (87) follows by invoking (81) with Z=F0Z=F_{0} and V1=F1V_{1}=F_{1}; (88) follows by invoking (81) for r(TW)r(T-W) times successively; (89) follows because

h(A𝒯n|A𝒲n,𝐅1)\displaystyle h(A_{\mathcal{T}}^{n}|A_{\mathcal{W}}^{n},\mathbf{F}_{1}) =h(A𝒯n|A𝒲n,𝐅1,FTW)\displaystyle=h(A_{\mathcal{T}}^{n}|A_{\mathcal{W}}^{n},\mathbf{F}_{1},F_{T-W}) (90)
=h(A𝒯n|A𝒲n,𝐅1,FTW,FTW+1)\displaystyle=h(A_{\mathcal{T}}^{n}|A_{\mathcal{W}}^{n},\mathbf{F}_{1},F_{T-W},F_{T-W+1}) (91)
=\displaystyle=\ldots (92)
=h(A𝒯n|A𝒲n,𝐅1,𝐅2),\displaystyle=h(A_{\mathcal{T}}^{n}|A_{\mathcal{W}}^{n},\mathbf{F}_{1},\mathbf{F}_{2}), (93)

and

h(A𝒰n|A𝒰cn,𝐅1)=h(A𝒰n|A𝒰cn,𝐅),\displaystyle h(A_{\mathcal{U}}^{n}|A_{\mathcal{U}^{\mathrm{c}}}^{n},\mathbf{F}_{1})=h(A_{\mathcal{U}}^{n}|A_{\mathcal{U}^{\mathrm{c}}}^{n},\mathbf{F}), (94)

where (90) follows since FTWF_{T-W} is a function of A𝒲nA_{\mathcal{W}}^{n} and 𝐅1\mathbf{F}_{1}; (91) follow since FTW+1F_{T-W+1} is a function of (𝐅1,A𝒲n,FTW)(\mathbf{F}_{1},A_{\mathcal{W}}^{n},F_{T-W}) and (93) follows by using the same idea successively for WTWT times.

Note that KAK_{\mathrm{A}} is a function of A1nA_{1}^{n} and 𝐅\mathbf{F}. Continuing from (89) and invoking (81) in Lemma 7 with t=1t=1, Z=𝐅Z=\mathbf{F}, V1=KAV_{1}=K_{\mathrm{A}}, we obtain that

h(A𝒯n|A𝒲n,𝐅)𝒰(𝒮|𝒲)λ𝒰h(A𝒰n|A𝒰cn,𝐅)\displaystyle h(A^{n}_{\mathcal{T}}|A^{n}_{\mathcal{W}},\mathbf{F})-\sum_{\mathcal{U}\in\mathcal{H}(\mathcal{S}|\mathcal{W})}\lambda_{\mathcal{U}}h(A^{n}_{\mathcal{U}}|A^{n}_{\mathcal{U}^{\mathrm{c}}},\mathbf{F})
=h(A𝒯n|A𝒲n,𝐅,KA)𝒰(𝒮|𝒲)λ𝒰h(A𝒰n|A𝒰cn,𝐅,KA)+𝒰1(𝒮|𝒲)I(KA;A𝒰c𝒲cn|A𝒲n,𝐅)\displaystyle=h(A_{\mathcal{T}}^{n}|A_{\mathcal{W}}^{n},\mathbf{F},K_{\mathrm{A}})-\sum_{\mathcal{U}\in\mathcal{H}(\mathcal{S}|\mathcal{W})}\lambda_{\mathcal{U}}h(A_{\mathcal{U}}^{n}|A_{\mathcal{U}^{\mathrm{c}}}^{n},\mathbf{F},K_{\mathrm{A}})+\sum_{\mathcal{U}\in\mathcal{H}_{1}(\mathcal{S}|\mathcal{W})}I(K_{\mathrm{A}};A_{\mathcal{U}^{\mathrm{c}}\bigcap\mathcal{W}^{\mathrm{c}}}^{n}|A_{\mathcal{W}}^{n},\mathbf{F}) (95)
𝒰1(𝒮|𝒲)I(KA;A𝒰c𝒲cn|A𝒲n,𝐅)\displaystyle\geq\sum_{\mathcal{U}\in\mathcal{H}_{1}(\mathcal{S}|\mathcal{W})}I(K_{\mathrm{A}};A_{\mathcal{U}^{\mathrm{c}}\bigcap\mathcal{W}^{\mathrm{c}}}^{n}|A_{\mathcal{W}}^{n},\mathbf{F}) (96)
=I(KA;A1n|A2n,A3n,𝐅)\displaystyle=I(K_{\mathrm{A}};A_{1}^{n}|A_{2}^{n},A_{3}^{n},\mathbf{F}) (97)
=h(KA|A2n,A3n,𝐅)h(KA|A1n,A2n,A3n,𝐅)\displaystyle=h(K_{\mathrm{A}}|A_{2}^{n},A_{3}^{n},\mathbf{F})-h(K_{\mathrm{A}}|A_{1}^{n},A_{2}^{n},A_{3}^{n},\mathbf{F}) (98)
=h(KA)I(KA;A2n,A3n,𝐅)\displaystyle=h(K_{\mathrm{A}})-I(K_{\mathrm{A}};A_{2}^{n},A_{3}^{n},\mathbf{F}) (99)
h(KA)δ.\displaystyle\geq h(K_{\mathrm{A}})-\delta. (100)

where (96) follows from (80) in Lemma 7 by setting Z=(𝐅,KA)Z=(\mathbf{F},K_{\mathrm{A}}); (97) follows from the settings 𝒯={0,1,2,3}\mathcal{T}=\{0,1,2,3\}, 𝒮={0,1}\mathcal{S}=\{0,1\}, 𝒲={2,3}\mathcal{W}=\{2,3\}, and 1(𝒮|𝒲)={{1}}\mathcal{H}_{1}(\mathcal{S}|\mathcal{W})=\{\{1\}\}; (99) follows since KAK_{\mathrm{A}} is the function of A1nA_{1}^{n} and 𝐅\mathbf{F}; (100) follow by noting that I(KA;A2nA3n𝐅)D(PKAA2nA3n𝐅U𝒦1×PA2nA3n𝐅)δI(K_{\mathrm{A}};A_{2}^{n}A_{3}^{n}\mathbf{F})\leq D(P_{K_{\mathrm{A}}A_{2}^{n}A_{3}^{n}\mathbf{F}}\|U_{\mathcal{K}_{1}}\times P_{A_{2}^{n}A_{3}^{n}\mathbf{F}})\leq\delta and using (83).

Therefore, invoking (89) and (100), we conclude that

R1\displaystyle R_{1} lim infn1nH(KA)\displaystyle\leq\liminf_{n\to\infty}\frac{1}{n}H(K_{\mathrm{A}}) (101)
lim infn(I(A0;A1|A2,A3)+δn)\displaystyle\leq\liminf_{n\to\infty}\left(I(A_{0};A_{1}|A_{2},A_{3})+\frac{\delta}{n}\right) (102)
=I(A0;A1|A2,A3).\displaystyle=I(A_{0};A_{1}|A_{2},A_{3}). (103)

Similarly as (103), by considering the generation of KCK_{\mathrm{C}} and KBCK_{\rm{BC}} only, we obtain that

R2\displaystyle R_{2} lim infn1nH(KC)I(A0;A2|A1,A3).\displaystyle\leq\liminf_{n\to\infty}\frac{1}{n}H(K_{\mathrm{C}})\leq I(A_{0};A_{2}|A_{1},A_{3}). (104)

Finally, we derive the bound on the sum rate. Invoking (25), we obtain that for any δ\delta,

Pr{(KA,KC)(KBA,KBC)}\displaystyle\Pr\Big{\{}(K_{\mathrm{A}},K_{\mathrm{C}})\neq(K_{\rm{BA}},K_{\rm{BC}})\Big{\}} max{Pr{KAKBA},Pr{KCKBC}}\displaystyle\leq\max\big{\{}\Pr\{K_{\mathrm{A}}\neq K_{\rm{BA}}\},\Pr\{K_{\mathrm{C}}\neq K_{\rm{BC}}\}\big{\}} (105)
2δ.\displaystyle\leq 2\delta. (106)

Recall that KAK_{\mathrm{A}} is a function of (𝐅,A1n)(\mathbf{F},A_{1}^{n}) and KCK_{\mathrm{C}} is a function of (𝐅,A2n)(\mathbf{F},A_{2}^{n}). Invoking (26) and (27), we obtain that

2δ\displaystyle 2\delta D(PKAA2nA3n𝐅U𝒦1×PA2nA3n𝐅)+D(PKCA1nA3n𝐅U𝒦2×PA1nA3n𝐅)\displaystyle\geq D(P_{K_{\mathrm{A}}A_{2}^{n}A_{3}^{n}\mathbf{F}}\|U_{\mathcal{K}_{1}}\times P_{A_{2}^{n}A_{3}^{n}\mathbf{F}})+D(P_{K_{\mathrm{C}}A_{1}^{n}A_{3}^{n}\mathbf{F}}\|U_{\mathcal{K}_{2}}\times P_{A_{1}^{n}A_{3}^{n}\mathbf{F}}) (107)
=D(PKAU𝒦1)+D(PKCU𝒦2)+I(KA;A2n,A3n,𝐅)+I(KC;A1n,A3n,𝐅)\displaystyle=D(P_{K_{\mathrm{A}}}\|U_{\mathcal{K}_{1}})+D(P_{K_{\mathrm{C}}}\|U_{\mathcal{K}_{2}})+I(K_{\mathrm{A}};A_{2}^{n},A_{3}^{n},\mathbf{F})+I(K_{\mathrm{C}};A_{1}^{n},A_{3}^{n},\mathbf{F}) (108)
=D(PKAU𝒦1)+D(PKCU𝒦2)+I(KA;KC,A2n,A3n,𝐅)+I(KC;A1n,A3n,𝐅)\displaystyle=D(P_{K_{\mathrm{A}}}\|U_{\mathcal{K}_{1}})+D(P_{K_{\mathrm{C}}}\|U_{\mathcal{K}_{2}})+I(K_{\mathrm{A}};K_{\mathrm{C}},A_{2}^{n},A_{3}^{n},\mathbf{F})+I(K_{\mathrm{C}};A_{1}^{n},A_{3}^{n},\mathbf{F}) (109)
=D(PKAU𝒦1)+D(PKCU𝒦2)+I(KA;KC)+I(KA;A2n,A3n,𝐅|Kc)+I(KC;A1n,A3n,𝐅)\displaystyle=D(P_{K_{\mathrm{A}}}\|U_{\mathcal{K}_{1}})+D(P_{K_{\mathrm{C}}}\|U_{\mathcal{K}_{2}})+I(K_{\mathrm{A}};K_{\mathrm{C}})+I(K_{\mathrm{A}};A_{2}^{n},A_{3}^{n},\mathbf{F}|K_{\mathrm{c}})+I(K_{\mathrm{C}};A_{1}^{n},A_{3}^{n},\mathbf{F}) (110)
D(PKAU𝒦1)+D(PKCU𝒦2)+I(KA;KC)+I(KA;A3n,𝐅|Kc)+I(KC;A3n,𝐅)\displaystyle\geq D(P_{K_{\mathrm{A}}}\|U_{\mathcal{K}_{1}})+D(P_{K_{\mathrm{C}}}\|U_{\mathcal{K}_{2}})+I(K_{\mathrm{A}};K_{\mathrm{C}})+I(K_{\mathrm{A}};A_{3}^{n},\mathbf{F}|K_{\mathrm{c}})+I(K_{\mathrm{C}};A_{3}^{n},\mathbf{F}) (111)
=D(PKAKCA3n𝐅U𝒦1×U𝒦2×PA3n𝐅),\displaystyle=D(P_{K_{\mathrm{A}}K_{\mathrm{C}}A_{3}^{n}\mathbf{F}}\|U_{\mathcal{K}_{1}}\times U_{\mathcal{K}_{2}}\times P_{A_{3}^{n}\mathbf{F}}), (112)

and

δ\displaystyle\delta D(PKAA2nA3n𝐅U𝒦1×PA2nA3n𝐅)\displaystyle\geq D(P_{K_{\mathrm{A}}A_{2}^{n}A_{3}^{n}\mathbf{F}}\|U_{\mathcal{K}_{1}}\times P_{A_{2}^{n}A_{3}^{n}\mathbf{F}}) (113)
I(KA;KC).\displaystyle\geq I(K_{\mathrm{A}};K_{\mathrm{C}}). (114)

Thus, we have

lim infn1nh(KAKC)\displaystyle\liminf_{n\to\infty}\frac{1}{n}h(K_{\mathrm{A}}K_{\mathrm{C}}) =lim infn1n(h(KA)+h(KC)I(KA;KC))\displaystyle=\liminf_{n\to\infty}\frac{1}{n}(h(K_{\mathrm{A}})+h(K_{\mathrm{C}})-I(K_{\mathrm{A}};K_{\mathrm{C}})) (115)
lim infn1n(h(KA)+h(KC)δ)\displaystyle\geq\liminf_{n\to\infty}\frac{1}{n}(h(K_{\mathrm{A}})+h(K_{\mathrm{C}})-\delta) (116)
R1+R2.\displaystyle\geq R_{1}+R_{2}. (117)

Then, let us consider a super terminal observing (A1n,A2n)(A_{1}^{n},A_{2}^{n}) and generate private keys (KA,KC)(K_{\mathrm{A}},K_{\mathrm{C}}). With the requirement in (106), (112), similarly as (103), we conclude that

R1+R2\displaystyle R_{1}+R_{2} lim infn1nh(KAKC)I(A0;A1,A2|A3)+4δ.\displaystyle\leq\liminf_{n\to\infty}\frac{1}{n}h(K_{\mathrm{A}}K_{\mathrm{C}})\leq I(A_{0};A_{1},A_{2}|A_{3})+4\delta. (118)

The proof of Corollary 3 is now complete.

VI Conclusion

We first presented the output statistics of hash functions under the Rényi divergence criterion in Lemma 1. Lemma 1 is a generalization of the result in [11] to the multi terminal case and the strict generalization of the output statistics in [30, Theorem 1] where the variation distance is used as the security measure. Subsequently, we illustrated the power of Lemma 1 in analyzing secrecy constraints by deriving the capacity region of the multiple private key generation problem with a helper for CMS. The converse proof follows by judiciously adapting the techniques in [22] to the case with correlated side information at untrusted terminals.

We then briefly discuss the future research directions. First, one can apply Lemma 1 to analyze secrecy constraints for other key generation problems for CMS, such as the multi-terminal private key generation problem [4, Theorem 2] and the secret-private key generation problem with three terminals [16]. Furthermore, as shown in Theorems 2, 4 and Corollary 3, the capacity region for multiple private key generation is not tight in general. One may nail down the exact capacity region. Second, one may derive second-order asymptotics for multi-terminal key generation problems and thus extend the results of [9]. In order to do so, for private key generation problems, one can potentially refer to [7, 8] to derive the converse part and extend the achievability scheme in [9] to the multi-terminal case. Note that in [8, 9], the secrecy measure is the variational distance. Finally, one can explore the fundamental limits of the key generation problems with Rényi divergence as the security measure, as proposed in [28]. For capacity results, the achievability part can probably be done by using Lemma 1 or extending the results in [28].

-A Proof of Lemma 1

For simplicity, we consider n=1n=1 and discrete variable EE (i.e., \mathcal{E} is finite). The case for continuous variable EE and for any nn\in\mathbb{N} can be done similarly by replacing the summation over ee\in\mathcal{E} with corresponding integrals and using the i.i.d. nature of source sequences. For simplicity, we use 𝒜𝒯\mathcal{A}_{\mathcal{T}} to denote t𝒯𝒜t\prod_{t\in\mathcal{T}}\mathcal{A}_{t}, 𝒯\mathcal{M}_{\mathcal{T}} to denote t𝒯t\prod_{t\in\mathcal{T}}\mathcal{M}_{t} and 1{fX𝒯(a𝒯)=m𝒯}1\{f_{X_{\mathcal{T}}}(a_{\mathcal{T}})=m_{\mathcal{T}}\} to denote t𝒯1{fXt(at)=mt}\prod_{t\in\mathcal{T}}1\{f_{X_{t}}(a_{t})=m_{t}\} for all a𝒯𝒜𝒯a_{\mathcal{T}}\in\mathcal{A}_{\mathcal{T}} and m𝒯𝒯m_{\mathcal{T}}\in\mathcal{M}_{\mathcal{T}}. Given a𝒯𝒜𝒯a_{\mathcal{T}}\in\mathcal{A}_{\mathcal{T}}, for any subset 𝒮\mathcal{S} of 𝒯\mathcal{T}, define

𝒮:={a¯𝒯:a¯𝒮=a𝒮,andt𝒮,a¯tat}.\displaystyle\mathcal{B}_{\mathcal{S}}:=\{\bar{a}_{\mathcal{T}}:~{}\bar{a}_{\mathcal{S}}=a_{\mathcal{S}},~{}\mathrm{and}~{}\forall~{}t\notin\mathcal{S},~{}\bar{a}_{t}\neq a_{t}\}. (119)

Thus, we have

𝒜𝒯=𝒮𝒯𝒮.\displaystyle\mathcal{A}_{\mathcal{T}}=\bigcup_{\emptyset\neq\mathcal{S}\subseteq\mathcal{T}}\mathcal{B}_{\mathcal{S}}. (120)

-A1 Proof of Claim (i)

Fix a𝒯a_{\mathcal{T}} and ee. For any non-empty set 𝒮𝒯\mathcal{S}\subseteq\mathcal{T}, we have that

𝔼X𝒯[a¯𝒯𝒮1{fX𝒯(a¯𝒯)=fX𝒯(a𝒯)}PA𝒯|E(a¯𝒯|e)]\displaystyle\mathbb{E}_{X_{\mathcal{T}}}\Big{[}\sum_{\bar{a}_{\mathcal{T}}\in\mathcal{B}_{\mathcal{S}}}1\{f_{X_{\mathcal{T}}}(\bar{a}_{\mathcal{T}})=f_{X_{\mathcal{T}}}(a_{\mathcal{T}})\}P_{A_{\mathcal{T}}|E}(\bar{a}_{\mathcal{T}}|e)\Big{]} PA𝒮|E(a𝒮|e)×t(𝒯𝒮)εNt,\displaystyle\leq P_{A_{\mathcal{S}}|E}(a_{\mathcal{S}}|e)\times\prod_{t\in(\mathcal{T}-\mathcal{S})}\frac{\varepsilon}{N_{t}}, (121)

where (121) follows from the ε\varepsilon-almost universal property of hash functions fXtf_{X_{t}} for all t𝒯t\in\mathcal{T}. Similarly, if 𝒮=\mathcal{S}=\emptyset, then we have

𝔼X𝒯[a¯𝒯𝒮1{fX𝒯(a¯𝒯)=fX𝒯(a𝒯)}PA𝒯|E(a¯𝒯|e)]\displaystyle\mathbb{E}_{X_{\mathcal{T}}}\Big{[}\sum_{\bar{a}_{\mathcal{T}}\in\mathcal{B}_{\mathcal{S}}}1\{f_{X_{\mathcal{T}}}(\bar{a}_{\mathcal{T}})=f_{X_{\mathcal{T}}}(a_{\mathcal{T}})\}P_{A_{\mathcal{T}}|E}(\bar{a}_{\mathcal{T}}|e)\Big{]} t𝒯εNt.\displaystyle\leq\prod_{t\in\mathcal{T}}\frac{\varepsilon}{N_{t}}. (122)

Therefore, invoking (121) and (122), we obtain that

𝔼X𝒯[a¯𝒯1{fX𝒯(a¯𝒯)=fX𝒯(a𝒯)}PA𝒯|E(a¯𝒯|e)]\displaystyle\mathbb{E}_{X_{\mathcal{T}}}\Big{[}\sum_{\bar{a}_{\mathcal{T}}}1\{f_{X_{\mathcal{T}}}(\bar{a}_{\mathcal{T}})=f_{X_{\mathcal{T}}}(a_{\mathcal{T}})\}P_{A_{\mathcal{T}}|E}(\bar{a}_{\mathcal{T}}|e)\Big{]}
=𝔼X𝒯[𝒮𝒯a¯𝒯𝒮1{fX𝒯(a¯𝒯)=fX𝒯(a𝒯)}PA𝒯|E(a¯𝒯|e)]\displaystyle=\mathbb{E}_{X_{\mathcal{T}}}\Big{[}\sum_{\mathcal{S}\subseteq\mathcal{T}}\sum_{\bar{a}_{\mathcal{T}}\in\mathcal{B}_{\mathcal{S}}}1\{f_{X_{\mathcal{T}}}(\bar{a}_{\mathcal{T}})=f_{X_{\mathcal{T}}}(a_{\mathcal{T}})\}P_{A_{\mathcal{T}}|E}(\bar{a}_{\mathcal{T}}|e)\Big{]} (123)
=𝒮𝒯𝔼X𝒯[a¯𝒯𝒮1{fX𝒯(a¯𝒯)=fX𝒯(a𝒯)}PA𝒯|E(a¯𝒯|e)]\displaystyle=\sum_{\mathcal{S}\subseteq\mathcal{T}}\mathbb{E}_{X_{\mathcal{T}}}\Big{[}\sum_{\bar{a}_{\mathcal{T}}\in\mathcal{B}_{\mathcal{S}}}1\{f_{X_{\mathcal{T}}}(\bar{a}_{\mathcal{T}})=f_{X_{\mathcal{T}}}(a_{\mathcal{T}})\}P_{A_{\mathcal{T}}|E}(\bar{a}_{\mathcal{T}}|e)\Big{]} (124)
𝒮𝒯PA𝒮|E(a𝒮|e)×t(𝒯𝒮)εNt+t𝒯εNt.\displaystyle\leq\sum_{\emptyset\neq\mathcal{S}\subseteq\mathcal{T}}P_{A_{\mathcal{S}}|E}(a_{\mathcal{S}}|e)\times\prod_{t\in(\mathcal{T}-\mathcal{S})}\frac{\varepsilon}{N_{t}}+\prod_{t\in\mathcal{T}}\frac{\varepsilon}{N_{t}}. (125)

Thus, we obtain that

𝔼X𝒯[exp(sH1+s(M𝒯|E)]\displaystyle\mathbb{E}_{X_{\mathcal{T}}}\Big{[}\exp(-sH_{1+s}(M_{\mathcal{T}}|E)\Big{]}
=𝔼X𝒯[ePE(e)m𝒯𝒯(a𝒯1{fX𝒯(a𝒯)=m𝒯}PA𝒯|E(a𝒯|e))1+s]\displaystyle=\mathbb{E}_{X_{\mathcal{T}}}\Bigg{[}\sum_{e}P_{E}(e)\sum_{m_{\mathcal{T}}\in\mathcal{M}_{\mathcal{T}}}\Big{(}\sum_{a_{\mathcal{T}}}1\{f_{X_{\mathcal{T}}}(a_{\mathcal{T}})=m_{\mathcal{T}}\}P_{A_{\mathcal{T}}|E}(a_{\mathcal{T}}|e)\Big{)}^{1+s}\Bigg{]} (126)
=𝔼X𝒯[ePE(e)a𝒯PA𝒯|E(a𝒯|e)(a¯𝒯1{fX𝒯(a¯𝒯)=fX𝒯(a𝒯)}PA𝒯|E(a¯𝒯|e))s]\displaystyle=\mathbb{E}_{X_{\mathcal{T}}}\Bigg{[}\sum_{e}P_{E}(e)\sum_{a_{\mathcal{T}}}P_{A_{\mathcal{T}}|E}(a_{\mathcal{T}}|e)\Big{(}\sum_{\bar{a}_{\mathcal{T}}}1\{f_{X_{\mathcal{T}}}(\bar{a}_{\mathcal{T}})=f_{X_{\mathcal{T}}}(a_{\mathcal{T}})\}P_{A_{\mathcal{T}}|E}(\bar{a}_{\mathcal{T}}|e)\Big{)}^{s}\Bigg{]} (127)
ePE(e)a𝒯PA𝒯|E(a𝒯|e)(𝔼X𝒯[a¯𝒯1{fX𝒯(a¯𝒯)=fX𝒯(a𝒯)}PA𝒯|E(a¯𝒯|e)])s\displaystyle\leq\sum_{e}P_{E}(e)\sum_{a_{\mathcal{T}}}P_{A_{\mathcal{T}}|E}(a_{\mathcal{T}}|e)\Big{(}\mathbb{E}_{X_{\mathcal{T}}}\Big{[}\sum_{\bar{a}_{\mathcal{T}}}1\{f_{X_{\mathcal{T}}}(\bar{a}_{\mathcal{T}})=f_{X_{\mathcal{T}}}(a_{\mathcal{T}})\}P_{A_{\mathcal{T}}|E}(\bar{a}_{\mathcal{T}}|e)\Big{]}\Big{)}^{s} (128)
ePE(e)a𝒯PA𝒯|E(a𝒯|e)(𝒮𝒯PA𝒮|E(a𝒮|e)×t(𝒯𝒮)εNt+t𝒯εNt)s\displaystyle\leq\sum_{e}P_{E}(e)\sum_{a_{\mathcal{T}}}P_{A_{\mathcal{T}}|E}(a_{\mathcal{T}}|e)\Big{(}\sum_{\emptyset\neq\mathcal{S}\subseteq\mathcal{T}}P_{A_{\mathcal{S}}|E}(a_{\mathcal{S}}|e)\times\prod_{t\in(\mathcal{T}-\mathcal{S})}\frac{\varepsilon}{N_{t}}+\prod_{t\in\mathcal{T}}\frac{\varepsilon}{N_{t}}\Big{)}^{s} (129)
ePE(e)a𝒯PA𝒯|E(a𝒯|e)(𝒮𝒯PA𝒮|Es(a𝒮|e)t(𝒯𝒮)εsNts+t𝒯εsNts)\displaystyle\leq\sum_{e}P_{E}(e)\sum_{a_{\mathcal{T}}}P_{A_{\mathcal{T}}|E}(a_{\mathcal{T}}|e)\Big{(}\sum_{\emptyset\neq\mathcal{S}\subseteq\mathcal{T}}P_{A_{\mathcal{S}}|E}^{s}(a_{\mathcal{S}}|e)\prod_{t\in(\mathcal{T}-\mathcal{S})}\frac{\varepsilon^{s}}{N_{t}^{s}}+\prod_{t\in\mathcal{T}}\frac{\varepsilon^{s}}{N_{t}^{s}}\Big{)} (130)
t𝒯εsNts+𝒮𝒯(t(𝒯𝒮)εsNts)(ePE(e)a𝒮PA𝒮|E1+s(a𝒮|e))\displaystyle\leq\prod_{t\in\mathcal{T}}\frac{\varepsilon^{s}}{N_{t}^{s}}+\sum_{\emptyset\neq\mathcal{S}\subseteq\mathcal{T}}\Big{(}\prod_{t\in(\mathcal{T}-\mathcal{S})}\frac{\varepsilon^{s}}{N_{t}^{s}}\Big{)}\Big{(}\sum_{e}P_{E}(e)\sum_{a_{\mathcal{S}}}P_{A_{\mathcal{S}}|E}^{1+s}(a_{\mathcal{S}}|e)\Big{)} (131)
=t𝒯εsNts+𝒮𝒯(t(𝒯𝒮)εsNts)exp(sH1+s(A𝒮|E)).\displaystyle=\prod_{t\in\mathcal{T}}\frac{\varepsilon^{s}}{N_{t}^{s}}+\sum_{\emptyset\neq\mathcal{S}\subseteq\mathcal{T}}\Big{(}\prod_{t\in(\mathcal{T}-\mathcal{S})}\frac{\varepsilon^{s}}{N_{t}^{s}}\Big{)}\exp(-sH_{1+s}(A_{\mathcal{S}}|E)). (132)

where (128) follows from the concavity of the function tst^{s} for s[0,1]s\in[0,1]; (129) follows from (8) and (125); (130) follows from the inequality (iai)siais(\sum_{i}a_{i})^{s}\leq\sum_{i}a_{i}^{s} for s[0,1]s\in[0,1] [37, Problem 4.15(f)]; (132) follows from the definition in (8).

Invoking (15) and (132), we conclude that

𝔼X𝒯[exp(sC1+s(M𝒯|E))]\displaystyle\mathbb{E}_{X_{\mathcal{T}}}\Big{[}\exp(sC_{1+s}(M_{\mathcal{T}}|E))\Big{]}
=𝔼X𝒯[exp(st𝒯logNtsH1+s(M𝒯|E))]\displaystyle=\mathbb{E}_{X_{\mathcal{T}}}\Big{[}\exp\Big{(}s\sum_{t\in\mathcal{T}}\log N_{t}-sH_{1+s}(M_{\mathcal{T}}|E)\Big{)}\Big{]} (133)
(t𝒯Nts)×(t𝒯εsNts+𝒮𝒯(t(𝒯𝒮)εsNts)exp(sH1+s(A𝒮|E)))\displaystyle\leq\Big{(}\prod_{t\in\mathcal{T}}N_{t}^{s}\Big{)}\times\Big{(}\prod_{t\in\mathcal{T}}\frac{\varepsilon^{s}}{N_{t}^{s}}+\sum_{\emptyset\neq\mathcal{S}\subseteq\mathcal{T}}\Big{(}\prod_{t\in(\mathcal{T}-\mathcal{S})}\frac{\varepsilon^{s}}{N_{t}^{s}}\Big{)}\exp(-sH_{1+s}(A_{\mathcal{S}}|E))\Big{)} (134)
=εsT+𝒮𝒯εs(T|𝒮|)(i𝒮Nts)exp(sH1+s(A𝒮|E)).\displaystyle=\varepsilon^{sT}+\sum_{\emptyset\neq\mathcal{S}\subseteq\mathcal{T}}\varepsilon^{s(T-|\mathcal{S}|)}\Big{(}\prod_{i\in\mathcal{S}}N_{t}^{s}\Big{)}\exp(-sH_{1+s}(A_{\mathcal{S}}|E)). (135)

The proof of Claim (i) is thus completed.

-A2 Proof of Claim (ii)

Recall that

logNt=nRt.\displaystyle\log N_{t}=nR_{t}. (136)

Given any s(0,1]s\in(0,1] and any ε+\varepsilon\in\mathbb{R}_{+}, we have

𝔼X𝒯[C1+s(M𝒯|En)]\displaystyle\mathbb{E}_{X_{\mathcal{T}}}\Big{[}C_{1+s}(M_{\mathcal{T}}|E^{n})\Big{]} 1slog(𝔼X𝒯[exp(sC1+s(M𝒯|E))])\displaystyle\leq\frac{1}{s}\log\left(\mathbb{E}_{X_{\mathcal{T}}}\Big{[}\exp(sC_{1+s}(M_{\mathcal{T}}|E))\Big{]}\right) (137)
1slog(εsT+𝒮𝒯εs(T|𝒮|)exp(sn(H1+s(A𝒮|E)t𝒮Rt)))\displaystyle\leq\frac{1}{s}\log\Bigg{(}\varepsilon^{sT}+\sum_{\emptyset\neq\mathcal{S}\subseteq\mathcal{T}}\varepsilon^{s(T-|\mathcal{S}|)}\exp\Big{(}-sn\big{(}H_{1+s}(A_{\mathcal{S}}|E)-\sum_{t\in\mathcal{S}}R_{t}\big{)}\Big{)}\Bigg{)} (138)
|Tlogε|+1slog(1+𝒮𝒯exp(sn(H1+s(A𝒮|E)t𝒮Rt))),\displaystyle\leq|T\log\varepsilon|+\frac{1}{s}\log\Bigg{(}1+\sum_{\emptyset\neq\mathcal{S}\subseteq\mathcal{T}}\exp\Big{(}-sn\big{(}H_{1+s}(A_{\mathcal{S}}|E)-\sum_{t\in\mathcal{S}}R_{t}\big{)}\Big{)}\Bigg{)}, (139)

where (137) follows since exp(𝔼X𝒯[sC1+s(M𝒯|E)])𝔼X𝒯[exp(sC1+s(M𝒯|E))]\exp(\mathbb{E}_{X_{\mathcal{T}}}\big{[}sC_{1+s}(M_{\mathcal{T}}|E)\big{]})\leq\mathbb{E}_{X_{\mathcal{T}}}[\exp(sC_{1+s}(M_{\mathcal{T}}|E))] due to the convexity of exp(z)\exp(z) in zz\in\mathbb{R}; (138) follows from the result in (135) and the fact that (A𝒮n,En)(A_{\mathcal{S}}^{n},E^{n}) are a sequence of i.i.d. random variables, leading to H1+s(A𝒮n|En)=nH1+s(A𝒮|E)H_{1+s}(A_{\mathcal{S}}^{n}|E^{n})=nH_{1+s}(A_{\mathcal{S}}|E); (139) follows since i) log(z)\log(z) is increasing in z+z\in\mathbb{R}_{+} and ii) for any ε+\varepsilon\in\mathbb{R}_{+}, with g(𝒮):=exp(sn(H1+s(A𝒮|E)t𝒮Rt)g(\mathcal{S}):=\exp\Big{(}-sn\big{(}H_{1+s}(A_{\mathcal{S}}|E)-\sum_{t\in\mathcal{S}}R_{t}\big{)}, if ε(0,1]\varepsilon\in(0,1], then

εsT+𝒮𝒯εs(T|𝒮|)g(𝒮)\displaystyle\varepsilon^{sT}+\sum_{\emptyset\neq\mathcal{S}\subseteq\mathcal{T}}\varepsilon^{s(T-|\mathcal{S}|)}g(\mathcal{S}) 1+𝒮𝒯g(𝒮)\displaystyle\leq 1+\sum_{\emptyset\neq\mathcal{S}\subseteq\mathcal{T}}g(\mathcal{S}) (140)

and if ε>1\varepsilon>1, then

εsT+𝒮𝒯εs(T|𝒮|)g(𝒮)\displaystyle\varepsilon^{sT}+\sum_{\emptyset\neq\mathcal{S}\subseteq\mathcal{T}}\varepsilon^{s(T-|\mathcal{S}|)}g(\mathcal{S}) εsT×(1+𝒮𝒯g(𝒮)).\displaystyle\leq\varepsilon^{sT}\times\Big{(}1+\sum_{\emptyset\neq\mathcal{S}\subseteq\mathcal{T}}g(\mathcal{S})\Big{)}. (141)

The proof of Claim (ii) is completed by invoking (139).

-B Proof of Claim (iii)

We then proceed to prove (19). From now on, we take ε=1\varepsilon=1 and thus consider universal2 hash functions. For any s(0,1]s\in(0,1] and θ[s,1]\theta\in[s,1], using (135), we obtain that

𝔼X𝒯[C1+s(M𝒯|En)]\displaystyle\mathbb{E}_{X_{\mathcal{T}}}\Big{[}C_{1+s}(M_{\mathcal{T}}|E^{n})\Big{]} 𝔼X𝒯[C1+θ(M𝒯|En)]\displaystyle\leq\mathbb{E}_{X_{\mathcal{T}}}\Big{[}C_{1+\theta}(M_{\mathcal{T}}|E^{n})\Big{]} (142)
1θlog(1+𝒮𝒯(i𝒮Mirθ)×exp(rH1+θ(A𝒮n|En)))\displaystyle\leq\frac{1}{\theta}\log\Big{(}1+\sum_{\emptyset\neq\mathcal{S}\subseteq\mathcal{T}}\Big{(}\prod_{i\in\mathcal{S}}M_{i}^{r}\theta\Big{)}\times\exp(-rH_{1+\theta}(A_{\mathcal{S}}^{n}|E^{n}))\Big{)} (143)
1r𝒮𝒯exp(nθ(H1+θ(A𝒮|E)t𝒮Rt))\displaystyle\leq\frac{1}{r}\sum_{\emptyset\neq\mathcal{S}\subseteq\mathcal{T}}\exp\Big{(}-n\theta\big{(}H_{1+\theta}(A_{\mathcal{S}}|E)-\sum_{t\in\mathcal{S}}R_{t}\big{)}\Big{)} (144)
2T1θ×max𝒮𝒯exp(nθ(H1+θ(A𝒮|E)t𝒮Rt))\displaystyle\leq\frac{2^{T}-1}{\theta}\times\max_{\emptyset\neq\mathcal{S}\subseteq\mathcal{T}}\exp\Big{(}-n\theta\big{(}H_{1+\theta}(A_{\mathcal{S}}|E)-\sum_{t\in\mathcal{S}}R_{t}\big{)}\Big{)} (145)
=2T1θ×exp(nθmin𝒮𝒯(H1+θ(A𝒮|E)t𝒮Rt)).\displaystyle=\frac{2^{T}-1}{\theta}\times\exp\Big{(}-n\theta\min_{\emptyset\neq\mathcal{S}\subseteq\mathcal{T}}\big{(}H_{1+\theta}(A_{\mathcal{S}}|E)-\sum_{t\in\mathcal{S}}R_{t}\big{)}\Big{)}. (146)

Thus, invoking (146), we obtain that for s(0,1]s\in(0,1], we have

lim infn1nlog𝔼X𝒯[C1+s(M𝒯|En)]\displaystyle\liminf_{n\to\infty}-\frac{1}{n}\log\mathbb{E}_{X_{\mathcal{T}}}\Big{[}C_{1+s}(M_{\mathcal{T}}|E^{n})\Big{]} maxθ(s,1]min𝒮𝒯(H1+θ(A𝒮|E)t𝒮Rt).\displaystyle\geq\max_{\theta\in(s,1]}\min_{\emptyset\neq\mathcal{S}\subseteq\mathcal{T}}\big{(}H_{1+\theta}(A_{\mathcal{S}}|E)-\sum_{t\in\mathcal{S}}R_{t}\big{)}. (147)

Invoking (139), we obtain that C1+s(M𝒯|En)=O(n)C_{1+s}(M_{\mathcal{T}}|E^{n})=O(n) Thus, recalling that C1+s()C_{1+s}(\cdot) is non-decreasing in ss, we obtain that for s=0s=0,

lim infn1nlog𝔼X𝒯[C1+s(M𝒯|En)]\displaystyle\liminf_{n\to\infty}-\frac{1}{n}\log\mathbb{E}_{X_{\mathcal{T}}}\Big{[}C_{1+s}(M_{\mathcal{T}}|E^{n})\Big{]} min{0,maxθ(0,1]θmin𝒮𝒯(H1+θ(A𝒮|E)t𝒮Rt)}\displaystyle\geq\min\{0,\max_{\theta\in(0,1]}\theta\min_{\emptyset\neq\mathcal{S}\subseteq\mathcal{T}}\big{(}H_{1+\theta}(A_{\mathcal{S}}|E)-\sum_{t\in\mathcal{S}}R_{t}\big{)}\} (148)
=maxθ[0,1]θmin𝒮𝒯(H1+θ(A𝒮|E)t𝒮Rt).\displaystyle=\max_{\theta\in[0,1]}\theta\min_{\emptyset\neq\mathcal{S}\subseteq\mathcal{T}}\big{(}H_{1+\theta}(A_{\mathcal{S}}|E)-\sum_{t\in\mathcal{S}}R_{t}\big{)}. (149)

-C Proof of Lemma 6

Here we only provide the proof of (74) since (75) and (76) can be proved similarly. Recall that for t=0,1,2,3t=0,1,2,3, BtB_{t} is the quantized version of AtA_{t}, i.e., Bt=gq(At)B_{t}=g_{q}(A_{t}). Define an auxiliary random variable B4:=t=131{Bt0}B_{4}:=\prod_{t=1}^{3}1\{B_{t}\neq 0\}. Then we have that

H(B1|A2,A3)\displaystyle H(B_{1}|A_{2},A_{3}) =H(B1,B4|A2,A3)H(B4|B1,A2,A3)\displaystyle=H(B_{1},B_{4}|A_{2},A_{3})-H(B_{4}|B_{1},A_{2},A_{3}) (150)
=H(B1,B4|A2,A3)\displaystyle=H(B_{1},B_{4}|A_{2},A_{3}) (151)
=H(B4|A2,A3)+H(B1|A2,A3,B4).\displaystyle=H(B_{4}|A_{2},A_{3})+H(B_{1}|A_{2},A_{3},B_{4}). (152)

where (151) follows since B4B_{4} is function of (B1,B2,B3)(B_{1},B_{2},B_{3}) and BtB_{t} is a function of AtA_{t} for t=2,3t=2,3. Note that (A2,A3)(B1,B2,B3)B4(A_{2},A_{3})-(B_{1},B_{2},B_{3})-B_{4} and B1A1(A2,A3)(B2,B3)B_{1}-A_{1}-(A_{2},A_{3})-(B_{2},B_{3}) form Markov chains. Hence, for any (a2,a3,b1,b2,b3)2×3(a_{2},a_{3},b_{1},b_{2},b_{3})\in\mathcal{R}^{2}\times\mathcal{B}^{3},

PA23B13B4(a2,a3,b13,1)\displaystyle P_{A_{2}^{3}B_{1}^{3}B_{4}}(a_{2},a_{3},b_{1}^{3},1) =PA23(a23)PB23|A23(b23|a23)PB1|A23(b1|a23)PB4|B13(1|b13)\displaystyle=P_{A_{2}^{3}}(a_{2}^{3})P_{B_{2}^{3}|A_{2}^{3}}(b_{2}^{3}|a_{2}^{3})P_{B_{1}|A_{2}^{3}}(b_{1}|a_{2}^{3})P_{B_{4}|B_{1}^{3}}(1|b_{1}^{3}) (153)
=PA23(a23)×t=231{bt=gq(at)}PB1|A23(b1|a23)×t=131{bt0}\displaystyle=P_{A_{2}^{3}}(a_{2}^{3})\times\prod_{t=2}^{3}1\{b_{t}=g_{q}(a_{t})\}P_{B_{1}|A_{2}^{3}}(b_{1}|a_{2}^{3})\times\prod_{t=1}^{3}1\{b_{t}\neq 0\} (154)

Thus, PA23B13B4(a23,b13,1)P_{A_{2}^{3}B_{1}^{3}B_{4}}(a_{2}^{3},b_{1}^{3},1) is non-zero if and only if gq(at)0g_{q}(a_{t})\neq 0 for t=1,2t=1,2 and bt=1b_{t}=1 for t=1,2,3t=1,2,3. Let

η(a23):=PB4|A23(0|a23).\displaystyle\eta(a_{2}^{3}):=P_{B_{4}|A_{2}^{3}}(0|a_{2}^{3}). (155)

Thus,

H(B1,B2,B3|A2=a2,A3=a3,B4=1)\displaystyle H(B_{1},B_{2},B_{3}|A_{2}=a_{2},A_{3}=a_{3},B_{4}=1)
=b13{1,,2q2}3PA23B13B4(a23,b13,1)PA23B4(a23,1)logPA23B13B4(a23,b13,1)PA23B4(a23,1)\displaystyle=-\sum_{b_{1}^{3}\in\{1,\ldots,2q^{2}\}^{3}}\frac{P_{A_{2}^{3}B_{1}^{3}B_{4}}(a_{2}^{3},b_{1}^{3},1)}{P_{A_{2}^{3}B_{4}}(a_{2}^{3},1)}\log\frac{P_{A_{2}^{3}B_{1}^{3}B_{4}}(a_{2}^{3},b_{1}^{3},1)}{P_{A_{2}^{3}B_{4}}(a_{2}^{3},1)} (156)
=b1{1,,2q2}PB1|A23(b1|a23)1η(a23)logPB1|A23(b1|a23)1η(a23)\displaystyle=-\sum_{b_{1}\in\{1,\ldots,2q^{2}\}}\frac{P_{B_{1}|A_{2}^{3}}(b_{1}|a_{2}^{3})}{1-\eta(a_{2}^{3})}\log\frac{P_{B_{1}|A_{2}^{3}}(b_{1}|a_{2}^{3})}{1-\eta(a_{2}^{3})} (157)
=log(1η(a23))1η(a23)11η(a23)b1{1,,2q2}PA1|A23(gq1(b1)|a23)ΔlogPA1|A23(a1|a23)Δ\displaystyle=\frac{\log(1-\eta(a_{2}^{3}))}{1-\eta(a_{2}^{3})}-\frac{1}{1-\eta(a_{2}^{3})}\sum_{b_{1}\in\{1,\ldots,2q^{2}\}}P_{A_{1}|A_{2}^{3}}(g_{q}^{-1}(b_{1})|a_{2}^{3})\Delta\log P_{A_{1}|A_{2}^{3}}(a_{1}|a_{2}^{3})\Delta (158)
=log(1η(a23))1η(a23)logΔ1η(a23)b1{1,,2q2}PA1|A23(gq1(b1)|a23)Δ\displaystyle=\frac{\log(1-\eta(a_{2}^{3}))}{1-\eta(a_{2}^{3})}-\frac{\log\Delta}{1-\eta(a_{2}^{3})}\sum_{b_{1}\in\{1,\ldots,2q^{2}\}}P_{A_{1}|A_{2}^{3}}(g_{q}^{-1}(b_{1})|a_{2}^{3})\Delta
11η(a23)b1{1,,2q2}PA1|A23(gq1(b1)|a23)ΔlogPA1|A23(a1|a23),\displaystyle\qquad-\frac{1}{1-\eta(a_{2}^{3})}\sum_{b_{1}\in\{1,\ldots,2q^{2}\}}P_{A_{1}|A_{2}^{3}}(g_{q}^{-1}(b_{1})|a_{2}^{3})\Delta\log P_{A_{1}|A_{2}^{3}}(a_{1}|a_{2}^{3}), (159)

where (158) follows from the mean value theorem, which states that for some a1a_{1} such that gq(a1)=b1g_{q}(a_{1})=b_{1},

PB1|A23(b1|a23)\displaystyle P_{B_{1}|A_{2}^{3}}(b_{1}|a_{2}^{3}) =a1:(b11)Δq<a1b1ΔqPA1|A23(a1|a23)da1\displaystyle=\int_{\begin{subarray}{c}a_{1}:(b_{1}-1)\Delta-q<a_{1}\leq b_{1}\Delta-q\end{subarray}}P_{A_{1}|A_{2}^{3}}(a_{1}|a_{2}^{3})\mathrm{d}a_{1} (160)
=PA1|A23(a1|a23)Δ.\displaystyle=P_{A_{1}|A_{2}^{3}}(a_{1}|a_{2}^{3})\Delta. (161)

Let Σ1\Sigma_{1} be the variance of A1A_{1}. Similarly as [22, (66)-(67)], we obtain that as Δ=1q0\Delta=\frac{1}{q}\downarrow 0, for any (a2,a3)(a_{2},a_{3})

η(a23)\displaystyle\eta(a_{2}^{3}) =PB4|A23(0|a23)\displaystyle=P_{B_{4}|A_{2}^{3}}(0|a_{2}^{3}) (162)
=t=231{g(at)=0}×Pr{B1=0}\displaystyle=\prod_{t=2}^{3}1\{g(a_{t})=0\}\times\Pr\{B_{1}=0\} (163)
=t=231{g(at)=0}×Pr{A1[q,q]}\displaystyle=\prod_{t=2}^{3}1\{g(a_{t})=0\}\times\Pr\{A_{1}\notin[-q,q]\} (164)
exp(q22Σ112log2πΣ1)0.\displaystyle\leq\exp\Big{(}-\frac{q^{2}}{2\Sigma_{1}}-\frac{1}{2}\log 2\pi\Sigma_{1}\Big{)}\to 0. (165)

Let hb(x):=xlogx(1x)log(1x)h_{b}(x):=-x\log x-(1-x)\log(1-x) be the binary entropy function for x[0,1]x\in[0,1]. Invoking (165), we obtain that

limΔ0H(B4|A2,A3)\displaystyle\lim_{\Delta\to 0}H(B_{4}|A_{2},A_{3}) =limΔ0a23PA23(a23)H(B4|a23)da23\displaystyle=\lim_{\Delta\to 0}\int_{a_{2}^{3}}P_{A_{2}^{3}}(a_{2}^{3})H(B_{4}|a_{2}^{3})\mathrm{d}_{a_{2}^{3}} (166)
limΔ0a23PA23(a23)hb(η(a23))da23=0.\displaystyle\leq\lim_{\Delta\to 0}\int_{a_{2}^{3}}P_{A_{2}^{3}}(a_{2}^{3})h_{b}(\eta(a_{2}^{3}))\mathrm{d}_{a_{2}^{3}}=0. (167)

Invoking (159), (165) and noting that BtB_{t} is a function of AtA_{t} for t=2,3t=2,3, we obtain that

limΔ0H(B1|A2,A3,B4)\displaystyle\lim_{\Delta\to 0}H(B_{1}|A_{2},A_{3},B_{4}) =limΔ0H(B1,B2,B3|A2,A3,B4)\displaystyle=\lim_{\Delta\to 0}H(B_{1},B_{2},B_{3}|A_{2},A_{3},B_{4}) (168)
=limΔ0(a23PA23(a23)PB4|A23(0|a23)H(B1|A2=a2,A3=a3,B4=0)da23\displaystyle=\lim_{\Delta\to 0}\Big{(}\int_{a_{2}^{3}}P_{A_{2}^{3}}(a_{2}^{3})P_{B_{4}|A_{2}^{3}}(0|a_{2}^{3})H(B_{1}|A_{2}=a_{2},A_{3}=a_{3},B_{4}=0)\mathrm{d}_{a_{2}^{3}}
+a23PA23(a23)PB4|A23(1|a23)H(B2|A2=a2,A3=a3,B4=1)da23)\displaystyle\qquad+\int_{a_{2}^{3}}P_{A_{2}^{3}}(a_{2}^{3})P_{B_{4}|A_{2}^{3}}(1|a_{2}^{3})H(B_{2}|A_{2}=a_{2},A_{3}=a_{3},B_{4}=1)\mathrm{d}_{a_{2}^{3}}\Big{)} (169)
=h(A1|A2,A3).\displaystyle=h(A_{1}|A_{2},A_{3}). (170)

Therefore, invoking (152), (167), (170), we obtain that

limΔ0H(B1|A2,A3)=h(A1|A2,A3).\displaystyle\lim_{\Delta\to 0}H(B_{1}|A_{2},A_{3})=h(A_{1}|A_{2},A_{3}). (171)

The proof of (74) is complete if we show that

limΔ0H(B1|B0,B2,B3)=h(A1|A0,A2,A3).\displaystyle\lim_{\Delta\to 0}H(B_{1}|B_{0},B_{2},B_{3})=h(A_{1}|A_{0},A_{2},A_{3}). (172)

For this purpose, define B5=t=031{Bt0}B_{5}=\prod_{t=0}^{3}1\{B_{t}\neq 0\} and B6:=t{0,2,3}{Bt0}B_{6}:=\prod_{t\in\{0,2,3\}}\{B_{t}\neq 0\}. Then, we have

H(B1|B0,B2,B3)\displaystyle H(B_{1}|B_{0},B_{2},B_{3}) =H(B03)H(B0,B2,B3)\displaystyle=H(B_{0}^{3})-H(B_{0},B_{2},B_{3}) (173)
=H(B03,B5)H(B0,B2,B3,B6)\displaystyle=H(B_{0}^{3},B_{5})-H(B_{0},B_{2},B_{3},B_{6}) (174)
=H(B5)+H(B03|B5)H(B6)H(B0,B2,B3|B6).\displaystyle=H(B_{5})+H(B_{0}^{3}|B_{5})-H(B_{6})-H(B_{0},B_{2},B_{3}|B_{6}). (175)

Similarly as [22, Equation (67)], we can show that for t=5,6t=5,6,

limΔ0Pr{Bt=0}=0.\displaystyle\lim_{\Delta\to 0}\Pr\{B_{t}=0\}=0. (176)

Hence, we obtain that

limΔ0H(B5)\displaystyle\lim_{\Delta\to 0}H(B_{5}) =0,\displaystyle=0, (177)
limΔ0H(B6)\displaystyle\lim_{\Delta\to 0}H(B_{6}) =0.\displaystyle=0. (178)

Furthermore, invoking [22, Equation (18)], we conclude that

limΔ0H(B03|B5)\displaystyle\lim_{\Delta\to 0}H(B_{0}^{3}|B_{5}) =limΔ0H(B03|B5=1)=h(A03)\displaystyle=\lim_{\Delta\to 0}H(B_{0}^{3}|B_{5}=1)=h(A_{0}^{3}) (179)
limΔ0H(B0,B2,B3|B6)\displaystyle\lim_{\Delta\to 0}H(B_{0},B_{2},B_{3}|B_{6}) =limΔ0H(B0,B2,B3|B6=1)\displaystyle=\lim_{\Delta\to 0}H(B_{0},B_{2},B_{3}|B_{6}=1) (180)
=h(A0,A2,A3).\displaystyle=h(A_{0},A_{2},A_{3}). (181)

The proof of (172) is complete by invoking (175) and (177) to (181).

References

  • [1] U. M. Maurer, “Secret key agreement by public discussion from common information,” IEEE Trans. Inf. Theory, vol. 39, no. 3, pp. 733–742, 1993.
  • [2] R. Ahlswede and I. Csiszar, “Common randomness in information theory and cryptography. i. secret sharing,” IEEE Trans. Inf. Theory, vol. 39, no. 4, pp. 1121–1132, 1993.
  • [3] I. Csiszar and P. Narayan, “Common randomness and secret key generation with a helper,” IEEE Trans. Inf. Theory, vol. 46, no. 2, pp. 344–366, 2000.
  • [4] ——, “Secrecy capacities for multiple terminals,” IEEE Trans. Inf. Theory, vol. 50, no. 12, pp. 3047–3061, 2004.
  • [5] I. Csiszár and J. Körner, Information Theory: Coding Theorems for Discrete Memoryless Systems.   Cambridge University Press, 2011.
  • [6] C. Ye and A. Reznik, “Group secret key generation algorithms,” in IEEE ISIT, 2007, pp. 2596–2600.
  • [7] C. Chan and L. Zheng, “Mutual dependence for secret key agreement,” in CISS, 2010, pp. 1–6.
  • [8] H. Tyagi and S. Watanabe, “Converses for secret key agreement and secure computing,” IEEE Trans. Inf. Theory, vol. 61, no. 9, pp. 4809–4827, 2015.
  • [9] M. Hayashi, H. Tyagi, and S. Watanabe, “Secret key agreement: General capacity and second-order asymptotics,” IEEE Trans. Inf. Theory, vol. 62, no. 7, pp. 3796–3810, 2016.
  • [10] I. Csiszar and P. Narayan, “Secrecy capacities for multiterminal channel models,” IEEE Trans. Inf. Theory, vol. 54, no. 6, pp. 2437–2452, 2008.
  • [11] M. Hayashi, “Exponential decreasing rate of leaked information in universal random privacy amplification,” IEEE Trans. Inf. Theory, vol. 57, no. 6, pp. 3989–4001, June 2011.
  • [12] T. H. Chou, V. Y. F. Tan, and S. C. Draper, “The sender-excited secret key agreement model: Capacity, reliability, and secrecy exponents,” IEEE Trans. Inf. Theory, vol. 61, no. 1, pp. 609–627, Jan 2015.
  • [13] A. Khisti, S. N. Diggavi, and G. W. Wornell, “Secret-key agreement with channel state information at the transmitter,” IEEE Trans. Inf. Forensics Security, vol. 6, no. 3, pp. 672–681, 2011.
  • [14] M. Bloch and J. Barros, Physical-layer security: from information theory to security engineering.   Cambridge University Press, 2011.
  • [15] R. A. Chou and M. R. Bloch, “Separation of reliability and secrecy in rate-limited secret-key generation,” IEEE Trans. Inf. Theory, vol. 60, no. 8, pp. 4941–4957, 2014.
  • [16] C. Ye and P. Narayan, “The secret key private key capacity region for three terminals,” in IEEE ISIT, 2005, pp. 2142–2146.
  • [17] H. Zhang, L. Lai, Y. Liang, and H. Wang, “The capacity region of the source-type model for secret key and private key generation,” IEEE Trans. Inf. Theory, vol. 60, no. 10, pp. 6389–6398, 2014.
  • [18] H. Zhang, Y. Liang, L. Lai, and S. S. Shitz, “Multi-key generation over a cellular model with a helper,” IEEE Trans. Inf. Theory, vol. 63, no. 6, pp. 3804–3822, 2017.
  • [19] W. Tu, M. Goldenbaum, L. Lai, and H. V. Poor, “On simultaneously generating multiple keys in a joint source-channel model,” IEEE Trans. Inf. Forensics Security, vol. 12, no. 2, pp. 298–308, 2017.
  • [20] C. Ye and P. Narayan, “Secret key and private key constructions for simple multiterminal source models,” IEEE Trans. Inf. Theory, vol. 58, no. 2, pp. 639–651, 2012.
  • [21] P. Xu, Z. Ding, X. Dai, and G. K. Karagiannidis, “Simultaneously generating secret and private keys in a cooperative pairwise-independent network,” IEEE Trans. Inf. Forensics Security, vol. 11, no. 6, pp. 1139–1150, 2016.
  • [22] S. Nitinawarat and P. Narayan, “Secret key generation for correlated Gaussian sources,” IEEE Trans. Inf. Theory, vol. 58, no. 6, pp. 3373–3391, 2012.
  • [23] S. Watanabe and Y. Oohama, “Secret key agreement from correlated Gaussian sources by rate limited public communication,” IEICE Trans. Fundamentals, vol. 93, no. 11, pp. 1976–1983, 2010.
  • [24] ——, “Secret key agreement from vector Gaussian sources by rate limited public communication,” IEEE Trans. Inf. Forensics Security, vol. 6, no. 3, pp. 541–550, 2011.
  • [25] C. Ye, A. Reznik, and Y. Shah, “Extracting secrecy from jointly Gaussian random variables,” in IEEE ISIT, 2006, pp. 2593–2597.
  • [26] A. Khisti, “Secret-key agreement over non-coherent block-fading channels with public discussion,” IEEE Trans. Inf. Theory, vol. 62, no. 12, pp. 7164–7178, Dec 2016.
  • [27] A. Khisti, S. N. Diggavi, and G. W. Wornell, “Secret-key generation using correlated sources and channels,” IEEE Trans. Inf. Theory, vol. 58, no. 2, pp. 652–670, 2012.
  • [28] M. Hayashi and V. Y. F. Tan, “Equivocations, exponents, and second-order coding rates under various Rényi information measures,” IEEE Trans. Inf. Theory, vol. 63, no. 2, pp. 975–1005, 2017.
  • [29] T. Van Erven and P. Harremos, “Rényi divergence and kullback-leibler divergence,” IEEE Trans. Inf. Theory, vol. 60, no. 7, pp. 3797–3820, 2014.
  • [30] M. H. Yassaee, M. R. Aref, and A. Gohari, “Achievability proof via output statistics of random binning,” IEEE Trans. Inf. Theory, vol. 60, no. 11, pp. 6760–6786, Nov 2014.
  • [31] R. G. Gallager, “Source coding with side information and universal coding,” LIDS, MIT, Tech. Rep., 1976.
  • [32] T. M. Cover and J. A. Thomas, Elements of information theory.   John Wiley & Sons, 2012.
  • [33] T. Tsurumaru and M. Hayashi, “Dual universality of hash functions and its applications to quantum cryptography,” IEEE Trans. Inf. Theory, vol. 59, no. 7, pp. 4700–4717, 2013.
  • [34] M. N. Wegman and J. L. Carter, “New hash functions and their use in authentication and set equality,” Journal of computer and system sciences, vol. 22, no. 3, pp. 265–279, 1981.
  • [35] J. L. Carter and M. N. Wegman, “Universal classes of hash functions,” Journal of computer and system sciences, vol. 18, no. 2, pp. 143–154, 1979.
  • [36] M. Hayashi, “Security analysis of ε\varepsilon-almost dual universal2 hash functions: Smoothing of min entropy versus smoothing of rényi entropy of order 22,” IEEE Trans. Inf. Theory, vol. 62, no. 6, pp. 3451–3476, June 2016.
  • [37] R. G. Gallager, Information Theory and Reliable Communication.   New York: Wiley, 1968.